WO2005082340A2 - Modulation of inflammatory and metastatic processes - Google Patents
Modulation of inflammatory and metastatic processes Download PDFInfo
- Publication number
- WO2005082340A2 WO2005082340A2 PCT/US2005/005316 US2005005316W WO2005082340A2 WO 2005082340 A2 WO2005082340 A2 WO 2005082340A2 US 2005005316 W US2005005316 W US 2005005316W WO 2005082340 A2 WO2005082340 A2 WO 2005082340A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groups
- substituted
- unsubstituted
- alkyl
- aryl
- Prior art date
Links
- UCERWRYYCNOULT-UHFFFAOYSA-N C[N](CC1)(CCN1c(cc1)cc2c1nc(C(C(Nc1c3c(F)ccc1)=O)=C3N)[nH]2)O Chemical compound C[N](CC1)(CCN1c(cc1)cc2c1nc(C(C(Nc1c3c(F)ccc1)=O)=C3N)[nH]2)O UCERWRYYCNOULT-UHFFFAOYSA-N 0.000 description 2
- 0 *c1ccc2nc(C(C(Nc3cccc(F)c33)=O)=C3N)[n]c2c1 Chemical compound *c1ccc2nc(C(C(Nc3cccc(F)c33)=O)=C3N)[n]c2c1 0.000 description 1
- ANQVKHGDALCPFZ-UHFFFAOYSA-N CCOC(Cc([nH]c1c2)nc1ccc2N1CCN(C)CC1)=O Chemical compound CCOC(Cc([nH]c1c2)nc1ccc2N1CCN(C)CC1)=O ANQVKHGDALCPFZ-UHFFFAOYSA-N 0.000 description 1
- MWLBMGPQZJDFKZ-UHFFFAOYSA-N CN(CC1)CCN1c(cc1N)ccc1[N+]([O-])=O Chemical compound CN(CC1)CCN1c(cc1N)ccc1[N+]([O-])=O MWLBMGPQZJDFKZ-UHFFFAOYSA-N 0.000 description 1
- BLYVUTAGIGSWKA-UHFFFAOYSA-N CNCCNc1ccc2nc(C(C(Nc3cccc(F)c33)=O)=C3N)[nH]c2c1 Chemical compound CNCCNc1ccc2nc(C(C(Nc3cccc(F)c33)=O)=C3N)[nH]c2c1 BLYVUTAGIGSWKA-UHFFFAOYSA-N 0.000 description 1
- ZCWXYZBQDNFULS-UHFFFAOYSA-N Nc(cc(cc1)Cl)c1[N+]([O-])=O Chemical compound Nc(cc(cc1)Cl)c1[N+]([O-])=O ZCWXYZBQDNFULS-UHFFFAOYSA-N 0.000 description 1
- IQUNZGOZUJITBJ-UHFFFAOYSA-N Nc(cccc1F)c1C#N Chemical compound Nc(cccc1F)c1C#N IQUNZGOZUJITBJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4965—Non-condensed pyrazines
- A61K31/497—Non-condensed pyrazines containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention provides methods for using compounds to modulate inflammatory responses and processes related to tumor metastasis.
- the invention further provides methods for monitoring the effects of the compounds of the invention by measuring the levels of ICAM, VCAM, or E-selectin molecules in a subject treated with the compounds.
- Amino quinolinone benzimidazolyl compounds such as 4-amino-5- fluoro-3 - [6-(4-methylpiperazin- 1 -yl)- 1 H-benzimidazol-2-yl] quinolin-2( 1 H)-one and their tautomers and salts are potent inhibitors of various class kinases such as VEGFR2 (KDR, Flk-1), FGFR1 and PDGFR ⁇ with IC 50 s ranging from 10-27 nM. See U.S. Patent No. 6,605,617, U.S. Patent Application No. 10/644,055, and U.S. Patent Application No.
- NCAM vascular cell adhesion molecule
- VCAM vascular cell adhesion molecule
- ICAM inducible cell adhesion molecule
- ICAM is also expressed in endothelial cells and various cells including fibroblasts, hematopoietic cells, and tumor cells. The soluble form of ICAM present in the plasma is generated by proteolytic cleavage of membrane-associated molecules.
- E-Selectin endofhelial leukocyte adhesion molecule
- E-selectin endofhelial leukocyte adhesion molecule
- a high concentration of soluble ICAM, VCAM, and E-selectin is considered a marker of endothelial cell activation during tumor development, metastasis, and inflammatory responses.
- These cell adhesion molecules localized on endothelial cells can mediate adhesion of metastatic tumor cells and allow extravasation into the vessels. It is of interest that these molecules are inducible, being poorly expressed on normal endothelial cells but capable of being expressed highly after exposure to cytokines such as IL-1 or TNF-a. In addition, some of these molecules are preferentially expressed in different vascular beds, with VCAM being abundant in the lung and E-selectin in the liver.
- MMPs Matrix metalloproteases
- ECM extracellular matrix
- MMP-9/gelatinase B is a functional component of an angiogenic switch during multistage pancreatic carcinogenesis by increasing the release of VEGF.
- the present invention relates to methods of treating a human or animal subject with, and uses in a human or animal subject of, a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the invention also relates to the use of the compound, tautomer, salt of the compound, salt of the tautomer, or the mixture thereof in the preparation of a medicament for use in the methods described herein.
- the invention provides a method of modulating an inflammatory response or reducing cellular adhesion in a subject.
- Such methods include administering to the subject a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the inflammatory response is modulated in the subject and/or cellular adhesion is reduced in the subject after administration of the compound, the tautomer, the pharmaceutically acceptable salt of the compound, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof.
- the compound, tautomer, salt of the compound, salt of the tautomer, or the mixture thereof are used to modulate an inflammatory response.
- the compound, tautomer, salt of the compound, salt of the tautomer, or the mixture thereof are used to reduce cellular adhesion.
- the compound, tautomer, salt of the compound, salt of the tautomer, or the mixture thereof are used to decrease ICAM, VCAM, or E- selectin levels.
- the compound, tautomer, salt of the compound, salt of the tautomer, or the mixture thereof used to reduce the levels of circulating cell adhesion molecules.
- the compound, tautomer, salt of the compound, salt of the tautomer, or the mixture thereof are used to decrease circulating ICAM, VCAM, or E-selectin levels.
- the invention provides a method of monitoring the progression ofa disease or treatment in a human or animal subject.
- the method includes measuring the amount of at least one cell adhesion molecule in the subject after administration of a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof to the subject.
- the cell adhesion molecule is selected from inducible cell adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), or endothelial leukocyte adhesion molecule (E-Selectin).
- Some such methods further include withdrawing a sample of blood from the subject and then measuring the amount of the at least one cell adhesion molecule in at least a portion of the sample.
- Other embodiments include administering the compound, the tautomer, the pharmaceutically acceptable salt of the compound, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof to the subject.
- the invention provides a method of identifying a subject in need of a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the method includes measuring the amount of at least one cell adhesion molecule in the subject before, during, or after administration of the compound of Structure I, the tautomer of the compound, the pharmaceutically acceptable salt of the compound, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof to the subject.
- the cell adhesion molecule is selected from inducible cell adhesion molecule, vascular cell adhesion molecule, or endothelial leukocyte adhesion molecule.
- the method further includes administering the compound of Structure I, the tautomer of the compound, the pharmaceutically acceptable salt of the compound, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof to the subject after measuring the amount of the cell adhesion molecule in the subject.
- Structure I has the following formula:
- R 1 , R 2 , R 3 , and R 4 may be the same or different and are independently selected from the group consisting of H, Cl, Br, F, I, -CN, -NO 2 , -OH, -OR 15 groups, -NR 16 R 17 groups, substituted and unsubstituted amidinyl groups, substituted and unsubstituted guanidinyl groups, substituted and unsubstituted primary, secondary, and tertiary alkyl groups, substituted and unsubstituted aryl groups, substituted and unsubstituted alkenyl groups, substituted and unsubstituted alkynyl groups, substituted and unsubstituted heterocyclyl groups, substituted and unsubstituted aminoalkyl groups, substituted and unsubstituted alkylaminoalkyl groups, substituted and unsubstituted dialkylaminoalkyl groups, substituted and unsubstituted arylamino
- Figure 1 is a graph showing the effects of various amount of 4-amino-
- Figures 2A and 2B are graphs showing the dose-dependent reduction of soluble ICAM ( Figure 2 A; greater than 70% inhibition with 100 or 150 mg/kg) and soluble VCAM ( Figure 2B; 44-47% inhibition with 100 or 150 mg/kg) in the serum of mice with 4T1 breast tumors when dosed with varying amounts of 4-amino-5-fluoro- 3-[6-(4-mefhylpiperazin-l-yl)-lH-benzimidazol-2-yl]quinolin-2(lH)-one.
- Figure 3 is a graph showing the dose-dependent inhibition of mouse- specific soluble E-selectin in the serum of 4T1 tumor bearing mice treated with 4- amino-5 -fluoro-3 - [6-(4-methylpiperazin- 1 -yl)- 1 H-benzimidazol-2-yl] quinolin-2( 1 H)- one.
- Figures 4A, 4B, and 4C are graphs of the Zymography and VEGF
- Figure 5 is a scanned image showing the decrease in the expression of
- Figure 6 is a scanned image showing the decrease in the expression of ⁇ 5 integrin, not ⁇ v integrin when HUVECs in culture were treated with 4-amino-5- fluoro-3 - [6-(4-methylpiperazin- 1 -yl)- 1 H-benzimidazol-2-y 1] quinolin-2( 1 H) .
- cell adhesion refers to cell adhesion.
- the amount of cellular adhesion in a subject can typically be correlated with the amounts of cell adhesion molecules, such as, but not limited to VCAM, ICAM, and E- Selectin in a subject.
- VCAM is an abbreviation that stands for vascular cell adhesion molecule.
- ICAM inducible cell adhesion molecule
- E-Selectin is also known as endothelial leukocyte adhesion molecule.
- 4T1 is a murine breast cell line.
- BALB/C is a mice strain used in tumor xenograph experiments.
- bFGF is an abbreviation that stands for basic fibroblast growth factor.
- FGFR1 also referred to as bFGFR, is an abbreviation that stands for a tyrosine kinase that interacts with the fibroblast growth factor FGF.
- FGF is an abbreviation for the fibroblast growth factor that interacts with FGFRl.
- FGFR3 is an abbreviation that stands for the tyrosine kinase fibroblast growth factor receptor 3 that is often expressed in multiple myeloma-type cancers.
- Flk-1 is an abbreviation that stands for fetal liver tyrosine kinase 1, also known as kinase-insert domain tyrosine kinase or KDR (human), also known as vascular endothelial growth factor receptor-2 or VEGFR2 (KDR (human), Flk-1 (mouse)).
- PDGF is an abbreviation that stands for platelet derived growth factor. PDGF interacts with tyrosine kinases PDGFR ⁇ and PDGFR ⁇ .
- RTK receptor tyrosine kinase
- VEGF is an abbreviation that stands for vascular endothelial growth factor.
- VEGF-RTK is an abbreviation that stands for vascular endothelial growth factor receptor tyrosine kinase.
- ELISA is an abbreviation that stands for Enzyme-Linked
- MMP-2 is an abbreviation that stands for matrix metalloprotease-2
- MMP-2 is also referred to as gelatinase A.
- MMP-9 is an abbreviation that stands for matrix metalloprotease-9
- MMP-9 is also referred to as gelatinase B.
- Ki67 is a marker for cellular proliferation.
- caspase-3 is a apoptosis marker. Activation of caspase-3 requires proteolytic processing of inactive caspase-3 into “cleaved caspase-3" which is 17 KD and 19 KD in size.
- PARP is an abbreviation that stands for poly ADP -ribose polymerase and is an apoptosis marker. It is a 116 KD protein and is cleaved into a 89KD protein.
- CD31 is a marker for endothelial cells. Immuno staining with anti-
- CD31 antibody in tumor section by immunohistochemistry will indicate the number of microvessels (or microvessel density) in tumors.
- reference to a certain element such as hydrogen or H is meant to include all isotopes of that element.
- an R group is defined to include hydrogen or H, it also includes deuterium and tritium.
- unsubstituted alkyl refers to alkyl groups that do not contain heteroatoms.
- the phrase includes straight chain alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like.
- the phrase also includes branched chain isomers of straight chain alkyl groups, including but not limited to, the following which are provided by way of example: -CH(CH 3 ) 2 , -CH(CH 3 )(CH 2 CH 3 ), -CH(CH 2 CH 3 ) 2 , -C(CH 3 ) 3 , -C(CH 2 CH 3 ) 3 , -CH 2 CH(CH 3 ) 2 , -CH 2 CH(CH 3 )(CH 2 CH 3 ), -CH 2 CH(CH 2 CH 3 ) 2 , -CH 2 C(CH 3 ) 3 , -CH 2 C(CH 2 CH 3 ) 3 , -CH(CH 3 )CH(CH 3 )(CH 2 CH 3 ), -CH 2 CH 2 CH(CH 3 ) 2 , -CH 2 CH 2 CH(CH 3 )(CH 2 CH 3 ), -CH 2 CH 2 CH(CH 3 ) 2 , -CH 2 CH(CH 3 )(CH 2
- the phrase also includes cyclic alkyl groups such as cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl and such rings substituted with straight and branched chain alkyl groups as defined above.
- cyclic alkyl groups such as cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl and such rings substituted with straight and branched chain alkyl groups as defined above.
- the phrase also includes polycychc alkyl groups such as, but not limited to, adamantyl norbornyl, and bicyclo[2.2.2]octyl and such rings substituted with straight and branched chain alkyl groups as defined above.
- unsubstituted alkyl groups includes primary
- Unsubstituted alkyl groups may be bonded to one or more carbon atom(s), oxygen atom(s), nitrogen atom(s), and/or sulfur atom(s) in the parent compound.
- Preferred unsubstituted alkyl groups include straight and branched chain alkyl groups and cyclic alkyl groups having 1 to 20 carbon atoms. More preferred such unsubstituted alkyl groups have from 1 to 10 carbon atoms while even more preferred such groups have from 1 to 5 carbon atoms.
- Most preferred unsubstituted alkyl groups include straight and branched chain alkyl groups having from 1 to 3 carbon atoms and include methyl, ethyl, propyl, and -CH(CH 3 ) 2 .
- substituted alkyl refers to an unsubstituted alkyl group as defined above in which one or more bonds to a carbon(s) or hydrogen(s) are replaced by a bond to non-hydrogen and non-carbon atoms such as, but not limited to, a halogen atom in halides such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, aryloxy groups, and ester groups; a sulfur atom in groups such as thiol groups, alkyl and aryl sulfide groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as in trialky
- Substituted alkyl groups also include groups in which one or more bonds to a carbon(s) or hydrogen(s) atom is replaced by a bond to a heteroatom such as oxygen in carbonyl, carboxyl, and ester groups; nitrogen in groups such as imines, oximes, hydrazones, and nitriles.
- Preferred substituted alkyl groups include, among others, alkyl groups in which one or more bonds to a carbon or hydrogen atom is/are replaced by one or more bonds to fluorine atoms.
- One example of a substituted alkyl group is the trifluoromefhyl group and other alkyl groups that contain the trifluoromethyl group.
- alkyl groups include those in which one or more bonds to a carbon or hydrogen atom is replaced by a bond to an oxygen atom such that the substituted alkyl group contains a hydroxyl, alkoxy, aryloxy group, or heterocyclyloxy group.
- Still other alkyl groups include alkyl groups that have an amine, alkylamine, dialkylamine, arylamine, (alkyl)(aryl)amine, diarylamine, heterocyclylamine, (alkyl)(heterocyclyl)amine, (aryl)(heterocyclyl)amine, or diheterocyclylamine group.
- unsubstituted aryl refers to aryl groups that do not contain heteroatoms.
- the phrase includes, but is not limited to, groups such as phenyl, biphenyl, anthracenyl, naphthenyl by way of example.
- the phrase "unsubstituted aryl” includes groups containing condensed rings such as naphthalene, it does not include aryl groups that have other groups such as alkyl or halo groups bonded to one of the ring members, as aryl groups such as tolyl are considered herein to be substituted aryl groups as described below.
- a preferred unsubstituted aryl group is phenyl.
- Unsubstituted aryl groups may be bonded to one or more carbon atom(s), oxygen atom(s), nitrogen atom(s), and/or sulfur atom(s) in the parent compound, however.
- substituted aryl group has the same meaning with respect to unsubstituted aryl groups that substituted alkyl groups had with respect to unsubstituted alkyl groups.
- a substituted aryl group also includes aryl groups in which one of the aromatic carbons is bonded to one of the non-carbon or non-hydrogen atoms described above and also includes aryl groups in which one or more aromatic carbons of the aryl group is bonded to a substituted and/or unsubstituted alkyl, alkenyl, or alkynyl group as defined herein.
- unsubstituted alkenyl refers to straight and branched chain and cyclic groups such as those described with respect to unsubstituted alkyl groups as defined above, except that at least one double bond exists between two carbon atoms.
- substituted alkenyl has the same meaning with respect to unsubstituted alkenyl groups that substituted alkyl groups had with respect to unsubstituted alkyl groups.
- a substituted alkenyl group includes alkenyl groups in which a non-carbon or non-hydrogen atom is bonded to a carbon double bonded to another carbon and those in which one of the non-carbon or non-hydrogen atoms is bonded to a carbon not involved in a double bond to another carbon.
- substituted alkynyl has the same meaning with respect to unsubstituted alkynyl groups that substituted alkyl groups had with respect to unsubstituted alkyl groups.
- a substituted alkynyl group includes alkynyl groups in which a non-carbon or non-hydrogen atom is bonded to a carbon triple bonded to another carbon and those in which a non-carbon or non-hydrogen atom is bonded to a carbon not involved in a triple bond to another carbon.
- unsubstituted aralkyl refers to unsubstituted alkyl groups as defined above in which a hydrogen or carbon bond of the unsubstituted alkyl group is replaced with a bond to an aryl group as defined above.
- methyl (- CH 3 ) is an unsubstituted alkyl group.
- a hydrogen atom of the methyl group is replaced by a bond to a phenyl group, such as if the carbon of the methyl were bonded to a carbon of benzene, then the compound is an unsubstituted aralkyl group (i.e., a benzyl group).
- the phrase includes, but is not limited to, groups such as benzyl, diphenylmethyl, and 1-phenylethyl (-CH(C 6 H 5 )(CH3)) among others.
- substituted aralkyl has the same meaning with respect to unsubstituted aralkyl groups that substituted aryl groups had with respect to unsubstituted aryl groups.
- a substituted aralkyl group also includes groups in which a carbon or hydrogen bond of the alkyl part of the group is replaced by a bond to a non-carbon or a non-hydrogen atom. Examples of substituted aralkyl groups include, but are not limited to, and -CH 2 (2-methylphenyl) among others.
- unsubstituted heterocyclyl refers to both aromatic and nonaromatic ring compounds including monocyclic, bicyclic, and polycychc ring compounds such as, but not limited to, quinuclidyl, containing 3 or more ring members of which one or more is a heteroatom such as, but not limited to, N, O, and S.
- unsubstituted heterocyclyl includes condensed heterocyclic rings such as benzimidazolyl, it does not include heterocyclyl groups that have other groups such as alkyl or halo groups bonded to one of the ring members as compounds such as 2-methylbenzimidazolyl are substituted heterocyclyl groups.
- heterocyclyl groups include, but are not limited to: unsaturated 3 to 8 membered rings containing 1 to 4 nitrogen atoms such as, but not limited to pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridinyl, dihydropyridinyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g. 4H-l,2,4-triazolyl, lH-l,2,3-triazolyl, 2H-l,2,3-triazolyl etc.), tetrazolyl, (e.g.
- saturated 3 to 8 membered rings containing 1 to 4 nitrogen atoms such as, but not limited to, pyrrolidinyl, imidazolidinyl, piperidinyl, piperazinyl; condensed unsaturated heterocyclic groups containing 1 to 4 nitrogen atoms such as, but not limited to, indolyl, isoindolyl, indolinyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl; unsaturated 3 to 8 membered rings containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms such as, but not limited to, oxazolyl, isoxazolyl, oxadiazolyl (e.g.
- unsaturated 3 to 8 membered rings containing 1 to 3 sulfur atoms and 1 to 3 nitrogen atoms such as, but not limited to, thiazolyl, isothiazolyl, thiadiazolyl (e.g.
- Heterocyclyl group also include those described above in which one or more S atoms in the ring is double-bonded to one or two oxygen atoms (sulfoxides and sulfones).
- heterocyclyl groups include tetrahydrothiophene oxide and tetrahydrothiophene 1,1 -dioxide.
- Preferred heterocyclyl groups contain 5 or 6 ring members.
- More preferred heterocyclyl groups include morpholine, piperazine, piperidine, pyrrolidine, imidazole, pyrazole, 1,2,3-triazole, 1 ,2,4-triazole, tetrazole, thiophene, thiomorpholine, thiomorpholine in which the S atom of the thiomorpholine is bonded to one or more O atoms, pyrrole, homopiperazine, oxazolidin-2-one, pyrrolidin-2-one, oxazole, quinuclidine, thiazole, isoxazole, furan, and tetrahydrofuran.
- substituted heterocyclyl refers to an unsubstituted heterocyclyl group as defined above in which one or more of the ring members is bonded to a non-hydrogen atom such as described above with respect to substituted alkyl groups and substituted aryl groups.
- examples include, but are not limited to, 2- methylbenzimidazolyl, 5-methylbenzimidazolyl, 5-chlorobenzthiazolyl, N-alkyl piperazinyl groups such as 1-methyl piperazinyl, piperazine-N-oxide, N-alkyl piperazine N-oxides, 2-phenoxy-thiophene, and 2-chloropyridinyl among others.
- substituted heterocyclyl groups also include heterocyclyl groups in which the bond to the non-hydrogen atom is a bond to a carbon atom that is part of a substituted and unsubstituted aryl, substituted and unsubstituted aralkyl, or unsubstituted heterocyclyl group.
- Examples include but are not limited to 1- benzylpiperidinyl, 3-phenythiomorpholinyl, 3-(pyrrolidin-l-yl)-pyrrolidinyl, and 4- (piperidin-l-yl)-piperidinyl.
- Groups such as N-alkyl substituted piperazine groups such as N-methyl piperazine, substituted morpholine groups, and piperazine N-oxide groups such as piperazine N-oxide and N-alkyl piperazine N-oxides are examples of some substituted heterocyclyl groups.
- Groups such as substituted piperazine groups such as N-alkyl substituted piperazine groups such as N-methyl piperazine and the like, substituted morpholine groups, piperazine N-oxide groups, and N-alkyl piperazine N-oxide groups are examples of some substituted heterocyclyl groups that are especially suited as R 6 or R 7 groups.
- unsubstituted heterocyclylalkyl refers to unsubstituted alkyl groups as defined above in which a hydrogen or carbon bond of the unsubstituted alkyl group is replaced with a bond to a heterocyclyl group as defined above.
- methyl (-CH3) is an unsubstituted alkyl group. If a hydrogen atom of the methyl group is replaced by a bond to a heterocyclyl group, such as if the carbon of the methyl were bonded to carbon 2 of pyridine (one of the carbons bonded to the N of the pyridine) or carbons 3 or 4 of the pyridine, then the compound is an unsubstituted heterocyclylalkyl group.
- substituted heterocyclylalkyl has the same meaning with respect to unsubstituted heterocyclylalkyl groups that substituted aralkyl groups had with respect to unsubstituted aralkyl groups.
- a substituted heterocyclylalkyl group also includes groups in which a non-hydrogen atom is bonded to a heteroatom in the heterocyclyl group of the heterocyclylalkyl group such as, but not limited to, a nitrogen atom in the piperidine ring of a piperidinylalkyl group.
- a substituted heterocyclylalkyl group also includes groups in which a carbon bond or a hydrogen bond of the alkyl part of the group is replaced by a bond to a substituted and unsubstituted aryl or substituted and unsubstituted aralkyl group. Examples include but are not limited to phenyl-(piperidin-l-yl)-methyl and phenyl-(morpholin-4-yl)- methyl.
- unsubstituted alkylaminoalkyl refers to an unsubstituted alkyl group as defined above in which a carbon or hydrogen bond is replaced by a bond to a nitrogen atom that is bonded to a hydrogen atom and an unsubstituted alkyl group as defined above.
- methyl (-CH 3 ) is an unsubstituted alkyl group. If a hydrogen atom of the methyl group is replaced by a bond to a nitrogen atom that is bonded to a hydrogen atom and an ethyl group, then the resulting compound is -CH 2 -N(H)(CH 2 CH3) which is an unsubstituted alkylaminoalkyl group.
- substituted alkylaminoalkyl refers to an unsubstituted alkylaminoalkyl group as defined above except where one or more bonds to a carbon or hydrogen atom in one or both of the alkyl groups is replaced by a bond to a non- carbon or non-hydrogen atom as described above with respect to substituted alkyl groups except that the bond to the nitrogen atom in all alkylaminoalkyl groups does not by itself qualify all alkylaminoalkyl groups as being substituted.
- substituted alkylaminoalkyl groups does include groups in which the hydrogen bonded to the nitrogen atom of the group is replaced with a non-carbon and non- hydrogen atom.
- unsubstituted dialkylaminoalkyl refers to an unsubstituted alkyl group as defined above in which a carbon bond or hydrogen bond is replaced by a bond to a nitrogen atom which is bonded to two other similar or different unsubstituted alkyl groups as defined above.
- substituted dialkylaminoalkyl refers to an unsubstituted dialkylaminoalkyl group as defined above in which one or more bonds to a carbon or hydrogen atom in one or more of the alkyl groups is replaced by a bond to a non- carbon and non-hydrogen atom as described with respect to substituted alkyl groups.
- the bond to the nitrogen atom in all dialkylaminoalkyl groups does not by itself qualify all dialkylaminoalkyl groups as being substituted.
- unsubstituted alkoxy refers to a hydroxyl group (-OH) in which the bond to the hydrogen atom is replaced by a bond to a carbon atom of an otherwise unsubstituted alkyl group as defined above.
- substituted alkoxy refers to a hydroxyl group (-OH) in which the bond to the hydrogen atom is replaced by a bond to a carbon atom of an otherwise substituted alkyl group as defined above.
- substituted heterocyclyloxy refers to a hydroxyl group (-
- unsubstituted heterocyclyloxyalkyl refers to an unsubstituted alkyl group as defined above in which a carbon bond or hydrogen bond is replaced by a bond to an oxygen atom which is bonded to an unsubstituted heterocyclyl group as defined above.
- substituted heterocyclyloxyalkyl refers to an unsubstituted heterocyclyloxyalkyl group as defined above in which a bond to a carbon or hydrogen group of the alkyl group of the heterocyclyloxyalkyl group is bonded to a non-carbon and non-hydrogen atom as described above with respect to substituted alkyl groups or in which the heterocyclyl group of the heterocyclyloxyalkyl group is a substituted heterocyclyl group as defined above.
- unsubstituted heterocyclylalkoxy refers to an unsubstituted alkyl group as defined above in which a carbon bond or hydrogen bond is replaced by a bond to an oxygen atom which is bonded to the parent compound, and in which another carbon or hydrogen bond of the unsubstituted alkyl group is bonded to an unsubstituted heterocyclyl group as defined above.
- substituted heterocyclylalkoxy refers to an unsubstituted heterocyclylalkoxy group as defined above in which a bond to a carbon or hydrogen group of the alkyl group of the heterocyclylalkoxy group is bonded to a non-carbon and non-hydrogen atom as described above with respect to substituted alkyl groups or in which the heterocyclyl group of the heterocyclylalkoxy group is a substituted heterocyclyl group as defined above.
- a substituted heterocyclylalkoxy group also includes groups in which a carbon bond or a hydrogen bond to the alkyl moiety of the group may be substituted with one or more additional substituted and unsubstituted heterocycles. Examples include but are not limited to pyrid-2- ylmorpholin-4-ylmethyl and 2-pyrid-3-yl-2-morpholin-4-ylethyl.
- unsubstituted arylaminoalkyl refers to an unsubstituted alkyl group as defined above in which a carbon bond or hydrogen bond is replaced by a bond to a nitrogen atom which is bonded to at least one unsubstituted aryl group as defined above.
- substituted arylaminoalkyl refers to an unsubstituted arylaminoalkyl group as defined above except where either the alkyl group of the arylaminoalkyl group is a substituted alkyl group as defined above or the aryl group of the arylaminoalkyl group is a substituted aryl group except that the bonds to the nitrogen atom in all arylaminoalkyl groups does not by itself qualify all arylaminoalkyl groups as being substituted.
- substituted arylaminoalkyl groups does include groups in which the hydrogen bonded to the nitrogen atom of the group is replaced with a non-carbon and non-hydrogen atom.
- unsubstituted heterocyclylaminoalkyl refers to an unsubstituted alkyl group as defined above in which a carbon or hydrogen bond is replaced by a bond to a nitrogen atom which is bonded to at least one unsubstituted heterocyclyl group as defined above.
- substituted heterocyclylaminoalkyl refers to unsubstituted heterocyclylaminoalkyl groups as defined above in which the heterocyclyl group is a substituted heterocyclyl group as defined above and/or the alkyl group is a substituted alkyl group as defined above.
- the bonds to the nitrogen atom in all heterocyclylaminoalkyl groups does not by itself qualify all heterocyclylaminoalkyl groups as being substituted.
- substituted heterocyclylaminoalkyl groups do include groups in which the hydrogen bonded to the nitrogen atom of the group is replaced with a non-carbon and non-hydrogen atom.
- unsubstituted alkylaminoalkoxy refers to an unsubstituted alkyl group as defined above in which a carbon or hydrogen bond is replaced by a bond to an oxygen atom which is bonded to the parent compound and in which another carbon or hydrogen bond of the unsubstituted alkyl group is bonded to a nitrogen atom which is bonded to a hydrogen atom and an unsubstituted alkyl group as defined above.
- substituted alkylaminoalkoxy refers to unsubstituted alkylaminoalkoxy groups as defined above in which a bond to a carbon or hydrogen atom of the alkyl group bonded to the oxygen atom which is bonded to the parent compound is replaced by one or more bonds to a non-carbon and non-hydrogen atoms as discussed above with respect to substituted alkyl groups and/or if the hydrogen bonded to the amino group is bonded to a non-carbon and non-hydrogen atom and/or if the alkyl group bonded to the nitrogen of the amine is bonded to a non-carbon and non-hydrogen atom as described above with respect to substituted alkyl groups.
- unsubstituted dialkylaminoalkoxy refers to an unsubstituted alkyl group as defined above in which a carbon or hydrogen bond is replaced by a bond to an oxygen atom which is bonded to the parent compound and in which another carbon or hydrogen bond of the unsubstituted alkyl group is bonded to a nitrogen atom which is bonded to two other similar or different unsubstituted alkyl groups as defined above.
- substituted dialkylaminoalkoxy refers to an unsubstituted dialkylaminoalkoxy group as defined above in which a bond to a carbon or hydrogen atom of the alkyl group bonded to the oxygen atom which is bonded to the parent compound is replaced by one or more bonds to a non-carbon and non-hydrogen atoms as discussed above with respect to substituted alkyl groups and/or if one or more of the alkyl groups bonded to the nitrogen of the amine is bonded to a non-carbon and non-hydrogen atom as described above with respect to substituted alkyl groups.
- the presence of the amine and alkoxy functionality in all dialkylaminoalkoxy groups does not by itself qualify all such groups as substituted dialkylaminoalkoxy groups.
- protected with respect to hydroxyl groups, amine groups, and sulfhydryl groups refers to forms of these functionalities which are protected from undesirable reaction with a protecting group known to those skilled in the art such as those set forth in Protective Groups in Organic Synthesis, Greene, T.W.; Wuts, P. G. M., John Wiley & Sons, New York, NY, (3rd Edition, 1999) which can be added or removed using the procedures set forth therein.
- Examples of protected hydroxyl groups include, but are not limited to, silyl ethers such as those obtained by reaction of a hydroxyl group with a reagent such as, but not limited to, t-butyldimethyl- chlorosilane, trimefhylchlorosilane, triisopropylchlorosilane, triethylchlorosilane; substituted methyl and ethyl ethers such as, but not limited to methoxymethyl ether, methythiomethyl ether, benzyloxymethyl ether, /-butoxymefhyl ether, 2- methoxyethoxymethyl ether, tetrahydropyranyl ethers, 1-ethoxyethyl ether, allyl ether, benzyl ether; esters such as, but not limited to, benzoylformate, formate, acetate, trichloroacetate, and trifluoroacetate.
- protected amine groups include, but are not limited to, amides such as, formamide, acetamide, trifluoroacetamide, and benzamide; imides, such as phfhalimide, and dithiosuccinimide; and others.
- protected sulfhydryl groups include, but are not limited to, thioefhers such as S-benzyl thioether, and S-4-picolyl thioether; substituted S-methyl derivatives such as hemithio, dithio and aminothio acetals; and others.
- a "pharmaceutically acceptable salt” includes a salt with an inorganic base, organic base, inorganic acid, organic acid, or basic or acidic amino acid.
- the invention includes, for example, alkali metals such as sodium or potassium; alkaline earth metals such as calcium and magnesium or aluminum; and ammonia.
- the invention includes, for example, trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, and triethanolamine.
- the instant invention includes, for example, hydrochloric acid, hydroboric acid, nitric acid, sulfuric acid, and phosphoric acid.
- the instant invention includes, for example, formic acid, acetic acid, trifluoroacetic acid, fumaric acid, oxalic acid, tartaric acid, lactic acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
- salts of basic amino acids the instant invention includes, for example, arginine, lysine and ornithine.
- Acidic amino acids include, for example, aspartic acid and glutamic acid.
- the invention provides a method of modulating an inflammatory response and/or reducing cellular adhesion in a subject.
- Such methods include administering to the subject a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the inflammatory response is modulated in the subject and/or cellular adhesion is reduced in the subject after administration of the compound, the tautomer, the pharmaceutically acceptable salt of the compound, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof.
- the invention provides a method of treating a disorder related to inflammation in a human or animal subject.
- the method includes admimstering to the human or animal subject an effective amount of a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- Inflammation and inflammatory responses may occur with various biological conditions. Examples of such biological conditions may include cancer, autoimmune diseases, asthma, allergies, eczema, microbial infections, traumatic injuries such as burns or cuts, lupus, arthritis, cardiovascular disease such as, but not limited to, strokes and ischemic injuries, respiratory bacterial and viral infections, and other conditions associated with inflammatory responses.
- the invention provides a method of treating a disorder related to cellular adhesion in a human or animal subject.
- the method includes administering to the human or animal subject an effective amount ofa compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the invention provides a method of decreasing cellular adhesion molecules such as ICAM, VCAM, E-selectin, MMP-2, or MMP-9 levels in a human or animal subject.
- the method includes administering to the human or animal subject a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the amount of the cellular adhesion molecule is typically reduced in the subject after administration.
- the invention provides a method of decreasing circulating ICAM, VCAM, E-selectin, MMP-2, or MMP-9 levels in a human or animal subject.
- the method includes administering to the human or animal subject a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the invention provides a method of decreasing circulating cell adhesion molecules in a human or animal subject.
- the method includes administering to the human or animal subject a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the invention provides a method of monitoring the progression ofa disease or treatment in a human or animal subject.
- the method includes administering to the human or animal subject a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof and measuring the amounts of a molecule such as ICAM, VCAM, E-selectin, MMP-2, or MMP-9 levels in the subject.
- the invention provides a method of monitoring the progression of a disease or treatment in a human or animal subject.
- the method includes measuring the amount of at least one cell adhesion molecule in the subject after administration of a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof to the subject.
- the cell adhesion molecule is selected from inducible cell adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), or endothelial leukocyte adhesion molecule (E-Selectin).
- Some such methods further include withdrawing a sample of blood from the subject and then measuring the amount of the at least one cell adhesion molecule in at least a portion of the sample.
- the invention provides a method of identifying a subject in need of a compound of Structure I, a tautomer of the compound, a pharmaceutically acceptable salt of the compound, a pharmaceutically acceptable salt of the tautomer, or a mixture thereof.
- the method includes measuring the amount of at least one cell adhesion molecule in the subject before, during, or after administration of the compound of Structure I, the tautomer of the compound, the pharmaceutically acceptable salt of the compound, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof to the subject.
- the cell adhesion molecule is selected from inducible cell adhesion molecule, vascular cell adhesion molecule, or endothelial leukocyte adhesion molecule.
- the cell adhesion molecule is selected from inducible cell adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), or endothelial leukocyte adhesion molecule (E-Selectin).
- ICM inducible cell adhesion molecule
- VCAM vascular cell adhesion molecule
- E-Selectin endothelial leukocyte adhesion molecule
- the subject is a cancer patient.
- Structure I has the following formula:
- R 1 , R 2 , R 3 , and R 4 may be the same or different and are independently selected from the group consisting of H, Cl, Br, F, I, -CN, -NO 2 , -OH, -OR 15 groups, -NR 16 R 17 groups, substituted and unsubstituted amidinyl groups, substituted and unsubstituted guanidinyl groups, substituted and unsubstituted primary, secondary, and tertiary alkyl groups, substituted and unsubstituted aryl groups, substituted and unsubstituted alkenyl groups, substituted and unsubstituted alkynyl groups, substituted and unsubstituted heterocyclyl groups, substituted and unsubstituted aminoalkyl groups, substituted and unsubstituted alkylaminoalkyl groups, substituted and unsubstituted dialkylaminoalkyl groups, substituted and unsubstituted arylamino
- R 5 , R 6 , R 7 , or R 8 is selected from the group consisting of substituted and unsubstituted amidinyl groups, substituted and unsubstituted guanidinyl groups, substituted and unsubstituted saturated heterocyclyl groups, substituted and unsubstituted alkylaminoalkyl groups, substituted and unsubstituted dialkylaminoalkyl groups, substituted and unsubstituted arylaminoalkyl groups, substituted and unsubstituted diarylaminoalkyl groups, substituted and unsubstituted (alkyl)(aryl)aminoalkyl groups, substituted and unsubstituted heterocyclylalkyl groups, substituted and unsubstituted heterocyclylaminoalkyl groups, substituted and unsubstituted
- the invention relates to a pharmaceutically acceptable salt of 4-amino-5-fluoro-3-[6-(4-methylpiperazin-l -yl)-lH-benzimidazol- 2-yl]quinolin-2(lH)-one (Compound 1) or a tautomer thereof.
- the salt is selected from the group consisting of tartrate, malate, lactate, bis-acetate, citrate, mesylate, bismesylate and bishydrochloride.
- the compound of structure I is a lactate salt of 4-amino-5-fluoro-3-[6-(4-methylpiperazin- 1 -yl)- 1 H-benzimidazol-2- yl]quinolin-2(lH)-one or a tautomer thereof.
- the pharmaceutically acceptable salt of the compound of Structure I, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof is administered to the subject, and the salt is a lactate salt.
- R 12 and R 13 are H, and in other embodiments, both R 12 and R 13 are H.
- R 1 is selected from the group consisting of F,
- substituted and unsubstituted alkoxy groups substituted and unsubstituted heterocyclylalkoxy groups, substituted and unsubstituted heterocyclyl groups, substituted and unsubstituted alkylaminoalkoxy groups, substituted and unsubstituted arylaminoalkoxy groups, substituted and unsubstituted dialkylaminoalkoxy groups, substituted and unsubstituted diarylaminoalkoxy groups, and substituted and unsubstituted (alkyl)(aryl)aminoalkoxy groups.
- R 1 is F and R 2 , R 3 , R 3 , R 4 , R 5 , and R 8 are all H, and one of R 6 or R 7 is H.
- At least one of R 5 , R 6 , R 7 , and R 8 is a substituted or unsubstituted heterocyclyl group.
- At least one of R 5 , R 6 , R 7 , and R 8 is a substituted or unsubstituted heterocyclyl group comprising at least one O or N atom.
- At least one of R 5 , R 6 , R 7 , and R 8 is a substituted or unsubstituted heterocyclyl group and the heterocyclyl group is selected from the group consisting of morpholine, piperazine, piperidine, pyrrolidine, thiomorpholine, homopiperazine, tetrahydrothiophene, tetrahydrofuran, and tetrahydropyran.
- At least one of R 6 or R 7 is a substituted or unsubstituted heterocyclyl group.
- At least one of R 6 or R 7 is a substituted or unsubstituted heterocyclyl group comprising at least one O or N atom.
- one of R 6 or R 7 is a substituted or unsubstituted heterocyclyl group and the heterocyclyl group is selected from the group consisting of morpholine, piperazine, piperidine, pyrrolidine, thiomorpholine, homopiperazine, tetrahydrothiophene, tetrahydrofuran, and tetrahydropyran.
- one of R 6 or R 7 is selected from the group consisting of substituted and unsubstituted morpholine groups, and substituted and unsubstituted piperazine groups.
- one of R 6 or R 7 is a piperazine N-oxide or is an N-alkyl substituted piperazine.
- R 6 or R 7 is selected from the group consisting of-NR 20 R 21 groups wherein R 20 is selected from the group consisting of substituted and unsubstituted heterocyclyl groups; and -NR 20 R 21 groups wherein R 21 is selected from the group consisting of substituted and unsubstituted heterocyclyl groups, groups, substituted and unsubstituted aminoalkyl groups, substituted and unsubstituted alkylaminoalkyl groups, substituted and unsubstituted dialkylaminoalkyl groups, substituted and unsubstituted arylaminoalkyl groups, substituted and unsubstituted diarylaminoalkyl groups, substituted and unsubstituted (alkyl)(aryl)aminoalkyl groups, substituted and unsubstituted heterocyclylaminoalkyl groups, substituted and unsubstituted hydroxyalkyl groups
- R 1 is selected from the group consisting of
- the compounds and their corresponding salts and tautomers are provided in the following two tables below.
- the synthesis of these compounds is described in U.S. Patent No. 6,605,617, published U.S. Patent Application No. 2004/0092535, published U.S. Patent Application No. 2004/0220196 as are various kinase assay procedures.
- Each of these references is, therefore, hereby incorporated by reference in its entirety and for all purposes as if set forth in its entirety.
- the compound of Structure I is a compound of Structure II, where Structure II has the following formula:
- A is a group having one of the following Structures:
- R a is selected from H or straight or branched chain alkyl groups having from 1 to 6 carbon atoms.
- R a is a methyl group
- the compound of Structure II is a compound of Structure II A
- the pharmaceutically acceptable salt of the compound of Structure IIA, the pharmaceutically acceptable salt of the tautomer, or the mixture thereof is administered to the subject, and the salt is a lactate salt.
- R a is a H
- the compound of Structure II is a compound of Structure IIB
- R a is a methyl group
- the compound of Structure II is a compound of Structure IIC
- the compounds of any of the embodiments may be used to prepare medicaments or pharmaceutical formulations for use in any of the methods of the invention.
- compositions for use with the invention may include any of the compounds, tautomers, or salts of any of the embodiments described above in combination with a pharmaceutically acceptable carrier such as those described herein.
- compositions which may be prepared by mixing one or more compounds of the instant invention, or pharmaceutically acceptable salts tautomers thereof, or mixtures thereof with pharmaceutically acceptable carriers, excipients, binders, diluents or the like to treat or ameliorate disorders related to metastacized tumors.
- the compositions of the inventions may be used to create formulations for use in any of the methods of the invention.
- Such compositions can be in the form of, for example, granules, powders, tablets, capsules, syrup, suppositories, injections, emulsions, elixirs, suspensions or solutions.
- compositions can be formulated for various routes of administration, for example, by oral administration, by nasal administration, by rectal administration, subcutaneous injection, intravenous injection, intramuscular injections, or intraperitoneal injection.
- routes of administration for example, by oral administration, by nasal administration, by rectal administration, subcutaneous injection, intravenous injection, intramuscular injections, or intraperitoneal injection.
- dosage forms are given by way of example and should not be construed as limiting the instant invention.
- powders, suspensions, granules, tablets, pills, capsules, gelcaps, and caplets are acceptable as solid dosage forms. These can be prepared, for example, by mixing one or more compounds of the instant invention, pharmaceutically acceptable salts, tautomers, or mixtures thereof, with at least one additive such as a starch or other additive.
- Suitable additives are sucrose, lactose, cellulose sugar, mannitol, maltitol, dextran, starch, agar, alginates, chitins, chitosans, pectins, tragacanth gum, gum arabic, gelatins, collagens, casein, albumin, synthetic or semi-synthetic polymers or glycerides.
- oral dosage forms can contain other ingredients to aid in administration, such as an inactive diluent, or lubricants such as magnesium stearate, or preservatives such as paraben or sorbic acid, or anti-oxidants such as ascorbic acid, tocopherol or cysteine, a disintegrating agent, binders, thickeners, buffers, sweeteners, flavoring agents or perfuming agents. Tablets and pills may be further treated with suitable coating materials known in the art.
- suitable coating materials known in the art.
- Liquid dosage forms for oral administration may be in the form of pharmaceutically acceptable emulsions, syrups, elixirs, suspensions, and solutions, which may contain an inactive diluent, such as water.
- Pharmaceutical formulations and medicaments may be prepared as liquid suspensions or solutions using a sterile liquid, such as, but not limited to, an oil, water, an alcohol, and combinations of these.
- Pharmaceutically suitable surfactants, suspending agents, emulsifying agents may be added for oral or parenteral administration.
- suspensions may include oils.
- oils include, but are not limited to, peanut oil, sesame oil, cottonseed oil, corn oil and olive oil.
- Suspension preparation may also contain esters of fatty acids such as ethyl oleate, isopropyl myristate, fatty acid glycerides and acetylated fatty acid glycerides.
- Suspension formulations may include alcohols, such as, but not limited to, ethanol, isopropyl alcohol, hexadecyl alcohol, glycerol and propylene glycol.
- Ethers such as but not limited to, poly(ethyleneglycol), petroleum hydrocarbons such as mineral oil and petrolatum; and water may also be used in suspension formulations.
- the pharmaceutical formulations and medicaments may be a spray or aerosol containing an appropriate solvent(s) and optionally other compounds such as, but not limited to, stabilizers, antimicrobial agents, antioxidants, pH modifiers, surfactants, bioavailability modifiers and combinations of these.
- a propellant for an aerosol formulation may include compressed air, nitrogen, carbon dioxide, or a hydrocarbon based low boiling solvent.
- Injectable dosage forms generally include aqueous suspensions or oil suspensions which may be prepared using a suitable dispersant or wetting agent and a suspending agent. Injectable forms may be in solution phase or in the form of a suspension, which is prepared with a solvent or diluent. Acceptable solvents or vehicles include sterilized water, Ringer's solution, or an isotonic aqueous saline solution. Alternatively, sterile oils may be employed as solvents or suspending agents.
- the oil or fatty acid is non- volatile, including natural or synthetic oils, fatty acids, mono-, di- or tri-glycerides.
- the pharmaceutical formulation and/or medicament may be a powder suitable for reconstitution with an appropriate solution as described above.
- these include, but are not limited to, freeze dried, rotary dried or spray dried powders, amorphous powders, granules, precipitates, or particulates.
- the formulations may optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.
- the pharmaceutical formulations and medicaments may be in the form of a suppository, an ointment, an enema, a tablet or a cream for release of compound in the intestines, sigmoid flexure and/or rectum.
- Rectal suppositories are prepared by mixing one or more compounds of the instant invention, or pharmaceutically acceptable salts or tautomers of the compound, with acceptable vehicles, for example, cocoa butter or polyethylene glycol, which is present in a solid phase at normal storing temperatures, and present in a liquid phase at those temperatures suitable to release a drug inside the body, such as in the rectum.
- Oils may also be employed in the preparation of formulations of the soft gelatin type and suppositories.
- Water, saline, aqueous dextrose and related sugar solutions, and glycerols may be employed in the preparation of suspension formulations which may also contain suspending agents such as pectins, carbomers, methyl cellulose, hydroxypropyl cellulose or carboxymethyl cellulose, as well as buffers and preservatives.
- excipients and carriers are generally known to those skilled in the art and are thus included in the instant invention. Such excipients and carriers are described, for example, in "Remingtons Pharmaceutical Sciences” Mack Pub. Co., New Jersey (1991), which is incorporated herein by reference in its entirety for all purposes as if fully set forth herein.
- the formulations of the invention may be designed to be short-acting, fast-releasing, long-acting, and sustained-releasing as described below.
- the pharmaceutical formulations may also be formulated for controlled release or for slow release.
- compositions may also comprise, for example, micelles or liposomes, or some other encapsulated form, or may be administered in an extended release form to provide a prolonged storage and/or delivery effect. Therefore, the pharmaceutical formulations and medicaments may be compressed into pellets or cylinders and implanted intramuscularly or subcutaneously as depot injections or as implants such as stents. Such implants may employ known inert materials such as silicones and biodegradable polymers.
- Specific dosages may be adjusted depending on conditions of disease, the age, body weight, general health conditions, sex, and diet of the subject, dose intervals, administration routes, excretion rate, and combinations of drugs. Any of the above dosage forms containing effective amounts are well within the bounds of routine experimentation and therefore, well within the scope of the instant invention.
- a therapeutically effective dose may vary depending upon the route of administration and dosage form.
- the preferred compound or compounds of the instant invention is a formulation that exhibits a high therapeutic index.
- the therapeutic index is the dose ratio between toxic and therapeutic effects which can be expressed as the ratio between LD50 and ED50.
- the LD50 is the dose lethal to 50% of the population and the ED 50 is the dose therapeutically effective in 50% of the population.
- the LD 5 o and ED 5 o are determined by standard pharmaceutical procedures in animal cell cultures or experimental animals.
- compositions and medicaments according to the invention include the compound of Structure I or the tautomers, salts, or mixtures thereof in combination with a pharmaceutically acceptable carrier.
- the compounds of the invention may be used to prepare medicaments and pharmaceutical formulations.
- Such medicaments and pharmaceutical formulations may be used in any of the methods of treatment described herein.
- kinase inhibitors for use as anticancer agents in conjunction with the methods or compositions of the present invention include inhibitors of Epidermal Growth Factor Receptor (EGFR) kinases such as small molecule quinazolines, for example gefitinib (US 5457105, US 5616582, and US 5770599), ZD-6474 (WO 01/32651), erlotinib (Tarceva®, US 5,747,498 and WO 96/30347), and lapatinib (US 6,727,256 and WO 02/02552).
- EGFR Epidermal Growth Factor Receptor
- Kinase inhibitors for use as anticancer agents in conjunction with the methods of compositions of the present invention also include inibitors of Vascular Endothelial Growth Factor Receptor (VEGFR) kinase inhibitor such as, but not limited to, SU- 11248 (WO 01/60814), SU 5416 (US 5,883,113 and WO 99/61422), SU 6668 (US 5,883,113 and WO 99/61422), CHIR-258 (US 6,605,617 and US 6,774,237), vatalanib or PTK-787 (US 6,258,812), VEGF-Trap (WO 02/57423), B43-Genistein (WO-09606116), fenre inide (retinoic acid p-hydroxyphenylamine) (US 4,323,581), IM-862 (WO 02/62826), bevacizumab or Avastin® (WO 94/10202), KRN-951, 3-[5- (methylsulfonylpiperadine
- the compounds of the invention may be used to treat a variety of subjects.
- Suitable subjects include animals such as mammals and humans.
- Suitable mammals include, but are not limited to, primates such as, but not limited to lemurs, apes, and monkeys; rodents such as rats, mice, and guinea pigs; rabbits and hares; cows; horses; pigs; goats; sheep; marsupials; and carnivores such as felines, canines, and ursines.
- the subject or patient is a human.
- the subject or patient is a rodent such as a mouse or a rat.
- the subject or patient is an animal other than a human and in some such embodiments, the subject or patient is a mammal other than a human.
- HPLC solvents were from Burdick and Jackson (Muskegan, Michigan), or Fisher Scientific (Pittsburg, Pennsylvania). In some instances, purity was assessed by thin layer chromatography (TLC) using glass or plastic backed silica gel plates, such as, for example, Baker-Flex Silica Gel 1B2-F flexible sheets. TLC results were readily detected visually under ultraviolet light, or by employing well known iodine vapor and other various staining techniques.
- Mass spectrometric analysis was performed on one of two LCMS instruments: a Waters System (Alliance HT HPLC and a Micromass ZQ mass spectrometer; Column: Eclipse XDB-C18, 2.1 x 50 mm; Solvent system: 5-95% acetonitrile in water with 0.05% TFA; Flow rate 0.8 mL/minute; Molecular weight range 150-850; Cone Voltage 20 V; Column temperature 40°C) or a Hewlett Packard System (Series 1100 HPLC; Column: Eclipse XDB-C18, 2.1 x 50 mm; Solvent system: 1-95%) acetonitrile in water with 0.05%> TFA; Flow rate 0.4 mL/minute; Molecular weight range 150-850; Cone Voltage 50 V; Column temperature 30°C). All masses are reported as those of the protonated parent ions. [0139] GCMS analysis was performed on a Hewlet Packard instrument
- Preparative separations were carried out using either a Flash 40 chromatography system and KP-Sil, 60A (Biotage, Charlottesville, Virginia), or by HPLC using a C-18 reversed phase column.
- Typical solvents employed for the Flash 40 Biotage system were dichloromethane, methanol, ethyl acetate, hexane and triethyl amine.
- Typical solvents employed for the reverse phase HPLC were varying concentrations of acetonitrile and water with 0.1% trifluoroacetic acid.
- the resulting mixture was filtered, and the resulting solid was washed with TBME (500 mL, 2X) and then was dried under vacuum for one hour using a rubber dam.
- the resulting solid was transferred to a drying tray and dried in a vacuum oven at 50°C to a constant weight to yield 670 g (97.8%) of the title compound as a yellow powder.
- the resulting mixture was then filtered, and the flask and filter cake were washed with water (3 x 2.56 L).
- the golden yellow solid product was dried to a constant weight of 416 g (98.6%) yield) under vacuum at about 50°C in a vacuum oven.
- the flask was heated in a heating mantle to an internal temperature of 97°C (+/- 5°C) and maintained at that temperature until the reaction was complete (typically about 40 hours) as determined by HPLC. After the reaction was complete, heating was discontinued and the reaction was cooled to an internal temperature of about 80°C with stirring, and water (3.15 L) was added to the mixture via an addition funnel over the period of 1 hour while the internal temperature was maintained at 82°C (+/- 3°C). After water addition was complete, heating was discontinued and the reaction mixture was allowed to cool over a period of no less than 4 hours to an internal temperature of 20-25°C. The reaction mixture was then stirred for an additional hour at an internal temperature of 20-30°C.
- the resulting mixture was then filtered, and the flask and filter cake were washed with water (l x l L), 50% ethanol (1 x IL), and 95% ethanol (1 x IL).
- the golden yellow solid product was placed in a drying pan and dried to a constant weight of 546 g (99% yield) under vacuum at about 50°C in a vacuum oven.
- a 5000 mL, 4-neck flask was fitted with a stirrer, thermometer, condenser, and gas inlet/outlet.
- the equipped flask was charged with 265.7 g (1.12 mol. 1.0 eq) of 5-(4-methyl-piperazin-l-yl)-2-nitroaniline and 2125 mL of 200 proof EtOH.
- the resulting solution was purged with N 2 for 15 minutes.
- 20.0 g of 5% Pd/C (50% H O w/w) was added.
- the reaction was vigorously stirred at 40-50°C (internal temperature) while H 2 was bubbled through the mixture.
- the reaction was monitored hourly for the disappearance of 5-(4-methyl-piperazin-l-yl)-2-nitroaniline by HPLC.
- the typical reaction time was 6 hours.
- a 5000 mL, 4-neck jacketed flask was fitted with a mechanical stirrer, condenser, temperature probe, gas inlet, and oil bubbler.
- the equipped flask was charged with 300 g (1.27 mol) of 5-(4-methyl-piperazin-l-yl)-2-nitroaniline and 2400 mL of 200 proof EtOH (the reaction may be and has been conducted with 95% ethanol and it is not necessary to use 200 proof ethanol for this reaction).
- the resulting solution was stirred and purged with N 2 for 15 minutes.
- 22.7 g of 5% Pd/C (50% H 2 O w/w) was added to the reaction flask.
- the reaction vessel was purged with N 2 for 15 minutes.
- reaction vessel was purged with H 2 by maintaining a slow, but constant flow of H 2 through the flask.
- the reaction was stirred at 45-55°C (internal temperature) while H 2 was bubbled through the mixture until the 5-(4-methyl-piperazin-l-yl)-2-nitroaniline was completely consumed as determined by HPLC.
- the typical reaction time was 6 hours.
- the bright yellow solid was placed in a drying tray and dried in a vacuum oven at 50°C overnight providing 155.3 g (47.9%) of the desired 4-amino-5-fTuoro-3-[6-(4- mefhyl-piperazin- 1 -yl)- 1 H-benzimidazol-2-yl] - 1 H-quinolin-2-one .
- a 5000 mL 4-neck jacketed flask was equipped with a distillation apparatus, a temperature probe, a N 2 gas inlet, an addition funnel, and a mechanical stirrer.
- [6-(4-Methyl-piperazin-l-yl)-lH-benzimidazol-2-yl]-acetic acid ethyl ester (173.0 g, 570 mmol) was charged into the reactor, and the reactor was purged with N 2 for 15 minutes. Dry THF (2600 mL) was then charged into the flask with stirring. After all the solid had dissolved, solvent was removed by distillation (vacuum or atmospheric (the higher temperature helps to remove the water) using heat as necessary.
- the reaction was stirred for 3.5 to 4.5 hours (in some examples it was stirred for 30 to 60 minutes and the reaction may be complete within that time) while maintaining the internal temperature at from 38- 42°C. A sample of the reaction was then removed and analyzed by HPLC. If the reaction was not complete, additional KHMDS solution was added to the flask over a period of 5 minutes and the reaction was stirred at 38-42°C for 45-60 minutes (the amount of KHMDS solution added was determined by the following: If the IPC ratio is ⁇ 3.50, then 125 mL was added; if 10.0 > IPC ratio > 3.50, then 56 mL was added; if 20.0 > IPC ratio > 10, then 30 mL was added.
- the IPC ratio is equal to the area corresponding to 4-amino-5-fluoro-3-[6-(4-methyl-piperazin-l-yl)-lH-benzimidazol- 2-yl]-lH-quinolin-2-one) divided by the area corresponding to the uncyclized intermediate).
- the reflux condenser was then replaced with a distillation apparatus and solvent was removed by distillation (vacuum or atmospheric) using heat as required. After 1500 mL of solvent had been removed, distillation was discontinued and the reaction was purged with N 2 . Water (1660 mL) was then added to the reaction flask while maintaining the internal temperature at 20-30°C. The reaction mixture was then stirred at 20-30°C for 30 minutes before cooling it to an internal temperature of 5- 10°C and then stirring for 1 hour. The resulting suspension was filtered, and the flask and filter cake were washed with water (3 x 650 mL).
- the internal temperature of the mixture was raised until a temperature of 63°C (+/- 3°C) was achieved.
- the reaction was then monitored for completion using HPLC to check for consumption of the starting materials (typically in 2-3 hours, both starting materials were consumed (less than 0.5% by area % HPLC)). If the reaction was not complete after 2 hours, another 0.05 equivalents of potassium t- butoxide was added at a time, and the process was completed until HPLC showed that the reaction was complete. After the reaction was complete, 650 mL of water was added to the stirred reaction mixture. The reaction was then warmed to an internal temperature of 50°C and the THF was distilled away (about 3 L by volume) under reduced pressure from the reaction mixture. Water (2.6 L) was then added dropwise to the reaction mixture using an addition funnel. The mixture was then cooled to room temperature and stirred for at least 1 hour.
- a 3000 mL 4-neck flask equipped with a condenser, temperature probe, N 2 gas inlet, and mechanical stirrer was placed in a heating mantle.
- the flask was then charged with 4-amino-5-fluoro-3-[6-(4-methyl-piperazin-l-yl)-lH- benzimidazol-2-yl]-lH-quinolin-2-one (101.0 g, 0.26 mol), and the yellow solid was suspended in 95% ethanol (1000 mL) and stirred. In some cases an 8:1 solvent ratio is used.
- the suspension was then heated to a gentle reflux (temperature of about
- a 3000 mL 4-necked jacketed flask was fitted with a condenser, a temperature probe, a N 2 gas inlet, and a mechanical stirrer.
- the reaction vessel was purged with N 2 for at least 15 minutes and then charged with 4-amino-5-fluoro-3-[6- (4-methyl-piperazin-l-yl)-lH-benzimidazol-2-yl]-lH-quinolin-2-one (484 g, 1.23 mol).
- a solution of D,L-Lactic acid 243.3 g, 1.72 mol of monomer-see the following paragraph
- water (339 mL)
- ethanol (1211 mL) was prepared and then charged to the reaction flask.
- the reaction flask was then cooled to an internal temperature ranging from about 64-70°C within 15-25 minutes and this temperature was maintained for a period of about 30 minutes.
- the reactor was inspected for crystals. If no crystals were present, then crystals of the lactic acid salt of 4-amino-5-fluoro-3- [6-(4-methyl-piperazin- 1 -yl)- 1 H-benzimidazol -2-yl] - 1 H- quinolin-2-one (484 mg, 0.1 mole %) were added to the flask, and the reaction was stirred at 64-70°C for 30 minutes before again inspecting the flask for crystals.
- the collected solid was dried to a constant weight at 50°C under vacuum in a vacuum oven yielding 510.7 g (85.7%) of the crystalline yellow lactic acid salt of 4-amino-5-fluoro-3-[6-(4-methyl-piperazin- l-yl)-lH-benzimidazol-2-yl]-lH-quinolin-2-one.
- a rubber dam or inert conditions were typically used during the filtration process. While the dry solid did not appear to be very hygroscopic, the wet filter cake tends to pick up water and become sticky. Precautions were taken to avoid prolonged exposure of the wet filter cake to the atmosphere.
- lactic acid generally contains about 8-12% w/w water, and contains dimers and trimers in addition to the monomeric lactic acid.
- the mole ratio of lactic acid dimer to monomer is generally about 1.0:4.7.
- Commercial grade lactic acid may be used in the process described in the preceding paragraph as the monolactate salt preferentially precipitates from the reaction mixture.
- Compound 2 the N-oxide metabolite of Compound 1, was synthesized as shown in the scheme below.
- Compound 1 was heated in a mixture of ethanol, dimethylacetamide and hydrogen peroxide.
- Compound 2 was isolated by filtration and washed with ethanol. If necessary, the product could be further purified by column chromatography.
- Compound 3 the N-desmethyl metabolite of Compound 1, was synthesized as shown in the scheme below. 5-Chloro-2-nitroaniline was treated with piperazine to yield 4 which was subsequently protected with a butyloxycarbonyl (Boc) group to yield 5. Reduction of the nitro group followed by condensation with 3-ethoxy-3-iminopropionic acid ethyl ester gave 6. Condensation of 6 with 6- fluoroanthranilonitrile using potassium hexamethyldisilazide as the base yielded 7. Crude 7 was treated with aqueous HCl to yield the desired metabolite as a yellow/brown solid after purification.
- 5-Chloro-2-nitroaniline was treated with piperazine to yield 4 which was subsequently protected with a butyloxycarbonyl (Boc) group to yield 5. Reduction of the nitro group followed by condensation with 3-ethoxy-3-iminopropionic acid ethyl ester gave 6. Condensation
- 4T1 breast tumor cells were grown as subcutaneous tumors in BALB/C mice, and treatment (10, 30, 60, 100, and 150 mg/kg) with 4-amino-5-fluoro-3-[6-(4- methylpiperazin-l-yl)-lH-benzimidazol-2-yl]quinolin-2(lH)-one (Compound 1) were initiated when tumors were approximately 150 mm 3 . Mice were dosed orally, daily for 18 days.
- FIG. 1 is a graph showing the effects of 4-amino-5-fluoro-3-[6-(4- methylpiperazin-l-yl)-lH-benzimidazol-2-yl]quinolin-2(lH)-one in the 4T1 murine breast tumor model.
- the growth of subcutaneous tumors was inhibited (40-80% compared to control), liver metastases were completely inhibited, and lung metastases were inhibited by 60-97% after 18 days of dosing.
- Table 1 Table 1
- the standard was used at a range of 4000 pg/mL to 31 pg/mL.
- the serum samples were diluted 1/200 followed by 3-fold serial dilutions.
- the samples and standards were added at 50 ⁇ L/well and incubated at 37°C for 1 hour.
- the plates were washed three times and incubated at 37°C for 1 hour with the primary antibody (biotinylated goat anti-mouse VCAM-1, R&D Systems #BAF643) diluted 1/200 in wash buffer, 50 ⁇ L/well.
- the plates were washed as described above and incubated at 37°C for 1 hour with stepavidin-HRP (R&D Systems #DY998) 1/200 in PBS/1% goat serum without Tween 20.
- the standard was used at a dilution range of 1/10-1/1280.
- the serum samples were diluted 1/15 followed by 3-fold serial dilutions.
- the samples and standards were added at 50 ⁇ L/well and incubated at 37°C for 1 hour.
- the plates were washed three times and incubated at 37°C for 1 hour with the primary antibody (goat anti-ICAM-1, Santa Cruz Biotechnology #sc-1511) diluted 1/250 in wash buffer, 50 ⁇ L/well.
- the plates were washed as above and incubated at 37°C for 1 hour with 50 ⁇ L/well of the secondary antibody (swine anti-goat IgG HRPO labeled, Caltag #G50007) 1/2000 in wash buffer.
- mice Female Nu/nu mice (6-8 weeks old, 18-22 grams) were obtained from
- Tumor cells (2 x 10 6 KM12L4a) were implanted subcutaneous into the flank of mice and allowed to grow to the desired size before treatment was initiated.
- Tumor bearing mice were administered with 100 mg/kg of 4-amino-5-fluoro-3-[6-(4-methylpiperazin-l-yl)-lH-benzimidazol-2- yl]quinolin-2(lH)-one for 7 days, and individual mice were euthanized. The tumors were resected and flash frozen in liquid nitrogen.
- Resected tumors were lysed in RIPA buffer (1 % Nonidet P-40, 0.5% sodium deoxycholate, 0.1% Sodium dodecylsulphate in IX phosphate buffered saline, pH 7.2) containing protease inhibitors (Roche Molecular Biochemicals) and phosphatase inhibitors (Sigma). 50 ⁇ g of total proteins were analyzed by gelatin zymography on 12% SDS polyacrylamide with gelatin substrate.
- VEGF-A protein levels in KM12L4a tumor lysates were quantified using a commercially available ELISA kit (R and D Systems, Minneapolis, MN) according to the manufacturer's procedures.
- HUVECs were cultured in EGM (Endothelial Cell Growth Media) with or without 100 nM 4-amino-5-fluoro-3-[6-(4-methylpiperazin-l-yl)-lH- benzimidazol-2-yl]quinolin-2(lH)-one (Compound 1), and cell lysates were collected at 0, 16, and 24 hours post-treatment. Equal amounts of proteins were loaded in 4- 20% SDS-PAGE, and the gels were probed with antibodies against ICAM, VCAM, ⁇ 5 integrin,, and ⁇ v integrin. The equal loading and efficiency was evaluated by probing with anti ⁇ -actin antibody.
- the organic compounds according to the invention may exhibit the phenomenon of tautomerism.
- the chemical stnictures within this specification can only represent one of the possible tautomeric forms at a time, it should be understood that the invention encompasses any tautomeric form of the drawn structure.
- the compound of Structure IIIB is shown below with one tautomer, Tautomer IIIBa:
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Rheumatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pain & Pain Management (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006133536/15A RU2377988C2 (en) | 2004-02-20 | 2005-02-18 | Modulation of inflammatory and metastatic processes |
CA2556872A CA2556872C (en) | 2004-02-20 | 2005-02-18 | Modulation of inflammatory and metastatic processes |
BRPI0507891-1A BRPI0507891A (en) | 2004-02-20 | 2005-02-18 | modulation of inflammatory and metastatic processes |
JP2006554253A JP5019884B2 (en) | 2004-02-20 | 2005-02-18 | Regulation of inflammatory and metastatic processes |
AU2005216904A AU2005216904B2 (en) | 2004-02-20 | 2005-02-18 | Modulation of inflammatory and metastatic processes |
CN2005800095231A CN1960731B (en) | 2004-02-20 | 2005-02-18 | Method for regulating inflammatory and metastatic processes |
EP05723338A EP1718306A2 (en) | 2004-02-20 | 2005-02-18 | Modulation of inflammatory and metastatic processes |
IL177574A IL177574A0 (en) | 2004-02-20 | 2006-08-17 | Modulation of inflammatory and metastatic processes |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US54639504P | 2004-02-20 | 2004-02-20 | |
US60/546,395 | 2004-02-20 | ||
US54710304P | 2004-02-23 | 2004-02-23 | |
US60/547,103 | 2004-02-23 | ||
US55477104P | 2004-03-19 | 2004-03-19 | |
US60/554,771 | 2004-03-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005082340A2 true WO2005082340A2 (en) | 2005-09-09 |
WO2005082340A3 WO2005082340A3 (en) | 2006-05-04 |
Family
ID=34916329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/005316 WO2005082340A2 (en) | 2004-02-20 | 2005-02-18 | Modulation of inflammatory and metastatic processes |
Country Status (10)
Country | Link |
---|---|
US (1) | US7875624B2 (en) |
EP (1) | EP1718306A2 (en) |
JP (1) | JP5019884B2 (en) |
CN (1) | CN1960731B (en) |
AU (1) | AU2005216904B2 (en) |
BR (1) | BRPI0507891A (en) |
CA (1) | CA2556872C (en) |
IL (1) | IL177574A0 (en) |
RU (1) | RU2377988C2 (en) |
WO (1) | WO2005082340A2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006077428A1 (en) * | 2005-01-21 | 2006-07-27 | Astex Therapeutics Limited | Pharmaceutical compounds |
WO2006127926A2 (en) * | 2005-05-23 | 2006-11-30 | Novartis Ag | Crystalline and other forms of 4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-quinolin-2-one lactic acid salts |
WO2007077961A2 (en) * | 2005-12-28 | 2007-07-12 | Takeda Pharmaceutical Company Limited | Fused heterocyclic compounds and their use as mineralocorticoid receptor ligands |
EP1845990A2 (en) * | 2005-01-27 | 2007-10-24 | Novartis Vaccines and Diagnostics, Inc. | Treatment of metastasized tumors |
JP2011515370A (en) * | 2008-03-19 | 2011-05-19 | ノバルティス アーゲー | Crystal form of 4-amino-5-fluoro-3- [5- (4-methylpiperazin-1-yl) -1H-benzimidazol-2-yl] quinolin-2 (1H) -one lactate and two solvents Japanese style |
WO2011128403A1 (en) * | 2010-04-16 | 2011-10-20 | Novartis Ag | Organic compound for use in the treatment of liver cancer |
US8048885B2 (en) | 2005-12-16 | 2011-11-01 | Novartis Ag | Organic compounds |
US8080563B2 (en) | 2006-07-07 | 2011-12-20 | Kalypsys | Bicyclic heteroaryl inhibitors of PDE4 |
US8138205B2 (en) | 2006-07-07 | 2012-03-20 | Kalypsys, Inc. | Heteroarylalkoxy-substituted quinolone inhibitors of PDE4 |
US8173667B2 (en) | 2005-10-21 | 2012-05-08 | Novartis Ag | 1-aza-bicycloalkyl derivatives |
US8236803B2 (en) | 2002-09-04 | 2012-08-07 | Novartis Ag | Aza-bicycloalkyl ethers and their use as alpha7-nAChR agonists |
US8293767B2 (en) | 2005-01-21 | 2012-10-23 | Astex Therapeutics Limited | 4-(2,6-dichloro-benzoylamino)-1H-pyrazole-3-carboxylic acid piperidin-4-ylamide acid addition salts as kinase inhibitors |
US8404718B2 (en) | 2005-01-21 | 2013-03-26 | Astex Therapeutics Limited | Combinations of pyrazole kinase inhibitors |
US8492374B2 (en) | 2009-04-29 | 2013-07-23 | Industrial Technology Research Institute | Azaazulene compounds |
US8609662B2 (en) | 2004-07-14 | 2013-12-17 | Novartis Ag | 3-(heteroaryl-oxy)-2-alkyl-1-aza-bicycloalkyl derivatives as alpha. 7-nachr ligands for the treatment of CNS diseases |
US8759346B2 (en) | 2005-12-16 | 2014-06-24 | Novartis Ag | Organic compounds |
US8779147B2 (en) | 2003-07-22 | 2014-07-15 | Astex Therapeutics, Ltd. | 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators |
US8933090B2 (en) | 2004-06-18 | 2015-01-13 | Novartis Ag | 1-aza-bicyclo[3.3.1]nonanes |
WO2019001419A1 (en) * | 2017-06-27 | 2019-01-03 | Janssen Pharmaceutica Nv | New quinolinone compounds |
AU2018246382B2 (en) * | 2017-03-31 | 2022-06-16 | Vivoryon Therapeutics N.V. | Novel inhibitors |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101167573B1 (en) * | 2003-11-07 | 2012-07-30 | 노바티스 백신즈 앤드 다이아그노스틱스 인코포레이티드 | Pharmaceutically acceptable salts of quinolinone compounds having improved pharmaceutical properties |
ES2440799T3 (en) * | 2005-05-13 | 2014-01-30 | Novartis Ag | Methods to treat drug resistant cancer |
JP5545925B2 (en) * | 2005-05-17 | 2014-07-09 | ノバルティス アーゲー | Method for synthesizing heterocyclic compounds |
PT1957074E (en) * | 2005-11-29 | 2014-06-25 | Novartis Ag | Formulations of quinolinones |
WO2009101018A2 (en) * | 2008-02-15 | 2009-08-20 | F. Hoffmann-La Roche Ag | 3-alkyl-piperazine derivatives and uses thereof |
AU2009266833B2 (en) * | 2008-07-03 | 2013-01-31 | Novartis Ag | Melt granulation process |
RU2012120784A (en) * | 2009-11-12 | 2013-12-20 | Селвита С.А. | COMPOUND, METHOD FOR PRODUCING IT, PHARMACEUTICAL COMPOSITION, APPLICATION OF COMPOUND, METHOD FOR MODULATION OR REGULATION OF SERINE / THREONINE KINASES AND MEANS FOR MODULATING SERINE / TREONINES |
CN104968200B (en) | 2013-02-01 | 2018-03-06 | 维尔斯达医疗公司 | Amine compounds having anti-inflammatory, antifungal, antiparasitic and anticancer activity |
EP2956138B1 (en) | 2013-02-15 | 2022-06-22 | Kala Pharmaceuticals, Inc. | Therapeutic compounds and uses thereof |
US9688688B2 (en) | 2013-02-20 | 2017-06-27 | Kala Pharmaceuticals, Inc. | Crystalline forms of 4-((4-((4-fluoro-2-methyl-1H-indol-5-yl)oxy)-6-methoxyquinazolin-7-yl)oxy)-1-(2-oxa-7-azaspiro[3.5]nonan-7-yl)butan-1-one and uses thereof |
ES2831625T3 (en) | 2013-02-20 | 2021-06-09 | Kala Pharmaceuticals Inc | Therapeutic compounds and their uses |
KR102365952B1 (en) | 2013-10-14 | 2022-02-22 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | Selectively substituted quinoline compounds |
KR102103256B1 (en) | 2013-10-14 | 2020-04-23 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | Selectively substituted quinoline compounds |
US9890173B2 (en) | 2013-11-01 | 2018-02-13 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
MX355330B (en) | 2013-11-01 | 2018-04-16 | Kala Pharmaceuticals Inc | CRYSTALLINE FORMS OF THERAPEUTIC COMPOUNDS and USES THEREOF. |
CN104529894B (en) * | 2015-01-15 | 2017-02-22 | 成都丽凯手性技术有限公司 | Quinolinone derivative and preparation method thereof |
JP2019533641A (en) | 2016-09-08 | 2019-11-21 | カラ ファーマシューティカルズ インコーポレイテッド | Crystalline forms of therapeutic compounds and uses thereof |
WO2018048747A1 (en) | 2016-09-08 | 2018-03-15 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
EP3509423A4 (en) | 2016-09-08 | 2020-05-13 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
CN108610293B (en) * | 2018-06-15 | 2020-08-04 | 南京工业大学 | Method for preparing dorvitinib intermediate by adopting microchannel reaction device |
AU2019315444A1 (en) * | 2018-07-31 | 2021-02-11 | The Trustees Of Princeton University | Tetrahydroquinolino derivatives for the treatment of metastatic and chemoresistant cancers |
CN117897370A (en) | 2021-04-22 | 2024-04-16 | 凯悦施那有限公司 | Heterocyclic compounds and their use |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000481A1 (en) * | 1998-06-29 | 2000-01-06 | Du Pont Pharmaceuticals Company | Cyclic carbamates and isoxazolidines as iib/iiia antagonists |
WO2002022598A1 (en) * | 2000-09-11 | 2002-03-21 | Chiron Corporation | Quinolinone derivatives as tyrosine kinase inhibitors |
WO2003087095A1 (en) * | 2002-04-05 | 2003-10-23 | Chiron Corporation | Quinolinone derivatives |
WO2004018419A2 (en) * | 2002-08-23 | 2004-03-04 | Chiron Corporation | Benzimidazole quinolinones and uses thereof |
WO2004030620A2 (en) * | 2002-09-30 | 2004-04-15 | Bristol-Myers Squibb Company | Novel tyrosine kinase inhibitors |
WO2004043389A2 (en) * | 2002-11-13 | 2004-05-27 | Chiron Corporation | Methods of treating cancer and related methods |
WO2004087153A2 (en) * | 2003-03-28 | 2004-10-14 | Chiron Corporation | Use of organic compounds for immunopotentiation |
WO2005046589A2 (en) * | 2003-11-07 | 2005-05-26 | Chiron Corporation | Pharmaceutically acceptable salts of quinolinone compounds having improved pharmaceutical properties |
WO2005053692A1 (en) * | 2003-12-01 | 2005-06-16 | The Scripps Research Institute | Advanced quinolinone based protein kinase inhibitors |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3663606A (en) * | 1966-06-21 | 1972-05-16 | Mitsui Toatsu Chemicals | Organic imino-compounds |
DE2363459A1 (en) | 1973-12-20 | 1975-06-26 | Basf Ag | 7-Amino-quinoline cpds. - for use as optical brighteners, dyes, colour formers in copying and in printing pastes |
US4659657A (en) * | 1982-12-24 | 1987-04-21 | Bayer Aktiengesellschaft | Chromogenic and fluorogenic esters for photometric or fluorimetric determination of phosphatases or sulphatases |
DE3248043A1 (en) | 1982-12-24 | 1984-06-28 | Bayer Ag, 5090 Leverkusen | Fluorogenic phosphoric esters, process for their preparation, and process and composition for the detection and fluorometric determination of phosphates |
DE3634066A1 (en) * | 1986-10-07 | 1988-04-21 | Boehringer Mannheim Gmbh | NEW 5-ALKYLBENZIMIDAZOLES, PROCESS FOR THEIR PRODUCTION AND MEDICINAL PRODUCTS |
US5073492A (en) * | 1987-01-09 | 1991-12-17 | The Johns Hopkins University | Synergistic composition for endothelial cell growth |
JPH07121937B2 (en) | 1987-03-18 | 1995-12-25 | 大塚製薬株式会社 | Carbostyril derivative |
JPH0699497B2 (en) | 1987-04-16 | 1994-12-07 | 富士写真フイルム株式会社 | Photopolymerizable composition |
GB8709448D0 (en) | 1987-04-21 | 1987-05-28 | Pfizer Ltd | Heterobicyclic quinoline derivatives |
JPH02229165A (en) | 1989-03-02 | 1990-09-11 | Otsuka Pharmaceut Co Ltd | Carbostyril derivative |
DE3932953A1 (en) * | 1989-10-03 | 1991-04-11 | Boehringer Mannheim Gmbh | NEW 2-BICYCLO-BENZIMIDAZOLES, METHOD FOR THEIR PRODUCTION AND MEDICINAL PRODUCTS CONTAINING THESE COMPOUNDS |
US5151360A (en) * | 1990-12-31 | 1992-09-29 | Biomembrane Institute | Effect of n,n,n-trimethylsphingosine on protein kinase-c activity, melanoma cell growth in vitro, metastatic potential in vivo and human platelet aggregation |
GB9107742D0 (en) | 1991-04-11 | 1991-05-29 | Rhone Poulenc Agriculture | New compositions of matter |
GB9108369D0 (en) | 1991-04-18 | 1991-06-05 | Rhone Poulenc Agriculture | Compositions of matter |
GB9108547D0 (en) | 1991-04-22 | 1991-06-05 | Fujisawa Pharmaceutical Co | Quinoline derivatives |
WO1992020642A1 (en) | 1991-05-10 | 1992-11-26 | Rhone-Poulenc Rorer International (Holdings) Inc. | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase |
US5480883A (en) * | 1991-05-10 | 1996-01-02 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
USRE37650E1 (en) * | 1991-05-10 | 2002-04-09 | Aventis Pharmacetical Products, Inc. | Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase |
US5710158A (en) * | 1991-05-10 | 1998-01-20 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
US5856115A (en) * | 1991-05-24 | 1999-01-05 | Fred Hutchinson Cancer Research Center | Assay for identification therapeutic agents |
CA2452130A1 (en) * | 1992-03-05 | 1993-09-16 | Francis J. Burrows | Methods and compositions for targeting the vasculature of solid tumors |
JP3142378B2 (en) | 1992-06-22 | 2001-03-07 | ティーディーケイ株式会社 | Organic EL device |
WO1994005333A1 (en) * | 1992-09-02 | 1994-03-17 | Isis Pharmaceuticals, Inc. | Oligonucleotide modulation of cell adhesion |
US5330992A (en) * | 1992-10-23 | 1994-07-19 | Sterling Winthrop Inc. | 1-cyclopropyl-4-pyridyl-quinolinones |
SE9203318D0 (en) | 1992-11-06 | 1992-11-06 | Kabi Pharmacia Ab | NOVEL 3,3-DIPHENYL PROPYLAMINES, THEIR USE AND PREPARATION |
US5981569A (en) * | 1992-11-13 | 1999-11-09 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Substituted phenylacrylonitrile compounds and compositions thereof for the treatment of disease |
US5763441A (en) * | 1992-11-13 | 1998-06-09 | Sugen, Inc. | Compounds for the treatment of disorders related to vasculogenesis and/or angiogenesis |
US5792771A (en) * | 1992-11-13 | 1998-08-11 | Sugen, Inc. | Quinazoline compounds and compositions thereof for the treatment of disease |
JPH0743896A (en) | 1993-07-28 | 1995-02-14 | Toyobo Co Ltd | Photopolymerizable composition |
US5498608A (en) | 1994-01-07 | 1996-03-12 | Salix Pharmaceuticals | Use of 2-hydroxy-5-phenylazobenzoic acid derivatives as colon cancer chemopreventative and chemotherapeutic agents |
AU5881394A (en) | 1994-01-08 | 1995-08-01 | Rhone-Poulenc Agriculture Limited | Benzimidazolyl quinoline-3-carboxylate derivatives, intermediates thereto, and their use as herbicides |
JPH0829973A (en) | 1994-07-11 | 1996-02-02 | Toyobo Co Ltd | Photopolymerized composition |
JP3441246B2 (en) * | 1995-06-07 | 2003-08-25 | 富士写真フイルム株式会社 | Photopolymerizable composition |
GB9514265D0 (en) | 1995-07-13 | 1995-09-13 | Wellcome Found | Hetrocyclic compounds |
WO1997021436A1 (en) | 1995-12-12 | 1997-06-19 | Merck & Co., Inc. | New use for losartan |
GB9624482D0 (en) * | 1995-12-18 | 1997-01-15 | Zeneca Phaema S A | Chemical compounds |
EP0888310B1 (en) | 1996-03-15 | 2005-09-07 | AstraZeneca AB | Cinnoline derivatives and use as medicine |
DE19610723A1 (en) | 1996-03-19 | 1997-09-25 | Bayer Ag | Electroluminescent devices using glare systems |
US5942385A (en) * | 1996-03-21 | 1999-08-24 | Sugen, Inc. | Method for molecular diagnosis of tumor angiogenesis and metastasis |
EP2223920A3 (en) * | 1996-06-19 | 2011-09-28 | Aventis Pharma Limited | Substituted azabicyclic compounds |
CA2258822A1 (en) | 1996-06-20 | 1997-12-24 | Sean Kerwin | Compounds and methods for providing pharmacologically active preparations and uses thereof |
ATE300521T1 (en) | 1996-09-25 | 2005-08-15 | Astrazeneca Ab | QUINOLINE DERIVATIVES THAT DELAY THE EFFECT OF GROWTH FACTORS LIKE VEGF |
US6111110A (en) * | 1996-10-30 | 2000-08-29 | Eli Lilly And Company | Synthesis of benzo[f]quinolinones |
US6245760B1 (en) | 1997-05-28 | 2001-06-12 | Aventis Pharmaceuticals Products, Inc | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
DE69807222T2 (en) | 1997-06-02 | 2003-04-17 | Janssen Pharmaceutica N.V., Beerse | (IMIDAZOL-5-YL) METHYL-2-QUINOLINONE DERIVATIVES AS INHIBITORS OF PROLIFERATION OF SMOOTH MUSCLE CELLS |
GB9716557D0 (en) * | 1997-08-06 | 1997-10-08 | Glaxo Group Ltd | Benzylidene-1,3-dihydro-indol-2-one derivatives having anti-cancer activity |
WO1999010349A1 (en) | 1997-08-22 | 1999-03-04 | Zeneca Limited | Oxindolylquinazoline derivatives as angiogenesis inhibitors |
EP1017682A4 (en) | 1997-09-26 | 2000-11-08 | Merck & Co Inc | Novel angiogenesis inhibitors |
DE19756235A1 (en) * | 1997-12-17 | 1999-07-01 | Klinge Co Chem Pharm Fab | New piperidinyl-substituted pyridylalkane alkene and alkane carboxylic acid amides |
AU3363599A (en) | 1998-03-26 | 1999-10-18 | Max-Planck Institut Fur Biochemie | Heterocyclic families of compounds for the modulation of tyrosine protein kinase |
JP2002509928A (en) | 1998-03-31 | 2002-04-02 | ワーナー−ランバート・カンパニー | Quinolones as serine protease inhibitors |
CA2328893A1 (en) | 1998-05-20 | 1999-11-25 | Kyowa Hakko Kogyo Co., Ltd. | Vegf activity inhibitors |
JP4533534B2 (en) | 1998-06-19 | 2010-09-01 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | Inhibitor of glycogen synthase kinase 3 |
US6174912B1 (en) * | 1998-08-21 | 2001-01-16 | Dupont Pharmaceuticals Company | Nitrogen substituted imidazo[4,5-C]pyrazoles as corticotropin releasing hormone antagonists |
DE19841985A1 (en) | 1998-09-03 | 2000-03-09 | Schering Ag | New heterocyclic alkanesulfonic and alkane carboxylic acid derivatives are VEGF receptor blockers useful in treatment of e.g. psoriasis, rheumatoid arthritis, stroke, tumors and endometriosis |
US20030087854A1 (en) * | 2001-09-10 | 2003-05-08 | Isis Pharmaceuticals Inc. | Antisense modulation of fibroblast growth factor receptor 3 expression |
JP4707240B2 (en) * | 1999-05-05 | 2011-06-22 | アベンティス・フアーマ・リミテッド | Urea as a cell adhesion regulator |
KR100298572B1 (en) * | 1999-08-19 | 2001-09-22 | 박찬구 | The method for preparing 4-nitrodiphenylamine and 4-nitrosodiphenylamine from carbanilide |
ES2235970T3 (en) * | 1999-10-19 | 2005-07-16 | MERCK & CO. INC. | THYROSINE KINASE INHIBITORS. |
AU778588B2 (en) * | 1999-10-19 | 2004-12-09 | Merck Sharp & Dohme Corp. | Tyrosine kinase inhibitors |
US6420382B2 (en) * | 2000-02-25 | 2002-07-16 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6313138B1 (en) * | 2000-02-25 | 2001-11-06 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
WO2002020500A2 (en) * | 2000-09-01 | 2002-03-14 | Icos Corporation | Materials and methods to potentiate cancer treatment |
ATE448226T1 (en) * | 2000-09-01 | 2009-11-15 | Novartis Vaccines & Diagnostic | AZA HETEROCYCLIC DERIVATIVES AND THEIR THERAPEUTIC USE |
EP1401831A1 (en) * | 2001-07-03 | 2004-03-31 | Chiron Corporation | Indazole benzimidazole compounds as tyrosine and serine/threonine kinase inhibitors |
US20040208844A1 (en) * | 2001-08-01 | 2004-10-21 | Francis Ignatious | Products and drug delivery vehicles |
US20030083286A1 (en) * | 2001-08-22 | 2003-05-01 | Ching-Leou Teng | Bioadhesive compositions and methods for enhanced intestinal drug absorption |
US20030159702A1 (en) * | 2002-01-21 | 2003-08-28 | Lindell Katarina E.A. | Formulation and use manufacture thereof |
US7825132B2 (en) * | 2002-08-23 | 2010-11-02 | Novartis Vaccines And Diagnostics, Inc. | Inhibition of FGFR3 and treatment of multiple myeloma |
US20050256157A1 (en) * | 2002-08-23 | 2005-11-17 | Chiron Corporation | Combination therapy with CHK1 inhibitors |
US6774327B1 (en) * | 2003-09-24 | 2004-08-10 | Agilent Technologies, Inc. | Hermetic seals for electronic components |
WO2005037306A1 (en) | 2003-10-17 | 2005-04-28 | Novo Nordisk A/S | Combination therapy |
MX2007014612A (en) * | 2005-05-18 | 2008-01-17 | M & G Polimeri Italia Spa | Polyester composition. |
-
2005
- 2005-02-18 RU RU2006133536/15A patent/RU2377988C2/en not_active IP Right Cessation
- 2005-02-18 CN CN2005800095231A patent/CN1960731B/en not_active Expired - Fee Related
- 2005-02-18 JP JP2006554253A patent/JP5019884B2/en not_active Expired - Fee Related
- 2005-02-18 AU AU2005216904A patent/AU2005216904B2/en not_active Ceased
- 2005-02-18 BR BRPI0507891-1A patent/BRPI0507891A/en not_active IP Right Cessation
- 2005-02-18 US US11/061,386 patent/US7875624B2/en not_active Expired - Fee Related
- 2005-02-18 EP EP05723338A patent/EP1718306A2/en not_active Withdrawn
- 2005-02-18 WO PCT/US2005/005316 patent/WO2005082340A2/en active Application Filing
- 2005-02-18 CA CA2556872A patent/CA2556872C/en not_active Expired - Fee Related
-
2006
- 2006-08-17 IL IL177574A patent/IL177574A0/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000481A1 (en) * | 1998-06-29 | 2000-01-06 | Du Pont Pharmaceuticals Company | Cyclic carbamates and isoxazolidines as iib/iiia antagonists |
WO2002022598A1 (en) * | 2000-09-11 | 2002-03-21 | Chiron Corporation | Quinolinone derivatives as tyrosine kinase inhibitors |
WO2003087095A1 (en) * | 2002-04-05 | 2003-10-23 | Chiron Corporation | Quinolinone derivatives |
WO2004018419A2 (en) * | 2002-08-23 | 2004-03-04 | Chiron Corporation | Benzimidazole quinolinones and uses thereof |
WO2004030620A2 (en) * | 2002-09-30 | 2004-04-15 | Bristol-Myers Squibb Company | Novel tyrosine kinase inhibitors |
WO2004043389A2 (en) * | 2002-11-13 | 2004-05-27 | Chiron Corporation | Methods of treating cancer and related methods |
WO2004087153A2 (en) * | 2003-03-28 | 2004-10-14 | Chiron Corporation | Use of organic compounds for immunopotentiation |
WO2005046589A2 (en) * | 2003-11-07 | 2005-05-26 | Chiron Corporation | Pharmaceutically acceptable salts of quinolinone compounds having improved pharmaceutical properties |
WO2005053692A1 (en) * | 2003-12-01 | 2005-06-16 | The Scripps Research Institute | Advanced quinolinone based protein kinase inhibitors |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9012451B2 (en) | 2002-09-04 | 2015-04-21 | Novartis Ag | Aza-bicycloalkyl ethers and their use as ALPHA7-nachr agonists |
US8236803B2 (en) | 2002-09-04 | 2012-08-07 | Novartis Ag | Aza-bicycloalkyl ethers and their use as alpha7-nAChR agonists |
US9567343B2 (en) | 2002-09-04 | 2017-02-14 | Novartis Ag | Aza-bicyloalkyl ethers and their use as alpha7-nachr agonists |
US9849117B2 (en) | 2002-09-04 | 2017-12-26 | Novartis Ag | Aza-bicycloalkyl ethers and their use as alpha7-nachr agonists |
US9051278B2 (en) | 2003-07-22 | 2015-06-09 | Astex Therapeutics, Ltd. | 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators |
US8779147B2 (en) | 2003-07-22 | 2014-07-15 | Astex Therapeutics, Ltd. | 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators |
US9475811B2 (en) | 2004-06-18 | 2016-10-25 | Novartis Ag | 1-aza-bicyclo[3.3.1]nonanes |
US8933090B2 (en) | 2004-06-18 | 2015-01-13 | Novartis Ag | 1-aza-bicyclo[3.3.1]nonanes |
US8609662B2 (en) | 2004-07-14 | 2013-12-17 | Novartis Ag | 3-(heteroaryl-oxy)-2-alkyl-1-aza-bicycloalkyl derivatives as alpha. 7-nachr ligands for the treatment of CNS diseases |
US9657010B2 (en) | 2004-07-14 | 2017-05-23 | Novartis Ag | Substituted quinuclidines as alpha 7-nicotinic acetylcholine receptor activity modulators |
WO2006077428A1 (en) * | 2005-01-21 | 2006-07-27 | Astex Therapeutics Limited | Pharmaceutical compounds |
US8293767B2 (en) | 2005-01-21 | 2012-10-23 | Astex Therapeutics Limited | 4-(2,6-dichloro-benzoylamino)-1H-pyrazole-3-carboxylic acid piperidin-4-ylamide acid addition salts as kinase inhibitors |
US8404718B2 (en) | 2005-01-21 | 2013-03-26 | Astex Therapeutics Limited | Combinations of pyrazole kinase inhibitors |
EP2301546A1 (en) * | 2005-01-27 | 2011-03-30 | Novartis Vaccines and Diagnostics, Inc. | Treatment of metastasized tumors |
JP2008528617A (en) * | 2005-01-27 | 2008-07-31 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド | Treatment of tumors that have metastasized |
EP1845990A4 (en) * | 2005-01-27 | 2008-04-30 | Novartis Vaccines & Diagnostic | Treatment of metastasized tumors |
EP1845990A2 (en) * | 2005-01-27 | 2007-10-24 | Novartis Vaccines and Diagnostics, Inc. | Treatment of metastasized tumors |
EP2270000A1 (en) * | 2005-05-23 | 2011-01-05 | Novartis AG | Crystalline and other forms of 4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-quinolin-2-one lactic acid salts |
EP2270000B1 (en) | 2005-05-23 | 2015-07-29 | Novartis AG | Crystalline and other forms of 4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1H-benzimidazol-2-yl]-1H-quinolin-2-one lactic acid salts |
WO2006127926A2 (en) * | 2005-05-23 | 2006-11-30 | Novartis Ag | Crystalline and other forms of 4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-quinolin-2-one lactic acid salts |
WO2006127926A3 (en) * | 2005-05-23 | 2007-01-18 | Novartis Ag | Crystalline and other forms of 4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-quinolin-2-one lactic acid salts |
JP2013224299A (en) * | 2005-05-23 | 2013-10-31 | Novartis Ag | Crystal and other forms of 4-amino-5- fluoro-3-[6-(4-methylpiperazin-1-yl)-1h -benzimidazol-2-yl]-1h-quinolin-2-one lactate |
US8173667B2 (en) | 2005-10-21 | 2012-05-08 | Novartis Ag | 1-aza-bicycloalkyl derivatives |
US8759346B2 (en) | 2005-12-16 | 2014-06-24 | Novartis Ag | Organic compounds |
US8637517B2 (en) | 2005-12-16 | 2014-01-28 | Novartis Ag | Organic compounds |
US8048885B2 (en) | 2005-12-16 | 2011-11-01 | Novartis Ag | Organic compounds |
US9206181B2 (en) | 2005-12-16 | 2015-12-08 | Novartis Ag | 1-aza-bicyclo[3.3.1] non-4-yl)-[5-(1H-indol-5-yl)-heteroaryl]-amines as cholinergic ligands of the n-AChR for the treatment of psychotic and neurodegenerative disorders |
WO2007077961A3 (en) * | 2005-12-28 | 2007-11-22 | Takeda Pharmaceutical | Fused heterocyclic compounds and their use as mineralocorticoid receptor ligands |
WO2007077961A2 (en) * | 2005-12-28 | 2007-07-12 | Takeda Pharmaceutical Company Limited | Fused heterocyclic compounds and their use as mineralocorticoid receptor ligands |
US8258154B2 (en) | 2006-07-07 | 2012-09-04 | Kalypsys Inc. | Bicyclic heteroaryl inhibitors of PDE4 |
US8080563B2 (en) | 2006-07-07 | 2011-12-20 | Kalypsys | Bicyclic heteroaryl inhibitors of PDE4 |
US8138205B2 (en) | 2006-07-07 | 2012-03-20 | Kalypsys, Inc. | Heteroarylalkoxy-substituted quinolone inhibitors of PDE4 |
US9078887B2 (en) | 2006-07-07 | 2015-07-14 | Kalypsys, Inc. | Bicyclic heteroaryl inhibitors of PDE4 |
JP2011515370A (en) * | 2008-03-19 | 2011-05-19 | ノバルティス アーゲー | Crystal form of 4-amino-5-fluoro-3- [5- (4-methylpiperazin-1-yl) -1H-benzimidazol-2-yl] quinolin-2 (1H) -one lactate and two solvents Japanese style |
US8492374B2 (en) | 2009-04-29 | 2013-07-23 | Industrial Technology Research Institute | Azaazulene compounds |
US8741903B2 (en) * | 2010-04-16 | 2014-06-03 | Novartis Ag | Organic compound for use in the treatment of hepatocellular cancer (HCC) |
AU2011239999B2 (en) * | 2010-04-16 | 2014-04-03 | Novartis Ag | Organic compound for use in the treatment of liver cancer |
US20130123272A1 (en) * | 2010-04-16 | 2013-05-16 | Novartis Ag | Organic compound for use in the treatment of liver cancer |
WO2011128403A1 (en) * | 2010-04-16 | 2011-10-20 | Novartis Ag | Organic compound for use in the treatment of liver cancer |
AU2018246382B2 (en) * | 2017-03-31 | 2022-06-16 | Vivoryon Therapeutics N.V. | Novel inhibitors |
WO2019001419A1 (en) * | 2017-06-27 | 2019-01-03 | Janssen Pharmaceutica Nv | New quinolinone compounds |
US11384075B2 (en) | 2017-06-27 | 2022-07-12 | Janssen Pharmaceutica Nv | Quinolinone compounds |
AU2018291687B2 (en) * | 2017-06-27 | 2022-07-14 | Janssen Pharmaceutica Nv | New quinolinone compounds |
Also Published As
Publication number | Publication date |
---|---|
AU2005216904B2 (en) | 2010-11-25 |
JP2007523185A (en) | 2007-08-16 |
CN1960731B (en) | 2011-12-07 |
US20050239825A1 (en) | 2005-10-27 |
EP1718306A2 (en) | 2006-11-08 |
US7875624B2 (en) | 2011-01-25 |
RU2377988C2 (en) | 2010-01-10 |
RU2006133536A (en) | 2008-03-27 |
CA2556872A1 (en) | 2005-09-09 |
BRPI0507891A (en) | 2007-07-24 |
IL177574A0 (en) | 2006-12-10 |
WO2005082340A3 (en) | 2006-05-04 |
CA2556872C (en) | 2015-05-12 |
CN1960731A (en) | 2007-05-09 |
AU2005216904A1 (en) | 2005-09-09 |
JP5019884B2 (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1718306A2 (en) | Modulation of inflammatory and metastatic processes | |
US10988456B2 (en) | O-aminoheteroaryl alkynyl-containing compound, preparation method therefor, and use thereof | |
US20050137399A1 (en) | Methods for synthesizing quinolinone compounds | |
US20040102455A1 (en) | Method of inhibiting kinases | |
US8299081B2 (en) | Methods for treating drug resistant cancer | |
JP2022515293A (en) | Chromoly esters and their use | |
EA006711B1 (en) | Quinolinone derivatives as tyrosine kinase inhibitors | |
JPH07503018A (en) | Pyridyl-substituted imidazole | |
EA010393B1 (en) | Quinolinone derivatives | |
JP7012289B2 (en) | Benzoylglycine derivatives and methods for their preparation and use | |
JP2020143099A (en) | COMBINATION THERAPY OF INHIBITORS OF C-C CHEMOKINE RECEPTOR 9 (CCR9) AND ANTI-α4β7 INTEGRIN BLOCKING ANTIBODIES | |
JP2020536853A (en) | Small molecule inhibition of the transcription factor SALL4 and its use | |
US20240067635A1 (en) | Cromolyn derivatives and uses thereof | |
JPH05503705A (en) | 5-oxygenated-2,4,6-triaminopyrimidines | |
MXPA06009470A (en) | Modulation of inflammatory and metastatic processes | |
JP2023142282A (en) | Medical composition for treating disease that generate filamentation | |
WO2024106529A1 (en) | Novel compound having anti-obesity activity | |
KR101051078B1 (en) | 2,4-disubstituted-5-aminocarbonyl-1,3-thiazole derivatives for the treatment of inflammation-related diseases, methods for their preparation and agents for the treatment of inflammation-related diseases caused by SPC receptor activity containing them as active ingredients | |
WO2023070076A1 (en) | Compounds for cancers driven by braf mutation | |
WO2001001981A1 (en) | Vegf receptor antagonists | |
JP2629670B2 (en) | Anti-rheumatic drug | |
JP2022505588A (en) | Composition for the prevention or treatment of Sjogren's syndrome | |
JP2003063966A (en) | Interleukin 6-production inhibitor | |
JPH03148263A (en) | Phenoxypropylamine derivative or salt thereof and antiulcer agent containing the same | |
AU2002226197A1 (en) | Methods of inhibiting kinases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006554253 Country of ref document: JP Ref document number: 2005216904 Country of ref document: AU Ref document number: 177574 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2556872 Country of ref document: CA Ref document number: PA/a/2006/009470 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005723338 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2005216904 Country of ref document: AU Date of ref document: 20050218 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005216904 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006133536 Country of ref document: RU Ref document number: 2736/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580009523.1 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2005723338 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0507891 Country of ref document: BR |