WO2005090590A1 - Verfahren zur herstellung von l-aminosäuren aus d-aminosäuren - Google Patents

Verfahren zur herstellung von l-aminosäuren aus d-aminosäuren Download PDF

Info

Publication number
WO2005090590A1
WO2005090590A1 PCT/EP2005/000768 EP2005000768W WO2005090590A1 WO 2005090590 A1 WO2005090590 A1 WO 2005090590A1 EP 2005000768 W EP2005000768 W EP 2005000768W WO 2005090590 A1 WO2005090590 A1 WO 2005090590A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
dehydrogenase
activity
microorganism
enzyme
Prior art date
Application number
PCT/EP2005/000768
Other languages
English (en)
French (fr)
Inventor
Werner Hummel
Birgit Geueke
Steffen Osswald
Christoph Weckbecker
Klaus Huthmacher
Original Assignee
Degussa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Ag filed Critical Degussa Ag
Priority to JP2006553471A priority Critical patent/JP2007522810A/ja
Priority to BRPI0506795-2A priority patent/BRPI0506795A/pt
Priority to EP05707022A priority patent/EP1716241A1/de
Publication of WO2005090590A1 publication Critical patent/WO2005090590A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12N9/0024D-Amino acid oxidase (1.4.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine

Definitions

  • the invention relates to recombinant microorganisms which have an increased concentration or activity of a D-amino acid oxidase, an L-A inoic acid dehydrogenase, an enzyme regenerating the cosubstrate NADH and optionally a catalase and a method for producing L-amino acids from D-amino acids using these microorganisms.
  • the corresponding keto acid can be generated in one step from an amino acid. If the two enzymes have the opposite enantioselectivity, a D-amino acid can be completely converted into an L-amino acid or an L - Amino acid can be completely converted into a D-amino acid. If one starts from a racemate, an enantiomerically pure compound can be produced from it.
  • the cosubstrate NADH has to be regenerated using an enzyme because it is too expensive to be used in stoichiometric amounts.
  • Enzymes such as formate dehydrogenase and malate dehydrogenase (decarboxylating), which are derived from their
  • the object of the invention is to provide a method which avoids the costly isolation and provision of the enzymes necessary for the conversion of D-amino acids into L-amino acids.
  • the invention preferably relates to resting cells of a recombinant microorganism which has an increased concentration or activity of a D-amino acid oxidase, amino acid dehydrogenase, an enzyme regenerating the cosubstrate NADH and optionally a catalase compared to the starting organism, for example the wild type.
  • Oxidase and dehydrogenase are combined with regard to the substrate to be converted and the substrate spectrum of the enzymes mentioned.
  • the starting organism does not have to naturally contain the enzymes mentioned.
  • formate dehydrogenases can be used as regenerating enzymes for the cosubstrate NADH.
  • malate dehydrogenases DE 102 40 603
  • alcohol dehydrogenases can be used as regenerating enzymes for the cosubstrate NADH.
  • the origin of the polynucleotides encoding these enzymes is generally not restricted to the genus or species of the recombinant microorganism.
  • the genes can be selected for the transformation of the host organism.
  • the genes can originate in microorganisms, fungi or yeasts, especially microorganisms, in particular Arthrobacter protophormiae or Trigonopsis variablilis for D-AAO, Bacillus cereus for LeuDH.
  • Microorganisms for which there are stable expression systems such as, for. B. Bacillus, various yeasts, Staphylococcus or Streptomyces, especially E. coli.
  • Particularly suitable amino acid dehydrogenases are L-leucine dehydrogenase from Bacillus species (EP 0 792 933) glutamate dehydrogenase, L-phenylalanine dehydrogenase from Rhodococcus species, L-alanine dehydrogenase from Thermoactinomyces intermedius or Bacillus strains. These are selected depending on the keto acid to be reductively aminated.
  • D-amino acid oxidases or polynucleotides coding for them originate primarily from the yeast Rhototorula gracilis (US Pat. No. 6,187,574), from Trigonopsis variabilis (Long-Liu Lin et al., Enzyme and Microbial Technol. 27 (2000), 482-491) , Candida species, the fungi Neurospora crassa, Verlicullium luteoralbo and various Fusarium species and D-amino acid oxidase from Arthrobacter protophormiae (EP 1375649).
  • EP 0 897 006 AI describes the D-AAO from Rhodosporidium with the associated gene.
  • the genes coding for the D-amino acid oxidase and amino acid dehydrogenase are selected and the intended host strain is transformed with them.
  • So z. B. for the de-racemization of "" or DL-leucine prefers D-amino acid oxidase from Arthrobacter protophormiae (EP 1 375 649 A) and leucine dehydrogenase from genes encoding Bacillus cereus in ⁇ . coli overexpressed.
  • DNA sequences obtained can then be processed using known algorithms or sequence analysis programs such as e.g. that of Staden (Nucleic Acids Research 14, 217-232 (1986)), that of Marck (Nucleic Acids Research 16, 1829-1836 (1988)) or the GCG program by Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) are examined.
  • known algorithms or sequence analysis programs such as e.g. that of Staden (Nucleic Acids Research 14, 217-232 (1986)), that of Marck (Nucleic Acids Research 16, 1829-1836 (1988)) or the GCG program by Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) are examined.
  • Another object of the invention is to provide vectors which are generally autonomously replicable in the selected host strains and which are compatible with one another and contain at least one gene which codes for an enzyme which is necessary according to the invention.
  • Vector DNA can be introduced into eukaryotic or prokaryotic cells by known transformation techniques.
  • Vectors which contain nucleotide sequences coding for two enzymes are preferred, in particular z. B. for malate dehydrogenase and amino acid dehydrogenase or malate dehydrogenase and D-amino acid oxidase.
  • the combination of nucleotide sequences coding for amino acid dehydrogenase and D-amino acid oxidase on the vector is also advantageous.
  • the nucleotide sequence for the enzyme still missing in the system is then on another vector.
  • the general procedure is to clone a gene that can be expressed well into a vector with a low copy number, genes with weaker expression performance on a vector with a higher copy number and / or a strong promoter.
  • the host cells are transformed with these vectors in such a way that, in comparison to the starting organism, they each contain at least one additional copy of the three or possibly four enzyme-coding nucleotide sequences necessary for the conversion of D- to L-amino acids.
  • Ribosome binding site located upstream of the structural gene can be mutated.
  • Expression cassettes which are installed upstream of the structural gene act in the same way. Inducible promoters also make it possible to increase expression in the course of fermentative amino acid production. Expression is also improved by measures to extend the life of the m-RNA. Furthermore, preventing the breakdown of the enzyme protein also increases the enzyme activity.
  • the genes or gene constructs can either be present in plasmids with different copy numbers or can be integrated and amplified in the chromosome. Alternatively, overexpression of the genes in question by alteration can continue media composition and culture management.
  • the overexpression leads to. Increase in the intracellular activity or concentration of the corresponding enzymes.
  • the increase is generally at least 10 to 500%, in particular 50 to 500% or 100 to 500%, up to a maximum of 1000 or 2000% compared to the concentration or activity of the enzyme in the organism on which the transformation is based (starting organism) ,
  • the invention also relates to a process for the preparation of L-amino acids from D-amino acids using an enantioselective enzymatic synthesis route, characterized in that a recombinant microorganism which has an increased concentration or activity of a D-amino acid oxidase compared to the starting organism to be transformed L-amino acid dehydrogenase, one of which is the cosubstrate NADH has regenerating enzyme and optionally a catalase, reacted with a solution containing D-amino acid (s) and the resulting L-amino acid is isolated.
  • a recombinant microorganism which has an increased concentration or activity of a D-amino acid oxidase compared to the starting organism to be transformed L-amino acid dehydrogenase, one of which is the cosubstrate NADH has regenerating enzyme and optionally a catalase, reacted with a solution containing D-amin
  • the overexpression of malic enzyme as the enzyme regenerating the cosubstrate is advantageous, with L-malate or L-malic acid in an amount to be converted of the D-amino acid simultaneously being present in the buffered aqueous solution containing the whole cell catalyst and containing the D-amino acid to be converted at least equimolar amount, preferably 1.5 to 6 times molar.
  • a catalase is also overexpressed as a peroxide-decomposing enzyme.
  • Catalases from various organisms are suitable, for example the enzyme from Escherichia coli (Catalase HPII (Hydroxyperoxidase II) Accession number: gill5722)
  • the D-amino acid is preferably reacted with resting cells. This is understood to mean cells that are viable but do not multiply under given conditions.
  • Amino acids non-naturally occurring ⁇ -amino acids are, in this context, of course, and understood, as they are described for example in Beyer-Walter, textbook of organic chemistry, S. Hirzel Verlag Stuttgart, 22 nd edition, 1991, p. 822 ff.
  • a amino acids, their race ate or the pure D enantiomers selected from the group: lysine, arginine, phenylalanine, valine, ornithine, leucine, histidine, norleucine, tyrosine, alanine, glutamate and cephalosporin, in particular methionine.
  • Certain enzymes are particularly suitable for the implementation of the various D-amino acids (see also Gabler et al., 2000). So is the D-AAO from Arthrobacter protophormiae e.g. B. particularly suitable for the implementation of basic and hydrophobic amino acids.
  • the suitable enzymes and nucleotide sequences are generally known from the prior art.
  • the isolation of the individual enzymes is avoided.
  • Another advantage results from the fact that the cells (whole cell catalyst) used according to the invention can be easily separated after the reaction.
  • catalase must be added (Nakajima et al., 1990).
  • microorganisms used according to the invention are also part of the invention and can be cultured continuously or discontinuously in the batch process (batch cultivation) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process).
  • batch cultivation batch cultivation
  • feed process fed batch
  • repetitive feed process repeated fed batch process
  • the culture medium to be used must meet the requirements of the respective strains in a suitable manner. Descriptions of culture media of various microorganisms are contained in the manual "Manual of Methods for General Bacteriology” of the American Society for Bacteriology (Washington D.C., USA, 1981).
  • Sugar and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower oil, peanut oil and coconut fat, fatty acids can be used as carbon sources such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerin and ethanol and organic acids such as acetic acid. These substances can be used individually or as a mixture.
  • Organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate can be used as the nitrogen source.
  • the nitrogen sources can be used individually or as a mixture.
  • Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus.
  • the culture medium must also contain salts of metals, e.g. Magnesium sulfate or iron sulfate, which are necessary for growth.
  • essential growth substances such as amino acids and vitamins can be used in addition to the substances mentioned above.
  • the feedstocks mentioned can be added to the culture in the form of a single batch or can be added in a suitable manner during the cultivation.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid are used in a suitable manner to control the pH of the culture.
  • Anti-foam agents such as e.g. Fatty acid polyglycol esters are used.
  • suitable selectively acting substances such as e.g.
  • Antibiotics are added.
  • oxygen or oxygen-containing gas mixtures such as air are introduced into the culture.
  • the temperature of the culture is usually 20 ° C to 45 ° C and preferably 25 ° C to 40 ° C.
  • the Culture- continues as long as it has passed the logarithmic growth phase. This goal is usually achieved within 10 hours to 20 hours. The cells are then preferred
  • the cell concentration amounts to 1-6%, in particular 1.5 to 4 % (Wet weight / v) They are generally perm.ea.bilibrated with physical or chemical methods, e.g. with toluene as in Wilms et al., J. Biotechnol., Vol. 86 (2001), 19 -30 described that the D-amino acid to be converted can penetrate the cell wall and L-amino acid can escape.
  • plasmids which carry the genes of the following enzymes in various combinations: Malic enzyme (MAE), 5 Leucixi dehydrogenase (LeuDH), D-AAO from Arthrobacter protophormiae (ApD-AAO) and D -AAO from Trigonopsis variaJoilis (TvD-AAO).
  • Malic enzyme MAE
  • LeuDH 5 Leucixi dehydrogenase
  • LeuDH Leucixi dehydrogenase
  • ApD-AAO Arthrobacter protophormiae
  • TvD-AAO Trigonopsis variaJoilis
  • Genomic DNA from Arthrobacter protophormiae, Trigonopsis variabilis and E. was used to amplify the genes of the ApD-AAO (Apdao; 0 gi: 32140775), the TvD-AAO (Tvdao; gi: 1616634) and the malic enzyme (mae; gi: 1787752) coli Kl2 used as a template.
  • the recombinant E. constructed coli strains each containing genes for an amino acid oxidase, leucine dehydrogenase and malic enzyme.
  • E. coli strains NO. E. coli strain plasmid 1 plasmid 2 inducer resistance 1 BL2KDE3) PAD3LM pElD IPTG Ap ⁇ , Cm ⁇ 2 BL2KDE3) PAD3LM pE2D IPTG Ap H , Cm ⁇ 3 BL2KDE3) PAD2DM pJlL ITPG + Rha Ap ⁇ , C 1 "4 BL21 (DE ) PAD2DM pTlL IPTG Ap ⁇ , Cm * 5 JM109 PH2DM pJlL Rha Ap ⁇ , Cm ⁇ 6 BL2KDE3) PH2DM pJlL Rha Ap ⁇ , Cm 7 JM109 PH2DM pTlL IPTG + Rha Ap ⁇ , Cm ⁇ 8 BL2KDEl) IP2TGTL ⁇ , Cm ⁇
  • the strains according to Table 4 are grown under standard conditions in Luria-Beirtani (LB) medium at pH 7.5. Depending on the transformed plasmid, 100 ⁇ g ml -1 ampicillin and / or 34 ⁇ g ml -1 chloramphenicol were added to the medium.
  • the recombinant E. coli strains were grown under aerobic conditions in 100 ml shake flasks with 20 ml medium. The cells were incubated at 37 ° C on a rotary shaker at 200 rpm and with an OD550 of approx. 0.5 induced with 100 ⁇ M IPTG and / or 0.2% rhamnose. After this induction, the strains were then further incubated at 30 ° C.
  • Figure 2 shows the measured enzyme activity
  • Strain 6 shows the effectiveness of the rhamnose promoter.
  • the racemate of methionine is used as a substrate and through whole recombinant E. coli cells, strain 1 (see Table 2), which contains the two plasmids pAD3LM (carries genes for leucine dehydrogenase and malic enzyme) and pElD (carries this Gen for the Arthrobacter protophormiae-D-amino acid oxidase) contain, implemented.
  • pAD3LM carries genes for leucine dehydrogenase and malic enzyme
  • pElD carries this Gen for the Arthrobacter protophormiae-D-amino acid oxidase
  • the cells are suspended in 50 mM TEA / HCl buffer pH 7.6 and 10 ⁇ l / ml toluene were added, this suspension is stirred for 30 min at 30 ° C. and then used for the reaction.
  • the cell concentration in the reaction is 3.3% (Feucb, tweight / v) in a final volume of 1 ml.
  • the reaction takes place at 30 ° C with shaking at 1000 rpm in a Thermomixer 5436 ( ⁇ ppendorf). Samples are stopped by heating for 5 min at 95 ° C and the clear supernatant is analyzed by HPLC.
  • the samples are derivatized after dilution. 20 ⁇ l of a solution of 260 mM isobuturyl-L-cysteine and 170 M o-phthalaldehyde in 100 mM sodium borate buffer pH 10.4 are added.
  • the HPLC separation conditions are complied with as published (Krieg L, et al. (2002) Screening for amidases: isolation and characterization of a novel D-amidase from Variovorax paradoxus. Adv Synth Catal 344 (9): 965-73).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die Erfindung betrifft rekombinante Mikroorganismen, die eine gegenüber dem Startorganismus erhöhte Konzentration oder Aktivität einer D-Aminosäureoxidase, einer Aminosäuredehydrogenase, eines das Cosubstrat NADH regenerierenden Enzyms und gegebenenfalls einer Katalase aufweisen und ein Verfahren zur Herstellung von L-Aminosäuren aus D-Aminosäuren unter Verwendung dieser Mikroorganismen.

Description

Verfahren zur Herstellung von -Arαinosäuren aus D-Aminosäuren
Die Erfindung betrifft rekombinante Mikroorganismen, die eine gegenüber dem Startorganismus erhöhte Konzentration oder Aktivität einer D-Aminosäureoxidase, einer L- A inosäurdehydrogenase, eines das Cosubstrat NADH regenerierenden Enzyms und gegebenenfalls einer Katalase aufweisen und ein Verfahren zur Herstellung von L— Aminosäuren aus D-Aminosäuren unter Verwendung dieser Mikroorganismen.
Viele natürlichen Aminosäuren werden heute in enantiomerenreiner Form durch Fermentation mit genetisch optimierten Bakterien hergestellt (de Graaf AA, Eg-geling L, Sahm H. 2001. Metabolie engineering for L-lysine produetion by Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 73:9-29; Sahm H, Eggeling L, Eikmanns B, Kramer R. 1996. Construction of L-lysine-, L-threonine-, and L-isoleucine- overproducing strains of Corynebacterium glutamicum. Ann N Y Äcad Sei 782:25-39).
'Allerdings können nicht alle proteinogenen Aminosäuren und nur sehr wenige der unnatürlichen und der D-Aminosäuren auf diesem Weg hergestellt werden. Da chemische Synthesen für enantiomerenreine Aminosäuren sehr aufwendig sind, wurde eine Reihe von enzymatischen Prozessen entwickel , von denen einige im Maßstab von mehreren Tonnen pro Jahr eingesetzt werden. Die Methoden reichen von kinetischen RacematSpaltungen mit Hilfe von Acylasen, A idasen, Esterasen, Hydantoinasen, Aminosäureoxidasen und Proteasen bis hin zu enantioselektiven Synthesen mittels Lyasen, Aminotr nsferasen und Dehydrogenasen (Schmid A. et al . (2002) „The use of enzymes in the chemical industry in Europe" Curr Opin Biotechnol 13 (4) :359-66) .
Neben den enantioselektiven Synthesen sind dynamisch kinetische Racematspaltungen, bei denen das unerwünschte Enantiomer in situ racemisiert wird, besonders effizient. Wie bei einer dynamisch kinetischen RacematSpaltung kann auch durch Kombination einer D- oder L-Aminosäureoxidase mit einer unselektiven chemischen Reduktion der entstehenden Iminosäure zurück zur Aminosäure prinzipiell 100% Ausbeute erreicht werden. Das Reduktionsmittel wie z.B. NaBH muss jedoch in einem Überschuss von mindestens 25 äqiv. eingesetzt werden, was diese Variante sehr teuer macht (Enright et al . , „Stereoinversion of beta- and gamma- substituted alpha -amino acids using a chemo-enzymatic oxidation-reduction procedure", Chemical Communications (2003) , (20) , 2636-2637) .
Die Aminierung von -Ketosäuren durch Aminosäuredehydrogenasen ist allgemein bekannt. Allerdings ist das Edukt um ein vielfaches teurer als z . B. die entsprechende racemische Aminosäure.
Durch Kopplung einer Aminosäureoxidase mit einer Aminosauredehydrogenase kann die entsprechende Ketosäure jedoch-in si-tu- aus einer Aminosäure, erzeugt, werden._ Haben die beiden Enzyme die entgegengesetzte Enantioselektivität, kann eine D-Aminosäure vollständig in eine L-Aminosäure bzw. eine L-Aminosäure vollständig in eine D-Aminosäure umgewandelt werden. Geht man von einem Racemat aus, kann aus diesem eine enantiomerenreine Verbindung hergestellt werden.
Das Cosubstrat NADH muss hierbei mittels eines Enzyms regeneriert werden, da es zu teuer ist um in stöchiometrischen Mengen eingesetzt zu werden. Besonders geeignet sind hierfür Enzyme wie Formiatdehydrogenase und Malatdehydrogenase (decarboxylierend) , die aus ihrem
Substrat Kohlendioxid freisetzen und die Reaktion damit irreversibel machen.
(Hanson, R. L. et al . „Enzymatic synthesis of L-6- hydroxynorleucine" , Bioorganic & Medicinal Chemistry (1999), 7(10), 2247-2252 und Naka ima, N. et al . , „Enzymatic conversion of racemic methionine to the L- enantio er", Journal of the Chemical Society, Chemical Communications (1990), (13), 947-8).
D-AAO
D,L-AA L-AA Ketosäure + NH4 +
Figure imgf000005_0001
Für eine schnelle und vollständige Umsetzung im zellfreien System muss jedoch zusätzlich eine Katalase zugegen sein, da bei dem oxidativen Teilschritt, der durch die Aminosäureoxidase~katalysiert wird, Wasserstoffperoxid" entsteht, das zur Decarboxylierung der Ketosäure und zur Inaktivierung der Enzyme führt (Trost, E.-M.; Fischer, L. , Minimization of by-product for ation during D-amino acid oxidase catalyzed racemate resolution of D/L-amino acids, Journal of Molecular Catalysis B: Enzymatic (2002), 19-20 189-195) . Die Umwandlung von racemischen in enantiomerenreine Aminosäuren ist mit diesem System mit >99% ee und >95% Ausbeute möglich.
Dieses Verfahren ist jedoch aufwendig, da vier verschiedene Enzyme getrennt hergestellt und isoliert werden müssen.
Aufgabe der Erfindung ist die Bereitstellung eines Verfahrens, das die aufwendige Isolierung und Bereitstellung der für die Umsetzung von D-Aminosäuren in L-Aminosäuren notwendigen Enzyme vermeidet. Gegenstand der Erfindung sind bevorzugt ruhende Zellen eines rekombinanten Mikroorganismus, der eine gegenüber dem Startorganismus , beispielsweise dem Wildtyp, erhöhte Konzentrationen oder Aktivität einer D-Aminosäureoxidase, Aminosauredehydrogenase, eines das Cosubstrat NADH regenerierenden Enzyms und gegebenenfalls einer Katalase aufweist. Oxidase und Dehydrogenase werden dabei im Hinblick auf das umzusetzende Substrat und das SubstratSpektrum der genannten Enzyme kombiniert. Dabei muss der Startorganismus die genannten Enzyme nicht natürlich enthalten.
Als regenerierende Enzyme für das Cosubstrat NADH können beispielsweise Formiatdehydrogenasen, Malatdehydrogenasen (DE 102 40 603) oder Alkoholdehydrogenasen eingesetzt werden.
Die Herkunft der diese Enzyme kodierenden Polynukleotide ist im allgemeinen nicht auf Gattung oder Spezies des rekombinanten Mikroorganismus beschränkt.
Die Gene können ohne Rücksicht auf die Herkunft zur Transformation des Host-Organismus ausgewählt werden.
Der Ursprung der Gene kann in Mikroorganismen, Pilzen oder Hefen liegen, besonders Mikroorganismen, insbesondere Arthrobacter protophormiae oder Trigonopsis variablilis für D-AAO, Bacillus cereus für LeuDH.
Als Host-Organismen dienen bevorzugt Mikroorganismen, für die es stabile Expressionssysteme gibt, wie z. B. Bacillus, verschiedene Hefen, Staphylococcus oder Streptomyces , insbesondere E. coli.
Als Aminosäuredehydrogenasen sind insbesondere geeignet L- Leucindehydrogenase aus Bacillus species (EP 0 792 933) Glutamatdehydrogenase, L-Phenylalanindehydrogenase aus Rhodococcus species, L-Alanindehydrogenase aus Thermoactinomyces intermedius oder Bacillus-Stämmen. Diese werden in Abhängigkeit von der reduktiv zu aminierenden Ketosäure ausgewählt.
D-Aminosäureoxidasen bzw. für sie kodierende Polynukleotide stammen gemäß Erfindung vor allem aus der Hefe Rhototorula gracilis (US 6,187,574), aus Trigonopsis variabilis (Long- Liu Lin et al . , Enzyme and Microbial Technol. 27 (2000), 482-491), Candida species, den Pilzen Neurospora crassa, Verlicullium luteoralbo und verschiedenen Fusarium species und D-Aminosäureoxidase aus Arthrobacter protophormiae (EP 1375649).
Eine Übersicht über die Substrate verschiedener D-AAOs findet sich bei Gabler et al. (Enzyme Microbiol . Technol. 27(8): 605-611 (2000)). In der EP 0 897 006 AI wird die D- AAO aus Rhodosporidium mit dazugehörigem Gen beschrieben. In Abhängigkeit vom umzusetzenden Substrat werden die für die D-Aminosäureoxidase und Aminosauredehydrogenase kodierenden Gene ausgewählt und der vorgesehene Host-Stamm mit ihnen transformiert.
So werden z. B. für die Entracemisierung von
Figure imgf000007_0001
"" oder DL-Leucin bevorzugt D-Aminosäureoxidase aus Arthrobacter protophormiae (EP 1 375 649 A) und Leucindehydrogenase aus Bacillus cereus kodierenden Gene in Ξ. coli überexprimiert .
Die nachfolgenden Tabellen enthalten beispielhaft Gene und die dazugehörigen Enzyme, die erfindungsgemäß eingesetzt werden können:
Tabelle 1: D-Aminosäureoxidasen
Accession Number gi32140775 Arthrobacter protophormiae D-Aminosäureoxidase gil616634 Trigonopsis variablilis D-Aminosäureoxidase gi27806895 Bos taurus D-Aspartatoxidase
EP 0 897 006 Rhodosporidium D-Aminosäureoxidase
US 6,187,574 Rhototorula gracilis D-Aminosäureoxidase Tabelle 2 : L-Aminosäuredehydrogenasen
Accession Number gi6741938 Bacillus cereus L-Leucindehydrogenase gi625925 Rhodococcus spec. L-Phenylalanindehydrogenase Homo sapiens L-Lysindehydrogenase gil6080244 Bacillus subtilis L-Alanindehydrogenase gill8533 Bos taurus Glutamatdehydrogenase
Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.
Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonucleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, _1984)__und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994) .
Ein anderer Gegenstand der Erfindung ist die Bereitstellung von in den ausgewählten Host-Stämmen im allgemeinen autonom replizierbaren Vektoren, die miteinander kompatibel sind und mindestens ein Gen enthalten, das für ein erfindungsgemäß notwendiges Enzym kodiert .
Vector DNA kann in eukaryotische oder prokaryotische Zellen durch bekannte Transformationstechniken eingeführt werden.
Bevorzugt werden Vektoren, die für zwei Enzyme kodierende Nukleotidsequenzen enthalten, insbesondere z. B. für Malatdehydrogenase und Aminosauredehydrogenase oder Malatdehydrogenase und D-Aminosäureoxidase. Vorteilhaft ist auch die Kombination von für Aminosauredehydrogenase und D-Aminosäureoxidase kodierenden Nukleotidsequenzen auf dem Vektor.
Die Nukleotidsequenz für das im System noch fehlende Enzym befindet sich dann auf einem weiteren Vektor.
Im allgemeinen geht man so vor, dass man ein gut expri ierbares Gen in einen Vektor mit niedriger Kopienzahl, Gene mit schwächerer Expressionsleistung auf einem Vektor mit höherer Kopienzahl und/oder starkem Promotor kloniert. Die Wirtszellen sind mit diesen Vektoren in der Weise transformiert, dass sie im Vergleich zum Startorganismus mindestens jeweils eine zusätzlicher Kopie der für die Umsetzung von D- zu L-Aminosäuren notwendigen drei oder gegebenenfalls vier Enzyme kodierenden Nukleotidsequenzen enthalten.
Durch diese Maßnahme gelingt es, die genannten Nukleotidsequenzen zu überexprimieren.
"Zur" Er__ielühg~einer~ Überexpression kann- die-Kop-ienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die
Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al . (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al . (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991) , bei Reinscheid et al . (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al . (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al . (Gene 134, 15 - 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
Die Überexpression führt zur. Erhöhung der_ intrazellulären Aktivität oder Konzentration der entsprechenden Enzyme.
Die Steigerung liegt im allgemeinen bei mindestens 10 bis 500 %, insbesondere 50 bis 500 % oder 100 bis 500 %, bis zu einem Maximum von 1000 oder 2000 % verglichen mit der Konzentration oder Aktivität des Enzyms in dem der Transformation zugrunde liegenden Organismus (Startorganismus) .
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung von L-Aminosäuren aus D-Aminosäuren unter Verwendung einer enantioselektiven enzymatischen Syntheseroute, dadurch gekennzeichnet, dass man einen rekombinanten Mikroorganismus, der eine gegenüber dem zu transformierenden Startorganismus erhöhte Konzentration oder Aktivität einer D-Aminosäureoxidase, einer L- Aminosäuredehydrogenase, eines das Cosubstrat NADH regenerierenden Enzyms und gegebenenfalls einer Katalase aufweist, mit einer D-Aminosäure (n) aufweisenden Lösung umsetzt und die entstandene L-Aminosäure isoliert.
Vorteilhaft ist die Überexpression von Malic Enzyme als das das Cosubstrat regenerierende Enzym, wobei sich in der den Ganzzellkatalysator enthaltenden gepufferten wässrigen Lösung, die die umzusetzende D-Aminosäure enthält, gleichzeitig L-Malat oder L-Apfelsäure in einer zur umzusetzenden Menge der D-Aminosäure mindestens äquimolaren Menge, bevorzugt 1,5 bis 6-fach molar befinden.
Gegebenenfalls wird auch eine Katalase als Peroxidzersetzendem Enzym überexprimiert . Geeignet sind Katalasen aus verschiedsten Organismen, beispielsweise das Enzym aus Escherichia coli (Catalase HPII (Hydroxyperoxidase II) Accession number: gill5722)
Die Umsetzung der D-Aminosäure erfolgt bevorzugt mit ruhenden Zellen. Darunter versteht man Zellen, die lebensfähig sind, sich aber unter gegebenen Bedingungen nicht vermehren.
Unter Aminosäuren werden in diesem Zusammenhang natürlich und nicht-natürlich vorkommende α-Aminosäuren verstanden, wie sie beispielsweise beschrieben werden in Beyer-Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag Stuttgart, 22nd edition, 1991, p. 822 ff .
Bevorzugt eingesetzt werden Gemische von D- und L-
A inosäuren, ihre Race ate oder die reinen D-Enantiomeren, ausgewählt aus der Gruppe: Lysin, Arginin, Phenylalanin, Valin, Ornithin, Leucin, Histidin, Norleucin, Tyrosin, Alanin, Glutamat und Cephalosporin, insbesondere Methionin.
Bestimmte Enzyme zeigen sich für die Umsetzung der verschiedenen D-Aminosäuren als besonders geeignet (s. a. Gabler et al . , 2000). So ist die D-AAO aus Arthrobacter protophormiae z. B. besonders für die Umsetzung basischer und hydrophober Aminosäuren geeignet.
Die geeigneten Enzyme und Nukleotidsequenzen sind im allgemeinen aus dem Stand der Technik bekannt. Bei dem erfindungsgemäßen Verfahren wird die Isolierung der einzelnen Enzyme vermieden. Ein weiterer Vorteil ergibt sich daraus, dass die erfindungsgemäß eingesetzten Zellen (Ganzzellkatalysator) nach der Reaktion leicht abgetrennt werden können. Bei der Umsetzung von D-Methionin zu L-Methionin mit den isolierten Enzymen nach dem Stand der Technik muss dagegen Katalase zugesetzt werden (Nakajima et al . , 1990).
Die erfindungsgemäß verwendeten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994) ) beschrieben.
Das zu verwendende Kulturmedium muss in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.
Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogen- phosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium-haltigen Salze verwendet werden. Das Kulturmedium muss weiterhin Salze von Metallen enthalten wie z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z.B.
Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur- wird solange fortgesetzt, sie die logarithmische Wachstumsphase durchschritten hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 20 Stunden erreicht. Im Anschluss daran werden die Zellen bevorzugt
"5" "geerntet, gewaschen und in einem Puffer als Suspension bei einem pH-Wert von 6-9, insbesondere von 6,8 bis 7,9 aufgenommen. Die Zellkonzentration beläuft sich auf 1-6%, insbesondere 1,5 bis 4% (Feuchtgewicht/v). Sie werden im allgemeinen mit physikalischen oder chemischen Methoden so 0 perm.ea.bilisiert, z. B. mit Toluol wie bei Wilms et al . , J. Biotechnol., Vol. 86 (2001), 19-30 beschrieben, dass die umzuwandelnde D-Aminosäure die Zellwand durchdringen und L- Aminosäure austreten kann.
Die Suspension wird dann mit einer D-Aminosäure und L-Malat5 oder L-Apfelsäure enthaltenden Lösung versetzt. Die Umsetzung findet bei 10 bis 40°C, insbesondere 25 bis 36°C bei einem pH-Wert zwischen 6,8 und 8,9 statt, bevorzugt 7,5 und 8,5. Sie wird durch Erhitzen auf 70 bis 100°C abgestoppt. 0 Beispiel 1
Konstruktion von Plas iden
Um das Reaktionsprinzip zu bestätigen, wurde eine Reihe von Plasmiden konstruiert, die die Gene folgender Enzyme in verschiedenen Kombinationen tragen: Malic enzyme (MAE) ,5 Leucixi-Dehydrogenase (LeuDH) , D-AAO aus Arthrobacter protophormiae (ApD-AAO) und D-AAO aus Trigonopsis variaJoilis (TvD-AAO) . Dazu wurden die in Tabelle 3 aufgeführten Primer und Plasmide verwendet
Zur Amplifikation der Gene der ApD-AAO (Apdao;0 gi:32140775) , der TvD-AAO (Tvdao; gi:1616634) und des malic enzymes (mae; gi:1787752) wurde genomische DNA aus Arthrobacter protophormiae , Trigonopsis variabilis and E. coli Kl2 als Template verwendet. Das Gen der Leucin- Dehydrogenase ( leudh; gi : 6741938) wurde mit dem Plasmid pTlL (= pLeuB, ( Ansorge MB, Kula MR. (2000) , Investigating expression Systems for the stable large-scale production of recombinant L-leucine-dehydrogenase from Bacillus cereus in Escherichia coli. Appl Microbiol Biotechnol 53:668-73)) als Template amplifiziert .
Mit geeigneten Primern, die in Tabelle 3 aufgeführt sind, wurde mittels PCR Restriktionsschnittstellen für Klonierungen eingefügt. Mit dem forward primer DAAOTvforNdel wurde das Intron im Tvdaö-Gen entfernt.
Bei der Klonierung des Apdao-Gens in pHlM wurde eine Shine- Dalgarno Sequenz und zusätzliche Restriktionsschnittstellen (für EcoRV, PstI and Notl) mittels PCR eingefügt, indem der reverse primer ApNdelrev (Tabelle 1) verwendet wurde.
Figure imgf000016_0001
Beispiel 2
Konstruktion von Expressions-Stämmen
Durch geeignete Kombination von Plasmiden wurden die in Tabelle 4 aufgeführten rekombinanten E . coli-Stämme konstruiert , die j eweils Gene für eine Aminosäure-Oxidase, Leucin-Dehydrogenase und malic enzyme enthalten .
Als Ausgangs stamme werden eingesetzt
BL21 (DE3 ) von Novacjen
und JM109 von Stratcjene .
Tabelle 4 E. coli Stämme NO. E. coli Stamm Plasmid 1 Plasmid 2 Induktor Resistenz 1 BL2KDE3) PAD3LM pElD IPTG Apκ, Cmκ 2 BL2KDE3) PAD3LM pE2D IPTG ApH, Cmκ 3 BL2KDE3) PAD2DM pJlL ITPG + Rha Apκ, C 1" 4 BL21(DE3) PAD2DM pTlL IPTG Apκ, Cm* 5 JM109 PH2DM pJlL Rha Apκ, Cmκ 6 BL2KDE3) PH2DM pJlL Rha Apκ, Cm 7 JM109 PH2DM pTlL IPTG + Rha Apκ, Cmκ 8 BL2KDE3) PH2DM pTlL IPTG + Rha Apκ, Cmκ
Die Stammbezeicbnung (1-8) wird in den folgenden Beispielen der Tabelle entsprechend beibehalten. σ>
Figure imgf000018_0001
Beispiel 3
Nachweis intrazellulärer Enzymaktivitäten
Die Stämme entsprechend Tabelle 4 werden unter Standardbedingungen in Luria-Beirtani (LB) -Medium bei pH 7,5 angezogen. Abhängig vom transformierten Plasmid wurden dem Medium 100 μg ml-1 Ampicillin und / oder 34 μg ml-1 Chloramphenicol zugesetzt. Für die Enzym-Expression wurden die rekombinanten E. coli Stämme unter aeroben Bedingungen in 100 ml Schüttelkolben mit 20 ml Medium angezogen. Die Zellen wurden bei 37°C auf der Rundschüttelmaschine bei 200 rpm inkubiert und bei einer OD550 von ca . 0,5 mit 100 μM IPTG und / oder 0.2% Rhamnose induziert. Nach dieser Induktion wurden die Stämme dann bei 30°C weiter inkubiert.
In Abbildung 2 ist die gemessene Enzymaktivität dargestellt.
weiss: D-AAO; grau: MAE; MAE; schwarz: LeuDH
Stamm 6 zeigt die Wirksamkeit des Rhamnosepromoters .
Beispiel 4
Biotransformations-Reaktionen mit ganzen rekombinanten Stämmen
A) D,L-Methionin
Als Beispiel für eine Entracemisierung wird das Racemat von Methionin als Substrat eingesetzt und durch ganze rekombinante E. coli-Zellen Stamm 1 entsprechend Tabelle 2), die die beiden Plasmide pAD3LM (trägt Gene für Leucin-Dehydrogenase und Malic Enzym) und pElD (trägt das Gen für die Arthrobacter protophormiae-D-Aminosäure- Oxidase) enthalten, umgesetzt. Mittels HPLC kann der durch die Oxidase katalysierte Abbau von D-Met und die durch die reduktive Aminierung katalysierte Synthese von L-Met verfolgt werden. Im einzelnen werden eingesetzt: 25 mM D,L-Met, 100 mM L-Malat, 0,7 M NH4C1, 50 mM Tris , 10 mM MgCl2, End-pH 8,0. Die Zellen sind in 50 mM TEA/HCl Puffer pH 7,6 suspendiert und mit 10 μl/ml Toluol versetzt worden, diese Suspension wird 30 min bei 30°C gerührt und dann für die Umsetzung eingesetzt. Die Zellkonzentration in der Umsetzung beträgt 3,3 % (Feucb,tgewicht/v) in einem Endvolumen von 1 ml. Die Umsetzung- findet bei 30°C unter Schütteln bei 1000 rpm in einem Thermomixer 5436 (Fa. Ξppendorf) statt. Proben werden durch Erhitzen für 5 min bei 95°C abgestoppt und der klare Überstand mittels HPLC analysiert.
Zur Konzentrationsbestimmung von D- und L-Met werden die Proben nach Verdünnung derivatisiert . Dazu werden 20 μl einer Lösung von 260 mM Isobuturyl-L-cystein and 170 M o- Phthaldialdehyd in 100 mM Natrium-borat-Puffer pH 10,4 zugesetzt. Die HPLC-Trennbedingung"en werden wie publiziert eingehalten (Krieg L, et al . (2002) Screening for amidases: isolation and characterization of a novel D-amidase from Variovorax paradoxus . Adv Synth Catal 344(9) :965-73) .
Der Abbau von D-Met und die Bildung von L-Met sind in Abbildung 3 zusammenfassend aufgeführt. Man erhält ein enantiomerenreines Produkt von L-Met mit einer Endkonzentration von 25 mM.
B) D,L-Leucin
In analoger Weise wie in Teil A beschrieben wird eine
Lösung von 25 mM D,L-Leucin mit denselben Mikroorganismen wie vorab beschrieben umgesetzt. Einzelheiten der Umsetzung selbst und der HPLC-Analytik entsprechen dem vorab beschriebenen Beispiel.
Der Abbau von D-Leu und die Bildung von L-Leu sind in Abbildung 4 zusammenfassend aufgeführt. Man erhält ein enantiomerenreines Produkt von L-L.eu mit einer Endkonzentration von 25 mM.

Claims

Patentansprüche
1. Rekombinanter Mikroorgani smus , der eine gegenüber dem Startorganismus erhöhte Konzentration oder Aktiv! tat einer D- A inosäureoxidase, einer L- Aminosäuredehydrogenase, eines das Cosubstrat NADH regenerierenden Enzyms und gegebenenfalls einer Katalase aufweist.
2. Mikroorganismus gemäss Anspruch 1 , der aus ruhenden Zellen besteht.
3. Mikroorganismus gemäss Anspruch 1 oder 2 , der eine erhöhte Konzentration oder Aktivität der Formiatdehydrogenase aufweist. . Mikroorganismus gemäss Anspruch 1 oder 2 , der eine erhöhte Konzentration oder Aktivität der Malatdehydrogenase aufweist.
5. Mikroorganismus gemäss Anspruch 1 oder 2 , der eine erhöhte Konzentration oder Aktivität einer Alkoholdehydrogenase aufweist.
6. Mikroorganismus gemäss den Ansprüchen 1 bis 5, der eine erhöhte Konzentration oder Aktivität der L-Leucindehydrogenase aufweist.
7. Mikroorganismus gemäss den Ansprüchen 1 bis 5, der eine erhöhte Konzentration oder Aktivität einer L-Aminosäuredehydrogenase, ausgewählt aus der Gruppe Phenylalanindehydrogenase, Alanindehydrogenase, Glutamatdehydrogenase aufweist.
8. Mikroorganismus gemäss den Ansprüchen 1 bis 4, in dem ein mehrere der f"ür genannten Enzyme kodierenden Gene aus Mikroorganismen anderer Gattungen, Pilzen oder Hefen stammen.
9. Mikroorganismus gemäss den Ansprüchen 1 bis 8, in dem die intrazelluläre Aktivität einer D- Aminosäureoxidase, L-Aminosauredehydrogenase, eines das Coenzym NADH regenerierenden Enzyms und gegebenenfalls einer Katalase gegenüber dem Startorganismus angehoben wird, indem man die Kopienzahl der für diese Enzyme kodierenden Nukleotidsequenzen erhöht oder einen starken Promotor benutzt oder beides kombiniert.
10. Vector, der eine oder mehrere der für eine D- Ainosäureoxidase, Aminosauredehydrogenase oder eines für das Cosubstrat NADH regenerierendes Enzym kodierenden Nukleotidsequenzen aufweist.
11. Vektor gemäss Anspruch 10, der eine für eine D- Aminosäuredehydrogenase und eine für Malatdehydrogenase kodierende Nukleotidsequenz enthält.
12. Vektor gemäss Anspruch 10, der eine für eine Aminosauredehydrogenase und eine für Malatdehydrogenase kodierende Nukleotidsequenz enthält.
13. Vektor gemäss Anspruch 10, der eine für eine Aminosauredehydrogenase und eine für eine D- Aminosäureoxidase kodierende Nukleotidsequenz enthält.
14. Mit Vektoren gemäss den Ansprüchen 10 bis 13 in der Weise transformierte Mikroorganismen, dass sie im Vergleich zum Startorganismus mindestens jeweils eine zusätzliche Kopie der für die genannten Enzyme kodierenden Nukleotidsequenzen enthalten.
15. Verfahren zur Herstellung von L-Aminosäuren aus D-Aminosäuren unter Verwendung einer enantioselektiven enzymatischen Syntheseroute, dadurch gekennzeichnet, dass man einen rekombinanten Mikroorganismus, der eine gegenüber dem Startorganismus (z. B. Wildtyp) erhöhte Konzentration oder Aktivität einer Aminosäureoxidase, einer Aminosauredehydrogenase, eines das Cosubstrat NADH regenerierenden Enzyms und gegebenenfalls einer Katalase aufweist, mit einer D- Aminosäure (n) aufweisenden Lösung umsetzt und die entstandene L-Aminosäure isoliert.
16. Verfahren gemäss Anspruch 15, dadurch gekennzeichnet, dass man Mikroorganismen gemäß den Ansprüchen 1 bis 9 und 14 einsetzt.
17. Verfahren gemäss den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass man als das Cosubstrat NADH regenerierendes Enzym Malatdehydrogenase auswählt und der D-Aminosäure enthaltenden Lösung L-Malat oder L-Äpfelsäure zusetzt.
18. Verfahren gemäss den Ansprüchen 15 bis 17, dadurch gekennzeichnet, dass man ruhende Zellen des Mikroorganismus einsetzt.
19. Verfahren gemäss den Ansprüchen 15 bis 18, dadurch gekennzeichnet, dass die Zellwände der eingesetzten Zellen durch chemische oder physikalische Maßnahmen durchlässig für die Aufnahme der D-Aminosäure aus der Lösung sind.
20. Verfahren gemäss einem oder mehreren der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass man eine D-Aminosäure oder eine racemische DL-Aminosäure einsetzt , ausgewählt aus der Gruppe Lysin, Arginin, Phenyl alanin, Valin, Ornithin, Leucin , Histidin, Norleucin, Tyrosin, Alanin, Glutamat , Cephalosporin, insbesondere Methionin .
PCT/EP2005/000768 2004-02-19 2005-01-27 Verfahren zur herstellung von l-aminosäuren aus d-aminosäuren WO2005090590A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006553471A JP2007522810A (ja) 2004-02-19 2005-01-27 D−アミノ酸からのl−アミノ酸の製造方法
BRPI0506795-2A BRPI0506795A (pt) 2004-02-19 2005-01-27 microorganismo, vetor e processo para preparação de l-aminoácidos a partir de d-aminoácidos
EP05707022A EP1716241A1 (de) 2004-02-19 2005-01-27 Verfahren zur herstellung von l-aminosäuren aus d-aminosäuren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004008445A DE102004008445A1 (de) 2004-02-19 2004-02-19 Verfahren zur Herstellung von L-Aminosäuren aus D-Aminosäuren
DE102004008445.9 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005090590A1 true WO2005090590A1 (de) 2005-09-29

Family

ID=34832887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000768 WO2005090590A1 (de) 2004-02-19 2005-01-27 Verfahren zur herstellung von l-aminosäuren aus d-aminosäuren

Country Status (8)

Country Link
US (1) US7217544B2 (de)
EP (1) EP1716241A1 (de)
JP (1) JP2007522810A (de)
CN (2) CN1922328A (de)
BR (1) BRPI0506795A (de)
DE (1) DE102004008445A1 (de)
RU (1) RU2006133266A (de)
WO (1) WO2005090590A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132145A1 (ja) * 2005-06-09 2006-12-14 Daicel Chemical Industries, Ltd. L-アミノ酸の製造方法
WO2007015511A1 (ja) * 2005-08-02 2007-02-08 Kaneka Corporation D-アミノ酸オキシダーゼ、およびl-アミノ酸、2-オキソ酸、又は環状イミンの製造方法。
JP2008048628A (ja) * 2006-08-22 2008-03-06 Kaneka Corp D−アミノ酸オキシダーゼ、およびl−アミノ酸、2−オキソ酸、又は環状イミンの製造方法。
US9267116B2 (en) 2008-12-09 2016-02-23 Kaneka Corporation Amino acid dehydrogenase, and process for producing L-amino acid, 2-oxo acid or D-amino acid

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490251B (zh) * 2006-07-19 2016-06-29 味之素株式会社 使用肠杆菌科细菌产生l-氨基酸的方法
WO2008047656A1 (fr) * 2006-10-12 2008-04-24 Kaneka Corporation Procédé de fabrication d'un acide l-amino
WO2008080138A1 (en) * 2006-12-22 2008-07-03 Richmond Chemical Corporation Stereoinversion of amino acids
CN102174632A (zh) * 2009-05-19 2011-09-07 重庆邮电大学 一种非天然l-氨基酸的生物催化去消旋化制备方法
WO2011100265A2 (en) 2010-02-10 2011-08-18 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
CN104557911B (zh) * 2013-10-17 2016-08-31 苏州同力生物医药有限公司 一种左旋吡喹酮的制备方法
CN106574254A (zh) * 2014-04-30 2017-04-19 赢创德固赛有限公司 使用嗜碱性细菌生产l‑氨基酸的方法
SG11201700099PA (en) * 2014-07-11 2017-02-27 Sumitomo Chemical Co Oxidase, polynucleotide encoding same, and use thereof
JP7041066B2 (ja) 2016-03-02 2022-03-23 ビーエーエスエフ ソシエタス・ヨーロピア L-グルホシネートを作製する方法
CN106520651A (zh) * 2016-11-08 2017-03-22 江南大学 一种利用酶法转化生产l‑正缬氨酸的方法
CN107502647B (zh) * 2017-09-15 2020-12-15 浙江大学 一种生物酶法去消旋化制备l-草铵膦的方法
CN109971802B (zh) * 2017-12-28 2023-04-07 苏州同力生物医药有限公司 一种酶法拆分制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
CN113969269B (zh) 2021-04-29 2024-05-03 永农生物科学有限公司 D-氨基酸氧化酶突变体及其在制备l-草铵膦中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375649A1 (de) * 2002-06-19 2004-01-02 Degussa AG D-Aminosäure-Oxidase aus Arthrobacter protophormiae

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606494A1 (de) * 1996-02-22 1997-08-28 Degussa Enzym mit LeuDH-Aktivität, dafür codierende Nukleotid-Sequenz und Verfahren zur Herstellung des Enzyms
ES2109194B1 (es) * 1996-04-22 1998-07-16 Antibioticos Sa Un procedimiento para producir la enzima d-aminoacido oxidasa de rhodotorula gracilis en celulas hospedantes.
EP1654371A4 (de) * 2001-06-21 2010-02-10 Verenium Corp Verfahren zur herstellung reiner enantiomerenreiner verbindungen und zur selektion enantioselektiver enzyme
DE10240603A1 (de) 2002-09-03 2004-03-11 Degussa Ag Verwendung von Malat-Dehydrogenase zur NADH-Regenerierung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375649A1 (de) * 2002-06-19 2004-01-02 Degussa AG D-Aminosäure-Oxidase aus Arthrobacter protophormiae

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GALKIN A ET AL: "Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, WASHINGTON,DC, US, vol. 12, no. 63, December 1997 (1997-12-01), pages 4651 - 4656, XP002079513, ISSN: 0099-2240 *
NAAMNIEH S: "Entwicklung eines rekombinanten Ganzzellsystems - Klonierung, Coexpression und Mutagenese der Phenylalanin-Dehydrogenase aus Rhodococcus sp. M4 und des malic enzymes aus E. coli K12", ONLINE-KATALOG, ULB DÜSSELDORF, 2002, XP002324272, Retrieved from the Internet <URL:http://www.ulb.uni-duesseldorf.de/diss/mathnat/2002/naamnieh.html> [retrieved on 20050412] *
NAAMNIEH S: "Entwicklung eines rekombinanten Ganzzellsystems", DISSERTATION, 2002, UNIVERSITÄT DÜSSELDORF *
NAKAJIMA N ET AL: "Enzymatic conversion of racemic methionine to the L-enantiomer", JOURNAL OF THE CHEMICAL SOCIETY CHEMICAL COMMUNICATIONS, no. 13, 1990, pages 947 - 948, XP009046042, ISSN: 0022-4936 *
PATEL R N: "Enzymatic synthesis of chiral intermediates for Omapatrilat, an antihypertensive drug", BIOMOLECULAR ENGINEERING, ELSEVIER, NEW YORK, NY, US, vol. 17, no. 6, 2001, pages 167 - 182, XP001098860, ISSN: 1389-0344 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132145A1 (ja) * 2005-06-09 2006-12-14 Daicel Chemical Industries, Ltd. L-アミノ酸の製造方法
WO2007015511A1 (ja) * 2005-08-02 2007-02-08 Kaneka Corporation D-アミノ酸オキシダーゼ、およびl-アミノ酸、2-オキソ酸、又は環状イミンの製造方法。
US8227228B2 (en) 2005-08-02 2012-07-24 Kaneka Corporation D-amino acid oxidase, and method for production of L-amino acid, 2-oxo acid, or cyclic imine
JP2008048628A (ja) * 2006-08-22 2008-03-06 Kaneka Corp D−アミノ酸オキシダーゼ、およびl−アミノ酸、2−オキソ酸、又は環状イミンの製造方法。
US9267116B2 (en) 2008-12-09 2016-02-23 Kaneka Corporation Amino acid dehydrogenase, and process for producing L-amino acid, 2-oxo acid or D-amino acid

Also Published As

Publication number Publication date
CN103834607A (zh) 2014-06-04
CN1922328A (zh) 2007-02-28
US20060063238A1 (en) 2006-03-23
EP1716241A1 (de) 2006-11-02
RU2006133266A (ru) 2008-03-27
JP2007522810A (ja) 2007-08-16
US7217544B2 (en) 2007-05-15
DE102004008445A1 (de) 2005-09-08
BRPI0506795A (pt) 2007-05-22

Similar Documents

Publication Publication Date Title
EP1716241A1 (de) Verfahren zur herstellung von l-aminosäuren aus d-aminosäuren
RU2247778C2 (ru) Способ ферментативного получения l-аминокислоты с использованием коринеформных бактерий
EP1874946A2 (de) Verfahren zur fermentativen herstellung von l-valin, l-isoleucin oder l-lysin unter verwendung coryneformer bakterien mit verminderter oder ausgeschalteter alanin aminotransferase aktivität
DE102005013676A1 (de) Allele des zwf-Gens aus coryneformen Bakterien
DE19907347A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
CA2393343A1 (en) Nadh oxidase from lactobacillus
ZA200508232B (en) Nucleotide sequences of coryneform bacteria coding for proteins involved in L-serine metabilism and method for production L-serine
DE102005045301A1 (de) Verfahren zur Herstellung von organisch-chemischen Verbindungen unter Verwendung coryneformer Bakterien
EP2089525B1 (de) Allele des oxyr-gens aus coryneformen bakterien
CN101952418A (zh) 生产(2s,3r,4s)-4-羟基-l-异亮氨酸的方法
DE102006050489A1 (de) Allele des prpD1-Gens aus coryneformen Bakterien
DE102004009454A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von rekombinanten Mikroorganismen
EP1038969A2 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
WO2001062948A2 (en) Method and catalyst system for stereoselectively inverting a chiral center of a chemical compound
EP1055730A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE102005032429A1 (de) Allele des mqo-Gens aus coryneformen Bakterien
EP2694536A2 (de) Mikroorganismus und verfahren zur fermentativen herstellung einer organisch-chemischen verbindung
EP1538213A2 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1104810A1 (de) Verfahren zur fermentativen Herstellung von L-Lysin unter Verwendung coryneformer Bakterien
EP1083225A1 (de) Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung coryneformer Bakterien
DE102004055414A1 (de) Allele des metK-Gens aus coryneformen Bakterien
DE10231297A1 (de) Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin
EP1861493B1 (de) Mutierte allele des zwg-gens (g6pdh) aus coryneformen bakterien zur gesteigerten lysin produktion
DE102010025124A1 (de) Verfahren zur Herstellung von D-Aminosäuren, Mikroorganismus, sowie Vektor
JP2005304498A (ja) α−アミノアジピン酸セミアルデヒド誘導体およびα−アミノアジピン酸誘導体を製造するための新規微生物と酵素、およびα−アミノアジピン酸セミアルデヒド誘導体とα−アミノアジピン酸誘導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005707022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580005253.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006553471

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006133266

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005707022

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0506795

Country of ref document: BR