WO2005085219A1 - Isothiourea derivatives - Google Patents

Isothiourea derivatives Download PDF

Info

Publication number
WO2005085219A1
WO2005085219A1 PCT/EP2005/002014 EP2005002014W WO2005085219A1 WO 2005085219 A1 WO2005085219 A1 WO 2005085219A1 EP 2005002014 W EP2005002014 W EP 2005002014W WO 2005085219 A1 WO2005085219 A1 WO 2005085219A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
alkyl
compound
optionally
dihydro
Prior art date
Application number
PCT/EP2005/002014
Other languages
French (fr)
Inventor
Fraser Glickman
Markus Streiff
Gebhard Thoma
Hans-Günter Zerwes
Original Assignee
Novartis Ag
Novartis Pharma Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Ag, Novartis Pharma Gmbh filed Critical Novartis Ag
Priority to EP05715554A priority Critical patent/EP1720845A1/en
Priority to US10/590,399 priority patent/US7671078B2/en
Priority to CA002556386A priority patent/CA2556386A1/en
Priority to JP2007500168A priority patent/JP2007523941A/en
Priority to AU2005219531A priority patent/AU2005219531B2/en
Publication of WO2005085219A1 publication Critical patent/WO2005085219A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/42Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to isothiourea derivatives, processes for their production, their uses and pharmaceutical compositions containing them.
  • Ri is a residue of formula (a), (b) or (c)
  • R 2 is -(CR ⁇ R ⁇ L S - or -C(O)-; each of R 3 and R 8 independently is S; O; or NR 24 ; each of R 4 and R 5 independently is optionally R 25 -substituted C 3 -C ⁇ 2 cycloalkyl, C C ⁇ 2 alkyl or saturated C 8 . 2 polycyclic residue; or optionally R 26 - and/or R 27 -substituted aryl, arylC ⁇ 4 alkyl or heteroaryl; wherein up to 4 carbon atoms of ⁇ and/or R 5 are optionally substituted by S, O or NR 24 ;
  • R 6 is H; C C 6 alkyl; C 3 -C 6 cycloalkyl; or optionally R 26 - and/or R 27 -substituted aryl, arylC ⁇ alkyl or heteroaryl;
  • R 7 is CR 28 or N
  • R 9 is a direct bond; -(CR 22 R 23 ) ⁇ . 2 -; or NR 24 ; each of R 10 . 23 and R 28 independently is H; F; Cl; Br; C C 6 alkyl; C 2 -C 6 alkoxyalkyl; C r C 6 halogenoalkyl; C 3 -C 6 cycloalkyl; optionally R 26 - and/or R 27 -substituted aryl or heteroaryl; CONR 29 R 30 ; COOR 29 ; CN; NO 2 ; or OR 3 ⁇ ; or two of Rio- 19 which are attached to the same carbon atom, together with the carbon atom to which they are attached, form a 3-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or
  • R 17 and R 18 together with the C atoms to which they are attached, form a 4-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or
  • R 20 and R 2 ⁇ together with the carbon atoms to which crizthey are attached, form an optionally R 26 - and/or R 27 -substituted aryl or heteroaryl; each of R 2 , R 29 and R 30 independently is H; C C 6 alkyl; C 2 -C 6 alkoxyalkyl; C C 6 halogenoalkyl; C 3 -C 7 cycloalkyl; or optionally R 26 - and/or R 27 -substituted aryl, arylC ⁇ alkyl or heteroaryl;
  • R 25 represents 1 to 4 substituents each independently having one of the significances given for R ⁇ o- 23 above;
  • R 26 represents 1 to 4 substituents each independently selected from C ⁇ -C 6 alkyl; C C 6 hydroxyalkyl; C 2 -C 6 alkoxyalkyl; C C 6 halogenoalkyl; C 3 -C 6 cycloalkyl; C 2 -C 6 alkenyl; C 3 -C 6 cycloalkenyl; C 2 -C 6 alkynyl; aryl; heteroaryl; heteroaryl N-oxide ; F; Cl; Br; I; OH; OR 4 ; CONH 2 ; CONHR 4 ; CONR ⁇ ;OC(O)R 4 ; OC(O)OR 4 ; OC(O) HR 4 ; OC(O)NR 4 R 4 ; OSO 2 R 4 ; COOH; COOR 4 ; CF 3 ; CHF 2 ; CH 2 F; CN; NO 2 ; NH 2 ; NHR 4 ; NR ⁇ ; NHC(O)R 4 ; NR 4 C(O
  • R 27 represents two adjacent substituents which form an annulated 4-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S;
  • R 3 ⁇ is C C 6 alkyl; C 3 -C 7 cycloalkyl; optionally R 26 - and/or R 2 -substituted aryl, arylC ⁇ alkyl or heteroaryl; or CF 3 .
  • Any alkyl, alkenyl or alkynyl may be linear or branched.
  • Halogeno is F, Cl, Br or I.
  • aryl is meant phenyl or naphthyl.
  • the polycyclic residue may be for example optionally R 25 -substituted adamantyl, bicyclo[3,2.1]octyl or
  • n 1 or 2.
  • heteroaryl an aromatic ring system comprising mono-, bi- or tricyclic systems which contains up to 4 heteroatoms independently selected from N, O and S.
  • heteroaryl include e.g. pyridyl, indolyl, benzothiazolyl, thiazolyl, imidazolyl, benzimidazolyl.
  • 3 to 7 membered nonaromatic rings containing 1 or 2 heteroatoms include e.g. morpholinyl, piperazinyl, piperidyl.
  • the compounds of formula I may exist in form of several interconverting tautomers and E/Z isomers, e.g.
  • Each of R 10 . 23 and R 28 independently is H; or C r C 6 alkyl;
  • R 9 is a direct bond; or -CR 22 R 23 -;
  • each of R 24 , R 29 and R 30 independently is H; C C 6 alkyl; or C 3 -C 7 cycloalkyl;
  • R 7 is CR 28 ;
  • R 2 is — CR 22 R 23 -;
  • each of R 4 and R 5 independently is optionally R 25 -substituted C 5 -C 9 cycloalkyl or C 6 - C ⁇ 2 alkyl; or adamantyl; wherein optionally up to 4 carbon atoms of R 4 and/or R 5 are substituted by S, O or NR 24 ;
  • R 6 is H; or C C 6 alkyl
  • each of R 3 and R 8 independently is S;
  • arylC ⁇ alkyl is benzyl
  • the invention also covers a process for preparing a compound of formula I comprising reacting a compound of formula II
  • R ⁇ are as defined above and R 32 is a leaving group; and optionally converting a resultant compound of formula I obtained in free form to a salt form or vice versa.
  • R 32 is halogeno, more preferably chloro.
  • the compounds of formula III are known or may be prepared by reacting a compound of formula IV (a), (b) or (c) (a) (b) (c)
  • R 8 . 2 are as defined above, with 1 ,3-dichloro-acetone, and recovering the compound of formula III in free or salt form.
  • 1,3-dicyclohexyI-2-(3-methyl-2-methylimino-2,3-dihydro-thiazol-4-ylmethyl)-isothiourea is prepared from 4-chloromethyl-3-methyl-3H-thiazol-2-ylidene-methyl-amine using a procedure analogous to that described in example 1 , except that the latter compound is used in place of 3-chloromethyl-5,6-dihydro-imidazo[2,1-b]thiazoIe.
  • (4-chloromethyl-3-methyl-3H-thiazol-2-ylidene)-methyl-amine used as starting material is prepared according to the following procedure: A mixture of N.N'-dimethyl thiourea (1.04 g, 10.0 mmol), 1 ,3-dichloro acetone (1.27 g, 10.0 mmol) and n-butanol (25 ml) is heated at 140°C for 1 h. The solvent is removed and the residue crystallized from methanol/ether to give the hydrochloride of (4-chloromethyl-3- methyl-3H-thiazol-2-ylidene)-methyl-amine. MS/ESI 177 [M+H + ].
  • 1,3-dicyclohexyl-2-(6,6-dimethyl-5,6-dihydro-imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea is prepared from 3-chloromethyl-6,6-dimethyl-5,6-dihydro-imidazo[2,1-b]thiazole using a procedure analogous to that described in example 1 , except that the latter compound is used in place of 3-chloromethyl-5,6-dihydro-imidazo[2,1-b]thiazole.
  • MS/ESI 407 [M+H + ].
  • CXCR4 is a chemokine receptor G protein coupled receptor (GPCR) that is expressed in a variety of normal tissues, including monocytes.
  • SDF- 1 CXCL12
  • CXCR4 membrane binding assay Membranes are prepared from the T lymphoblast cell line CEM which endogenously expresses CXCR4.
  • radioligand 125-1 labeled SDF-1 ⁇ As radioligand 125-1 labeled SDF-1 ⁇ is used. Membranes, radioligand and a compound of formula I are incubated and the amount of bound radioligand determined. The data are reported as IC 50 , i.e. the concentration of compound required to achieve 50% inhibition of [l-125]SDF-1 ⁇ binding.
  • compounds of formula I have b) CXCR4 functional assay - Ca 2+ mobilization SDF-1 induced Ca 2+ mobilization from intracellular stores is measured in CEM cells loaded with the Ca 2+ - sensing fluorochrome Fluo-4. Fluo-4 loaded cells are incubated with compounds of formula I and then the SDF-1 induced increase in fluorescence is recorded in a fluorescence image plate reader.
  • Inhibitory effects of compounds are expressed as IC 50 values, representing the concentration of compound which reduces the SDF-1 response by 50%.
  • compounds of formula I have IC 50 values of ⁇ 50 ⁇ M.
  • CXCR4 functional assay - chemotaxis Cell migration (chemotaxis) stimulated by SDF-1 is assessed in Transwell tissue culture inserts with porpous polycarbonate membranes.
  • Target cells eg.Jurkat T cells, CEM cells or lymphocytes
  • Compounds of formula I are added to both compartments at the same concentration.
  • Compounds of formula I inhibit SDF-1 induced chemotaxis with IC 50 values ⁇ 50 ⁇ M.
  • the compounds of formula I are, therefore, useful in the prevention and/or treatment of diseases or disorders mediated by interactions between chemokine receptors, e.g. CXCR4, and their ligands, e.g. in transplantation, such as acute or chronic rejection of organ, tissue or cell allo- or xenografts or delayed graft function, autoimmune diseases, e.g.
  • rheumatoid arthritis systemic lupus erythematosus, Hashimoto's thyroidis, multiple sclerosis, myasthenia gravis, diabetes type I or II and the disorders associated therewith, vasculitis, pernicious anemia, Sjoegren syndrome, uveitis, psoriasis, alopecia areata and others, allergic diseases, e.g. allergic asthma, atopic dermatitis, allergic rhinitis/conjunctivitis, allergic contact dermatitis, inflammatory diseases optionally with underlying aberrant reactions, e.g.
  • inflammatory bowel disease Crohn's disease or ulcerative colitis
  • intrinsic asthma inflammatory lung injury, inflammatory liver injury, inflammatory glomerular injury, atherosclerosis, osteoarthritis, irritant contact dermatitis and further eczematous dermatitises, seborrhoeic dermatitis, cutaneous manifestations of immunologically-mediated disorders, inflammatory eye disease, keratoconjunctivitis, myocarditis or hepatitis, ischemia/reperfusion injury, e.g. myocardial infarction, stroke, gut ischemia, renal failure or hemorrhage shock, traumatic shock and others, infectious diseases, e.g. toxic shock (e.g.
  • transplantation is meant allo- or xeno grafts of e.g. cells, tissues or solid organs, for example pancreatic islets, stem cells, bone marrow, corneal tissue, neuronal tissue, heart, lung, combined heart-lung, kidney, liver, bowel, pancreas, trachea or oesophagus.
  • Chronic rejection is also named graft vessel disease.
  • CXCR4 signaling is implicated in the progression, invasion, or metastasis of tumors, e.g. solid tumors.
  • Stromal or epithelial cells associated with primary tumors have been observed to often express SDF-1.
  • CXCR4/SDF-1 interactions are involved in establishment, growth, angiogenesis, or localized invasion of the tumor at the primary site, e.g. blood vessel development, or promotion of entry of tumor cells into the blood or lymphatic circulation via SDF-1 expression by cells associated with blood vessels, e.g. in the early steps of metastasis.
  • SDF-1 expression by bone marrow cells promotes recruitment, adherence or proliferation of tumor cells expressing CXCR4 in bone.
  • SDF-1 expression at other sites or tissues plays a similar role in metastasis or establishment of tumors at those sites.
  • Multiple myeloma is an example of a cancer in which recruitment of cells to the bone marrow plays a critical homing, environmental and proliferative role in establishment and progression.
  • Compounds of the invention are therefore also useful in the prevention or treatment of proliferative diseases, especially malignant proliferative or neoplastic diseases, e.g. tumors, for example brain and other central nervous system tumors (eg. tumors of the meninges, brain, spinal cord, cranial nerves and other parts of central nervous system, e.g. glioblastomas or medulla blastomas); head and/or neck cancer; breast tumors; circulatory system tumors (e.g. heart, mediastinum and pleura, and other intrathoracic organs, vascular tumors and tumor- associated vascular tissue); excretory system tumors (e.g.
  • kidney, renal pelvis, ureter, bladder, other and unspecified urinary organs gastrointestinal tract tumors (e.g. oesophagus, stomach, small intestine, colon, colorectal, rectosigmoid junction, rectum, anus and anal canal), tumors involving the liver and intrahepatic bile ducts, gall bladder, other and unspecified parts of biliary tract, pancreas, other and digestive organs); head and neck; oral cavity (lip, tongue, gum, floor of mouth, palate, and other parts of mouth, parotid gland, and other parts of the salivary glands, tonsil, oropharynx, nasopharynx, pyriform sinus, hypopharynx, and other sites in the lip, oral cavity and pharynx); reproductive system tumors (e.g.
  • vulva vagina, Cervix uteri, Corpus uteri, uterus, ovary, and other sites associated with female genital organs, placenta, penis, prostate, testis, and other sites associated with male genital organs); respiratory tract tumors (e.g. nasal cavity and middle ear, accessory sinuses, larynx, trachea, bronchus and lung, e.g. small cell lung cancer or non-small cell lung cancer); skeletal system tumors (e.g. bone and articular cartilage of limbs, bone articular cartilage and other sites); skin tumors (e.g.
  • malignant melanoma of the skin non-melanoma skin cancer, basal cell carcinoma of skin, squamous cell carcinoma of skin, mesothelioma, Kaposi's sarcoma); and tumors involving other tissues induing peripheral nerves and autonomic nervous system, connective and soft tissue, retroperitoneum and peritoneum, eye and adnexa, thyroid, adrenal gland and other endocrine glands and related structures, secondary and unspecified malignant neoplasm of lymph nodes, secondary malignant neoplasm of respiratory and digestive systems and secondary malignant neoplasm of other sites, tumors of blood and lymphatic system (e.g.
  • Hodgkin's disease Non- Hodgkin's lymphoma, Burkitt's lymphoma, AIDS-related lymphomas, malignant immunoproliferative diseases, multiple myeloma and malignant plasma cell neoplasms, lymphoid leukemia, acute or chronic myeloid leukemia, acute or chronic lymphocytic leukemia, monocytic leukemia, other leukemias of specified cell type, leukemia of unspecified cell type, other and unspecified malignant neoplasms of lymphoid, haematopoietic and related tissues, for example diffuse large cell lymphoma, T-cell lymphoma or cutaneous T-cell lymphoma).
  • Myeloid cancer includes e.g. acute or chronic myeloid leukaemia.
  • a tumor, a tumor disease, a carcinoma or a cancer is mentioned, also metastasis in the original organ or tissue and/or in any other location are implied alternatively or in addition, whatever the location or locations of the tumor and/or metastasis.
  • the compounds of formula I are particularly indicated for treating tumor invasiveness or symptoms associated with such tumor growth, preventing metastatic spread of tumours or for preventing or inhibiting growth of micrometastasis in a subject in need thereof, especially for treating or preventing metastatic spread of tumors to bone, e.g. to bone marrow.
  • the compounds of formula I are indicated for preventing or treating metastasis, tumor invasiveness or tumor growth mediated by CXCR4 receptors and/or SDF-1 expression.
  • the compounds of formula I are indicated for inhibiting or controlling deregulated angiogenesis, e.g. angiogenesis mediated by CXCR4 and/or SDF-1, in a subject in need thereof.
  • An indicated daily dosage in the larger mammal, e.g. humans, is in the range from about 0.5 mg to about 1000 mg, conveniently administered, for example, in divided doses up to four times a day or in retard form.
  • Suitable unit dosage forms for oral administration comprise from 0.1 to 500 mg, e.g. from ca. 0.5 to 4 mg active ingredient.
  • the compounds of formula I may be administered by any conventional route, in particular enterally, e.g. orally, e.g. in the form of tablets or capsules, or parenterally, e.g. in the form of injectable solutions or suspensions, topically, e.g. in the form of lotions, gels, ointments or creams, or in a nasal or a suppository form.
  • Pharmaceutical compositions comprising a compound of formula I in free form or in pharmaceutically acceptable salt form in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with, a pharmaceutically acceptable carrier or diluent.
  • the compounds of formula I may be administered in free form or in pharmaceutically acceptable salt form e.g. as indicated above. Such salts may be prepared in conventional manner and exhibit the same order of activity as the free compounds.
  • the present invention further provides:
  • a method for preventing or treating disorders or diseases mediated by interactions between chemokine receptors, e.g. CXCR4 receptors, and their ligands, e.g. such as indicated above, in a subject in need of such treatment comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
  • a method for preventing or treating acute or chronic transplant rejection or inflammatory or autoimmune diseases, e.g. as indicated above, in a subject in need of such treatment comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
  • a method for preventing or treating a proliferative disease, e.g. as indicated above, in a subject in need of such treatment comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
  • a method for treating tumor progression, invasiveness or symptoms associated with such tumor growth, preventing metastatic spread of tumours or for preventing or inhibiting growth of micrometastases, or for preventing tumor associated angiogenesis, e.g. as indicated above, in a subject in need of such treatment comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
  • a method for preventing or combating infectious diseases e.g. viral infection, in particular for preventing or combating the binding or entry of a virus into cells expressing chemokine receptor, e.g. the binding or entry of the HIV virus, such as HIV- 1 or HIV-2, into cells expressing CXCR4, or progression of AIDS.
  • infectious diseases e.g. viral infection
  • chemokine receptor e.g. the binding or entry of the HIV virus, such as HIV- 1 or HIV-2
  • CXCR4 progression of AIDS.
  • a compound of formula I or a pharmaceutically acceptable salt thereof for use as a pharmaceutical e.g. in any of the methods as indicated under 1.1 to 1.4 above.
  • a pharmaceutical composition e.g. for use in any of the methods as in 1.1 to 1.4 above comprising a compound of formula I or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable diluent or carrier therefor. 4.
  • the compounds of formula I may be administered as the sole active ingredient or in conjunction with, e.g. as an adjuvant to, other drugs e.g. in immunosuppressive or immunomodulating regimens or other anti-inflammatory agents, e.g. for the treatment or prevention of allo- or xenograft acute or chronic rejection or inflammatory or autoimmune disorders, a chemotherapeutic agent or an anti-infective agent, e.g. an anti-viral agent such as e.g. an anti-retroviral agent or an antibiotic.
  • the compounds of formula I may be used in combination with a calcineurin inhibitor, e.g. cyclosporin A or FK 506; an mTOR inhibitor, e.g.
  • rapamycin 40-O-(2-hydroxyethyl)-rapamycin, CCI779, ABT578, AP23573, AP23464, AP23675, AP23841 or TAFA-93; an ascomycin having immunosuppressive properties, e.g. ABT-281 , ASM981 , etc.; corticosteroids; cyclophosphamide; azathioprine; methotrexate; leflunomide; mizoribine; mycophenolic acid; mycophenolate mofetil; 15-deoxyspergualine or an immunosuppressive homologue, analogue or derivative thereof; a sphingosine-1 -phosphate receptor agonist, e.g.
  • FTY720 monoclonal antibodies to leukocyte receptors, e.g., MHC, CD2, CD3, CD4, CD7, CD8, CD11a/CD18, CD25, CD27, CD28, CD40. CD45, CD58, CD80, CD86, CD137, ICOS, CD150 (SLAM), OX40, 4-1 BB or to their ligands, e.g. CD154, or antagonists thereof; other immunomodulatory compounds, e.g. a recombinant binding molecule having at least a portion of the extracellular domain of CTLA4 or a mutant thereof, e.g. an at least extracellular portion of CTLA4 or a mutant thereof joined to a non-CTLA4 protein sequence, e.g.
  • CTLA4lg for ex. designated ATCC 68629) or a mutant thereof, e.g. LEA29Y ; adhesion molecule inhibitors, e.g. LFA-1 antagonists, ICAM-1 or -3 antagonists, VCAM-4 antagonists or VLA-4 antagonists; or antichemokine antibodies or antichemokine receptor antibodies or low molecular weight chemokine receptor antagonists, e.g. anti MCP-1 antibodies.
  • adhesion molecule inhibitors e.g. LFA-1 antagonists, ICAM-1 or -3 antagonists, VCAM-4 antagonists or VLA-4 antagonists
  • antichemokine antibodies or antichemokine receptor antibodies or low molecular weight chemokine receptor antagonists e.g. anti MCP-1 antibodies.
  • anti-viral agent includes, but is not limited to, anti-retroviral agent; antibody against virus; e.g. anti-HIV antibody; inhibitor of reverse transcriptase; e.g. inhibitor of HIV reverse transcriptase, especially nucleoside analogues, such as Retrovir® (3'-azido- 3'-deoxypyrimidine, Zidovudine) and 3'-azido-3'-deoxythymidine (AZT) from GlaxoSmithKline, HMD® (2',3'-dideoxycytidine, Zalcitabine) from Hoffmann-LaRoche, Videx® or VidexEC® (2',3'dideoxyinosine, Didanosine) from Bristol-Myers-Squibb, Epivir® (Lamivudine) from GlaxoSmithKline, Zerit® (stavudine) from Bristol Myers-Squibb, Viread® (tenofovir DF) from Gilead
  • Retrovir® 3'
  • rescriptor® delavirdine from Pfizer, Sustiva® (Efavirenz) from Bristol Meyer Squibb, viramune® (nevirapine) from Boehringer-lngeIheim;11-cyclopropyl-5,11-dihydro-4-methyl- (6H)-dipyrido[3,2-b;2',3'-e]-[1 ,4]diazepin-6-one, trisodium phosphonoformate, ammonium-21- tungstenato-9-antimonate, 1- ⁇ -D-ribofuranoxyl-1 ,2,4-triazoIe-3-carboxamide; inhibitor of viral or retroviral protease, e.g.
  • inhibitor of viral aspartate protease e.g. inhibitor of HIV protease, such as aganerase® (amprenavir) fromGlaxoSmithKline, reyataz® (atazanavir) from Bristol- Myers Squibb, lexiva® (fosamprenavir) from GSK, Crixivan ® (Indinavir) from Merck & Co.; viracept® (nelfinavir) from Agouron, norvir® (Ritonavir) from Abbott; fortovase® and Invirase® (saquinavir) from Hoffmann-LaRoche; and other compounds such as lasinavir (5(S)-(tert-butoxycarbonylamino)-4(S)-hydroxy-6-phenyl-2(R)(2,3,4- trimethoxyphenylmethyl)-hexanoyl-(L)-vaIyl-N-(2-metoxy-ethyl)-amide), Adriamycin
  • anti-viral agent further includes agent which treats the opportunistic infectious which are caused by the immunosuppression resulting from viral infection, e.g. HIV infection.
  • HIV as used herein includes, but is not limited to, HIV-1 and HIV-2.
  • a compound of formula I may also be used to advantage in combination with other antiproliferative agents.
  • antiproliferative agents include, but are not limited to aromatase inhibitors, antiestrogens, topoisomerase I inhibitors, topoisomerase II inhibitors, microtubule active agents, alkylating agents, histone deacetylase inhibitors, farnesyl transferase inhibitors, COX-2 inhibitors, MMP inhibitors, mTOR inhibitors, antineoplastic antimetabolites, platin compounds, compounds decreasing the protein kinase activity and further anti-angiogenic compounds, gonadorelin agonists, anti-androgens, bengamides, bisphosphonates, antiproliferative antibodies and temozolomide (TEMODAL®).
  • aromatase inhibitors include, but are not limited to aromatase inhibitors, antiestrogens, topoisomerase I inhibitors, topoisomerase II inhibitors, microtubule active agents, alkylating
  • aromatase inhibitors as used herein relates to compounds which inhibit the estrogen production, i.e. the conversion of the substrates androstenedione and testosterone to estrone and estradiol, respectively.
  • the term includes, but is not limited to steroids, especially exemestane and formestane and, in particular, non-steroids, especially aminoglutethimide, vorozole, fadrozole, anastrozole and, very especially, letrozole.
  • Exemestane can be administered, e.g., in the form as it is marketed, e.g. under the trademark AROMASINTM.
  • Formestane can be administered, e.g., in the form as it is marketed, e.g.
  • Fadrozole can be administered, e.g., in the form as it is marketed, e.g. under the trademark AFEMATM.
  • Anastrozole can be administered, e.g., in the form as it is marketed, e.g. under the trademark ARIMIDEXTM.
  • Letrozole can be administered, e.g., in the form as it is marketed, e.g. under the trademark FEMARATM or FEMARTM.
  • Aminoglutethimide can be administered, e.g., in the form as it is marketed, e.g. under the trademark ORIMETENTM.
  • a combination of the invention comprising an antineoplastic agent which is an aromatase inhibitor is particularly useful for the treatment of hormone receptor positive breast tumors.
  • antiestrogens as used herein relates to compounds which antagonize the effect of estrogens at the estrogen receptor level.
  • the term includes, but is not limited to tamoxifen, fulvestrant, raloxifene and raloxifene hydrochloride.
  • Tamoxifen can be administered, e.g., in the form as it is marketed, e.g. under the trademark NOLVADEXTM.
  • Raloxifene hydrochloride can be administered, e.g., in the form as it is marketed, e.g. under the trademark EVISTATM.
  • Fulvestrant can be formulated as disclosed in US 4,659,516 or it can be administered, e.g., in the form as it is marketed, e.g. under the trademark FASLODEXTM.
  • topoisomerase I inhibitors includes, but is not limited to topotecan, irinotecan, 9-nitrocamptothecin and the macromolecular camptothecin conjugate PNU- 166148 (compound A1 in WO99/17804).
  • Irinotecan can be administered, e.g., in the form as it is marketed, e.g. under the trademark CAMPTOSARTM.
  • Topotecan can be administered, e.g., in the form as it is marketed, e.g. under the trademark HYCAMTINTM.
  • topoisomerase II inhibitors includes, but is not limited to the antracyclines doxorubicin (including liposomal formulation, e.g. CAELYXTM), epirubicin, idarubicin and nemorubicin, the anthraquinones mitoxantrone and losoxantrone, and the podophillotoxines etoposide and teniposide.
  • Etoposide can be administered, e.g., in the form as it is marketed, e.g. under the trademark ETOPOPHOSTM.
  • Teniposide can be administered, e.g., in the form as it is marketed, e.g. under the trademark VM 26-BRISTOL TM.
  • Doxorubicin can be administered, e.g., in the form as it is marketed, e.g. under the trademark ADRIBLASTINTM.
  • Epirubicin can be administered, e.g., in the form as it is marketed, e.g. under the trademark FARMORUBICINTM.
  • Idarubicin can be administered, e.g., in the form as it is marketed, e.g. under the trademark ZAVEDOSTM.
  • Mitoxantrone can be administered, e.g., in the form as it is marketed, e.g. under the trademark NOVANTRONTM.
  • microtubule active agents relates to microtubule stabilizing and microtubule destabilizing agents including, but not limited to the taxanes paclitaxel and docetaxel, the vinca alkaloids, e.g., vinblastine, especially vinblastine sulfate, vincristine especially vincristine sulfate, and vinorelbine, discodermolide and epothilones, such as epothilone B and D.
  • Docetaxel can be administered, e.g., in the form as it is marketed, e.g. under the trademark TAXOTERETM.
  • Vinblastine sulfate can be administered, e.g., in the form as it is marketed, e.g. under the trademark VINBLASTIN R.P.TM.
  • Vincristine sulfate can be administered, e.g., in the form as it is marketed, e.g. under the trademark FARMISTINTM.
  • Discodermolide can be obtained, e.g., as disclosed in US 5,010,099.
  • alkylating agents includes, but is not limited to cyclophosphamide, ifosfamide and melphalan.
  • Cyclophosphamide can be administered, e.g., in the form as it is marketed, e.g. under the trademark CYCLOSTINTM.
  • Ifosfamide can be administered, e.g., in the form as it is marketed, e.g. under the trademark HOLOXANTM.
  • histone deacetylase inhibitors relates to compounds which inhibit the histone deacetylase and which possess antiproliferative activity.
  • farnesyl transferase inhibitors relates to compounds which inhibit the farnesyl transferase and which possess antiproliferative activity.
  • COX-2 inhibitors relates to compounds which inhibit the cyclooxygenase type 2 enyzme (COX-2) and which possess antiproliferative activity such as celecoxib (Celebrex®), rofecoxib (Vioxx®) and lumiracoxib (COX189).
  • MMP inhibitors relates to compounds which inhibit the matrix metalloproteinase (MMP) and which possess antiproliferative activity.
  • mTOR inhibitors relates to compounds which inhibit the mammalian target of rapamycin (mTOR) and which possess antiproliferative activity such as sirolimus (Rapamune®), everolimus (CerticanTM), CCI-779 and ABT578.
  • antimetabolites includes, but is not limited to 5-fluorouracil, tegafur, capecitabine, cladribine, cytarabine, fludarabine phosphate, fluorouridine, gemcitabine, 6- mercaptopurine, hydroxyurea, methotrexate, edatrexate and salts of such compounds, and furthermore ZD 1694 (RALTITREXEDTM), LY231514 (ALIMTATM), LY264618 (LOMOTREXOLTM) and OGT719.
  • platinum compounds as used herein includes, but is not limited to carboplatin, cis- platin and oxaliplatin.
  • Carboplatin can be administered, e.g., in the form as it is marketed, e.g. under the trademark CARBOPLATTM.
  • Oxaliplatin can be administered, e.g., in the form as it is marketed, e.g. under the trademark ELOXATINTM.
  • VEGF Vascular Endothelial Growth Factor
  • EGF Epidermal Growth Factor
  • c-Src protein kinase C
  • PDGF Platelet-derived Growth Factor
  • Bcr-Abl tyrosine kinase c-kit
  • Flt-3 Insulin-like Growth Factor I Receptor
  • CDKs Cyclin-dependent kinases
  • Compounds which decrease the activity of VEGF are especially compounds which inhibit the VEGF receptor, especially the tyrosine kinase activity of the VEGF receptor, and compounds binding to VEGF, and are in particular those compounds, proteins and monoclonal antibodies generically and specifically disclosed in WO 98/35958 (describing compounds of formula I), WO 00/09495, WO 00/27820, WO 00/59509, WO 98/11223, WO 00/27819, WO 01/55114, WO 01/58899 and EP 0 769 947; those as described by M. Prewett et al in Cancer Research 59 (1999) 5209-5218, by F. Yuan et al in Proc. Natl. Acad.
  • compounds which decrease the activity of EGF are especially compounds which inhibit the EGF receptor, especially the tyrosine kinase activity of the EGF receptor, and compounds binding to EGF, and are in particular those compounds generically and specifically disclosed in WO 97/02266 (describing compounds of formula IV), EP 0 564 409, WO 99/03854, EP 0520722, EP 0 566 226, EP 0 787 722, EP 0 837 063, WO 98/10767, WO 97/30034, WO 97/49688, WO 97/38983 and, especially, WO 96/33980; compounds which decrease the activity of c-Src include, but are not limited to, compounds inhibiting the c-Src protein tyrosine kinase activity as defined below and to SH2 interaction inhibitors such as those disclosed in WO97/07131 and WO97/08193; compounds inhibiting the c-S
  • the term relates to those compounds disclosed in WO 96/10028, WO 97/28161 , WO97/32879 and WO97/49706; compounds which decreases the activity of the protein kinase C are especially those staurosporine derivatives disclosed in EP 0 296 110 (pharmaceutical preparation described in WO 00/48571) which compounds are protein kinase C inhibitors; further specific compounds that decrease protein kinase activity and which may also be used in combination with the compounds of the present invention are Imatinib (GIeevec®/Glivec@), midostaurin, IressaTM (ZD1839), PKI166, Vatalanib, ZD6474, GW2016, CHIR-200131 , CEP-7055/CEP-5214, CP-547632 and KRN-633; anti-angiogenic compounds having another mechanism of action than decreasing the protein kinase activity include, but are not limited to e.g. thalidomide (
  • gonadorelin agonist as used herein includes, but is not limited to abarelix, goserelin and goserelin acetate. Goserelin is disclosed in US 4,100,274 and can be administered, e.g., in the form as it is marketed, e.g. under the trademark ZOLADEXTM.
  • Abarelix can be formulated, e.g. as disclosed in US 5,843,901.
  • anti-androgens as used herein includes, but is not limited to bicalutamide (CASODEXTM), which can be formulated, e.g. as disclosed in US 4,636,505.
  • the term "bengamides” relates to bengamides and derivatives thereof having aniproliferative properties.
  • bisphosphonates as used herein includes, but is not limited to etridonic acid, clodronic acid, tiludronic acid, pamidronic acid, alendronic acid, ibandronic acid, risedronic acid and zoledronic acid.
  • Etridonic acid can be administered, e.g., in the form as it is marketed, e.g. under the trademark DIDRONELTM.
  • “Clodronic acid” can be administered, e.g., in the form as it is marketed, e.g. under the trademark BONEFOSTM.
  • “Tiludronic acid” can be administered, e.g., in the form as it is marketed, e.g. under the trademark SKELIDTM.
  • “Pamidronic acid” can be administered, e.g., in the form as it is marketed, e.g. under the trademark AREDIATM.
  • “Alendronic acid” can be administered, e.g., in the form as it is marketed, e.g. under the trademark FOSAMAXTM.
  • “Ibandronic acid” can be administered, e.g., in the form as it is marketed, e.g. under the trademark BONDRANATTM.
  • “Risedronic acid” can be administered, e.g., in the form as it is marketed, e.g. under the trademark ACTONELTM.
  • "Zoledronic acid” can be administered, e.g., in the form as it is marketed, e.g. under the trademark ZOMETATM.
  • antiproliferative antibodies includes, but is not limited to trastuzumab (HerceptinTM), Trastuzumab-DM1 , eriotinib (TarcevaTM), bevacizumab (Avastin TM), rituximab (Rituxan®), PRO64553 (anti-CD40) and 2C4 Antibody.
  • compounds of formula I can be used in combination with standard leukemia therapies, especially in combination with therapies used for the treatment of AML.
  • compounds of formula I can be administered in combination with e.g. farnesyltransferase inhibitors and/or other drugs useful for the treatment of AML, such as Daunorubicin, Adriamycin, Ara-C, VP-16, Teniposide, Mitoxantrone, Idarubicin, Carboplatinum and midostaurin.
  • the compounds of formula I are administered in conjunction with other immunosuppressive / immunomodulatory, anti-inflammatory, antiproliferative, anti-infective, anti-viral or chemotherapeutic therapy
  • dosages of the co-administered immunosuppressant, immunomodulatory, anti-inflammatory, antiproliferative, anti-infective, anti-viral or chemotherapeutic compound will of course vary depending on the type of co-drug employed, e.g. whether it is a steroid or a calcineurin inhibitor, on the specific drug employed, on the condition being treated and so forth.
  • the present invention provides in a yet further aspect:
  • a method as defined above comprising co-administration, e.g. concomitantly or in sequence, of a therapeutically effective non-toxic amount of a compound of formula I and at least a second drug substance, e.g. an immunosuppressant, immunomodulatory, anti-inflammatory, antiproliferative, antineoplatic anti-infective, anti-viral, antibiotic or chemotherapeutic drug, e.g. as indicated above.
  • a second drug substance e.g. an immunosuppressant, immunomodulatory, anti-inflammatory, antiproliferative, antineoplatic anti-infective, anti-viral, antibiotic or chemotherapeutic drug, e.g. as indicated above.
  • a pharmaceutical combination e.g. a kit, comprising a) a first agent which is a CXCR4 antagonist, e.g. a compound of formula I as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent, e.g. an immunosuppressant, immunomodulatory, anti-inflammatory, antiproliferative, anti- infective or chemotherapeutic drug.
  • the kit may comprise instructions for its administration.
  • co-administration or “combined administration” or the like as utilized herein are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
  • pharmaceutical combination means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non- fixed combinations of the active ingredients.
  • fixed combination means that the active ingredients, e.g. a compound of formula I and a co-agent, e.g. viral agent, are both administered to a patient simultaneously in the form of a single entity or dosage.
  • non-fixed combination means that the active ingredients, e.g. a compound of formula I and a co-agent, e.g. viral agent, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the 2 compounds in the body of the patient.
  • cocktail therapy e.g. the administration of 3 or more active ingredients.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Transplantation (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to isothiourea derivatives, processes for their production, their uses, in particular in transplantation, autoimmune or infectious diseases, and pharmaceutical compositions containing them.

Description

Isothiourea derivatives
The present invention relates to isothiourea derivatives, processes for their production, their uses and pharmaceutical compositions containing them.
More particularly, the present invention provides a compound of formula I
Figure imgf000002_0001
wherein
Ri is a residue of formula (a), (b) or (c)
(a) (b) (c)
Figure imgf000002_0002
R2 is -(CR^R^LS- or -C(O)-; each of R3 and R8 independently is S; O; or NR24; each of R4 and R5 independently is optionally R25-substituted C3-Cι2 cycloalkyl, C Cι2 alkyl or saturated C8. 2 polycyclic residue; or optionally R26- and/or R27-substituted aryl, arylC^ 4alkyl or heteroaryl; wherein up to 4 carbon atoms of ^ and/or R5 are optionally substituted by S, O or NR24;
R6 is H; C C6 alkyl; C3-C6 cycloalkyl; or optionally R26- and/or R27-substituted aryl, arylC^ alkyl or heteroaryl;
R7 is CR28 or N;
R9 is a direct bond; -(CR22R23)ι.2-; or NR24; each of R10.23 and R28 independently is H; F; Cl; Br; C C6 alkyl; C2-C6 alkoxyalkyl; CrC6 halogenoalkyl; C3-C6 cycloalkyl; optionally R26- and/or R27-substituted aryl or heteroaryl; CONR29R30; COOR29; CN; NO2; or OR3ι; or two of Rio-19 which are attached to the same carbon atom, together with the carbon atom to which they are attached, form a 3-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or
R17 and R18, together with the C atoms to which they are attached, form a 4-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or
R20 and R2ι, together with the carbon atoms to which„they are attached, form an optionally R26- and/or R27-substituted aryl or heteroaryl; each of R2 , R29 and R30 independently is H; C C6 alkyl; C2-C6 alkoxyalkyl; C C6 halogenoalkyl; C3-C7 cycloalkyl; or optionally R26- and/or R27-substituted aryl, arylC^alkyl or heteroaryl;
R25 represents 1 to 4 substituents each independently having one of the significances given for Rιo-23 above;
R26 represents 1 to 4 substituents each independently selected from Cι-C6 alkyl; C C6 hydroxyalkyl; C2-C6 alkoxyalkyl; C C6 halogenoalkyl; C3-C6 cycloalkyl; C2-C6 alkenyl; C3-C6 cycloalkenyl; C2-C6 alkynyl; aryl; heteroaryl; heteroaryl N-oxide ; F; Cl; Br; I; OH; OR4; CONH2; CONHR4; CONR^ ;OC(O)R4; OC(O)OR4; OC(O) HR4; OC(O)NR4R4; OSO2R4; COOH; COOR4; CF3; CHF2; CH2F; CN; NO2; NH2; NHR4; NR^; NHC(O)R4; NR4C(O)R4; NHC(O)NHR4; NHC(O)NH2; NR4C(O)NHR4; NR4C(O)NR4R4; NHC(O)OR4; NR^O R,; NHSOzFl,; N(SO2R4)2; NR4SO2R4; SR4; S(O)R4; SO2R4; Si(CH3)3and B(OC(CH3)2)2;
R27 represents two adjacent substituents which form an annulated 4-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S;
R3ι is C C6 alkyl; C3-C7 cycloalkyl; optionally R26- and/or R2 -substituted aryl, arylC^alkyl or heteroaryl; or CF3.
Any alkyl, alkenyl or alkynyl may be linear or branched. Halogeno is F, Cl, Br or I.
By aryl is meant phenyl or naphthyl. The polycyclic residue may be for example optionally R25-substituted adamantyl, bicyclo[3,2.1]octyl or
Figure imgf000004_0001
wherein n is 1 or 2.
By heteroaryl is meant an aromatic ring system comprising mono-, bi- or tricyclic systems which contains up to 4 heteroatoms independently selected from N, O and S. Examples of heteroaryl include e.g. pyridyl, indolyl, benzothiazolyl, thiazolyl, imidazolyl, benzimidazolyl. Examples of 3 to 7 membered nonaromatic rings containing 1 or 2 heteroatoms include e.g. morpholinyl, piperazinyl, piperidyl.
The compounds of formula I may exist in form of several interconverting tautomers and E/Z isomers, e.g.
Figure imgf000004_0002
They may exist in free form or in salt form, e.g. addition salts with e.g. organic or inorganic acids, for example, hydrochloric acid, acetic acid. When the compounds of formula I have one or more asymmetric centers in the molecule, the present invention is to be understood as embracing the various optical isomers, as well as racemates, diastereoisomers and mixtures thereof.
In the compounds of formula 1 , the following significances are preferred individually or in any sub-combination:
1. (a) Each of R10.23 and R28 independently is H; or CrC6 alkyl;
(b) two of Rιo-19 which are attached to the same carbon atom, together with the carbon atom to which they are attached, form a 3-6 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or (c) R 7 and Rι8, together with the C atoms to which they attached, form a 4-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or
2. R9 is a direct bond; or -CR22R23-;
3. each of R24, R29 and R30 independently is H; C C6 alkyl; or C3-C7 cycloalkyl;
4. R7 is CR28;
5. R2 is — CR22R23-;
6. each of R4 and R5 independently is optionally R25-substituted C5-C9 cycloalkyl or C6- Cι2alkyl; or adamantyl; wherein optionally up to 4 carbon atoms of R4 and/or R5 are substituted by S, O or NR24;
7. R6 is H; or C C6 alkyl;
8. each of R3 and R8 independently is S;
9. arylC^alkyl is benzyl;
The invention also covers a process for preparing a compound of formula I comprising reacting a compound of formula II
Figure imgf000005_0001
with a compound of formula III
R — R32 III
wherein R^ are as defined above and R32 is a leaving group; and optionally converting a resultant compound of formula I obtained in free form to a salt form or vice versa.
Preferably R32 is halogeno, more preferably chloro.
The compounds of formula III are known or may be prepared by reacting a compound of formula IV (a), (b) or (c) (a) (b) (c)
Figure imgf000006_0001
wherein R8.2 are as defined above, with 1 ,3-dichloro-acetone, and recovering the compound of formula III in free or salt form.
The compounds of formulae II and IV are known and can be prepared according to procedures well established in the art.
The following examples illustrate the invention without any limitation. Example 1
1,3-dicyclohexyl-2-(5,6-dihydro-imidazo[2, 1-b]thiazol-3-ylmethyl)-isothiourea
A mixture of N,N'-dicyclohexyl thiourea (0.21 g, 1.0 mmol), 3-chloromethyl-5,6-dihydro- imidazo[2,1-b]thiazole (0.72 g, 3.0 mmol) and acetonitrile (10 ml) is refluxed for 4 h. The precipitate is filtered off and crystallized from methanol/ether to give the dihydrochloride of 1 ,3-dicyclohexyl-2-(5,6-dihydro-imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea. MS/ESI 379 [M+H+]
Example 2
1,3-dicyclohexyl-2-(3-methyl-2-methylimino-2,3-dihydro-thiazol-4-ylmethyl)-isothb^
1,3-dicyclohexyI-2-(3-methyl-2-methylimino-2,3-dihydro-thiazol-4-ylmethyl)-isothiourea is prepared from 4-chloromethyl-3-methyl-3H-thiazol-2-ylidene-methyl-amine using a procedure analogous to that described in example 1 , except that the latter compound is used in place of 3-chloromethyl-5,6-dihydro-imidazo[2,1-b]thiazoIe. MS/ESI 381 [M+H+].
(4-chloromethyl-3-methyl-3H-thiazol-2-ylidene)-methyl-amine used as starting material is prepared according to the following procedure: A mixture of N.N'-dimethyl thiourea (1.04 g, 10.0 mmol), 1 ,3-dichloro acetone (1.27 g, 10.0 mmol) and n-butanol (25 ml) is heated at 140°C for 1 h. The solvent is removed and the residue crystallized from methanol/ether to give the hydrochloride of (4-chloromethyl-3- methyl-3H-thiazol-2-ylidene)-methyl-amine. MS/ESI 177 [M+H+].
Example 3
1,3-dicyclohexyl-2-(6,6-dimethyl-5,6-dihydro-imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea
1,3-dicyclohexyl-2-(6,6-dimethyl-5,6-dihydro-imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea is prepared from 3-chloromethyl-6,6-dimethyl-5,6-dihydro-imidazo[2,1-b]thiazole using a procedure analogous to that described in example 1 , except that the latter compound is used in place of 3-chloromethyl-5,6-dihydro-imidazo[2,1-b]thiazole. MS/ESI 407 [M+H+].
3-Chloromethyl-6,6-dimethyl-5,6-dihydro-imidazo[2,1-b]thiazoIe used as starting material is prepared according to the following procedure:
A mixture of 4,4-dimethyl-imidazolidine-2-thione (1.0 g, 7.5 mmol), 1 ,3-dichloro acetone (1.00 g, 7.5 mmol) and acetonitrile (15 ml) is refluxed for 2 h. The colorless precipitate is filtered off, dried, suspended in 1-methoxy-2-(2-methoxy-ethoxy)-ethane and, subsequently, heated at 140°C for 2 h. The precipitate is filtered of and washed with ether to give the hydrochloride of 3-chloromethyl-6,6-dimethyl-5,6-dihydro-imidazo[2,1-b]thiazoIe. MS/ESI 203 [M+H+].
The following examples of formula V
Figure imgf000007_0001
are prepared applying similar procedures.
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000011_0002
The compounds of formula I in free form or in pharmaceutically acceptable salt form exhibit valuable pharmacological properties, e.g. as CXCR4 antagonists, e.g. as indicated in in vitro tests and therefore indicated for therapy. CXCR4 is a chemokine receptor G protein coupled receptor (GPCR) that is expressed in a variety of normal tissues, including monocytes. SDF- 1 (CXCL12) is the cognate ligand of this receptor, and is known to act as a chemoattractant that drives chemotaxis of cells expressing CXCR4. a) CXCR4 membrane binding assay Membranes are prepared from the T lymphoblast cell line CEM which endogenously expresses CXCR4. As radioligand 125-1 labeled SDF-1α is used. Membranes, radioligand and a compound of formula I are incubated and the amount of bound radioligand determined. The data are reported as IC50, i.e. the concentration of compound required to achieve 50% inhibition of [l-125]SDF-1α binding. In this assay compounds of formula I have
Figure imgf000011_0001
b) CXCR4 functional assay - Ca2+ mobilization SDF-1 induced Ca2+ mobilization from intracellular stores is measured in CEM cells loaded with the Ca2+ - sensing fluorochrome Fluo-4. Fluo-4 loaded cells are incubated with compounds of formula I and then the SDF-1 induced increase in fluorescence is recorded in a fluorescence image plate reader. Inhibitory effects of compounds are expressed as IC50 values, representing the concentration of compound which reduces the SDF-1 response by 50%. In this assay compounds of formula I have IC50 values of <50 μM. c) CXCR4 functional assay - chemotaxis Cell migration (chemotaxis) stimulated by SDF-1 is assessed in Transwell tissue culture inserts with porpous polycarbonate membranes. Target cells (eg.Jurkat T cells, CEM cells or lymphocytes) are added to the upper compartment and the chemokine SDF-1 to the lower compartment. Compounds of formula I are added to both compartments at the same concentration. Compounds of formula I inhibit SDF-1 induced chemotaxis with IC50 values < 50 μM.
The compounds of formula I are, therefore, useful in the prevention and/or treatment of diseases or disorders mediated by interactions between chemokine receptors, e.g. CXCR4, and their ligands, e.g. in transplantation, such as acute or chronic rejection of organ, tissue or cell allo- or xenografts or delayed graft function, autoimmune diseases, e.g. rheumatoid arthritis, systemic lupus erythematosus, Hashimoto's thyroidis, multiple sclerosis, myasthenia gravis, diabetes type I or II and the disorders associated therewith, vasculitis, pernicious anemia, Sjoegren syndrome, uveitis, psoriasis, alopecia areata and others, allergic diseases, e.g. allergic asthma, atopic dermatitis, allergic rhinitis/conjunctivitis, allergic contact dermatitis, inflammatory diseases optionally with underlying aberrant reactions, e.g. inflammatory bowel disease, Crohn's disease or ulcerative colitis, intrinsic asthma, inflammatory lung injury, inflammatory liver injury, inflammatory glomerular injury, atherosclerosis, osteoarthritis, irritant contact dermatitis and further eczematous dermatitises, seborrhoeic dermatitis, cutaneous manifestations of immunologically-mediated disorders, inflammatory eye disease, keratoconjunctivitis, myocarditis or hepatitis, ischemia/reperfusion injury, e.g. myocardial infarction, stroke, gut ischemia, renal failure or hemorrhage shock, traumatic shock and others, infectious diseases, e.g. toxic shock (e.g. superantigen induced), septic shock, adult respiratory distress syndrome or viral infections, e.g. binding or entry of the HIV virus into cells expressing CXCR4, or progression of AIDS. By transplantation is meant allo- or xeno grafts of e.g. cells, tissues or solid organs, for example pancreatic islets, stem cells, bone marrow, corneal tissue, neuronal tissue, heart, lung, combined heart-lung, kidney, liver, bowel, pancreas, trachea or oesophagus. Chronic rejection is also named graft vessel disease.
CXCR4 signaling is implicated in the progression, invasion, or metastasis of tumors, e.g. solid tumors. Stromal or epithelial cells associated with primary tumors have been observed to often express SDF-1. CXCR4/SDF-1 interactions are involved in establishment, growth, angiogenesis, or localized invasion of the tumor at the primary site, e.g. blood vessel development, or promotion of entry of tumor cells into the blood or lymphatic circulation via SDF-1 expression by cells associated with blood vessels, e.g. in the early steps of metastasis. ln addition, SDF-1 expression by bone marrow cells promotes recruitment, adherence or proliferation of tumor cells expressing CXCR4 in bone. SDF-1 expression at other sites or tissues plays a similar role in metastasis or establishment of tumors at those sites. Multiple myeloma is an example of a cancer in which recruitment of cells to the bone marrow plays a critical homing, environmental and proliferative role in establishment and progression.
Compounds of the invention are therefore also useful in the prevention or treatment of proliferative diseases, especially malignant proliferative or neoplastic diseases, e.g. tumors, for example brain and other central nervous system tumors (eg. tumors of the meninges, brain, spinal cord, cranial nerves and other parts of central nervous system, e.g. glioblastomas or medulla blastomas); head and/or neck cancer; breast tumors; circulatory system tumors (e.g. heart, mediastinum and pleura, and other intrathoracic organs, vascular tumors and tumor- associated vascular tissue); excretory system tumors (e.g. kidney, renal pelvis, ureter, bladder, other and unspecified urinary organs); gastrointestinal tract tumors (e.g. oesophagus, stomach, small intestine, colon, colorectal, rectosigmoid junction, rectum, anus and anal canal), tumors involving the liver and intrahepatic bile ducts, gall bladder, other and unspecified parts of biliary tract, pancreas, other and digestive organs); head and neck; oral cavity (lip, tongue, gum, floor of mouth, palate, and other parts of mouth, parotid gland, and other parts of the salivary glands, tonsil, oropharynx, nasopharynx, pyriform sinus, hypopharynx, and other sites in the lip, oral cavity and pharynx); reproductive system tumors (e.g. vulva, vagina, Cervix uteri, Corpus uteri, uterus, ovary, and other sites associated with female genital organs, placenta, penis, prostate, testis, and other sites associated with male genital organs); respiratory tract tumors (e.g. nasal cavity and middle ear, accessory sinuses, larynx, trachea, bronchus and lung, e.g. small cell lung cancer or non-small cell lung cancer); skeletal system tumors (e.g. bone and articular cartilage of limbs, bone articular cartilage and other sites); skin tumors (e.g. malignant melanoma of the skin, non-melanoma skin cancer, basal cell carcinoma of skin, squamous cell carcinoma of skin, mesothelioma, Kaposi's sarcoma); and tumors involving other tissues induing peripheral nerves and autonomic nervous system, connective and soft tissue, retroperitoneum and peritoneum, eye and adnexa, thyroid, adrenal gland and other endocrine glands and related structures, secondary and unspecified malignant neoplasm of lymph nodes, secondary malignant neoplasm of respiratory and digestive systems and secondary malignant neoplasm of other sites, tumors of blood and lymphatic system (e.g. Hodgkin's disease, Non- Hodgkin's lymphoma, Burkitt's lymphoma, AIDS-related lymphomas, malignant immunoproliferative diseases, multiple myeloma and malignant plasma cell neoplasms, lymphoid leukemia, acute or chronic myeloid leukemia, acute or chronic lymphocytic leukemia, monocytic leukemia, other leukemias of specified cell type, leukemia of unspecified cell type, other and unspecified malignant neoplasms of lymphoid, haematopoietic and related tissues, for example diffuse large cell lymphoma, T-cell lymphoma or cutaneous T-cell lymphoma). Myeloid cancer includes e.g. acute or chronic myeloid leukaemia.
Where hereinbefore and subsequently a tumor, a tumor disease, a carcinoma or a cancer is mentioned, also metastasis in the original organ or tissue and/or in any other location are implied alternatively or in addition, whatever the location or locations of the tumor and/or metastasis. The compounds of formula I are particularly indicated for treating tumor invasiveness or symptoms associated with such tumor growth, preventing metastatic spread of tumours or for preventing or inhibiting growth of micrometastasis in a subject in need thereof, especially for treating or preventing metastatic spread of tumors to bone, e.g. to bone marrow. In one embodiment, the compounds of formula I are indicated for preventing or treating metastasis, tumor invasiveness or tumor growth mediated by CXCR4 receptors and/or SDF-1 expression.
In a further embodiment, the compounds of formula I are indicated for inhibiting or controlling deregulated angiogenesis, e.g. angiogenesis mediated by CXCR4 and/or SDF-1, in a subject in need thereof.
For the above uses the required dosage will of course vary depending on the mode of administration, the particular condition to be treated and the effect desired. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about
0.01 to10 mg/kg per body weight. An indicated daily dosage in the larger mammal, e.g. humans, is in the range from about 0.5 mg to about 1000 mg, conveniently administered, for example, in divided doses up to four times a day or in retard form. Suitable unit dosage forms for oral administration comprise from 0.1 to 500 mg, e.g. from ca. 0.5 to 4 mg active ingredient.
The compounds of formula I may be administered by any conventional route, in particular enterally, e.g. orally, e.g. in the form of tablets or capsules, or parenterally, e.g. in the form of injectable solutions or suspensions, topically, e.g. in the form of lotions, gels, ointments or creams, or in a nasal or a suppository form. Pharmaceutical compositions comprising a compound of formula I in free form or in pharmaceutically acceptable salt form in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with, a pharmaceutically acceptable carrier or diluent. The compounds of formula I may be administered in free form or in pharmaceutically acceptable salt form e.g. as indicated above. Such salts may be prepared in conventional manner and exhibit the same order of activity as the free compounds.
In accordance with the foregoing the present invention further provides:
1.1 A method for preventing or treating disorders or diseases mediated by interactions between chemokine receptors, e.g. CXCR4 receptors, and their ligands, e.g. such as indicated above, in a subject in need of such treatment, which method comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
1.2 A method for preventing or treating acute or chronic transplant rejection or inflammatory or autoimmune diseases, e.g. as indicated above, in a subject in need of such treatment, which method comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
1.3 A method for preventing or treating a proliferative disease, e.g. as indicated above, in a subject in need of such treatment, which method comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
1.4 A method for treating tumor progression, invasiveness or symptoms associated with such tumor growth, preventing metastatic spread of tumours or for preventing or inhibiting growth of micrometastases, or for preventing tumor associated angiogenesis, e.g. as indicated above, in a subject in need of such treatment, which method comprises administering to said subject an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof;
1.5 A method for preventing or combating infectious diseases, e.g. viral infection, in particular for preventing or combating the binding or entry of a virus into cells expressing chemokine receptor, e.g. the binding or entry of the HIV virus, such as HIV- 1 or HIV-2, into cells expressing CXCR4, or progression of AIDS.
2. A compound of formula I or a pharmaceutically acceptable salt thereof for use as a pharmaceutical, e.g. in any of the methods as indicated under 1.1 to 1.4 above.
3. A pharmaceutical composition, e.g. for use in any of the methods as in 1.1 to 1.4 above comprising a compound of formula I or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable diluent or carrier therefor. 4. A compound of formula I or a pharmaceutically acceptable salt thereof for use in the preparation of a pharmaceutical composition for use in any of the method as in to 1.4 above.
The compounds of formula I may be administered as the sole active ingredient or in conjunction with, e.g. as an adjuvant to, other drugs e.g. in immunosuppressive or immunomodulating regimens or other anti-inflammatory agents, e.g. for the treatment or prevention of allo- or xenograft acute or chronic rejection or inflammatory or autoimmune disorders, a chemotherapeutic agent or an anti-infective agent, e.g. an anti-viral agent such as e.g. an anti-retroviral agent or an antibiotic. For example, the compounds of formula I may be used in combination with a calcineurin inhibitor, e.g. cyclosporin A or FK 506; an mTOR inhibitor, e.g. rapamycin, 40-O-(2-hydroxyethyl)-rapamycin, CCI779, ABT578, AP23573, AP23464, AP23675, AP23841 or TAFA-93; an ascomycin having immunosuppressive properties, e.g. ABT-281 , ASM981 , etc.; corticosteroids; cyclophosphamide; azathioprine; methotrexate; leflunomide; mizoribine; mycophenolic acid; mycophenolate mofetil; 15-deoxyspergualine or an immunosuppressive homologue, analogue or derivative thereof; a sphingosine-1 -phosphate receptor agonist, e.g. FTY720; monoclonal antibodies to leukocyte receptors, e.g., MHC, CD2, CD3, CD4, CD7, CD8, CD11a/CD18, CD25, CD27, CD28, CD40. CD45, CD58, CD80, CD86, CD137, ICOS, CD150 (SLAM), OX40, 4-1 BB or to their ligands, e.g. CD154, or antagonists thereof; other immunomodulatory compounds, e.g. a recombinant binding molecule having at least a portion of the extracellular domain of CTLA4 or a mutant thereof, e.g. an at least extracellular portion of CTLA4 or a mutant thereof joined to a non-CTLA4 protein sequence, e.g. CTLA4lg (for ex. designated ATCC 68629) or a mutant thereof, e.g. LEA29Y ; adhesion molecule inhibitors, e.g. LFA-1 antagonists, ICAM-1 or -3 antagonists, VCAM-4 antagonists or VLA-4 antagonists; or antichemokine antibodies or antichemokine receptor antibodies or low molecular weight chemokine receptor antagonists, e.g. anti MCP-1 antibodies.
The term "anti-viral agent" as used herein includes, but is not limited to, anti-retroviral agent; antibody against virus; e.g. anti-HIV antibody; inhibitor of reverse transcriptase; e.g. inhibitor of HIV reverse transcriptase, especially nucleoside analogues, such as Retrovir® (3'-azido- 3'-deoxypyrimidine, Zidovudine) and 3'-azido-3'-deoxythymidine (AZT) from GlaxoSmithKline, HMD® (2',3'-dideoxycytidine, Zalcitabine) from Hoffmann-LaRoche, Videx® or VidexEC® (2',3'dideoxyinosine, Didanosine) from Bristol-Myers-Squibb, Epivir® (Lamivudine) from GlaxoSmithKline, Zerit® (stavudine) from Bristol Myers-Squibb, Viread® (tenofovir DF) from Gilead, ziagen® (abacavir) from GlaxoSmithKline, Emtriva® (Emtricitabine, FTC) from Gilead Sciences ; or non-nucleoside analogues, such as e.g. rescriptor® (delavirdine) from Pfizer, Sustiva® (Efavirenz) from Bristol Meyer Squibb, viramune® (nevirapine) from Boehringer-lngeIheim;11-cyclopropyl-5,11-dihydro-4-methyl- (6H)-dipyrido[3,2-b;2',3'-e]-[1 ,4]diazepin-6-one, trisodium phosphonoformate, ammonium-21- tungstenato-9-antimonate, 1-β-D-ribofuranoxyl-1 ,2,4-triazoIe-3-carboxamide; inhibitor of viral or retroviral protease, e.g. inhibitor of viral aspartate protease, e.g. inhibitor of HIV protease, such as aganerase® (amprenavir) fromGlaxoSmithKline, reyataz® (atazanavir) from Bristol- Myers Squibb, lexiva® (fosamprenavir) from GSK, Crixivan ® (Indinavir) from Merck & Co.; viracept® (nelfinavir) from Agouron, norvir® (Ritonavir) from Abbott; fortovase® and Invirase® (saquinavir) from Hoffmann-LaRoche; and other compounds such as lasinavir (5(S)-(tert-butoxycarbonylamino)-4(S)-hydroxy-6-phenyl-2(R)(2,3,4- trimethoxyphenylmethyl)-hexanoyl-(L)-vaIyl-N-(2-metoxy-ethyl)-amide), Adriamycin, KVX-478 from GlaxoWellcome; VX-478 from Vertex; 141W94 from Kissei Pharmaceuticals; AG-1343 from Agouron; KNI-272 from Nippon Mining; U-96988 from Upjohn; BILA-2011BS (Palinavir) from Boehringer-Ingelheim; compounds preventing virus penetration, such as e.g. polymannoacetate; fusion inhibitors, such as e.g. fuzeon® (enfuvirtide, T-20) from Hofffmann-LaRoche; or any combination thereof, such as Epzicom® (Abacavir and Lamivudine) from GlaxoKlineSmith, Trizivir® (Abacavir, Lamivudine and Zidovudine) from GlaxoKlineSmith, Truvada® (Emtricitabine and Tenofir DF) from Gilead Sciences, Combivir® (Lamivudine and Zidovudine) from GlaxoKlineSmith, kaletra® (lopinavir and ritonavir) from Abbott. The term "anti-viral agent" further includes agent which treats the opportunistic infectious which are caused by the immunosuppression resulting from viral infection, e.g. HIV infection.
The term "HIV" as used herein includes, but is not limited to, HIV-1 and HIV-2.
A compound of formula I may also be used to advantage in combination with other antiproliferative agents. Such antiproliferative agents include, but are not limited to aromatase inhibitors, antiestrogens, topoisomerase I inhibitors, topoisomerase II inhibitors, microtubule active agents, alkylating agents, histone deacetylase inhibitors, farnesyl transferase inhibitors, COX-2 inhibitors, MMP inhibitors, mTOR inhibitors, antineoplastic antimetabolites, platin compounds, compounds decreasing the protein kinase activity and further anti-angiogenic compounds, gonadorelin agonists, anti-androgens, bengamides, bisphosphonates, antiproliferative antibodies and temozolomide (TEMODAL®).
The term "aromatase inhibitors" as used herein relates to compounds which inhibit the estrogen production, i.e. the conversion of the substrates androstenedione and testosterone to estrone and estradiol, respectively. The term includes, but is not limited to steroids, especially exemestane and formestane and, in particular, non-steroids, especially aminoglutethimide, vorozole, fadrozole, anastrozole and, very especially, letrozole. Exemestane can be administered, e.g., in the form as it is marketed, e.g. under the trademark AROMASIN™. Formestane can be administered, e.g., in the form as it is marketed, e.g. under the trademark LENTARON™. Fadrozole can be administered, e.g., in the form as it is marketed, e.g. under the trademark AFEMA™. Anastrozole can be administered, e.g., in the form as it is marketed, e.g. under the trademark ARIMIDEX™. Letrozole can be administered, e.g., in the form as it is marketed, e.g. under the trademark FEMARA™ or FEMAR™. Aminoglutethimide can be administered, e.g., in the form as it is marketed, e.g. under the trademark ORIMETEN™.
A combination of the invention comprising an antineoplastic agent which is an aromatase inhibitor is particularly useful for the treatment of hormone receptor positive breast tumors.
The term "antiestrogens" as used herein relates to compounds which antagonize the effect of estrogens at the estrogen receptor level. The term includes, but is not limited to tamoxifen, fulvestrant, raloxifene and raloxifene hydrochloride. Tamoxifen can be administered, e.g., in the form as it is marketed, e.g. under the trademark NOLVADEX™. Raloxifene hydrochloride can be administered, e.g., in the form as it is marketed, e.g. under the trademark EVISTA™. Fulvestrant can be formulated as disclosed in US 4,659,516 or it can be administered, e.g., in the form as it is marketed, e.g. under the trademark FASLODEX™.
The term "topoisomerase I inhibitors" as used herein includes, but is not limited to topotecan, irinotecan, 9-nitrocamptothecin and the macromolecular camptothecin conjugate PNU- 166148 (compound A1 in WO99/17804). Irinotecan can be administered, e.g., in the form as it is marketed, e.g. under the trademark CAMPTOSAR™. Topotecan can be administered, e.g., in the form as it is marketed, e.g. under the trademark HYCAMTIN™.
The term "topoisomerase II inhibitors" as used herein includes, but is not limited to the antracyclines doxorubicin (including liposomal formulation, e.g. CAELYX™), epirubicin, idarubicin and nemorubicin, the anthraquinones mitoxantrone and losoxantrone, and the podophillotoxines etoposide and teniposide. Etoposide can be administered, e.g., in the form as it is marketed, e.g. under the trademark ETOPOPHOS™. Teniposide can be administered, e.g., in the form as it is marketed, e.g. under the trademark VM 26-BRISTOL ™. Doxorubicin can be administered, e.g., in the form as it is marketed, e.g. under the trademark ADRIBLASTIN™. Epirubicin can be administered, e.g., in the form as it is marketed, e.g. under the trademark FARMORUBICIN™. Idarubicin can be administered, e.g., in the form as it is marketed, e.g. under the trademark ZAVEDOS™. Mitoxantrone can be administered, e.g., in the form as it is marketed, e.g. under the trademark NOVANTRON™.
The term "microtubule active agents" relates to microtubule stabilizing and microtubule destabilizing agents including, but not limited to the taxanes paclitaxel and docetaxel, the vinca alkaloids, e.g., vinblastine, especially vinblastine sulfate, vincristine especially vincristine sulfate, and vinorelbine, discodermolide and epothilones, such as epothilone B and D. Docetaxel can be administered, e.g., in the form as it is marketed, e.g. under the trademark TAXOTERE™. Vinblastine sulfate can be administered, e.g., in the form as it is marketed, e.g. under the trademark VINBLASTIN R.P.™. Vincristine sulfate can be administered, e.g., in the form as it is marketed, e.g. under the trademark FARMISTIN™. Discodermolide can be obtained, e.g., as disclosed in US 5,010,099.
The term "alkylating agents" as used herein includes, but is not limited to cyclophosphamide, ifosfamide and melphalan. Cyclophosphamide can be administered, e.g., in the form as it is marketed, e.g. under the trademark CYCLOSTIN™. Ifosfamide can be administered, e.g., in the form as it is marketed, e.g. under the trademark HOLOXAN™.
The term "histone deacetylase inhibitors" relates to compounds which inhibit the histone deacetylase and which possess antiproliferative activity.
The term "farnesyl transferase inhibitors" relates to compounds which inhibit the farnesyl transferase and which possess antiproliferative activity.
The term "COX-2 inhibitors" relates to compounds which inhibit the cyclooxygenase type 2 enyzme (COX-2) and which possess antiproliferative activity such as celecoxib (Celebrex®), rofecoxib (Vioxx®) and lumiracoxib (COX189).
The term "MMP inhibitors" relates to compounds which inhibit the matrix metalloproteinase (MMP) and which possess antiproliferative activity. The term "mTOR inhibitors" relates to compounds which inhibit the mammalian target of rapamycin (mTOR) and which possess antiproliferative activity such as sirolimus (Rapamune®), everolimus (Certican™), CCI-779 and ABT578.
The term "antineoplastic antimetabolites" includes, but is not limited to 5-fluorouracil, tegafur, capecitabine, cladribine, cytarabine, fludarabine phosphate, fluorouridine, gemcitabine, 6- mercaptopurine, hydroxyurea, methotrexate, edatrexate and salts of such compounds, and furthermore ZD 1694 (RALTITREXED™), LY231514 (ALIMTA™), LY264618 (LOMOTREXOL™) and OGT719.
The term "platin compounds" as used herein includes, but is not limited to carboplatin, cis- platin and oxaliplatin. Carboplatin can be administered, e.g., in the form as it is marketed, e.g. under the trademark CARBOPLAT™. Oxaliplatin can be administered, e.g., in the form as it is marketed, e.g. under the trademark ELOXATIN™.
The term "compounds decreasing the protein kinase activity and further anti-angiogenic compounds" as used herein includes, but is not limited to compounds which decrease the activity of e.g. the Vascular Endothelial Growth Factor (VEGF), the Epidermal Growth Factor (EGF), c-Src, protein kinase C, Platelet-derived Growth Factor (PDGF), Bcr-Abl tyrosine kinase, c-kit, Flt-3 and Insulin-like Growth Factor I Receptor (IGF-IR) and Cyclin-dependent kinases (CDKs), and anti-angiogenic compounds having another mechanism of action than decreasing the protein kinase activity.
Compounds which decrease the activity of VEGF are especially compounds which inhibit the VEGF receptor, especially the tyrosine kinase activity of the VEGF receptor, and compounds binding to VEGF, and are in particular those compounds, proteins and monoclonal antibodies generically and specifically disclosed in WO 98/35958 (describing compounds of formula I), WO 00/09495, WO 00/27820, WO 00/59509, WO 98/11223, WO 00/27819, WO 01/55114, WO 01/58899 and EP 0 769 947; those as described by M. Prewett et al in Cancer Research 59 (1999) 5209-5218, by F. Yuan et al in Proc. Natl. Acad. Sci. USA, vol. 93, pp. 14765-14770, December 1996, by Z. Zhu et al in Cancer Res. 58, 1998, 3209-3214, and by J. Mordenti et al in Toxicologic Pathology, vol. 27, no. 1 , pp 14-21 , 1999; in WO 00/37502 and WO 94/10202; Angiostatin™, described by M. S. O'Reilly et al, Cell 79, 1994, 315-328; and Endostatin™, described by M. S. O'Reilly et al, Cell 88, 1997, 277-285; compounds which decrease the activity of EGF are especially compounds which inhibit the EGF receptor, especially the tyrosine kinase activity of the EGF receptor, and compounds binding to EGF, and are in particular those compounds generically and specifically disclosed in WO 97/02266 (describing compounds of formula IV), EP 0 564 409, WO 99/03854, EP 0520722, EP 0 566 226, EP 0 787 722, EP 0 837 063, WO 98/10767, WO 97/30034, WO 97/49688, WO 97/38983 and, especially, WO 96/33980; compounds which decrease the activity of c-Src include, but are not limited to, compounds inhibiting the c-Src protein tyrosine kinase activity as defined below and to SH2 interaction inhibitors such as those disclosed in WO97/07131 and WO97/08193; compounds inhibiting the c-Src protein tyrosine kinase activity include, but are not limited to, compounds belonging to the structure classes of pyrrolopyrimidines, especially pyrrolo[2,3- djpyrimidines, purines, pyrazopyrimidines, especially pyrazo[3,4-d]pyrimidines, pyrazopyrimidines, especially pyrazo[3,4-d]pyrimidines and pyridopyrimidines, especially pyrido[2,3-d]pyrimidines. Preferably, the term relates to those compounds disclosed in WO 96/10028, WO 97/28161 , WO97/32879 and WO97/49706; compounds which decreases the activity of the protein kinase C are especially those staurosporine derivatives disclosed in EP 0 296 110 (pharmaceutical preparation described in WO 00/48571) which compounds are protein kinase C inhibitors; further specific compounds that decrease protein kinase activity and which may also be used in combination with the compounds of the present invention are Imatinib (GIeevec®/Glivec@), midostaurin, Iressa™ (ZD1839), PKI166, Vatalanib, ZD6474, GW2016, CHIR-200131 , CEP-7055/CEP-5214, CP-547632 and KRN-633; anti-angiogenic compounds having another mechanism of action than decreasing the protein kinase activity include, but are not limited to e.g. thalidomide (THALOMID), celecoxib (Celebrex), SU5416 and ZD6126.
The term "gonadorelin agonist" as used herein includes, but is not limited to abarelix, goserelin and goserelin acetate. Goserelin is disclosed in US 4,100,274 and can be administered, e.g., in the form as it is marketed, e.g. under the trademark ZOLADEX™.
Abarelix can be formulated, e.g. as disclosed in US 5,843,901.
The term "anti-androgens" as used herein includes, but is not limited to bicalutamide (CASODEX™), which can be formulated, e.g. as disclosed in US 4,636,505.
The term "bengamides" relates to bengamides and derivatives thereof having aniproliferative properties. The term "bisphosphonates" as used herein includes, but is not limited to etridonic acid, clodronic acid, tiludronic acid, pamidronic acid, alendronic acid, ibandronic acid, risedronic acid and zoledronic acid. "Etridonic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark DIDRONEL™. "Clodronic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark BONEFOS™. "Tiludronic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark SKELID™. "Pamidronic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark AREDIA™. "Alendronic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark FOSAMAX™. "Ibandronic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark BONDRANAT™. "Risedronic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark ACTONEL™. "Zoledronic acid" can be administered, e.g., in the form as it is marketed, e.g. under the trademark ZOMETA™.
The term "antiproliferative antibodies" as used herein includes, but is not limited to trastuzumab (Herceptin™), Trastuzumab-DM1 , eriotinib (Tarceva™), bevacizumab (Avastin ™), rituximab (Rituxan®), PRO64553 (anti-CD40) and 2C4 Antibody.
For the treatment of acute myeloid leukemia (AML), compounds of formula I can be used in combination with standard leukemia therapies, especially in combination with therapies used for the treatment of AML. In particular, compounds of formula I can be administered in combination with e.g. farnesyltransferase inhibitors and/or other drugs useful for the treatment of AML, such as Daunorubicin, Adriamycin, Ara-C, VP-16, Teniposide, Mitoxantrone, Idarubicin, Carboplatinum and midostaurin.
The structure of the active agents identified by code nos., generic or trade names may be taken from the actual edition of the standard compendium "The Merck Index" or from databases, e.g. Patents International (e.g. IMS World Publications).
The above-mentioned compounds, which can be used in combination with a compound of formula I, can be prepared and administered as described in the art such as in the documents cited above.
Where the compounds of formula I are administered in conjunction with other immunosuppressive / immunomodulatory, anti-inflammatory, antiproliferative, anti-infective, anti-viral or chemotherapeutic therapy, dosages of the co-administered immunosuppressant, immunomodulatory, anti-inflammatory, antiproliferative, anti-infective, anti-viral or chemotherapeutic compound will of course vary depending on the type of co-drug employed, e.g. whether it is a steroid or a calcineurin inhibitor, on the specific drug employed, on the condition being treated and so forth. In accordance with the foregoing the present invention provides in a yet further aspect:
5. A method as defined above comprising co-administration, e.g. concomitantly or in sequence, of a therapeutically effective non-toxic amount of a compound of formula I and at least a second drug substance, e.g. an immunosuppressant, immunomodulatory, anti-inflammatory, antiproliferative, antineoplatic anti-infective, anti-viral, antibiotic or chemotherapeutic drug, e.g. as indicated above.
6. A pharmaceutical combination, e.g. a kit, comprising a) a first agent which is a CXCR4 antagonist, e.g. a compound of formula I as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent, e.g. an immunosuppressant, immunomodulatory, anti-inflammatory, antiproliferative, anti- infective or chemotherapeutic drug. The kit may comprise instructions for its administration.
The terms "co-administration" or "combined administration" or the like as utilized herein are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
The term "pharmaceutical combination" as used herein means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non- fixed combinations of the active ingredients. The term "fixed combination" means that the active ingredients, e.g. a compound of formula I and a co-agent, e.g. viral agent, are both administered to a patient simultaneously in the form of a single entity or dosage. The term "non-fixed combination" means that the active ingredients, e.g. a compound of formula I and a co-agent, e.g. viral agent, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the 2 compounds in the body of the patient. The latter also applies to cocktail therapy, e.g. the administration of 3 or more active ingredients.

Claims

Claims
1. A compound of formula I
Figure imgf000024_0001
wherein
Ri is a residue of formula (a), (b) or (c)
(a) (b) (c)
Figure imgf000024_0002
R2 is -{CR22R23 -3- or -C(O)-; each of R3 and R8 independently is S; O; or NR24; each of l^ and R5 independently is optionally R25-substituted C3-C12 cycloalkyl, C Cι2 alkyl or saturated C82 polycyclic residue; or optionally R26- and/or R27-substituted aryl, arylCi. alkyl or heteroaryl; wherein up to 4 carbon atoms of R and/or R5 are optionally substituted by S, O or NR24;
R6 is H; C C6 alkyl; C3-C6 cycloalkyl; or optionally R26- and/or R27-substituted aryl, arylC-i. alkyl or heteroaryl;
R7 is CR28 or N;
R9 is a direct bond; -(CR^R^)^-; or NR2 ; each of R10.23 and R28 independently is H; F; Cl; Br; C C6 alkyl; C2-C6 alkoxyalkyl; C C6 halogenoalkyl; C3-C6 cycloalkyl; optionally R26- and/or R27-substituted aryl or heteroaryl; CONR29R30; COOR29; CN; NO2; or OR31; or two of R10-19 which are attached to the same carbon atom, together with the carbon atom to which they are attached, form a 3-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or
R17 and R18, together with the C atoms to which they are attached, form a 4-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S; or
R20 and R2ι, together with the carbon atoms to which they are attached, form an optionally R26- and/or R27-substituted aryl or heteroaryl; each of R2 , R29 and R30 independently is H; C C6 alkyl; C2-C6 alkoxyalkyl; C C6 halogenoalkyl; C3-C7 cycloalkyl; or optionally R26- and/or R27-substituted aryl, arylCι.4alkyI or heteroaryl;
R25 represents 1 to 4 substituents each independently having one of the significances given for Rιo-23 above;
R26 represents 1 to 4 substituents each independently selected from Cι-C6 alkyl; C C6 hydroxyalkyl; C2-C6 alkoxyalkyl; C C6 halogenoalkyl; C3-C6 cycloalkyl; C2-C6 alkenyl; C3-C6 cycloalkenyl; C2-C6 alkynyl; aryl; heteroaryl; heteroaryl N-oxide ; F; Cl; Br; I; OH; OR4; CONH2; CONHR4; CONR4R4 ;OC(O)R4; OC(O)OR4; OC(O)NHR4; OC(O)NR4R4; OSO2R4; COOH; COOR4; CF3; CHF2; CH2F; CN; NO2; NH2; NHR4; NR4R4; NHC(O)R4; NR4C(O)R4; NHC(O)NHR4; NHC(O)NH2; NR4C(O)NHR4; NR4C(O)NR4R4; NHC(O)OR4; NR4C(O)OR4; NHSO2R4; N(SO2R4)2; NR4SO2R4; SR4; S(O)R4; SO2R4; Si(CH3)3and B(OC(CH3)2)2;
R27 represents two adjacent substituents which form an annulated 4-7 membered nonaromatic ring optionally containing up to two heteroatoms selected independently from N, O and S;
R3ι is Cι-C6 alkyl; C3-C7 cycloalkyl; optionally R26- and/or R27-substituted aryl, arylC^alkyl or heteroaryl; or CF3; or a pharmaceutically acceptable salt thereof.
2. A compound according to claim 1 which is selected from 1 ,3-Dicyclohexyl-2-(5,6- dihydro-imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea, 1-Cyclohexyl-3-cycIopentyl-2-(5,6- dihydro-imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea,1-Cycloheptyl-3-cyclohexyl-2-(5,6- dihydro-imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea,1 ,3-Dicycloheptyl-2-(5,6-dihydro- imidazo[2, 1 -b]thiazol-3-ylmethyl)-isothiourea, 1 -CyclohexyI-3-cyclooctyl-2-(5,6-dihydro- imidazo[2,1-b]thiazol-3-ylmethyl)-isothiourea,1,3-Dicyclohexyl-2-(6,6-dimethyl-5,6-dihydro- imidazo[2, 1 -b]thiazol-3-ylmethyl)-isothiourea, 1 ,3-Dicyclooctyl-2-(5,6-dihydro-imidazo[2, 1 - b]thiazol-3-ylmethyl)-isothiourea and 1 ,3-DicycIoheptyl-2-(6,6-dimethyl-5,6-dihydro- imidazo[2, 1 -b]thiazol-3-ylmethyl)-isothiourea.
3. A pharmaceutical composition comprising a compound according to claim 1 in free form or in a pharmaceutically acceptable salt form in association with a pharmaceutically acceptable diluent or carrier therefor.
4. Use of a compound according to claimed in claim 1 in free form or in a pharmaceutically acceptable salt form, for the manufacture of a medicament to prevent or treat disorders or diseases mediated by interactions between chemokine receptors, acute or chronic transplant rejection, inflammatory diseases, autoimmune diseases or proliferative diseases.
5. Use of a compound according to claimed in claim 1 in free form or in a pharmaceutically acceptable salt form, for the manufacture of a medicament to prevent or inhibit tumor invasiveness, symptoms associated with tumor growth, metastatic spread of tumours, tumor-associated angiogenesis or growth of micrometastases.
6. Use of a compound as claimed in claim 1 or in claim 2, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament in preventing or combating an infectious diseases, in particular viral infections or progression of AIDS.
7. A process for preparing a compound of formula I comprising reacting a compound of formula II
Figure imgf000026_0001
with a compound of formula R 1\ R2 R32
wherein R^ to R6 are as defined in claim 1 and R32 is a leaving group; and optionally converting a resultant compound of formula I obtained in free form to a salt form or vice versa.
8. A pharmaceutical combination comprising a compound according to claim 1 or claim 2 in free form or in a pharmaceutically acceptable salt form and a further agent selected from immunosuppressive, immunomodulating, anti-inflammatory, antiproliferative, antineoplatic, chemotherapeutic, anti-infective, anti-viral, and antibiotic agents, and agents for the treatment of acute myeloid leukemia.
9. Combination according to claim 8 comprising an antiretroviral agent, in particular an anti-HlV agent.
10. Use of a combination according to claim 9 for the manufacture of a medicament for preventing or combating an infectious disease, in particular viral infection or progression of AIDS.
11. A method of treatment or prevention of any of the following conditions: i) disorders or diseases mediated by interactions between chemokine receptors, ii) acute or chronic transplant rejections, iii) inflammatory or autoimmune diseases, iv) proliferative diseases, v) symptoms associated with tumor invasiveness or tumor growth, vi) metastatic spreads of tumours, tumor-associated angiogenesis and growths of micrometastases, vii) infectious diseases, in particular viral infections, in particular binding or entry of HIV virus, or progression of AIDS, comprising administering to said subject a therapeutically effective amount of a compound according to claim 1 or claim 2, or a or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to claim 3.
PCT/EP2005/002014 2004-02-27 2005-02-25 Isothiourea derivatives WO2005085219A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05715554A EP1720845A1 (en) 2004-02-27 2005-02-25 Isothiourea derivatives
US10/590,399 US7671078B2 (en) 2004-02-27 2005-02-25 Isothiourea derivatives of imadazo[2,1-b]Thiazoles and 5,6-dihydro derivatives thereof useful as CXCR4 chemokine receptor inhibitors
CA002556386A CA2556386A1 (en) 2004-02-27 2005-02-25 Isothiourea derivatives
JP2007500168A JP2007523941A (en) 2004-02-27 2005-02-25 Isothiourea derivatives
AU2005219531A AU2005219531B2 (en) 2004-02-27 2005-02-25 Isothiourea derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0404434.3A GB0404434D0 (en) 2004-02-27 2004-02-27 Organic compounds
GB0404434.3 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005085219A1 true WO2005085219A1 (en) 2005-09-15

Family

ID=32051024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002014 WO2005085219A1 (en) 2004-02-27 2005-02-25 Isothiourea derivatives

Country Status (10)

Country Link
US (1) US7671078B2 (en)
EP (1) EP1720845A1 (en)
JP (1) JP2007523941A (en)
KR (1) KR20060124722A (en)
CN (1) CN1922158A (en)
AU (1) AU2005219531B2 (en)
CA (1) CA2556386A1 (en)
GB (1) GB0404434D0 (en)
RU (1) RU2376297C2 (en)
WO (1) WO2005085219A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022385A2 (en) * 2005-08-18 2007-02-22 Novartis Ag Use of cxcr4 binding molecules for the treatment of whim syndrome
WO2007049771A1 (en) 2005-10-28 2007-05-03 Ono Pharmaceutical Co., Ltd. Compound containing basic group and use thereof
WO2007058322A1 (en) 2005-11-18 2007-05-24 Ono Pharmaceutical Co., Ltd. Basic group-containing compound and use thereof
WO2012061662A1 (en) * 2010-11-03 2012-05-10 Glycomimetics, Inc. Glycomimetic-peptidomimetic inhibitors of e-selectins and cxcr4 chemokine receptors
US8188083B2 (en) 2007-06-28 2012-05-29 Abbott Laboratories Triazolopyridazines
US8921328B2 (en) 2010-09-14 2014-12-30 Glycomimetics, Inc. E-selectin antagonists
US9109002B2 (en) 2011-12-22 2015-08-18 Glycomimetics, Inc. E-selectin antagonist compounds, compositions, and methods of use
US9770029B2 (en) 2008-07-09 2017-09-26 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
US9867841B2 (en) 2012-12-07 2018-01-16 Glycomimetics, Inc. Compounds, compositions and methods using E-selectin antagonists for mobilization of hematopoietic cells
US10519181B2 (en) 2014-12-03 2019-12-31 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectins and CXCR4 chemokine receptors
US11072625B2 (en) 2016-10-07 2021-07-27 Glycomimetics, Inc. Highly potent multimeric e-selectin antagonists
US11197877B2 (en) 2017-03-15 2021-12-14 Glycomimetics. Inc. Galactopyranosyl-cyclohexyl derivauves as E-selectin antagonists
WO2022064075A1 (en) * 2020-09-28 2022-03-31 Ermium Therapeutics Cyclic isothiourea derivatives as cxcr4 modulators
US11291678B2 (en) 2016-03-02 2022-04-05 Glycomimetics, Inc Methods for the treatment and/or prevention of cardiovascular disease by inhibition of E-selectin
US11433086B2 (en) 2016-08-08 2022-09-06 Glycomimetics, Inc. Combination of T-cell checkpoint inhibitors with inhibitors of e-selectin or CXCR4, or with heterobifunctional inhibitors of both E-selectin and CXCR4
US11548908B2 (en) 2017-12-29 2023-01-10 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectin and galectin-3
US11707474B2 (en) 2018-03-05 2023-07-25 Glycomimetics, Inc. Methods for treating acute myeloid leukemia and related conditions
US11712446B2 (en) 2017-11-30 2023-08-01 Glycomimetics, Inc. Methods of mobilizing marrow infiltrating lymphocytes and uses thereof
US11845771B2 (en) 2018-12-27 2023-12-19 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectin and galectin-3

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12011423B2 (en) 2007-11-06 2024-06-18 Foraviset Ltd. S-alkylisothiouronium derivatives for treating uterine hypercontractility disorders
EP2219447B1 (en) * 2007-11-06 2013-07-03 Barkan-Farma S.r.l. S-alkylisothiouronium derivatives for treating uterine hypercontractility disorders
RU2503450C1 (en) * 2012-04-19 2014-01-10 Федеральное Государственное Бюджетное Учреждение "Медицинский Радиологический Научный Центр" Министерства Здравоохранения и Социального Развития Российской Федерации (ФГБУ МРНЦ Минздравсоцразвития России) Anticancer agent

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542802A (en) 1968-07-03 1970-11-24 Searle & Co 3-(n - benzylthiocarbamoylthiomethyl)-6,7-dihydro - 5h - imidazo(2,1-b)thiazolium chloride and congeners
US3881015A (en) 1969-10-29 1975-04-29 Smith Kline French Lab Pharmaceutical compositions and methods of inhibiting histamine activity with isothiourea compounds
US4041167A (en) 1976-01-19 1977-08-09 Diamond Shamrock Corporation Antiinflammatory imidazothiazoles
US4098898A (en) 1975-05-21 1978-07-04 Smith Kline & French Laboratories Limited Imidazolyl alkylguanidine compounds
GB2031426A (en) 1978-09-28 1980-04-23 Yoshitomi Pharmaceutical Imidazo(2',1':2,3)thiazolo(5,4-c)pyridines and related compounds
US4293549A (en) 1977-11-07 1981-10-06 Leo Pharmaceutical Products Ltd. A/S (Lovens Kemiske Fabrik Produktion-Saktieselskab) Quinolinyl guanidines having antiinflammatory, analgesic or antipyretic activity
US4556669A (en) 1981-04-10 1985-12-03 Kumiai Kagaku Kogyo Kabushiki Kaisha 2,-3-Di-substituted-5,6-dihydroimidazo [2,1-b] thiazole, its salts, production thereof and anti-inflammatory agent containing the same
US4736038A (en) 1985-04-22 1988-04-05 Kumiai Chemical Industry Co., Ltd. 5,6-dihydroimidazo(2,1-b)thiazole-2-carboxamide derivatives or salts thereof
WO2000046187A2 (en) 1999-02-05 2000-08-10 Oridigm Corporation Antizyme modulators and their use
WO2002024711A1 (en) * 2000-09-20 2002-03-28 Nikken Chemicals Co., Ltd. Novel thiazole bicyclic compounds
WO2002072585A2 (en) 2001-03-14 2002-09-19 Grünenthal GmbH Substituted pyrazolopyrimidines and thiazolopyrimidines used as analgesics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758145A (en) * 1969-10-29 1971-04-28 Smith Kline French Lab ISO-THIO-UREES AND DERIVATIVES

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542802A (en) 1968-07-03 1970-11-24 Searle & Co 3-(n - benzylthiocarbamoylthiomethyl)-6,7-dihydro - 5h - imidazo(2,1-b)thiazolium chloride and congeners
US3881015A (en) 1969-10-29 1975-04-29 Smith Kline French Lab Pharmaceutical compositions and methods of inhibiting histamine activity with isothiourea compounds
US4098898A (en) 1975-05-21 1978-07-04 Smith Kline & French Laboratories Limited Imidazolyl alkylguanidine compounds
US4041167A (en) 1976-01-19 1977-08-09 Diamond Shamrock Corporation Antiinflammatory imidazothiazoles
US4293549A (en) 1977-11-07 1981-10-06 Leo Pharmaceutical Products Ltd. A/S (Lovens Kemiske Fabrik Produktion-Saktieselskab) Quinolinyl guanidines having antiinflammatory, analgesic or antipyretic activity
GB2031426A (en) 1978-09-28 1980-04-23 Yoshitomi Pharmaceutical Imidazo(2',1':2,3)thiazolo(5,4-c)pyridines and related compounds
US4556669A (en) 1981-04-10 1985-12-03 Kumiai Kagaku Kogyo Kabushiki Kaisha 2,-3-Di-substituted-5,6-dihydroimidazo [2,1-b] thiazole, its salts, production thereof and anti-inflammatory agent containing the same
US4736038A (en) 1985-04-22 1988-04-05 Kumiai Chemical Industry Co., Ltd. 5,6-dihydroimidazo(2,1-b)thiazole-2-carboxamide derivatives or salts thereof
WO2000046187A2 (en) 1999-02-05 2000-08-10 Oridigm Corporation Antizyme modulators and their use
WO2002024711A1 (en) * 2000-09-20 2002-03-28 Nikken Chemicals Co., Ltd. Novel thiazole bicyclic compounds
WO2002072585A2 (en) 2001-03-14 2002-09-19 Grünenthal GmbH Substituted pyrazolopyrimidines and thiazolopyrimidines used as analgesics

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200240, Derwent World Patents Index; Class B02, AN 2002-372036, XP002338086 *
MELLOR J M ET AL: "A General Route to Cyclic Amidines and Isothioureas Based on Formal Aza Diels Alder Reactions of Aminoheterocycles", TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 37, no. 15, 8 April 1996 (1996-04-08), pages 2619 - 2622, XP004029751, ISSN: 0040-4039 *
MELLOR, J.M. ET AL., TETRAHEDRON LETT., vol. 37, no. 15, pages 2619 - 22

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022385A3 (en) * 2005-08-18 2007-11-01 Novartis Ag Use of cxcr4 binding molecules for the treatment of whim syndrome
WO2007022385A2 (en) * 2005-08-18 2007-02-22 Novartis Ag Use of cxcr4 binding molecules for the treatment of whim syndrome
WO2007049771A1 (en) 2005-10-28 2007-05-03 Ono Pharmaceutical Co., Ltd. Compound containing basic group and use thereof
EP2657235A1 (en) 2005-10-28 2013-10-30 Ono Pharmaceutical Co., Ltd. Compound containing basic group and use thereof
WO2007058322A1 (en) 2005-11-18 2007-05-24 Ono Pharmaceutical Co., Ltd. Basic group-containing compound and use thereof
US8188083B2 (en) 2007-06-28 2012-05-29 Abbott Laboratories Triazolopyridazines
US10231455B2 (en) 2008-07-09 2019-03-19 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
US10888094B2 (en) 2008-07-09 2021-01-12 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
US9770029B2 (en) 2008-07-09 2017-09-26 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
US8921328B2 (en) 2010-09-14 2014-12-30 Glycomimetics, Inc. E-selectin antagonists
WO2012061662A1 (en) * 2010-11-03 2012-05-10 Glycomimetics, Inc. Glycomimetic-peptidomimetic inhibitors of e-selectins and cxcr4 chemokine receptors
US10526361B2 (en) 2011-12-22 2020-01-07 Glycomimetics, Inc. E-selectin antagonist compounds, compositions, and methods of use
US9796745B2 (en) 2011-12-22 2017-10-24 Glycomimetics, Inc. E-selectin antagonist compounds, compositions, and methods of use
US10766916B2 (en) 2011-12-22 2020-09-08 Glycomimetics, Inc. E-selectin antagonist compounds, compositions, and methods of use
US9109002B2 (en) 2011-12-22 2015-08-18 Glycomimetics, Inc. E-selectin antagonist compounds, compositions, and methods of use
US11987598B2 (en) 2011-12-22 2024-05-21 Glycomimetics, Inc. E-selectin antagonist compounds, compositions, and methods of use
US11332491B2 (en) 2011-12-22 2022-05-17 Glycomimetics, Inc. E-selectin antagonist compounds, compositions, and methods of use
US9867841B2 (en) 2012-12-07 2018-01-16 Glycomimetics, Inc. Compounds, compositions and methods using E-selectin antagonists for mobilization of hematopoietic cells
US10519181B2 (en) 2014-12-03 2019-12-31 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectins and CXCR4 chemokine receptors
US11291678B2 (en) 2016-03-02 2022-04-05 Glycomimetics, Inc Methods for the treatment and/or prevention of cardiovascular disease by inhibition of E-selectin
US11433086B2 (en) 2016-08-08 2022-09-06 Glycomimetics, Inc. Combination of T-cell checkpoint inhibitors with inhibitors of e-selectin or CXCR4, or with heterobifunctional inhibitors of both E-selectin and CXCR4
US11780873B2 (en) 2016-10-07 2023-10-10 Glycomimetics, Inc. Highly potent multimeric e-selectin antagonists
US11072625B2 (en) 2016-10-07 2021-07-27 Glycomimetics, Inc. Highly potent multimeric e-selectin antagonists
US11197877B2 (en) 2017-03-15 2021-12-14 Glycomimetics. Inc. Galactopyranosyl-cyclohexyl derivauves as E-selectin antagonists
US11878026B2 (en) 2017-03-15 2024-01-23 Glycomimetics, Inc. Galactopyranosyl-cyclohexyl derivatives as e-selectin antagonists
US11712446B2 (en) 2017-11-30 2023-08-01 Glycomimetics, Inc. Methods of mobilizing marrow infiltrating lymphocytes and uses thereof
US11548908B2 (en) 2017-12-29 2023-01-10 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectin and galectin-3
US11707474B2 (en) 2018-03-05 2023-07-25 Glycomimetics, Inc. Methods for treating acute myeloid leukemia and related conditions
US11845771B2 (en) 2018-12-27 2023-12-19 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectin and galectin-3
WO2022064075A1 (en) * 2020-09-28 2022-03-31 Ermium Therapeutics Cyclic isothiourea derivatives as cxcr4 modulators

Also Published As

Publication number Publication date
KR20060124722A (en) 2006-12-05
JP2007523941A (en) 2007-08-23
US20070161618A1 (en) 2007-07-12
US7671078B2 (en) 2010-03-02
CA2556386A1 (en) 2005-09-15
AU2005219531A1 (en) 2005-09-15
AU2005219531B2 (en) 2009-01-15
RU2376297C2 (en) 2009-12-20
EP1720845A1 (en) 2006-11-15
CN1922158A (en) 2007-02-28
GB0404434D0 (en) 2004-03-31
RU2006134019A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US7671078B2 (en) Isothiourea derivatives of imadazo[2,1-b]Thiazoles and 5,6-dihydro derivatives thereof useful as CXCR4 chemokine receptor inhibitors
AU2003227070B2 (en) Pyrimidine derivatives
KR100583704B1 (en) 4-Amino-5-Phenyl-7-Cyclobutyl-Pyrrolo 2,3-? Pyrimidine Derivatives
US20080234294A1 (en) Cxcr4 Binding Molecules
US20060058324A1 (en) 4-Amino-5-phenyl-7-cyclohexyl-pyrrolo 2,3-d pyrimidine derivatives
KR20090031787A (en) 2,4-di(arylamino)-pyrimidine-5-carboxamide compounds as jak kinases inhibitors
KR20060127032A (en) Phenyl-[4-(3-phenyl-1h-pyrazol-4-yl)-pyrimidin-2-yl]-amine derivatives as igf-ir inhibitors
EP3466952B1 (en) 1-(4-(4-amino-3-phenyl-1h-pyrazolo[3,4-d]pyrimidin-1-yl)-phenyl)-urea derivatives as flt3 kinase inhibitors for treating cancer
CN108368060A (en) A kind of novel pyridine derivatives kinase inhibitor
MXPA06009696A (en) Isothiourea derivatives
EP3730483A1 (en) Class of pyrimidine derivative kinase inhibitors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005715554

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005219531

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2556386

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067017114

Country of ref document: KR

Ref document number: PA/a/2006/009696

Country of ref document: MX

Ref document number: 200580006094.2

Country of ref document: CN

Ref document number: 3099/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007500168

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2005219531

Country of ref document: AU

Date of ref document: 20050225

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005219531

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007161618

Country of ref document: US

Ref document number: 10590399

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006134019

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005715554

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017114

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0508004

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10590399

Country of ref document: US