WO2005080111A1 - Hybrid powertrain system including smooth shifting automated transmission - Google Patents
Hybrid powertrain system including smooth shifting automated transmission Download PDFInfo
- Publication number
- WO2005080111A1 WO2005080111A1 PCT/IB2005/000147 IB2005000147W WO2005080111A1 WO 2005080111 A1 WO2005080111 A1 WO 2005080111A1 IB 2005000147 W IB2005000147 W IB 2005000147W WO 2005080111 A1 WO2005080111 A1 WO 2005080111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- power
- output
- input
- generator
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000004146 energy storage Methods 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 14
- 230000007423 decrease Effects 0.000 claims description 7
- 230000003190 augmentative effect Effects 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 6
- 230000003467 diminishing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/30—Control strategies involving selection of transmission gear ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/08—Prime-movers comprising combustion engines and mechanical or fluid energy storing means
- B60K6/12—Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/442—Series-parallel switching type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/19—Improvement of gear change, e.g. by synchronisation or smoothing gear shift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/12—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
- F16H3/126—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches using an electric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0403—Synchronisation before shifting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H2003/0818—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts comprising means for power-shifting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0403—Synchronisation before shifting
- F16H2061/0422—Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H2061/0425—Bridging torque interruption
- F16H2061/0433—Bridging torque interruption by torque supply with an electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/003—Transmissions for multiple ratios characterised by the number of forward speeds
- F16H2200/0052—Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2306/00—Shifting
- F16H2306/32—Preparing the opening or release of the torque transmitting element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2306/00—Shifting
- F16H2306/40—Shifting activities
- F16H2306/44—Removing torque from current gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/087—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
- F16H3/091—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
- F16H3/0915—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft with coaxial input and output shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H47/00—Combinations of mechanical gearing with fluid clutches or fluid gearing
- F16H47/02—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/4078—Fluid exchange between hydrostatic circuits and external sources or consumers
- F16H61/4096—Fluid exchange between hydrostatic circuits and external sources or consumers with pressure accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19219—Interchangeably locked
- Y10T74/19223—Disconnectable counter shaft
Definitions
- the present invention relates to a powertrain system and, more particularly, to a hybrid powertrain system including an automated transmission.
- a powertrain system includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output.
- the powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output.
- a transmission system and a method for facilitating shifting of a transmission system are also provided.
- FIG. 1 is a block diagram showing a vehicle powertrain system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram showing a transmission arrangement according to an embodiment of the invention.
- FIG. 3 is a schematic diagram showing a transmission arrangement according to another embodiment of the invention.
- FIG. 4 is a block diagram showing an electric power shunt for use in the transmission arrangements of FIGS. 2 and 3;
- FIG. 5 is a block diagram showing a hydraulic power shunt for use in the transmission arrangements of FIGS. 2 and 3.
- FIG. 1 is a block diagram showing a powertrain system 20 according to an embodiment of the present invention.
- powertrain system 20 includes a prime mover 22, such as a spark-ignited or compression-ignited internal combustion engine, a change-gear transmission 24 and a master clutch 26.
- Powertrain system 20 also includes a power shunt 27 that includes a first motor- generator 28 and a second motor-generator 30.
- motor-generator is used to describe devices that generate a rotational output based on a power input and/or generate a power output based on a rotational input.
- Such motor-generator devices include, without limitation, electric motor-generators and hydraulic motor-pumps.
- powertrain system 20 also includes an electronic control unit (ECU) 32 for controlling operation of prime mover 22, transmission 24 and motor-generators 28, 30.
- ECU 32 includes a programmable digital computer configured to receive various input signals, including without limitation, the operating speed of prime mover 22, transmission input speed, selected gear ratio, transmission output speed and vehicle speed. ECU 32 processes these signals accordingly to logic rules to control operation of powertrain system 20.
- each of prime mover 22 and transmission 24 may optionally include its own controller (34 and 36, respectively), which is controlled by ECU 32.
- the present invention is not limited to any particular type or configuration of ECU 32 and controllers 34 and 36, or to any specific control logic for governing operation of powertrain system 20.
- ECU 32 may perform the functions of controller 34 or 36.
- powertrain system 20 may also include at least one energy storage device 38 for providing energy to operate first and second motor-generators 28, 30.
- energy storage device 38 may include a hydraulic accumulator when first and second motor-generators 28, 30 function as hydraulic motor-pumps.
- each hydraulic motor- generator 28, 30 may be provided in communication with energy storage device 38 through a hydraulic controller 39 (see, e.g., FIG. 5), as is known in the art.
- energy storage device 38 may include a battery, a bank of batteries or a capacitor when first and second motor-generators 28, 30 function as an electric motor- generator.
- each electric motor-generator 28, 30 maybe provided in electrical communication with energy storage device 38 through a drive inverter 40 (see, e.g., FIG.4), as is known in the art.
- transmission 24 includes an input shaft 42, a main or output shaft 44, a countershaft 46 that extends generally parallel to input and output shafts 42 and 44, and one or more gears arranged on and/or around shafts 42, 44 and 46.
- first motor-generator 28 is connected to input shaft 42 and second motor-generator 30 is connected to output shaft 44.
- first and second motor-generators 28, 30 function as electric motor-generators, as illustrated in FIG. 2, input and output shafts 42, 44 are connected for rotation with a rotor 48 that is positioned within a stator 50.
- Each rotor 48 may be splined to its corresponding shaft 42, 44 for rotation therewith; however, other configurations known in the art may also be used to connect rotors 48 with shafts 42, 44. While first and second motor- generators 28, 30 are shown in FIG. 2 as comprising electric motor-generators, they are not necessarily limited thereto. Moreover, while transmission is shown and described as a layshaft configuration, other configurations, including planetary gearing configurations, are also with the scope of the invention. [0015] Input shaft 42 is connectable to prime mover 22 through clutch 26 (not shown in FIG. 2). In an embodiment of the invention, clutch 26 is an automated master clutch.
- clutch 26 functions automatically without actuation of a pedal or other input by the vehicle driver.
- other clutch designs in which engagement and disengagement of the clutch is governed by the vehicle driver, are also within the scope of the invention.
- Countershaft 46 carries a number of input gears 56, 58, 60, 62 and 64 that are affixed to and, therefore, rotate ' with countershaft 46.
- the number of input gears provided on countershaft 46 is not limited to the number shown in FIG. 2, and may include more or less input gears depending on the number of ratios desired in transmission 24.
- the term "gear" is used to define the toothed wheels illustrated in FIG. 2, as well as manufacture of the toothed features of the wheels directly into input and output shafts 42, 44 and countershaft 46.
- output shaft 44 there are rotatably ' supported a number of output gears 66, 68, 70, 72 and 74. Unlike input gears 56-64 on countershaft 46, output gears 66- 74 are free to rotate around output shaft 44. Input gears 56-64 are each meshed with a corresponding output gear 66-74 to create a number of gear ratios in transmission 24. As with input gears 56-64, the number of output gears 66-74 provided on output shaft 44 is not limited to the number shown in FIG. 2.
- Reverse input gear 76 that rotates together with countershaft 46.
- Reverse input gear 76 is meshed with an idler gear 78 that, in turn, is meshed with a reverse output gear 80 rotatably supported on output shaft 44.
- the idler gear 78 changes the direction of rotation of output gear 80, which causes the vehicle to move in the reverse direction when engaged to output shaft 44, whereas the other output gears 66-74 cause the vehicle to move in the forward direction when engaged to output shaft 44.
- transmission 24 also includes axially moveable clutches 82, 84, 86 and 88, such as non-synchronized single or double acting dog-type clutches, which are splined to output shaft 44 for rotation therewith.
- clutch 82 is moveable in an axial direction toward first motor-generator 28 to fix output shaft 44 for rotation with input shaft 42 (through headset gear 52) or in an opposite direction to fix output gear 66 for rotation with output shaft 44.
- clutches 84-88 may be moved in opposite axial directions to rotationally fix their corresponding output gear(s) to output shaft 44.
- ECU 32 delivers commands to the components of powertrain system 20 based on the receipt and evaluation of various input signals. These commands may include gear ratio selection commands to a shift control device (not shown) that indirectly moves clutches 82, 84, 86 and 88 to establish the gear ratios between countershaft 46 and output shaft 44.
- the shift control device may be a conventional device, such as, for example, an X-Y electromechanical shift actuator system or any other suitable device that controls the axial position of each of clutches 82, 84, 86 and 88 through a rail-type shift control mechanism (none shown).
- clutches 82, 84, 86 and 88 maybe hydraulically and/or electromechanically operated without the use of a rail-type shift control mechanism.
- first motor-generator 28 is connected to the input of transmission 24 through a power takeoff (PTO) of transmission 24.
- PTO power takeoff
- first motor-generator 28 is connected to a power takeoff gear 90, which is meshed with second headset gear 54 on countershaft 46.
- first motor-generator 28 may be connected with a gear or other device (not shown) on the upstream side of clutch 26.
- motor-generator 28 may be connected to prime mover 22 by an engine accessory drive belt, such as is used for an alternator or a power steering pump.
- first motor-generator 28 may be operated as a generator to absorb power from prime mover 22, and second motor-generator 30 may be operated as a motor to apply power to output shaft 44.
- driveline torque may be transmitted from the drive wheels of the vehicle, through output shaft 44 into transmission 24, and then through input shaft 42 to prime mover 22, such as when the vehicle is slowing to a stop. In this manner, the driveline torque is considered negative.
- second motor-generator 30 may be operated as a generator to absorb the power from output shaft 44
- first motor-generator 28 may be operated as a motor to drive the prime mover through input shaft 42, to maintain power from output shaft 44 to input shaft 42, and relieve torque on the selected output gear (e.g. gear 74) to overcome any "torque lock" imposed on the selected output gear (e.g. gear 74) by the engaged output shaft clutch (e.g. clutch 86).
- first motor-generator 28 operating as a generator.
- first motor-generator 28 is used in the generator mode to absorb power from prime mover 22 at input shaft 42, while the power accepted by first motor-generator 28 is shunted to second motor-generator 30 to apply torque to output shaft 44.
- An up-shift gear change may be accomplished in this manner by operating first and second motor-generators 28, 30 to adjust the speeds of input shaft 42 and output shaft 44 to the appropriate values for the new gear ratio, while continuing to absorb power from prime mover 22 and apply power to output shaft 44. More particularly, the speeds of input shaft 42 and/or output shaft 44 may be adjusted to modify the speed of output gears 66-74 and/or clutches 82, 84, 86 and 88 such that the rotational speed of a ratio gear is substantially similar to the rotational speed of an engaging clutch during a gear ratio change.
- first motor-generator 28 is provided by second motor-generator 30 operating as a generator.
- second motor-generator 30 is used in the generator mode to absorb power at output shaft 44 and shunt this power to first motor- generator 28 for application to input shaft 42.
- first and second motor-generators 28, 30 may be direct, as shown in FIG. 1, or indirect, as shown in FIGS. 1, 4 and 5.
- first and second motor-generators function as electric motor-generators
- the electric power generated by first and second motor-generators 28, 30 maybe routed through a drive inverter 40 and stored in energy storage device 38 prior to distribution to the motor-generator requiring power.
- FIG. 4 shows that when first and second motor-generators function as electric motor-generators, the electric power generated by first and second motor-generators 28, 30 maybe routed through a drive inverter 40 and stored in energy storage device 38 prior to distribution to the motor-generator requiring power.
- first and second motor-generators function as hydraulic motor-pumps
- the hydraulic power generated by first and second motor-generators 28, 30 maybe routed through hydraulic controller 39 and stored in energy storage device 38 prior to distribution to the motor-generator requiring power.
- Operation of each motor-generator 28, 30 as a generator may occur during a shift event or at any time during operation of powertrain 20 where operation of motor- generators 28, 30 as a generator does not adversely impact operation of powertrain system 20.
- the power shunted between first and second motor-generators 28, 30 may be diminished by storing a portion of the shunted power in energy storage device 38 or augmented by applying stored energy to the power stream between first and second motor-generators 28, 30.
- powertrain system 20 may include a single motor-generator 30 connected to output shaft 44.
- motor-generator 30 maybe operated as a generator to charge energy storage device 38 when convenient, such as between shift events and during vehicle cruise. During periods of positive driveline torque, motor-generator 30 uses the stored energy for operation as a motor to maintain power on the output shaft 44 during a shift event.
- motor-generator 30 is operated as a generator to charge energy storage device 38.
- the torque and speed on transmission input shaft 42 is controlled in some other manner, such as by controlled operation of prime mover 22 with clutch 26 engaged.
- the power shunted between first and second motor-generators 28, 30 is the power produced by prime mover 22.
- the capacity of first and second motor-generators 28, 30 may be reduced by limiting the amount of power produced by prime mover 22 during periods of positive driveline torque when power is shunted from first motor-generator 28 to second motor- generator 30.
- ECU 32 may reduce fueling of prime mover 22 operating as an engine when power is shunted from first motor-generator 28 to second motor- generator 30.
- second motor-generator 30 may be operated to maintain torque on output shaft 44 through to the drive wheels of a vehicle employing powertrain system 20 when a gear ratio change is requested. This feature improves the shift smoothness and shift quality of powertrain system 20 in addition to enabling automated "power-shifting" of transmission 24.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Arrangement Of Transmissions (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Transmission Device (AREA)
- Structure Of Transmissions (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE602005024359T DE602005024359D1 (en) | 2004-01-23 | 2005-01-21 | HYBRID DRIVETRAIN SYSTEM WITH REVERSE SWITCHING AUTOMATIC TRANSMISSION |
CN200580003096.6A CN1910065B (en) | 2004-01-23 | 2005-01-21 | Hybrid powertrain system including smooth shifting automated transmission |
BRPI0506527-5A BRPI0506527A (en) | 2004-01-23 | 2005-01-21 | powertrain and transmission systems and method for operating a transmission |
PL05702308T PL1706286T3 (en) | 2004-01-23 | 2005-01-21 | Hybrid powertrain system including smooth shifting automated transmission |
CA2552900A CA2552900C (en) | 2004-01-23 | 2005-01-21 | Hybrid powertrain system including smooth shifting automated transmission |
EP05702308A EP1706286B1 (en) | 2004-01-23 | 2005-01-21 | Hybrid powertrain system including smooth shifting automated transmission |
AT05702308T ATE486231T1 (en) | 2004-01-23 | 2005-01-21 | HYBRID POWERTRAIN SYSTEM WITH SMOOTH-SHIFTING AUTOMATIC TRANSMISSION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/763,445 US7125362B2 (en) | 2004-01-23 | 2004-01-23 | Hybrid powertrain system including smooth shifting automated transmission |
US10/763,445 | 2004-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005080111A1 true WO2005080111A1 (en) | 2005-09-01 |
Family
ID=34795033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2005/000147 WO2005080111A1 (en) | 2004-01-23 | 2005-01-21 | Hybrid powertrain system including smooth shifting automated transmission |
Country Status (9)
Country | Link |
---|---|
US (1) | US7125362B2 (en) |
EP (1) | EP1706286B1 (en) |
CN (1) | CN1910065B (en) |
AT (1) | ATE486231T1 (en) |
BR (1) | BRPI0506527A (en) |
CA (1) | CA2552900C (en) |
DE (1) | DE602005024359D1 (en) |
PL (1) | PL1706286T3 (en) |
WO (1) | WO2005080111A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006033086A1 (en) * | 2006-07-14 | 2008-03-20 | Zf Friedrichshafen Ag | Hybrid driving arrangement for vehicle, has electric machine with changed gear transmission ratio and additional electrical machine is provided for additional independent drive of front axle or rear axle |
WO2010102711A1 (en) * | 2009-03-07 | 2010-09-16 | Daimler Ag | Auxiliary-range transmission device |
CN102910065A (en) * | 2012-11-02 | 2013-02-06 | 上海中科深江电动车辆有限公司 | Hybrid middle bus power system and corresponding control method |
US10418927B2 (en) | 2014-02-11 | 2019-09-17 | Magnomatics Limited | Magnetic gear system and method for reducing transmission of torque pulsation |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6981931B2 (en) * | 2004-03-12 | 2006-01-03 | Eaton Corporation | Method and apparatus for providing momentary torque reversal for a transmission having an automated shift system |
DE102005035328B4 (en) * | 2005-07-28 | 2015-04-09 | Zf Friedrichshafen Ag | Dual-clutch transmission with integrated electric machine and its application |
CN100436184C (en) * | 2005-11-25 | 2008-11-26 | 武汉理工大学 | Parallel hybrid power electric automobile power transmission system |
US20090036248A1 (en) * | 2006-03-13 | 2009-02-05 | Bosch Rexroth Ag | Drive with a torque split transmission |
DE102006021156A1 (en) * | 2006-05-06 | 2007-11-08 | Lohner, Andreas, Prof.Dr.-Ing. | Hybrid drive topology e.g., diesel engine of personal vehicle, has rotor of electric machine converter unit with rotor connected via differential to driving vehicle axel |
US20070261902A1 (en) * | 2006-05-15 | 2007-11-15 | George Margoudakis | Electric motor vehicle |
JP4055812B1 (en) * | 2006-08-28 | 2008-03-05 | トヨタ自動車株式会社 | vehicle |
JP4229165B2 (en) * | 2006-10-13 | 2009-02-25 | トヨタ自動車株式会社 | Vehicle and control method thereof |
DE102007002343A1 (en) * | 2007-01-16 | 2008-07-17 | Zf Friedrichshafen Ag | Method for dynamically determining a clutch resting point |
US7891450B2 (en) * | 2007-02-21 | 2011-02-22 | Ford Global Technologies, Llc | System and method of torque transmission using an electric energy conversion device |
US8534399B2 (en) * | 2007-02-21 | 2013-09-17 | Ford Global Technologies, Llc | Hybrid propulsion system |
EP1972481A1 (en) * | 2007-03-20 | 2008-09-24 | FEV Motorentechnik GmbH | Method for operating a hybrid drive system and hybrid drive system with two partial transmissions |
US8062169B2 (en) * | 2007-04-30 | 2011-11-22 | Caterpillar Inc. | System for controlling a hybrid energy system |
US7971666B2 (en) * | 2007-06-20 | 2011-07-05 | Ford Global Technologies, Llc | System and method of extending regenerative braking in a hybrid electric vehicle |
US7713164B2 (en) * | 2007-06-26 | 2010-05-11 | Ford Global Technologies, Llc | Double step gear shifting in a hybrid electric vehicle |
US7803085B2 (en) * | 2007-07-19 | 2010-09-28 | Hamilton Sundstrand Corporation | Electrically driven parallel shaft transmission that maintains delivered power while shifting |
DE102007038773A1 (en) * | 2007-08-16 | 2009-03-12 | Zf Friedrichshafen Ag | Method for carrying out a traction-interrupted circuit in a parallel hybrid vehicle |
DE102007038775A1 (en) * | 2007-08-16 | 2009-02-19 | Zf Friedrichshafen Ag | Method for carrying out a load circuit in vehicles with electric drive |
DE102007038771A1 (en) | 2007-08-16 | 2009-02-19 | Zf Friedrichshafen Ag | Method for starting the internal combustion engine during a load circuit in parallel hybrid vehicles |
DE102007038772A1 (en) * | 2007-08-16 | 2009-02-19 | Zf Friedrichshafen Ag | A method for performing a circuit in hybrid operation in a parallel hybrid vehicle |
DE102007038774A1 (en) * | 2007-08-16 | 2009-02-19 | Zf Friedrichshafen Ag | Method for carrying out a load circuit in parallel hybrid vehicles in hybrid operation |
DE102007041569A1 (en) * | 2007-09-01 | 2009-03-05 | Zf Friedrichshafen Ag | Method for controlling and / or regulating a hybrid drive arrangement |
US7908067B2 (en) * | 2007-12-05 | 2011-03-15 | Ford Global Technologies, Llc | Hybrid electric vehicle braking downshift control |
WO2009134241A2 (en) | 2008-04-28 | 2009-11-05 | Mack Trucks, Inc. | Powertrain with input shaft and engine speed synchronization and method for shifting gears in a powertrain |
US8137236B2 (en) * | 2008-06-27 | 2012-03-20 | Ford Global Technologies, Llc | Ouput torque modulation control of a transmission in a hybrid electric vehicle |
US8523734B2 (en) * | 2008-11-07 | 2013-09-03 | Ricardo, Inc. | Multi-mode hybrid transmission |
FR2951409B1 (en) * | 2009-10-15 | 2012-03-09 | Peugeot Citroen Automobiles Sa | TRACTION CHAIN FOR A HYBRID VEHICLE |
DE102009050957B4 (en) * | 2009-10-28 | 2018-07-26 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | mixed hybrid |
GB2476109A (en) * | 2009-12-14 | 2011-06-15 | Gm Global Tech Operations Inc | Hybrid vehicle which uses electric motor to smooth gear changes |
US20120017578A1 (en) | 2010-03-05 | 2012-01-26 | Johnson Daniel S | Power transfer system |
JP5357840B2 (en) | 2010-07-06 | 2013-12-04 | パナソニック株式会社 | Electric tool |
ITMI20101557A1 (en) * | 2010-08-17 | 2012-02-18 | Automobili Lamborghini Spa | CHANGE WITH MORE GEARS |
US8373375B2 (en) * | 2010-10-01 | 2013-02-12 | Deere & Company | Electro-mechanical drive with extended constant power speed range |
FR2974333A1 (en) * | 2011-04-19 | 2012-10-26 | Peugeot Citroen Automobiles Sa | Method for compensating interruption torque supplied by powertrain of car, involves applying torque to front axle and/or back axle by hydraulic circuit to compensate interruption torque during gear change of gear box |
US8893489B2 (en) | 2011-06-17 | 2014-11-25 | Robert Bosch Gmbh | Accessory drive for hybrid vehicles |
DE102011081235A1 (en) | 2011-08-19 | 2013-02-21 | Zf Friedrichshafen Ag | Method for operating drive train of hybrid vehicle, involves operating Otto engine in quantitative load control operating range on one hand and in layered combustion operating range on other hand |
DE102011111751A1 (en) * | 2011-08-24 | 2013-02-28 | Man Truck & Bus Ag | Manual transmission, in particular for a drive train in motor vehicles, rail vehicles or the like |
US8771138B2 (en) * | 2011-09-16 | 2014-07-08 | Eaton Corporation | Hybrid hydraulic drive system architecture |
DE102012008411A1 (en) * | 2012-04-27 | 2013-10-31 | Robert Bosch Gmbh | Travel drive of a commercial vehicle |
US10449864B2 (en) * | 2014-04-15 | 2019-10-22 | Borgwarner Inc. | Motor/energy generator and energy storage device combination |
US9527499B2 (en) * | 2014-07-17 | 2016-12-27 | GM Global Technology Operations LLC | Power-split hybrid powertrain using turbine generator |
FR3026810B1 (en) * | 2014-10-03 | 2018-03-02 | Poclain Hydraulics Industrie | METHOD FOR CONTROLLING A DEVICE FOR HYDRAULIC TRANSMISSION OF A VEHICLE |
DE102014220126B4 (en) | 2014-10-06 | 2022-12-01 | Schaeffler Technologies AG & Co. KG | Hybrid clutch for a double transmission unit of a motor vehicle and method for low-loss transmission of torque by means of the hybrid clutch |
SE539370C2 (en) | 2015-04-29 | 2017-08-15 | Scania Cv Ab | A brake arrangement for an upshift process in a gearbox |
CN108016275B (en) * | 2016-10-31 | 2020-08-25 | 比亚迪股份有限公司 | Power transmission system of vehicle and vehicle with same |
WO2018156706A1 (en) * | 2017-02-22 | 2018-08-30 | Dana Heavy Vehicle Systems Group, Llc | Commercial vehicle with electric driven axle |
DE102017203335A1 (en) | 2017-03-01 | 2018-09-06 | Audi Ag | Drive device for a motor vehicle |
DE112018000751T5 (en) * | 2017-03-08 | 2019-11-28 | Eaton Corporation | Fast cold start heating and energy efficiency for the powertrain of commercial vehicles |
WO2019050532A1 (en) * | 2017-09-08 | 2019-03-14 | Cummins Inc. | Hydraulic system for engine starter and generator |
CN108422849A (en) * | 2018-04-04 | 2018-08-21 | 精进电动科技股份有限公司 | A kind of longitudinal dual power source vehicle traction assembly |
NO346107B1 (en) * | 2018-08-15 | 2022-02-21 | Brudeli Green Mobility As | Transmission |
GB201820881D0 (en) * | 2018-12-20 | 2019-02-06 | Agco Int Gmbh | EPowershift driveline |
GB201904112D0 (en) * | 2019-03-25 | 2019-05-08 | Mclaren Automotive Ltd | Seamless-shift transmission |
CN110182047A (en) * | 2019-06-13 | 2019-08-30 | 淮阴工学院 | A kind of transmission integrated system of electric powered motor |
US11927253B2 (en) | 2019-11-07 | 2024-03-12 | Hyundai Motor Company | Powertrain for electric vehicle |
US11181174B2 (en) | 2019-11-07 | 2021-11-23 | Hyundai Motor Company | Powertrain for electric vehicle |
KR20210074520A (en) | 2019-12-12 | 2021-06-22 | 현대자동차주식회사 | Power train for electric vehicle |
DE102020112508A1 (en) * | 2020-05-08 | 2021-11-11 | Schaeffler Technologies AG & Co. KG | Hybrid transmission with spur gear stages and two electrical machines |
DE102020207169A1 (en) | 2020-06-08 | 2021-12-09 | Dana Belgium N.V. | Two-motor electric drive and control method |
KR102424448B1 (en) * | 2020-11-03 | 2022-07-22 | 현대자동차주식회사 | Shift conrtol method for vehicle |
CN112918238A (en) * | 2021-02-10 | 2021-06-08 | 重庆青山工业有限责任公司 | Longitudinal double-motor hybrid power system |
CN115431748A (en) * | 2021-06-03 | 2022-12-06 | 上海汽车集团股份有限公司 | Dual-motor hybrid transmission, hybrid transmission system and vehicle |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4242922A (en) * | 1976-08-06 | 1981-01-06 | Regie Nationale Des Usines Renault | Hybrid transmission device of the heat engine type for automobiles and motor vehicles |
DE3700380A1 (en) * | 1986-02-10 | 1987-08-13 | Stroemungsmasch Veb | Gear change mechanism for heavy tractor etc. - has two layshafts, hydraulic torque converter, and friction and dog clutches in parallel mechanical and hydromechanical gear trains |
WO1999021263A2 (en) | 1997-10-21 | 1999-04-29 | Stridsberg Innovation Ab | A hybrid powertrain |
EP0953467A2 (en) * | 1998-04-28 | 1999-11-03 | Hitachi, Ltd. | Power transmission apparatus for an automobile |
US6135913A (en) * | 1998-09-09 | 2000-10-24 | Chrysler Corporation | Power transfer system including power-interrupt auto-manual transmission, secondary power source of stored fluid pressure, and electronic throttle controls |
US6159127A (en) * | 1998-03-27 | 2000-12-12 | Robert Bosch Gmbh | Drive train for a motor vehicle |
EP1236603A2 (en) | 2001-03-01 | 2002-09-04 | Hitachi, Ltd. | A driving apparatus for controlling gear shifting in a hybrid vehicle |
EP1302697A2 (en) * | 2001-10-09 | 2003-04-16 | Hitachi, Ltd. | Automatic transmission, controller apparatus and automobile |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4202083C2 (en) * | 1992-01-25 | 1994-01-20 | Daimler Benz Ag | Hybrid drive for a motor vehicle |
US5558595A (en) * | 1995-02-17 | 1996-09-24 | General Motors Corporation | One-mode, input-split, parallel, hybrid transmission |
JP3257486B2 (en) * | 1997-11-12 | 2002-02-18 | トヨタ自動車株式会社 | Power output device and internal combustion engine control device |
US5931757A (en) * | 1998-06-24 | 1999-08-03 | General Motors Corporation | Two-mode, compound-split electro-mechanical vehicular transmission |
EP1126987B1 (en) * | 1998-11-03 | 2005-08-03 | Robert Bosch Gmbh | Hybrid transmission, especially for motor vehicles |
JP4069556B2 (en) * | 1999-10-07 | 2008-04-02 | トヨタ自動車株式会社 | Control method for power output device |
JP3706290B2 (en) * | 2000-02-04 | 2005-10-12 | 株式会社日立製作所 | Control device for hybrid vehicle |
US6371878B1 (en) * | 2000-08-22 | 2002-04-16 | New Venture Gear, Inc. | Electric continuously variable transmission |
JP4142862B2 (en) * | 2000-11-13 | 2008-09-03 | 本田技研工業株式会社 | Control device for transmission in hybrid vehicle |
US6490945B2 (en) * | 2001-01-10 | 2002-12-10 | New Venture Gear, Inc. | Twin clutch automated transmission with integrated transfer case |
EP1270301A3 (en) * | 2001-06-19 | 2007-02-21 | Hitachi, Ltd. | Power transmission apparatus for automobile |
US7028793B2 (en) * | 2002-02-08 | 2006-04-18 | Green Vision Technology, Llc | Internal combustion engines for hybrid powertrain |
JP3715272B2 (en) * | 2002-11-21 | 2005-11-09 | トヨタ自動車株式会社 | Vehicle power transmission device |
-
2004
- 2004-01-23 US US10/763,445 patent/US7125362B2/en not_active Expired - Fee Related
-
2005
- 2005-01-21 EP EP05702308A patent/EP1706286B1/en not_active Not-in-force
- 2005-01-21 BR BRPI0506527-5A patent/BRPI0506527A/en not_active IP Right Cessation
- 2005-01-21 WO PCT/IB2005/000147 patent/WO2005080111A1/en active Search and Examination
- 2005-01-21 DE DE602005024359T patent/DE602005024359D1/en active Active
- 2005-01-21 PL PL05702308T patent/PL1706286T3/en unknown
- 2005-01-21 CA CA2552900A patent/CA2552900C/en not_active Expired - Fee Related
- 2005-01-21 CN CN200580003096.6A patent/CN1910065B/en not_active Expired - Fee Related
- 2005-01-21 AT AT05702308T patent/ATE486231T1/en not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4242922A (en) * | 1976-08-06 | 1981-01-06 | Regie Nationale Des Usines Renault | Hybrid transmission device of the heat engine type for automobiles and motor vehicles |
DE3700380A1 (en) * | 1986-02-10 | 1987-08-13 | Stroemungsmasch Veb | Gear change mechanism for heavy tractor etc. - has two layshafts, hydraulic torque converter, and friction and dog clutches in parallel mechanical and hydromechanical gear trains |
WO1999021263A2 (en) | 1997-10-21 | 1999-04-29 | Stridsberg Innovation Ab | A hybrid powertrain |
US6159127A (en) * | 1998-03-27 | 2000-12-12 | Robert Bosch Gmbh | Drive train for a motor vehicle |
EP0953467A2 (en) * | 1998-04-28 | 1999-11-03 | Hitachi, Ltd. | Power transmission apparatus for an automobile |
US6135913A (en) * | 1998-09-09 | 2000-10-24 | Chrysler Corporation | Power transfer system including power-interrupt auto-manual transmission, secondary power source of stored fluid pressure, and electronic throttle controls |
EP1236603A2 (en) | 2001-03-01 | 2002-09-04 | Hitachi, Ltd. | A driving apparatus for controlling gear shifting in a hybrid vehicle |
EP1302697A2 (en) * | 2001-10-09 | 2003-04-16 | Hitachi, Ltd. | Automatic transmission, controller apparatus and automobile |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006033086A1 (en) * | 2006-07-14 | 2008-03-20 | Zf Friedrichshafen Ag | Hybrid driving arrangement for vehicle, has electric machine with changed gear transmission ratio and additional electrical machine is provided for additional independent drive of front axle or rear axle |
WO2010102711A1 (en) * | 2009-03-07 | 2010-09-16 | Daimler Ag | Auxiliary-range transmission device |
CN102910065A (en) * | 2012-11-02 | 2013-02-06 | 上海中科深江电动车辆有限公司 | Hybrid middle bus power system and corresponding control method |
CN102910065B (en) * | 2012-11-02 | 2015-08-12 | 上海中科深江电动车辆有限公司 | Hybrid power minibus power system and corresponding control method |
US10418927B2 (en) | 2014-02-11 | 2019-09-17 | Magnomatics Limited | Magnetic gear system and method for reducing transmission of torque pulsation |
Also Published As
Publication number | Publication date |
---|---|
US20050164827A1 (en) | 2005-07-28 |
CN1910065B (en) | 2014-04-02 |
CA2552900C (en) | 2011-06-07 |
ATE486231T1 (en) | 2010-11-15 |
CN1910065A (en) | 2007-02-07 |
US7125362B2 (en) | 2006-10-24 |
BRPI0506527A (en) | 2007-02-27 |
CA2552900A1 (en) | 2005-09-01 |
EP1706286A1 (en) | 2006-10-04 |
EP1706286B1 (en) | 2010-10-27 |
PL1706286T3 (en) | 2011-05-31 |
DE602005024359D1 (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2552900C (en) | Hybrid powertrain system including smooth shifting automated transmission | |
EP1706285B1 (en) | Hybrid powertrain system | |
JP4400690B2 (en) | Power transmission device for hybrid vehicle | |
EP1236603B1 (en) | A driving apparatus for controlling gear shifting in a hybrid vehicle | |
EP1507993B1 (en) | Hybrid powertrain system | |
EP1776251B1 (en) | Start and operation sequences for hybrid motor vehicles | |
US8092340B2 (en) | Hybrid electric vehicle powertrain control after a requested change in vehicle direction | |
US7165470B2 (en) | Vehicular drive system and driving method | |
JP4292732B2 (en) | Power transmission device for hybrid vehicle | |
JP3823960B2 (en) | Vehicle transmission | |
JP3884423B2 (en) | Power transmission device for hybrid vehicle | |
JP6390788B2 (en) | Control device | |
JP2011213132A (en) | Hybrid vehicle | |
JP5379554B2 (en) | Vehicle power transmission control device | |
JP2013216285A (en) | Control device of vehicle drive device | |
Mi et al. | Advanced HEV Architectures and Dynamics of HEV Powertrain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1814/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005702308 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2552900 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1938/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580003096.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 2005702308 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0506527 Country of ref document: BR |