WO2005081867A2 - Salivary mrna profiling, biomarkers, and related methods and kits of parts - Google Patents

Salivary mrna profiling, biomarkers, and related methods and kits of parts Download PDF

Info

Publication number
WO2005081867A2
WO2005081867A2 PCT/US2005/005263 US2005005263W WO2005081867A2 WO 2005081867 A2 WO2005081867 A2 WO 2005081867A2 US 2005005263 W US2005005263 W US 2005005263W WO 2005081867 A2 WO2005081867 A2 WO 2005081867A2
Authority
WO
WIPO (PCT)
Prior art keywords
saliva
mrna
biomarker
bodily fluid
disease
Prior art date
Application number
PCT/US2005/005263
Other languages
French (fr)
Other versions
WO2005081867A3 (en
Inventor
David T. W. Wong
Maie A. R. St. John
Yang Li
Original Assignee
The Regents Of The University Of C Alifornia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006554246A priority Critical patent/JP4880484B2/en
Priority to CN2005800124130A priority patent/CN1977051B/en
Priority to KR1020127034042A priority patent/KR20130018438A/en
Priority to US10/589,788 priority patent/US10072297B2/en
Priority to EP05723309A priority patent/EP1730304B1/en
Priority to CA2558666A priority patent/CA2558666C/en
Priority to AU2005216095A priority patent/AU2005216095B2/en
Application filed by The Regents Of The University Of C Alifornia filed Critical The Regents Of The University Of C Alifornia
Publication of WO2005081867A2 publication Critical patent/WO2005081867A2/en
Publication of WO2005081867A3 publication Critical patent/WO2005081867A3/en
Priority to IL177579A priority patent/IL177579A/en
Priority to NO20064226A priority patent/NO340089B1/en
Priority to HK07102594.9A priority patent/HK1095163A1/en
Priority to US14/182,672 priority patent/US9983210B2/en
Priority to US16/057,911 priority patent/US20190040471A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • G01N33/5017Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity for testing neoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere

Definitions

  • the present disclosure relates to profiling of biomarkers and to method and kits using said biomarkers.
  • the present disclosure related to biomarkers for detection of cancer and in particular of Oral Cavity and Oropharyngeal squamous Cell Carcinoma (OSCC).
  • OSCC Oral Cavity and Oropharyngeal squamous Cell Carcinoma
  • Biomarkers are molecular indicators of a specific biological property, a biochemical feature or facet that can be used to measure the progress of disease or the effects of treatment.
  • Proteins and nucleic acids are exemplary biomarkers.
  • genomic messengers detected extracellularly can serve as biomarkers for diseases [6].
  • nucleic acids have been identified in most bodily fluids including blood, urine and cerebrospinal fluid, and have been successfully adopted for using as diagnostic biomarkers for diseases [28, 42, 49]. ,
  • Saliva is not a passive "ultrafiltrate" of serum [41], but contains a distinctive composition of enzymes, hormones, antibodies, and other molecules.
  • saliva is not a passive "ultrafiltrate" of serum [41], but contains a distinctive composition of enzymes, hormones, antibodies, and other molecules.
  • biomarkers in saliva are desirable to serve for diagnosing disease and monitoring human health [30, 47, 6].
  • biomarkers have been identified in saliva for monitoring caries, periodontitis, oral cancer, salivary gland diseases, and systemic disorders, e.g., hepatitis a ⁇ ruv MISO previous siu ⁇ ies snow mat ⁇ umai i uiumait sis uan ue identified in saliva and used for oral cancer detection [30, 36].
  • RNA is more labile than DNA and is presumed to be highly susceptible to degradation by RNases.
  • RNase activity is reported to be elevated in saliva, which constitutes an inexpensive, non-invasive and accessible bodily fluid suitable to act as an ideal diagnostic medium.
  • RNAase activity is reported to be elevated in saliva of cancer patients [83]. It has, thus, been commonly presumed that human mRNA could not survive extracellularly in saliva.
  • OSCC is the sixth most common cancer in the world, and affects 50,000 Americans annually. Worldwide, cancers of the oral cavity and oropharynx represent a great public health problem. OSCC accounts for nearly 50% of all newly diagnosed cancers in India and is a leading cause of death in France [1].
  • a method to detect a biomarker in a bodily fluid including a cell phase and a fluid phase, wherein the biomarker is an extracellular mRNA and bodily fluid is saliva, preferably unstimulated saliva is disclosed.
  • the method comprises: providing a cell-free fluid phase portion of the bodily fluid; and detecting the extracellular mRNA in the cell-free fluid phase portion of the bodily fluid.
  • detecting the extracellular mRNA can comprise: isolating the extracellular mRNA from the cell-free fluid phase portion of the bodily fluid, and amplifying the extracellular mRNA.
  • transcriptome analysis o ⁇ a Do ⁇ ny fluid, including a cell phase and a fluid phase, wherein the bodily fluid is saliva, is disclosed.
  • the method comprises: providing a cell-free fluid phase portion of the bodily fluid; and detecting a transcriptome pattern in the cell-free fluid phase portion of the bodily fluid.
  • the bodily fluid is preferably unstimulated saliva.
  • detecting transcriptome pattern in the saliva supernatant is preferably performed by microarray assay, most preferably by high-density oligonucleotide microarray assay. Detecting transcriptome pattern in the saliva supernatant can also performed by quantitative PCR analysis or RT- PCR analysis.
  • a method to detect genetic alterations in an organ by analyzing a bodily fluid draining from the organ and including a cell phase and a fluid phase is disclosed.
  • the bodily fluid is in particular saliva, preferably unstimulated saliva and method comprises: providing cell- free fluid phase portion of the bodily fluid; detecting a.transcriptome pattern in the cell-free fluid phase portion of the bodily fluid; and comparing the transcriptome pattern with a predetermined pattern, the predetermined pattern being indicative of a common transcriptome pattern of normal cell-free fluid phase portion of the bodily fluid.
  • a method to detect genetic alteration of a gene in an organ by analyzing a bodily fluid draining from the organ and including a cell phase and a fluid phase comprises: providing a cell-free fluid phase portion of the bodily fluid; detecting an mRNA profile of the gene in the cell- free fluid phase portion of the bodily fluid; and comparing the mRNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the mRNA profile of the gene in normal cell-free fluid phase portion of the bodily fluid,.
  • a method to diagnose an oral or systemic pathology disease or disorder in a subject comprises: providing a ce ⁇ - ⁇ ree ⁇ u ⁇ pnase portion o ⁇ x ⁇ e sanva o ⁇ trie suujeui, detecting in the provided cell-free saliva fluid phase portion an mRNA profile of a gene associated with the pathology, disease or disorder; and comparing the RNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the presence of the pathology, disease, or disorder in the subject.
  • the pathology, disease or disorder is a cancer of the oral cavity and/or of oropharynx
  • the bodily fluid is saliva and the gene is selected from the group consisting of the gene coding for IL8 (Interleukin 8), IL1 B (Interleukin 1 , beta), DUSP1 (Dual specificity phosphatase 1 ), H3F3A (H3 histone, family 3A), OAZ1 (Omithine decarboxylase antizyme 1 ), S100P (S100 calcium binding protein P) and SAT (Spermidine/spermine N1- acetyltransferase).
  • IL8 Interleukin 8
  • IL1 B Interleukin 1 , beta
  • DUSP1 Dual specificity phosphatase 1
  • H3F3A H3 histone, family 3A
  • OAZ1 Omithine decarboxylase antizyme 1
  • S100P S100 calcium binding protein P
  • SAT Spermidine/spermine N
  • the pathology, disease or disorder is a cancer of the oral cavity and/or of oropharynx
  • the bodily fluid is blood serum and the gene is selected IL6 (interleukin 6), H3F3A, TPT1 (Tumor protein trnslationally controlled 1 ), FTH1 (Ferritin heavy polypeptide 1 ), NCOA4 (Nuclear receptor coactivator 4) and ARCR (Ras homolog gene family, member A).
  • IL6 interleukin 6
  • H3F3A TPT1 (Tumor protein trnslationally controlled 1 )
  • FTH1 Feritin heavy polypeptide 1
  • NCOA4 Nuclear receptor coactivator 4
  • ARCR Ras homolog gene family, member A
  • a method to diagnose an oral or systemic pathology, disease or disorder in a subject comprises: providing a cell-free fluid phase portion of the saliva of the subject; detecting in the provided cell-free fluid phase portion a transcriptome pattern associated with the pathology, disease or disorder; and comparing the transcriptome pattern with a predetermined pattern, recognition in the transcriptome pattern of characteristics of the predetermined pattern being diagnostic for the pathology, disease or disorder in the subject.
  • transcriptome include transcript is selected from the group consisting of transcripts for IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT from saliva.
  • a method to diagnose an oral or systemic pathology, disease or disorder in a subject comprising: providing serum of the subject; detecting in the provided serum a transcriptome pattern associated with the pathology, disease or disorder; and comparing the transcriptome pattern with a predetermined pattern, recognition in the transcriptome pattern of characteristics of the predetermined pattern being diagnostic for the pathology, disease or disorder in the subject.
  • the pathology, disease or disorder is a cancer of the oral cavity and/or of oropharynx
  • transcriptome include transcript is selected from the group consisting of transcripts for IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR from serum.
  • Diseases that can be diagnosed include oropharyngeal squamous cell carcinoma possibly other systemic diseases.
  • a method for diagnosing a cancer, in 1 a subject comprises: providing a bodily fluid of the subject; detecting in the bodily fluid a profile of a biomarker, comparing the profile of the biomarker with a predetermined profile of the biomarker, recognition in the profile of the biomarker of characteristics of the predetermined profile of the biomarker being diagnostic for the cancer.
  • Pathologies, diseases or disorders that can be diagnosed include oropharyngeal squamous cell carcinoma and possibly other systemic diseases.
  • Biomarkers include IL8, IL1B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH 1 , NCOA4 and ARCR.
  • the pathology, disease or disorder is oropharyngeal squamous cell carcinoma
  • the biomarker is selected from the group consisting of IL8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT
  • the bodily ⁇ u ⁇ is sanva ana aetecting a pronie o ⁇
  • a Diomar ⁇ er is perrorme ⁇ oy ⁇ etecti ⁇ g the mRNA profile of the biomarker.
  • the pathology, disease or disorder is oropharyngeal squamous cell carcinoma
  • the biomarker is selected from the group consisting of IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR
  • the bodily fluid is serum and detecting a profile of a biomarker is performed by detecting the mRNA profile of the biomarker.
  • the pathology, disease or disorder is oropharyngeal squamous cell carcinoma
  • the biomarker is IL6
  • the bodily fluid is blood serum
  • detecting a profile of a biomarker is performed by detecting the protein profile of the biomarker
  • kits for the diagnosis of an oral and/or systemic pathology, disease or disorder comprising: an identifier of at least one biomarker in a bodily fluid, the biomarker selected from the group consisting of IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR; and a detector for the identifier.
  • Pathologies, diseases or disorders that can be diagnosed include oropharyngeal squamous cell carcinoma, and possibly the other systemic diseases.
  • the identifier and the detector are to be used in detecting the bodily fluid profile of the biomarker according to the methods herein disclosed.
  • the identifier is associated to the biomarker in the bodily fluid, and the detector is used to detect the identifier, the identifier and the detector thereby enables the detection of the bodily fluid profile of the biomarker.
  • a method to diagnose an oral and/or systemic pathology disease or disorder comprising: using salivary and/or serum mRNAs as biomarkers for oral and/or systemic pathology, disease or disorder.
  • biomarker selected from the group consisting of 1L8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR.
  • Diseases that can be diagnosed include oropharyngeal squamous cell carcinoma, and possibly other systemic diseases.
  • a method to diagnose an oral and/or system pathology comprising: using salivary or serum proteins as biomarkers for oral and/or systemic pathology, disease or disorder, in particular IL6 protein in serum and IL8 protein in saliva.
  • salivary or serum proteins as biomarkers for oral and/or systemic pathology, disease or disorder, in particular IL6 protein in serum and IL8 protein in saliva.
  • Figure 1A shows results of a RT-PCR typing for ACTB performed on RNA isolated from cell-free saliva supernatant from human beings after storage for 1 month (lane 2), 3 months (lane 3) and' 6 months (lane 4), with a 100bp ladder molecular weight marker (lane 1) and a negative control (omitting templates) (lane 5).
  • a molecular size marker is indicated on the left side of the Figure by arrows.
  • Figure 1 B shows results of a RT-PCR performed on RNA isolated from cell-free saliva supernatant from human beings (lane 1) and typing GAPDH (B1), RPS9 (B2) and ACTB (B3), with positive control (human total RNA, BD Biosciences Clontech, Palo Alto, CA, USA) (lane 2) and negative controls (omitting templates) (lane 3).
  • a molecular size marker is indicated on the left side of the Figure by arrows.
  • Figure 2A shows results of a capillary electrophoresis performed to monitor RNA amplification from RNA isolated from cell-free saliva supernatant from human beings.
  • Lanes 1 to 5 show 1kb DNA ladder (lane 1), 5 ⁇ l saliva after RNA isolation (undetectable) (lane 2), 1 ⁇ l two round amplified cRNA (range from 200 bp to ⁇ 4kb) (lane 3), 1 ⁇ l cRNA after fragmentation (around l uuop; (lane ) ano amoion KINA ueniury ⁇ v ⁇ ar ⁇ er (ia ⁇ e o .
  • M moieuuiai s ⁇ - e marker is indicated on the left side and right side of the Figure by arrows.
  • Figure 2B shows results of a PCR performed on RNA isolated from cell-free saliva supernatant from human beings at various stage of amplification and typing for ACTB.
  • Lane 1 to 8 shows 100bp DNA ladder (lane 1 ), total RNA isolated from cell-free saliva (lane 2), 1 st round cDNA (lane 3), 1st round cRNA after RT (lane 4), 2nd round cDNA (lane 5), 2nd round cRNA after RT (lane 6), positive control (human total RNA, BD Biosciences Clontech, Palo Alto, CA, USA) (lane 7) and negative control (omitting templates) (lane 8).
  • a molecular size marker is indicated on the left side of the Figure by arrows.
  • Figure 2C shows a diagram reporting results of the analysis of target cRNA performed by Agilent 2100 bioanalyzer before hybridization on microarray.
  • bp molecular weight of the fragmented cRNA with reference to the marker RNA.
  • y axis the quantity of the fragmented cRNA (ug/ml) measurable by a Bioanalyzer, is indicated.
  • Figure 3 shows results of a RT-PCR performed on RNA isolated from cell-free saliva supernatant from human beings (saliva) together with a ladder (Mrkr) positive controls (Ctrl(+)) and negative controls (Ctrl(-)) and typing for IL6 (IL6), IL8 (IL8) and ⁇ -Actin ( ⁇ -Actin).
  • IL6 IL6
  • IL8 IL8
  • ⁇ -Actin ⁇ -Actin
  • Figure 4 shows results of a PCR performed for the housekeeping ⁇ - actin on whole saliva, serum samples, and samples that had been centrifuged at 0 xg (0 xg), 1,000 ⁇ g (1 ,000 ⁇ g), 2,600 xg (2,600 xg), 5,000 xg (5,000 xg) and 10,000 ⁇ g (10,000 xg) using genomic DNA as marker (Mrkr) for cell lysis and spillage of intracellular compounds.
  • Figure 5A shows a diagram reporting the mean concentrations of mRNA for IL8 detected in replicate samples by qRT-PCR in saliva from patients with OSCC (Cancer) and normal subjects (Control). On x axis the sample groups are reported. On y axis the number of copies detected is reported .
  • Hgure ⁇ B shows a diagram reporting tne mean concentrations o ⁇ ILO detected in replicate samples by ELISA in saliva from patients with OSCC (Cancer) and normal subjects (Control). On x axis the sample groups are reported. On y axis the concentration expressed in pg/ml, is reported.
  • Figure 6A shows a diagram reporting the mean concentrations of mRNA for IL6 detected in replicate samples by qRT-PCR in serum from patients with OSCC (Cancer) and normal subjects (Control). On x axis the sample groups are reported. On y axis the number of copies detected is reported.
  • Figure 6B shows a diagram reporting the mean concentrations of IL6 detected in replicate samples by ELISA in serum from patients with OSCC (Cancer) and normal subjects (Control). On x axis, the sample groups are reported. On y axis the concentration expressed in pg/ml, is reported
  • Figure 7A shows a diagram reporting the Receiver Operating Characteristic (ROC) curve calculated for IL8 in Saliva. On the x axis 1- specificity is reported. On y axis the sensitivity is reported.
  • ROC Receiver Operating Characteristic
  • Figure 7B shows a diagram reporting the ROC curve calculated for IL6 in serum. On the x axis 1 -specificity is reported. On y axis the sensitivity is reported.
  • Figure 7C shows a diagram reporting the ROC curve calculated for a combination of IL8 in saliva and IL6 in serum. On the x axis 1 -specificity is reported. On y axis the sensitivity is reported.
  • Figure 8 shows results of a PCR reaction performed on serum human mRNA phenotyping of salivary mRNAs for RPS9 (Lane 2, 3 and 4); GAPDH (Lane 5, 6 and 7); B2M (Lane 8, 9 and 10) and ACTB (Lane 1 1 , 12 and 13), together with DNA ladder, as a control (Lane 1).
  • Figure 9 shows a diagram reporting a ROC curve of the logistic regression model for the circulating mRNA in serum. On the x axis 1- specificity is reported. On y axis the sensitivity is reported. [UUO-ij ⁇ - ⁇ gure I U snows a ⁇ iagram reporu ⁇ y u ie u ⁇ at>.> ⁇ n-.cunj ⁇ ⁇ cm. regression trees (CART) model assessing the serum mRNA predictors for OSCC.
  • CART regression trees
  • Figure 11 shows a diagram reporting a ROC curve of the logistic regression model for the predictive power of combined salivary mRNA biomarkers. On the x axis 1 -specificity is reported. On y axis the sensitivity is reported.
  • Figure 12 shows a diagram reporting the classification and regression trees (CART) model assessing the salivary mRNA predictors for OSCC.
  • CART classification and regression trees
  • a method to detect an extracellular mRNA in a bodily fluid wherein the bodily fluid is saliva and the extracellular mRNA is detected in a cell-free fluid phase portion of saliva. Presence of RNAs in the cell-free fluid phase portion of saliva was confirmed by the procedures extensively described in the Examples, the quality of the detected mRNA meeting the demand for techniques such as PCR, qPCR, and microarray assays.
  • detecting extracellular mRNAs herein also informative mRNAs is performed in a bodily fluid, saliva, that meets the demands of an inexpensive, non-invasive and accessible bodily fluid to act as an ideal medium for investigative analysis.
  • Detecting informative mRNAs is in particular performed in a portion of saliva (cell-free fluid phase) wherein presence of microorganisms and the extraneous substances such as food debris is minimized, which allows analyzing the molecules in simple and accurate fashion.
  • the cell- free fluid phase portion of derived from unstimulated saliva.
  • the saliva can be collected according to procedures known in the art and then processed to derive the cell-free fluid phase thereof, for example by centrifugation of the collected saliva, which results in a pene.e ⁇ sanva ceil p ⁇ ase a ⁇ a ce ⁇ - ⁇ ree sanva uuiu ⁇ n ⁇ se su ⁇ tJi naiai ii. see procedures extensively described in Examples 1 , 5 and 13)
  • the conditions for separating the cell-phase and the fluid phase of saliva are optimized to avoid mechanical rupture of cellular elements which would contribute to the RNA detected in the fluid cell-free phase.
  • optimization can be performed by testing housekeeping genes on samples centrifuged at various speed and on whole saliva samples, using DNA as a marker of cell lysis and spillage, to derive the optimized centrifugation speed. (See procedure described in Example 5).
  • Detection of the extracellular mRNA in the cell-free saliva fluid phase portion can then be performed by techniques known in the art allowing mRNA qualitative and/or a quantitative analysis, such as RT- PCR, Q-PCR and Microarray.
  • the detection can in particular be performed according to procedures that can include isolation and an amplification of the salivary mRNA and that are exemplified in the Examples.
  • Detection of the salivary mRNA in the method can be performed for the purpose of profiling the salivary mRNA.
  • the expression of predetermined genes can be profiled in a cell-free fluid phase portion of saliva.
  • detection of the mRNA profile can be performed by RT-PCR or any techniques allowing identification of a predetermined target mRNA.
  • Quantitative analysis can then be performed with techniques such as Quantitative PCR (Q-PCR) to confirm the presence of mRNA identified by the RT-PCR.
  • Q-PCR Quantitative PCR
  • a reference database can then be generated based on the mRNA profiles so obtained. Exemplary procedures to perform such qualitative and quantitative analyses of salivary mRNA are described in details in Examples 1 , 4 and 9.
  • a iia ⁇ sui ⁇ tume analysis ui saliva can be performed by detecting a transcriptome pattern in the cell-free fluid phase portion of saliva. Detection of the transcriptome pattern can be performed by isolating and linearly amplifying salivary mRNA, which can then be profiled with techniques such as high-density oligonucleotide microarrays. Quantitative analysis can then be performed with techniques such as Q-PCR to confirm the presence of mRNA in the pattern identified by the microarray. A reference database can then be generated based on the mRNA profiles so obtained. Exemplary procedures to perform such qualitative and quantitative analyses of salivary mRNA are described in details in Examples 2-3, 9-10 and 14-15.
  • Profiling salivary RNA can be performed to detect and/or monitor human health and disease or to investigate biological questions, such as for example, the origin, release and clearance of mRNA in saliva.
  • the salivary mRNA provides actual or potential biomarkers to identify populations and patients at high risk for oral and systemic pathologies, diseases or disorders.
  • Alterations of the salivary mRNA profiles and transcriptome patterns characterizing the cell-free fluid phase portion of saliva or normal subjects can be indicative of pathologies, diseases or disorders of various origin. Examples of those pathologies, diseases or disorders are provided by the inflammatory conditions of the oral cavity, OSCC or other conditions such as diabetes, breast cancer and HIV.
  • salivary mRNA can be used as diagnostic biomarkers for oral and systemic pathologies, diseases or disorders that may be manifested in the oral cavity.
  • salivary mRNA can be used as diagnostic biomarkers for cancer that may be manifested and/or affect the oral cavity.
  • Sal iva-based mRNA assays nave the nee ⁇ eo specmcity ana sensitivity ⁇ or itJiicduie diagnostics.
  • alterations of the normal salivary mRNA and transcriptome patterns can also reflect the genetic alterations in one or more portions of the oral cavity which are associated with presence of the tumor.
  • the detected cancer-associated RNA signature is likely to originate from the matched tumor and/or a systemic response (local or distal) that further reflects itself in the whole saliva coming from each of the three major sources (salivary glands, gingival crevicular fluid, and oral mucosal cells). It is conceivable that disease-associated RNA can find its way into the oral cavity via the salivary gland or circulation through the gingival crevicular fluid.
  • a good example is the elevated presence of HER-2 proteins in saliva of breast cancer patients [87].
  • a common transcriptome of normal cell-free saliva including approximately 185 different human mRNAs, also defined as Normal Salivary Core Transcriptome (NSCT) was identified in outcome of a transcriptome analysis performed on cell-free fluid phase of saliva from normal subject (see Example 2, Table 2).
  • NSCT Normal Salivary Core Transcriptome
  • NSCT was identified using the probe sets on HG U1 33A microarray representing only -19,000 human genes, and the human genome composed of more than 30,000 genes [48], it is expected that more human mRNAs will be identified in saliva by other methodologies and additional salivary patterns are identifiable by the method herein disclosed.
  • NSCT and/or other salivary transcriptome patterns in cell-free saliva from normal populations can serve in a Salivary Transcriptome Diagnostics (SlvTD), for potential applications in disease diagnostics as well as normal health surveillance.
  • Salivary Transcriptome Diagnostics SlvTD
  • a method to diagnose an oral or systemic pathology disease or disorder in a subject comprises: providing a cell-free fluid phase portion of tne sanva ot tne su ject; detecting in tne provi ⁇ e ⁇ ce ⁇ - ⁇ ree sanva ⁇ u ⁇ p ⁇ ase portion an mRNA profile of a gene associated with the disease; and comparing the RNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the presence of the disease in the subject.
  • a method to diagnose an oral or systemic pathology disease or disorder in a subject comprises: providing cell-free saliva supernatant of the subject; detecting in the cell-free saliva supernatant a transcriptome pattern associated with the pathology disease or disorder; and comparing the transcriptome pattern with a predetermined pattern, recognition in the transcriptome pattern of characteristics of the predetermined pattern being diagnostic for the pathology disease or disorder in the subject.
  • a method to identify a biomarker associated with a predetermined pathology disease or disorder comprises: detecting a first mRNA profiling of a predetermined gene in cell-free fluid phase portion of saliva of a subject affected by the pathology disease or disorder; detecting a second mRNA profiling of the predetermined gene in cell-free fluid phase portion of saliva of a normal subject; comparing the first mRNA profiling with the second mRNA profiling, recognition of differences between the first mRNA profiling and the second mRNA profiling, the differences validated by statistical analysis, being indicative of the identification of the predetermined gene as a biomarker for the predetermined pathology disease or disorder.
  • RNA profiling from one disease category to one healthy category is analyzed by microarray statistical methodologies.
  • the algorithms used include MAS 5.0, DNA-Chip analyzer 1 .3 and RMA 3.0.
  • the analysis is performed by a combination of these methods to provide more powerful and accurate markers to test.
  • the markers identified by microarray will then be tested by conventional techniques such as Q-PCR.
  • Luut tj in a Tourtn emoooiment o ⁇ tne t> ⁇ v ⁇ u a ⁇ iagnostic metno ⁇ can oe performed, wherein the cell-free saliva is contacted with an identifier for the presence or expression of the biomarker, and the presence of the identifier associated to presence or expression of the biomarker is detected, preferably by means of a detector.
  • the SlvTD allow detection of diseases such as tumors at a stage early enough that treatment is likely to be successful, with screening tools exhibiting the combined features of high sensitivity and high specificity. Moreover, the screening tool are sufficiently noninvasive and inexpensive to allow widespread applicability.
  • results of the above methods of the SlvTD can be integrated with a corresponding analysis performed at an mRNA and/or protein level and/or in other bodily fluid, such as blood serum.
  • Biomarkers such as protein or transcriptome patterns detected in serum can also serve in a Serum Transcriptome Diagnostics (SrmTD), for potential applications in disease - diagnostics as well as normal health surveillance.
  • SrmTD Serum Transcriptome Diagnostics
  • Embodiments of the SrmTD include methods corresponding to the ones reported above for the SlvTD, wherein the bodily fluid analyzed is serum instead of cell-free saliva.
  • the results obtained following the SlvTD can be combined with results obtained with the SrmTD, in a combined Salivary and Serum Transicriptome approach (SSTD).
  • SSTD Salivary and Serum Transicriptome approach
  • a diagnostic method can be performed, wherein the bodily fluid, serum and/or saliva is contacted with an identifier for the presence or expression of the biomarker, wherein the biomarker can be a protein or an mRNA and the presence of the identifier associated to presence or expression of the biomarker is detected, preferably by means of a detector.
  • the data were subjected to statistical analysis, in particular to ROC analysis, and were able to determine the threshold value, sensitivity, and specificity of each biomarker for detecting OSCC (see Example 8, Table 3). Furthermore, the inventors were able to measure mRNA in salivary specimens.
  • a transcriptome analysis of unstimulated saliva collected from patients with OSCC and normal subjects was performed as disclosed in Examples 9-12 and in Examples 13-16.
  • RNA isolation was performed from the saliva supernatant, followed by two-round linear amplification with T7 RNA polymerase.
  • Human Genome U133A microarrays were applied for profiling human salivary transcriptome. The different gene expression patterns were analyzed by combining a t test comparison and a fold-change analysis on 10 matched cancer patients and controls. Quantitative polymerase chain reaction (qPCR) was used to validate the selected genes that showed significant difference (P ⁇ 0.01 ) by microarray. The predictive power of these salivary mRNA biomarkers was analyzed by receiver operating characteristic curve and classification models.
  • RNA biomarkers are transcripts of H3F3A, TPT1 , FTH 1 , NCOA4 and ARCR.
  • the results validated by qPCR confirmed that transcripts of these five genes were significantly elevated in the serum of OSCC patient (Wilcoxon Signed Rank test, P ⁇ 0.05). (See Examples 9 to 12)
  • a method for diagnosing a cancer, in particular OSCC in a subject comprises: providing a bodily fluids of the subject; detecting in the bodily fluid a profile of a biomarker, the biomarker selected from the group consisting of IL8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR, comparing the profile of the biomarker with a predetermined profile of the biomarker, recognition in the profile of the biomarker of characteristics of the predetermined profile of the biomarker being diagnostic for the cancer.
  • salivary mRNAs as biomarkers for oral and/or systemic diseases, in particular salivary mRNAs of selected from the group consisting of IL8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P and SAT.
  • a method to diagnose oral and/or systemic pathology, disease or disorder, in particular OSCC comprises: using serum ⁇ KINAS ano/or protein as Diomar ⁇ ers ⁇ or orai an ⁇ /or systemic diseases, in particular serum mRNAs of selected from the group consisting of IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR, and serum IL6 protein.
  • Salivary mRNAs and in particular IL8 may also serve as prognostic indicators to direct the treatment of patients- with oral cavity cancer. In perspective, high-risk patients can be directed to more aggressive or adjuvant treatment regimens.
  • biomarkers may also improve the staging of the tumor.
  • traditional techniques the presence of microscopic distant disease is often under recognized.
  • Testing for the presence of biomarkers may allow the detection of small amounts of tumor cells in a background of normal tissue.
  • Salivary mRNAs as biomarkers specific for head and neck tumors or a panel of such biomarkers may allow the detection of distant microscopic disease.
  • the STD approach one of the most important applications of the STD approach in this respect is to detect the cancer conversion of oral premalignant lesions.
  • uuu y bj rorinng or salivary ⁇ KI AS can aiso oe use ⁇ to investigate tne roie of genes in the development of cancer, in particular whether the aberrant expressions of these genes functionally contribute to the development of human OSCC.
  • the biological significance of differential expression of these genes in head and neck/oral cancer should be determined. Identification of cancer-associated genes that are consistently changed in cancer patients will provide us not only with diagnostic markers but also with insights about molecular profiles involved in head and neck cancer development. Understanding the profile of molecular changes in any particular cancer will be extremely useful because it will become possible to correlate the resulting phenotype of that cancer with molecular events.
  • kits of parts associated with the methods herein disclosed are also disclosed.
  • a kit comprises: a identifier of a biomarker in a bodily fluid, such as a salivary mRNA or protein, and serum mRNA or protein, the biomarker selected from the group consisting of 1L8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR; and a detector for the identifier, the identifier and the detector to be used in detecting the bodily fluid profile of the biomarker of one the methods herein disclosed, wherein the identifier is associated to the biomarker in the bodily fluid, and the detector is used to detect the identifier, the identifier and the detector thereby enabling the detection of the bodily fluid profile of the biomarker.
  • the bodily fluid can be saliva, with the detection performed in the cell-free fluid phase portion thereof, or another bodily fluid such as blood serum.
  • the identifier and the detector able to detect the identifier are identifiable by a person skilled in the art.
  • [u ⁇ ⁇ j me loentmer and tne reagent can c-e inciu ⁇ e ⁇ in one oi muie compositions where the identifier and/or the reagent are included with a suitable vehicle, carrier or auxiliary agent.
  • kits the agents and identifier reagents can be provided in the kits, with suitable instructions and other necessary reagents, in order to perform the methods here discl osed.
  • the kit will normally contain the compositions in separate containers. Instructions, for example written or audio instructions, on paper or electronic support such as tapes or CD-ROMs, for carrying out the assay, will usually be included in the kit.
  • the kit can also contain, depending on the particular method used, other packaged reagents and materials (i.e. wash buffers and the like).
  • the kit of parts herein disclosed can be used in particular for diagnostic purpose. As a result a non-invasive diagnostic detection of pathologies, diseases or disorder and in particular of oral cavity and oropharyngeal cancer in patients, is disclosed.
  • the use of the fluid phase of saliva has unique advantages over the use of exfoliated cells. Depending on the location of the tumor, one may not be able to easily access and swab the tumor bed. Although salivary biomarkers could not identify the site from which the tumor originated, they could identify patients at risk. Such a saliva test could be ad ministered by nonspecialists in remote locations as a screening tool to select patients for referral for careful evaluation of the upper aerodigestive tract. Finding early stage, previously undetected disease may ultimately save lives.
  • biomarkers may prove highly beneficial in large populations or chemoprevention trials. This could be envisioned during routine dental visits or targeted screening of individuals at high risk of development of the disease.
  • a home test kit can also be envisioned. [UU1U5J Also tne use o ⁇ blood test is envisioned in paracuiar ⁇ or cancer ea ⁇ y detection.
  • Recovering the cell-free circulating mRNA or protein biomarkers in the serum of cancer patients representing characteristics of tumor genetic alteration, such as IL6 mRNA and protein, H3F3A, mRNA TPT1 mRNA , FTH1 mRNA , NCOA4 mRNA and ARCR mRNA diagnostic for OSCC could be envisioned as a screening test for presence of occult OSCC during routine physician's visit with blood work or targeted screening of individuals at high risk for oral cancer development.
  • a home test kit can also be envisioned, including preferably [00106]
  • peripheral blood can be obtained from subjects using routine clinical procedures, and mRNA and proteins can be isolated, preferably with an optimized procedures herein disclosed.
  • RNA and protein expression for the validated OSCC biomarkers will be selected as targets for cancer detection.
  • the integration of these detection systems for the concurrent detection of mRNA and protein for multiple OSCC biomarkers will result in an efficient, automated, affordable system for oral fluid based cancer diagnostics.
  • Saliva samples were obtained from ten normal donors from the Division of Otolaryngology, Head and Neck Surgery, at the Medical Center, University of California, Los Angeles (UCLA), CA, in accordance with a protocol approved by the UCLA Institutional Review Board. The following inclusion criteria were used: age 30 years; no history of malignancy, immunodeficiency, autoimmune disorders, hepatitis, HIV infection or smoking. The study population was composed of 6 males and 4 females, with an average age of 42 years (range from 32 to 55 years).
  • RNase-free DNase DNase l-DNA- free, Ambion Inc., Austin, T
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • ACTB actin- ⁇
  • RPS9 ribosomal protein S9
  • Primers were designed using PRIMER3 software (http://www.genome.wi.mit.edu) and were synthesized commercially (Fisher Scientific, Tustin, CA, USA) as follows: the primers having the sequence reported attached sequence listing as SEQ ID NO: 1 and SEQ ID NO: 2 for GAPDH; the primers having the sequence reported attached sequence listing as SEQ ID NO: 3 and SEQ ID NO: 4 for ACTB; the primers having the sequence reported attached sequence listing as SEQ ID NO: 5 and SEQ ID NO: 6 for RPS9.
  • the quantity of RNA was estimated using Ribogreen® RNA Quantitation Kit (Molecular Probes, Eugene, OR, USA).
  • Isolated RNA was then subjected to linear amplification according to published method from our laboratory (Ohyama et al., 2000). In brief, reverse transcription using T7-oligo-(dT)24 as the primer was performed to synthesize the first strand cDNA.
  • the first round of in vitro transcription (IVT) was carried out using T7 RNA polymerase (Ambion Inc., Austin, TX, USA).
  • the BioArrayT High Yield RNA Transcript Labeling System (Enzo Life Sciences, Farmingdale, NY, USA) was used for the second round IVT to biotinylate the cRNA product; the labeled cRNA was purified using GeneChip® Sample Cleanup Module (Affymetrix, Santa Clara, CA, USA).
  • the total RNA quantity is the RNA in 560p.L cell-free saliva supernatant; the cRNA quantity is after two rounds of T7 amplification.
  • Number of probes showing present call on HG U133A microarray (detection 5 p ⁇ 0.04).
  • Present percentage (P%) Number of probes assigned present call / Number of total probes (22,283 for HG U133A microarray).
  • the cRNA ranged from 200 bp to 4 kb before fragmentation; and was0 concentrated to approximately 10Obp after fragmentation.
  • the quality of cRNA probe was confirmed by capillary electrophoresis before the hybridizations.
  • ACTB mRNA was detectable using PCR/RT-PCR on original sample and products from each amplification steps: first cDNA, first In Vitro Transcription (IVT), second cDNA and second IVT, with a resulting agarose electrophoresis5 pattern comparable to the one shown in Fig. 2B.
  • EXAMPLE 2 MICROARRAY PROFILING OF MRNA FROM CELL-FREE SALIVA OF NORMAL DONORS [00124] Saliva was collected processed and the RNA isolated as reported in Example 1. Also, stability, quality and quantity of the RNA was assessed are0 reported in Example 1. I-HJ-U ' I VJJ i A Microarray analysis
  • the Affymetrix Human Genome U133A Array which contains 22,215 human gene cDNA probe sets representing -19,000 genes (i.e., each gene may be represented by more than one probe sets), was applied for gene expression profiling.
  • the array data were normalized and analyzed using Microarray Suite (MAS) software (Affymetrix).
  • a detection p-value was obtained for each probe set. Any probe sets with p ⁇ 0.04 was assigned "present", indicating the matching gene transcript is reliably detected (Affymetrix, 2001 ).
  • the total number of present probe sets on each array was obtained and the present percentage (P%) of present genes was calculated. Functional classification was performed on selected genes (present on all ten arrays, p ⁇ 0.01 ) by using the Gene Ontology Mining Tool (www.netaffx.com).
  • a reference database which includes data from the ten arrays was generated. The probe sets representing GAPDH, ACTB and RPS9 assigned present calls on all 10 arrays. There were totally 207 probe sets representing 185 genes assigned present calls on all 10 arrays with detection p ⁇ 0.01. These 10 genes were categorized on the basis of their known roles in biological processes and molecular functions. Biological processes and molecular functions of 185 genes in cell-free saliva from ten normal donors (data obtained by using Gene Ontology Mining Tool) are reported on Table 2.
  • One gene may have multiple molecular functions or participate in different biological processes. Number of genes classified into a certain group/subgroup. The major functions of the 185 genes are related to cell growth/maintenance (119 genes), molecular binding (118 genes) and cellular structure composition (95 genes). We termed these 185 genes as "Normal Salivary Core Transcriptome (NSCT)".
  • NSC Normal Salivary Core Transcriptome
  • Example 2 The Microarray analysis performed in Example 2 was validated through a quantitative gene expression analysis by Q-PCR quantitative gene expression analysis py U-MUK
  • the primers were synthesized by Sigma- Genosys (Woodlands, TX, USA) as follows: the primers having the sequence reported attached sequence listing as SEQ ID NO: 7 and SEQ ID NO: 8 for interleukin 1 , beta (IL1 B); the primers having the sequence reported attached sequence listing as SEQ ID NO:9 nd SEQ ID NO: 10 for stratifin (SFN); the primers having the sequence reported attached sequence listing as SEQ ID NO: 1 1 and SEQ ID NO: 12 for tubulin, alpha, ubiquitous (K-ALPHA-1 ). All reactions were performed in triplicate with conditions customized for the specific PCR products.
  • RNA expression levels of these genes measured by Q-PCR were similar to those measured by the microarrays (data not shown).
  • tXAMPLE ILb AND IL8 MKNA ISOLATION AMPLIFICATION AND ANALYSIS OF THE EXPRESSION IN CELL-FREE SALIVA OF OSCC PATIENTS
  • Saliva Collection And Processing [00135] Informed consent had been given by all patients. Saliva and serum procurement procedures were approved by the institutional review board at each institution: the University of California, Los Angeles (UCLA); the University of Southern California (USC); and the University of California San Francisco (UCSF). [00136] saliva from 32 patients with uu or UP SUUA, and Z una ⁇ ectec age- and gender-matched control subjects were obtained for a prospective comparison of cytokine concentration.
  • UCLA University of California, Los Angeles
  • USC University of Southern California
  • UCSF University of California San Francisco
  • RNAse Superase-ln, RNAse Inhibitor, Ambion Inc., Austin, TX
  • protease Aprotinin, Sigma, St.
  • RNA Isolation from cell-free saliva 560 ⁇ L of saliva supernatant were then processed using the QIAamp Viral RNA mini kit (QIAGEN, Chatsworth, CA) kit. RNA was extracted according to the manufacturer's instructions. Samples were air-dried and resuspended in water treated with diethyl pyrocarbonate and were kept on ice for immediate usage or stored at -80°C. Aliquots of RNA were treated with RNAse-free DNAse (DNAsel-DNA-free, Ambion Inc., Austin, TX) according to the manufacturer's instructions. Concentrations of RNA were determined spectrophotometrically, and the integrity was checked by electrophoresis in agarose gels containing formaldehyde. Reverse Transcriptase-Polymerase Chain Keaction
  • RNA from each sample was reverse-transcribed in 40 ⁇ L of reaction mixture containing 2.5 U of Moloney murine leukemia virus reverse transcriptase (Applied Biosystems lnc.(ABI, Foster City, CA) and 50 pmol of random hexanucleotides (ABI, Foster City, CA ) at 42°C for 45 minutes.
  • oligonucletide primers were synthesized commercially at Fisher Scientific (Tustin, CA) for PCR as follows: the primers having the sequence reported attached sequence listing as SEQ ID NO: 13 and SEQ ID NO: 14 for ⁇ -actin; the primers having the sequence reported attached sequence listing as SEQ ID NO: 15 and SEQ ID NO: 16 for IL8; and the primers having the sequence reported attached sequence listing as SEQ ID NO: 17 and SEQ ID NO: 18 for IL6.
  • Amplification of the complementary DNA (cDNA) was carried out using 50 cycles at 95 °C for 20 seconds, 60 °C for 30 seconds, and 72°C for 30 seconds; followed by a final extension cycle iof 72 °C for 7 minutes. Specificity of the PCR products was verified by the predicted size and by restriction digestion. To establish the specificity of the responses, negative controls were used in which input RNA was omitted or in which RNA was used but reverse transcriptase omitted. As a positive control, mRNA was extracted from total salivary gland RNA (Human Salivary Gland Total RNA, Clontech, Palo Alto, CA). To ensure RNA quality, all preparations were subjected to analysis of expression.
  • EXAMPLE 5 IL6 AND IL8 MRNA ISOLATION, AMPLIFICATION AND ANALYSIS
  • Serum collection and processing Serum from 19 patients with OC or OP SCCA, and 32 unaffected age- and gender-matched control subjects were obtained for a prospective comparison of cytokine concentration. Among the subject groups, there were no significant differences in terms of age, gender, alcohol consumption, or smoking history (P > 0.75). [00146] Blood was drawn from control subjects and patients prior to treatment. Sera were collected by centrifuging whole blood at 3000 rpm (1000xg) for 10 minutes at 15°C by a Sorvall RT6000D centrifuge (DuPont, Wilmington, DE).
  • RNAse Superase-ln, RNAse Inhibitor, Ambion Inc., Austin, TX
  • protease Aprotinin, Sigma, St. Louis, MO; Phenylmethylsulfonylfluoride, Sigma, St. Louis, MO; Sodium Orthovanadate, Sigma, St. Louis, MO
  • All samples were subsequently treated with DNAse (DNAsel-DNA-free, Ambion Inc., Austin, TX). The aliquots were stored at -80°C until further use. everse i ranscripiase-h-Oivmerase t ⁇ nai ⁇ eauuu ⁇
  • RT-PCR reverse transcriptase-polymerase chain reaction
  • the centrifugation speed for the serum samples was optimized following the same approach described in Example 4 for saliva samples.
  • the results support an optimal centrifugation speed for saliva samples of 1,000 ⁇ 20 xg with a preferred speed of 1,000 xg.
  • EXAMPLE 6 IL6 AND IL8 CYTOKINE LEVELS ANALYSIS IN SALIVA FROM OSCC PATIENTS i
  • IL6 and IL8 mRNA transcripts were present in the fluid phase in saliva
  • qRT-PCR quantitative real time PCR
  • Saliva from 32 patients with OSCC, and 32 age- and gender- matched control subjects were obtained. Among the subject groups, there were no significant differences in terms of age, gender, alcohol consumption, or smoking history (P> 0.75).
  • Aitt-i itiiuai ue ⁇ aturauo ⁇ at yo ⁇ u ⁇ or ⁇ minutes 50 PCR cycles were performed at 60°C for 20 seconds, then 20 seconds at 72°C, then 20 seconds at 83°C, followed by 1 minute at 95°C, then followed by a final 1 minute extension at 55°C. Aliquots were taken from each well and checked by electrophoresis in agarose gels in order to ensure the specificity of the products.
  • ELISA kits for IL6 and IL8 were used (Pierce Endogen, Rockford, IL) according to the manufacturer's protocol. Each sample was tested in duplicate in each of two replicate experiments. After development of the colorimetric reaction, the absorbance at 450 nm was quantitated by an eight channel spectrophotometer (EL800 Universal Microplate Reader, BIO-TEK Instruments Inc., Winooski, VT), and the absorbance readings were converted to pg/ml based upon standard curves obtained with recombinant cytokine in each assay. If the absorbance readings exceeded the linear range of the standard curves, ELISA assay was repeated after serial dilution of the supernatants.
  • the mean (SD) age of the patients with OSCC was 49.3 (7.5) years (range, 42-67 years) vs. 48.8 (5.7) years (range, 40-65 years) in the control group; (Student's t test P > 0.80).
  • OSCC patients 49.3 years; normal subjects, 48.8 years (Student's t test P > 0.80); gender (Student's t test P > 0.90); or smoking history (Student's t test P > 0.75).
  • ROC Receiveiver Operating Characteristic
  • thresholds of biomarkers were chosen for detecting OSCC. Based upon our data, for IL8 in saliva, a threshold value of 600 pg/dL yields a sensitivity of 86% and a specificity of 97%. Similarly, for IL6 in serum, a threshold value of greater than 0 pg/dL yields a sensitivity of 64% and a specificity of 81 %.
  • IL8 saliva protein 0.978 600 pg/mL 86% 97% IL6 serum 0.824 > 0 pg/mL 57% 100% protein
  • IL8 saliva protein > 60fJ , , & IL6 serum 0.994 ⁇ y , , 99% 90% protein > ° P /ml
  • EXAMPLE 9 RNA ISOLATION, AMPLIFICATION AND GENE EXPRESSION PROFILING FROM SERUM OF OSCC PATIENTS
  • OSCC patients were recruited from Medical Centers at University of California, Los Angeles (UCLA) and University of Southern oaiiTornia u a ;, ⁇ _os Angeies, AII patients na ⁇ recently oee ⁇ ⁇ iagnoseu with primary T1/T2 OSCC, and had not received any prior treatment in the form of chemotherapy, radiotherapy, surgery, or alternative remedies.
  • Thirty- five normal donors were recruited as controls from the general population at School of Dentistry, UCLA. No subjects had a history of prior malignancy, immunodeficiency, autoimmune disorders, hepatitis, or HIV infection. All subjects signed the Institutional Review Board approved consent form agreeing to serve as blood donors for this study.
  • the gender distribution in OSCC group was 10:22 (female number/male number) and in control group was 14:21 (Chi-square test P ⁇ 1).
  • ACTB ⁇ -actin
  • B2M ⁇ -2- microglobulin
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • RPS9 ribosomal protein S9
  • oligonucletide primers were designed and then synthesized (Sigma Genosis, Woodlands, TX) for PCR.
  • RT-PCR was performed to amplify the mRNAs' coding region phenotyped in 3 segments using a common upstream primer and three different downstream primers selected from the four housekeeping gene transcripts for RT -PCR shown in Table 4.
  • Table 4 Name Accession no.
  • amplicons for RPS9 with sizes of 188, 426 and 614bp were detected (see Figure 8 lane 2, 3 and 4 respectively); amplicons for GAPDH with sizes of 140,755 and 1 ,184bp were detected (see Figure 8 lane 5, 6 and 7 respectively); amplicons for B2M with sizes of 216,591 and 848bp were detected (see Figure 8 lane 8, 9 and 10 respectively); and amplicons for ACTB with sizes of 195,705 and 1 ,000bp were detected (see Figure 8 lane 11 , 12 and 13 respectively). Controls were performed even if controls data are not shown in the Figure.
  • EXAMPLE 10 MICROARRAY PROFILING OF MRNA OF SERUM FROM OSCC PATIENTS
  • RNA from serum was subjected to linear amplification by RiboAmpTM RNA Amplification kit (Arcturus, Mountain View, CA). Following previously reported protocols [55], the Affymetrix Human Genome U133A Array, which contains 22,215 human gene cDNA probe sets representing -19,000 genes (i.e., each gene may be represented by more than one probe sets), was applied for gene expression profiling. [00184] The raw data were imported into DNA-Chip Analyzer 1.3 (dChip) software for normalization and model-based analysis [60]. dChip gives the expression index which represents the amount of mRNA/Gene expression and another parameter, called the present call of, whether or not the mRNA transcript was actually present in the sample (14). S-plus 6.0 (Insightful, Seattle, WA) was used for all statistical tests.
  • HG U133A microarrays were used to identify the difference in salivary RNA profiles between cancer patients and matched normal subjects.
  • 14268 genes included by the previously described criteria we identified 335 genes with P value less than 0.05 and a fold change ⁇ 2.
  • these genes there are 223 up-regulated genes and 112 down- regulated genes in the OSCC group. According to Affymetrix, a gene that was assigned with a present call indicates this gene is reliably detected in the original sample, i ne numoer 0T genes mat weie ass ⁇ y ⁇ e- ⁇ o present anu me present percentage on each array were shown in Table 5 reporting the human mRNA expression profiling in serum.
  • OSCC arrays there are 2623 ⁇ 868 probes in OSCC arrays and 1792 ⁇ 165 probes in control arrays that were assigned with present calls.
  • OSCC group have significant more present probes than control group (P ⁇ 0.002, Wilcoxon test).
  • EXAMPLE 11 Q-PCR VALIDATION AND QUANTITATION ANALYSIS OF MICROARRAY PROFILING FROM CELL-FREE SALIVA OF OSCC PATIENTS
  • qPCR was performed to quantify a subset of differently expressed transcripts in saliva and to validate the microarray findings of Example 10, on an enlarged sample size including saliva from 32 OSCC patients and 35 controls.
  • Primer sets were designed by using PRIMER3 software (Table 2). Using MuLV reverse transcriptase (Applied Biosystems, Foster City, CA) and random hexamers as primer (ABI, Foster City, CA), cDNA was synthesized from the original and un-amplified serum RNA. The qPCR reactions ( were performed in an iCyclerTM iQ real-time PCR detection system (Bio-Rad, Hercules, CA, USA), using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA). All reactions were performed in triplicate with customized conditions for specific products.
  • the relative amount of cDNA/RNA of a particular template was extrapolated from the standard curve using the LightCycler software 3.0 (Bio-Rad, Hercules, CA, USA). A two-tailed student's t test was used for statistical analysis.
  • Table 6 Probe set ID Accession No. qPCR P > (HG U133A) Gene name Symbol (NCBI) (. test)
  • Table 6 presents their quantitative alterations in serum from OSCC patients, determined by qPCR. The results confirmed that transcripts of H3F3A, TPT1 , FTH1 , NCOA4 and ARCR were significantly elevated in the saliva of OSCC patient (Wilcoxon Signed Rank test, P ⁇ 0.05). We did not detect the statistically significant differences in the amount of the other five transcripts by qPCR.
  • EXAMPLE 12 ROC AND SENSITIVITY/SPECIFICITY ANALYSIS
  • multivariate classification models were constructed to determine the best combination of the selected serum transcripts for cancer prediction. Firstly, using the binary outcome of the disease (OSCC) and non-disease (normal) as dependent variables, a logistic regression model was constructed [61]. Age, gender and smoking history are controlled in the data collection procedure.
  • OSCC binary outcome of the disease
  • normal non-disease
  • CART classification and regression trees
  • a second model was generated according to the diagram reported in Figure 10.
  • Our fitted CART model used the serum mRNA concentrations of THSMB and FTH1 as predictor variables for OSCC.
  • THSMB chosen as the initial split, with a threshold of 4.59E-17 M, produced two child groups from the parent group containing the total 67 samples. 47 samples with the THSMB concentration ⁇ 4.59E-17 M were assigned into "Normal-1 ", while 20 with THSMB concentration > 4.59E-17 M were assigned into "Cancer-1".
  • the " Norma ⁇ -r group was turtner partitioned oy M I I witri a tnresnoi ⁇ 01 o.wc- 16 M.
  • the "Normal” group was composed of the samples from “Normal-2” which included a total of 28 samples, 25 from normal subjects and 3 from cancer patients. Thus, by using the combination of THSMB and FTH1 for OSCC prediction, the overall specificity is 78% (25/35).
  • the "Cancer” group was composed of the samples from “Cancer-1” and “ Cancer-2". There are a total of 39 samples assigned in the final “Cancer” group, 29 from cancer patients and 10 from normal subjects. Therefore, by using the combination of these two serum mRNA for OSCC prediction, the overall sensitivity is 91 % (29/32, in cancer group) and specificity is 78% (25/35, in normal group).
  • OSCC patients were recruited from Medical Centers at University of California, Los Angeles (UCLA); University of Southern California (USC), Los Angeles, CA; and University of California San Francisco, San Francisco, CA.
  • Unstimulated saliva samples were collected between 9 a.m. and 10 a.m. with previously established protocols [38]. Subjects were asked to refrain from eating, drinking, smoking, or oral hygiene procedures for at least 1 hour before the collection. Saliva samples were centrifuged at 2,600 xg for 15 minutes at 4°C.
  • RNase inhibitor Superase-In, Ambion Inc., Austin, TX.
  • RNA amplification efficiency was measured by using control RNA of known quantity (0.1 ⁇ g) running in parallel with the 20 samples in five independent runs.
  • HG U133A microarrays were used to identify the difference in salivary RNA profiles between cancer patients and matched normal subjects.
  • tne I U.J I D transcripts inciuoe ⁇ oy tne previously uescnpeu umeu we identified 1 ,679 transcripts with P value less than 0.05.
  • 836 were up-regulated and 843 were down-regulated in the OSCC group. These transcripts observed were unlikely to be attributable to chance alone (2 test, P ⁇ 0.0001), considering the false positives with P ⁇ 0.05.
  • Luuzi tj me numan ⁇ enome U I JJA microarrays weie use ⁇ to lueruuy me difference in RNA expression patterns in saliva from 10 cancer patients and 10 matched normal subjects.
  • EXAMPLE 15 Q-PCR VALIDATION AND QUANTITATION ANALYSIS OF MICROARRAY PROFILING FROM CELL-FREE SALIVA OF OSCC PATIENTS
  • qPCR Quantitative polymerase chain reaction
  • cDNA from the original and unamplified salivary RNA was synthesized Using MuLV reverse transcriptase (Applied Biosystems, Foster City, CA) and random hexamers as primer (Applied Biosystems).
  • the qPCR reactions were performed in an iCycler PCR system with iQ SYBR Green Supermix (Bio-Rad, Hercules, CA). Primer sets were designed by using PRIMER3 software (http://www.genome.wi.mit.edu).
  • the validated seven genes could be classified in three ranks by the magnitude of increase: high up-regulated mRNA including IL8 (24.3-fold); moderate up-regulated mRNAs including ⁇ I- JA ⁇ .e> ⁇ - ⁇ oi ⁇ ), iL'it* [ .HO), anu o iuur ⁇ . ⁇ - ⁇ o ⁇ u , anu ⁇ uw u ⁇ - regulated mRNAs including DUSP1 (2.60-fold), OAZ1 (2.82-fold), and SAT (2.98-fold).
  • the optimal outpoint was determined for each biomarker by searching for those that yielded the maximum corresponding sensitivity and specificity. ROC curves were then plotted on the basis of the set of optimal sensitivity and specificity values. Area under the curve was computed via numerical integration of the ROC curves. The biomarker that has the largest area under the ROC curve was identified as having the strongest predictive power for detecting OSCC.
  • multivariate classification models were constructed to determine the best combination of salivary markers for cancer prediction.
  • OSCC binary outcome of the disease
  • normal normal
  • logistic regression model controlling for patient age, gender, and smoking history.
  • the backward stepwise regression [61] was used to find the best final model.
  • Leave-one-out cross-validation was used to validate the logistic regression model.
  • the cross-validation strategy first removes one observation and then fits a logistic regression model from the remaining cases with all of the markers. Stepwise model selection is used for each of these models to remove variables that do not improve the model. Subsequently, the marker values were used for the case that was left out to compute a predicted class for that observation. The cross-validation error rate is then the number of samples predicted incorrectly divided by the number of samples.
  • the logistic regression model was built based on the four of seven validated biomarkers (IL1 B, OAZ1 , SAT, and IL8) that, in combination, provided the best prediction.
  • the coefficient values are positive for these four markers, indicating that the synchronized increase in their concentrations in saliva increased the probability that the sample was obtained from an OSCC subject.
  • the coefficient values are positive for these four markers, indicating that the synchronized rise in their concentrations in saliva increased the probability that the sample was obtained from an OSCC subject.
  • the leave- one-out cross-validation error rate based on logistic regression models was 19% (12 of 64).
  • CART Tree-based classification model, classification and regression tree
  • a second model a tree-based classification model, classification and regression tree (CART) model
  • the CART model was constructed oy tj-pius 6.U witn tne van ⁇ ate ⁇ I ⁇ IKINA o ⁇ omar ⁇ ers as preuictuis.
  • CART fits the classification model by binary recursive partitioning, in which each step involves searching for the predictor variable that results in the best split of the cancer versus the normal groups [62].
  • the "Normal” group was composed of the samples from “Normal-2" and those from “Normal-3". There are a total of 32 samples assigned in the "Normal” group, 29 from normal subjects and 3 from cancer patients. [00239] Thus, by using the combination of IL8, SAT, and H3F3A for OSCC prediction, the overall sensitivity is 90.6% (29 of 32).
  • the "Cancer” group was composed o ⁇ tne samples ⁇ rom uancer- ana a ⁇ cer-o.
  • the present disclosure refers to a method to detect a biomarker in saliva wherein the biomarker is an extracellular mRNA, comprises detecting the extracellular mRNA in the cell-free saliva; transcriptome analysis of saliva comprises detecting a transcriptome pattern in the cell-free saliva; a method to detect genetic alterations in an organ or in a gene in the organ by analyzing saliva, comprises detecting a transcriptome pattern and/or the mRNA profiling of the gene in cell-free saliva; a method to diagnose an oral or systemic pathology disease or disorder in a subject, comprises: detecting profile of a biomarker associated with the pathology disease or disorder, in particular mRNA and/or protein, in cell-free saliva and/or serum; kits comprising identifier for at least one biomarker for performing at least one of the methods; and use of salivary biomarker salivary and/or serum mRNAs as biomarkers for oral and/or systemic pathology, disease or disorder. [00241] The disclosures of each and every publication
  • Affymetrix (2001). Affymetrix Technical Note: New Statistical Algorithms for Monitoring Gene Expression on GeneChip® Probe Arrays. Santa Clara, CA: Affymetrix.
  • Torelli G Venturelli D, Colo A, et al. Expression of c-myb protooncogene and other cell cycle-related genes in normal and neoplastic human colonic mucosa. Cancer Res 1 987;47:5266 -5269.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

A method to detect a biomarker in saliva wherein the biomarker is an extracellular mRNA, comprises detecting the extracellular mRNA in the cell-free saliva; transcriptome analysis of saliva comprises detecting a transcriptome pattern in the cell-free saliva; a method to detect genetic alterations in an organ or in a gene in the organ by analyzing saliva, comprises detecting a transcriptome pattern and/or the mRNA profiling of the gene in cell-free saliva; a method to diagnose an oral or systemic pathology disease or disorder in a subject, comprises: detecting profile of a biomarker associated with the pathology disease or disorder, in particular mRNA and/or protein, in cell-free saliva and/or serum; kits comprising identifier for at least one biomarker for performing at least one of the methods; and use of salivary biomarker salivary and/or serum mRNAs as biomarkers for oral and/or systemic pathology, disease or disorder.

Description

SALIVARY MRNA PROFILING, BIOMARKERS AND RELATED METHODS AND KITS OF PARTS
[0001] This invention was made with Government support of grant 1)01- DE15018 awarded by the NIH. The Government has certain rights on this invention
FIELD OF THE DISCLOSURE
[0002] The present disclosure relates to profiling of biomarkers and to method and kits using said biomarkers. In particular, the present disclosure related to biomarkers for detection of cancer and in particular of Oral Cavity and Oropharyngeal squamous Cell Carcinoma (OSCC).
BACKGROUND OF THE DISCLOSURE
[0003] Biomarkers are molecular indicators of a specific biological property, a biochemical feature or facet that can be used to measure the progress of disease or the effects of treatment.
[0004] Proteins and nucleic acids are exemplary biomarkers. In particular, it has been widely accepted that genomic messengers detected extracellularly can serve as biomarkers for diseases [6]. In particular, nucleic acids have been identified in most bodily fluids including blood, urine and cerebrospinal fluid, and have been successfully adopted for using as diagnostic biomarkers for diseases [28, 42, 49]. ,
[0005] Saliva is not a passive "ultrafiltrate" of serum [41], but contains a distinctive composition of enzymes, hormones, antibodies, and other molecules. In the past 10 years, the use of saliva as a diagnostic fluid has been successfully applied in diagnostics and predicting populations at risk for a variety of conditions [47].
[0006] Specific and informative biomarkers in saliva are desirable to serve for diagnosing disease and monitoring human health [30, 47, 6]. For example biomarkers have been identified in saliva for monitoring caries, periodontitis, oral cancer, salivary gland diseases, and systemic disorders, e.g., hepatitis aπα ruv
Figure imgf000004_0002
MISO previous siuαies snow mat πumai i
Figure imgf000004_0001
uiumait sis uan ue identified in saliva and used for oral cancer detection [30, 36]. RNA is more labile than DNA and is presumed to be highly susceptible to degradation by RNases. Furthermore, RNase activity, is reported to be elevated in saliva, which constitutes an inexpensive, non-invasive and accessible bodily fluid suitable to act as an ideal diagnostic medium. In particular, RNAase activity is reported to be elevated in saliva of cancer patients [83]. It has, thus, been commonly presumed that human mRNA could not survive extracellularly in saliva. OSCC is the sixth most common cancer in the world, and affects 50,000 Americans annually. Worldwide, cancers of the oral cavity and oropharynx represent a great public health problem. OSCC accounts for nearly 50% of all newly diagnosed cancers in India and is a leading cause of death in France [1].
[0007] Despite improvements in locoregional control, morbidity and mortality rates have improved little in the past 30 years [2]. Therefore, early detection or prevention of this disease is likely to be most effective. Detecting OSCC at an early stage is believed to be the most effective means to reduce death and disfigurement from this disease. The absence of definite early warning signs for most head and neck cancers suggests that sensitive and specific biomarkers are likely to be important in screening high risk patients.
SUMMARY OF THE DISCLOSURE
[0008] According to a first aspect, a method to detect a biomarker in a bodily fluid including a cell phase and a fluid phase, wherein the biomarker is an extracellular mRNA and bodily fluid is saliva, preferably unstimulated saliva, is disclosed. The method comprises: providing a cell-free fluid phase portion of the bodily fluid; and detecting the extracellular mRNA in the cell-free fluid phase portion of the bodily fluid.
[0009] In particular, detecting the extracellular mRNA can comprise: isolating the extracellular mRNA from the cell-free fluid phase portion of the bodily fluid, and amplifying the extracellular mRNA. [uuiuj Accorαing to a seconα aspect, transcriptome analysis oτ a Doαny fluid, including a cell phase and a fluid phase, wherein the bodily fluid is saliva, is disclosed. The method comprises: providing a cell-free fluid phase portion of the bodily fluid; and detecting a transcriptome pattern in the cell-free fluid phase portion of the bodily fluid. The bodily fluid is preferably unstimulated saliva.
[0011] In particular, detecting transcriptome pattern in the saliva supernatant is preferably performed by microarray assay, most preferably by high-density oligonucleotide microarray assay. Detecting transcriptome pattern in the saliva supernatant can also performed by quantitative PCR analysis or RT- PCR analysis.
[0012] According to a third aspect, a method to detect genetic alterations in an organ by analyzing a bodily fluid draining from the organ and including a cell phase and a fluid phase, is disclosed. The bodily fluid is in particular saliva, preferably unstimulated saliva and method comprises: providing cell- free fluid phase portion of the bodily fluid; detecting a.transcriptome pattern in the cell-free fluid phase portion of the bodily fluid; and comparing the transcriptome pattern with a predetermined pattern, the predetermined pattern being indicative of a common transcriptome pattern of normal cell-free fluid phase portion of the bodily fluid.
[0013] According to a fourth aspect, a method to detect genetic alteration of a gene in an organ by analyzing a bodily fluid draining from the organ and including a cell phase and a fluid phase, is disclosed. The bodily fluid is in particular saliva and the method comprises: providing a cell-free fluid phase portion of the bodily fluid; detecting an mRNA profile of the gene in the cell- free fluid phase portion of the bodily fluid; and comparing the mRNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the mRNA profile of the gene in normal cell-free fluid phase portion of the bodily fluid,. [0014] According to a fifth aspect, a method to diagnose an oral or systemic pathology disease or disorder in a subject, is disclosed. The method comprises: providing a ceιι-τree τιuια pnase portion oτ xπe sanva oτ trie suujeui, detecting in the provided cell-free saliva fluid phase portion an mRNA profile of a gene associated with the pathology, disease or disorder; and comparing the RNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the presence of the pathology, disease, or disorder in the subject.
[0015] In a first embodiment the pathology, disease or disorder is a cancer of the oral cavity and/or of oropharynx, the bodily fluid is saliva and the gene is selected from the group consisting of the gene coding for IL8 (Interleukin 8), IL1 B (Interleukin 1 , beta), DUSP1 (Dual specificity phosphatase 1 ), H3F3A (H3 histone, family 3A), OAZ1 (Omithine decarboxylase antizyme 1 ), S100P (S100 calcium binding protein P) and SAT (Spermidine/spermine N1- acetyltransferase).
[0016] In a second embodiment the pathology, disease or disorder is a cancer of the oral cavity and/or of oropharynx, the bodily fluid is blood serum and the gene is selected IL6 (interleukin 6), H3F3A, TPT1 (Tumor protein trnslationally controlled 1 ), FTH1 (Ferritin heavy polypeptide 1 ), NCOA4 (Nuclear receptor coactivator 4) and ARCR (Ras homolog gene family, member A). [0017] Diseases that can be diagnosed include oropharyngeal squamous cell carcinoma and possibly other systemic diseases.
[0018] According to a sixth aspect, a method to diagnose an oral or systemic pathology, disease or disorder in a subject is disclosed. The method comprises: providing a cell-free fluid phase portion of the saliva of the subject; detecting in the provided cell-free fluid phase portion a transcriptome pattern associated with the pathology, disease or disorder; and comparing the transcriptome pattern with a predetermined pattern, recognition in the transcriptome pattern of characteristics of the predetermined pattern being diagnostic for the pathology, disease or disorder in the subject. juiπyj in an emDoαiment, tne patnoiogy, uisease or αisorαer is a catiϋt-i uι the oral cavity and/or of oropharynx, and transcriptome include transcript is selected from the group consisting of transcripts for IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT from saliva. [0020] According to a seventh aspect, a method to diagnose an oral or systemic pathology, disease or disorder in a subject is disclosed, the method comprising: providing serum of the subject; detecting in the provided serum a transcriptome pattern associated with the pathology, disease or disorder; and comparing the transcriptome pattern with a predetermined pattern, recognition in the transcriptome pattern of characteristics of the predetermined pattern being diagnostic for the pathology, disease or disorder in the subject.
[0021] In an embodiment, the pathology, disease or disorder is a cancer of the oral cavity and/or of oropharynx, and transcriptome include transcript is selected from the group consisting of transcripts for IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR from serum.
[0022] Diseases that can be diagnosed include oropharyngeal squamous cell carcinoma possibly other systemic diseases.
[0023] According to a eight aspect, a method for diagnosing a cancer, in1 a subject is disclosed. The method comprises: providing a bodily fluid of the subject; detecting in the bodily fluid a profile of a biomarker, comparing the profile of the biomarker with a predetermined profile of the biomarker, recognition in the profile of the biomarker of characteristics of the predetermined profile of the biomarker being diagnostic for the cancer.
[0024] Pathologies, diseases or disorders that can be diagnosed include oropharyngeal squamous cell carcinoma and possibly other systemic diseases. Biomarkers include IL8, IL1B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH 1 , NCOA4 and ARCR.
[0025] In a first embodiment, the pathology, disease or disorder is oropharyngeal squamous cell carcinoma, the biomarker is selected from the group consisting of IL8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, the bodily τιuια is sanva ana aetecting a pronie oτ a Diomarκer is perrormeα oy αetectiπg the mRNA profile of the biomarker.
[0026] In a second embodiment, the pathology, disease or disorder is oropharyngeal squamous cell carcinoma, the biomarker is selected from the group consisting of IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR the bodily fluid is serum and detecting a profile of a biomarker is performed by detecting the mRNA profile of the biomarker.
[0027] In a third embodiment, the pathology, disease or disorder is oropharyngeal squamous cell carcinoma, the biomarker is IL6, the bodily fluid is blood serum and detecting a profile of a biomarker is performed by detecting the protein profile of the biomarker
[0028] According to an eighth aspect, a kit for the diagnosis of an oral and/or systemic pathology, disease or disorder is disclosed, the kit comprising: an identifier of at least one biomarker in a bodily fluid, the biomarker selected from the group consisting of IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR; and a detector for the identifier.
[0029] Pathologies, diseases or disorders that can be diagnosed include oropharyngeal squamous cell carcinoma, and possibly the other systemic diseases.
[0030] The identifier and the detector are to be used in detecting the bodily fluid profile of the biomarker according to the methods herein disclosed. In particular, the identifier is associated to the biomarker in the bodily fluid, and the detector is used to detect the identifier, the identifier and the detector thereby enables the detection of the bodily fluid profile of the biomarker.
[0031] According to a ninth aspect, a method to diagnose an oral and/or systemic pathology disease or disorder, is disclosed. The method comprising: using salivary and/or serum mRNAs as biomarkers for oral and/or systemic pathology, disease or disorder. |uu --,j ii i d μi eieπ eu eiiiuuuii nci n u its I I IΓ IN Λ uuuui ss IUI at least unt; ui n it; biomarker selected from the group consisting of 1L8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR.
[0033] Diseases that can be diagnosed include oropharyngeal squamous cell carcinoma, and possibly other systemic diseases.
[0034] According to a tenth aspect, a method to diagnose an oral and/or system pathology, is disclosed. The method comprising: using salivary or serum proteins as biomarkers for oral and/or systemic pathology, disease or disorder, in particular IL6 protein in serum and IL8 protein in saliva. [0035] The methods and kits of the disclosure will be exemplified with the aid of the enclosed figures.
DESCRIPTION OF THE FIGURES
[0036] Figure 1A shows results of a RT-PCR typing for ACTB performed on RNA isolated from cell-free saliva supernatant from human beings after storage for 1 month (lane 2), 3 months (lane 3) and' 6 months (lane 4), with a 100bp ladder molecular weight marker (lane 1) and a negative control (omitting templates) (lane 5). A molecular size marker is indicated on the left side of the Figure by arrows.
[0037] Figure 1 B shows results of a RT-PCR performed on RNA isolated from cell-free saliva supernatant from human beings (lane 1) and typing GAPDH (B1), RPS9 (B2) and ACTB (B3), with positive control (human total RNA, BD Biosciences Clontech, Palo Alto, CA, USA) (lane 2) and negative controls (omitting templates) (lane 3). A molecular size marker is indicated on the left side of the Figure by arrows. [0038] Figure 2A shows results of a capillary electrophoresis performed to monitor RNA amplification from RNA isolated from cell-free saliva supernatant from human beings. Lanes 1 to 5 show 1kb DNA ladder (lane 1), 5μl saliva after RNA isolation (undetectable) (lane 2), 1 μl two round amplified cRNA (range from 200 bp to ~4kb) (lane 3), 1 μl cRNA after fragmentation (around l uuop; (lane ) ano amoion KINA ueniury ιvιarκer (iaπe o . M moieuuiai sι- e marker is indicated on the left side and right side of the Figure by arrows.
[0039] Figure 2B shows results of a PCR performed on RNA isolated from cell-free saliva supernatant from human beings at various stage of amplification and typing for ACTB. Lane 1 to 8 shows 100bp DNA ladder (lane 1 ), total RNA isolated from cell-free saliva (lane 2), 1 st round cDNA (lane 3), 1st round cRNA after RT (lane 4), 2nd round cDNA (lane 5), 2nd round cRNA after RT (lane 6), positive control (human total RNA, BD Biosciences Clontech, Palo Alto, CA, USA) (lane 7) and negative control (omitting templates) (lane 8). A molecular size marker is indicated on the left side of the Figure by arrows.
[0040] Figure 2C shows a diagram reporting results of the analysis of target cRNA performed by Agilent 2100 bioanalyzer before hybridization on microarray. On x axis, the molecular weight (bp) of the fragmented cRNA with reference to the marker RNA, is indicated. On y axis, the quantity of the fragmented cRNA (ug/ml) measurable by a Bioanalyzer, is indicated.
[0041] Figure 3 shows results of a RT-PCR performed on RNA isolated from cell-free saliva supernatant from human beings (saliva) together with a ladder (Mrkr) positive controls (Ctrl(+)) and negative controls (Ctrl(-)) and typing for IL6 (IL6), IL8 (IL8) and β-Actin (β-Actin).
[0042] Figure 4 shows results of a PCR performed for the housekeeping β- actin on whole saliva, serum samples, and samples that had been centrifuged at 0 xg (0 xg), 1,000χg (1 ,000χg), 2,600 xg (2,600 xg), 5,000 xg (5,000 xg) and 10,000χg (10,000 xg) using genomic DNA as marker (Mrkr) for cell lysis and spillage of intracellular compounds.
[0043] Figure 5A shows a diagram reporting the mean concentrations of mRNA for IL8 detected in replicate samples by qRT-PCR in saliva from patients with OSCC (Cancer) and normal subjects (Control). On x axis the sample groups are reported. On y axis the number of copies detected is reported . [0044] Hgure ϋB shows a diagram reporting tne mean concentrations oτ ILO detected in replicate samples by ELISA in saliva from patients with OSCC (Cancer) and normal subjects (Control). On x axis the sample groups are reported. On y axis the concentration expressed in pg/ml, is reported. [0045] Figure 6A shows a diagram reporting the mean concentrations of mRNA for IL6 detected in replicate samples by qRT-PCR in serum from patients with OSCC (Cancer) and normal subjects (Control). On x axis the sample groups are reported. On y axis the number of copies detected is reported. [0046] Figure 6B shows a diagram reporting the mean concentrations of IL6 detected in replicate samples by ELISA in serum from patients with OSCC (Cancer) and normal subjects (Control). On x axis, the sample groups are reported. On y axis the concentration expressed in pg/ml, is reported
[0047] Figure 7A shows a diagram reporting the Receiver Operating Characteristic (ROC) curve calculated for IL8 in Saliva. On the x axis 1- specificity is reported. On y axis the sensitivity is reported.
[0048] Figure 7B shows a diagram reporting the ROC curve calculated for IL6 in serum. On the x axis 1 -specificity is reported. On y axis the sensitivity is reported. [0049] Figure 7C shows a diagram reporting the ROC curve calculated for a combination of IL8 in saliva and IL6 in serum. On the x axis 1 -specificity is reported. On y axis the sensitivity is reported.
[0050] Figure 8 shows results of a PCR reaction performed on serum human mRNA phenotyping of salivary mRNAs for RPS9 (Lane 2, 3 and 4); GAPDH (Lane 5, 6 and 7); B2M (Lane 8, 9 and 10) and ACTB (Lane 1 1 , 12 and 13), together with DNA ladder, as a control (Lane 1).
[0051] Figure 9 shows a diagram reporting a ROC curve of the logistic regression model for the circulating mRNA in serum. On the x axis 1- specificity is reported. On y axis the sensitivity is reported. [UUO-ij ι-ιgure I U snows a αiagram reporuπy u ie uιat>.>ιιn-.cunjι ι cm. regression trees (CART) model assessing the serum mRNA predictors for OSCC.
[0053] Figure 11 shows a diagram reporting a ROC curve of the logistic regression model for the predictive power of combined salivary mRNA biomarkers. On the x axis 1 -specificity is reported. On y axis the sensitivity is reported.
[0054] Figure 12 shows a diagram reporting the classification and regression trees (CART) model assessing the salivary mRNA predictors for OSCC.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0055] A method to detect an extracellular mRNA in a bodily fluid, is disclosed wherein the bodily fluid is saliva and the extracellular mRNA is detected in a cell-free fluid phase portion of saliva. Presence of RNAs in the cell-free fluid phase portion of saliva was confirmed by the procedures extensively described in the Examples, the quality of the detected mRNA meeting the demand for techniques such as PCR, qPCR, and microarray assays.
[0056] In the method, detecting extracellular mRNAs herein also informative mRNAs, is performed in a bodily fluid, saliva, that meets the demands of an inexpensive, non-invasive and accessible bodily fluid to act as an ideal medium for investigative analysis.
[0057] Detecting informative mRNAs is in particular performed in a portion of saliva (cell-free fluid phase) wherein presence of microorganisms and the extraneous substances such as food debris is minimized, which allows analyzing the molecules in simple and accurate fashion. Preferably, the cell- free fluid phase portion of derived from unstimulated saliva.
[0058] In the method, the saliva can be collected according to procedures known in the art and then processed to derive the cell-free fluid phase thereof, for example by centrifugation of the collected saliva, which results in a pene.eα sanva ceil pπase aπα a ceιι-τree sanva uuiu μnαse suμtJi naiai ii. see procedures extensively described in Examples 1 , 5 and 13)
[0059] According to the present disclosure, the conditions for separating the cell-phase and the fluid phase of saliva are optimized to avoid mechanical rupture of cellular elements which would contribute to the RNA detected in the fluid cell-free phase.
[0060] In embodiments wherein the separation is performed by centrifugation, optimization can be performed by testing housekeeping genes on samples centrifuged at various speed and on whole saliva samples, using DNA as a marker of cell lysis and spillage, to derive the optimized centrifugation speed. (See procedure described in Example 5).
[0061] Detection of the extracellular mRNA in the cell-free saliva fluid phase portion (salivary mRNA) can then be performed by techniques known in the art allowing mRNA qualitative and/or a quantitative analysis, such as RT- PCR, Q-PCR and Microarray. The detection can in particular be performed according to procedures that can include isolation and an amplification of the salivary mRNA and that are exemplified in the Examples.
[0062] Detection of the salivary mRNA in the method can be performed for the purpose of profiling the salivary mRNA. [0063] In a first series of embodiments, the expression of predetermined genes, can be profiled in a cell-free fluid phase portion of saliva. In those embodiments, detection of the mRNA profile can be performed by RT-PCR or any techniques allowing identification of a predetermined target mRNA. Quantitative analysis can then be performed with techniques such as Quantitative PCR (Q-PCR) to confirm the presence of mRNA identified by the RT-PCR. A reference database can then be generated based on the mRNA profiles so obtained. Exemplary procedures to perform such qualitative and quantitative analyses of salivary mRNA are described in details in Examples 1 , 4 and 9. UUD^-j in a secoπα series oτ emDoαimeπts, a iiaπsuiμtume analysis ui saliva can be performed by detecting a transcriptome pattern in the cell-free fluid phase portion of saliva. Detection of the transcriptome pattern can be performed by isolating and linearly amplifying salivary mRNA, which can then be profiled with techniques such as high-density oligonucleotide microarrays. Quantitative analysis can then be performed with techniques such as Q-PCR to confirm the presence of mRNA in the pattern identified by the microarray. A reference database can then be generated based on the mRNA profiles so obtained. Exemplary procedures to perform such qualitative and quantitative analyses of salivary mRNA are described in details in Examples 2-3, 9-10 and 14-15.
[0065] Profiling salivary RNA can be performed to detect and/or monitor human health and disease or to investigate biological questions, such as for example, the origin, release and clearance of mRNA in saliva. The salivary mRNA provides actual or potential biomarkers to identify populations and patients at high risk for oral and systemic pathologies, diseases or disorders.
[0066] Alterations of the salivary mRNA profiles and transcriptome patterns characterizing the cell-free fluid phase portion of saliva or normal subjects can be indicative of pathologies, diseases or disorders of various origin. Examples of those pathologies, diseases or disorders are provided by the inflammatory conditions of the oral cavity, OSCC or other conditions such as diabetes, breast cancer and HIV.
[0067] Also comparison between the mRNA profiles and transcriptome patterns of subject affected with a determined pathology, disease or disorder, can result in the identification of informative biomarkers for the determined pathology disease or disorder. In particular, salivary mRNA can be used as diagnostic biomarkers for oral and systemic pathologies, diseases or disorders that may be manifested in the oral cavity.
[0068] In particular, salivary mRNA can be used as diagnostic biomarkers for cancer that may be manifested and/or affect the oral cavity. Sal iva-based mRNA assays nave the neeαeo specmcity ana sensitivity τor itJiicduie diagnostics.
[0069] In case of various forms of cancer, alterations of the normal salivary mRNA and transcriptome patterns can also reflect the genetic alterations in one or more portions of the oral cavity which are associated with presence of the tumor. For oral cancer patients, the detected cancer-associated RNA signature is likely to originate from the matched tumor and/or a systemic response (local or distal) that further reflects itself in the whole saliva coming from each of the three major sources (salivary glands, gingival crevicular fluid, and oral mucosal cells). It is conceivable that disease-associated RNA can find its way into the oral cavity via the salivary gland or circulation through the gingival crevicular fluid. A good example is the elevated presence of HER-2 proteins in saliva of breast cancer patients [87].
[0070] A common transcriptome of normal cell-free saliva, including approximately 185 different human mRNAs, also defined as Normal Salivary Core Transcriptome (NSCT) was identified in outcome of a transcriptome analysis performed on cell-free fluid phase of saliva from normal subject (see Example 2, Table 2).
[0071] Since the NSCT was identified using the probe sets on HG U1 33A microarray representing only -19,000 human genes, and the human genome composed of more than 30,000 genes [48], it is expected that more human mRNAs will be identified in saliva by other methodologies and additional salivary patterns are identifiable by the method herein disclosed.
[0072] The NSCT and/or other salivary transcriptome patterns in cell-free saliva from normal populations can serve in a Salivary Transcriptome Diagnostics (SlvTD), for potential applications in disease diagnostics as well as normal health surveillance.
[0073] Accordingly, in a first embodiment of the SlvTD, a method to diagnose an oral or systemic pathology disease or disorder in a subject, is disclosed. The method comprises: providing a cell-free fluid phase portion of tne sanva ot tne su ject; detecting in tne proviαeα ceιι-τree sanva τιuια pπase portion an mRNA profile of a gene associated with the disease; and comparing the RNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the presence of the disease in the subject.
[0074] In a second embodiment of the SlvTD, a method to diagnose an oral or systemic pathology disease or disorder in a subject, is disclosed. The method comprises: providing cell-free saliva supernatant of the subject; detecting in the cell-free saliva supernatant a transcriptome pattern associated with the pathology disease or disorder; and comparing the transcriptome pattern with a predetermined pattern, recognition in the transcriptome pattern of characteristics of the predetermined pattern being diagnostic for the pathology disease or disorder in the subject.
[0075] In a third embodiment of the SlvTD, a method to identify a biomarker associated with a predetermined pathology disease or disorder is disclosed. The method comprises: detecting a first mRNA profiling of a predetermined gene in cell-free fluid phase portion of saliva of a subject affected by the pathology disease or disorder; detecting a second mRNA profiling of the predetermined gene in cell-free fluid phase portion of saliva of a normal subject; comparing the first mRNA profiling with the second mRNA profiling, recognition of differences between the first mRNA profiling and the second mRNA profiling, the differences validated by statistical analysis, being indicative of the identification of the predetermined gene as a biomarker for the predetermined pathology disease or disorder. [0076] In particular the difference between the RNA profiling from one disease category to one healthy category is analyzed by microarray statistical methodologies. The algorithms used include MAS 5.0, DNA-Chip analyzer 1 .3 and RMA 3.0. Preferably, the analysis is performed by a combination of these methods to provide more powerful and accurate markers to test. The markers identified by microarray will then be tested by conventional techniques such as Q-PCR. Luut tj in a Tourtn emoooiment oτ tne t>ιv ι u a αiagnostic metnoα can oe performed, wherein the cell-free saliva is contacted with an identifier for the presence or expression of the biomarker, and the presence of the identifier associated to presence or expression of the biomarker is detected, preferably by means of a detector.
[0078] The SlvTD allow detection of diseases such as tumors at a stage early enough that treatment is likely to be successful, with screening tools exhibiting the combined features of high sensitivity and high specificity. Moreover, the screening tool are sufficiently noninvasive and inexpensive to allow widespread applicability.
[0079] The results of the above methods of the SlvTD can be integrated with a corresponding analysis performed at an mRNA and/or protein level and/or in other bodily fluid, such as blood serum.
[0080] Biomarkers, such as protein or transcriptome patterns detected in serum can also serve in a Serum Transcriptome Diagnostics (SrmTD), for potential applications in disease - diagnostics as well as normal health surveillance. Embodiments of the SrmTD include methods corresponding to the ones reported above for the SlvTD, wherein the bodily fluid analyzed is serum instead of cell-free saliva. [0081] In particular, the results obtained following the SlvTD can be combined with results obtained with the SrmTD, in a combined Salivary and Serum Transicriptome approach (SSTD).
[0082] According to the SSTD a diagnostic method can be performed, wherein the bodily fluid, serum and/or saliva is contacted with an identifier for the presence or expression of the biomarker, wherein the biomarker can be a protein or an mRNA and the presence of the identifier associated to presence or expression of the biomarker is detected, preferably by means of a detector.
[0083] Examples of the SlvTD, SrmTD and SSTD are herein provided with reference to the OSCC. The person skilled in the art can derive the appropriate modifications of the s I u nerein exempimeα τor diseases αiπerem than OSCC upon reading of the present disclosure.
[0084] Profiling of two specific cytokines, IL6 and IL8, was measured in the cell-free fluid phase portion of saliva and serum of patients with OSCC according to procedures extensively disclosed in Examples 4-8. IL8 was detected at higher concentrations in the saliva of patients with OSCC (P < 0.01 ) and IL6 was detected at higher concentrations in the serum of patients with OSCC (P < 0.01 ). These results were confirmed at both the mRNA and the protein levels, and the results were concordant. The concentration of IL8 in saliva and IL6 in serum did not appear to be associated with gender, age, or alcohol or tobacco use (P > 0.75). The data were subjected to statistical analysis, in particular to ROC analysis, and were able to determine the threshold value, sensitivity, and specificity of each biomarker for detecting OSCC (see Example 8, Table 3). Furthermore, the inventors were able to measure mRNA in salivary specimens.
[0085] A transcriptome analysis of unstimulated saliva collected from patients with OSCC and normal subjects was performed as disclosed in Examples 9-12 and in Examples 13-16.
[0086] RNA isolation was performed from the saliva supernatant, followed by two-round linear amplification with T7 RNA polymerase. Human Genome U133A microarrays were applied for profiling human salivary transcriptome. The different gene expression patterns were analyzed by combining a t test comparison and a fold-change analysis on 10 matched cancer patients and controls. Quantitative polymerase chain reaction (qPCR) was used to validate the selected genes that showed significant difference (P < 0.01 ) by microarray. The predictive power of these salivary mRNA biomarkers was analyzed by receiver operating characteristic curve and classification models.
[0087] The results of a first set of microarray analysis showed that there are
1 ,679 genes exhibited significantly different expression level in saliva between cancer patients and controls (P < 0.05). Seven cancer-related mRNA biomarkers that exhibited at least a 3.5-fold elevation in OSCC saliva (P < u.u i ) were consistently vanαateα Dy qr on sanva samples TΓOIII uoυυ patients (n = 32) and controls (n =32). These salivary RNA biomarkers are transcripts of IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , SI OOP, and SAT. The combinations of these biomarkers yielded sensitivity (91 %) and specificity (91 %) in distinguishing OSCC from the controls, (see Examples 13-16)
[0088] The results of a second set of microarray analysis showed five of ten up-regulated genes selected based on their reported cancer-association, showed significantly elevated transcripts in serum of OSCC patient. These RNA biomarkers are transcripts of H3F3A, TPT1 , FTH 1 , NCOA4 and ARCR. The results validated by qPCR confirmed that transcripts of these five genes were significantly elevated in the serum of OSCC patient (Wilcoxon Signed Rank test, P < 0.05). (See Examples 9 to 12)
[0089] Using the described collection and processing protocols, the presence of ACTB, B2W, GAPDH and RPS9 mRNAs (controls mRNA) were confirmed in all serum (patients and controls) by RT-P&R.
[0090] Accordingly, a method for diagnosing a cancer, in particular OSCC in a subject, is disclosed. The method comprises: providing a bodily fluids of the subject; detecting in the bodily fluid a profile of a biomarker, the biomarker selected from the group consisting of IL8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR, comparing the profile of the biomarker with a predetermined profile of the biomarker, recognition in the profile of the biomarker of characteristics of the predetermined profile of the biomarker being diagnostic for the cancer.
[0091] Also method to diagnose oral and/or systemic pathology, disease or disorder, in particular OSCC, is disclosed. The m&thod comprises using salivary mRNAs as biomarkers for oral and/or systemic diseases, in particular salivary mRNAs of selected from the group consisting of IL8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P and SAT.
[0092] Additionally a method to diagnose oral and/or systemic pathology, disease or disorder, in particular OSCC, is disclosed. The method comprises: using serum ΓΠKINAS ano/or protein as Diomarκers τor orai anα/or systemic diseases, in particular serum mRNAs of selected from the group consisting of IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR, and serum IL6 protein.
[0093] Given the multifactorial nature of oncogenesis and the heterogeneity in oncogenic pathways use of combinations of salivary and/or serum biomarkers, ensuring higher specificity and sensitivity, to detect the disease, is preferred. Multiple statistical strategies reported and risk models described in the examples can be used to identify combinations of biomarkers that can identify OSCC patients samples and to facilitate assigning the appropriate serum transcriptome-based diagnosis for patients' specific cancer risk.
[0094] Monitoring of profile of salivary mRNA in cell-free fluid phase portion of saliva and/or in other bodily fluid such as blood serum, can be used in the postoperative management of OSCC patients. It could potentially be used for monitoring the efficacy of treatment, or disease recurrence after therapy has concluded. Salivary mRNAs and in particular IL8 may also serve as prognostic indicators to direct the treatment of patients- with oral cavity cancer. In perspective, high-risk patients can be directed to more aggressive or adjuvant treatment regimens.
[0095] The use of these biomarkers may also improve the staging of the tumor. With traditional techniques, the presence of microscopic distant disease is often under recognized. In recent years, there has been a shift from locoregional failure to distant failure for patients treated for presumed locoregional disease.[18] This in part is a reflection of subclinical distant disease present prior to the initiation of therapy. Testing for the presence of biomarkers may allow the detection of small amounts of tumor cells in a background of normal tissue. Salivary mRNAs as biomarkers specific for head and neck tumors or a panel of such biomarkers may allow the detection of distant microscopic disease. For oral cancer, one of the most important applications of the STD approach in this respect is to detect the cancer conversion of oral premalignant lesions. uuybj rorinng or salivary ΓΠKI AS can aiso oe useα to investigate tne roie of genes in the development of cancer, in particular whether the aberrant expressions of these genes functionally contribute to the development of human OSCC. The biological significance of differential expression of these genes in head and neck/oral cancer should be determined. Identification of cancer-associated genes that are consistently changed in cancer patients will provide us not only with diagnostic markers but also with insights about molecular profiles involved in head and neck cancer development. Understanding the profile of molecular changes in any particular cancer will be extremely useful because it will become possible to correlate the resulting phenotype of that cancer with molecular events.
[0097] Kits of parts associated with the methods herein disclosed are also disclosed. In an exemplary embodiment, a kit comprises: a identifier of a biomarker in a bodily fluid, such as a salivary mRNA or protein, and serum mRNA or protein, the biomarker selected from the group consisting of 1L8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR; and a detector for the identifier, the identifier and the detector to be used in detecting the bodily fluid profile of the biomarker of one the methods herein disclosed, wherein the identifier is associated to the biomarker in the bodily fluid, and the detector is used to detect the identifier, the identifier and the detector thereby enabling the detection of the bodily fluid profile of the biomarker.
[0098] The bodily fluid can be saliva, with the detection performed in the cell-free fluid phase portion thereof, or another bodily fluid such as blood serum.
[0099] The identifier and the detector able to detect the identifier, are identifiable by a person skilled in the art. Other compositions and/or components that may be suitably included in the kit and are also identifiable by a person skilled in the art. [uυ υυj me loentmer and tne reagent can c-e inciuαeα in one oi muie compositions where the identifier and/or the reagent are included with a suitable vehicle, carrier or auxiliary agent.
[00101] In the diagnostic kits herein disclosed, the agents and identifier reagents can be provided in the kits, with suitable instructions and other necessary reagents, in order to perform the methods here discl osed. The kit will normally contain the compositions in separate containers. Instructions, for example written or audio instructions, on paper or electronic support such as tapes or CD-ROMs, for carrying out the assay, will usually be included in the kit. The kit can also contain, depending on the particular method used, other packaged reagents and materials (i.e. wash buffers and the like).
[00102] Further details concerning the identification of the suitable carrier agent or auxiliary agent of the compositions, and generally manufacturing and packaging of the kit, can be identified by the person skilled in the art upon reading of the present disclosure.
[00103] The kit of parts herein disclosed can be used in particular for diagnostic purpose. As a result a non-invasive diagnostic detection of pathologies, diseases or disorder and in particular of oral cavity and oropharyngeal cancer in patients, is disclosed. [00104] The use of the fluid phase of saliva has unique advantages over the use of exfoliated cells. Depending on the location of the tumor, one may not be able to easily access and swab the tumor bed. Although salivary biomarkers could not identify the site from which the tumor originated, they could identify patients at risk. Such a saliva test could be ad ministered by nonspecialists in remote locations as a screening tool to select patients for referral for careful evaluation of the upper aerodigestive tract. Finding early stage, previously undetected disease may ultimately save lives. I loreover, the use of easily accessible biomarkers may prove highly beneficial in large populations or chemoprevention trials. This could be envisioned during routine dental visits or targeted screening of individuals at high risk of development of the disease. A home test kit can also be envisioned. [UU1U5J Also tne use oτ blood test is envisioned in paracuiar τor cancer eaπy detection. Recovering the cell-free circulating mRNA or protein biomarkers in the serum of cancer patients representing characteristics of tumor genetic alteration, such as IL6 mRNA and protein, H3F3A, mRNA TPT1 mRNA , FTH1 mRNA , NCOA4 mRNA and ARCR mRNA diagnostic for OSCC, could be envisioned as a screening test for presence of occult OSCC during routine physician's visit with blood work or targeted screening of individuals at high risk for oral cancer development. A home test kit can also be envisioned, including preferably [00106] In particular, peripheral blood can be obtained from subjects using routine clinical procedures, and mRNA and proteins can be isolated, preferably with an optimized procedures herein disclosed. Real time quantitative PCR and ELISA for the respective cytokine will be performed for one or biomarkers, such as IL6. [00107] A perspective embodiments of the methods herein disclosed are directed towards the eventual creation of micro-/nano-electrical mechanical systems (MEMS/NEMS) for the ultrasensitive detection of molecular biomarkers in oral fluid. RNA and protein expression for the validated OSCC biomarkers will be selected as targets for cancer detection. The integration of these detection systems for the concurrent detection of mRNA and protein for multiple OSCC biomarkers will result in an efficient, automated, affordable system for oral fluid based cancer diagnostics.
[00108] Further details concerning reagents, conditions, compositions techniques to be used in the method and kits of the disclosure are identifiable by a person skilled in the art upon reading of the present disclosure.
[00109] Also appropriate modifications of the STD methods and kits herein disclosed and exemplified as associated to OSCC and/or HSNCC, for the mRNA profiling and transcriptome analysis associated with investigation and diagnosis of other pathology diseases and disorders can be made by a person skilled in the art upon reading of the present disclosure. [uuπuj i ne roiiowing examples are provided to oescnoe tne invention in further detail. These examples, which set forth a preferred mode presently contemplated for carrying out the invention, are intended to illustrate and not to limit the invention
EXAMPLES
EXAMPLE 1 : RNA ISOLATION, AMPLIFICATION AND GENE EXPRESSION
PROFILING FROM CELL-FREE SALIVA OF NORMAL DONORS
Normal subjects
[00111] Saliva samples were obtained from ten normal donors from the Division of Otolaryngology, Head and Neck Surgery, at the Medical Center, University of California, Los Angeles (UCLA), CA, in accordance with a protocol approved by the UCLA Institutional Review Board. The following inclusion criteria were used: age 30 years; no history of malignancy, immunodeficiency, autoimmune disorders, hepatitis, HIV infection or smoking. The study population was composed of 6 males and 4 females, with an average age of 42 years (range from 32 to 55 years).
Saliva collection and processing to obtain the relevant fluid phase
[00112] Unstimulated saliva were collected between 9 am and 10 am in accordance with published protocols [38]. Subjects were asked to refrain from eating, drinking, smoking or oral hygiene procedures for at least one hour prior to saliva collection. Saliva samples were centrifuged at 2,600 x g for 15 min at 4 °C. Saliva supernatant was separated from the cellular phase. RNase inhibitor (Superase-ln, Ambion Inc., Austin, TX, USA) and protease inhibitor (Aprotinin, Sigma, St. Louis, MO, USA) were then added into the cell-free saliva supernatant.
RNA isolation from cell-free saliva
[00113] RNA was isolated from cell-free saliva supernatant using the modified protocol from the manufacturer (QIAamp Viral RNA kit, Qiagen, Valencia, UΛ, UO ;. sanva (oou μι_), mixtsu oweu wun HV L υunei ^,iiι. μι_;, was incubated at room temperature for 10 min. Absolute ethanol (2,240 μL) was added and the solution passed through silica columns by centrifugation at 6,000 x g for 1 min. The columns were then washed twice, centrifuged at 20,000 x g for 2 min, and eluted with 30 μL RNase free water at 9,000 x g for 2 min. Aliquots of RNA were treated with RNase-free DNase (DNase l-DNA- free, Ambion Inc., Austin, TX, USA) according to the manufacturer's instructions.
[00114] The stability of the isolated RNA was examined by RT-PCR typing for actin-β (ACTB) after storage for 1 , 3, and 6 months. The results reported on Figure 1A show that the mRNA isolated could be preserved without significant degradation for more than 6 month at -80 °C.
[00115] The quality of isolated RNA was examined by RT-PCR for three house-keeping gene transcripts: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin-β (ACTB) and ribosomal protein S9 (RPS9). Primers were designed using PRIMER3 software (http://www.genome.wi.mit.edu) and were synthesized commercially (Fisher Scientific, Tustin, CA, USA) as follows: the primers having the sequence reported attached sequence listing as SEQ ID NO: 1 and SEQ ID NO: 2 for GAPDH; the primers having the sequence reported attached sequence listing as SEQ ID NO: 3 and SEQ ID NO: 4 for ACTB; the primers having the sequence reported attached sequence listing as SEQ ID NO: 5 and SEQ ID NO: 6 for RPS9. The quantity of RNA was estimated using Ribogreen® RNA Quantitation Kit (Molecular Probes, Eugene, OR, USA). The results are shown in Figure 1 B, wherein GAPDH (B1), RPS9 (82) and ACTB (83) were detected consistently in all 10 cases tested, demonstrating that all 10 saliva samples contain mRNAs that encode for house keeping genes: GAPDH, ACTB and RPS9.
[00116] The mRNA of these genes could be preserved without significant degradation for more than 6 months at -80 °C, (see results for ACTB reported on Fig. 1A). i arget C IM/Λ preparation
[00117] Isolated RNA was then subjected to linear amplification according to published method from our laboratory (Ohyama et al., 2000). In brief, reverse transcription using T7-oligo-(dT)24 as the primer was performed to synthesize the first strand cDNA. The first round of in vitro transcription (IVT) was carried out using T7 RNA polymerase (Ambion Inc., Austin, TX, USA). The BioArrayT High Yield RNA Transcript Labeling System (Enzo Life Sciences, Farmingdale, NY, USA) was used for the second round IVT to biotinylate the cRNA product; the labeled cRNA was purified using GeneChip® Sample Cleanup Module (Affymetrix, Santa Clara, CA, USA).
[00118] The quantity and quality of cRNA were determined by spectrophotometry and gel electrophoresis. Exemplary results of agarose gel electrophoresis test reported on Figure 2A show different quantities of amplified cRNA at the different stages of the RNA amplification. [00119] Also small aliquots from each of the isolation and amplification steps were used to assess the quality by RT-PCR. Exemplary results reported in Figure 2B show PCR typing ACTB performed at the various stages of RNA amplification, wherein the expected single band (153bp) can be detected in every main step of the salivary RNA amplification process. [00120] The quality of the fragmented cRNA (prepared as described by Kelly, 2002) was also assessed by capillary electrophoresis using the 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Exemplary results reported in Figure 2C show one single peak in a narrow range (50-200bp) demonstrating proper fragmentation.
Gene expression profiling in the targeted cRNA preparation
[00121] Gene expression profiling was performed in cell free-saliva obtained from ten normal donors, wherein on average, 60.5 ± 13.1 ng (n=10) of total RNA was obtained from 560 μL cell-free saliva samples. The results are reported on Table 1. Table 1. Subject Gender Age RNA (ng)a cRNA (~tg)'~ Present Probesc Probe ~%" 1 F 53 60.4 44.3 3172 14.24 2 M 42 51.6 40.8 2591 11.62 3 M 55 43.2 34.8 2385 10.70 4 M 42 48.2 38.0 2701 12.12 5 M 46 60.6 42.7 3644 16.35 6 M 48 64.8 41.8 2972 13.34 7 F 40 75.0 44.3 2815 12.63 8 M 33 77.8 49.3 4159 18.66 9 F 32 48.8 41.4 2711 12.17 10 F 32 79.8 44.4 4282 19.22
Mean±SD 42±8.3 60.5±13.12 42.2±3.94 3143+665.0 14.11+2.98 [00122] The total RNA quantity is the RNA in 560p.L cell-free saliva supernatant; the cRNA quantity is after two rounds of T7 amplification. Number of probes showing present call on HG U133A microarray (detection 5 p<0.04). Present percentage (P%) = Number of probes assigned present call / Number of total probes (22,283 for HG U133A microarray). [00123] After two rounds of T7 RNA linear amplification, the average yield of biotinylated cRNA was 42.2 ± 3.9 μg with A260/280=2.067 ± 0.082 (Tablel ). The cRNA ranged from 200 bp to 4 kb before fragmentation; and was0 concentrated to approximately 10Obp after fragmentation. The quality of cRNA probe was confirmed by capillary electrophoresis before the hybridizations. ACTB mRNA was detectable using PCR/RT-PCR on original sample and products from each amplification steps: first cDNA, first In Vitro Transcription (IVT), second cDNA and second IVT, with a resulting agarose electrophoresis5 pattern comparable to the one shown in Fig. 2B.
EXAMPLE 2: MICROARRAY PROFILING OF MRNA FROM CELL-FREE SALIVA OF NORMAL DONORS [00124] Saliva was collected processed and the RNA isolated as reported in Example 1. Also, stability, quality and quantity of the RNA was assessed are0 reported in Example 1. I-HJ-U'I VJJ i A Microarray analysis
[00125] The Affymetrix Human Genome U133A Array, which contains 22,215 human gene cDNA probe sets representing -19,000 genes (i.e., each gene may be represented by more than one probe sets), was applied for gene expression profiling. The array data were normalized and analyzed using Microarray Suite (MAS) software (Affymetrix). A detection p-value was obtained for each probe set. Any probe sets with p < 0.04 was assigned "present", indicating the matching gene transcript is reliably detected (Affymetrix, 2001 ). The total number of present probe sets on each array was obtained and the present percentage (P%) of present genes was calculated. Functional classification was performed on selected genes (present on all ten arrays, p < 0.01 ) by using the Gene Ontology Mining Tool (www.netaffx.com).
[00126] Salivary mRNA profiles of ten normal subjects were obtained using HG U133A array contains 22,283 cDNA probes. An average of 3,143 ± 665.0 probe sets (p < 0.04) was found on each array (n=10) with assigned present calls. These probe sets represent approximately 3,000 different mRNAs. The average present call percentage was 14.11 + 2.98% (n=10). A reference database which includes data from the ten arrays was generated. The probe sets representing GAPDH, ACTB and RPS9 assigned present calls on all 10 arrays. There were totally 207 probe sets representing 185 genes assigned present calls on all 10 arrays with detection p < 0.01. These 10 genes were categorized on the basis of their known roles in biological processes and molecular functions. Biological processes and molecular functions of 185 genes in cell-free saliva from ten normal donors (data obtained by using Gene Ontology Mining Tool) are reported on Table 2.
Table 2. Biological process3 Genes, nb Molecular function3 Genes, nb Cell growth and/or maintenance 119 Binding 118 Metabolism 93 Nucleic acid binding 89 Biosynthesis 70 RNA binding 73 Protein metabolism 76 Calcium ion binding 12 Nucleotide metabolism 10 Other binding 23 Other metabolisms 18 Structural molecule 95 Cell organization and biogenesis 2 Ribosomal constituent 73 Homeostasis 3 Cytoskeleton constituent 17 Cell cycle 5 Muscle constituent 2 Cell proliferation 11 Obsolete 15 Transport 5 Transporter 4 Cell motility 8 Enzyme 20 Cell communication 34 Signal transduction 10 Response to external stimulus 19 Transcription regulator 7 Cell adhesion 3 Translation regulator 5 Cell-cell signaling 5 Enzyme regulator 9 Signal transduction 17 Cell adhesion molecule 1 Obsolete 8 Molecular function unknown 6 Development 18 Death 2 Biological process unknown 11
[00127] One gene may have multiple molecular functions or participate in different biological processes. Number of genes classified into a certain group/subgroup. The major functions of the 185 genes are related to cell growth/maintenance (119 genes), molecular binding (118 genes) and cellular structure composition (95 genes). We termed these 185 genes as "Normal Salivary Core Transcriptome (NSCT)".
EXAMPLE 3: Q-PCR VALIDATION AND QUANTITATION ANALYSIS OF MICROARRAY PROFILING FROM CELL-FREE SALIVA OF NORMAL DONORS
[00128] The Microarray analysis performed in Example 2 was validated through a quantitative gene expression analysis by Q-PCR quantitative gene expression analysis py U-MUK
[00129] Real time quantitative PCR (Q-PCR) was used to validate the presence of human mRNA in saliva by quantifying selected genes from the 185 "Normal Salivary Core Transcriptome" genes detected by the Microarray profiling reported in Example 2. Genes IL1 B, SFN and K-ALPHA-1 , which were assigned present calls on all 10 arrays, were randomly selected for validation.
[00130] Q-PCR was performed using iCyclerTM thermal Cycler (Bio-Rad, Hercules, CA, USA). A 2 μL aliquot of the isolated salivary RNA (without amplification) was reverse transcribed into cDNA using MuLV Reverse Transcriptase (Applied Biosystems, Foster City, CA, USA). The resulting cDNA (3 μL) was used for PCR amplification using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). The primers were synthesized by Sigma- Genosys (Woodlands, TX, USA) as follows: the primers having the sequence reported attached sequence listing as SEQ ID NO: 7 and SEQ ID NO: 8 for interleukin 1 , beta (IL1 B); the primers having the sequence reported attached sequence listing as SEQ ID NO:9 nd SEQ ID NO: 10 for stratifin (SFN); the primers having the sequence reported attached sequence listing as SEQ ID NO: 1 1 and SEQ ID NO: 12 for tubulin, alpha, ubiquitous (K-ALPHA-1 ). All reactions were performed in triplicate with conditions customized for the specific PCR products. The initial amount of cDNA of a particular template was extrapolated from a standard curve using the LightCycler software 3.0 (Bio-Rad, Hercules, CA, USA). The detailed procedure for quantification by standard curve has been previously described (Ginzinger, 2002). [00131] Q-PCR results showed that mRNA of IL1 B, SFN and K-ALPHA-1 were detectable in all 10 original, unamplified, cell-free saliva. The relative amounts (in copy number) of these transcripts (n=10) are: 8.68 x 103 ± 4.15 x 103 for I LI B; 1.29 x 105 ± 1.08 x105 for SFN; and 4.71 x 106 ± 8.37 x 105 for K-ALPHA-1. The relative RNA expression levels of these genes measured by Q-PCR were similar to those measured by the microarrays (data not shown). tXAMPLE : ILb AND IL8 MKNA ISOLATION AMPLIFICATION AND ANALYSIS OF THE EXPRESSION IN CELL-FREE SALIVA OF OSCC PATIENTS
Patients selection
[00132] Patients were recruited from the Division of Head and Neck Surgery at the University of California, Los Angeles (UCLA) Medical Center, Los Angeles, CA; the University of Southern California (USC) Medical Center, Los Angeles, CA; and the University of California San Francisco (UCSF) Medical Center, San Francisco, CA, over a 6 -month period.
[00133] Thirty-two patients with documented primary T1 or T2 squamous cell carcinoma of the oral cavity (OC) or oropharynx (OP) were included in this study. All patients had recently been diagnosed with primary disease, and had not received any prior treatment in the form of chemotherapy, radiotherapy, surgery, or alternative remedies. An equal number of age and sex matched subjects with comparable smoking histories were selected as a control comparison group.
[00134] Among the two subject groups, there were no significant differences in terms of mean age (standard deviation, SD): OSCC patients, 49.3 (7.5) years; normal subjects, 48.8 (5.7) years (Student's t test P > 0.80); gender (Student's t test P > 0.90); or smoking history (Student's t test P > 0.75). No subjects had a history of prior malignancy, immunodeficiency, autoimmune disorders, hepatitis, or HIV infection. Each of the individuals in the control group underwent a physical examination by a head and neck surgeon, to ensure that no suspicious mucosal lesion was present.
Saliva Collection And Processing [00135] Informed consent had been given by all patients. Saliva and serum procurement procedures were approved by the institutional review board at each institution: the University of California, Los Angeles (UCLA); the University of Southern California (USC); and the University of California San Francisco (UCSF). [00136] saliva from 32 patients with uu or UP SUUA, and Z unaπectec age- and gender-matched control subjects were obtained for a prospective comparison of cytokine concentration.
[00137] The subjects were required to abstain from eating, drinking, smoking, or using oral hygiene products for at least one hour prior to saliva collection. Saliva collection was performed using the "draining (drooling)" method of Navazesh and Christensen,[7] for a total donation of 5 cc saliva. Saliva samples were subjected to centrifugation at 3500 rpm (2600xg) for 15 minutes at 4°C by a Sorvall RT6000D centrifuge (DuPont, Wilmington, DE). The fluid- phase was then removed, and RNAse (Superase-ln, RNAse Inhibitor, Ambion Inc., Austin, TX) and protease (Aprotinin, Sigma, St. Louis, MO; Phenylmethylsulfonylfluoride, Sigma, St. Louis, MO; Sodium Orthovanadate, Sigma, St. Louis, MO) inhibitors were then added promptly on ice. The conditions for the separation of the cellular and fluid phases of saliva were optimized to ensure no mechanical rupture of cellular elements which would contribute to the mRNA detected in the fluid phase. All samples were subsequently treated with DNAse (DNAsel-DNA-free, Ambion Inc., Austin, TX). The cell pellet was retained and stored at -80°C.
RNA Isolation from cell-free saliva [00138] 560 μL of saliva supernatant were then processed using the QIAamp Viral RNA mini kit (QIAGEN, Chatsworth, CA) kit. RNA was extracted according to the manufacturer's instructions. Samples were air-dried and resuspended in water treated with diethyl pyrocarbonate and were kept on ice for immediate usage or stored at -80°C. Aliquots of RNA were treated with RNAse-free DNAse (DNAsel-DNA-free, Ambion Inc., Austin, TX) according to the manufacturer's instructions. Concentrations of RNA were determined spectrophotometrically, and the integrity was checked by electrophoresis in agarose gels containing formaldehyde. Reverse Transcriptase-Polymerase Chain Keaction
[00139] Presence of IL6 and IL8 mRNA transcripts in the fluid phase in saliva was tested by using reverse transcriptase-polymerase chain reaction (RT- PCR). [00140] RNA from each sample was reverse-transcribed in 40 μL of reaction mixture containing 2.5 U of Moloney murine leukemia virus reverse transcriptase (Applied Biosystems lnc.(ABI, Foster City, CA) and 50 pmol of random hexanucleotides (ABI, Foster City, CA ) at 42°C for 45 minutes. Based on the published sequences, oligonucletide primers were synthesized commercially at Fisher Scientific (Tustin, CA) for PCR as follows: the primers having the sequence reported attached sequence listing as SEQ ID NO: 13 and SEQ ID NO: 14 for β-actin; the primers having the sequence reported attached sequence listing as SEQ ID NO: 15 and SEQ ID NO: 16 for IL8; and the primers having the sequence reported attached sequence listing as SEQ ID NO: 17 and SEQ ID NO: 18 for IL6.
[00141] Amplification of the complementary DNA (cDNA) was carried out using 50 cycles at 95 °C for 20 seconds, 60 °C for 30 seconds, and 72°C for 30 seconds; followed by a final extension cycle iof 72 °C for 7 minutes. Specificity of the PCR products was verified by the predicted size and by restriction digestion. To establish the specificity of the responses, negative controls were used in which input RNA was omitted or in which RNA was used but reverse transcriptase omitted. As a positive control, mRNA was extracted from total salivary gland RNA (Human Salivary Gland Total RNA, Clontech, Palo Alto, CA). To ensure RNA quality, all preparations were subjected to analysis of expression.
[00142] The RT-PCR studies so performed showed that saliva and serum contained mRNA encoding for IL6 and IL8. Exemplary results reported in Figure 3, show PCR products of the sizes (95 bp for IL6 and 88 bp for IL8) that were expected from the selected primers. The same-sized products were expressed in the positive control. [00143] in order to ensure that tne KNA ano protein analyzed were τrom iπe fluid phase of saliva only and to ensure the lack of contamination by intracellular components, the centrifugation speed for the saliva samples was optimized. PCR for the housekeeping genes β-actin and ubiquitin on whole saliva samples, and samples that had been centrifuged at various speeds using DNA as a marker of cell lysis and spillage of intracellular components. The results support an optimal centrifugation speed for saliva samples of 2,600 ±52 xg, with a preferred speed of 2,600 xg (see exemplary results reported on Fioure 4)
EXAMPLE 5: IL6 AND IL8 MRNA ISOLATION, AMPLIFICATION AND ANALYSIS
OF THE EXPRESSION IN SERUM OF OSCC PATIENTS
[00144] Patients recruited as reported in Example 4, where subjected to analysis of presence of IL6 and IL8 mRNA in blood serum.
Serum collection and processing [00145] Serum from 19 patients with OC or OP SCCA, and 32 unaffected age- and gender-matched control subjects were obtained for a prospective comparison of cytokine concentration. Among the subject groups, there were no significant differences in terms of age, gender, alcohol consumption, or smoking history (P > 0.75). [00146] Blood was drawn from control subjects and patients prior to treatment. Sera were collected by centrifuging whole blood at 3000 rpm (1000xg) for 10 minutes at 15°C by a Sorvall RT6000D centrifuge (DuPont, Wilmington, DE). Serum was then separated, and RNAse (Superase-ln, RNAse Inhibitor, Ambion Inc., Austin, TX) and protease (Aprotinin, Sigma, St. Louis, MO; Phenylmethylsulfonylfluoride, Sigma, St. Louis, MO; Sodium Orthovanadate, Sigma, St. Louis, MO) inhibitors were then added promptly on ice. All samples were subsequently treated with DNAse (DNAsel-DNA-free, Ambion Inc., Austin, TX). The aliquots were stored at -80°C until further use.
Figure imgf000035_0001
everse i ranscripiase-h-Oivmerase t^naiπ eauuuιι
[00147] Presence of IL6 and IL8 mRNA transcripts in the serum was tested by using reverse transcriptase-polymerase chain reaction (RT-PCR) performed as described in Example 4 above. [00148] The RT-PCR studies so performed showed that serum contained mRNA encoding for IL6 and IL8, with electrophoresis gel pattern comparable to the one shown in Figure 3.
[00149] In order to ensure that the RNA and protein analyzed were from the fluid phase of serum only and to ensure the lack of contamination by intracellular components, the centrifugation speed for the serum samples was optimized following the same approach described in Example 4 for saliva samples. The results support an optimal centrifugation speed for saliva samples of 1,000 ±20 xg with a preferred speed of 1,000 xg.
EXAMPLE 6: IL6 AND IL8 CYTOKINE LEVELS ANALYSIS IN SALIVA FROM OSCC PATIENTS i [00150] On demonstrating that IL6 and IL8 mRNA transcripts were present in the fluid phase in saliva, we prospectively examined and compared the levels of IL6 and IL8 in the saliva of unaffected subjects and patients with OSCC using quantitative real time PCR (qRT-PCR) and ELISA. [00151] Saliva from 32 patients with OSCC, and 32 age- and gender- matched control subjects were obtained. Among the subject groups, there were no significant differences in terms of age, gender, alcohol consumption, or smoking history (P> 0.75).
Real Time PCR for Quantification of IL6 and IL8 mRNA Concentrations in Saliva from Patients and Normal Subjects
[00152] To analyze quantitatively the result of RT-PCR, quantitative real-time PCR (Bio-Rad iCycler, Thermal Cycler, Bio-Rad Laboratories, Hercules, CA) was used. Each sample was tested in triplicate. The amplification reactions were carried out in a 20 μL mixture, using iQ SYBR Green Supermix (Bio-Rad Lαuui α.uuco, rici ouies, u λ). Aitt-i itiiuai ueπaturauoπ at yo~u τor ύ minutes, 50 PCR cycles were performed at 60°C for 20 seconds, then 20 seconds at 72°C, then 20 seconds at 83°C, followed by 1 minute at 95°C, then followed by a final 1 minute extension at 55°C. Aliquots were taken from each well and checked by electrophoresis in agarose gels in order to ensure the specificity of the products.
[00153] The RT-PCR results are illustrated by the diagram shown in Figure 5 Such results show that IL8 at both the mRNA and protein levels, was detected in higher concentrations in the saliva of patients with OSCC when compared with control subjects (t test, P< 0.01 ). There was a significant difference in the amount of IL8 mRNA expression between saliva from OSCC patients and disease-free controls. The mean copy number was 1.1 x 103 for the OSCC group, and 2.6 x 101 for the control group. The difference between the two groups was highly statistically significant (P<0.0008). [00154] No significant differences were instead found in the salivary concentration of IL6 at the mRNA level. Within the sample size studies, the inventors were also unable to detect differences between smoking and nonsmoking subjects. <
ELISA for Quantification of IL6 and IL8 Protein Concentrations in Saliva from Patients and Normal Subjects
[00155] ELISA kits for IL6 and IL8 were used (Pierce Endogen, Rockford, IL) according to the manufacturer's protocol. Each sample was tested in duplicate in each of two replicate experiments. After development of the colorimetric reaction, the absorbance at 450 nm was quantitated by an eight channel spectrophotometer (EL800 Universal Microplate Reader, BIO-TEK Instruments Inc., Winooski, VT), and the absorbance readings were converted to pg/ml based upon standard curves obtained with recombinant cytokine in each assay. If the absorbance readings exceeded the linear range of the standard curves, ELISA assay was repeated after serial dilution of the supernatants. Each sample was tested in at least two ELISA experiments, and the data were calculated from the mean of tests for each sample. [UU I ODJ i πe CLIOA Tinoings are iiiustiaieu py trie uiagram sπowπ in riquit; 5B. The levels of IL8 in the saliva of OSCC patients were significantly higher (720 pg/dL) than those in the saliva of the control group (250 pg/dL) (PO.0001 ). To ensure that the elevated levels of IL8 protein in saliva were not due to an elevation of total protein levels in the saliva of OSCC patients, we compared the total protein concentrations in saliva among the two groups. No significant differences were found (P> 0.05).
[00157] No significant differences were found in the salivary concentration of IL6 at the protein level. Also in the ELISA analysis, no differences were detected within the sample size studies between smoking and nonsmoking subjects.
EXAMPLE 7: IL6 AND IL8 CYTOKINE LEVELS ANALYSIS IN SERUM FROM OSCC PATIENTS
[00158] We also examined and compared the levels of IL6 and IL8 in the serum of unaffected subjects and patients with OSCC using qRT- PCR and ELISA. The patients were selected as described in Example 4 and the serum processed as described in Example 5.
Real Time PCR for Quantification of IL6 and IL8 mRNA Concentrations in Serum from Patients and Normal Subjects [00159] To analyze quantitatively the result of RT-PCR, quantitative real-time PCR was performed as described in Example 6.
[00160] The RT-PCR results are illustrated by the diagram shown in Figure 6 A Such results show that IL6 at mRNA level was detected in higher concentrations in the serum of patients with OSCC when compared with control subjects (if test, P < 0.001 ). We noted a significant difference in the amount of IL6 mRNA expression between serum from OSCC patients and disease-free controls. The mean copy number was 5.2 x 104 for the OSCC group, and 3.3 x 103 for the control group. The difference between the two groups was highly statistically significant (P<0.0004). μju oij INO signmcant differences were msteao τounα in tne seium concentration of IL8 at the mRNA level. Within the sample size studies, the inventors were also unable to detect differences between smoking and nonsmoking subjects.
ELISA for Quantification of IL6 and IL8 Protein Concentrations in Serum from Patients and Normal Subjects
[00162] ELISA tests for quantification of IL6 and IL8 protein concentrations in serum were performed as described in Example 6.
[00163] The relevant ELISA findings are illustrated by the diagram shown in Figure 6 B. The mean levels of IL6 in the serum of OSCC patients were significantly higher (87 pg/dL) than those in the serum of the control group (0 pg/dL) (PO.0001 ).
[00164] No significant differences were found in the serum concentration of IL8 at the protein level. Also in the ELISA analysis, no differences were detected within the sample size studies between smoking and nonsmoking subjects.
EXAMPLE 8: ROC AN D SENSITIVITY/SPECIFICITY ANALYSIS
[00165] Statistical analysis of the data collected in outcome of the experiments reported on Examples 1 to 7 above demonstrates the specificity and sensitivity of these biomarkers for HNSCC, and their predictive value.
Statistical Analysis
[00166] The distributions of patient demographics were calculated overall and separately for OSCC cases and controls, and were compared between the two arms with either the Student's f-test for continuous measures or two-by- two Chi-square tables for categorical measures. The distributions of IL6 and IL8 levels in saliva and serum were computed and compared between the OSCC cases and controls using two independent group f-tests. Differences were considered significant for P values less than 0.01. Due to the range of the IL6 and IL8 levels, log transformations of these measures were also used in tne analyses, uata were expresseα as tne mean + ou. Aye, yenuci, αnu smoking history were controlled at the group level in the experimental design; these patient factors were also adjusted in the analyses when comparing IL6 and IL8 through regression modeling. [00167] Using the binary outcome of the disease (OSCC cases) and non- disease (controls) as dependent variables, logistic regression models were fitted to estimate the probability of developing OSCC as a function of each of the potential biomarkers (IL6 or IL8), controlling for patient age, gender, and smoking history. Using the fitted logistic models, receiver operating characteristic (ROC) curve analyses were conducted to evaluate the predictive power of each of the biomarkers[8][9][10]. Through the ROC analyses, we calculated sensitivities and specificities by varying the criterion of positivity from the least (cut at probability of 0) to the most stringent (cut at probability of 1 ). The optimal sensitivity and specificity was determined for each of the biomarkers, and the corresponding cutoff/threshold value of each of the biomarkers was identified. The biomarker that has the largest area under the ROC curve was identified as having the strongest predictive power for detecting OSCC.
Clinical Data [00168] The mean (SD) age of the patients with OSCC was 49.3 (7.5) years (range, 42-67 years) vs. 48.8 (5.7) years (range, 40-65 years) in the control group; (Student's t test P > 0.80). Among the two subject groups, there were no significant differences in terms of age (mean age): OSCC patients, 49.3 years; normal subjects, 48.8 years (Student's t test P > 0.80); gender (Student's t test P > 0.90); or smoking history (Student's t test P > 0.75).
[00169] ROC (Receiver Operating Characteristic) curves, plots of sensitivities versus 1 -specificities, were generated for each of the potential biomarkers. Age, gender, and smoking history were controlled as described above. The areas under the ROC curves were calculated, as measures of the utility of each biomarker for detecting OSCC. juu i /υj rigure / ana ι-ιqure D snow tne Kuυ curves τor ιι_o in sanva anu 1L6 in serum, respectively. The calculated ROC values (for predicting OSCC) were 0.978 for IL8 in saliva; and 0.824 for IL6 in serum. Based on the distribution of sensitivities and specificities, thresholds of biomarkers were chosen for detecting OSCC. Based upon our data, for IL8 in saliva, a threshold value of 600 pg/dL yields a sensitivity of 86% and a specificity of 97%. Similarly, for IL6 in serum, a threshold value of greater than 0 pg/dL yields a sensitivity of 64% and a specificity of 81 %.
[00171] The combination of biomarkers: IL-8 in saliva and IL-6 in serum holds great potential for OSCC diagnostics as ROC analysis yields a sensitivity of 99% and a specificity of 90% as shown in Figure 7C.
[00172] The detailed statistics of the area under the ROC curves, the threshold values, and the corresponding sensitivities and specificities for each of the potential biomarkers in saliva and in serum are listed in Table 3. [00173] The detailed statistics of the area under the ROC curves, the threshold values, and the corresponding sensitivities and specificities for each of the potential biomarkers in saliva and in serum are listed in table 3 below. Table 3 Biomarker Area under ROC Threshold/Cutoff Sensitivity Specificity
IL8 saliva protein 0.978 600 pg/mL 86% 97% IL6 serum 0.824 > 0 pg/mL 57% 100% protein
IL8 saliva protein > 60fJ , , & IL6 serum 0.994 ^y , , 99% 90% protein > ° P/ml
EXAMPLE 9: RNA ISOLATION, AMPLIFICATION AND GENE EXPRESSION PROFILING FROM SERUM OF OSCC PATIENTS
Subject selection
[00174] Thirty-two OSCC patients were recruited from Medical Centers at University of California, Los Angeles (UCLA) and University of Southern oaiiTornia u a ;, ι_os Angeies, AII patients naα recently oeeπ αiagnoseu with primary T1/T2 OSCC, and had not received any prior treatment in the form of chemotherapy, radiotherapy, surgery, or alternative remedies. Thirty- five normal donors were recruited as controls from the general population at School of Dentistry, UCLA. No subjects had a history of prior malignancy, immunodeficiency, autoimmune disorders, hepatitis, or HIV infection. All subjects signed the Institutional Review Board approved consent form agreeing to serve as blood donors for this study.
[00175] Totally sixty-seven subjects were recruited, including 32 OSCC patients and 35 normal subjects. Among the two subject groups, there were no significant differences in terms of mean age (standard deviation, SD): OSCC patients, 49.3 (7.5) years; normal subjects, 47.8 (6.4) years (Student's if test P = 0.84). The gender distribution in OSCC group was 10:22 (female number/male number) and in control group was 14:21 (Chi-square test P ~ 1). We matched the smoking history of these two groups by determining the follows. All subjects were asked: (1 ) For how many years had they smoked? (2) How many packs per day had they smoked? (3) How many years had elapsed since they had quit smoking (if they had indeed quit)? (4) Did they only smoke cigarettes, or did they also use cigars, pipes, chewing tobacco, or marijuana? We then optimized the match between patients and controls in terms of the above: (1 ) similar pack-year history (2) similar time lapse since they had quit smoking (3) use of cigarettes exclusively. There was no significant difference between two groups in the smoking history (Student's t test P = 0.77).
Blood collection and processing.
[00176] Blood procurement procedure was approved by the institutional review board at UCLA and USC. Blood was drawn from control subjects and patients prior to treatment. The whole blood then underwent a centrifugation by 1 ,000 x g for 10 minutes at 15°C by a Sorvall RT6000D centrifuge (DuPont, Wilmington, DE). Serum was then separated, and 100U/mL RNase inhibitor (buperase-in, Amoion inc., Austin, I x; was aodeα promptly to tne serum, i πe aliquots were stored at -80°C until further use.
RNA isolation from serum.
[00177] RNA was isolated from 560 μl serum using QIAamp Viral RNA kit (Qiagen, Valencia, CA). Aliquots of isolated RNA were treated with RNase- free DNase (DNasel-DNA-free, Ambion Inc., Austin, TX) according to the manufacturer's instructions. The quality of isolated RNA was examined by RT- PCR for four housekeeping gene transcripts: β-actin (ACTB), β-2- microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ribosomal protein S9 (RPS9). Based on the published sequences, oligonucletide primers were designed and then synthesized (Sigma Genosis, Woodlands, TX) for PCR. RT-PCR was performed to amplify the mRNAs' coding region phenotyped in 3 segments using a common upstream primer and three different downstream primers selected from the four housekeeping gene transcripts for RT -PCR shown in Table 4. Table 4 Name Accession no. Full length (bp) Primer sequences Amplicon (NCBI) (bp) F: SEQ ID NO: 19 R1 : SEQ ID NO: 20 195 ACTB X00351 1761 R2: SEQ ID NO: 21 705 R3: SEQ ID NO: 22 1000 F: SEQ ID NO: 23 R1 : SEQ ID NO: 24 216 B2M NM_004048 987 R2: SEQ ID NO: 25 591 R3: SEQ ID NO: 26 848 F: SEQ ID NO: 27 R1 : SEQ ID NO: 28 140 GAPDH M33197 1268 R2: SEQ ID NO: 29 755 R3: SEQ ID NO: 30 1184 F: SEQ ID NO: 31 R1 : SEQ ID NO: 32 188 RPS9 N _001013 692 R2: SEQ ID NO: 33 426 R3: SEQ ID NO: 34 614 [00178] In particular four serum human mRNAs were selected and coding region phenotyped in 3 segments using a common upstream primer and three different downstream primers dividing the coding region approximately into three parts. 10 μl of each PCR reaction was electrophoresed on a 2% agarose gel and stained with EtBr.
[00179] Specificity of all the PCR products was verified by the predicted size comparing the positive control (Human Salivary Gland Total RNA, Clontech, Palo Alto, CA). Negative controls were used in which input RNA was omitted or in which RNA was used but reverse transcriptase omitted.
[00180] The serum phenotype of mRNA product from human was evaluated by RT-PCR and electrophoresis. Exemplary results reported in Figure 8, showed transcripts from four housekeeping genes (ACTB, B2M, GAPDH, and RPS9) could be detected. In particular, amplicons for RPS9 with sizes of 188, 426 and 614bp were detected (see Figure 8 lane 2, 3 and 4 respectively); amplicons for GAPDH with sizes of 140,755 and 1 ,184bp were detected (see Figure 8 lane 5, 6 and 7 respectively); amplicons for B2M with sizes of 216,591 and 848bp were detected (see Figure 8 lane 8, 9 and 10 respectively); and amplicons for ACTB with sizes of 195,705 and 1 ,000bp were detected (see Figure 8 lane 11 , 12 and 13 respectively). Controls were performed even if controls data are not shown in the Figure.
[00181] The longest PCR products we amplified covered 56.8% (ACTB), 85.9% (B2M), 93.4% (GAPDH) and 88.9% (RPS9) of the full length of the corresponding mRNAs, according to the NCBI GenBank database. This result also indicated there could be intact human mRNA circulating in blood in a cell- free form.
EXAMPLE 10: MICROARRAY PROFILING OF MRNA OF SERUM FROM OSCC PATIENTS
[00182] Serum from ten OSCC patients (8 male, 2 female, age=51 ± 9.0) and from ten gender and age matched normal donors (age=49 ± 5.6) was collected and processed as reported in txampie y τor use in microarray analysis.
Microarray analysis
[00183] Isolated RNA from serum was subjected to linear amplification by RiboAmp™ RNA Amplification kit (Arcturus, Mountain View, CA). Following previously reported protocols [55], the Affymetrix Human Genome U133A Array, which contains 22,215 human gene cDNA probe sets representing -19,000 genes (i.e., each gene may be represented by more than one probe sets), was applied for gene expression profiling. [00184] The raw data were imported into DNA-Chip Analyzer 1.3 (dChip) software for normalization and model-based analysis [60]. dChip gives the expression index which represents the amount of mRNA/Gene expression and another parameter, called the present call of, whether or not the mRNA transcript was actually present in the sample (14). S-plus 6.0 (Insightful, Seattle, WA) was used for all statistical tests.
[00135] Three criteria were used to determine differentially expressed genes between OSCCs and controls. First, genes that were assigned as "absent" call in all samples were excluded. Second, a two-tailed student's if test was used for comparison of average gene expression levels among the OSCCs (n=10) and controls (n=10). The critical alpha level of 0.05 was defined for statistical significance. Third, fold ratios were calculated for those genes that showed statistically significant difference (P < 0.05). Only those genes that exhibit at least 2-fold change will be included for further analysis.
[00186] The HG U133A microarrays were used to identify the difference in salivary RNA profiles between cancer patients and matched normal subjects. Among the 14,268 genes included by the previously described criteria, we identified 335 genes with P value less than 0.05 and a fold change ≥ 2. Among these genes, there are 223 up-regulated genes and 112 down- regulated genes in the OSCC group. According to Affymetrix, a gene that was assigned with a present call indicates this gene is reliably detected in the original sample, i ne numoer 0T genes mat weie assιyπe-ϊo present anu me present percentage on each array were shown in Table 5 reporting the human mRNA expression profiling in serum. Table 5 Normal OSCC Subject Probe Gender Age Present Probe Gender Probes3 P%b Age Present Probes3 P%b 1 F 53 1564 7.02 F 55 1990 8.93 2 M 55 1600 7.18 M 61 2924 13.12 3 M 42 1600 7.18 42 2126 9.54 4 M 46 1716 7.7 46 3316 14.88 5 M 42 1845 8.28 M 42 2937 13.18 6 M 54 1854 8.32 M 52 1794 8.05 7 F 51 1903 8.54 F 67 2119 9.51 8 M 48 2032 9.12 M 46 2019 9.06 9 M 56 1823 8.18 M 61 4646 20.85 10 42 1979 8.88 M 44 2362 10.6 Mean± 49± 8.04±0. 51±9. 2623±86 11.8+3. 1792±165 SD 5.6 74 0 8* 90
[00187] (a) Number of probes showing present call on, HG U133A microarray (detection P < 0.04).
[00188] (b) Present percentage (P%) = Number of probes assigned present call / Number of total probes (22,283 for HG U133A microarray). [00189] * The arrays for OSCC have significant more probes assigned with present call than those for control group (P < 0.002, Wilcoxon test).
[00190] On average, there are 2623±868 probes in OSCC arrays and 1792±165 probes in control arrays that were assigned with present calls. OSCC group have significant more present probes than control group (P < 0.002, Wilcoxon test).
[00191] Using a more stringent criterion that, for a certain gene, the present call was assigned consistently to all arrays among all cancers (n=10) or all controls (n=10), we identified 62 genes to be the candidates for further analysis, we πoieu mat tnese D genes aie an uμ-reguiaieα in uo sei um, whereas there are no genes found down-regulated using the same filtering criteria.
EXAMPLE 11 : Q-PCR VALIDATION AND QUANTITATION ANALYSIS OF MICROARRAY PROFILING FROM CELL-FREE SALIVA OF OSCC PATIENTS
[00192] qPCR was performed to quantify a subset of differently expressed transcripts in saliva and to validate the microarray findings of Example 10, on an enlarged sample size including saliva from 32 OSCC patients and 35 controls.
Quantitative PCR (oPCR) assay.
[00193] Primer sets were designed by using PRIMER3 software (Table 2). Using MuLV reverse transcriptase (Applied Biosystems, Foster City, CA) and random hexamers as primer (ABI, Foster City, CA), cDNA was synthesized from the original and un-amplified serum RNA. The qPCR reactions (were performed in an iCycler™ iQ real-time PCR detection system (Bio-Rad, Hercules, CA, USA), using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA). All reactions were performed in triplicate with customized conditions for specific products. The relative amount of cDNA/RNA of a particular template was extrapolated from the standard curve using the LightCycler software 3.0 (Bio-Rad, Hercules, CA, USA). A two-tailed student's t test was used for statistical analysis.
[00194] Ten significant up-regulated genes: H3F3A, TPT1 , FTH1 , NCOA4, ARCR, THSMB (Thymosin beta 10), PRKCB1 (Protein Kinase C, beta 1 ), FTL1 (Ferritin Light polypeptide), COX4I1 (Cytochrome c oxidase subunit IV isoform 1) and SERP1 (srtress associated endoplasmic reticulum protein 1 ; ribosome associated membrane protein 4) were selected based on their reported cancer-association as shown in Table 6, reporting ten genes selected for qPCR validation. Table 6 Probe set ID Accession No. qPCR P> (HG U133A) Gene name Symbol (NCBI) (. test)
211940_x_at H3 histone, family 3A H3F3A BE869922 0.003
211943 x at . .τumor protein TpT1 AL565449 translationally-controlled 1 0.005
200748_s_at Ferritin' heavy PolVPePtide FTH1 NM_002032 0.008
210774 s at Nuclear receptor NCOA4 coactιvator 4 AL162047 0.021
200059_s_at RaS ho ™^ ™ fami|y- ARCR BC001360 0.048
217733_s_at Thymosin, beta 10 THSMB NM_021103 0.318
209685_s_at Protein kinase C, beta 1 PRKCB1 M13975 0.615
208755_x_at Ferritin, light polypeptide FTL1 BF312331 0.651
Cytochrome c oxidase
200086 s at COX4I1 AA854966 0.688 subunit IV isoform 1 Stress-associated endoplasmic reticulum
200971 s at protein 1 ; ribosome SERP1 NM 014445 0.868 associated membrane protein 4
[00195] Table 6 presents their quantitative alterations in serum from OSCC patients, determined by qPCR. The results confirmed that transcripts of H3F3A, TPT1 , FTH1 , NCOA4 and ARCR were significantly elevated in the saliva of OSCC patient (Wilcoxon Signed Rank test, P < 0.05). We did not detect the statistically significant differences in the amount of the other five transcripts by qPCR. EXAMPLE 12: ROC AND SENSITIVITY/SPECIFICITY ANALYSIS
[00196] Statistical analysis of the data collected in outcome of the experiments reported on Examples 9 to 1 1 above demonstrates the specificity and sensitivity of these biomarkers for H NSCC, and their predictive value.
Receiver Operating Characteristic Curve Analysis and Prediction Models.
[00197] Utilizing the qPCR results, multivariate classification models were constructed to determine the best combination of the selected serum transcripts for cancer prediction. Firstly, using the binary outcome of the disease (OSCC) and non-disease (normal) as dependent variables, a logistic regression model was constructed [61]. Age, gender and smoking history are controlled in the data collection procedure.
[00198] Leave-one out cross validation was used to validate the logistic regression model. The cross validation strategy first removes one observation and then fits a logistic regression model from the remaining cases using all markers. Stepwise model selection is used- for each of these models to remove variables that do not improve the model. Subsequently, the observing values for the case that was left out were used to compute a predicted class for that observation. The cross validation error rate is then the number of samples predicted incorrectly divided by the number of samples. [00199] The Receiver operating characteristic (ROC) curve analysis was then computed for the best final logistic model (S-plus 6.0), using the fitted probabilities from the model as possible cut-points for computation of sensitivity and specificity. Area under the curve was computed via numerical integration of the ROC curve. [00200] To demonstrate the utility of circulating mRNAs in serum for OSCC discrimination, two classification/prediction models were observed. Using the qPCR data, a logistic regression model was built compose of six serum transcripts previously examined, ARHA, FTH1 , H3F3A, TPT1 , COX4I1 and FTL1. Those six transcripts in combination provided the best prediction, which was then validated by the leaving-one-out validation. Out of 67 leaving-one- out trial, t>4 (bT7o) oτ tne oest logistic moαeis was τounα to tne same mouei as the one from the whole data and the validation error rate was 31.3% (21/67).
[00201] Results are reported in Figure 9. wherein the ROC curve computed for this logistic regression model is shown. [00202] Using a cut-off probability of 44% a sensitivity of 84% and a specificity of 83% were obtained. The final model predicts correctly for 56 (83.5%) subjects out of 67 with 0.84 (27/32) sensitivity and 0.83 (29/35) specificity and it misclassifies 6 subjects for control and 5 for OSCC. The calculated area under the ROC curve was 0.88 for this logistic regression model.
Tree-based classification model, classification and regression tree (CART).
[00203] Secondly, another prediction model utilizing the qPCR results was built by a tree-based classification method. The classification and regression trees (CART), was constructed by S-plus 6.0 using the serum transcripts as predictors from qPCR result. CART fits the classification model by binary recursive partitioning, where each step involves searching for the predictor variable that results in the best split of the cancer versus the normal groups [62]. CART used the entropy function with splitting criteria determined by default settings for S-plus. By this approach, the parent group containing the entire samples (n=67) was subsequently divided into cancer groups and normal groups. Our initial tree was pruned to remove all splits that did not result in sub-branches with different classifications.
[00204] A second model, the "classification and regression trees (CART) model", was generated according to the diagram reported in Figure 10. [00205] Our fitted CART model used the serum mRNA concentrations of THSMB and FTH1 as predictor variables for OSCC. THSMB, chosen as the initial split, with a threshold of 4.59E-17 M, produced two child groups from the parent group containing the total 67 samples. 47 samples with the THSMB concentration < 4.59E-17 M were assigned into "Normal-1 ", while 20 with THSMB concentration > 4.59E-17 M were assigned into "Cancer-1". The "Normaι-r group was turtner partitioned oy M I I witri a tnresnoiα 01 o.wc- 16 M. The resulting subgroups, "Normal-2" contained 28 samples with FTH1 concentration < 8.44E-16 M, and "Cancer-2" contained 19 samples with FTH1 concentration ≥ 8.44E-16 M. Consequently, the 67 serum samples involved in our study were classified into the "Normal" group and the "Cancer" group by CART analysis.
[00206] The "Normal" group was composed of the samples from "Normal-2" which included a total of 28 samples, 25 from normal subjects and 3 from cancer patients. Thus, by using the combination of THSMB and FTH1 for OSCC prediction, the overall specificity is 78% (25/35). The "Cancer" group was composed of the samples from "Cancer-1" and " Cancer-2". There are a total of 39 samples assigned in the final "Cancer" group, 29 from cancer patients and 10 from normal subjects. Therefore, by using the combination of these two serum mRNA for OSCC prediction, the overall sensitivity is 91 % (29/32, in cancer group) and specificity is 78% (25/35, in normal group).
EXAMPLE 13: RNA ISOLATION, AMPLIFICATION AND GENE EXPRESSION
PROFILING FROM SALIVA OF OSCC PATIENTS
Patient Selection.
[00207] OSCC patients were recruited from Medical Centers at University of California, Los Angeles (UCLA); University of Southern California (USC), Los Angeles, CA; and University of California San Francisco, San Francisco, CA.
[00208] Thirty-two patients with documented primary T1 or T2 OSCC were included. All of the patients had recently received diagnoses of primary disease and had not received any prior treatment in the form of chemotherapy, radiotherapy, surgery, or alternative remedies.
[00209] An equal number of age- and sex-matched subjects with comparable smoking histories were selected as a control group. Among the two subject groups, there were no significant differences in terms of mean age: OSCC patients, 49.8 ± 7.6 years; normal subjects, 49.1 ± 5.9 years (Student's t test, F > u.BU); genoer > u.yυ); or smoKing nistory ( > υ. t ). INO suojects nau a history of prior malignancy, immunodeficiency, autoimmune disorders, hepatitis, or HIV infection. All of the subjects signed the institutional review board-approved consent form agreeing to serve as saliva donors for the experiments.
Saliva Collection and RNA Isolation.
[00210] Unstimulated saliva samples were collected between 9 a.m. and 10 a.m. with previously established protocols [38]. Subjects were asked to refrain from eating, drinking, smoking, or oral hygiene procedures for at least 1 hour before the collection. Saliva samples were centrifuged at 2,600 xg for 15 minutes at 4°C.
[00211] The supernatant was removed from the pellet and treated with RNase inhibitor (Superase-In, Ambion Inc., Austin, TX). RNA was isolated from 560 μL of saliva supernatant with QIAamp Viral RNA kit (Qiagen, Valencia, CA). Aliquots of isolated RNA were treated with RNase-free DNase (DNasel-DNA-free, Ambion Inc.) according to the manufacturer's instructions. The quality of isolated RNA was examined by RT-PCR for three cellular maintenance gene transcripts: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ac\\n-β(ACTB), and ribosomal protein S9 (RPS9). Only those samples exhibiting PCR products for all three mRNAs were used for subsequent analysis.
[00212] On average, 54.2 ± 20.1 ng (n = 64) of total RNA was obtained from 560 μL of saliva supernatant. There was no significant difference in total RNA quantity between the OSCC and matched controls (t test, P = 0.29, n= 64). RT-PCR results demonstrated that all of the saliva samples (« = 64) contained transcripts from three genes (GAPDH, ACTB, and RPS9), which were used as quality controls for human salivary RNAs [55]. A consistent amplifying magnitude (658 ± 47.2, n = 5) could be obtained after two rounds of RNA amplification. On average, the yield of biotinylated cRNA was 39.3 ±6.0 μg (n = υ;. mere were no signmcant αirrerences oτ tne CKINA quaniuy yieiueu between the OSCC and the controls (t test, P = 0.31,n = 20).
EXAMPLE 14: MICROARRAY PROFILING OF MRNA OF SALIVA FROM OSCC
PATIENTS [00213] Saliva from 10 OSCC patients (7 male, 3 female; age, 52 ± 9.0 years) and from 10 gender- and age-matched normal donors (age, 49 ± 5.6 years) was used for a microarray study. Isolated RNA from saliva was subjected to linear amplification by RiboAmp RNA Amplification kit (Arcturus, Mountain View, CA). The RNA amplification efficiency was measured by using control RNA of known quantity (0.1 μg) running in parallel with the 20 samples in five independent runs.
Microarray Analysis.
[00214] Following previously reported protocols [55], the Human Genome U133A Array (HG U133A, Affymetrix, Santa Clara, CA) was applied for gene expression analysis. The arrays were scanned and the fluorescence intensity was measured by Microarray Suit 5.0 software (Affymetrix, Santa Clara, CA); the arrays were then imported into DNA-Chip Analyzer software (http: www.dchp.org) for normalization and model-based analysis [60]. S-plus 6.0 (Insightful, Seattle, WA) was used to carry out all statistical tests. [00215] Three criteria were used to determine differentially expressed gene transcripts. First, probe sets on the array that were assigned as "absent" call in all samples were excluded. Second, a two-tailed Student's t test was used for comparison of average gene expression signal intensity between the OSCCs (n = 10) and controls (n = 10). The critical level of 0.05 was defined for statistical significance. Third, fold ratios were calculated for those gene transcripts that showed statistically significant difference (P < 0.05). Only those gene transcripts that exhibited at least 2-fold change were included for further analysis.
[00216] The HG U133A microarrays were used to identify the difference in salivary RNA profiles between cancer patients and matched normal subjects. Among tne I U.J I D transcripts inciuoeα oy tne previously uescnpeu umeu , we identified 1 ,679 transcripts with P value less than 0.05. Among these transcripts, 836 were up-regulated and 843 were down-regulated in the OSCC group. These transcripts observed were unlikely to be attributable to chance alone (2 test, P < 0.0001), considering the false positives with P < 0.05. Using a predefined criteria of a change in regulation >3-fold in all 10 OSCC saliva specimens and a cutoff of P value < 0.01 , 17 mRNA, were identified showing significant up-regulation in OSCC saliva. 17 transcripts showed a change in regulation >3-fold in all 10 OSCC saliva specimens, and a more stringent cutoff of P value < 0.01. It should be noted that these 17 salivary mRI A are all up-regulated in OSCC saliva, whereas there are no mRNAs found down- regulated with the same filtering criteria. The biological functions of these genes and their products are presented in Table 7 showing Salivary mRNA up-regulated (>3-fold, P < 0.01) in OSCC identified by microarray
Figure imgf000054_0001
Luuzi tj me numan ϋenome U I JJA microarrays weie useα to lueruuy me difference in RNA expression patterns in saliva from 10 cancer patients and 10 matched normal subjects. Using a criteria of a change in regulation >3-fold in all 10 OSCC saliva specimens and a cutoff of P value < 0.01 , we identified 17 mRNA, showing significant up-regulation in OSCC saliva.
EXAMPLE 15: Q-PCR VALIDATION AND QUANTITATION ANALYSIS OF MICROARRAY PROFILING FROM CELL-FREE SALIVA OF OSCC PATIENTS
[00218] Quantitative polymerase chain reaction (qPCR) was performed to validate a subset of differently expressed transcripts identified by the microarray analysis of Example 14.
Quantitative Polymerase Chain Reaction Validation.
[00219] cDNA from the original and unamplified salivary RNA. was synthesized Using MuLV reverse transcriptase (Applied Biosystems, Foster City, CA) and random hexamers as primer (Applied Biosystems). The qPCR reactions were performed in an iCycler PCR system with iQ SYBR Green Supermix (Bio-Rad, Hercules, CA). Primer sets were designed by using PRIMER3 software (http://www.genome.wi.mit.edu).
[00220] All of the reactions were performed in triplicate with customized conditions for specific products. The initial amount of cDNA/RNA of a particular template was extrapolated from the standard curve as described previously [32]. This validation completed by testing all of the samples (n= 64) including those 20 previously used for microarray study. Wilcoxon Signed- Rank test was used for statistical analysis. [00221] Quantitative PCR was performed to validate the microarray findings on an enlarged sample size including saliva from 32 OSCC patients and 32 matched controls. Nine candidates of salivary mRNA biomarkers: DUSP1, GADD45B, H3F3A, IL1B, IL8, OAZ1, RGS2, S100P, and SATwere selected based on their reported cancer association reported in Table 7. Table 8 presents the quantitative alterations ot tne aoove nine canαiαates in sanva τrom o patients, determined by qPCR. Table 8
Figure imgf000056_0001
Seven of the nine potential candidate were validated by qPCR (P < 0.05). * Wilcoxon's Signed Rank test: if P < 0.05, validated (Yes); if P > 0.05, not validated (No) [00222] The results confirmed that transcripts of 7 of the 9 candidate mRNA (78%), DUSP1 , H3F3A, IL1 B, IL8.OAZ1 , S100P, and SAT, were significantly elevated in the saliva of OSCC patient (Wilcoxon Signed-Rank test, P <0.05). We did not detect the statistically significant differences in the amount of RGS2 (P = 0.149) and GADD45B (P = 0.116) by qPCR. The validated seven genes could be classified in three ranks by the magnitude of increase: high up-regulated mRNA including IL8 (24.3-fold); moderate up-regulated mRNAs including Π^I- JA ^.e> ι-τoiθ), iL'it* [ .HO), anu o iuur ^.σσ-ιoιu , anu ιuw uμ- regulated mRNAs including DUSP1 (2.60-fold), OAZ1 (2.82-fold), and SAT (2.98-fold).
EXAMPLE 16: ROC AND SENSITIVITY/SPECIFICITY ANALYSIS
[00223] Using the qPCR results, Receiver Operating Characteristic (ROC) curve analyses was performed [82] by S-plus 6.0 to evaluate the predictive power of each of the biomarkers identified in the Example 15.
Receiver Operating Characteristic Curve Analysis and Prediction Models. [00224] The optimal outpoint was determined for each biomarker by searching for those that yielded the maximum corresponding sensitivity and specificity. ROC curves were then plotted on the basis of the set of optimal sensitivity and specificity values. Area under the curve was computed via numerical integration of the ROC curves. The biomarker that has the largest area under the ROC curve was identified as having the strongest predictive power for detecting OSCC.
[00225] Next, multivariate classification models were constructed to determine the best combination of salivary markers for cancer prediction. Firstly, using the binary outcome of the disease (OSCC) and nondisease (normal) as dependent variables, we constructed a logistic regression model controlling for patient age, gender, and smoking history. The backward stepwise regression [61] was used to find the best final model.
[00226] Leave-one-out cross-validation was used to validate the logistic regression model. The cross-validation strategy first removes one observation and then fits a logistic regression model from the remaining cases with all of the markers. Stepwise model selection is used for each of these models to remove variables that do not improve the model. Subsequently, the marker values were used for the case that was left out to compute a predicted class for that observation. The cross-validation error rate is then the number of samples predicted incorrectly divided by the number of samples. Lυυϋ tj i ne κuo curve, mustrateα in πyuie ι ι , was men comμuieu ιuι me logistic model by a similar procedure, with the fitted probabilities from the model as possible outpoints for computation of sensitivity and specificity. [00228] The detailed statistics of the area under the receiver operator characteristics (ROC) curves, the threshold values, and the corresponding sensitivities and specificities for each of the seven potential salivary mRNA biomarkers for OSCC are listed in Table 9 showing the ROC curve analysis of OSCC-associated salivary mRNA biomarkers
Table 9
Figure imgf000058_0001
[00229] Utilizing the qPCR results, we conducted ROC curve analyses to evaluate the predictive power of each of the biomarkers. The optimal outpoint was determined yielding the maximum corresponding sensitivity and specificity. The biomarker that has the largest area under the ROC curve was identified as having the strongest predictive power for detecting OSCC. [00230] The data showed IL8 mRNA performed the best among the seven potential biomarkers for predicting the presence of OSCC. The calculated area under the ROC curve for IL8 was 0.85. With a threshold value of 3.19E - 18 mol/L, IL8 mRNA in saliva yields a sensitivity of 88% and a specificity of 81 % to distinguish OSCC from the normal. [00231] To demonstrate the utility of salivary mRNAs for disease discrimination, two classification/prediction models were examined. A logistic regression model was built based on the four of the seven validated Diomarκ.ers, I I D, UA. I , CDA I , anu n_o, wmu i in cuinuii ictuui i μi uviuσu mc best prediction (Table 10). Table 10 shows salivary for OSCC selected by logistic regression model
Table 10
Figure imgf000059_0001
[00232] The logistic regression model was built based on the four of seven validated biomarkers (IL1 B, OAZ1 , SAT, and IL8) that, in combination, provided the best prediction. The coefficient values are positive for these four markers, indicating that the synchronized increase in their concentrations in saliva increased the probability that the sample was obtained from an OSCC subject. [00233] The coefficient values are positive for these four markers, indicating that the synchronized rise in their concentrations in saliva increased the probability that the sample was obtained from an OSCC subject. The leave- one-out cross-validation error rate based on logistic regression models was 19% (12 of 64). All but one (of the 64) of the models generated in the leave- one-out analysis used the same set of four markers found to be significant in the full data model specified in Table 10. [00234] The ROC curve was computed for the logistic regression model. Using a cutoff probability of 50%, we obtained a sensitivity of 91% and a specificity of 91%. The calculated area under the ROC curve was 0.95 for the logistic regression model (Fig. 11 ).
Tree-based classification model, classification and regression tree (CART), [00235] A second model, a tree-based classification model, classification and regression tree (CART) model," was generated. The CART model was constructed oy tj-pius 6.U witn tne vanαateα IΎIKINA oιomarκers as preuictuis. CART fits the classification model by binary recursive partitioning, in which each step involves searching for the predictor variable that results in the best split of the cancer versus the normal groups [62]. CART used the entropy function with splitting criteria determined by default settings for S-plus. By this approach, the parent group containing the entire samples (« = 64) was subsequently divided into cancer groups and normal groups. Our initial tree was pruned to remove all splits that did not result in sub-branches with different classifications. [00236] Results are shown in the diagram of Fig. 12. Our fitted CART model used the salivary mRNA concentrations of IL8, H3F3A, and SAT as predictor variables for OSCC. IL8, chosen as the initial split, with a threshold of 3.14E _ 18 mol/L, produced two child groups from the parent group containing the total 64 samples. 30 samples with the IL8 concentration <3.14E -18 mol/L were assigned into "Normal-1," whereas 34 with IL8 concentration > 3.14E - 18 were assigned into "Cancer-,1". The "Normal-1" group was further partitioned by &47with a threshold of 1.13E - 14 mol/L.
[00237] The resulting subgroups, "Normal-2" contained 25 samples with SAT concentration <1.13E - 14 mol/L, and "Cancer-2" contained 5 samples with SAT concentration >1.13E - 14 mol/L. Similarly, the "Cancer-1" group was further partitioned by H3F3A with a threshold of 2.07E - 16 mol/L. The resulting subgroups, "Cancer-3" contained 27 samples with H3F3A concentration >2.07E - 16 mol/L, and "Normal-3" group contained 7 samples with H3F3A concentration <2.07E - 16 mol/L. [00238] Consequently, the 64 saliva samples involved in our study were classified into the "Cancer" group and the "Normal" group by CART analysis. The "Normal" group was composed of the samples from "Normal-2" and those from "Normal-3". There are a total of 32 samples assigned in the "Normal" group, 29 from normal subjects and 3 from cancer patients. [00239] Thus, by using the combination of IL8, SAT, and H3F3A for OSCC prediction, the overall sensitivity is 90.6% (29 of 32). The "Cancer" group was composed oτ tne samples τrom uancer- ana aπcer-o. i πeie aie a lutcti of 32 samples assigned in the final "Cancer" group, 29 from cancer patients and 3 from normal subjects. Therefore, by using the combination of these three salivary mRNA biomarkers for OSCC prediction, the overall specificity is 90.6% (29 of 32).
[00240] In summary the present disclosure refers to a method to detect a biomarker in saliva wherein the biomarker is an extracellular mRNA, comprises detecting the extracellular mRNA in the cell-free saliva; transcriptome analysis of saliva comprises detecting a transcriptome pattern in the cell-free saliva; a method to detect genetic alterations in an organ or in a gene in the organ by analyzing saliva, comprises detecting a transcriptome pattern and/or the mRNA profiling of the gene in cell-free saliva; a method to diagnose an oral or systemic pathology disease or disorder in a subject, comprises: detecting profile of a biomarker associated with the pathology disease or disorder, in particular mRNA and/or protein, in cell-free saliva and/or serum; kits comprising identifier for at least one biomarker for performing at least one of the methods; and use of salivary biomarker salivary and/or serum mRNAs as biomarkers for oral and/or systemic pathology, disease or disorder. [00241] The disclosures of each and every publication and reference cited herein are hereby incorporated herein by reference in their entirety.
[00242] The present disclosure has been explained with reference to specific embodiments. Other embodiments will be apparent to those of ordinary skill in the art in view of the foregoing description. The scope of protection of the present disclosure is defined by the appended claims.
REFERENCES
[1] Parkin M, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999;80:827-841. [2] ϋoeprert 1-1. squamous ceil carcinoma oτ tne πeaα anu i
Figure imgf000062_0001
μ &i progress and future promise. CA Cancer J Clin. 1998;48:195-198.
[3] Sidransky D. Emerging molecular markers of cancer. Nat Reviews. 2002; 3:210-219.
[4] Alevizos I, Mahadevappa M, Zhang X, et al. Oral cancer in vivo gene expression profiling assisted by laser-capture microdissection and microarray analysis. Oncogene. 2001; 20:6196-6204.
[5] Chen Z, Malhotra PS, Thomas GR, et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res. 1999;5:1369-1379.
[6] Sidransky D. Nucleic acid-based methods for the detection of cancer. Science. 1997; 278: 1054-1058.
[7] Navazesh M, Christensen CA. A comparison of whole mouth resting and stimulated salivary measurements. J. Dent. Res. 1982; 61 :1 158-1162.
[8] Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143:29-36.
[9] Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983; 148:839-843.
[10] Liu HH, Wu TT. Estimating the area under a receiver operating characteristic (ROC) curve for repeated measures design. Journal of Statistical Software. 2003; 8:1-18.
[11] Norton JA, Peacock JL, Morrison SD. Cancer cachexia. Crit Rev Oncol Hematol. 1987;7:289-327. [12] Smith DR, Polverini PJ, Kunkel SL, et al. lnmoition ot mterieuKin o attenuates angiogenesis in bronchogenic carcinoma. J Exp Med. 1994;179:1409-1415.
[13] Dong G, Loukinova E, Smith CW, Chen Z, and Van Waes C. Genes differentially expressed with malignant transformation and metastatic tumor progression of murine squamous cell carcinoma. J Cell Biochem Suppl. 1997;28/29:90-100.
[14] Pak AS, Wright MA, Matthews JP, et al. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte- macrophage colony-stimulating factor. Clin Cancer Res. 1995;1 :95-103.
[15] Ueda T, Shimada E, Urakawa T. Serum levels of cytokines in patients with colorectal cancer: possible involvement of interleukin-6 and interleukin-8 in hematogenous metastasis. J Gastroentero\. 1994;29:423-429.
[16] Oka M, Yamamoto K, Takahashi M, et al. Relationship between serum levels of interleukin 6, various disease parameters, and malnutrition in patients with esophageal squamous cell . carcinoma. Cancer Res. 1996;56:2776-2780.
[17] Wang PL, Ohura K, Fujii T, Oido-Mori M, Kowashi Y, Kikuchi M, Suetsugu Y, Tanaka J. DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun. 2003; 305:970-973.
[18] Giannopoulou C, Kamma JJ, Mombelli A. Effect of inflammation, smoking and stress on gingival crevicular fluid cytokine level. J Clin Pehodontol. 2003; 30:145-153.
[19] Sullivan Pepe M, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. J National Can Inst. 2001 ;93:1054-1061. | uj van i-iouten VIVI, l aoor ivit-*, van αeπ oreκ.eι iviw, et ai. iviuieouicu ossα o for the diagnosis of minimal residual head-and-neck cancer: methods, reliability, pitfalls, and solutions. Clin Cancer Res. 2000;6:3803-3816.
[21] Thompson ML, Zucchini W. On the statistical analysis of ROC curves. Stat Med. 1989; 8:1277-1290.
[22] Hoffman HT, Karnell LH, Funk GF, Robinson RA, Menck HR. The national cancer data base report on cancer of the head and neck. Arch Otolaryngol Head Neck Surg. 1998; 124:951 -962.
[23] Khuri FR, Shin DM, Glisson BS, Lippman SM, Hong WK. Treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck: current status and future directions. Semin Oncol. 2000;27:25-33.
[24] Spafford MF, Koch WM, Reed AL, et al. Detection of head and neck squamous cell carcinoma among exfoliated oral cells by microsatellite analysis. Clin Cancer Res. 2001 ;7:607-612.
[25] Bradford CR. Genetic markers of head and neck cancer: identifying new molecular targets. Arch Otolaryngol Head Neck Surg. 2003; 129:366-367.
[26] Koch WM. Genetic markers in the clinical care of head and neck cancer: slow in coming. Arch Otolaryngol Head Neck Surg. 2003;129:367-368.
[27] Affymetrix, (2001). Affymetrix Technical Note: New Statistical Algorithms for Monitoring Gene Expression on GeneChip® Probe Arrays. Santa Clara, CA: Affymetrix.
[28] Anker P, Mulcahy H, Chen XQ, Stroun M (1999). Detection of circulating tumor DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 18(1):65-73.
[29] Anker P, Mulcahy H, Stroun M (2003). Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies? Int J Cancer 103(2): 149-152. [30] Bonassi 5, Neri M, Puntoni R (2001 ). Validation oτ oιomarκers as eariy predictors of disease. Mutat Res 480-481 : 349-358.
[30] El-Naggar AK, Mao L, Staerkel G, Coombes MM, Tucker SL, Luna MA, et al (2001 ). Genetic heterogeneity in saliva from patients with oral squamous carcinomas: implications in molecular diagnosis and screening. J Mol Diagn 3(4): 164-170.
[31] Fleischhacker M, Beinert T, Ermitsch M, Seferi D, Possinger K, Engelmann C, et al (2001 ). Detection of amplifiable messenger RNA in the serum of patients with lung cancer. Ann NY Acad Sci 945: i79 — 188.
[32]Ginzinger D (2002). Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hemato 30: 503 — 5 12.
[33] Kelly JJ, Chernov BK, Tovstanovsky I, Mirzabekov AD, Bavykin SG (2002). Radical-generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization. Anal Biochem 31 1 (2): 103-118.
[34] Kopreski MS, Benko FA, Kwak LW, Gocke CD (1999). Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res 5:1961—1965.
[35] Lawrence HP (2002). Salivary markers of systemic disease: noninvasive diagnosis of disease and monitoring of general health. J Can Dent Assoc 68(3): 170-174.
[36] Liao PH, Chang YC, Huang MF, Tai KW, Chou MY (2000). Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas. Oral Oncol 36(3):272-276.
[37] Mercer DK, Scott KP, Melville CM, Glover LA, Flint HJ (2001 ). Transformation of an oral bacterium via chromosomal integration of free DNA in the presence of human saliva. FEMS Microbiol Lett 200(2): 163-167. [38J Navazesn M yya). rvietnoos τor collecting sanva. πnn /v r . OCJU / 694:72-77.
[39] Ohyama H, Zhang X, Kohno Y, Alevizos I, Posner M, Wong DT, et al (2000). Laser capture microdissection-generated target sample for high- density oligonucleotide array hybridization. Biotechniques 29(3): 530-536.
[40] Pusch W, Flocco MT. Leung SM, Thiele H, Kostrzewa M (2003). Mass spectrometry-based clinical proteomics. Pharmacogenomics 4(4) :463-476.
[41] Rehak NN, Cecco SA, Csako G (2000). Biochemical composition and electrolyte balance of "unstimulated" whole human saliva. Clin Chem Lab Med 3 8(4):33 5-343.
[42] Rieger-Christ KM, Mourtzinos A, Lee PJ, Zagha RM, Cain J, Silverman M, et al (2003). Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer 98(4):737-744.
[43] Sakki T, Knuuttila M (1996). Controlled study of the association of smoking with lactobacilli, mutans streptococci and yeasts in saliva. Eur J Oral Sc/ 104(5-6):619-622.
[44] Horer, O.L. and G. Palicari, RNase activity in the capillary blood of children. Virologie, 1986. 37(2): p. 1 11-1 14
[45] Sidransky D (2002). Emerging molecular markers of cancer. Nat Reviews 3:210-21 9.
[46] Stamey FR, DeLeon-Cames M, Patel MM, Pellett PE, Dollard SC (2003). Comparison of a microtiter plate system to Southern blot for detection of human herpesvirus 8 DNA amplified from blood and saliva. J Virol Methods 108(2): 1 89-193.
[47] Streckfus CF, Bigler LR (2002). Saliva as a diagnostic fluid. Oral Dis 8(2):69-76. [40J venter JU, Adams MU, Myers cw, ι_ι rvv, iviurai u, ouuυn ». ai (2001). The sequence of the human genome (published erratum appears in Science 292(5 523): 1838). Science 291 (5507): 1304-135 1.
[49] Wong U, Lueth M, Li XN, Lau CC, Vogel H (2003). Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res 63(14):3866-3871.
[50] Xiang CC, Chen M, Ma L, Phan QN, Inman JM, Kozhich OA, et al (2003). A new strategy to amplify degraded RNA from small tissue samples for microarray studies. Nucleic Acids Res 31 (9):e53
[51] Lipshutz, R.J., et al., High density synthetic oligonucleotide arrays. Nat Genet, 1999. 21(1 Suppl): p. 20-4.
[52] Lipshutz, R.J., Applications of high-density oligonucleotide arrays. Novartis Found Symp, 2000. 229: p. 84-90; discussion 90-3.
[53] Barker, P.E., Cancer biomarker validation: standards and process: roles for the National Institute of Standards and Technology (NIST). Ann N Y Acad Sci, 2003. 983: p. 142-50.
[54] Juusola, J. and J. Ballantyne, Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int, 2003. 135(2): p. 85-96.
[55] Li, Y., et al., RNA profiling of cell-free saliva using microarray technology. J Dent Res, 2004. 83(3): p. 199-203.
[56] Kopreski, M.S., F.A. Benko, and CD. Gocke, Circulating RNA as a tumor marker: detection of 5T4 mRNA in breast and lung cancer patient serum. Ann N Y Acad Sci, 2001. 945: p. 172-178.
[57] Bunn, P.J., Jr., Early detection of lung cancer using serum RNA or DNA markers: ready for "prime time" or for validation? J Clin Oncol, 2003. 21 (21 ): p. 3891-3893. [btsj vvong, s.u., et ai., uantmcation oτpiasma Deτa-caτeπ
Figure imgf000068_0001
m colorectal cancer and adenoma patients. Clin Cancer Res, 2004. 10(5): p. 1613-1617.
[59] Fugazzola, L., et al., Highly sensitive serum thyroglobulin and circulating thyroglobulin mRNA evaluations in the management of patients with differentiated thyroid cancer in apparent remission. J Clin Endocrinol Metab, 2002. 87(7): p. 3201-8.
[60] Li, C. and W.H. Wong, Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A, 2001. 98(1 ): p. 31-36.
[61] Renger, R. and L.M. Meadows, Use of stepwise regression in medical education research. Acad Med, 1994. 69(9): p. 738.
[62] Lemon, S.C., et al., Classification and regression tree analysis in public health: methodological review and comparison with logistic regression. Ann Behav Med, 2003. 26(3): p. 172-181.
[63] Cancer facts and figures 2004. Atlanta: American Cancer Society, 2004.
[64] Wildt, J., T. Bundgaard, and S.M. Bentzen, Delay in the diagnosis of oral squamous cell carcinoma. Clin Otolaryngol, 1995. 20(1): p. 21-25
[65] Fong, K.M., et al., Molecular genetic basis for early cancer detection and cancer susceptibility., in Molecular Pathology of Early Cancer, S.S. HD and G. AF, Editors. 1999, IOS Press, p. 13-26.
[66] Epstein, J.B., L. Zhang, and M. Rosin, Advances in the diagnosis of oral premalignant and malignant lesions. J Can Dent Assoc, 2002. 68(10): p. 617- 621.
[67] Mao, L., W.K. Hong, and V.A. Papadimitrakopoulou, Focus on head and neck cancer. Cancer Cell, 2004. 5(4): p. 31 1-316 [bbj Li, Y ., et ai., oauvary iranscπpiυmv uictynυαuuύ ιuι uiσi uαn c/ ucιc.uuι;. Clin Cancer Res, 2004. 10(24): p. 8442-8450.
[69] Ng, E.K., et al., Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem, 2002. 48(8): p. 1212-1217
[70] Jung, K., et al., Increased cell-free DNA in plasma of patients with metastatic spread in prostate cancer. Cancer Lett, 2004. 205(2): p. 173-180
[71] Wang, B.G., et al., Increased plasma DNA integrity in cancer patients. Cancer Res, 2003. 63(14): p. 3966-3968.
[72] Lo, Y.M., et al., Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res, 1999. 59(6): p. 1188-1191
[73] Chen, X.Q., et al., Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res, 2000. 6(10): p. 3823-3826.
[74] Silva, J.M., et al., Detection of epithelial messenger RNA in the plasma of breast cancer patients is associated with poor prognosis tumor characteristics. Clin Cancer Res, 2001. 7(9): p. 2821-2825.
[75] Dasi, F., et a I., Real-time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA: a simple blood test to monitor disease in cancer patients. Lab Invest, 2001. 81(5): p. 767-769
[76] Bernard, P.S. and CT. Wittwer, Real-time PCR technology for cancer diagnostics. Clin Chem, 2002. 48(8): p. 1178-1185.
[77] Jahr, S., et al., DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res, 2001. 61 (4): p. 1659-1665 [tb] iDtroun, ivi., et ai., neopiasuc cnaraciυrisuuα uι LUG uivn IUUUU m mc plasma of cancer patients. Oncology, 1989. 46(5): p. 318-322
[79] Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science (Wash DC) 1991 ;253:49 -53.
[80] Liu T, Wahlberg S, Burek E, Lindblom P, Rubio C, Lindblom
A.Microsatellite instability as a predictor of a mutation in a DNA mismatch repair gene in familial colorectal cancer. Genes Chromosomes Cancer 2000;27: 17-25.
[81] Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991 ; 66:589-600.
[82] Grunkemeier GL, Jin R. Receiver operating characteristic curve analysis of clinical risk models. Ann Thorac Surg 2001 ;72:323- 326.
[83]. Kharchenko SV, Shpakov AA. [Regulation of the RNase activity of the saliva in healthy subjects and in stomach cancer]. Izv Akad Nauk SSSR Biol 1989:58-63. '
[84]. Myers LL, Wax MK. Positron emission tomography in the evaluation of the negative neck in patients with oral cavity cancer. J Otolaryngol 1998;27:342-347.
[85] Mashberg A, Samit A. Early diagnosis of asymptomatic oral and oropharyngeal squamous cancers. CA Cancer J Clin 1995;45:328 -51.
[86] Rosin MP, Epstein JB, Berean K, et al. The use of exfoliative cell samples to map clonal genetic alterations in the oral epithelium of high-risk patients. Cancer Res 1997;57:5258-5260.
[87] Streckfus C, Bigler L, Dellinger T, Dai X, Kingman A, Thigpen JT. The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma: a preliminary study. Clin Cancer Res 2000;6: 2363-2370. [88J unoκι , NaKamura Y. urowtn-suppressive euecis oi DTK Δ. anu LUΓ ., two genes involved in the PTEN signaling pathway. Oncogene 2001 ;20:4457- 4465.
[89] Suzuki C, Unoki M, Nakamura Y. Identification and allelic frequencies of novel single-nucleotide polymorphisms in the DUSP1 and BTG1 genes. J Hum Genet 2001 ;46:155-157.
[90] Bettuzzi S, Davalli P, Astancolle S, et al. Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human prostate cancer specimens. Cancer Res 2000;60: 28-34.
[91] Torelli G, Venturelli D, Colo A, et al. Expression of c-myb protooncogene and other cell cycle-related genes in normal and neoplastic human colonic mucosa. Cancer Res 1 987;47:5266 -5269.
[92] Tsuji T, Usui S, Aida T, et al. Induction of epithelial differentiation and DNA demethylation in hamster malignaipt oral keratinocyte by ornithine decarboxylase antizyme. Oncogene 2001 ;20:24 -33.
[93] Gribenko A, Lopez MM, Richardson JM III, Makhatadze Gl. Cloning, overexpression, purification, and spectroscopic characterization of human S100P. Protein Sci 1998;7:21 1-215.
[94] Guerreiro Da Silva ID, Hu YF, Russo IH, et al. S100P calciumbinding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. Int J Oncol 2000;16:231-240.
[95] Mousses S, Bubendorf L, Wagner U, et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 2002;62: 1256-1260. [96J MacKay A, Jones ( , Dexter l , et ai. CUI A microaπay analysis uι ycncs associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene 2003;22:2680-2688.
[97] Logsdon CD, Simeone DM, Binkley C, et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 2003;63: 2649-2657.
[98] Cmogorac-Jurcevic T, Missiaglia E, Blaveri E, et al. Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J Pathol 2003;201 :63-74.
[99] Jablonska E, Piotrowski L, Grabowska Z. Serum Levels of IL-1b, IL6, TNF-a, sTNF-RI and CRP in patients with oral cavity cancer. Pathol Oncol Res 1997;3:126 -129.
[100] Chen CK, Wu MY, Chao KH, Ho HN, Sheu BC, Huang SC. T lymphocytes and cytokine production in ascitic fluid of ovarian malignancies. J Formos Med Assoc 1999;98:24 -30. '
[101] Hamajima N, Yuasa H. [Genetic polymorphisms related to interleukin- 1 beta production and disease risk]. Nippon Koshu Eisei Zasshi 2003;50:194 - 207.
[102] El-Omar EM, Rabkin CS, Gammon MD, et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 2003;124:1193-1201.
[103] Malamud D. Oral diagnostic testing for detecting human immunodeficiency virus-1 antibodies: a technology whose time has come. Am J Med 1997;102:9 -14.
[104] Guven Y, Satman I, Dinccag N, Alptekin S. Salivary peroxidase activity in whole saliva of patients with insulin-dependent (type-1 ) diabetes mellitus. J Clin Periodontol 1996;23:879-881. [ l uoj me jj, πuny vv
Figure imgf000073_0001
ei αi. rieui uny coi i ci ucvciuμi nci u in oral leukoplakia: ten years of translational research. Clin Cancer Res 2000;6:1702-1710.
[106] Silverman S Jr, Gorsky M. Proliferative verrucous leukoplakia: a follow- up study of 54 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;84:154 -157.
[107] Sudbo J, Kildal W, Risberg B, Koppang HS, Danielsen HE, Reith A. DNA content as a prognostic marker in patients with oral leukoplakia. N Engl J Med 2001 ;344:1270-1278.
[108] Berta GN, Ghezzo F, D'Avolio A, et al. Enhancement of calcydin gene RNA expression in squamous cell carcinoma of the oral mucosa, but not in benign lesions. J Oral Pathol Med 1997;26:206 -210.
[109] Watanabe H, Iwase M, Ohashi M, Nagumo M. Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol 2002;38:670 -679.

Claims

1. A method to detect an extracellular mRNA in a bodily fluid, the bodily fluid including a cell phase and a fluid phase, the method comprising: providing a cell-free fluid phase portion of the bodily fluid; and detecting the extracellular mRNA in the cell-free fluid phase portion of the bodily fluid, wherein the bodily fluid is saliva.
2. The method of claim 1 , wherein the bodily fluid is unstimulated saliva;
3. The method of claim 1 wherein detecting the extracellular mRNA comprises isolating the extracellular mRNA from the cell-free fluid phase portion of the bodily fluid and ι amplifying the extracellular mRNA.
4. A method to perform transcriptome analysis of a bodily fluid, the bodily fluid including a cell phase and a fluid phase, the method comprising providing a cell-free fluid phase portion of the bodily fluid; and detecting a transcriptome pattern in the cell-free fluid phase portion of the bodily fluid, wherein the bodily fluid is saliva
5. The method of claim 4, wherein detecting a transcriptome pattern is performed by microarray assay. 6. The method of claim 5, wherein detecting a transcriptome pattern is performed by high-density oligonucleotide microarray assay.
7. The method of claim 4, wherein detecting a transcriptome pattern is performed by quantitative PCR analysis or RT-PCR analysis. e. A metπoα to detect genetic alterations in an ui yan υy cu
Figure imgf000075_0001
a bodily fluid draining from the organ, the bodily fluid including a cell phase and a fluid phase, the method comprising: providing cell-free fluid phase portion of the bodily fluid; detecting a transcriptome pattern in the cell-free fluid phase portion of the bodily fluid; and comparing the transcriptome pattern with a predetermined pattern, the predetermined pattern being indicative of a common transcriptome pattern of normal cell-free fluid phase portion of the bodily fluid, the bodily fluid being saliva.
9. A method to detect genetic alteration of a gene in an organ by analyzing a bodily fluid draining from the organ the bodily fluid including a cell phase and a fluid phase, the method comprising: providing a cell-free fluid phase portion of the bodily fluid; detecting an mRNA profile of the gene in the cell-free fluid phase portion of the bodily fluid; and comparing the mRNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the mRNA profile of the gene in normal cell-free fluid phase portion of the bodily fluid, the bodily fluid being saliva
10. A method to diagnose an oral or systemic pathology, disease or disorder in a subject, the method comprising: providing a cell-free fluid phase portion of the saliva of the subject; detecting in the provided cell-free saliva fluid phase portion an mRNA profile of a gene associated with the pathology, disease or disorder; and comparing the RNA profile of the gene with a predetermined mRNA profile of the gene, the predetermined mRNA profile of the gene being indicative of the presence of the pathology, disease or disorder in the subject. vι. i ne metπoo oτ ciaim I U, wπereiπ me uιseat>e ιs> a uan ei uι c ui αi cavity and/or of oropharynx and the gene is selected from the group consisting of the gene coding for IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P and SAT. 12. The method of claim 10, wherein the disease is a cancer of the oral cavity and/or oropharynx and the gene is the gene coding for IL8.
13. The method of claims 12, wherein the disease is oropharyngeal squamous cell carcinoma or head and neck squamous cell carcinoma.
14. A method to diagnose an oral or systemic pathology, disease or disorder in a subject, the method comprising: providing a cell-free fluid phase portion of the saliva of the subject; detecting in the provided cell-free fluid phase portion a transcriptome pattern associated with the pathology, disease or disorder; and comparing the transcriptome pattern with a predetermined pattern, recognition in the transcriptome pattern of characteristics of the predetermined pattern being diagnostic for the pathology, disease or disorderin the subject. 15 The method of claim 14 wherein the disease is a cancer of the oral cavity and/or of oropharynx and transcriptome includes transcripts is selected from the group consisting of transcripts for IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P and SAT.
16 The method of claim 14 wherein disease is oropharyngeal squamous cell carcinoma or head and neck squamous cell carcinoma.
17. A method for diagnosing a cancer in a subject, the method comprising: providing a bodily fluid of the subject; detecting in tne ooαny τιuια a proπie oτ a Diomaικeι , me biomarker selected from the group consisting of IL8 IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR, comparing the profile of the biomarker with a predetermined profile of the biomarker, recognition in the profile of the biomarker of characteristics of the predetermined profile of the biomarker being diagnostic for the cancer.
18. The method of claim 17, wherein the cancer is the oropharyngeal squamous cell carcinoma or head and neck squamous cell carcinoma, the biomarker is selected from the group consisting of IL8, IL1 B, DUSP1 , H3F3A,
OAZ1 , S100P and SAT, the bodily fluid is saliva and detecting a profile of a biomarker is performed by detecting the mRNA profile of the biomarker.
[00243] 19. The method of claim 17, wherein the cancer is the oropharyngeal squamous cell carcinoma or head and neck squamous cell carcinoma, the biomarker is selected from the group consisting of IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR, the bodily fluid is blood serum and detecting a profile of a biomarker is performed by detecting the mRNA profile of the biomarker.
20. The method of claim 17, wherein the cancer is the oropharyngeal squamous cell carcinoma or head and neck squamous cell carcinoma, the biomarker is IL6, the bodily fluid is blood serum and detecting a profile of a biomarker is performed by detecting the protein profile of the biomarker.
21. A kit for the diagnosis of an oral and/or systemic pathology, disease, or disorder, the kit comprising: a identifier of a biomarker in a bodily fluid, the biomarker for the pathology disease or disorder, the biomarker selected from the group consisting of IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, SAT, IL6, H3F3A, TPT1 , FTH1 , NCOA4 and ARCR; and a detector for the identifier, tne lαentiTiei anu me ue.e iui IU u<= ^ . m v^,.^ .., .a ... .- . fluid profile of the biomarker of the method of any one of claims 14 to 16 or 17 to 21 , wherein the identifier is associated to the biomarker in the bodily fluid, and the detector is used to detect the identifier, the identifier and the detector thereby enabling the detection of the bodily fluid profile of the biomarker.
22. The kit of claim 21 , wherein the disease is oral cavity and oropharyngeal squamous cell carcinoma.
23. The kit of claim 21 , wherein the disease is head and neck squamous cell carcinoma.
24. A method to diagnose an oral and/or systemic pathology disease or disorder, the method comprising: using salivary mRNAs as biomarkers for oral and/or systemic pathology, disease or disorder.
25. The method of claim 24, wherein the mRNA codifies for IL8, IL1 B, DUSP1 , H3F3A, OAZ1 , S100P, and SAT.
26. The method of claim 25, wherein the disease is oral cavity and oropharyngeal squamous cell carcinoma.
27. The method of claim 25, wherein the disease is head and neck squamous cell carcinoma.
PCT/US2005/005263 2004-02-20 2005-02-17 Salivary mrna profiling, biomarkers, and related methods and kits of parts WO2005081867A2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA2558666A CA2558666C (en) 2004-02-20 2005-02-17 Salivary mrna profiling, biomarkers, and related methods and kits of parts
CN2005800124130A CN1977051B (en) 2004-02-20 2005-02-17 Salivary mRNA profiling, biomarkers and related methods and kits of parts
KR1020127034042A KR20130018438A (en) 2004-02-20 2005-02-17 Salivary mrna profiling, biomarkers and related methods and kits of parts
US10/589,788 US10072297B2 (en) 2004-02-20 2005-02-17 Salivary mRNA profiling, biomarkers and related methods
EP05723309A EP1730304B1 (en) 2004-02-20 2005-02-17 Methods for salivary mrna profiling.
JP2006554246A JP4880484B2 (en) 2004-02-20 2005-02-17 Salivary mRNA profiling, biomarkers and related methods and kits
AU2005216095A AU2005216095B2 (en) 2004-02-20 2005-02-17 Salivary mRNA profiling, biomarkers, and related methods and kits of parts
IL177579A IL177579A (en) 2004-02-20 2006-08-20 METHOD FOR DETECTING AN EXTRACELLULAR mRNA IN SALIVA AND METHODS AND KITS BASED THEREON
NO20064226A NO340089B1 (en) 2004-02-20 2006-09-19 A method for diagnosing an oropharyngeal squamous cell carcinoma (OSCC) in an individual by detecting a biomarker selected from the group consisting of IL8, IL1B, DUSP1, H3F3A, OAZ1, S100P and SAT in cell-free saliva
HK07102594.9A HK1095163A1 (en) 2004-02-20 2007-03-08 Methods for salivary mrna profiling
US14/182,672 US9983210B2 (en) 2004-02-20 2014-02-18 Salivary mRNA profiling, biomarkers and related methods and kits of parts
US16/057,911 US20190040471A1 (en) 2004-02-20 2018-08-08 Salivary mRNA Profiling, Biomarkers and Related Methods and Kits of Parts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US54650704P 2004-02-20 2004-02-20
US60/546,507 2004-02-20
US54652104P 2004-02-21 2004-02-21
US60/546,521 2004-02-21

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/589,788 A-371-Of-International US10072297B2 (en) 2004-02-20 2005-02-17 Salivary mRNA profiling, biomarkers and related methods
US14/182,672 Continuation US9983210B2 (en) 2004-02-20 2014-02-18 Salivary mRNA profiling, biomarkers and related methods and kits of parts
US16/057,911 Continuation US20190040471A1 (en) 2004-02-20 2018-08-08 Salivary mRNA Profiling, Biomarkers and Related Methods and Kits of Parts

Publications (2)

Publication Number Publication Date
WO2005081867A2 true WO2005081867A2 (en) 2005-09-09
WO2005081867A3 WO2005081867A3 (en) 2006-07-06

Family

ID=34915575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/005263 WO2005081867A2 (en) 2004-02-20 2005-02-17 Salivary mrna profiling, biomarkers, and related methods and kits of parts

Country Status (11)

Country Link
US (3) US10072297B2 (en)
EP (1) EP1730304B1 (en)
JP (2) JP4880484B2 (en)
KR (2) KR20070004725A (en)
CN (1) CN1977051B (en)
AU (1) AU2005216095B2 (en)
CA (1) CA2558666C (en)
HK (1) HK1095163A1 (en)
IL (1) IL177579A (en)
NO (1) NO340089B1 (en)
WO (1) WO2005081867A2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1877574A2 (en) * 2004-07-21 2008-01-16 The Regents of the University of California Salivary transcriptome diagnostics
WO2008001357A3 (en) * 2006-06-26 2008-03-20 Technion Res & Dev Foundation Methods and kits for diagnosing cancer
WO2008157501A1 (en) * 2007-06-15 2008-12-24 The Regents Of The University Of California Salivary exon core transcriptome
EP1997911A3 (en) * 2007-05-30 2009-02-25 FUJIFILM Corporation Method for detecting oral squamous-cell carcinoma and method for suppressing the same
EP2083087A1 (en) * 2006-10-12 2009-07-29 Niigata University Method for determining tongue cancer
WO2010015607A2 (en) 2008-08-04 2010-02-11 Institut Clinident Method of evaluating oral cancer risk in human
US7727715B2 (en) 2004-03-30 2010-06-01 Vector Tobacco, Inc. Global gene expression analysis of human bronchial epithelial cells exposed to cigarette smoke, smoke condensates, or components thereof
JP2010533871A (en) * 2007-07-16 2010-10-28 カリフォルニア インスティチュート オブ テクノロジー Array, substrate, apparatus, method and system for detecting target molecules
WO2013045458A1 (en) * 2011-09-26 2013-04-04 Preanalytix Gmbh Stabilisation and isolation of extracellular nucleic acids
WO2014182598A1 (en) * 2013-05-06 2014-11-13 Physicians Choice Laboratory Services, Llc Diagnostic assay combining cellular and cell free nucleic acid
US9075060B2 (en) 2009-06-16 2015-07-07 Technion Research & Development Foundation Limited Methods for diagnosing oral or oral-pharyngeal cancer
WO2017137427A1 (en) 2016-02-08 2017-08-17 Ucl Business Plc Detection of cancer of the esophagus
US10144952B2 (en) 2013-03-18 2018-12-04 Qiagen Gmbh Stabilization and isolation of extracellular nucleic acids
US10407728B2 (en) 2009-09-09 2019-09-10 The General Hospital Corporation Use of microvesicles in analyzing nucleic acid profiles
EP3671213A1 (en) * 2018-12-20 2020-06-24 Kromat Muszerforgalmazó Kft. In vitro method for the diagnosis of malignant conditions
WO2020128546A1 (en) * 2018-12-20 2020-06-25 Kromat Műszerforgalmazó Kft. A simple, non-invasive method for diagnosing oral cancer
US10724074B2 (en) 2012-09-25 2020-07-28 Qiagen Gmbh Stabilisation of biological samples
US10793914B2 (en) 2010-08-31 2020-10-06 The General Hospital Corporation Cancer-related biological materials in microvesicles
US10941451B2 (en) 2015-02-24 2021-03-09 Ruprecht-Karls-Universitat Heidelberg Biomarker panel for the detection of cancer
US10983116B2 (en) 2012-08-24 2021-04-20 Yale University System, device and method for high-throughput multi-plexed detection
US10988755B2 (en) 2010-11-10 2021-04-27 Exosome Diagnostics, Inc. Method for isolation of nucleic acid containing particles and extraction of nucleic acids therefrom
US11021733B2 (en) 2011-09-26 2021-06-01 Qiagen Gmbh Stabilization and isolation of extracellular nucleic acids
US11066689B2 (en) 2014-12-03 2021-07-20 IsoPlexis Corporation Analysis and screening of cell secretion profiles
US11155874B2 (en) 2009-09-09 2021-10-26 The General Hospital Corporation Use of microvesicles in analyzing mutations
US11203777B2 (en) 2015-11-20 2021-12-21 Qiagen Gmbh Method of preparing sterilized compositions for stabilization of extracellular nucleic acids
US11353448B2 (en) 2015-02-13 2022-06-07 California Institute Of Technology Methods and compositions for quantifying metabolites and proteins from single cells
US11493508B2 (en) 2016-11-11 2022-11-08 IsoPlexis Corporation Compositions and methods for the simultaneous genomic, transcriptomic and proteomic analysis of single cells
US11525155B2 (en) 2013-03-18 2022-12-13 Qiagen Gmbh Stabilisation of biological samples
US11525783B2 (en) 2016-11-22 2022-12-13 IsoPlexis Corporation Systems, devices and methods for cell capture and methods of manufacture thereof
US12110533B2 (en) 2011-09-26 2024-10-08 Qiagen Gmbh Stabilisation and isolation of extracellular nucleic acids

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005216095B2 (en) * 2004-02-20 2009-09-17 The Regents Of The University Of California Salivary mRNA profiling, biomarkers, and related methods and kits of parts
US8476008B2 (en) * 2008-07-23 2013-07-02 Diabetomics, Llc Methods for detecting pre-diabetes and diabetes
US20130143747A1 (en) * 2011-12-05 2013-06-06 Myriad Genetics, Incorporated Methods of detecting cancer
WO2010151789A1 (en) * 2009-06-25 2010-12-29 The Regents Of The University Of California Salivary transcriptomic and microbial biomarkers for pancreatic cancer
JP2011072229A (en) * 2009-09-29 2011-04-14 Keio Gijuku Method for performing diagnosis/choice of treatment of hypopharynx cancer by using microrna as biomarker
US8309299B2 (en) * 2010-05-19 2012-11-13 Hoffmann-La Roche Inc. Combination therapy and method for assessing resistance to treatment
US20140188442A1 (en) * 2012-12-27 2014-07-03 Pearson Education, Inc. System and Method for Selecting Predictors for a Student Risk Model
CN105765383B (en) * 2013-10-28 2018-04-10 唾液科技有限公司 Cancer of pancreas is with saliva biomarker and has used diagnostic method of the cancer of pancreas with the cancer of pancreas of saliva biomarker
US12027243B2 (en) 2017-02-17 2024-07-02 Hc1 Insights, Inc. System and method for determining healthcare relationships
US20210005324A1 (en) * 2018-08-08 2021-01-07 Hc1.Com Inc. Methods and systems for a health monitoring command center and workforce advisor
GB201417281D0 (en) * 2014-09-30 2014-11-12 Ge Healthcare Uk Ltd Methods and devices relating to the detection of oral cancer biomarkers
JP7344631B2 (en) * 2015-02-09 2023-09-14 アボゲン, インコーポレイティド Devices, solutions and methods for sample collection related applications, analysis and diagnostics
CN106446599A (en) * 2015-08-11 2017-02-22 中国科学院青岛生物能源与过程研究所 Method for screening oral pathogenic biomarkers of infant caries
WO2018217849A1 (en) * 2017-05-26 2018-11-29 Board Of Regents, The University Of Texas System Targeting of anaplastic lymphoma kinase in squamous cell carcinoma
US11124833B2 (en) * 2017-10-27 2021-09-21 Colgate-Palmolive Company Salivary extracellular RNA biomarkers for gingivitis
US20210018507A1 (en) * 2018-03-04 2021-01-21 Mazumdar Shaw Medical Foundation Sall.ivary protein biomarkers for the diagnosis and prognosis of head and neck cancers, and precancers
JP2020195314A (en) * 2019-05-31 2020-12-10 医薬資源研究所株式会社 Disease/constitution analysis method, disease/constitution analysis system, program, and computer-readable recording medium
JP7373843B2 (en) * 2019-12-19 2023-11-06 国立大学法人東海国立大学機構 Prediction device, prediction program, and prediction method for predicting infection-causing organisms
CN113985033A (en) * 2021-10-19 2022-01-28 中山大学附属第八医院(深圳福田) Biomarker for diagnosing osteoporosis and sarcopenia and detection kit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009806A2 (en) 2001-07-25 2003-02-06 Oncomedx Inc. Methods for evaluating pathologic conditions using extracellular rna
WO2003028531A2 (en) 2001-09-28 2003-04-10 Oncomedx, Inc. Detection of tumor rna in plasma and serum
US6607898B1 (en) 1996-03-26 2003-08-19 Oncomedx, Inc. Method for detection of hTR and hTERT telomerase-associated RNA in plasma or serum

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511805B1 (en) * 1996-03-15 2003-01-28 The Penn State Research Foundation Methods for detecting papillomavirus DNA in blood plasma and serum
US20020102553A1 (en) 1997-10-24 2002-08-01 University Of Rochester Molecular markers for the diagnosis of alzheimer's disease
US6294349B1 (en) * 1999-03-01 2001-09-25 University Of Mississippi Medical Ctr. Method of diagnosing and monitoring malignant breast carcinomas
US6291663B1 (en) * 1999-03-03 2001-09-18 Board Of Trustees Of The University Of Arkansas TADG-12: a novel transmembrane serine protease overexpressed in a ovarian carcinoma
US6617112B2 (en) 2000-10-11 2003-09-09 Monsanto Technology Llc Methods for gene array analysis of nuclear runoff transcripts
AU2005216095B2 (en) * 2004-02-20 2009-09-17 The Regents Of The University Of California Salivary mRNA profiling, biomarkers, and related methods and kits of parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607898B1 (en) 1996-03-26 2003-08-19 Oncomedx, Inc. Method for detection of hTR and hTERT telomerase-associated RNA in plasma or serum
WO2003009806A2 (en) 2001-07-25 2003-02-06 Oncomedx Inc. Methods for evaluating pathologic conditions using extracellular rna
WO2003028531A2 (en) 2001-09-28 2003-04-10 Oncomedx, Inc. Detection of tumor rna in plasma and serum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1730304A4

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727715B2 (en) 2004-03-30 2010-06-01 Vector Tobacco, Inc. Global gene expression analysis of human bronchial epithelial cells exposed to cigarette smoke, smoke condensates, or components thereof
EP1877574A4 (en) * 2004-07-21 2009-05-06 Univ California Salivary transcriptome diagnostics
EP1877574A2 (en) * 2004-07-21 2008-01-16 The Regents of the University of California Salivary transcriptome diagnostics
WO2008001357A3 (en) * 2006-06-26 2008-03-20 Technion Res & Dev Foundation Methods and kits for diagnosing cancer
EP2083087A4 (en) * 2006-10-12 2010-04-07 Univ Niigata Method for determining tongue cancer
EP2083087A1 (en) * 2006-10-12 2009-07-29 Niigata University Method for determining tongue cancer
US8110362B2 (en) 2006-10-12 2012-02-07 Niigata University Method for determining a tongue cancer
EP1997911A3 (en) * 2007-05-30 2009-02-25 FUJIFILM Corporation Method for detecting oral squamous-cell carcinoma and method for suppressing the same
WO2008157501A1 (en) * 2007-06-15 2008-12-24 The Regents Of The University Of California Salivary exon core transcriptome
US10928389B2 (en) 2007-07-16 2021-02-23 California Institute Of Technology Arrays, substrates, devices, methods and systems for detecting target molecules
JP2010533871A (en) * 2007-07-16 2010-10-28 カリフォルニア インスティチュート オブ テクノロジー Array, substrate, apparatus, method and system for detecting target molecules
WO2010015607A2 (en) 2008-08-04 2010-02-11 Institut Clinident Method of evaluating oral cancer risk in human
WO2010015607A3 (en) * 2008-08-04 2010-04-01 Institut Clinident Method of evaluating oral cancer risk in human
US9075060B2 (en) 2009-06-16 2015-07-07 Technion Research & Development Foundation Limited Methods for diagnosing oral or oral-pharyngeal cancer
US10407728B2 (en) 2009-09-09 2019-09-10 The General Hospital Corporation Use of microvesicles in analyzing nucleic acid profiles
US11155874B2 (en) 2009-09-09 2021-10-26 The General Hospital Corporation Use of microvesicles in analyzing mutations
US11519036B2 (en) 2009-09-09 2022-12-06 The General Hospital Corporation Use of microvesicles in analyzing nucleic acid profiles
US10793914B2 (en) 2010-08-31 2020-10-06 The General Hospital Corporation Cancer-related biological materials in microvesicles
US10988755B2 (en) 2010-11-10 2021-04-27 Exosome Diagnostics, Inc. Method for isolation of nucleic acid containing particles and extraction of nucleic acids therefrom
US10676780B2 (en) 2011-09-26 2020-06-09 Qiagen Gmbh Stabilisation and isolation of extracellular nucleic acids
CN103827303A (en) * 2011-09-26 2014-05-28 普瑞阿那利提克斯有限公司 Stabilization and isolation of extracellular nucleic acids
US12110533B2 (en) 2011-09-26 2024-10-08 Qiagen Gmbh Stabilisation and isolation of extracellular nucleic acids
WO2013045458A1 (en) * 2011-09-26 2013-04-04 Preanalytix Gmbh Stabilisation and isolation of extracellular nucleic acids
JP2014528719A (en) * 2011-09-26 2014-10-30 プレアナリティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Stabilization and isolation of extracellular nucleic acids
US11021733B2 (en) 2011-09-26 2021-06-01 Qiagen Gmbh Stabilization and isolation of extracellular nucleic acids
US12105086B2 (en) 2012-08-24 2024-10-01 Yale University System, device and method for high-throughput multi-plexed detection
US10983116B2 (en) 2012-08-24 2021-04-20 Yale University System, device and method for high-throughput multi-plexed detection
US10724074B2 (en) 2012-09-25 2020-07-28 Qiagen Gmbh Stabilisation of biological samples
US11525155B2 (en) 2013-03-18 2022-12-13 Qiagen Gmbh Stabilisation of biological samples
US10144952B2 (en) 2013-03-18 2018-12-04 Qiagen Gmbh Stabilization and isolation of extracellular nucleic acids
WO2014182598A1 (en) * 2013-05-06 2014-11-13 Physicians Choice Laboratory Services, Llc Diagnostic assay combining cellular and cell free nucleic acid
US11066689B2 (en) 2014-12-03 2021-07-20 IsoPlexis Corporation Analysis and screening of cell secretion profiles
US11661619B2 (en) 2014-12-03 2023-05-30 IsoPlexis Corporation Analysis and screening of cell secretion profiles
US11353448B2 (en) 2015-02-13 2022-06-07 California Institute Of Technology Methods and compositions for quantifying metabolites and proteins from single cells
US10941451B2 (en) 2015-02-24 2021-03-09 Ruprecht-Karls-Universitat Heidelberg Biomarker panel for the detection of cancer
US11203777B2 (en) 2015-11-20 2021-12-21 Qiagen Gmbh Method of preparing sterilized compositions for stabilization of extracellular nucleic acids
WO2017137427A1 (en) 2016-02-08 2017-08-17 Ucl Business Plc Detection of cancer of the esophagus
US11493508B2 (en) 2016-11-11 2022-11-08 IsoPlexis Corporation Compositions and methods for the simultaneous genomic, transcriptomic and proteomic analysis of single cells
US11525783B2 (en) 2016-11-22 2022-12-13 IsoPlexis Corporation Systems, devices and methods for cell capture and methods of manufacture thereof
WO2020128546A1 (en) * 2018-12-20 2020-06-25 Kromat Műszerforgalmazó Kft. A simple, non-invasive method for diagnosing oral cancer
EP3671213A1 (en) * 2018-12-20 2020-06-24 Kromat Muszerforgalmazó Kft. In vitro method for the diagnosis of malignant conditions

Also Published As

Publication number Publication date
US20140249236A1 (en) 2014-09-04
CN1977051B (en) 2013-07-17
IL177579A (en) 2012-03-29
US20190040471A1 (en) 2019-02-07
US10072297B2 (en) 2018-09-11
HK1095163A1 (en) 2007-04-27
WO2005081867A3 (en) 2006-07-06
KR20130018438A (en) 2013-02-22
EP1730304B1 (en) 2013-01-02
KR20070004725A (en) 2007-01-09
EP1730304A4 (en) 2007-10-24
AU2005216095A1 (en) 2005-09-09
EP1730304A2 (en) 2006-12-13
NO340089B1 (en) 2017-03-06
JP2011229532A (en) 2011-11-17
JP5367760B2 (en) 2013-12-11
NO20064226L (en) 2006-11-16
CN1977051A (en) 2007-06-06
JP2007522819A (en) 2007-08-16
IL177579A0 (en) 2006-12-10
US9983210B2 (en) 2018-05-29
US20080280772A1 (en) 2008-11-13
CA2558666C (en) 2015-11-24
JP4880484B2 (en) 2012-02-22
CA2558666A1 (en) 2005-09-09
AU2005216095B2 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US20190040471A1 (en) Salivary mRNA Profiling, Biomarkers and Related Methods and Kits of Parts
Li et al. Salivary transcriptome diagnostics for oral cancer detection
AU2005274974B2 (en) Salivary transcriptome diagnostics
ES2446250T3 (en) DNA methylation markers associated with the CpG island methylation phenotype (CIMP) in human colorectal cancer
EP4428157A2 (en) Use of immune cell-specific gene expression for prognosis of prostate cancer and prediction of responsiveness to radiation therapy
AU2012252437B2 (en) Molecular markers in prostate cancer
Bhargava et al. HER-2/neu and topoisomerase IIα gene amplification and protein expression in invasive breast carcinomas: chromogenic in situ hybridization and immunohistochemical analyses
JP5745500B2 (en) Liver cancer prognostic marker
JP2004528029A (en) PCR method
Grade et al. Aneuploidy-dependent massive deregulation of the cellular transcriptome and apparent divergence of the Wnt/β-catenin signaling pathway in human rectal carcinomas
CN113557310A (en) Transcriptome profiling for breast cancer prognosis
KR20060048684A (en) Methods for assessing and treating cancer
CA3210617A1 (en) Methods and genomic classifiers for prognosis of breast cancer and identifying subjects not likely to benefit from radiotherapy
Sheu et al. Development of a membrane array‐based multimarker assay for detection of circulating cancer cells in patients with non‐small cell lung cancer
Wang et al. 1p31, 7q21 and 18q21 chromosomal aberrations and candidate genes in acquired vinblastine resistance of human cervical carcinoma KB cells
US20090130678A1 (en) Methods and Kits for Breast Cancer Prognosis
KR20050004076A (en) Methods for assessing and treating cancer
WO2023152133A1 (en) Method for diagnosing colorectal cancer
CN107034271B (en) Purposes of the DUOX1 as adenocarcinoma of lung diagnosis and treatment marker
WO2022155381A1 (en) Use of immune content scores diagnostically to predict responsiveness of prostate cancer patients to immunotherapy
EP3348652B1 (en) Molecular markers in prostate cancer
WO2022159793A2 (en) Methods and compositions for identifying neuroendocrine prostate cancer
KR20220112450A (en) Composition for diagnosis of bile duct cancer using bile and ddPCR analysis and uses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2558666

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 177579

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2006554246

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005216095

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067018925

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005723309

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005216095

Country of ref document: AU

Date of ref document: 20050217

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005216095

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580012413.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005723309

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067018925

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10589788

Country of ref document: US