WO2005090368A1 - Synthetic membrane anchors - Google Patents
Synthetic membrane anchors Download PDFInfo
- Publication number
- WO2005090368A1 WO2005090368A1 PCT/NZ2005/000052 NZ2005000052W WO2005090368A1 WO 2005090368 A1 WO2005090368 A1 WO 2005090368A1 NZ 2005000052 W NZ2005000052 W NZ 2005000052W WO 2005090368 A1 WO2005090368 A1 WO 2005090368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dope
- synthetic molecule
- molecule construct
- cell
- group
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 31
- 210000004027 cell Anatomy 0.000 claims abstract description 199
- 239000000427 antigen Substances 0.000 claims abstract description 79
- 102000036639 antigens Human genes 0.000 claims abstract description 72
- 108091007433 antigens Proteins 0.000 claims abstract description 72
- 150000002632 lipids Chemical class 0.000 claims abstract description 68
- 230000000694 effects Effects 0.000 claims abstract description 10
- 210000003743 erythrocyte Anatomy 0.000 claims description 100
- 238000000034 method Methods 0.000 claims description 86
- 239000000243 solution Substances 0.000 claims description 80
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 claims description 76
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 74
- -1 pentachlorophenyl Chemical group 0.000 claims description 34
- 150000002327 glycerophospholipids Chemical class 0.000 claims description 25
- 150000001720 carbohydrates Chemical class 0.000 claims description 23
- 235000014633 carbohydrates Nutrition 0.000 claims description 23
- 150000001768 cations Chemical class 0.000 claims description 23
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 20
- 235000000346 sugar Nutrition 0.000 claims description 18
- 210000002919 epithelial cell Anatomy 0.000 claims description 17
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 17
- 241001529936 Murinae Species 0.000 claims description 16
- 210000002744 extracellular matrix Anatomy 0.000 claims description 16
- 230000003993 interaction Effects 0.000 claims description 14
- 229920001542 oligosaccharide Polymers 0.000 claims description 14
- 108060003951 Immunoglobulin Proteins 0.000 claims description 13
- 102000018358 immunoglobulin Human genes 0.000 claims description 13
- 150000002482 oligosaccharides Chemical class 0.000 claims description 13
- 125000006850 spacer group Chemical group 0.000 claims description 13
- 150000008163 sugars Chemical group 0.000 claims description 13
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 12
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 12
- 102000004856 Lectins Human genes 0.000 claims description 12
- 108090001090 Lectins Proteins 0.000 claims description 12
- 210000004696 endometrium Anatomy 0.000 claims description 12
- 239000002523 lectin Substances 0.000 claims description 12
- 239000003446 ligand Substances 0.000 claims description 12
- 108090001008 Avidin Proteins 0.000 claims description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 10
- 229960002685 biotin Drugs 0.000 claims description 10
- 235000020958 biotin Nutrition 0.000 claims description 10
- 239000011616 biotin Substances 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 9
- 229940072221 immunoglobulins Drugs 0.000 claims description 8
- 210000001161 mammalian embryo Anatomy 0.000 claims description 8
- 150000008103 phosphatidic acids Chemical class 0.000 claims description 8
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 8
- 239000000232 Lipid Bilayer Substances 0.000 claims description 7
- 239000012190 activator Substances 0.000 claims description 7
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 7
- 239000000194 fatty acid Substances 0.000 claims description 7
- 229930195729 fatty acid Natural products 0.000 claims description 7
- 150000004665 fatty acids Chemical class 0.000 claims description 7
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 claims description 6
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 claims description 6
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 claims description 6
- 101000874347 Streptococcus agalactiae IgA FC receptor Proteins 0.000 claims description 6
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 claims description 6
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 claims description 6
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 6
- 229940106189 ceramide Drugs 0.000 claims description 6
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 claims description 6
- FRKBLBQTSTUKOV-UHFFFAOYSA-N diphosphatidyl glycerol Natural products OP(O)(=O)OCC(OP(O)(O)=O)COP(O)(O)=O FRKBLBQTSTUKOV-UHFFFAOYSA-N 0.000 claims description 6
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 claims description 6
- 230000001575 pathological effect Effects 0.000 claims description 6
- 150000008104 phosphatidylethanolamines Chemical class 0.000 claims description 6
- 150000003905 phosphatidylinositols Chemical class 0.000 claims description 6
- 150000003142 primary aromatic amines Chemical class 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 6
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 claims description 6
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 claims description 5
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 claims description 5
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 5
- 150000004043 trisaccharides Chemical class 0.000 claims description 5
- AFSHUZFNMVJNKX-CLFAGFIQSA-N 1,2-dioleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCC\C=C/CCCCCCCC AFSHUZFNMVJNKX-CLFAGFIQSA-N 0.000 claims description 4
- 125000004042 4-aminobutyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H] 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 claims description 4
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 claims 1
- 125000001095 phosphatidyl group Chemical group 0.000 claims 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 claims 1
- 210000000170 cell membrane Anatomy 0.000 abstract description 12
- 229930186217 Glycolipid Natural products 0.000 description 152
- 230000009466 transformation Effects 0.000 description 94
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 90
- 238000012360 testing method Methods 0.000 description 36
- 238000003780 insertion Methods 0.000 description 32
- 230000037431 insertion Effects 0.000 description 32
- 230000004520 agglutination Effects 0.000 description 30
- 239000002953 phosphate buffered saline Substances 0.000 description 24
- 210000002257 embryonic structure Anatomy 0.000 description 22
- 239000003153 chemical reaction reagent Substances 0.000 description 21
- 206010018910 Haemolysis Diseases 0.000 description 17
- 210000004369 blood Anatomy 0.000 description 17
- 239000008280 blood Substances 0.000 description 17
- 230000008588 hemolysis Effects 0.000 description 17
- 238000011534 incubation Methods 0.000 description 17
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 16
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 16
- 239000000523 sample Substances 0.000 description 14
- 210000005168 endometrial cell Anatomy 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 0 C*(C)C(O[C@](COC(C)=O)COP(O)(OCCNC(CCCCC(*)=O)=O)=O)=O Chemical compound C*(C)C(O[C@](COC(C)=O)COP(O)(OCCNC(CCCCC(*)=O)=O)=O)=O 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000003886 Glycoproteins Human genes 0.000 description 5
- 108090000288 Glycoproteins Proteins 0.000 description 5
- 230000010307 cell transformation Effects 0.000 description 5
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 208000025661 ovarian cyst Diseases 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 4
- 102000002702 GPI-Linked Proteins Human genes 0.000 description 4
- 108010043685 GPI-Linked Proteins Proteins 0.000 description 4
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 3
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- SIHHLZPXQLFPMC-UHFFFAOYSA-N chloroform;methanol;hydrate Chemical compound O.OC.ClC(Cl)Cl SIHHLZPXQLFPMC-UHFFFAOYSA-N 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000013101 initial test Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 150000003408 sphingolipids Chemical class 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 101710186708 Agglutinin Proteins 0.000 description 2
- 101710088235 Envelope glycoprotein C homolog Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000012981 Hank's balanced salt solution Substances 0.000 description 2
- 101710146024 Horcolin Proteins 0.000 description 2
- 101710189395 Lectin Proteins 0.000 description 2
- 101710179758 Mannose-specific lectin Proteins 0.000 description 2
- 101710150763 Mannose-specific lectin 1 Proteins 0.000 description 2
- 101710150745 Mannose-specific lectin 2 Proteins 0.000 description 2
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 2
- SQVRNKJHWKZAKO-LUWBGTNYSA-N N-acetylneuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-LUWBGTNYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000910 agglutinin Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- 239000007975 buffered saline Substances 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 150000001982 diacylglycerols Chemical class 0.000 description 2
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000002900 effect on cell Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229940060155 neuac Drugs 0.000 description 2
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000002593 sialoyl group Chemical group 0.000 description 2
- 125000005630 sialyl group Chemical group 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000010414 supernatant solution Substances 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 1
- PCBKWKNYISJGPJ-BUHFOSPRSA-N (3E)-3-hexadecenoic acid Chemical compound CCCCCCCCCCCC\C=C\CC(O)=O PCBKWKNYISJGPJ-BUHFOSPRSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- 101150116295 CAT2 gene Proteins 0.000 description 1
- 101100392078 Caenorhabditis elegans cat-4 gene Proteins 0.000 description 1
- 101100326920 Caenorhabditis elegans ctl-1 gene Proteins 0.000 description 1
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 1
- 101100205030 Caenorhabditis elegans hars-1 gene Proteins 0.000 description 1
- 101100366060 Caenorhabditis elegans snap-29 gene Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical group OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- PPMPLIBYTIWXPG-UHFFFAOYSA-N Glycolipid A Natural products CCCCCCCC(CC(O)=O)OC(=O)CC(CCCCCCC)OC1OC(C)C(O)C(O)C1O PPMPLIBYTIWXPG-UHFFFAOYSA-N 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 101001110286 Homo sapiens Ras-related C3 botulinum toxin substrate 1 Proteins 0.000 description 1
- PPMPLIBYTIWXPG-MSJADDGSSA-N L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid Chemical compound CCCCCCCC(CC(O)=O)OC(=O)CC(CCCCCCC)O[C@@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O PPMPLIBYTIWXPG-MSJADDGSSA-N 0.000 description 1
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- OVRNDRQMDRJTHS-KEWYIRBNSA-N N-acetyl-D-galactosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-KEWYIRBNSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 1
- 101100005280 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-3 gene Proteins 0.000 description 1
- 101100126846 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) katG gene Proteins 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 102100022122 Ras-related C3 botulinum toxin substrate 1 Human genes 0.000 description 1
- 229910019994 S1-NH2 Inorganic materials 0.000 description 1
- 102000018614 Uromodulin Human genes 0.000 description 1
- 108010027007 Uromodulin Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- XNBZPOHDTUWNMW-OUUCXATCSA-N alpha-L-Fucp-(1->2)-[alpha-D-Galp-(1->3)]-D-Galp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@@H](CO)OC1O XNBZPOHDTUWNMW-OUUCXATCSA-N 0.000 description 1
- ANBQYFIVLNNZCU-CQCLMDPOSA-N alpha-L-Fucp-(1->2)-[alpha-D-GalpNAc-(1->3)]-beta-D-Galp-(1->3)-[alpha-L-Fucp-(1->4)]-beta-D-GlcpNAc-(1->3)-beta-D-Galp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](O[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)NC(C)=O)[C@@H](O)[C@@H](CO)O2)O[C@H]2[C@H]([C@H](O)[C@H](O)[C@H](C)O2)O)[C@@H](NC(C)=O)[C@H](O[C@H]2[C@H]([C@@H](CO)O[C@@H](O)[C@@H]2O)O)O[C@@H]1CO ANBQYFIVLNNZCU-CQCLMDPOSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000006295 amino methylene group Chemical group [H]N(*)C([H])([H])* 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- WPIHMWBQRSAMDE-YCZTVTEBSA-N beta-D-galactosyl-(1->4)-beta-D-galactosyl-N-(pentacosanoyl)sphingosine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO[C@@H]1O[C@H](CO)[C@H](O[C@@H]2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O)[C@H](O)\C=C\CCCCCCCCCCCCC WPIHMWBQRSAMDE-YCZTVTEBSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009582 blood typing Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- 150000001784 cerebrosides Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 1
- 230000032692 embryo implantation Effects 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- GIGAVEHCPDOYLJ-UHFFFAOYSA-N ethyl acetate;propan-2-ol;hydrate Chemical compound O.CC(C)O.CCOC(C)=O GIGAVEHCPDOYLJ-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 150000002298 globosides Chemical class 0.000 description 1
- 150000002313 glycerolipids Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 150000003019 phosphosphingolipids Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- UJMBCXLDXJUMFB-GLCFPVLVSA-K tartrazine Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-GLCFPVLVSA-K 0.000 description 1
- 229960000943 tartrazine Drugs 0.000 description 1
- 235000012756 tartrazine Nutrition 0.000 description 1
- 239000004149 tartrazine Substances 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/10—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/10—Phosphatides, e.g. lecithin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0006—Modification of the membrane of cells, e.g. cell decoration
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0604—Whole embryos; Culture medium therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0641—Erythrocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/124—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
Definitions
- the invention relates to synthetic molecules that spontaneously and stably incorporate into lipid bi-layers, including cell membranes. Particularly, although not exclusively, the invention relates to the use of these molecules as synthetic membrane anchors or synthetic molecule constructs to effect qualitative and quantitative changes in the expression of cell surface antigens.
- Cell surface antigens mediate a range of interactions between cells and their environment. These interactions include cell-cell interactions, cell-surface interactions and cell-solute interactions. Cell surface antigens also mediate intra-cellular signalling.
- Cells are characterised by qualitative and quantitative differences in the cell surface antigens expressed. Qualitative and quantitative changes in the cell surface antigens expressed alter both cell function (mode of action) and cell functionality (action served).
- Protein painting is a non-transgenic method for effecting qualitative and/or quantitative changes in the surface antigens expressed by a cell.
- the method exploits the ability of GPI linked proteins to spontaneously anchor to the cell membrane via their lipid tails.
- the method described in the specification accompanying international application no. PCT/US98/15124 includes the step of inserting a GPI linked protein isolated from a biological source into a membrane. Isolated GPI-anchored proteins are stated as having an unusual capacity to reintegrate with a cell-surface membrane.
- the cell membrane is a lipid bilayer that serves as a semi-permeable barrier between the cytoplasm of the cell and this aqueous environment. Localising antigens to the cell surface may also be achieved by the use of glycolipids as membrane anchors.
- the method described in the specification accompanying international application no. PCT/NZ02/00214 includes the step of inserting a controlled amount of glycolipid into a membrane.
- the amount of glycolipid inserted is controlled to provide cells with a desired level of antigen expression.
- the method described in the specification accompanying international application no. PCT/NZ03/00059 includes the step of inserting a modified glycolipid into a membrane as a "membrane anchor".
- the modified glycolipid provides for the localisation of antigens to the surface of the cell or multicellular structure. New characteristics may thereby be imparted on the cell or multicellular structure.
- glycolipids or glycolipid-linked antigens typically include the isolation of a glycolipid or glycolipid-linked antigen from a biological source.
- the isolation of glycolipids or glycolipid-linked antigens from biological sources is costly, variable and isolatable amounts are often limited.
- Obtaining reagents from zoological sources for therapeutic use is particularly problematic, especially where the reagent or its derivative products are to be administered to a human subject.
- Synthetic molecules for which the risk of contamination with zoo-pathogenic agents can be excluded are preferred.
- Synthetic counterparts for naturally occurring glycolipids and synthetic neo-glycolipids have been reported.
- synthetic glycolipid to be of use as a membrane anchor it must be able to spontaneously and stably incorporate into a lipid bi-layer from an aqueous environment.
- the utility of synthetic glycolipids in diagnostic or therapeutic applications is further limited to those synthetic glycolipids that will form a solution in saline.
- Organic solvents and/or detergents used to facilitate the solubilization of glycolipids in saline must be biocompatible. Solvents and detergents must often be excluded or quickly removed as they can be damaging to some cell membranes. The removal of solvents or detergents from such preparations can be problematic.
- Damage to cell membranes is to be avoided especially where the supply of cells or multicellular structures is limited, e.g. embryos, or the cells are particularly sensitive to perturbation, e.g. hepatocytes.
- glycolipids and glycolipid- linked antigens isolated from biological sources and facilitate being able to effect qualitative and/or quantitative changes in the surface antigens expressed by a cell.
- the preceding objects are to be read disjunctively with the object to at least provide the public with a useful choice.
- the invention consists in a molecule of the structure R-S 2 -L for use as a synthetic membrane anchor or in the preparation of synthetic molecule constructs where:
- R is a chemically reactive functional group
- S 2 is a spacer linking R to L
- L is a lipid selected from the group consisting of diacyl- and dialkyl-glycerolipids, including glycerophospholipids, and sphingosine derived diacyl- and dialkyl-lipids, including ceramide.
- R is selected from the group including: 6/s(N-hydroxysuccinimidyl), bis(4- nitrophenyl), 6/s(pentafluorophenyl), £>/s(pentachlorophenyl).
- S 2 is selected from the group including: -CO(CH 2 ) 3 CO-, -CO(CH 2 ) 4 CO- (adipate (Ad)), and -CO(CH 2 ) 5 CO-.
- R and S are ester linked.
- L is a lipid selected from the group consisting of diacyl- and dialkyl-glycerolipids, including glycerophospholipids. More preferably L is selected from the group consisting of: diacylglycerolipids, phosphatidate, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol, and diphosphatidyl glycerol derived from one or more of trans-3-hexadecenoic acid, c/s-5-hexadecenoic acid, c/s-7- hexadecenoic acid, c/s-9-hexadece ⁇ oic acid, c/s-6-octadecenoic acid, cs-9-octadecenoic acid, trans-9-octadecenoic acid, tra ⁇ s-11-oct
- the lipid is derived from one or more c/s-destaurated fatty acids.
- L is selected from the group consisting of: 1,2-0-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), 1 ,2-0-distearyl-sn-glycero-3- phosphatidylethanolamine (DSPE) and rac-1 ,2-dioleoyIglycerol (DOG).
- DOPE 1,2-0-dioleoyl-sn-glycero-3-phosphatidylethanolamine
- DSPE 1 ,2-0-distearyl-sn-glycero-3- phosphatidylethanolamine
- DOG rac-1 ,2-dioleoyIglycerol
- L is a glycerophospholipid and the molecule includes the substructure:
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- n 3 to 5 and * is other than H.
- Ad-DOPE Ad-DOPE
- Ad-DSPE Ad-DSPE
- M is typically H, but may be replaced by another monovalent cation such as Na + , K + or NH + .
- the invention consists in a synthetic molecule construct of the structure F- S1-S2-L where:
- F is an antigen selected from the group consisting of carbohydrates, proteins, lipids, lectins, avidins and biotin; SrS 2 is a spacer linking F to L; and L is a lipid selected from the group consisting of diacyl- and dialkyl-glycerolipids, including glycerophospholipids, and sphingosine derived diacyl- and dialkyl-lipids, including ceramide.
- the molecule is water soluble.
- the molecule spontaneously incorporates into a lipid bi-layer when a solution of the molecule is contacted with the lipid bi-layer. More preferably the molecule stably incorporates into the lipid bilayer.
- F, Si, S 2 and L are covalently linked.
- F is selected from the group consisting of naturally occurring or synthetic glycotopes, antibodies (immunoglobulins), lectins, avidins, and biotin. Most preferably F is selected from the group consisting of naturally occurring or synthetic glycotopes or antibodies (immunoglobulins).
- L is a lipid selected from the group consisting of diacyl- and dialkyl-glycerolipids, including glycerophospholipids. More preferably L is selected from the group consisting of: diacylglycerolipids, phosphatidate, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol, and diphosphatidyl glycerol derived from one or more of fra/7S-3-hexadecenoic acid, c/s-5-hexadecenoic acid, c/s-7- hexadecenoic acid, c/s-9-hexadecenoic acid, c/s-6-octadecenoic acid, c/s-9-octadecenoic acid, fra/7s-9-octadecenoic acid, trans 1 -o
- the lipid is derived from one or more c/s-destaurated fatty acids.
- L is selected from the group consisting of: 1 ,2-0-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), 1 ,2-0-distearyl-sn-glycero-3- phosphatidylethanolamine (DSPE) and rac-1 ,2-dioleoylglycerol (DOG).
- L is a glycerophospholipid and the molecule includes the substructure:
- n 3 to 5
- X is H or C, and * is other than H.
- n is 3.
- S ⁇ -S 2 is selected to provide a water soluble synthetic molecule construct.
- F is a naturally occurring or synthetic glycotope.
- F is a naturally occurring or synthetic glycotope consisting of three (trisaccharide) or more sugar units. More preferably F is a glycotope selected from the group consisting of lacto-neo- tetraosyl, lactotetraosyl, lacto-nor-hexaosyl, lacto-iso-octaosyl, globoteraosyl, globo-neo- tetraosyl, globopentaosyl, gangliotetraosyl, gangliotriaosyl, gangliopentaosyl, isoglobotriaosyl, isoglobotetraosyl, mucotriaosyl and mucotetraosyl series of oligosaccharides.
- F is selected from the group of glycotopes comprising the terminal sugars GalNAc ⁇ 1-3(Fuc ⁇ 1- 2)Gal ⁇ ; Gal ⁇ 1-3Gal ⁇ ; Gal ⁇ ; Gal ⁇ 1-3(Fuc ⁇ 1-2)Gal ⁇ ; NeuAc ⁇ 2-3Gal ⁇ ; NeuAc ⁇ 2-6GaI ⁇ ; Fuc ⁇ l- 2Ga
- L is a glycerophospholipid and S 2 is selected from the group including: -CO(CH 2 ) CO-, -CO(CH 2 ) 4 CO- (adipate), -CO(CH 2 ) 5 CO- and -CO(CH 2 ) 5 NHCO(CH 2 ) 5 CO-, preferably Si is a C 3 . 5 -aminoalkyl selected from the group consisting of: 3-aminopropyl, 4- aminobutyl, or 5-aminopentyl. More preferably Si is 3-aminopropyl.
- F is a molecule that mediates a cell-cell or cell-surface interaction.
- F is carbohydrate, protein or lipid with an affinity for a component expressed on a targeted cell or surface. More preferably F has an affinity for a component expressed on epithelial cells or extra-cellular matrices. Yet more preferably F has an affinity for a component expressed on the epithelial cells or the extra-cellular matrix of the endometrium. Most preferably the component expressed on the epithelial cells or the extra-cellular matrix of the endometrium can be a naturally expressed component or an exogenously incorporated component.
- F is a molecule that mediates a cell-solute interaction.
- F is a ligand for a binding molecule where the presence of the binding molecule is diagnostic for a pathological condition.
- F is a ligand for an antibody (immunoglobulin).
- Aw-sp-Ad-DOPE (I); the structure:
- M is typically H, but may be replaced by another monovalent cation such as Na + , K + or NH 4 + .
- the invention consists in a method of preparing a synthetic molecule construct of the structure F-S 1 -S 2 -L including the steps:
- A is an activator selected from the group including: b/s(N-hydroxysuccinimidyl), b/s(4- nitrophenyl), ⁇ /s(pentafluorophenyl), 6/s(pentachlorophenyl) esters of carbodioic acids (C 3 to C 7 );
- L is a lipid selected from the group consisting of diacyl- and dialkyl-glycerolipids, including glycerophospholipids, and sphingosine derived diacyl- and dialkyi-lipids, including ceramide.
- F is an antigen selected from the group consisting of carbohydrates, proteins, lipids, lectins, avidins and biotin; and S S 2 is a spacer linking F to L where Si is selected from the group including: primary aminoalkyl, secondary aliphatic aminoalkyl or primary aromatic amine; and S 2 is absent or selected from the group including: -CO(CH 2 ) 3 CO-, -CO(CH 2 ) 4 CO- (adipate), and -CO(CH 2 ) 5 CO-.
- the molecule is water soluble.
- the molecule spontaneously incorporates into a lipid bi-layer when a solution of the molecule is contacted with the lipid bi-layer. More preferably the molecule stably incorporates into the lipid bilayer.
- F, Si, S 2 and L are covalently linked.
- F is selected from the group consisting of naturally occurring or synthetic glycotopes, antibodies (immunoglobulins), lectins, avidins, and biotin. Most preferably F is selected from the group consisting of naturally occurring or synthetic glycotopes or antibodies (immunoglobulins).
- L is a lipid selected from the group consisting of diacyl- and dialkyl-glycerolipids, including glycerophospholipids. More preferably L is selected from the group consisting of: diacylglycerolipids, phosphatidate, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol, and diphosphatidyl glycerol derived from one or more of fra ⁇ s-3-hexadecenoic acid, c/s-5-hexadecenoic acid, c/s-7- hexadecenoic acid, c/s-9-hexadecenoic acid, c/s-6-octadecenoic acid, c/s-9-octadecenoic acid, fra 7s-9-octadecenoic acid, fra ⁇ s-11
- the lipid is derived from one or more c/s-destaurated fatty acids.
- L is selected from the group consisting of: 1 ,2-0-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), 1 ,2-0-distearyl-sn-glycero-3- phosphatidylethanolamine (DSPE) and rac-1,2-dioleoylglycerol (DOG).
- L is a glycerophospholipid and the molecule includes the substructure:
- n 3 to 5
- X is H or C, and * is other than H.
- n is 3.
- a (R-S 2 ) and Si are selected to provide a water soluble synthetic molecule construct.
- F is a naturally occurring or synthetic glycotope.
- F is a naturally occurring or synthetic glycotope consisting of three (trisaccharide) or more sugar units. More preferably F is a glycotope selected from the group consisting of lacto-neo- tetraosyl, lactotetraosyl, lacto-nor-hexaosyl, lacto-iso-octaosyl, globoteraosyl, globo-neo- tetraosyl, globopentaosyl, gangliotetraosyl, gangliotriaosyl, gangliopentaosyl, isoglobotriaosyl, isoglobotetraosyl, mucotriaosyl and mucotetraosyl series of oligosaccharides.
- F is selected from the group of glycotopes comprising the terminal sugars GalNAc ⁇ 1-3(Fuc ⁇ 1- 2)Gal ⁇ ; Gal ⁇ 1-3Gal ⁇ ; Gal ⁇ ; Gal ⁇ 1-3(Fuc ⁇ 1-2)Gal ⁇ ; NeuAc ⁇ 2-3Gal ⁇ ; NeuAc ⁇ 2-6Gal ⁇ ; Fuccrt- 2Gal ⁇ ; Gal ⁇ l -4GlcNAc ⁇ 1 -6(Gal ⁇ 1 -4GlcNAc ⁇ 1 -3)Gal ⁇ ; Fuc ⁇ l -2Gal ⁇ 1 -4GlcNAc ⁇ 1 -6(Fuc ⁇ 1 - 2Gal ⁇ 1-4GlcNAc ⁇ 1-3)Gal ⁇ ; Fuc ⁇ 1-2Gal ⁇ 1-4GlcNAc ⁇ 1-6(NeuAc ⁇ 2-3Gal ⁇ 1-4GlcNAc ⁇ 1- 3)Gal ⁇ ; NeuAc ⁇ 2-3Gal ⁇ 1-4GlcNAc ⁇ 1-6(NeuAc ⁇ 2-3Gal ⁇ 1-4GlcNAc ⁇ 1- 3)Gal
- L is a glycerophospholipid and S 2 is selected from the group including: -CO(CH 2 ) 3 CO-, -CO(CH 2 ) 4 CO- (adipate), -CO(CH 2 ) 5 CO- (e.g. A is ⁇ /s(N-hydroxysuccinimidyl) adipate), preferably Si is a C 3 - 5 -aminoalkyI selected from the group consisting of: 3- aminopropyl, 4-aminobutyl, or 5-aminopentyl). More preferably Si is 3-aminopropyl.
- F is a molecule that mediates a cell-cell or cell-surface interaction.
- F is carbohydrate, protein or lipid with an affinity for a component expressed on a targeted cell or surface. More preferably F has an affinity for a component expressed on epithelial cells or extra-cellular matrices. Yet more preferably F has an affinity for a component expressed on the epithelial cells or the extra-cellular matrix of the endometrium. Most preferably the component expressed on the epithelial cells or the extra-cellular matrix of the endometrium can be a naturally expressed component or an exogenously incorporated component.
- F is a molecule that mediates a cell-solute interaction.
- F is a ligand for a binding molecule where the presence of the binding molecule is diagnostic for a pathological condition.
- F is a ligand for an antibody (immunoglobulin).
- B tri -sp-Ad-DOPE VI
- H tri -sp-Ad-DOPE VII
- Fuc ⁇ 1-2Gal ⁇ 1-3GIcNAc ⁇ 1-3Gal ⁇ 1-4GlcNAc-sp-Ad-DOPE (XII); or the structure: designated Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp-Ad-DOPE (XIII).
- M is typically H, but may be replaced by another monovalent cation such as Na + , K + or NH 4 + .
- the invention consists in a water soluble synthetic molecule construct prepared by a method according to the third aspect of the invention.
- the invention consists in a method of effecting qualitative and/or quantitative changes in the surface antigens expressed by a cell or multi-cellular structure including the step:
- the cell or multi-cellular structure is of human or murine origin.
- the concentration of the water soluble synthetic molecule construct in the suspension is in the range 0.1 to 10 mg/mL
- the temperature is in the range 2 to 37 °C. More preferably the temperature is in the range 2 to 25 °C. Most preferably the temperature is in the range 2 to 4 °C.
- the ceil is a red blood cell.
- F is selected from the group of glycotopes comprising the terminal sugars GalNAc ⁇ 1-3(Fuc ⁇ 1-2)Gal ⁇ ; Gal ⁇ 1-3Gal ⁇ ; Gal ⁇ ; Gal ⁇ 1-3(Fuc ⁇ 1-2)Gal ⁇ ; NeuAc ⁇ 2-3Gal ⁇ ; NeuAc ⁇ 2-6Gai ⁇ ; Fuc ⁇ 1-2Gal ⁇ ; Ga
- the synthetic molecule construct is selected from the group including: A t ⁇ -sp-Ad- DOPE (I); A, ri -spsprAd-DOPE (II); A t ⁇ -sp-Ad-DSPE (III); B t ⁇ -sp-Ad-DOPE (VI); H t ⁇ -sp-Ad- DOPE (VII); H ⁇ -sp-Ad-DOPE (VIII); Gal ⁇ ,-sp-Ad-DOPE (IX); Fuc ⁇ 1-2Gal ⁇ 1-3GlcNAc ⁇ 1- 3GaI ⁇ 1-4GlcNAc-sp-Ad-DOPE (XII); and Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp-Ad-DOPE (XIII).
- the multi-cellular structure is an embryo.
- F is an attachment molecule where the attachment molecule has an affinity for a component expressed on the epithelial cells or the extra-cellular matrix of the endometrium.
- the component expressed on the epithelial cells or the extra-cellular matrix of the endometrium can be a naturally expressed component or an exogenously incorporated component.
- the synthetic molecule construct is selected from the group including: A tr i-sp-Ad- DOPE (I); A tr ⁇ -spsp Ad-DOPE (II); A t r,-sp-Ad-DSPE (III); B trl -sp-Ad-DOPE (VI); H t ⁇ -sp-Ad- DOPE (VII); H dl -sp-Ad-DOPE (VIII); Gal ⁇ ,-sp-Ad-DOPE (IX); Fuc ⁇ 1-2Gal ⁇ 1-3GlcNAc ⁇ 1- 3Gal ⁇ 1-4GlcNAc-sp-Ad-DOPE (XII); and Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp-Ad-DOPE (XIII).
- the cell is red blood cell.
- F is a ligand for a binding molecule where the presence of the binding molecule is diagnostic for a pathological condition. More preferably F is a ligand for an antibody (immunoglobulin).
- the invention consists in a cell or multi-cellular structure incorporating a water soluble synthetic molecule construct according to the second or fourth aspect of the invention.
- the cell or multi-cellular structure is of human or murine origin.
- the cell is a red blood cell incorporating a water soluble synthetic molecule construct selected from the group including: At r j-sp-Ad-DOPE (I); A tri -spsp ⁇ -Ad-DOPE (II); A t ⁇ -sp-Ad-DSPE (III); B t ⁇ -sp-Ad-DOPE (VI); Hm-sp-Ad-DOPE (VII); H dl -sp-Ad-DOPE (VIII); Gal ⁇ r sp-Ad-DOPE (IX); Fuc ⁇ 1-2Gal ⁇ 1-3GlcNAc ⁇ 1-3Gal ⁇ 1-4GlcNAc-sp-Ad-DOPE (XII); and Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp-Ad-DOPE (XIH).
- a water soluble synthetic molecule construct selected from the group including: At r j-sp-Ad-DOPE (I); A tri
- the multi-cellular structure is an embryo incorporating a water soluble synthetic molecule construct selected from the group consisting of: Aw-sp-Ad-DOPE (I); A ⁇ - spspi-Ad-DOPE (II); A tri -sp-Ad-DSPE (III); B tri -sp-Ad-DOPE (VI); Hw-sp-Ad-DOPE (VII); H dr sp- Ad-DOPE (VIII); Gal ⁇ r sp-Ad-DOPE (IX); Fuc ⁇ 1-2GaI ⁇ 1-3GIcNAc ⁇ 1-3Gal ⁇ 1-4GlcNAc-sp-Ad- DOPE (XII); and Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp-Ad-DOPE (XIII).
- Aw-sp-Ad-DOPE I
- a ⁇ - spspi-Ad-DOPE II
- the invention consists in a kit comprising a dried preparation or solution of a molecule according to the first aspect of the invention, or a dried preparation or solution of a water soluble synthetic molecule construct according to the second or fourth aspect of the invention.
- the molecule according to the first aspect of the invention is selected from the group consisting of: Ad-DOPE; sp Ad-DOPE; and Ad-DSPE.
- Preferably water soluble synthetic molecule construct according to the second or fourth aspect of the invention is selected from the group consisting of: A tr rsp-Ad-DOPE (1); Aw-spsp Ad- DOPE (II); A trl -sp-Ad-DSPE (111); B t n-sp-Ad-DOPE (VI); H tri -sp-Ad-DOPE (VII); H di -sp-Ad-DOPE (VIII); Gal ⁇ r sp-Ad-DOPE (IX); Fuc ⁇ 1-2Gal ⁇ 1-3GlcNAc ⁇ 1-3Gal ⁇ 1-4GlcNAc-sp-Ad-DOPE (XII); and Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp-Ad-DOPE (XIII).
- the invention consists in a kit comprising a suspension in a suspending solution of cells or multi-cellular structures according to the sixth aspect of the invention.
- the suspending solution is substantially free of lipid.
- the cell or multi-cellular structure is of human or murine origin.
- the cells are red blood cells that do not naturally express A- or B-antigen and incorporate a water soluble synthetic molecule construct selected from the group consisting of: Aw-sp-Ad-DOPE (I); A trr spsp Ad-DOPE (II); Aw-sp-Ad-DSPE (III); Bw-sp-Ad-DOPE (VI); H, ⁇ - sp-Ad-DOPE (VII); H di -sp-Ad-DOPE (VIII); Gal ⁇ ,-sp-Ad-DOPE (IX); Fuc ⁇ 1-2Gal ⁇ 1-3GlcNAc ⁇ 1- 3Gal ⁇ 1-4GlcNAc-sp-Ad-DOPE (XII); and Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp-Ad-DOPE (XIII). More preferably the cells are sensitivity controls.
- the invention consists in a pharmaceutical preparation comprising a dried preparation or solution of a water soluble synthetic molecule construct according to the second or fifth aspect of the invention.
- the pharmaceutical preparation is in a form for administration by inhalation.
- the pharmaceutical preparation is in a form for administration by injection.
- the invention consists in a pharmaceutical preparation comprising cells or multi-cellular structures according to the sixth aspect of the invention.
- the cells or multi-cellular structures are of human or murine origin.
- the pharmaceutical preparation is in a form for administration by inhalation.
- the pharmaceutical preparation is in a form for administration by injection.
- the synthetic molecule constructs of the invention spontaneously and stably incorporate into a lipid bi-layer, such as a membrane, when a solution of the molecule is contacted with the lipid bi-layer.
- a lipid bi-layer such as a membrane
- the synthetic molecule constructs identified herein have also been found to be water soluble.
- the synthetic molecule constructs of the invention are used to transform cells resulting in qualitative and/or quantitative changes in the surface antigens expressed. It will be recognised that the transformation of cells in accordance with the invention is distinguished from transformation of cells by genetic engineering.
- the invention provides for phenotypic transformation of cells without genetic transformation.
- transformation in reference to cells is used to refer to the insertion or incorporation into the cell membrane of exogenously prepared synthetic molecule constructs thereby effecting qualitative and quantitative changes in the cell surface antigens expressed by the cell.
- the synthetic molecule constructs of the invention comprise an antigen (F) linked to a lipid portion (or moiety) (L) via a spacer (S S 2 ).
- the synthetic molecule constructs can be prepared by the condensation of a primary aminoalkyl, secondary aliphatic aminoalkyl or primary aromatic amine derivative of the antigen with an activated lipid. Methods of preparing neoglycoconjugates have been reviewed (Bovin, N. Biochem. Soc. Symp., 69, 143-160).
- a desired phenotypic transformation may be achieved using the synthetic molecule constructs
- a desired phenotypic transformation may be achieved using the synthetic molecule constructs of the invention in a one step method or a two step method.
- the water soluble synthetic molecule construct (F-SrS 2 -L) comprises the surface antigen as F.
- the synthetic molecule construct (F-S1-S2-L) comprises an antigen (F) that serves as a functional group to which a surface antigen can be linked following insertion of the synthetic molecule construct into the membrane.
- the functional group can be a group such as a lectin, avidin or biotin.
- the synthetic molecule construct is acting as a synthetic membrane anchor.
- the primary aminoalkyl, secondary aliphatic aminoalkyl or primary aromatic amine and the activator of the lipid are selected to provide a synthetic molecule construct that is water soluble and will spontaneously and stably incorporate into a lipid bi-layer when a solution of the synthetic molecule construct is contacted with the lipid bi- layer.
- water soluble means a stable, single phase system is formed when the synthetic molecule construct is contacted with water or saline (such as PBS) in the absence of organic solvents or detergents, and the term “solution” has a corresponding meaning.
- stably incorporate means that the synthetic molecule constructs incorporate into the lipid bi-layer or membrane with minimal subsequent exchange between the lipid bi-layer or membrane and the external aqueous environment of the lipid bi-layer or membrane.
- the selection of the primary aminoalkyl, secondary aliphatic aminoalkyl or primary aromatic amine and the activator depends on the physico-chemical properties of the antigen (F) to be linked to the lipid (L).
- Si is selected from: S2 is selected from:
- the structure of the spacer for synthetic molecule constructs (F-SrS ⁇ -L) where F is a glycotope of the A-, B- and H-antigens of the ABO blood groups, may be the structure of the spacer selected to prepare synthetic molecule constructs of other antigens with physico- chemical properties similar to the glycotopes of the A-, B- and H-antigens of the ABO blood groups.
- the glycotope of a broad range of blood group related glycolipids or glycoproteins could be the antigen (F) of the synthetic molecule construct F-S 1 -S2-L where S S -L is identical or equivalent to the corresponding portion of the synthetic molecule constructs designated Aw-sp-Ad-DOPE (I), A tri -spsp ⁇ -Ad-DOPE (II), Aw-sp-Ad-DSPE (III), B t ⁇ -sp-Ad-DOPE (VI), Hw-sp-Ad-DOPE (VII), H dr sp-Ad-DOPE (VIII), Gal ⁇ -sp-Ad-DOPE (IX), Fuc ⁇ 1-2Gal ⁇ 1- 3GlcNAc ⁇ 1-3Gal ⁇ 1-4GlcNAc-sp-Ad-DOPE (XII), and Fuc ⁇ 1-2Gal ⁇ 1-3(Fuc ⁇ 1-4)GlcNAc-sp- Ad-DOPE (XIII).
- Glycolipids* (*ln general, for almost all examples of A-antigens the terminal A sugar GalNAc can be replaced with the B sugar Gal. Additionally, the lack of either the A or B determinant creates the equivalent H determinant.
- A-7-2 (ALe y ) GalNAc ⁇ 1 ⁇ 3Gal ⁇ 1 ⁇ 4GlcNAc ⁇ 1 ⁇ 3Gal ⁇ 1 ⁇ 4Glc ⁇ 1 ⁇ 1Cer 2 3 t t Fuc ⁇ l F ⁇ c ⁇ 1
- A-7-1 (ALe b ) GalNAc ⁇ 1 ⁇ 3Gal ⁇ 1 ⁇ 3GIcNAc ⁇ 1->3Gal ⁇ 1 ⁇ 4Glc ⁇ 1 ⁇ 1Cer 2 4 t t F ⁇ c ⁇ 1 Fuc ⁇ l
- Sialyl Le a -6/gastrointestinal cancer antigen (GICA or Ca 19-9) NeuAc ⁇ 2 ⁇ 3Gal ⁇ 1 ⁇ 3GlcNAc ⁇ 1->3Gal ⁇ 1 ⁇ 4Glc ⁇ 1 ⁇ 1Cer 4 t F ⁇ c ⁇ l Disialoyl Le a -7
- NeuAc ⁇ 2 t 6 GaI ⁇ 1->3GlcNAc ⁇ 1- 3Gal ⁇ 1 ⁇ 4Glc ⁇ 1 ⁇ 1Cer 3 4 t t NeuAc ⁇ 2 Fuc ⁇ l Le b -6 Gal ⁇ 1 ⁇ 3GlcNAc ⁇ 1 ⁇ 3Gal ⁇ 1 ⁇ 4Glc ⁇ 1->1Cer
- Gal ⁇ 1 ⁇ 4GlcNAc ⁇ 1 6 Gal ⁇ 1-»4GlcNAc ⁇ 1 ⁇ 3Gal ⁇ 1 ⁇ 4Glc ⁇ 1 ⁇ 1Cei Gal ⁇ 1 ⁇ 4GlcNA ⁇ 1 3
- Disialoyl group oligosaccharide NeuAc ⁇ 2 ⁇ 8NeuAc ⁇ 2 t 6 Ga I ⁇ 1 -»3Ga INAc ⁇ l ⁇ -S ⁇ r/Tfir 3 NeuAc ⁇ 2 ⁇ 8NeuAc ⁇ 2
- GlcNAc oligosaccharide NeuAc 2 t 3 Ga I ⁇ 1 -»3Ga INAc ⁇ l ⁇ Ssr/T r I GaI ⁇ 1 ⁇ 4GlcNAc ⁇ 1 Mucin oligosaccharide/A-active glycoprotein Fuc ⁇ l T 2 Ga INAc ⁇ l ⁇ 3Gal ⁇ 1 ⁇ 3GaJNAc ⁇ 1 -»S3r/ " ⁇ hr i Gal ⁇ 1 ⁇ 4GlcNAc ⁇ 1 Ovarian cyst A-active glycoprotein-6a GaINAc ⁇ 1 ⁇ 3Gal ⁇ 1- 3GlcNAc ⁇ 1- ⁇ 3Gal ⁇ 1- 3GalNac ⁇ 1 ⁇ -&r ⁇ hr 2 t Fuc ⁇ l
- Gl D-Gal
- Gc D-Glc
- GcN D-GlcNAc
- M D-Man
- F L-Fuc
- NA NeuAc
- the synthetic molecule constructs (F-S S 2 - L) of the invention where F is an oligosaccharide may be used as "synthetic glycolipids" and substituted for glycolipids obtained from biological (botanical or zoological) sources.
- glycolipid means a lipid containing carbohydrate of amphipathic character including: glycosylated glycerolipids, such as glycosylated phosphoglycerides and glycosylglycerides; glycosylated sphingolipids (neutral glycolipids) such as glycosylceramides or cerebrosides; and gangliosides (acidic glycolipids).
- glycosylated glycerolipids such as glycosylated phosphoglycerides and glycosylglycerides
- glycosylated sphingolipids neutral glycolipids
- glycosylceramides or cerebrosides such as glycosylceramides or cerebrosides
- gangliosides acidic glycolipids
- glycolipid-linked antigen means a lipid containing carbohydrate in which an antigen (e.g. a protein) is linked to the glycolipid via the carbohydrate portion of the molecule.
- an antigen e.g. a protein
- glycolipid-linked antigens include GPI- linked proteins.
- glycolipid is itself an antigen.
- glycolipid and glycolipid-linked antigen are used to distinguish between naturally occurring molecules where the antigen is the glycolipid and naturally occurring molecules where the antigen is linked to the glycolipid via the carbohydrate portion of the glycolipid.
- synthetic molecule constructs of the invention could be described as both “synthetic glycolipids” and synthetic membrane anchors to the extent that the antigen may be the synthetic glycolipid perse or attached to the synthetic glycolipid.
- carbohydrate portion of a glycolipid may be modified and linked to other antigens by the methods described in the specification accompanying the international application no. PCT/NZ2003/00059 (published as WO03087346).
- glycotope is used to refer to the antigenic determinant located on the carbohydrate portion of a glycolipid.
- the classification of glycolipid antigens in blood group serology is based on the structure of the carbohydrate portion of the glycolipid.
- the terminal sugars of the glycotopes of A-antigens are GalNAc ⁇ 1-3(Fuc ⁇ 1-2)Gal ⁇
- the terminal sugars of the glycotopes of the B-antigens are Gal ⁇ l -3(Fuc ⁇ 1 -2)Gal ⁇ .
- the terminal three sugars of the carbohydrate portion of the naturally occurring A- or B-antigen are the determinant of the A and B blood groupings.
- the terminal four or five sugars of the carbohydrate portion of the naturally occurring A-antigen are the determinant of the A blood sub-groupings A type 1 , A type 2, etc.
- the RBCs incorporating the synthetic molecule constructs of the invention can be used to characterise and discriminate between blood typing reagents (antibodies) of differing specificity.
- Water soluble synthetic molecule constructs of the invention that exclude a carbohydrate portion are contemplated by the inventors.
- Antigens other than carbohydrates or oligosaccharides, but with similar physico-chemical properties, may be substituted for F in the "synthetic glycolipids" described.
- Synthetic molecule constructs of the invention that comprise an antigen (F) with differing physico-chemical properties to those of carbohydrates or oligosaccharides are also contemplated by the inventors. Water soluble synthetic molecule constructs comprising these antigens may be prepared by selecting different spacers.
- the synthetic molecule constructs overcome many of the limitations of using natural glycolipids in the practice of these inventions.
- a particular advantage of the synthetic molecule constructs is their superior performance and ability to be used in the transformation of cells at reduced temperatures, e.g. 4°C.
- the spacer will provide a synthetic molecule construct (F-SrS 2 -L) that is water soluble and spontaneously and stably incorporate in to a lipid bilayer such as a cell membrane.
- the synthetic molecule constructs designated Aw-sp- lipid (IV) and Atri-PAA-DOPE (V) were determined not to be water soluble and/or unable to spontaneously and stably incorporate in to a lipid bilayer such as a cell membrane. designated Aw-sp-lipid (IV)
- Figure 1 shows Diamed results of CellstabTM stored cells transformed by natural A glycolipid transformation solution at (L to R) 10 mg/mL, 5 mg/mL, 2 mg/mL, 2 mg/mL* and 1 mg/mL Antisera used are Albaclone (top) and Bioclone (bottom). (* - transformation solution (containing glycolipids) was not washed out after the incubation, it was left in over night and washed out the next day (day 2).)
- Figure 2 shows Diamed results of CellstabTM stored cells transformed by natural B glycolipid transformation solution at (L to R) 10 mg/mL, 5 mg/mL, 2 mg/mL, 2 mg/mL* and 1 mg/mL. Antisera used are Albaclone (top) and Bioclone (bottom). (* - transformation solution (containing glycolipids) was not washed out after the incubation, it was left in over night and washed out the next day (day 2)).
- Figure 3 shows FACS analysis following in vitro transformation of human Le(a-b-) red cells with natural Le b -6 glycolipid over time at three transformation temperatures, 37°C (top), 22°C (middle) and 4°C (bottom).
- Figure 4 shows Diamed results of cells transformed at 4°C by Aw-sp-Ad-DOPE (I) transformation solution at (L to R): washed 0.08 mg/mL; unwashed 0.08 mg/mL; washed 0.05 mg/mL; unwashed 0.05 mg/mL; washed 0.03 mg/mL; and unwashed 0.03 mg/mL.
- the antisera used was Bioclone anti-A.
- Figure 5 shows cells that were no longer washed prior to testing. Diamed results of cells transformed at 4°C by Aw-sp-Ad-DOPE (I) transformation solution at (L to R): 0.08 mg/mL, 0.05 mg/mL and 0.03 mg/mL. The antisera used was Bioclone anti-A.
- Figure 6 shows in the left column Diamed results of cells transformed at 4°C by B tri -sp-Ad- DOPE (VI) transformation solution at (L to R): washed 0.6 mg/mL; unwashed 0.6 mg/mL; washed 0.3 mg/mL; unwashed 0.3 mg/mL; washed 0.15 mg/mL; and unwashed 0.15 mg/mL; and in the right column Diamed results of cells transformed at 4°C by B ⁇ -sp-Ad-DOPE (VI) transformation solution at (L to R): washed 0.08 mg/mL; unwashed 0.08 mg/mL; washed 0.05 mg/mL; unwashed 0.05 mg/mL; washed 0.03 mg/mL; and unwashed 0.03 mg/mL.
- the antisera used was Bioclone anti-B.
- Figure 7 shows cells that were no longer washed prior to testing. Diamed results of cells transformed at 4°C by Bw-sp-Ad-DOPE (VI) transformation solution at (L to R): 0.6 mg/mL, 0.3 mg/mL and 0.15 mg/mL..
- Figure 8 shows Diamed results of cells transformed at 4°C by parallel transformation with Aw- sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI).
- Wells 1 and 2 (L to R) contain washed A 0.07 + B 0.3 mg/mL against anti-A and anti-B.
- Wells 3 and 4 contain unwashed A 0.07 + B 0.3 mg/mL against anti-A and anti-B.
- Figure 9 shows cells that were no longer washed prior to testing. Diamed results of cells transformed at 4°C by parallel transformation with Aw-sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI). Wells 1 and 2 (L to R) contain unwashed A 0.07 + B 0.3 mg/mL against anti-A and anti-B.
- Figure 10 shows Diamed results of cells transformed at 4°C by parallel transformation with Aw- sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI).
- Wells 1 and 2 (L to R) contain washed A 0.07 + B 0.2 mg/mL against anti-A and anti-B.
- Wells 3 and 4 contain unwashed A 0.07 + B 0.2 mg/mL against anti-A and anti-B.
- Figure 11 shows cells that were no longer washed prior to testing.
- Wells 1 and 2 (L to R) contain unwashed A 0.07 + B 0.2 mg/mL against anti-A and anti-B
- Figure 12 shows Diamed results of cells transformed at 4°C by parallel transformation with Aw- sp-Ad-DOPE (I) and B, ⁇ -sp-Ad-DOPE (VI).
- Wells 1 and 2 (L to R) contain washed A 0.06 + B 0.3 mg/mL against anti-A and anti-B.
- Wells 3 and 4 contain unwashed A 0.06 + B 0.3 mg/mL against anti-A and anti-B.
- Figure 13 shows cells that were no longer washed prior to testing.
- Figure 14 shows Diamed results of cells transformed at 4°C by parallel transformation with A w - sp-Ad-DOPE (I) and B w -sp-Ad-DOPE (VI).
- Wells 1 and 2 (L to R) contain washed A 0.06 + B 0.2 mg/mL against anti-A and anti-B.
- Wells 3 and 4 contain unwashed A 0.06 + B 0.2 mg/mL against anti-A and anti-B.
- Figure 15 shows cells that were no longer washed prior to testing. Diamed results of cells transformed at 4°C by parallel transformation with Aw-sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI). Wells 1 and 2 (L to R) contain unwashed A 0.06 + B 0.2 mg/mL against anti-A and anti-B.
- Figure 16 shows Diamed results of cells transformed at 4°C by parallel transformation with Aw- sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI).
- Wells 1 and 2 (L to R) contain washed A 0.05 + B 0.3 mg/mL against anti-A and anti-B.
- Wells 3 and 4 contain unwashed A 0.05 + B 0.3 mg/mL against anti-A and anti-B.
- Figure 17 shows cells that were no longer washed prior to testing. Diamed results of cells transformed at 4°C by parallel transformation with A t ⁇ -sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI). Wells 1 and 2 (L to R) contain unwashed A 0.05 + B 0.3 mg/mL against anti-A and anti-B.
- Figure 18 shows Diamed results of cells transformed at 4°C by parallel transformation with Aw- sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI).
- Wells 1 and 2 (L to R) contain washed A 0.05 + B 0.2 mg/mL against anti-A and anti-B.
- Wells 3 and 4 contain unwashed A 0.05 + B 0.2 mg/mL against anti-A and anti-B.
- Figure 19 shows cells that were no longer washed prior to testing. Diamed results of cells transformed at 4°C by parallel transformation with Aw-sp-Ad-DOPE (I) and Bw-sp-Ad-DOPE (VI). Wells 1 and 2 (L to R) contain unwashed A 0.05 + B 0.2 mg/mL against anti-A and anti-B. COMPARATIVE EXAMPLES
- the Comparative Examples do not form part of the invention claimed.
- the Comparative Examples describe red blood cell transformation with natural glycolipids.
- Glycolipids were separated on silica gel with a mobile phase of increasing polarity.
- the program was a linear gradient beginning with 100% chloroform-methanol-water 80:20:1 (v/v) and ending with 100% chloroform-methanol-water 40:40: 12 (v/v).
- the HPLC equipment used was a Shimadzu system capable of pumping and mixing four separate solvents at programmed ratios. As chloroform, methanol and water evaporate at different rates, a program was developed whereby the solvent components were not mixed prior to entering the HPLC.
- the Shimadzu HPLC mixes four different liquids by taking a "shot” from each of four bottles in turn. "Shots" of chloroform and water directly next to each other in the lines may cause miscibility problems. Methanol was sandwiched in between these two immiscible components. Additionally, the water was pre-mixed with methanol in a 1:1 ratio to further prevent problems with miscibility.
- Transformation of red blood cells was assessed by agglutination using the Diamed-ID Micro Typing System in addition to using conventional tube serology. Diamed ABO typing cards were not used. The cards used were NaCl, Enzyme test and cold agglutinin cards, which were not pre-loaded with any antisera or other reagents. This allowed the use of specific antisera with both methodologies.
- Diamed NaCl, Enzyme test and cold agglutinin cards A comparative trial was carried out between tube serology and the Diamed system to establish the performance of the two systems. Cells were transformed at 25°C for 4 hours. Seraclone and Alba-clone anti-A sera were used to gauge equivalency. The results are shown in Table 3 below.
- the Diamed system proved to be more sensitive to the weaker reactions than tube serology with the Seraclone anti-A, but not with Albaclone.
- These reagents are formulated differently, and are thus not expected to perform identically.
- the fact that the Seraclone anti-A tube serology combination did not detect positivity is probably due to operator interpretation.
- the weaker reactions are notoriously difficult to accurately score, and the difference between 1+ and 0 can be difficult to discern in tubes.
- the A glycolipid sample contained other lipid impurities and thus comparatively less blood group A molecules by weight than the Le b glycolipid sample of equivalent concentration (w/v). This seems to be borne out by the fact that higher concentrations of the A glycolipid than the Le b glycolipid were required to produce equivalent agglutination scores (see Table 6).
- the level of impurity in the A glycolipid sample may also have contributed to the lower stability over the 62 day period - the A-transformed cells 'died' at the highest concentration (having received the largest dose of impurity).
- Table 7 Haemolysis as assessed visually. Day 1 - in the supernatant of the first wash after transformation; Days 25 and 62 - in the cell preservative solution before the cells are resuspended after storage. Scoring scale is analogous to the 4+ to 0 agglutination scale: hhhh - severely haemolysed, hhh - very haemolysed, hh - moderately haemolysed, h - mildly haemolysed, w - faintly haemolysed and 0 - no haemolysis seen.
- the Le b sample was highly purified - before being dissolved, it was a powder of pure white colour, and thus it is unlikely that the haemolysis was due to the deleterious effect of impurities. It is clear to see that at 62 days, the amount of haemolysis occurring diminishes in line with the decrease in the glycolipid concentration.
- Incubation Duration Incubation at 37°C was carried out for 1 and 2 hours and its effect on cell health and transformation assessed by agglutination with the relevant antibody.
- Anti-B Expt B glycolipid 10 5 2 1 0.5 0.1 0.01 0.001 0
- Two sets of cells were transformed with different concentrations of natural A glycolipid. Transformation was performed at 25°C. One set of cells was tested long term, and one set of cells was tested weekly for agglutination. The agglutination results from tube serology and Diamed are shown in Table 16 below. All cells were stored in CellstabTM in bottles with flat bases. The cells showed minimal to no haemolysis at any time.
- CelpresolTM CSL
- CellstabTM CellstabTM
- a and B antisera from two different sources were used in serology testing.
- Diamed gel-card testing was carried out to day 56 for the Alsevers stored cells, and discontinued at day 63 due to fungal contamination (although still returning positive scores).
- the CellstabTM stored cells continued to be tested up to day 70, and were still viable at this point (see Figure 1 for A results and Figure 2 for B results).
- Reactivity was determined by FACS analysis using a Gamma anti-Leb. (The serological detection level is around 10 2 molecules. The insertion of natural glycolipids at 4°C for 8 hours was not detectable by agglutination with antibodies.) Projection of the rate of insertion curve from FACS analysis did not indicate that the rate of insertion at 4°C would have reached agglutination detection levels within 24 hours.
- the rate of transformation is slow for both natural A glycolipid and natural B glycolipid as demonstrated by the negative agglutination scores after 1 hour at 2°C. Considerable insertion at 37°C for this time interval has been demonstrated.
- Natural A glycolipid insertion at 2 C C required 48 hours to reach the same level of insertion obtainable by transformation at 37°C. After this time further insertion was not observed. Likewise, natural B glycolipid insertion at 2°C was not as rapid as transformation at 37°C. The agglutination scores did not improve upon continued incubation and thus seemed to have reached maximal insertion at this time point for these concentrations.
- TLC analysis was performed on silica gel 60 F 254 plates (Merck), the compounds were detected by staining with 8% of phosphoric acid in water followed by heating at over 200°C.
- Column chromatography was carried out on silica gel 60 (0.2-0.063mm, Merck) or Sephadex LH-20 (Amersham).
- 1 H NMR spectra were acquired on a Bruker DRX-500 spectrometer. Chemical shifts are given in ppm ( ⁇ ) relative to CD 3 OD.
- the Sug may be either the aminopropyi glycoside (F-SrNH 2 ) of either GalNAc ⁇ 1-3(Fuc ⁇ 1-2)Gal ⁇ trisaccharide (A-glycotope) (F) or Gal ⁇ 1-3(Fuc ⁇ 1-2)Gal ⁇ trisaccharide (B-glycotope) (F).
- the synthetic glycolipid must also be able to insert into the membrane and be recognisable to the appropriate antibody for transformation to be detected by agglutination. Initial tests on the molecules were to establish solubility and thus eliminate those molecules that were unsuitable for use in the transformation of cells.
- DOPE Lipid Tails Aw-sp-Ad-DOPE (I) Htn-sp-Ad-DOPE (VII) At ⁇ -spsp ⁇ -Ad-DOPE (II) Bt ⁇ -PAA-DOPE (V)
- Aw-sp-lipid (IV) has a single rather than a diacyl tail and it was proposed that there was no insertion of this synthetic molecule into the membrane bilayer.
- the low rate of insertion of the natural glycolipids may be due to the physicochemical properties of the natural glycolipid tail; a sphingolipid and a fatty acid.
- the diacyl tail of the glycolipid may be important in determining the rate of insertion. Certain diacyl tails may retain greater fluidity at lower temperatures. Alternatively, the domain of the plasma membrane into which the diacyl tail of these glycolipids inserts may retain this greater fluidity.
- Molecule Transformation solution ( ⁇ -g/mL) sera 1000 500 250 125 100 60 50 40 30 20 10
- Aw-sp-Ad-DOPE (1) Alba w+ w+ 0 0 0 Bio 2+ 1 + w+ 0 0 2- Alba 4+ 3+ 2+ 3+ Bio 4+* 4+* 3+* 3+ DBA 0
- Aw-sp-Ad-DSPE (III) Alba 0 0 0 0 0 0 Bio 0 0 0 0 2- Alba 2-3+ 2+ 2+ 3+ Bio 3+ 2-3+ 2+ 2+ DBA 0 * - splatter.
- CelpresolTM was added to the cells so that the final cells:non-cells ratio was 3:5 (v/v). The cells continued to be tested at intervals. Testing was discontinued after 10 days because cells turned brown.
- This discolouration could be attributed to a number of factors including: cells were already 21 days old when transformed; 48 hour transformation was in PBS not CelpresolTM so cells stressed for this time; and cells may have been mishandled in transit between the transforming and testing laboratories. This may be mitigated by transformation of the cells in CelpresolTM as opposed to PBS.
- the post-transformation supernatant solutions (from Aw-sp-Ad-DOPE (I) at 0.08 mg/mL, 0.05 mg/mL and 0.03 mg/mL, and Bw-sp-Ad-DOPE (VI) at 0.6 mg/mL, 20 ⁇ L) were added neat and in a 1:2 dilution to washed, packed RBCs (60 ⁇ L). The tubes were incubated in a 37°C waterbath for one hour, with mixing taking place every 15 minutes.
- the transformed RBCs were washed 3x with PBS and then suspended in CellstabTM at the appropriate concentration for serology testing.
- Tube serology Pre-trans cone (mg/mL) Score Aw-sp-Ad-DOPE (I) at 0.08 0 1 :2 ofAt ⁇ -sp-Ad-DOPE (l) 0 at 0.08 Aw-sp-Ad-DOPE (I) at 0.05 0 1 :2 ofAtr,-sp-Ad-DOPE (l) 0 at 0.05 Atrrsp-Ad-DOPE (I) at 0.03 0 1:2 ofAt ⁇ -sp-Ad-DOPE (l) 0 at 0.03 Bw-sp-Ad-DOPE (VI) at vw+ 0.60 (VI) at 0.60
- post-transformation solutions were concentrated 20x and compared in parallel with the transformation solutions of known concentration. Only the post-transformation solutions derived from the 0.08 mg/mL Aw-sp-Ad-DOPE (I) and 0.6 mg/mL B lri -sp-Ad-DOPE (VI) solutions were tested.
- Post-transformation solutions (20 ⁇ L) were dialysed (pore size 500Da) against de-ionised water for 2 days. The samples were left to dry in a fumehood for 10 days. At the end of this time they were transferred into a rotavapor flask and set on the rotavapor to rotate under vacuum with no heat overnight. Samples were dried in a water bath at 40°C and washed over into smaller vessels with chloroform-methanol 2:1 leaving significant amounts of dried cellular material. The chloroform- methanol 2:1 washings were dried down, washed over again into test-tubes with chloroform- methanol 2:1 and dried down. These samples were redissolved in 1 mL of 1 x PBS and used for transformation experiments. The cellular material in the bottom of the flasks was washed out with water into another set of tubes.
- the post-transformation solutions (from Aw-sp-Ad-DOPE (I) at 0.08 mg/mL and Bw-sp-Ad- DOPE (VI) at 0.6 mg/mL, 20 ⁇ L) were added to washed, packed RBCs (60 ⁇ L).
- the transformation solutions (Aw-sp-Ad-DOPE (I) at 0.08 mg/mL, 0.05 mg/mL and 0.03 mg/mL, and Bw-sp-Ad-DOPE (VI) at 0.6 mg/mL, 20 ⁇ L) were added to washed, packed RBCs (60 ⁇ L).
- the tubes were incubated in a 37°C waterbath for one hour, with mixing taking place every 15 minutes.
- the transformed RBCs were washed 3x with PBS and then suspended in CellstabTM at the appropriate concentration for serology testing.
- Diamed serology cone Score Aw-sp-Ad-DOPE (1) at 3+ 0.08 Aw-sp-Ad-DOPE (1) at 2+ 0.05 Aw-sp-Ad-DOPE (1) at 1 + 0.03 From Aw-sp-Ad- 0 DOPE (1) at 0.08 Bw-sp-Ad-DOPE (VI) 4+ at 0.60 From Btn-sp-Ad- 0 DOPE (VI) at 0.60
- Example 8 RBC transformation with A- and B-antigen synthetic glycolipids with different non-carbohydrate structures
- the water soluble synthetic glycolipids designated Aw-sp-Ad-DOPE (I), Aw-spisp 2 -Ad-DOPE (II), Aw-sp-Ad-DSPE (III), and Bw-sp-Ad-DOPE (VI) were prepared according to the method described in Example 1 with necessary modifications.
- Washed packed group O red blood cells (3 parts by volume) and the synthetic glycolipid solution (1 part by volume, varying concentrations) were added to an eppendorf tube. The tube was incubated in a 37°C waterbath for one hour, mixing every 15 minutes. The transformed RBCs were washed 3x with PBS and then suspended in CellstabTM at the appropriate concentration for serology testing. Tube serology and Diamed gel-card results for RBCs transformed with the different synthetic molecule constructs are provided in Table 38. Results for the stability of the RBCs transformed with the different synthetic glycolipids at different concentrations are provided in Tables 39 to 44.
- Hw-sp-Ad-DOPE VII
- H d rsp-Ad-DOPE VIII
- Gal ⁇ -sp-Ad-DOPE IX
- Washed packed mouse RBCs (3 parts by volume) and the synthetic glycolipid solutions (1 part by volume of varying concentrations) were added to an eppendorf tube. The tube was incubated in a 37°C waterbath for one hour, mixing every 15 minutes. The transformed RBCs were washed 3x with PBS and then suspended in CellstabTM at the appropriate concentration for serology testing.
- Tube serology and Diamed gel-card results for RBCs transformed with the different synthetic glycolipids are presented in Table 46.
- the results show that three sugars (Hw) are required for detection by anti-H IgM, at least by the reagent used.
- the water soluble synthetic glycolipids designated H d i-sp-Ad-DOPE (VIII) and Gal ⁇ -sp-Ad- DOPE (IX) were prepared according to the method described in Example 1 with necessary modifications.
- Murine RBCs were washed 3x in 1x PBS.
- 30 ⁇ l of packed RBCs were combined with 30 ⁇ l of H d i-sp-Ad-DOPE (VIII), and 30 ⁇ l of packed RBCs were combined with 30 ⁇ l Gal ⁇ -sp-Ad-DOPE (IX), respectively.
- Both synthetic molecule constructs were at a concentration of 1.0 mg/ml.
- 30 ⁇ l of 1x PBS was added to 30 ⁇ l of packed RBCs to act as the control group.
- Cells were incubated for 90 minutes in a 37°C shaking water-bath.
- RBCs were washed 3x in 1x PBS.
- the synthetic glycolipids of the invention may be used in the preparation of "sensitivity controls” (also referred to as “quality control cells”, “serology controls”, or “process controls”) as described in the specification accompanying international application no. PCT/NZ02/00214 (WO 03/034074).
- the synthetic glycolipids provide the advantage that the transformation of the RBCs may be achieved at reduced temperatures.
- Glycolipids are manufactured in a white dry powder. Glycolipids in this form (enclosed in a sealed container under a controlled temperature) are stable for an indefinite period of time. The glycolipids are suspended in solution (e.g. CelpresolTM) by weight in order to formulate the transformation solutions.
- solution e.g. CelpresolTM
- transformation solutions are received at CSL, they are filtered (through a MILLEX®- GV 0.22 ⁇ filter unit) under aseptic conditions.
- RBC donations are processed using a continuous flow centrifuge washer under aseptic conditions. RBC donations are washed in buffered saline followed by CelpresolTM solution. The PCV of the RBC donations is measured on a Beckman Coulter AcT Diff analyser. The donations are then adjusted to a packed cell volume (PCV) of 50% with the addition of CelpresolTM.
- PCV packed cell volume
- RBCs are washed in buffered saline and CelpresolTM.
- the cells are suspended in CelpresolTM solution to a PCV of > 50%.
- the PCV of red cells is measured using a Beckman Coulter AcT Diff.
- the mass of the red cell solution is weighed.
- red cell sample Incubate the red cell sample for 3 hours at 2-8°C under controlled temperature conditions and constant gentle agitation for 18 hours. At the end of the 3 hour period, aseptically remove a sample of red cells and test the sample to confirm transformation of the red cells. Perform blood grouping using tube, tile and CAT techniques.
- Formulation and dispensing Aseptically combine a volume of the transformed RBCs with a volume of simulated plasma diluent (SPD).
- the plasma may contain monoclonal and polyclonal antibodies. Antibodies are selected according to the desired characteristics of the sensitivity controls.
- the plasma may additionally contain tartrazine and bovine serum albumin.
- Blood grouping and antibody screening is performed on the bulk samples using tube, tile and CAT techniques.
- the transformed RBC-SPD blend is then aseptically dispensed into BD Vacutainer tubes and the tubes labelled accordingly.
- the ability to effect qualitative and quantitative differences in the cell surface antigens expressed by cell types other than RBCs was investigated.
- the ability to enhance the adhesion of embryos to endometrial cells was adopted as a model system.
- the synthetic molecules may be used as synthetic membrane anchors and/or synthetic molecule constructs. Therefore, they may also be employed in the method of enhancing embryo implantation as described in international patent application no PCT/NZ2003/000059 (published as WO 03/087346) which is incorporated by reference.
- Micro-centrifuge tubes each containing a 50 ⁇ l solution of 5M/ml endometrial cells were prepared.
- 50 ⁇ l of synthetic glycolipids Aw-sp-Ad- DOPE (I) or Bw-sp-Ad-DOPE A (VI), or 50 ⁇ l M2 were added to the control cells.
- the cells were incubated for 90 minutes at 37°C on a mixer.
- the endometrial cells were washed 3x by resuspending in CMF HBSS media and centrifuging at 2000 rpm for 3 minutes.
- the washed cell preparation was resuspended in 50 ⁇ l of M2.
- Embryo Modification Insertion of water soluble synthetic molecule construct The embryo zona pellucida was removed by treating embryos with 0.5% pronase in a 37°C oven for 6 minutes or until all zonas were removed. Micro-drops were prepared by adding 5 ⁇ l of synthetic glycolipid Aw-sp-Ad-DOPE (i) or Bw-sp-Ad-DOPE (VI), at a concentration of 1 mg/mL to a 45 ⁇ l drop of M2 media overlaid with mineral oil. All embryo groups were incubated in the 50 ⁇ l micro-drops for 1 hour at 37°C. Embryos from experimental and control groups were washed 3x with M2 media.
- Embryos from experimental and control groups were placed into a micro-drop of corresponding antibody and incubated for 30 min at 37°C. Embryos from experimental and control groups were washed 3x with M2 media.
- Embryos from all experimental and control groups were placed into micro-drops of anti-mouse Ig FITC (1 :50 dilution anti-mouse Ig FITC in M2) and incubated for 30 min at 37°C. Embryos from experimental and control groups were washed 3x with M2 media. Embryos were mounted on microscope slides in a 5 ⁇ l drop of M2 and the drops overlaid with oil.
- Two concave glass slides were prepared, one with two wells of synthetic glycolipid Aw-sp-Ad- DOPE (I) inserted endometrial cells and the other with two wells of synthetic glycolipid Bw-sp- Ad-DOPE (VI) inserted endometrial cells.
- the embryos were surrounded with endometrial cells.
- the wells were covered with mineral oil and incubated for 15 minutes at 37°C.
- each group of embryos were carefully transferred to a fresh drop of M2 media.
- the embryos were gently washed.
- the embryos were gently transferred into 2 ⁇ L of M2 media on a marked microscope slide. Each drop was overlaid with mineral oil
- Kannagi R Nudelman E, Levery SB, & Hakomori SI. (1982) A series of human erythrocytes glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1. J. Biol. Chem. 257: 14865-14874.
- a monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J. Biol. Chem. 257: 14365-14369. Nudelman E, Fukushi Y, Levery SB, Higuchi T & Hakomori SI.
- Novel fucolipids of human adenocarcinoma disialoyl Le a antigen (IH 4 Fuclll 6 NeuAclV 3 NeuAcLc 4 ) of human colonic adenocarcinoma and the monoclonal antibody (FH7) defining this structure. J. Biol. Chem. 261: 5487-5495.
- Tanaka M Dube VE & Anderson B. (1984) Structures of oligosaccharides cleaved by base- borohydride from an I, H, and Le a active ovarian cyst glycoprotein. Biochim. Biophys. Acta. 798: 283-290.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Reproductive Health (AREA)
- Gynecology & Obstetrics (AREA)
- Developmental Biology & Embryology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicinal Preparation (AREA)
- Saccharide Compounds (AREA)
- Laminated Bodies (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK05722123.6T DK1735323T3 (en) | 2004-03-22 | 2005-03-22 | Synthetic Membrane Anchors |
NZ550705A NZ550705A (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
EP05722123.6A EP1735323B1 (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
EA200601753A EA013183B1 (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane constructs |
CA2560781A CA2560781C (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
CN200580009170.5A CN1938325B (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
AU2005223715A AU2005223715A1 (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
US10/593,829 US8013131B2 (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
ES05722123.6T ES2654578T3 (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
JP2007504907A JP5456250B2 (en) | 2004-03-22 | 2005-03-22 | Synthetic molecular constructs and methods for altering cell surface antigen expression using the same |
IL178008A IL178008A (en) | 2004-03-22 | 2006-09-11 | Synthetic molecule constructs comprising a glycotope and a lipid, cellular structures comprising same, pharmaceutical compositions and kits comprising same and methods of use thereof |
AU2010203098A AU2010203098B2 (en) | 2004-03-22 | 2010-07-20 | Synthetic Molecule Constructs |
AU2010203099A AU2010203099B2 (en) | 2004-03-22 | 2010-07-20 | Synthetic Molecule Constructs |
US13/067,021 US8637473B2 (en) | 2004-03-22 | 2011-05-03 | Synthetic membrane anchors |
US14/108,749 US9353349B2 (en) | 2004-03-22 | 2013-12-17 | Synthetic membrane anchors |
US15/168,144 US9809614B2 (en) | 2004-03-22 | 2016-05-30 | Synthetic membrane anchors |
US15/804,427 US10414786B2 (en) | 2004-03-22 | 2017-11-06 | Synthetic membrane anchors |
US16/571,526 US10858384B2 (en) | 2004-03-22 | 2019-09-16 | Synthetic molecule constructs |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ531866 | 2004-03-22 | ||
NZ53186604 | 2004-03-22 | ||
NZ537941 | 2005-01-28 | ||
NZ53794105 | 2005-01-28 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/972,301 Continuation-In-Part US20160361423A1 (en) | 2004-03-22 | 2015-12-17 | Carbohydrate-lipid constructs and their use in preventing or treating viral infection |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/593,829 A-371-Of-International US8013131B2 (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
US13/067,021 Division US8637473B2 (en) | 2004-03-22 | 2011-05-03 | Synthetic membrane anchors |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005090368A1 true WO2005090368A1 (en) | 2005-09-29 |
Family
ID=34993634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NZ2005/000052 WO2005090368A1 (en) | 2004-03-22 | 2005-03-22 | Synthetic membrane anchors |
Country Status (12)
Country | Link |
---|---|
US (5) | US8013131B2 (en) |
EP (1) | EP1735323B1 (en) |
JP (1) | JP5456250B2 (en) |
CN (1) | CN1938325B (en) |
AU (3) | AU2005223715A1 (en) |
CA (1) | CA2560781C (en) |
DK (1) | DK1735323T3 (en) |
EA (1) | EA013183B1 (en) |
ES (1) | ES2654578T3 (en) |
IL (1) | IL178008A (en) |
NZ (2) | NZ550705A (en) |
WO (1) | WO2005090368A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035347A1 (en) | 2007-09-11 | 2009-03-19 | Cristina-Simona Weinberg | Peptide-lipid constructs and their use in diagnostic and therapeutic applications |
WO2009048343A1 (en) * | 2007-10-12 | 2009-04-16 | Nicolai Bovin | Functional lipid constructs |
WO2010039049A1 (en) * | 2008-10-02 | 2010-04-08 | Kode Biotech Limited | Method of modifying the immune response |
WO2011002310A1 (en) | 2009-06-29 | 2011-01-06 | Nicolai Vladimirovich Bovin | Printing of fsl constructs |
AU2011202876B2 (en) * | 2006-09-06 | 2011-09-01 | Kode Biotech Limited | Fluorescent cell markers |
AU2007293770B2 (en) * | 2006-09-06 | 2011-09-29 | Kode Biotech Limited | Fluorescent cell markers |
GB2463584B (en) * | 2007-04-27 | 2012-02-01 | Kode Biotech Ltd | Carbohydrate-lipid constructs and their use in preventing or treating viral infection |
WO2012099477A1 (en) * | 2011-01-06 | 2012-07-26 | Nicolai Vladimirovich Bovin | Biosurface engineering |
AU2008297660B2 (en) * | 2007-09-11 | 2013-10-24 | Kode Biotech Limited | Peptide-lipid constructs and their use in diagnostic and therapeutic applications |
US8674061B2 (en) | 2008-10-13 | 2014-03-18 | Smiotik LLC | Multiligand constructs |
AU2013201431B2 (en) * | 2007-10-12 | 2015-02-19 | Kode Biotech Limited | Functional lipid constructs |
WO2015084187A1 (en) * | 2013-12-02 | 2015-06-11 | Nicolai Bovin | Functionalizing nanofibres |
WO2016080850A1 (en) | 2014-11-21 | 2016-05-26 | Nicolai Vladimirovich Bovin | Multivalent ligand-lipid constructs |
US10408717B2 (en) | 2009-06-29 | 2019-09-10 | Nicolai Vladimirovich Bovin | Printing of FSL constructs |
US10414786B2 (en) | 2004-03-22 | 2019-09-17 | Kode Biotech Limited | Synthetic membrane anchors |
US10858384B2 (en) | 2004-03-22 | 2020-12-08 | Kode Biotech Limited | Synthetic molecule constructs |
US10919941B2 (en) | 2007-10-12 | 2021-02-16 | Kode Biotech Limited | Functional lipid constructs |
US11052141B1 (en) | 2008-10-02 | 2021-07-06 | Kode Biotech Limited | Method of modifying the immune response |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080160003A1 (en) * | 2006-10-31 | 2008-07-03 | University Of Delaware | Fertility Enhancement Using Lipid Carriers and Bioactive Molecules |
US10942184B2 (en) | 2012-10-23 | 2021-03-09 | Caris Science, Inc. | Aptamers and uses thereof |
EP4170031A1 (en) | 2012-10-23 | 2023-04-26 | Caris Science, Inc. | Aptamers and uses thereof |
AU2013361323B2 (en) | 2012-12-19 | 2018-09-06 | Caris Science, Inc. | Compositions and methods for aptamer screening |
US10544842B2 (en) * | 2017-03-24 | 2020-01-28 | Ford Global Technologies, Llc | One-way clutch for a vehicle |
BR112020023955A2 (en) | 2018-05-27 | 2021-02-23 | Biolinerx Ltd. | agi-134 combined with a checkpoint inhibitor for the treatment of solid tumors |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001091805A2 (en) * | 2000-06-02 | 2001-12-06 | Bracco Research Usa | Compounds for targeting endothelial cells |
WO2004045583A1 (en) * | 2002-11-15 | 2004-06-03 | Nipro Corporation | Liposome |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5334583A (en) | 1982-07-23 | 1994-08-02 | Ciba-Geigy Corp. | Use of sugar derivatives for the prophylaxis and treatment of virus infections |
EP0102319B1 (en) * | 1982-07-23 | 1987-08-19 | Ciba-Geigy Ag | Prophylactic and therapeutic use of muramyl peptides and their analogues against viral infections |
US4622294A (en) | 1985-02-08 | 1986-11-11 | Kung Viola T | Liposome immunoassay reagent and method |
US4873322A (en) * | 1986-01-24 | 1989-10-10 | Ciba-Geigy Corporation | Saccharide derivatives and processes for their manufacture |
IT1229514B (en) * | 1989-01-30 | 1991-09-03 | Farmhispania S A A Montme | SYNTHETIC AMPHIPHILIC GLYCOCONUGATES FOR NEUROLOGICAL USE. |
US5108921A (en) | 1989-04-03 | 1992-04-28 | Purdue Research Foundation | Method for enhanced transmembrane transport of exogenous molecules |
JP3408271B2 (en) | 1992-07-17 | 2003-05-19 | 生化学工業株式会社 | Amination method of sugar |
US5329029A (en) | 1992-11-05 | 1994-07-12 | Wan Barbara Y | Phosphatidylalkanolamine derivatives and their use in generating phospholipid conjugates |
US5854218A (en) | 1993-05-14 | 1998-12-29 | Cytel Corporation | Sialyl Lex analogues as inhibitors of cellular adhesion |
US5344583A (en) * | 1993-08-26 | 1994-09-06 | Dotolo Research Corp. | Composition for removing nail enamel from artificial nails |
JP3942205B2 (en) | 1995-07-24 | 2007-07-11 | 生化学工業株式会社 | Therapeutic agent for neurological diseases |
DE19624345B4 (en) | 1996-06-19 | 2004-12-23 | Südzucker AG Mannheim/Ochsenfurt | Acylated carbohydrates with at least one carboxyalkyl group etherified with the carbohydrate, process for their preparation and their use in detergents |
US5973128A (en) | 1996-11-22 | 1999-10-26 | The Hospital For Sick Children Research And Development Lp | Glycolipid mimics and methods of use thereof |
AU8505398A (en) | 1997-07-23 | 1999-02-16 | Northeastern University | Methods for enhancing or reducing preimplantation embryo survival rates |
US5962423A (en) | 1998-08-07 | 1999-10-05 | The Governors Of The University Of Alberta | Treatment of bacterial dysentery |
AU1861001A (en) | 1999-11-29 | 2001-06-12 | Syntesome Gesellschaft Fur Medizinische Biochemie Mbh | Arrays of glycan molecules (glycoarrays) on the surface of biochips (glycochips)and uses thereof |
US7101859B2 (en) | 2000-01-10 | 2006-09-05 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Use of lipid conjugates in the treatment of diseases |
US20060189568A1 (en) | 2000-01-10 | 2006-08-24 | Saul Yedgar | Use of lipid conjugates in the treatment of infection |
CA2397016C (en) | 2000-01-10 | 2011-03-29 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Use of lipid conjugates in the treatment of disease |
US6949663B2 (en) | 2000-11-10 | 2005-09-27 | Japan Science And Technology Corporation | Carboxylic acid-type lipid |
EP1442305B1 (en) | 2001-10-16 | 2009-09-30 | Kode Biotech Limited | Sensitivity controls for blood serology prepared from modified cells |
NZ518163A (en) * | 2002-04-05 | 2005-04-29 | Kiwi Ingenuity Ltd | Embryo modified with a glycolipid to enhance implantation into the endometrium |
WO2005049631A1 (en) * | 2003-11-18 | 2005-06-02 | The Malaghan Institute Of Medical Research | Synthetic molecules having immune activity |
NZ550705A (en) | 2004-03-22 | 2010-12-24 | Kode Biotech Ltd | Synthetic membrane anchors |
JP4639055B2 (en) | 2004-05-20 | 2011-02-23 | 公益財団法人野口研究所 | Glycosphingolipid analogues as verotoxin neutralizers |
JP2006241095A (en) | 2005-03-04 | 2006-09-14 | National Univ Corp Shizuoka Univ | Filaggrin synthesis-promoting agent and ultraviolet ray injury emollient |
EP1926742B1 (en) | 2005-09-21 | 2016-12-28 | Kode Biotech Limited | Cell surface coating with hyaluronic acid oligomer derivative |
-
2005
- 2005-03-22 NZ NZ550705A patent/NZ550705A/en not_active IP Right Cessation
- 2005-03-22 EP EP05722123.6A patent/EP1735323B1/en active Active
- 2005-03-22 JP JP2007504907A patent/JP5456250B2/en active Active
- 2005-03-22 US US10/593,829 patent/US8013131B2/en active Active
- 2005-03-22 ES ES05722123.6T patent/ES2654578T3/en active Active
- 2005-03-22 EA EA200601753A patent/EA013183B1/en unknown
- 2005-03-22 WO PCT/NZ2005/000052 patent/WO2005090368A1/en active Application Filing
- 2005-03-22 NZ NZ587442A patent/NZ587442A/en not_active IP Right Cessation
- 2005-03-22 DK DK05722123.6T patent/DK1735323T3/en active
- 2005-03-22 AU AU2005223715A patent/AU2005223715A1/en not_active Abandoned
- 2005-03-22 CN CN200580009170.5A patent/CN1938325B/en active Active
- 2005-03-22 CA CA2560781A patent/CA2560781C/en active Active
-
2006
- 2006-09-11 IL IL178008A patent/IL178008A/en active IP Right Grant
-
2010
- 2010-07-20 AU AU2010203098A patent/AU2010203098B2/en not_active Ceased
- 2010-07-20 AU AU2010203099A patent/AU2010203099B2/en not_active Ceased
-
2011
- 2011-05-03 US US13/067,021 patent/US8637473B2/en active Active
-
2013
- 2013-12-17 US US14/108,749 patent/US9353349B2/en active Active
-
2016
- 2016-05-30 US US15/168,144 patent/US9809614B2/en active Active
-
2017
- 2017-11-06 US US15/804,427 patent/US10414786B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001091805A2 (en) * | 2000-06-02 | 2001-12-06 | Bracco Research Usa | Compounds for targeting endothelial cells |
WO2004045583A1 (en) * | 2002-11-15 | 2004-06-03 | Nipro Corporation | Liposome |
Non-Patent Citations (7)
Title |
---|
BLUME G. ET AL: "Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation time.", BIOCHIMICA AT BIOPHYSICA ACTA., vol. 1149, no. 1, 1993, pages 180 - 184, XP000406105 * |
BOVIN, N., BIOCHEM. SOC. SYMP., vol. 69, pages 143 - 160 |
DATABASE WPI Derwent World Patents Index; AN 2004-449665, XP002991647 * |
HASELGRUBER T. ET AL: "Synthsis and Applications of a New Poly(ethyleneglycol)Derivative for the Crosslinking of Amines with Thiols.", BIOCONJUGATE CHEMISTRY., vol. 6, no. 3, 1995, pages 242 - 248, XP000505483 * |
ISHIDA O. ET AL: "Liposomes bearing polyethyleneglycol-coupled transferin with intracellular targeting property to the solid tumor in vivio.", PHARMACEUTICAL RESEARCH., vol. 18, no. 7, 2001, pages 1042 - 1048, XP008013367 * |
MASSAGUER A. ET AL: "Synthesis of RGD containing peptides. Comparative study of their incorporation to the surface of 5-fluoridine loaded liposomes.", JOURNAL OF LIPOSOME RESEARCH., vol. 11, no. 1, 2001, pages 103 - 113, XP008110745 * |
See also references of EP1735323A4 |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10858384B2 (en) | 2004-03-22 | 2020-12-08 | Kode Biotech Limited | Synthetic molecule constructs |
US10414786B2 (en) | 2004-03-22 | 2019-09-17 | Kode Biotech Limited | Synthetic membrane anchors |
AU2007293770B2 (en) * | 2006-09-06 | 2011-09-29 | Kode Biotech Limited | Fluorescent cell markers |
AU2011202876B2 (en) * | 2006-09-06 | 2011-09-01 | Kode Biotech Limited | Fluorescent cell markers |
US8211860B2 (en) | 2007-04-27 | 2012-07-03 | Kode Biotech Limited | Carbohydrate-lipid constructs and their use in preventing or treating viral infection |
GB2463584B (en) * | 2007-04-27 | 2012-02-01 | Kode Biotech Ltd | Carbohydrate-lipid constructs and their use in preventing or treating viral infection |
US9226968B2 (en) | 2007-04-27 | 2016-01-05 | Kode Biotech Limited | Carbohydrate-lipid constructs and their use in preventing or treating viral infection |
EP2198301A1 (en) * | 2007-09-11 | 2010-06-23 | Kode Biotech Limited | Peptide-lipid constructs and their use in diagnostic and therapeutic applications |
EP2198301A4 (en) * | 2007-09-11 | 2010-09-08 | Kode Biotech Ltd | Peptide-lipid constructs and their use in diagnostic and therapeutic applications |
WO2009035347A1 (en) | 2007-09-11 | 2009-03-19 | Cristina-Simona Weinberg | Peptide-lipid constructs and their use in diagnostic and therapeutic applications |
AU2008297660B2 (en) * | 2007-09-11 | 2013-10-24 | Kode Biotech Limited | Peptide-lipid constructs and their use in diagnostic and therapeutic applications |
US10919941B2 (en) | 2007-10-12 | 2021-02-16 | Kode Biotech Limited | Functional lipid constructs |
WO2009048343A1 (en) * | 2007-10-12 | 2009-04-16 | Nicolai Bovin | Functional lipid constructs |
CN101970460A (en) * | 2007-10-12 | 2011-02-09 | 科德生物工程有限公司 | Functional lipid constructs |
US9802981B2 (en) | 2007-10-12 | 2017-10-31 | Kode Biotech Limited | Functional lipid constructs |
AU2008311480B2 (en) * | 2007-10-12 | 2013-03-14 | Kode Biotech Limited | Functional lipid constructs |
JP2011501747A (en) * | 2007-10-12 | 2011-01-13 | ニコライ ボヴィン | Functional lipid construct |
AU2013201431B2 (en) * | 2007-10-12 | 2015-02-19 | Kode Biotech Limited | Functional lipid constructs |
US8669084B2 (en) | 2007-10-12 | 2014-03-11 | Kode Biotech Limited | Functional lipid constructs |
GB2476767B (en) * | 2008-10-02 | 2014-06-25 | Kode Biotech Ltd | Method of modifying the immune response |
US11052141B1 (en) | 2008-10-02 | 2021-07-06 | Kode Biotech Limited | Method of modifying the immune response |
WO2010039049A1 (en) * | 2008-10-02 | 2010-04-08 | Kode Biotech Limited | Method of modifying the immune response |
GB2476767A (en) * | 2008-10-02 | 2011-07-06 | Kode Biotech Ltd | Method of modifying the immune response |
US10124047B2 (en) | 2008-10-02 | 2018-11-13 | Kode Biotech Limited | Method of modifying the immune response |
US8674061B2 (en) | 2008-10-13 | 2014-03-18 | Smiotik LLC | Multiligand constructs |
US9221879B2 (en) | 2008-10-13 | 2015-12-29 | Semiotik Llc | Multiligand constructs |
US9970928B2 (en) | 2009-06-29 | 2018-05-15 | Nicolai Vladimirovich Bovin | Printing of FSL constructs |
WO2011002310A1 (en) | 2009-06-29 | 2011-01-06 | Nicolai Vladimirovich Bovin | Printing of fsl constructs |
US10408717B2 (en) | 2009-06-29 | 2019-09-10 | Nicolai Vladimirovich Bovin | Printing of FSL constructs |
AU2010266797B2 (en) * | 2009-06-29 | 2013-10-03 | Nicolai Vladimirovich Bovin | Printing of FSL constructs |
WO2012099477A1 (en) * | 2011-01-06 | 2012-07-26 | Nicolai Vladimirovich Bovin | Biosurface engineering |
GB2500854A (en) * | 2011-01-06 | 2013-10-02 | Nicolai Vladimirovich Bovin | Biosurface engineering |
GB2500854B (en) * | 2011-01-06 | 2019-04-17 | Vladimirovich Bovin Nicolai | Biosurface engineering |
AU2012207696B2 (en) * | 2011-01-06 | 2014-08-21 | Nicolai Vladimirovich Bovin | Biosurface engineering |
US9814786B2 (en) | 2013-12-02 | 2017-11-14 | Nicolai Bovin | Functionalizing nanofibres |
GB2536169A (en) * | 2013-12-02 | 2016-09-07 | Vladimirovich Bovin Nicolai | Functionalizing nanofibres |
US10213514B2 (en) | 2013-12-02 | 2019-02-26 | Nicolai Bovin | Functionalizing nanofibres |
WO2015084187A1 (en) * | 2013-12-02 | 2015-06-11 | Nicolai Bovin | Functionalizing nanofibres |
GB2536169B (en) * | 2013-12-02 | 2020-07-08 | Vladimirovich Bovin Nicolai | Functionalizing nanofibres |
WO2016080850A1 (en) | 2014-11-21 | 2016-05-26 | Nicolai Vladimirovich Bovin | Multivalent ligand-lipid constructs |
US10781235B2 (en) | 2014-11-21 | 2020-09-22 | Ludmila Baidakova Pushchino, Rodionov | Multivalent ligand-lipid constructs |
US10457706B2 (en) | 2014-11-21 | 2019-10-29 | Stephen Micheal Henry | Multivalent ligand-lipid constructs |
Also Published As
Publication number | Publication date |
---|---|
IL178008A (en) | 2011-10-31 |
US9809614B2 (en) | 2017-11-07 |
AU2010203098B2 (en) | 2012-07-12 |
US20110213134A1 (en) | 2011-09-01 |
US8637473B2 (en) | 2014-01-28 |
AU2010203099B2 (en) | 2012-12-06 |
AU2010203098A1 (en) | 2010-08-12 |
CN1938325B (en) | 2015-07-15 |
US9353349B2 (en) | 2016-05-31 |
CA2560781A1 (en) | 2005-09-29 |
US20070197466A1 (en) | 2007-08-23 |
ES2654578T3 (en) | 2018-02-14 |
US8013131B2 (en) | 2011-09-06 |
US20140186950A1 (en) | 2014-07-03 |
EP1735323A1 (en) | 2006-12-27 |
CA2560781C (en) | 2011-10-11 |
US10414786B2 (en) | 2019-09-17 |
CN1938325A (en) | 2007-03-28 |
DK1735323T3 (en) | 2017-12-11 |
US20180057518A1 (en) | 2018-03-01 |
AU2005223715A1 (en) | 2005-09-29 |
NZ587442A (en) | 2012-02-24 |
NZ550705A (en) | 2010-12-24 |
EA200601753A1 (en) | 2007-04-27 |
EA013183B1 (en) | 2010-02-26 |
US20160333044A1 (en) | 2016-11-17 |
JP2007530532A (en) | 2007-11-01 |
AU2010203099A1 (en) | 2010-08-12 |
JP5456250B2 (en) | 2014-03-26 |
EP1735323A4 (en) | 2009-11-04 |
EP1735323B1 (en) | 2017-08-30 |
IL178008A0 (en) | 2006-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9809614B2 (en) | Synthetic membrane anchors | |
Szebeni | The interaction of liposomes with the complement system | |
Handa et al. | Carbohydrate to carbohydrate interaction in development process and cancer progression | |
Stroud et al. | Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 2. Characterization of E-selectin binding fractions, and structural requirements for physiological binding to E-selectin | |
EP2201025B1 (en) | Functional lipid constructs | |
EP2198301B1 (en) | Peptide-lipid constructs and their use in diagnostic and therapeutic applications | |
Yoshizaki et al. | Role of glycosphingolipid-enriched microdomains in innate immunity: microdomain-dependent phagocytic cell functions | |
US10858384B2 (en) | Synthetic molecule constructs | |
AU2008297660A1 (en) | Peptide-lipid constructs and their use in diagnostic and therapeutic applications | |
US10919941B2 (en) | Functional lipid constructs | |
US11052141B1 (en) | Method of modifying the immune response | |
Karin | Expression of Tissue Antigens in Human Pluripotent Stem Cells and Alterations During Differentiation | |
Marcus | My career as an immunoglycobiologist | |
Greer | Biochemical and functional analysis of the 3G11 (+) gangliosides found in a subset of murine T lymphocytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 178008 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2560781 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580009170.5 Country of ref document: CN Ref document number: 2007504907 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 550705 Country of ref document: NZ Ref document number: 2005223715 Country of ref document: AU |
|
REEP | Request for entry into the european phase |
Ref document number: 2005722123 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005722123 Country of ref document: EP Ref document number: 200601753 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2005223715 Country of ref document: AU Date of ref document: 20050322 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005223715 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005722123 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10593829 Country of ref document: US Ref document number: 2007197466 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10593829 Country of ref document: US |