WO2005091676A1 - Listening device with two or more microphones - Google Patents
Listening device with two or more microphones Download PDFInfo
- Publication number
- WO2005091676A1 WO2005091676A1 PCT/EP2005/051169 EP2005051169W WO2005091676A1 WO 2005091676 A1 WO2005091676 A1 WO 2005091676A1 EP 2005051169 W EP2005051169 W EP 2005051169W WO 2005091676 A1 WO2005091676 A1 WO 2005091676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- signals
- microphone
- added
- listening device
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/40—Arrangements for obtaining a desired directivity characteristic
- H04R25/405—Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/40—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
- H04R1/406—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
Definitions
- the invention relates to listening devices like hearing aids or headsets wherein two or more microphone units are incorporated.
- microphone units are used generally to enhance the signal to noise ratio by introducing various kinds of directional algorithms, which will ensure, that the most clear sound source in the environment is amplified whereas other less clear sound sources are dampened.
- the user In listening devices with directional algorithms the user usually also has the possibility of choosing an omnidirectional mode, wherein the signal from one microphone is routed to the user, and this signal will then amplify all sounds in the environment irrespective of the direction of incidence.
- Each of the microphones will have a noise floor which means that they will produce an output even if there is no sound in the environment. This noise floor is annoying to the user when there are no sounds in the environment, and also it becomes impossible to hear sounds, which lies below the noise floor.
- two or more microphone units are provided along with a signal processing device and means for delivering a signal to the user of the device representative of the audio signals picked up by the microphones.
- the signal processing device comprises means for adding and scaling the signals from the at least two microphone units to provide a single added signal in a manner which allows signal parts from different directions to be equally represented in the resulting added signal.
- the addition of the two independent microphone signals gives an overall improvement of the SNR of 3 dB in all situations where the two microphone signals are uncorrelated. This is for sure the case in silent listening situations but should also cover some noisy situations like wind noise.
- the invention addresses the directional behaviour of the added signal in higher frequencies. The directional behaviour is in fact due to phase cancellation caused by equality between the half-period of the acoustic signal and the distance between the microphone inlets. With the device according to the invention it is attempted to cancel this directional behaviour.
- means are provided for slightly modifying, at least in a predefined frequency range, the phase and/or the level of the signal from at least one of the added microphone signals in order to avoid the occurrence of a directional effect resulting from the addition of the signals.
- mismatches should be selected in a way, so that the directivity index of the added microphone signals is as close to 0 dB as possible at any frequency whereby also the polar response will be close to the traditional omni directional response.
- a FIR filter for modifying the microphone signal from at least one microphone prior to the addition of the microphone signals.
- the invention also comprises a method for processing of the microphone signals in a listening device. The method comprises the following steps: providing two or more independent microphone signals from microphones at spaced apart locations, causing a time delay between the signals and adding and scaling the at least two different microphone signals signal in a manner which allows signal parts from different directions to be equally represented in the resulting added signal.
- the delay in at least a frequency range is a zero delay.
- Fig. 1 shows a schematic representation of the microphone system according to the invention.
- Fig. 2 shows the idealized amplitude characteristic of the signal from a microphone after the filtration prior to the addition of the microphone signals.
- the system of fig. 1 has a first microphone 1 and a second microphone 2 and in order to lower the noise floor in the signal from the microphone.
- the signal processing schematically displayed is used.
- the signal from the first microphone 1 is subject to a FIR filter and following this the signal from the first and the second microphones are added.
- the system also comprises a scahng of the signals, and this can be done before, during or after the addition of the two signals and it does not affect the lowering of the noise flor of the added signals.
- the displayed system is a digital system and the microphone signals are digitized in the usual manner prior to the processing according to the invention. A similar processing would however be possible also in the analog domain.
- the added signal from the microphones is routed to a processing device in order to provide a signal to the user according to his or her needs.
- a processing device in order to provide a signal to the user according to his or her needs.
- the signal is amplified, and frequency shaped according to the users hearing loss.
- the filter When the filter is designed it should be ensured that the directional characteristic of the added microphone signal is as close to omnidirectional as possible without any distortion in the frequency characteristics of the added microphone signals. Also the number of tabs should be kept low for simplicity and to reduce time delay.
- a possible amplitude mis-match which is realisable with the above criteria is displayed.
- the amplitude mis-match is close to zero at all frequencies up to about 2 kHz. From about 2 to 10 kHz the amplitude mis-match between the two microphone signals should rise to a value close to two. This corresponds to a microphone distance close to 10 mm.
- the proposed filter characteristic will be highly dependent on the distance between the microphones and it is easily shown that the close the microphones the smaller is the needed amplitude mis-match at the higher frequencies.
- the resulting added signals will have virtually no directionality, and thus represent signals from all directions with the same amplification in the frequency range from 0 to 10 kHz. Also the resulting signal has a frequency response which only at very high frequencies close to 10 kHz will cause some attenuation.
Landscapes
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- General Health & Medical Sciences (AREA)
- Neurosurgery (AREA)
- Circuit For Audible Band Transducer (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2005223798A AU2005223798B2 (en) | 2004-03-23 | 2005-03-15 | Listening device with two or more microphones |
US10/593,584 US7945056B2 (en) | 2004-03-23 | 2005-03-15 | Listening device with two or more microphones |
DK05717043.3T DK1730993T3 (en) | 2004-03-23 | 2005-03-15 | Hearing aid with two or more microphones |
AT05717043T ATE530028T1 (en) | 2004-03-23 | 2005-03-15 | LISTENING DEVICE WITH TWO OR MORE MICROPHONES |
EP05717043A EP1730993B1 (en) | 2004-03-23 | 2005-03-15 | Listening device with two or more microphones |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200400471 | 2004-03-23 | ||
DKPA200400471 | 2004-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005091676A1 true WO2005091676A1 (en) | 2005-09-29 |
Family
ID=34961885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/051169 WO2005091676A1 (en) | 2004-03-23 | 2005-03-15 | Listening device with two or more microphones |
Country Status (7)
Country | Link |
---|---|
US (1) | US7945056B2 (en) |
EP (2) | EP2257081B1 (en) |
CN (1) | CN1957638A (en) |
AT (1) | ATE530028T1 (en) |
AU (1) | AU2005223798B2 (en) |
DK (2) | DK1730993T3 (en) |
WO (1) | WO2005091676A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7856240B2 (en) * | 2004-06-07 | 2010-12-21 | Clarity Technologies, Inc. | Distributed sound enhancement |
EP1885156B1 (en) * | 2006-08-04 | 2013-04-24 | Siemens Audiologische Technik GmbH | Hearing-aid with audio signal generator |
WO2009025090A1 (en) * | 2007-08-22 | 2009-02-26 | Panasonic Corporation | Directivity microphone device |
EP2765787B1 (en) * | 2013-02-07 | 2019-12-11 | Sennheiser Communications A/S | A method of reducing un-correlated noise in an audio processing device |
DK2843971T3 (en) * | 2013-09-02 | 2019-02-04 | Oticon As | Hearing aid device with microphone in the ear canal |
JP6464488B2 (en) * | 2016-03-11 | 2019-02-06 | パナソニックIpマネジメント株式会社 | Sound pressure gradient microphone |
KR102466134B1 (en) * | 2018-06-26 | 2022-11-10 | 엘지디스플레이 주식회사 | Display apparatus |
RU2751440C1 (en) * | 2020-10-19 | 2021-07-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) | System for holographic recording and playback of audio information |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4536887A (en) * | 1982-10-18 | 1985-08-20 | Nippon Telegraph & Telephone Public Corporation | Microphone-array apparatus and method for extracting desired signal |
EP0430513A2 (en) | 1989-11-27 | 1991-06-05 | Matsushita Electric Industrial Co., Ltd. | Microphone apparatus |
EP0509742A2 (en) | 1991-04-18 | 1992-10-21 | Matsushita Electric Industrial Co., Ltd. | Microphone apparatus |
EP0869697A2 (en) * | 1997-04-03 | 1998-10-07 | Lucent Technologies Inc. | A steerable and variable first-order differential microphone array |
US6285771B1 (en) * | 1996-12-31 | 2001-09-04 | Etymotic Research Inc. | Directional microphone assembly |
US20020191805A1 (en) | 1996-12-11 | 2002-12-19 | Micro Ear Technology, Inc., D/B/A Micro-Tech | In-the-ear hearing aid with directional microphone system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5524056A (en) * | 1993-04-13 | 1996-06-04 | Etymotic Research, Inc. | Hearing aid having plural microphones and a microphone switching system |
US5526430A (en) * | 1994-08-03 | 1996-06-11 | Matsushita Electric Industrial Co., Ltd. | Pressure gradient type microphone apparatus with acoustic terminals provided by acoustic passages |
DE10195933T1 (en) * | 2000-03-14 | 2003-04-30 | Audia Technology Inc | Adaptive microphone adjustment in a directional system with several microphones |
EP1351544A3 (en) | 2002-03-08 | 2008-03-19 | Gennum Corporation | Low-noise directional microphone system |
US7068797B2 (en) * | 2003-05-20 | 2006-06-27 | Sony Ericsson Mobile Communications Ab | Microphone circuits having adjustable directivity patterns for reducing loudspeaker feedback and methods of operating the same |
-
2005
- 2005-03-15 WO PCT/EP2005/051169 patent/WO2005091676A1/en not_active Application Discontinuation
- 2005-03-15 US US10/593,584 patent/US7945056B2/en active Active
- 2005-03-15 CN CNA2005800089137A patent/CN1957638A/en active Pending
- 2005-03-15 EP EP10178239A patent/EP2257081B1/en not_active Not-in-force
- 2005-03-15 AU AU2005223798A patent/AU2005223798B2/en not_active Ceased
- 2005-03-15 EP EP05717043A patent/EP1730993B1/en not_active Not-in-force
- 2005-03-15 AT AT05717043T patent/ATE530028T1/en not_active IP Right Cessation
- 2005-03-15 DK DK05717043.3T patent/DK1730993T3/en active
- 2005-03-15 DK DK10178239.9T patent/DK2257081T3/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4536887A (en) * | 1982-10-18 | 1985-08-20 | Nippon Telegraph & Telephone Public Corporation | Microphone-array apparatus and method for extracting desired signal |
EP0430513A2 (en) | 1989-11-27 | 1991-06-05 | Matsushita Electric Industrial Co., Ltd. | Microphone apparatus |
EP0509742A2 (en) | 1991-04-18 | 1992-10-21 | Matsushita Electric Industrial Co., Ltd. | Microphone apparatus |
US20020191805A1 (en) | 1996-12-11 | 2002-12-19 | Micro Ear Technology, Inc., D/B/A Micro-Tech | In-the-ear hearing aid with directional microphone system |
US6285771B1 (en) * | 1996-12-31 | 2001-09-04 | Etymotic Research Inc. | Directional microphone assembly |
EP0869697A2 (en) * | 1997-04-03 | 1998-10-07 | Lucent Technologies Inc. | A steerable and variable first-order differential microphone array |
Also Published As
Publication number | Publication date |
---|---|
US7945056B2 (en) | 2011-05-17 |
EP2257081A1 (en) | 2010-12-01 |
ATE530028T1 (en) | 2011-11-15 |
EP2257081A8 (en) | 2011-01-05 |
US20070147633A1 (en) | 2007-06-28 |
AU2005223798A1 (en) | 2005-09-29 |
EP2257081B1 (en) | 2012-08-22 |
DK1730993T3 (en) | 2012-01-23 |
AU2005223798B2 (en) | 2010-01-28 |
EP1730993B1 (en) | 2011-10-19 |
DK2257081T3 (en) | 2012-11-19 |
CN1957638A (en) | 2007-05-02 |
EP1730993A1 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111902866B (en) | Echo control in binaural adaptive noise cancellation system in headphones | |
US10957301B2 (en) | Headset with active noise cancellation | |
US10327071B2 (en) | Head-wearable hearing device | |
US9190043B2 (en) | Assisting conversation in noisy environments | |
US7945056B2 (en) | Listening device with two or more microphones | |
US9544698B2 (en) | Signal enhancement using wireless streaming | |
US9800981B2 (en) | Hearing device comprising a directional system | |
US10070231B2 (en) | Hearing device with input transducer and wireless receiver | |
US6704422B1 (en) | Method for controlling the directionality of the sound receiving characteristic of a hearing aid a hearing aid for carrying out the method | |
US20080152167A1 (en) | Near-field vector signal enhancement | |
US9288570B2 (en) | Assisting conversation while listening to audio | |
US10529358B2 (en) | Method and system for reducing background sounds in a noisy environment | |
AU766876B2 (en) | A method for controlling the directionality of the sound receiving characteristic of a hearing aid and a hearing aid for carrying out the method | |
Rämö et al. | An allpass hear-through headset | |
US10643597B2 (en) | Method and device for generating and providing an audio signal for enhancing a hearing impression at live events | |
US11335315B2 (en) | Wearable electronic device with low frequency noise reduction | |
JP5082878B2 (en) | Audio conferencing equipment | |
JP6920649B2 (en) | Conversation support system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005717043 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580008913.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005223798 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007147633 Country of ref document: US Ref document number: 10593584 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005223798 Country of ref document: AU Date of ref document: 20050315 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005223798 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005717043 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10593584 Country of ref document: US |