WO2005071849A1 - 送信装置及び無線通信装置 - Google Patents

送信装置及び無線通信装置 Download PDF

Info

Publication number
WO2005071849A1
WO2005071849A1 PCT/JP2005/000179 JP2005000179W WO2005071849A1 WO 2005071849 A1 WO2005071849 A1 WO 2005071849A1 JP 2005000179 W JP2005000179 W JP 2005000179W WO 2005071849 A1 WO2005071849 A1 WO 2005071849A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
transmission
modulation
input
Prior art date
Application number
PCT/JP2005/000179
Other languages
English (en)
French (fr)
Inventor
Noriaki Saito
Koichiro Tanaka
Mitsuru Tanabe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/597,153 priority Critical patent/US7684514B2/en
Priority to EP05703418A priority patent/EP1710918B1/en
Publication of WO2005071849A1 publication Critical patent/WO2005071849A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/004Control by varying the supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers

Definitions

  • the present invention relates to a transmission device whose output can be variably controlled, and a wireless communication device using the transmission device.
  • a transmission device capable of variably controlling the output is evaluated for its power efficiency and linearity in a transmission function as indices for the performance of the device.
  • the power efficiency and linearity of this transmission function are the most important indices for expressing the performance of the device, especially for high-frequency modulation transmission devices such as mobile phones!
  • class-A operation amplifier As a final-stage amplifier of such a high-frequency modulation transmission device, a so-called class-A operation amplifier is widely used.
  • This class-A amplifier has little distortion, that is, it has excellent linearity, but it always consumes power due to the DC bias component, so its power efficiency decreases.
  • a drain voltage or a collector voltage is changed according to an amplitude component of a baseband signal using a saturation region of input / output power characteristics of a transistor.
  • Amplification methods have been devised.
  • the above-described power supply voltage is changed in proportion to the desired average output power.
  • Patent Document 1 Japanese Patent No. 3044057
  • FIG. 11 is a block diagram showing a configuration of a conventional variable output transmission device.
  • the output variable transmission apparatus includes a modulation input terminal 101, 102, a carrier oscillator 104, a quadrature modulator 103 for orthogonally modulating the output of the modulation input terminal 101, 102 with the output frequency of the carrier oscillator 104, A power amplifier 105, a transmission output terminal 106, an envelope generation circuit 107 for generating an envelope from outputs of the modulation input terminals 101 and 102, a designated signal input terminal 112, and a power amplifier from a designated signal input terminal 112.
  • a multi-valued DC signal generating circuit 108 that receives a signal for setting an average output level of 105 and generates a DC signal corresponding to the input value, A multiplier 109 for multiplying the output of the DC signal generator 108 by the output envelope of the envelope generator 107; a voltage controller 110 for controlling the drain voltage of the power amplifier 105 according to the output of the multiplier 109; The terminal 111 is provided.
  • Quadrature modulator 103 modulates the carrier supplied from carrier oscillator 104 with an I signal input from modulation input terminals 101 and 102 and a Q signal orthogonal to the I signal.
  • the envelope generation circuit 107 calculates an amplitude signal R of the I and Q signals.
  • An output level designation signal corresponding to the transmission output level to be output to the transmission output terminal 106 is input to the designated signal input terminal 112.
  • Multi-level DC signal generation circuit 108 generates a DC signal according to an output level designation signal from designated signal input terminal 112.
  • Multiplication circuit 109 multiplies the output of envelope generation circuit 107 by the output of multi-level DC signal generation circuit 108. As a result, a signal proportional to the envelope of the modulated wave is obtained at the output of the multiplying circuit 109, and the average value changes in accordance with the transmission output.
  • the voltage control circuit 110 changes the drain voltage Vo of the power amplifier 105 according to the output of the multiplication circuit 109. As a result, the drain voltage of the power amplifier 105 is proportional to the envelope of the modulated wave, and the average value changes according to the transmission output. Therefore, by using the configuration of the polar modulation method as described above, the power amplifier 105 can perform linear amplification while maintaining a highly efficient saturated state, and the transmission power can be made variable.
  • both amplitude modulation and transmission output control are always performed collectively by drain voltage control.
  • the output control variable width of the transmission power is limited.
  • a finite control voltage range for example, 0.3 V to 3.0 V
  • a power amplifier gain variable width for example, 20 dBZdec
  • the frequency of operating the mobile phone device at the maximum transmission output is relatively low. This is because the transmission power is set low by a command from the base station in order to avoid interference and increase cell use efficiency. Therefore, in order to extend the talk time of the mobile phone, the maximum transmission It is an important issue to reduce power consumption at low transmission power, not just at transmission power.
  • Patent Document 1 Patent No. 3044057 (Page 120, FIG. 1)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-18026
  • Patent Document 3 JP 2003-51751 A
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-104194
  • Patent Document 5 JP 2004-173249 A
  • Patent Document 6 JP-A-3-276923
  • the present invention has been made in view of the above circumstances, and has as its object to provide a transmission device and a wireless communication device that are highly efficient and can obtain a wide output control variable width. Means for solving the problem
  • a transmitting apparatus includes a quadrature modulating unit that performs quadrature modulation by inputting an in-phase component and a quadrature component of an input modulated signal, and amplifies the output of the quadrature modulating unit, based on a gain control signal.
  • Variable gain amplifying means whose gain is controlled, and power amplifying means for amplifying the power of the output of the variable gain amplifying means, wherein the power amplifying means uses a linear operation region in input / output power characteristics.
  • the power amplifier is operated in a saturation mode by adjusting a level, and a transmission output control signal having an amplitude modulated based on the amplitude component of the input modulation signal is input to an output control input terminal of the power amplifier.
  • the transmission output power is less than a predetermined value
  • the output level of the variable gain amplifying means is adjusted to operate the power amplifying means in the linear mode, and the transmission power is transmitted to the output control input terminal.
  • a linear amplification is performed by inputting a transmission output control signal of a predetermined level according to the output power.
  • the power amplifying unit performs the polar coordinate modulation when the transmission output power is at or near a maximum output level.
  • the case where the linear amplification is performed when the power is smaller than the power is also included.
  • the power amplifying unit has a power supply terminal used as the output control input terminal, A power supply driver for increasing the current capacity of an amplitude-modulated signal based on the amplitude component of an input modulation signal and supplying power to the power supply terminal as the transmission output control signal is also included.
  • the current capacity of the amplitude-modulated signal based on the amplitude component of the input modulation signal is enhanced by the power supply driver, and the signal is supplied to the power supply terminal of the power amplifying unit as a transmission output control signal.
  • the output power is equal to or higher than a predetermined value, highly efficient polar modulation can be performed.
  • the power amplifying means has a power terminal and a bias terminal of an amplifier circuit used as the output control input terminal,
  • the power supply terminal includes a fixed power supply, and the bias terminal includes the transmission output control signal.
  • a fixed power supply is input to the power supply terminal of the power amplifying means, and a signal whose amplitude is modulated based on the amplitude component of the input modulation signal is transmitted to the bias terminal as a transmission output control signal.
  • a power supply driver for enhancing the current capacity is not required as compared with the case where the power supply to the power amplifying unit is amplitude-modulated, and the device configuration can be simplified.
  • the transmission device described above further comprising a DA converter for converting a digital signal into an analog signal at a transmission output control signal input section for inputting the transmission output control signal.
  • the converter is capable of changing the operation clock, and includes a converter having an operation clock switching function of operating with a higher operation clock only when polar modulation is performed by the power amplification means than when the linear amplification is performed.
  • the DA converter of the transmission output control signal input unit is operated at a high level only when polar modulation is performed by the power amplifying means and with the operation clock, so that the operating current is increased only during the polar modulation operation.
  • Appropriate amplitude modulation is enabled, the operating current can be reduced during linear amplification operation, and overall power consumption can be reduced.
  • the input unit of the power supply driver includes an operational amplifier for waveform shaping, and the operational amplifier can change an operation current. Also includes those having an operation current switching function of increasing the operation current only when the polar amplification is performed by the power amplification means compared to when the linear amplification is performed.
  • the operational amplifier of the input section of the power supply driver increases the operating current only when polar modulation is performed by the power amplifying means, so that appropriate amplitude modulation can be performed with a large operating current during polar modulation operation.
  • the operating current can be reduced, and the overall power consumption can be reduced.
  • One embodiment of the present invention also includes the above-described transmission device, which uses a re-regulator as the power supply driver.
  • One embodiment of the present invention also includes the above transmission device, which uses a switching regulator as the power supply driver.
  • the power supply driver may include an amplitude slicer for slicing the transmission output control signal stepwise at a plurality of different voltage levels; Multiple switches that convert voltage stepwise into multiple voltages with different values
  • the present invention also includes a configuration having a Gregulator and a switch group for selecting any one of the output voltages of the plurality of switching regulators.
  • the demodulation section demodulates an output of the power amplification section, and the demodulation section performs demodulation based on demodulated signal information obtained from the demodulation section.
  • a control unit that adjusts the timing of amplitude modulation when polar modulation is performed by the amplification unit is also included.
  • the amplitude at the time of polar modulation is used.
  • the timing of the information and the phase information can be adjusted, and the distortion of the output of the transmission device can be reduced.
  • the present invention also provides a wireless communication device provided with any of the transmission devices described above.
  • a wireless communication device having such a configuration can perform high-efficiency amplification with a large transmission output power, and can perform transmission power control at a wide range of levels. It is more effective when applied to devices.
  • FIG. 1 is a block diagram showing a configuration of a transmitting apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing input / output characteristics of a high power amplifier according to the present embodiment.
  • FIG. 4 is a graph showing power supply voltage versus power output level characteristics of the high power amplifier according to the present embodiment.
  • FIG. 5 is a block diagram showing a configuration of a transmitting apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a transmitting apparatus according to a third embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a transmitting apparatus according to a fourth embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a wireless communication device according to a fifth embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a wireless communication device according to a sixth embodiment of the present invention.
  • Block diagram showing configuration of transmitting apparatus according to seventh embodiment of present invention [FIG.
  • FIG. 1 is a block diagram showing a configuration of the transmitting apparatus according to the first embodiment of the present invention.
  • the transmission unit 10 constituting the transmission device of the first embodiment includes a linear modulator 11, a high power amplifier 12 for amplifying the power of the transmission signal output from the linear modulator 11, and a high power amplifier 12 And an amplitude modulation unit 13 that generates power to be supplied to the power supply.
  • the linear modulator 11 includes a fixed clock input DA converter (DAC) 14, 15 for performing digital-to-analog conversion from a fixed frequency operation clock, low-pass filters (LPF) 16, 17, and low-pass filters 16, 17; A quadrature modulator (MOD) 18 that quadrature modulates the output with the output frequency of the local oscillator 20 and converts the frequency to the RF band, and amplifies the output of the quadrature modulator 18. And a middle power amplifier 19 for performing the above.
  • DAC fixed clock input DA converter
  • LPF low-pass filters
  • MOD quadrature modulator
  • the amplitude modulating unit 13 includes a fixed clock input DA converter 21, a low-pass filter 22, and a power supply driver 24 having a high-speed operational amplifier (OPAMP) 23 for waveform shaping in the input unit.
  • the fixed clock input DA converter 21 and the low-pass filter 22 serve as a transmission output control signal input unit for inputting a transmission output control signal described later.
  • the transmission unit 10 inputs an I input terminal 31 that is an in-phase component input terminal, a Q input terminal 32 that is a quadrature component input terminal, and a transmission output control signal for instructing a transmission output power of a control target. It has an R input terminal 33, a gain control terminal 34 for inputting a gain control signal for controlling the amplification gain of the middle power amplifier 19, and an output terminal 35 for outputting a power-amplified transmission signal.
  • the control unit 30 is connected to these terminals, outputs a transmission modulation signal, outputs various control signals, and controls the wireless communication operation.
  • the control unit 30 includes an amplitude calculation unit 302 for calculating the amplitude component of the input modulation signal based on the I and Q signals, and a transmission output control signal 301 of a certain level and an amplitude calculation unit 302 for selecting an operation mode. And a mode selection unit 300 for selecting any one of the amplitude components of the input modulation signal.
  • the in-phase envelope component (I signal) is input to the I input terminal 31, and the quadrature envelope component (I signal) is input to the Q input terminal 32.
  • Q signal) is input.
  • the I signal of the in-phase component input to the I input terminal 31 is converted to an analog voltage by the DA converter 14, and unnecessary harmonic components are removed by the low-pass filter 16, and then input to the quadrature modulator 18.
  • the Q signal of the quadrature component input to the Q input terminal 32 is converted to an analog voltage by the DA converter 15, and unnecessary harmonic components are removed by the low-pass filter 17, and then input to the quadrature modulator 18. Is done.
  • the quadrature modulator 18 corresponds to an example of quadrature modulation means.
  • the quadrature modulator 18 quadrature-modulates a high-frequency signal supplied from the local oscillator 20 according to the input I and Q signals, thereby converting the I and Q signals into phase signals. Generates and outputs a modulated high-frequency signal in the RF band.
  • the medium power amplifier 19 corresponds to an example of a variable gain amplifying means, and amplifies the output signal of the quadrature modulator 18 with a predetermined gain according to the level of the gain control signal input from the gain control terminal 34.
  • the output of the middle power amplifier 19 becomes the output of the linear modulator 11 and is input to the high power amplifier 12 as a transmission modulation signal.
  • a digital signal for transmission output control is input from the control unit 30 to the R input terminal 33.
  • the transmission output control signal input to the R input terminal 33 is converted to an analog voltage by the DA converter 21, unnecessary harmonic components are removed by the low-pass filter 22, and the current capacity is increased by the power supply driver 24. Be strengthened.
  • the output of the power supply driver 24 becomes the output of the amplitude modulator 13 and is supplied to the high power amplifier 12 as a power supply that can change the voltage.
  • the large power amplifier 12 is equivalent to an example of a power amplifying means.
  • the power of a plurality of stages of amplifying circuits is increased, and the output is controlled according to the input level of a power supply terminal 25 serving as an input terminal for output control.
  • the high power amplifier 12 performs power amplification by linearly amplifying the transmission modulation signal output from the linear modulator 11 in a linear mode described later, or amplitude-modulating (polar coordinate modulation) in a saturation mode, and transmits the transmission signal. And output from output terminal 35.
  • the mode selection unit 300 transmits a certain level of transmission to the R input terminal 33.
  • transmission power control is performed independently of the dynamic range of the amplitude component of the input modulation signal by the I and Q signals. I do.
  • the transmission output power is higher than a predetermined value, for example, when used near the maximum transmission power (for example, within 24 dB or 6 dB from the maximum transmission power)
  • the high power amplifier 12 is saturated.
  • the transmission unit 10 of the present embodiment includes a two-stage, a linear modulator 11 that performs linear amplification after quadrature modulation, and a large power amplifier 12 that performs amplification in a saturated state using normal linear amplification or polar modulation. It is configured to include the amplifying means of the configuration. These amplifying means are controlled by a control signal from the control unit 30.
  • FIG. 2 is a diagram showing a transmission power control standard in the 900 MHz band EGPRS system which is a European mobile phone standard.
  • the power control operation at each power control level shown in FIG. 2 will be described.
  • the one called ClassE2 in the maximum transmission power specification needs to be variable at 2dB intervals up to the power control level 8-19.
  • the terminal (mobile station) of the radio communication apparatus in consideration of the instruction from the base station, notifies the transmitter of the power control level control value in 12 steps by the baseband controller.
  • the loss of the antenna switch and the like is 1 dB between the output terminal 35 of the transmitting unit shown in FIG. 1 and the antenna terminal.
  • the output level of the middle power amplifier 19 is fixed at +5 dBm by the gain control signal input from the gain control terminal 34.
  • the high power amplifier 12 is operated in the saturation mode (polar coordinate modulation system).
  • the voltage value of the amplitude component of the modulation signal is input to the R input terminal 33 within the level range shifted according to the power control level, and power is supplied to the high power amplifier 12 via the power driver 24.
  • high-efficiency polar modulation is performed by applying amplitude modulation to the voltage (power supply voltage VDD) of the power supply terminal 25 of the high power amplifier 12.
  • a predetermined control voltage value is input to the R input terminal 33 and the power supply voltage VDD of the power supply terminal 25 of the large power amplifier 12 is fixed at 0.99V.
  • the output level of the medium power amplifier 19 is reduced to 4 dBm by the gain control signal input from the gain control terminal 34, so that the high power amplifier 12 operates in the linear mode (quadrature modulation system).
  • the output level of the medium power amplifier 19, that is, the input level of the large power amplifier 12 is controlled by the gain control signal input from the gain control terminal 34 until the power control level ll (+22 dBm) reaches level 19 (+6 dBm).
  • Fig. 3 shows the input / output characteristics (Pin-Pout characteristics) of the high power amplifier 12 with the power supply voltage VDD applied to the power supply terminal 25 as a parameter.
  • Fig. 4 shows the power input level of the high power amplifier 12 as + FIG. 7 is a characteristic diagram of power supply voltage VDD vs. output power Pout when the power supply voltage is fixed at 5 dBm.
  • FIG. 3 a plurality of curves show input / output characteristics (Pin-Pout characteristics) of large power amplifier 12 for different power supply voltages VDD.
  • the output power Pout increases linearly as the input power Pin increases (linear operation region).
  • the saturation output power Po W is proportional to the square of the power supply voltage VDD.
  • high power amplifier 12 operates in the saturation operation region.
  • the power supply voltage VDD of the power supply terminal 25 is amplitude-modulated and Performs coordinate modulation and performs high-efficiency power amplification while controlling transmission power.
  • the input level of the high power amplifier 12 is fixed to +5 dBm, and the power supply voltage VDD of the power supply terminal 25 is changed in the range of 0.31V-1.96V.
  • VDD power supply voltage
  • a modulated amplification signal that changes to about +15 dBm- + 31 dBm as the output level of the high power amplifier 12 is obtained.
  • the control range of the power supply voltage VDD in this saturation mode is 0.31V-1.96V at voltage control level 8, 0.25V-1.56V at voltage control level 9, and 0.20V-1.24V at level 10. Which are almost equal to the amplitude dynamic range of the modulated signal (about 16 dB).
  • the high power amplifier 12 operates in a linear operation region.
  • the transmission power control when operating in the linear mode is performed using the transmission output control signal input from the R input terminal 33.
  • the gain control input from the gain control terminal 34 The signal may be used as a transmission output control signal.
  • the high power amplifier having the input / output characteristics shown in Figs. 3 and 4 has a gain variable width of only about 20dB, and the amplitude dynamic range of the EGPRS modulated signal is about 16dB. Switching between saturation mode and linear mode is performed at a level 4 dB below the power, but this is not a limitation.
  • the value of the maximum transmission power of 4 dB may be set to 4 dB or more when the variable gain width of the high power amplifier is large, or may be set to 4 dB or less when it is small.
  • FIG. 1 shows an example in which all three stages of the power supply of the large power amplifier are connected to one point, and the small signal gain changes according to the power supply voltage in the linear region as shown in FIG.
  • the gain control in the linear mode may be performed by controlling the output of the medium power amplifier.
  • the largest power consumption ⁇ high-efficiency polar modulation near the maximum output is performed, and linear amplification is performed at a lower output level.
  • the output control variable width can be widened.
  • transmission power control over a wide range that exceeds the variable gain range of the large power amplifier can be easily performed. Therefore, by performing polar modulation only when used near the maximum transmission power, polar modulation and transmission power control can be performed separately, and the polar modulation method can be used. Can solve the shortage of dynamic range, and can cover a wide range of output levels.
  • FIG. 5 is a block diagram showing a configuration of the transmitting apparatus according to the second embodiment of the present invention.
  • the transmission unit 40 of the second embodiment is partially different from the configuration of the first embodiment.
  • the transmission unit 40 is provided with a clock switching terminal 36 by changing the configuration of the amplitude modulation unit, and by changing the operation clock of the DA converter.
  • the operating current can be controlled.
  • the amplitude modulation section 41 includes a variable clock input DA converter (DAC) 42 capable of changing an operation clock by a switching signal from a clock switching terminal 36 in a transmission output control signal input section.
  • DAC variable clock input DA converter
  • variable clock input DA converter 42 has an operation clock switching function, changes the operation clock in accordance with the input of the switching signal from the control unit 30 to the clock switching terminal 36, and changes the operation clock in accordance with the frequency of the operation clock. And the operating current can be changed.
  • the transmission power control speed is slower than the amplitude change speed of the modulation signal, so that the DA converter 42 does not need a high operation clock when performing quadrature modulation and linear amplification in the linear mode. Therefore, the DA converter 42 may be operated with a high operation clock only when polar modulation is performed. Therefore, when polar modulation is performed by operating the high power amplifier 12 in the saturation mode, the operating current of the variable clock input DA converter 42 is increased and the operating clock is increased. On the other hand, when quadrature modulation and linear amplification are performed by operating the high power amplifier 12 in the linear mode, the operating current of the variable clock input DA converter 42 is reduced and the operating clock is reduced.
  • the operating clock of the variable clock input DA converter is increased to increase the operating current.
  • the operating current during linear mode operation can be reduced, and overall power consumption can be reduced.
  • FIG. 6 is a block diagram showing a configuration of the transmitting apparatus according to the third embodiment of the present invention.
  • the transmission unit 50 of the third embodiment is partially different from the configuration of the second embodiment, and the configuration of the amplitude modulation unit is changed to provide a current switching terminal 37 to control the operating current of the high-speed operational amplifier of the power supply driver. It is possible.
  • the amplitude modulation section 51 is configured to include a power supply driver 53 having an input section including a high-speed operational amplifier (OPAMP) 52 capable of changing an operation current by a switching signal from a current switching terminal 37.
  • OPAMP high-speed operational amplifier
  • the high-speed operational amplifier 52 has an operating current switching function, and is configured to be able to vary the operating current according to the input of a switching signal from the control unit 30 to the current switching terminal 37.
  • the transmission power control speed is slower than the amplitude change speed of the modulation signal. Therefore, the power supply driver 53 has a high-speed operational amplifier 52 for waveform shaping at the input stage when performing quadrature modulation and linear amplification in the linear mode. No large operating current is required. For this reason, the high-speed operational amplifier 52 may be operated with a large operating current only when polar modulation is performed. Therefore, when polar modulation is performed by operating the high power amplifier 12 in the saturation mode, the operating current of the high-speed amplifier 52 is increased, and when quadrature modulation and linear amplification are performed by operating the high power amplifier 12 in the linear mode, The operating current of the high-speed operational amplifier 52 is reduced.
  • the operating current of the high-speed operational amplifier is increased only when the polar modulation is performed, so that the operating current in the linear mode operation is further improved compared to the second embodiment. Can be reduced, and overall power consumption can be reduced.
  • FIG. 7 is a block diagram illustrating a configuration of a transmitting apparatus according to the fourth embodiment of the present invention.
  • the transmitting unit 60 of the fourth embodiment is partially different from the second embodiment in that the configuration of the amplitude modulation unit and the high power amplifier is changed to control the output of the high power amplifier instead of the power supply voltage. This is performed by bias adjustment.
  • the amplitude modulation section 61 is configured to include the variable clock input DA converter 42 and the low-pass filter 22.
  • the high power amplifier 62 has a power supply terminal 63 for inputting a power supply voltage from a fixed power supply 65, and a bias terminal 64 for inputting a transmission output control signal (gain control signal) output from the amplitude modulator 61. It is composed. In the present embodiment, the high power amplifier 62
  • the bias terminal 64 is an input terminal for output control.
  • Other configurations are the same as those of the first and second embodiments, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the drain or collector of the amplifying element serves as a power supply terminal 63
  • the gate or base serves as a bias terminal 64.
  • transmission power control when performing polar coordinate modulation is performed by the gain control signal input to the bias terminal 64, and therefore, compared with the case where direct transmission power control is performed by the power supply input to the power supply terminal 63, the amplitude modulation is performed.
  • the power supply driver for enhancing the power supply current capacity inside the unit 61 is not required.
  • the large power amplifier 62 When amplifying the input modulation signal from the linear modulator 11, the large power amplifier 62 is supplied with a fixed power supply voltage from a fixed power supply 65 to a power supply terminal 63, and supplies a bias terminal 64 with a voltage from the amplitude modulation section 61 to a bias terminal 64.
  • a modulation signal or a gain control signal with a fixed level is input, and the output level is adjusted.
  • the DA converter 42 in the input stage of the amplitude modulation unit 61 can change the operation clock and the operation current by the switching signal from the clock switching terminal 36.
  • a fixed clock input DA converter 21 may be provided to operate with a fixed operation clock.
  • the transmission power control is performed by adjusting the bias of the large power amplifier, so that the power supply driver for enhancing the power supply current capacity in the amplitude modulation section is provided. Can be eliminated, and the circuit can be further simplified as compared with the first to third embodiments.
  • FIG. 8 is a block diagram showing a configuration of a wireless communication device according to a fifth embodiment of the present invention.
  • the wireless communication device according to the fifth embodiment includes a transmission unit 50, a reception unit 70, a control unit 80, an antenna switch 81, and an antenna 82 similar to those of the third embodiment.
  • Receiving section 70 is configured to include a demodulating section, and includes a band-pass filter (BPF) 71, a low-noise amplifier 72 for adjusting the output level of band-pass filter 71, and an output of low-noise amplifier 72 to a local oscillator.
  • a quadrature demodulator (DEM) 73 that performs quadrature demodulation using the 20 high-frequency signals to perform frequency conversion to a baseband band, and a baseband amplifier (amplifier) that amplifies the in-phase and quadrature components of the output of the quadrature demodulator 73, respectively BBAMP) 74, 75 and low-pass filter 7 6, 77, and AD converters 78, 79 for analog-to-digital conversion.
  • the receiving section 70 receives an I output terminal 91 as an in-phase component output terminal, a Q output terminal 92 as a quadrature component output terminal, and a gain control signal for controlling the amplification gain of the low noise amplifier 72. It has a gain control terminal 93 for input.
  • the control unit 80 includes an I input terminal 31, a Q input terminal 32, an R input terminal 33, a gain control terminal 34, a clock switching terminal 36, a current switching terminal 37, and an I output of the receiving unit 70 of the transmitting unit 50.
  • Terminal 91, Q output terminal 92, and gain control terminal 93 are connected to output the transmission modulation signal, input the reception demodulation signal, output various control signals, and control the wireless communication operation.
  • the output of the transmitting unit 50 is monitored by the receiving unit 70, and based on the information obtained from the demodulated signal, the timing of the amplitude information and the phase information at the time of polar modulation is used. The adjustment is performed. For this reason, an operation mode that allows simultaneous transmission and reception even in the case of the TDMA system without simultaneous transmission and reception is prepared.
  • the antenna switch 81 is switched to connect the antenna 82 to the receiving unit 70, the output of the transmitting unit 50 is attenuated by the isolation characteristic of the antenna switch 81 (normally about 20 dB), and transmitted to the band-pass filter 71. .
  • the band-pass filter 71 In the band-pass filter 71, there is a large difference in the amount of attenuation between the TDD system using the same transmission and reception frequency and the FDD system using the separate transmission and reception frequency, but the output from the transmission unit 50 is further attenuated.
  • the gain is adjusted by the gain control signal from the gain control terminal 93, and the output of the bandpass filter 71 is attenuated to the level without distorting the quadrature demodulator 73.
  • the quadrature demodulator 73 the output signal of the low noise amplifier 72 is quadrature-demodulated using the high-frequency signal input from the same local oscillator 20 as the transmitting unit 50, and the quadrature demodulator 73 is output by the baseband amplifiers 74 and 75.
  • the in-phase component (I signal) and the quadrature component (Q signal) of the output signal are amplified.
  • the I and Q signals are filtered by low-pass filters 76 and 77 to remove unnecessary harmonic components, and then converted into digital signals by AD converters 78 and 79 and output.
  • the control unit 80 controls each of the transmitting units 50 based on the information of the demodulated signal obtained from the I signal from the I output terminal 91 and the Q signal from the Q output terminal 92 so that the transmitting unit 50 can obtain appropriate output characteristics. Control the signal. For example, to minimize EVM (error vector amplitude (a value indicating modulation accuracy)), the transmission output control signal input to the R input terminal 33 and the I input terminal 31 and the Q input terminal Adjust the timing of the I and Q signals input to child 32. This makes it possible to adjust the timing of amplitude modulation when polar modulation is performed in the high power amplifier 12.
  • EVM error vector amplitude
  • the circuit is common. It is only necessary that the same oscillation frequency be used.
  • the output of the transmitting unit 50 is connected to the receiving unit 70 via the antenna switch 81, and the output of the transmitting unit 50 is demodulated.
  • the timing of the amplitude information and the phase information at the time of polar modulation can be adjusted by the information of the demodulated signal, and the distortion in the transmission unit can be further reduced as compared with the third embodiment.
  • FIG. 9 is a block diagram showing a configuration of a wireless communication device according to the sixth embodiment of the present invention.
  • the wireless communication apparatus according to the sixth embodiment includes a transmission unit 60, a reception unit 70, a control unit 80, an antenna switch 81, and an antenna 82 similar to those of the fourth embodiment. That is, the transmission unit in the fifth embodiment described above is changed to a transmission unit 60 that controls the output of a large power amplifier by bias adjustment as in the fourth embodiment.
  • the configurations and operations of the receiving unit 70 and the control unit 80 are the same as in the fifth embodiment, and a description thereof will not be repeated.
  • transmission power control when performing polar coordinate modulation is performed by a gain control signal input to the bias terminal 64, so that the transmission power control is directly performed by the power supply input to the power supply terminal 63.
  • a power supply driver for enhancing the power supply current capacity inside the amplitude modulation section 61 is not required.
  • the DA converter 42 in the input stage of the amplitude modulator 61 can change the operation clock and the operation current by the switching signal from the clock switching terminal 36.
  • a fixed clock input DA converter 21 may be provided to operate with a fixed operation clock.
  • the power supply driver for enhancing the power supply current capacity in the amplitude modulation unit can be eliminated, and in addition to the effects of the fifth embodiment, the circuit can be simplified further.
  • FIG. 10 is a block diagram showing a configuration of the transmitting apparatus according to the seventh embodiment of the present invention.
  • the transmission unit 200 of the seventh embodiment is partially different from the configuration of the first embodiment in that the configuration of the power supply driver 203 of the amplitude modulation unit 201 is changed.
  • the power supply driver 203 includes an amplitude slicing unit 204 for slicing the transmission output control signal at a plurality of different voltage levels, a linear regulator 207, a voltage source 210, and a power supply voltage of the voltage source 210.
  • a plurality of switching regulators 208 and 209 for converting to a plurality of voltages different from each other, and switches 205 and 206 for selecting one of the output voltages of the plurality of switching regulators 208 and 209. It is composed.
  • Other configurations are the same as those of the first embodiment, and similar components are denoted by the same reference numerals and description thereof will be omitted.
  • the output of the low-pass filter 22 is branched into two and input to the amplitude slicing means 204 and the linear regulator 207, respectively.
  • the amplitude slicing means 204 slices the output of the low-pass filter 22 at a plurality of different voltage levels in a stepwise manner, and the switching regulators 208 and 209, which are constituted by DC-DC converters and the like, It is converted into multiple voltages with different values stepwise.
  • the linear regulator 207 has a difference between the output of the voltage source 210 and the output of the low-pass filter 22 when the output is low. The loss can be minimized by selecting the switching regulator in the switch groups 205 and 206.
  • the seventh embodiment by using a combination of a plurality of switching regulators and a linear regulator as a power supply driver, the power supply driver in the case of polar modulation is further improved than the first embodiment.
  • the operating current can be reduced, and the overall power consumption can be reduced.
  • the present embodiment it is possible to perform highly efficient polar modulation near the maximum output with the largest power consumption, independently of the transmission power control.
  • by performing polar modulation only when used near the maximum transmission power it is possible to eliminate the shortage of dynamic range limited by the performance of the power amplifier while performing high-efficiency output power amplification using the polar modulation method.
  • the control variable width can be widened.
  • an example is shown in which the present invention is applied to a mobile phone device of the 900 MHz band EGPRS system which is a European mobile phone standard.
  • the present invention can be similarly applied to a transmission unit of a mobile phone device, another wireless terminal device, a wireless base station device, a wireless communication device for various wireless LANs such as IEEE802.
  • the present invention has the effect of providing a transmitting unit that is highly efficient and can obtain a wide output control variable width, and has a transmitting device capable of variably controlling the output and a transmitting device using the transmitting device. It is useful for wireless communication devices and the like.

Abstract

 高効率であるとともに広い出力制御可変幅を得ることが可能な送信装置を提供する。  最大送信電力付近では、飽和モードの動作とし、大電力増幅器12の入力レベルを大きくして固定することで大電力増幅器12を飽和状態で動作させながら、R入力端子33に出力電力制御レベルに応じた範囲で変調信号の振幅成分を入力し、電源端子25の電源電圧VDDに対し振幅変調をかけることで、高効率の極座標変調を行う。これより小さい送信電力では、線形モードの動作とし、大電力増幅器12の入力レベルを小さくして大電力増幅器12を線形動作させ、出力電力制御レベルに応じて電源端子25の電源電圧VDDを可変することで、送信電力制御を行う。

Description

明 細 書
送信装置及び無線通信装置
技術分野
[0001] 本発明は、出力を可変に制御可能な送信装置およびこの送信装置を用いた無線 通信装置に関する。
背景技術
[0002] 出力を可変に制御可能な送信装置は、装置の性能を図る指標として、送信機能に おける電力効率および線形性が評価されて ヽる。この送信機能における電力効率お よび線形性は、特に、携帯電話等の高周波変調送信機器において、装置の性能を 表す上で最も重要な指標となって!/、る。
[0003] このような高周波変調送信機器の最終段の増幅器としては、いわゆる A級動作の 増幅器が広く用いられている。この A級増幅器は、歪みが少ない、すなわち線形性に は優れている反面、常時直流バイアス成分に伴う電力を消費するため電力効率は小 さくなつてしまうものである。
[0004] そこで、電力増幅器を高効率動作させる方法として、トランジスタの入出力電力特 性の飽和領域を用いて、ドレイン電圧またはコレクタ電圧 (電源電圧)をベースバンド 信号の振幅成分に応じて変化させて増幅する方法が考案されている。例えば、平均 出力電力を変化させる時には、前述の電源電圧を所望の平均出力電力に比例して 変化させるものである。この種の装置として、例えば、特許第 3044057号公報 (特許 文献 1)に開示された出力可変送信装置がある。
[0005] 図 11は、従来例の出力可変送信装置の構成を示すブロック図である。この出力可 変送信装置は、変調入力端子 101, 102と、搬送波発振器 104と、変調入力端子 10 1, 102の出力を搬送波発振器 104の出力周波数にて直交変調する直交変調器 10 3と、高周波電力増幅器 105と、送信出力端子 106と、変調入力端子 101, 102の出 力から包絡線を生成する包絡線生成回路 107と、指定信号入力端子 112と、指定信 号入力端子 112からの電力増幅器 105の平均出力レベルを設定する信号を入力と しその入力値に対応する直流信号を発生する多値直流信号発生回路 108と、多値 直流信号発生回路 108の出力を包絡線生成回路 107の出力包絡線に乗算する乗 算回路 109と、乗算回路 109の出力に応じて電力増幅器 105のドレイン電圧を制御 する電圧制御回路 110と、電源端子 111とを備えた構成となっている。
[0006] 直交変調器 103は、変調入力端子 101, 102から入力される I信号とこの I信号に直 交する Q信号とにより、搬送波発振器 104から供給された搬送波を変調する。包絡線 生成回路 107は、前記 I, Q信号の振幅信号 Rを算出する。指定信号入力端子 112 には、送信出力端子 106に出力しょうとする送信出力レベルに対応する出力レベル 指定信号が入力される。多値直流信号発生回路 108は、指定信号入力端子 112か らの出力レベル指定信号に従って直流信号を発生する。
[0007] 乗算回路 109は、包絡線生成回路 107の出力と多値直流信号発生回路 108の出 力とを乗算する。これにより、乗算回路 109の出力には変調波の包絡線に比例した 信号が得られ、しかもその平均値が送信出力に応じて変化する。電圧制御回路 110 は、乗算回路 109の出力に応じて、電力増幅器 105のドレイン電圧 Voを変化させる 。この結果、電力増幅器 105のドレイン電圧は、変調波の包絡線に比例し、かつ平均 値が送信出力に応じて変化する。したがって、上記のような極座標変調方式の構成 を用いることによって、電力増幅器 105は高効率の飽和状態を保ちながら線形増幅 を行うことができ、し力も送信出力を可変にすることができる。
[0008] し力しながら、図 11に示す従来例の出力可変送信装置においては、振幅変調及 び送信出力制御の両方を常に一括してドレイン電圧制御で行うため、電力増幅器 10 5の特性により送信電力の出力制御可変幅が制限されてしまう。このような従来例の 出力可変送信装置を実際の携帯電話装置に搭載した場合、有限の制御電圧範囲( 例えば 0. 3V— 3. 0V)と電力増幅器利得可変幅(例えば 20dBZdec)し力確保で きない。このため、最近の携帯電話規格のように広い出力制御可変幅 (例えば、欧州 携帯電話規格である EGPRSでは約 43dB+ α )が要求される通信装置では、必要 な送信出力レベルの範囲を十分に確保することができないという事情があった。
[0009] また、携帯電話装置は最大送信出力で動作する頻度が比較的低い。これは干渉を 避けセル利用効率を高めるために、基地局の指令により送信電力が低く設定される ことに起因する。よって、携帯電話装置の通話可能時間を長くするためには、最大送 信出力時だけでなぐ低送信出力時における消費電力を抑えることが重要課題とな つている。
[0010] 特許文献 1 :特許第 3044057号 (第 1 20頁、図 1)
特許文献 2:特開 2003—18026号公報
特許文献 3 :特開 2003—51751号公報
特許文献 4:特開 2004-104194号公報
特許文献 5 :特開 2004-173249号公報
特許文献 6:特開平 3 - 276923号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上記事情に鑑みてなされたもので、高効率であるとともに広い出力制御 可変幅を得ることのできる送信装置及び無線通信装置を提供することを目的とする。 課題を解決するための手段
[0012] 本発明の送信装置は、入力変調信号の同相成分及び直交成分を入力して直交変 調を行う直交変調手段と、前記直交変調手段の出力を増幅するもので、ゲイン制御 信号に基づ!、て利得が制御される可変利得増幅手段と、前記可変利得増幅手段の 出力の電力増幅を行う電力増幅手段とを備え、前記電力増幅手段は、入出力電力 特性における線形動作領域を用いて電力増幅を行う線形モードと、前記入出力電力 特性における飽和動作領域を用いて電力増幅を行う飽和モードを有し、送信出力電 力が所定値以上の場合に、前記可変利得増幅手段の出力レベルを調整して前記電 力増幅手段を飽和モードで動作させ、前記電力増幅手段の出力制御用入力端に前 記入力変調信号の振幅成分に基づく振幅変調された送信出力制御信号を入力して 極座標変調を行い、前記送信出力電力が所定値未満の場合に、前記可変利得増 幅手段の出力レベルを調整して前記電力増幅手段を線形モードで動作させ、前記 出力制御用入力端に前記送信出力電力に応じた所定レベルの送信出力制御信号 を入力して線形増幅を行うものである。
[0013] この構成により、送信出力電力が所定値以上では高効率な極座標変調を行い、こ れよりも小さい送信出力電力では線形増幅を行うことができ、これら 2種類の動作によ つて出力制御可変幅を広くできる。したがって、極座標変調における振幅変調と送信 電力制御とを分離して制御することが可能であり、極座標変調方式におけるダイナミ ックレンジ不足を解消でき、高効率であるとともに広い出力制御可変幅を得ることが 可能となる。
[0014] また、本発明の一態様として、上記の送信装置であって、前記電力増幅手段は、送 信出力電力が最大出力レベルまたはその近傍である場合に前記極座標変調を行い 、この送信出力電力よりも小さい場合に前記線形増幅を行うものも含まれる。
[0015] この構成により、送信出力電力が最大出力レベル付近では高効率な極座標変調を 行い、これより小さい送信出力電力では線形増幅を行うことによって、最大出カレべ ル付近において極座標変調による高効率な増幅が可能であるとともに、出力レベル 力 S小さい場合は線形増幅によって広範囲な出力レベルにおいて送信出力制御が可 能である。このため、例えば、電力増幅手段における利得可変幅を超えるような広い 範囲での送信電力制御も容易に可能である。
[0016] また、本発明の一態様として、上記の送信装置であって、前記電力増幅手段は、前 記出力制御用入力端として用いられる電源端子を有し、前記所定レベルの信号また は前記入力変調信号の振幅成分に基づく振幅変調された信号の電流容量を増加さ せ、前記電源端子に対し前記送信出力制御信号として電源供給を行う電源ドライバ を備えるものも含まれる。
[0017] この構成により、電源ドライバによって入力変調信号の振幅成分に基づく振幅変調 された信号の電流容量を強化し、電力増幅手段の電源端子に送信出力制御信号と して供給することによって、送信出力電力が所定値以上の場合に高効率な極座標変 調を行うことが可能である。
[0018] また、本発明の一態様として、上記の送信装置であって、前記電力増幅手段は、電 源端子と、前記出力制御用入力端として用いられる増幅回路のバイアス端子とを有 し、前記電源端子には固定電源を入力し、前記バイアス端子に前記送信出力制御 信号を入力するものも含まれる。
[0019] この構成により、電力増幅手段の電源端子には固定電源を入力し、入力変調信号 の振幅成分に基づく振幅変調された信号を送信出力制御信号としてバイアス端子に 入力することによって、送信出力電力が所定値以上の場合に高効率な極座標変調 を行うことが可能である。また、この構成では、電力増幅手段への電源を振幅変調す る場合に比べて、電流容量を強化するための電源ドライバが不要となり、装置構成を 簡易化できる。
[0020] また、本発明の一態様として、上記の送信装置であって、前記送信出力制御信号 を入力する送信出力制御信号入力部にディジタル信号をアナログ信号に変換する D Aコンバータを備え、この DAコンバータは、動作クロックを変更可能であり、前記電 力増幅手段にて極座標変調を行うときのみ前記線形増幅を行うときより高い動作クロ ックで動作させる動作クロック切替機能を有するものも含まれる。
[0021] この構成により、送信出力制御信号入力部の DAコンバータを、電力増幅手段にて 極座標変調を行うときのみ高 、動作クロックで動作させることによって、極座標変調 動作時のみ動作電流を増加させて適切な振幅変調を可能とし、線形増幅動作時に は動作電流を低減することができ、全体の消費電力を削減できる。
[0022] また、本発明の一態様として、上記の送信装置であって、前記電源ドライバの入力 部に波形整形用のオペアンプを有し、このオペアンプは、動作電流を変更可能であ り、前記電力増幅手段にて極座標変調を行うときのみ前記線形増幅を行うときより動 作電流を増加させる動作電流切替機能を有するものも含まれる。
[0023] この構成により、電源ドライバの入力部のオペアンプを、電力増幅手段にて極座標 変調を行うときのみ動作電流を増加させることによって、極座標変調動作時には大き な動作電流で適切な振幅変調を可能とし、線形増幅動作時には動作電流を低減す ることができ、全体の消費電力を削減できる。
[0024] また、本発明の一態様として、上記の送信装置であって、前記電源ドライバとしてリ ユアレギユレータを用いるものも含まれる。
また、本発明の一態様として、上記の送信装置であって、前記電源ドライバとしてス イツチングレギユレータを用いるものも含まれる。
[0025] また、本発明の一態様として、上記の送信装置であって、前記電源ドライバが、前 記送信出力制御信号を段階的に異なる複数の電圧レベルでスライスする振幅スライ ス手段と、電源電圧を段階的に値の異なる複数の電圧に変換する複数のスィッチン グレギユレータと、前記複数のスイッチングレギユレータの出力電圧の何れか一つを 選択するスィッチ群とを有して構成されるものも含まれる。
[0026] また、本発明の一態様として、上記の送信装置であって、前記電力増幅手段の出 力を復調する復調部と、前記復調部より得られる復調信号の情報に基づいて、前記 電力増幅手段にて極座標変調を行うときの振幅変調のタイミングを調整する制御部 とを備えるものも含まれる。
[0027] この構成により、電力増幅手段の出力を復調して得られた情報 (例えば、 EVM (ェ ラーべ外ル振幅 (変調精度を示す値))など)に基づいて、極座標変調時の振幅情 報と位相情報のタイミング調整が可能となり、送信装置の出力の歪を低減することが 可能となる。
[0028] また、本発明は、上記いずれかの送信装置を備えた無線通信装置を提供する。こ のような構成の無線通信装置では、大きな送信出力電力での高効率な増幅が可能 であるとともに、幅広いレベルにおいて送信電力制御が可能であり、携帯電話装置な どの小型で移動型の無線通信装置などに適用した場合により効果的である。
発明の効果
[0029] 本発明によれば、高効率であるとともに広い出力制御可変幅を得ることが可能な送 信装置及び無線通信装置を提供できる。
図面の簡単な説明
[0030] [図 1]本発明の第 1の実施形態に係る送信装置の構成を示すブロック図
[図 2]欧州携帯電話規格である 900MHz帯 EGPRS方式における送信電力制御規 格を示す図
[図 3]本実施形態における大電力増幅器の入出力特性を示す図
[図 4]本実施形態における大電力増幅器の電源電圧対電力出力レベル特性図
[図 5]本発明の第 2の実施形態に係る送信装置の構成を示すブロック図
[図 6]本発明の第 3の実施形態に係る送信装置の構成を示すブロック図
[図 7]本発明の第 4の実施形態に係る送信装置の構成を示すブロック図
[図 8]本発明の第 5の実施形態に係る無線通信装置の構成を示すブロック図
[図 9]本発明の第 6の実施形態に係る無線通信装置の構成を示すブロック図 圆 10]本発明の第 7の実施形態に係る送信装置の構成を示すブロック図 [図1—
〇 11]従来例の出力可変送信装置の構成を示すブロック図
符号の説明
40, 50, 60, 200 送信部
11 線形変調器
12, 62 大電力増幅器
13, 41, 51, 61, 201 振幅変調部
14, 15, 21 固定クロック入力 DAコンバータ(DAC)
16, 17, 22, 76, 77 ローノ スフィルタ(LPF)
18 直交変調器
19 中電力増幅器
20 局部発振器
23, 52 高速オペアンプ
24, 53, 203 電源ドライバ
25, 63 電源端子
30, 80 制御部
31 I入力端子
32 Q入力端子
33 R入力端子
34, 93 ゲイン制御端子
35 出力端子
36 クロック切替端子
37 電流切替端子
42 可変クロック入力 DAコンバータ
64 バイアス端子
65 固定電源
70 受信部
71 バンドパスフィルタ(BPF) 72 低雑音増幅器
73 直交復調器
74, 75 ベースバンドアンプ
78, 79 ADコンバータ(ADC)
81 アンテナスィッチ
82 アンテナ
91 I出力端子
92 Q出力端子
204 振幅スライス手段
205, 206 スィッチ
207 リニアレギユレータ
208, 209 スイッチングレギユレータ
210 電圧源
300 モード選択部
301 送信出力制御信号
302 振幅算出部
発明を実施するための最良の形態
[0032] 本実施形態では、送信装置を含む無線通信装置の一例として、携帯電話装置に 適用した場合の構成例を示す。
[0033] (第 1の実施形態)
図 1は本発明の第 1の実施形態に係る送信装置の構成を示すブロック図である。第 1の実施形態の送信装置を構成する送信部 10は、線形変調器 11と、この線形変調 器 11より出力される送信信号の電力増幅を行う大電力増幅器 12と、この大電力増幅 器 12に供給する電源を生成する振幅変調部 13とを有して構成される。
[0034] 線形変調器 11は、固定周波数の動作クロックよりディジタル アナログ変換を行う固 定クロック入力 DAコンバータ(DAC) 14, 15と、ローパスフィルタ(LPF) 16, 17と、 ローパスフィルタ 16, 17の出力を局部発振器 20の出力周波数にて直交変調して RF 帯域への周波数変換を行う直交変調器 (MOD) 18と、直交変調器 18の出力の増幅 を行う中電力増幅器 19とを有して構成される。
[0035] 振幅変調部 13は、固定クロック入力 DAコンバータ 21と、ローパスフィルタ 22と、入 力部に波形整形用の高速オペアンプ (OPAMP) 23を備える電源ドライバ 24とを有 して構成される。上記固定クロック入力 DAコンバータ 21及びローパスフィルタ 22は、 後述する送信出力制御信号を入力する送信出力制御信号入力部となる。
[0036] 送信部 10は、同相成分入力端子である I入力端子 31と、直交成分入力端子である Q入力端子 32と、制御目標の送信出力電力を指示するための送信出力制御信号を 入力する R入力端子 33と、中電力増幅器 19の増幅利得を制御するためのゲイン制 御信号を入力するゲイン制御端子 34と、電力増幅された送信信号を出力する出力 端子 35とを有している。制御部 30は、これらの端子と接続され、送信変調信号の出 力、各種制御信号の出力等を行い、無線通信動作を制御する。制御部 30は、 I, Q 信号による入力変調信号の振幅成分を算出する振幅算出部 302と、動作モードを選 択するために、一定レベルの送信出力制御信号 301と振幅算出部 302により算出さ れた入力変調信号の振幅成分とのいずれかを選択するモード選択部 300とを備える
[0037] この送信部 10において、送信すべきベースバンド帯域の直交変調ディジタル信号 のうち、 I入力端子 31には同相包絡線成分 (I信号)が、 Q入力端子 32には直交包絡 線成分 (Q信号)がそれぞれ入力される。 I入力端子 31に入力された同相成分の I信 号は、 DAコンバータ 14によりアナログ電圧に変換され、ローパスフィルタ 16により不 要な高調波成分を除去された後、直交変調器 18に入力される。また、 Q入力端子 32 に入力された直交成分の Q信号は、同様に DAコンバータ 15によりアナログ電圧に 変換され、ローパスフィルタ 17により不要な高調波成分を除去された後、直交変調器 18に入力される。
[0038] 直交変調器 18は、直交変調手段の一例に相当するもので、入力された I, Q信号 によって局部発振器 20から供給される高周波信号を直交変調することで、 I, Q信号 から位相変調された RF帯域の高周波信号を生成して出力する。中電力増幅器 19は 、可変利得増幅手段の一例に相当するもので、ゲイン制御端子 34より入力されるゲ イン制御信号のレベルに応じて所定利得で直交変調器 18の出力信号を増幅する。 この中電力増幅器 19の出力が線形変調器 11の出力となり、大電力増幅器 12に送 信用変調信号として入力される。
[0039] R入力端子 33には、制御部 30より送信出力制御用のディジタル信号が入力される 。この R入力端子 33に入力された送信出力制御信号は、 DAコンバータ 21によりァ ナログ電圧に変換され、ローパスフィルタ 22により不要な高調波成分を除去された後 、電源ドライバ 24によって電流容量が増加されて強化される。この電源ドライバ 24の 出力が振幅変調部 13の出力となり、大電力増幅器 12に対し電圧変化可能な電源と して供給される。
[0040] 大電力増幅器 12は、電力増幅手段の一例に相当するもので、例えば図示するよう に複数段の増幅回路力もなり、出力制御用入力端となる電源端子 25の入力レベル に応じて出力が制御される電力増幅器である。大電力増幅器 12は、線形変調器 11 から出力された送信用変調信号を、後述する線形モードでの線形増幅、または飽和 モードで振幅変調 (極座標変調)することで電力増幅を行 、、送信信号として出力端 子 35より出力する。
[0041] 本実施形態では、送信出力電力が所定値未満の低出力の場合、例えば最大送信 電力よりも小さい出力で使用する場合には、モード選択部 300により R入力端子 33 に一定レベルの送信出力制御信号 301を選択して入力し、線形変調器 11及び大電 力増幅器 12を線形モードで動作させることで、 I, Q信号による入力変調信号の振幅 成分のダイナミックレンジと無関係に送信電力制御を行う。一方、送信出力電力が所 定値以上の高出力の場合、例えば最大送信電力近辺(例えば最大送信電力より 2 一 4dB以内、あるいは 6dB以内など)で使用する場合には、大電力増幅器 12を飽 和モードで動作させ、モード選択部 300により R入力端子 33に振幅算出部 302によ り算出された I, Q信号による入力変調信号の振幅成分を選択して入力し、大電力増 幅器 12において極座標変調を行う。すなわち、本実施形態の送信部 10は、直交変 調後に線形増幅を行う線形変調器 11と、通常の線形増幅または極座標変調を用い た飽和状態での増幅を行う大電力増幅器 12との二段構成の増幅手段を備えて構成 される。これらの増幅手段を制御部 30からの制御信号によって制御する。
[0042] 次に、上記のように構成された送信部 10の動作を詳細に説明する。ここでは、欧州 携帯電話規格である 900MHz帯 EGPRS方式を例に挙げて説明する。
[0043] 図 2は欧州携帯電話規格である 900MHz帯 EGPRS方式における送信電力制御 規格を示す図である。まず、この図 2に示す各電力制御レベルにおける電力制御動 作について説明する。 900MHz帯 EGPRS方式では、最大送信電力の規定の中で ClassE2と呼ばれるものは、電力制御レベル 8— 19まで 2dB間隔で可変する必要が ある。無線通信装置の端末 (移動局)は、送信を開始する前に基地局からの指示を 考慮して、ベースバンド制御部がその電力制御レベルの制御値を 12段階で送信部 に通知する。なお、図 2の例では、図 1に示した送信部の出力端子 35からアンテナ端 子までの間においてアンテナスィッチ等の損失が ldBあると仮定している。
[0044] 図 2における電力制御レベル 8 ( + 28dBm)からレベル 10 ( + 24dBm)までは、ゲ イン制御端子 34より入力するゲイン制御信号によって中電力増幅器 19の出カレべ ルを + 5dBmに固定し、大電力増幅器 12の入力レベルを飽和動作領域に保つこと で、大電力増幅器 12を飽和モード (極座標変調方式)で動作させる。このとき、 R入 力端子 33には前記電力制御レベルに応じてシフトさせたレベル範囲で変調信号の 振幅成分の電圧値を入力して、電源ドライバ 24を介して大電力増幅器 12へ電源供 給し、大電力増幅器 12の電源端子 25の電圧(電源電圧 VDD)に対し振幅変調をか けることで、高効率の極座標変調を行う。
[0045] また、上記より低い電力制御レベル 11 ( + 22dBm)では、 R入力端子 33に所定の 制御電圧値を入力して大電力増幅器 12の電源端子 25の電源電圧 VDDを 0. 99V に固定するとともに、ゲイン制御端子 34より入力するゲイン制御信号によって中電力 増幅器 19の出力レベルを 4dBmに減少させることで、大電力増幅器 12を線形モー ド(直交変調方式)で動作させる。このように、電力制御レベル l l ( + 22dBm)カもレ ベル 19 ( + 6dBm)までは、ゲイン制御端子 34より入力するゲイン制御信号によって 中電力増幅器 19の出力レベル、すなわち大電力増幅器 12の入力レベルを 4dBm とし、大電力増幅器 12の入力レベルを線形動作領域に保つことで、大電力増幅器 1 2を線形モードで動作させる。このとき、 R入力端子 33には前記電力制御レベルに応 じた制御電圧値を入力し、電力制御レベルに応じて電源端子 25の電源電圧 VDDを 可変することで、送信電力制御を行う。 [0046] 以下、図 3及び図 4を参照して大電力増幅器 12における線形モード及び飽和モー ドの動作について説明する。図 3は電源端子 25に印加される電源電圧 VDDをパラメ ータとした大電力増幅器 12の入出力特性 (Pin— Pout特性)を示す図、図 4は大電力 増幅器 12の電力入力レベルを + 5dBm固定とした場合における電源電圧 VDD対 出力電力 Poutの特性図である。
[0047] 図 3において、複数の曲線は、それぞれ異なる電源電圧 VDDに対する大電力増 幅器 12の入出力特性 (Pin-Pout特性)を示すものである。図 3のように、各々の電 源電圧 VDDのいずれに対しても、入力電力 Pinが小さい場合は、入力電力 Pinが増 加するにつれて出力電力 Poutは線形に増加するが(線形動作領域)、入力電力 Pin がある値以上の場合では、各々の電源電圧 VDDに応じた出力電力 Poにおいて飽 和する(飽和動作領域)。ここで、この飽和出力電力 Po (W)は、電源電圧 VDDの 2 乗に比例する。大電力増幅器 12が線形モードで動作するか、若しくは飽和モードで 動作するかは、大電力増幅器 12の入力レベル、すなわち、中電力増幅器 19の出力 レベルによって決定される。
[0048] 図 3の入出力特性において、例えば、大電力増幅器 12の入力レベルを + 5dBmに すると、大電力増幅器 12は飽和動作領域で動作する。このとき、 R入力端子 33には 電力制御レベルに応じてシフトさせたレベル範囲で変調信号の振幅成分の電圧値を 入力することによって、電源端子 25の電源電圧 VDDに対し振幅変調をかけて極座 標変調を行い、送信電力を制御しつつ高効率の電力増幅を行う。
[0049] この場合、例えば、電圧制御レベル 8では、大電力増幅器 12の入力レベルを + 5d Bmに固定し、電源端子 25の電源電圧 VDDを 0. 31V— 1. 96Vの範囲で変化させ て振幅変調をかけると、大電力増幅器 12の出力レベルとして約 + 15dBm— + 31d Bmに変化する変調増幅信号が得られる。このように大電力増幅器 12を飽和動作領 域で動作させて極座標変調を行うことで、入力変調信号を高効率で増幅することが できる。この飽和モードにおける電源電圧 VDDの制御範囲は、電圧制御レベル 8で は 0. 31V— 1. 96V、電圧制御レベル 9では 0. 25V— 1. 56V、レベル 10では 0. 2 0V— 1. 24Vとなり、それぞれ変調信号の振幅ダイナミックレンジ (約 16dB)とほぼ等 しい。 [0050] 一方、図 3の入出力特性において、例えば、大電力増幅器 12の入力レベルを 4d Bmにすると、大電力増幅器 12は線形動作領域で動作する。このとき、例えば、電力 制御レベル 11では、電源端子 25の電源電圧 VDDを 0. 99Vに固定し、直交変調器 18及び中電力増幅器 19を経た直交変調信号を入力すると、大電力増幅器 12から 平均出力レベルが約 22dBmの増幅信号が得られる。このように大電力増幅器 12を 線形動作させ、電力制御レベルに応じて電源端子 25の電源電圧 VDDを可変するこ とで、変調信号の振幅ダイナミックレンジ (約 16dB)と無関係に送信電力制御を行う ことができる。
[0051] なお、上記の説明では、線形モードで動作させる場合の送信電力制御を R入力端 子 33より入力する送信出力制御信号で行うものとしたが、ゲイン制御端子 34より入 力するゲイン制御信号を送信出力制御信号として行ってもよい。
[0052] また、図 3及び図 4の入出力特性を持つ大電力増幅器は、利得可変幅が約 20dB しかなぐ EGPRS方式の変調信号の振幅ダイナミックレンジが約 16dBであることか ら、最大送信電力から 4dB低 、レベルで飽和モードと線形モードの切替を行うように したが、これに限るものではない。この最大送信電力 4dBという値は、大電力増幅 器の利得可変幅が大きい場合は 4dB以上としたり、小さい場合は 4dB以下としてもよ い。
[0053] また、図 1では大電力増幅器の 3段全ての電源が一点に接続されており図 3に示し たように線形領域で電源電圧に応じて小信号利得が変化する場合の例を示したが、 最終段または最終 2段の電源電圧のみを変化させる場合にお ヽては、電源電圧が 変化した場合に小信号利得が変化しない。このような場合においては、線形モードに おける利得制御は中電力増幅器の出力を制御することで行ってもよい。
[0054] このように、第 1の実施形態では、送信部の高周波電力増幅器において、最も消費 電力の大き ヽ最大出力付近で高効率な極座標変調を行 ヽ、これより低い出力レベル では線形増幅を行うことにより、出力制御可変幅を広くできる。上記例のように、大電 力増幅器における利得可変幅を超えるような広 、範囲での送信電力制御も容易に 可能である。したがって、最大送信電力付近で使用するときのみ極座標変調を行うこ とにより、極座標変調と送信電力制御とを分離して行うことができ、極座標変調方式 におけるダイナミックレンジ不足を解消でき、広範囲な出力レベルをカバーすることが できる。
[0055] (第 2の実施形態)
図 5は本発明の第 2の実施形態に係る送信装置の構成を示すブロック図である。第 2の実施形態の送信部 40は、第 1の実施形態の構成と一部が異なり、振幅変調部の 構成を変更してクロック切替端子 36を設け、 DAコンバータの動作クロックの変更によ つて動作電流を制御可能としたものである。
[0056] 振幅変調部 41は、クロック切替端子 36からの切替信号により動作クロックを変更可 能な可変クロック入力 DAコンバータ (DAC) 42を送信出力制御信号入力部に備え ている。その他の構成は第 1の実施形態と同様であり、同様の構成要素には同一符 号を付して説明を省略する。
[0057] 可変クロック入力 DAコンバータ 42は、動作クロック切替機能を有し、制御部 30より クロック切替端子 36への切替信号の入力に応じて動作クロックを変更し、この動作ク ロックの周波数に応じて動作電流を変更できるように構成される。
[0058] 一般に、送信電力制御速度は、変調信号の振幅変化速度に対して遅 ヽため、 DA コンバータ 42は、線形モードで直交変調及び線形増幅を行うときには高い動作クロ ックは必要ない。このため、極座標変調を行うときのみ DAコンバータ 42を高い動作ク ロックで動作させればよい。したがって、大電力増幅器 12を飽和モードで動作させて 極座標変調を行うときには、可変クロック入力 DAコンバータ 42の動作電流を増加す るとともに動作クロックを上昇させる。一方、大電力増幅器 12を線形モードで動作さ せて直交変調及び線形増幅を行うときには、可変クロック入力 DAコンバータ 42の動 作電流を減少させるとともに動作クロックを低下させる。
[0059] このように、第 2の実施形態によれば、極座標変調を行うときのみ、可変クロック入力 DAコンバータの動作クロックを高くして動作電流を増加することにより、第 1の実施形 態の効果に加え、線形モード動作時の動作電流を低減することができ、全体の消費 電力を削減できる。
[0060] (第 3の実施形態)
図 6は本発明の第 3の実施形態に係る送信装置の構成を示すブロック図である。第 3の実施形態の送信部 50は、第 2の実施形態の構成と一部が異なり、振幅変調部の 構成を変更して電流切替端子 37を設け、電源ドライバの高速オペアンプの動作電 流を制御可能としたものである。
[0061] 振幅変調部 51は、電流切替端子 37からの切替信号により動作電流を変更可能な 高速オペアンプ (OPAMP) 52を入力部に備える電源ドライバ 53を有して構成される 。その他の構成は第 1及び第 2の実施形態と同様であり、同様の構成要素には同一 符号を付して説明を省略する。
[0062] 高速オペアンプ 52は、動作電流切替機能を有し、制御部 30より電流切替端子 37 への切替信号の入力に応じて動作電流を可変できるように構成される。
[0063] 一般に、送信電力制御速度は、変調信号の振幅変化速度に対して遅いため、電 源ドライバ 53入力段の波形整形用の高速オペアンプ 52は、線形モードで直交変調 及び線形増幅を行うときには大きな動作電流は必要ない。このため、極座標変調を 行うときのみ高速オペアンプ 52を大きな動作電流で動作させればよい。したがって、 大電力増幅器 12を飽和モードで動作させて極座標変調を行うときには、高速オペァ ンプ 52の動作電流を増加し、大電力増幅器 12を線形モードで動作させて直交変調 及び線形増幅を行うときには、高速オペアンプ 52の動作電流を減少させる。
[0064] このように、第 3の実施形態によれば、極座標変調を行うときのみ、高速オペアンプ の動作電流を増加することにより、第 2の実施形態よりも更に、線形モード動作時の 動作電流を低減することができ、全体の消費電力を削減できる。
[0065] (第 4の実施形態)
図 7は本発明の第 4の実施形態に係る送信装置の構成を示すブロック図である。第 4の実施形態の送信部 60は、第 2の実施形態の構成と一部が異なり、振幅変調部及 び大電力増幅器の構成を変更して大電力増幅器の出力制御を電源電圧の代わりに バイアス調整により行うものである。
[0066] 振幅変調部 61は、可変クロック入力 DAコンバータ 42とローパスフィルタ 22とを有し て構成される。大電力増幅器 62は、固定電源 65からの電源電圧を入力する電源端 子 63と、振幅変調部 61から出力される送信出力制御信号 (利得制御信号)を入力す るバイアス端子 64とを有して構成される。本実施形態では、大電力増幅器 62におけ るバイアス端子 64が出力制御用入力端となる。その他の構成は第 1及び第 2の実施 形態と同様であり、同様の構成要素には同一符号を付して説明を省略する。
[0067] この大電力増幅器 62において、増幅素子のドレインまたはコレクタが電源端子 63と なり、ゲートまたはベースがバイアス端子 64となる。この構成では、極座標変調を行う ときの送信電力制御をバイアス端子 64へ入力する利得制御信号によって行うため、 電源端子 63へ入力する電源によって直接送信電力制御を行う場合と比較して、振 幅変調部 61の内部に電源電流容量を強化するための電源ドライバが不要となる。
[0068] 大電力増幅器 62は、線形変調器 11からの入力変調信号を増幅する際、電源端子 63に固定電源 65より固定された電源電圧が供給され、バイアス端子 64に振幅変調 部 61からの変調信号または固定レベルによる利得制御信号が入力されて、出カレ ベルが調整される。
[0069] なお、上記の例では、振幅変調部 61入力段の DAコンバータ 42はクロック切替端 子 36からの切替信号により動作クロック及び動作電流を可変できるようにしたが、第 1 の実施形態と同様に固定クロック入力 DAコンバータ 21を設け、固定の動作クロック で動作させる構成としてもょ 、。
[0070] このように、第 4の実施形態によれば、送信電力制御を大電力増幅器のバイアス調 整により行う構成とすることにより、振幅変調部において電源電流容量を強化するた めの電源ドライバを不要にでき、第 1一第 3の実施形態よりも更に回路を簡易化でき る。
[0071] (第 5の実施形態)
図 8は本発明の第 5の実施形態に係る無線通信装置の構成を示すブロック図であ る。第 5の実施形態の無線通信装置は、第 3の実施形態と同様の送信部 50と、受信 部 70と、制御部 80と、アンテナスィッチ 81と、アンテナ 82とを有して構成される。
[0072] 受信部 70は、復調部を含んで構成され、バンドパスフィルタ(BPF) 71と、バンドパ スフィルタ 71の出力レベルを調整する低雑音増幅器 72と、低雑音増幅器 72の出力 を局部発振器 20の高周波信号を用いて直交復調してベースバンド帯域への周波数 変換を行う直交復調器 (DEM) 73と、直交復調器 73の出力の同相成分及び直交成 分をそれぞれ増幅するベースバンドアンプ(BBAMP) 74, 75と、ローパスフィルタ 7 6, 77と、アナログ ディジタル変換を行う ADコンバータ 78, 79とを備えている。
[0073] この受信部 70は、同相成分出力端子である I出力端子 91と、直交成分出力端子で ある Q出力端子 92と、低雑音増幅器 72の増幅利得を制御するためのゲイン制御信 号を入力するゲイン制御端子 93とを有して 、る。
[0074] 制御部 80は、送信部 50の I入力端子 31、 Q入力端子 32、 R入力端子 33、ゲイン制 御端子 34、クロック切替端子 36、電流切替端子 37、及び受信部 70の I出力端子 91 、 Q出力端子 92、ゲイン制御端子 93と接続され、送信変調信号の出力、受信復調信 号の入力、各種制御信号の出力等を行い、無線通信動作を制御する。
[0075] この第 5の実施形態は、受信部 70によって送信部 50の出力のモニタを行い、復調 信号より得られる情報に基づ!/、て、極座標変調時の振幅情報と位相情報のタイミング 調整を行う構成となっている。このため、送受同時動作のない TDMA方式の場合で も送受同時動作できるような動作モードを用意しておく。
[0076] アンテナスィッチ 81を切り替えてアンテナ 82を受信部 70に接続し、送信部 50の出 力をアンテナスィッチ 81のアイソレーション特性 (通常 20dB程度)により減衰し、バン ドパスフィルタ 71に伝達する。バンドパスフィルタ 71では、送受同一周波数を用いる TDDシステムと送受別周波数を用いる FDDシステムとで減衰量に大きな差が出るが 、送信部 50からの出力が更に減衰される。低雑音増幅器 72では、ゲイン制御端子 9 3からのゲイン制御信号により利得が調整され、直交復調器 73が歪まな 、レベルま でバンドパスフィルタ 71の出力が減衰される。そして、直交復調器 73において、送信 部 50と同一の局部発振器 20より入力された高周波信号を用いて低雑音増幅器 72 の出力信号が直交復調され、ベースバンドアンプ 74, 75により、直交復調器 73の出 力信号の同相成分 (I信号)及び直交成分 (Q信号)がそれぞれ増幅される。この I, Q 信号はそれぞれローパスフィルタ 76, 77により不要な高調波成分を除去された後、 ADコンバータ 78, 79によりディジタル信号に変換されて出力される。
[0077] 制御部 80は、 I出力端子 91からの I信号及び Q出力端子 92からの Q信号より得られ る復調信号の情報に基づき、送信部 50において適切な出力特性が得られるように各 信号を制御する。例えば、 EVM (エラーベクトル振幅 (変調精度を示す値))が最小と なるように、 R入力端子 33に入力する送信出力制御信号と I入力端子 31、 Q入力端 子 32に入力する I, Q信号のタイミングを調整する。これにより、大電力増幅器 12に おいて極座標変調を行うときの振幅変調のタイミングを調整することができる。
[0078] なお、上記の例では、局部発振器 20は送受共通とした力 W— CDMA方式等の送 受別々で同一基準信号源を有する局部発振器が必要なシステムに適用する場合、 回路を共通とする必要はなぐ発振周波数を同一とできればよい。
[0079] このように、第 5の実施形態によれば、アンテナスィッチ 81を介して送信部 50の出 力を受信部 70に接続し、送信部 50の出力を復調することにより、得られた復調信号 の情報によって極座標変調時の振幅情報と位相情報のタイミング調整が可能となり、 第 3の実施形態と比較して、更に送信部における歪を少なくすることができる。
[0080] (第 6の実施形態)
図 9は本発明の第 6の実施形態に係る無線通信装置の構成を示すブロック図であ る。第 6の実施形態の無線通信装置は、第 4の実施形態と同様の送信部 60と、受信 部 70と、制御部 80と、アンテナスィッチ 81と、アンテナ 82とを有して構成される。すな わち、前述した第 5の実施形態における送信部を、第 4の実施形態のような大電力増 幅器の出力制御をバイアス調整により行う送信部 60に変更したものである。受信部 7 0及び制御部 80の構成及び動作は第 5の実施形態と同様であり、ここでは説明を省 略する。
[0081] この送信部 60では、極座標変調を行うときの送信電力制御をバイアス端子 64へ入 力する利得制御信号によって行うため、電源端子 63へ入力する電源によって直接送 信電力制御を行う場合と比較して、振幅変調部 61の内部に電源電流容量を強化す るための電源ドライバが不要となる。
[0082] なお、上記の例では、振幅変調部 61入力段の DAコンバータ 42はクロック切替端 子 36からの切替信号により動作クロック及び動作電流を可変できるようにしたが、第 1 の実施形態と同様に固定クロック入力 DAコンバータ 21を設け、固定の動作クロック で動作させる構成としてもょ 、。
[0083] このように、第 6の実施形態によれば、送信電力制御を大電力増幅器のバイアス調 整により行う構成とすることにより、振幅変調部において電源電流容量を強化するた めの電源ドライバを不要にでき、第 5の実施形態の効果に加えて、更に回路を簡易 化できる。
[0084] (第 7の実施形態)
図 10は本発明の第 7の実施形態に係る送信装置の構成を示すブロック図である。 第 7の実施形態の送信部 200は、第 1の実施形態の構成と一部が異なり、振幅変調 部 201の電源ドライバ 203の構成を変更したものである。電源ドライバ 203は、送信 出力制御信号を段階的に異なる複数の電圧レベルでスライスする振幅スライス手段 204と、リニアレギユレータ 207と、電圧源 210と、電圧源 210の電源電圧を段階的に 値の異なる複数の電圧に変換する複数のスイッチングレギユレータ 208、 209と、前 記複数のスイッチングレギユレータ 208、 209の出力電圧のいずれか一つを選択する スィッチ群 205、 206とを備えて構成されるものである。その他の構成は第 1の実施形 態と同様であり、同様の構成要素には同一符号を付して説明を省略する。
[0085] ローパスフィルタ 22の出力は 2分岐され、振幅スライス手段 204及びリニアレギユレ ータ 207にそれぞれ入力される。振幅スライス手段 204は、ローパスフィルタ 22の出 力を段階的に異なる複数の電圧レベルでスライスし、 DC— DCコンバータ等で構成さ れるスイッチングレギユレータ 208、 209は、電圧源 210の電源電圧を段階的に値の 異なる複数の電圧に変換する。リニアレギユレータ 207は、電圧源 210の出力とロー パスフィルタ 22の出力との差が損失となる力 ローノ スフィルタ 22の出力が低い場合 には、その出力より高ぐかつ最も近い出力電圧のスイッチングレギユレ一タをスイツ チ群 205、 206で選択することにより、損失を最小限に抑えることができる。
[0086] このように、第 7の実施形態によれば、電源ドライバとして複数のスイッチングレギュ レータとリニアレギユレ一タとを組み合わせたものを用いることで、第 1の実施形態より も更に極座標変調時の動作電流を低減することができ、全体の消費電力を削減でき る。
[0087] 以上説明したように、本実施形態によれば、送信電力制御と独立して最も消費電力 の大きい最大出力付近で高効率な極座標変調をかけることが可能である。また、最 大送信電力付近で使用するときのみ極座標変調を行うことにより、極座標変調方式 による高効率の出力電力増幅を行いながらも、電力増幅器の性能により制限される ダイナミックレンジ不足を解消でき、出力制御可変幅を広くすることができる。 [0088] 上述した実施形態では、欧州携帯電話規格である 900MHz帯 EGPRS方式の携 帯電話装置に適用した場合の例を示した力 これに限らず、 GSM方式や W— CDM A方式等の各種携帯電話装置、その他の無線端末装置、無線基地局装置、 IEEE8 02. l la、 802. l ib方式等の各種無線 LAN用の無線通信装置などの送信部にも 同様に適用可能である。
[0089] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 1月 27日出願の日本特許出願 (特願 2004-017955)、 2004年 12月 6日出願の日本特許出願(特願 2004-352464)、に基づくものであり、その 内容はここに参照として取り込まれる。
産業上の利用可能性
[0090] 本発明は、高効率であるとともに広い出力制御可変幅を得ることが可能な送信部を 提供できる効果を有し、出力を可変に制御可能な送信装置およびこの送信装置を用 V、た無線通信装置等に有用である。

Claims

請求の範囲
[1] 入力変調信号の同相成分及び直交成分を入力して直交変調を行う直交変調手段 と、
前記直交変調手段の出力を増幅するもので、ゲイン制御信号に基づいて利得が制 御される可変利得増幅手段と、
前記可変利得増幅手段の出力の電力増幅を行う電力増幅手段とを備え、 前記電力増幅手段は、入出力電力特性における線形動作領域を用いて電力増幅 を行う線形モードと、前記入出力電力特性における飽和動作領域を用いて電力増幅 を行う飽和モードを有し、
送信出力電力が所定値以上の場合に、前記可変利得増幅手段の出力レベルを調 整して前記電力増幅手段を飽和モードで動作させ、前記電力増幅手段の出力制御 用入力端に前記入力変調信号の振幅成分に基づく振幅変調された送信出力制御 信号を入力して極座標変調を行い、前記送信出力電力が所定値未満の場合に、前 記可変利得増幅手段の出力レベルを調整して前記電力増幅手段を線形モードで動 作させ、前記出力制御用入力端に前記送信出力電力に応じた所定レベルの送信出 力制御信号を入力して線形増幅を行う送信装置。
[2] 請求項 1に記載の送信装置であって、
前記電力増幅手段は、送信出力電力が最大出力レベルまたはその近傍である場 合に前記極座標変調を行い、この送信出力電力よりも小さい場合に前記線形増幅を 行う送信装置。
[3] 請求項 1または 2に記載の送信装置であって、
前記電力増幅手段は、前記出力制御用入力端として用いられる電源端子を有し、 前記所定レベルの信号または前記入力変調信号の振幅成分に基づく振幅変調さ れた信号の電流容量を増加させ、前記電源端子に対し前記送信出力制御信号とし て電源供給を行う電源ドライバを備える送信装置。
[4] 請求項 1または 2に記載の送信装置であって、
前記電力増幅手段は、電源端子と、前記出力制御用入力端として用いられる増幅 回路のバイアス端子とを有し、前記電源端子には固定電源を入力し、前記バイアス 端子に前記送信出力制御信号を入力する送信装置。
[5] 請求項 1一 4のいずれか一項に記載の送信装置であって、
前記送信出力制御信号を入力する送信出力制御信号入力部にディジタル信号を アナログ信号に変換する DAコンバータを備え、この DAコンバータは、動作クロックを 変更可能であり、前記電力増幅手段にて極座標変調を行うときのみ前記線形増幅を 行うときより高い動作クロックで動作させる動作クロック切替機能を有する送信装置。
[6] 請求項 3または 5に記載の送信装置であって、
前記電源ドライバの入力部に波形整形用のオペアンプを有し、このオペアンプは、 動作電流を変更可能であり、前記電力増幅手段にて極座標変調を行うときのみ前記 線形増幅を行うときより動作電流を増加させる動作電流切替機能を有する送信装置
[7] 請求項 3または 5に記載の送信装置であって、
前記電源ドライバが、リニアレギユレータであることを特徴とする送信装置。
[8] 請求項 3または 5に記載の送信装置であって、
前記電源ドライバが、スイッチングレギユレータであることを特徴とする送信装置。
[9] 請求項 3または 5に記載の送信装置であって、
前記電源ドライバが、前記送信出力制御信号を段階的に異なる複数の電圧レベル でスライスする振幅スライス手段と、電源電圧を段階的に値の異なる複数の電圧に変 換する複数のスイッチングレギユレータと、前記複数のスイッチングレギユレータの出 力電圧の何れか一つを選択するスィッチ群とを有して構成される送信装置。
[10] 請求項 1一 9のいずれか一項に記載の送信装置であって、
前記電力増幅手段の出力を復調する復調部と、
前記復調部より得られる復調信号の情報に基づいて、前記電力増幅手段にて極座 標変調を行うときの振幅変調のタイミングを調整する制御部とを備える送信装置。
[11] 請求項 1一 10のいずれか一項に記載の送信装置を備えた無線通信装置。
PCT/JP2005/000179 2004-01-27 2005-01-11 送信装置及び無線通信装置 WO2005071849A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/597,153 US7684514B2 (en) 2004-01-27 2005-01-11 Transmitter apparatus and wireless communication apparatus
EP05703418A EP1710918B1 (en) 2004-01-27 2005-01-11 Transmitter and wireless communication apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-017955 2004-01-27
JP2004017955 2004-01-27
JP2004352464A JP4199181B2 (ja) 2004-01-27 2004-12-06 送信装置及び無線通信装置
JP2004-352464 2004-12-06

Publications (1)

Publication Number Publication Date
WO2005071849A1 true WO2005071849A1 (ja) 2005-08-04

Family

ID=34810143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000179 WO2005071849A1 (ja) 2004-01-27 2005-01-11 送信装置及び無線通信装置

Country Status (4)

Country Link
US (1) US7684514B2 (ja)
EP (1) EP1710918B1 (ja)
JP (1) JP4199181B2 (ja)
WO (1) WO2005071849A1 (ja)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236197A1 (en) * 2006-04-10 2007-10-11 Vo Hai H Adaptive DC to DC converter system
US7764055B2 (en) * 2006-07-10 2010-07-27 Skyworks Solutions, Inc. Polar transmitter having a dynamically controlled voltage regulator and method for operating same
US8064855B2 (en) 2006-10-25 2011-11-22 Panasonic Corporation Transmission power controller
EP2091144B1 (en) * 2006-10-25 2017-12-06 Panasonic Intellectual Property Management Co., Ltd. Transmission method and transmission device
US8000663B2 (en) 2006-12-14 2011-08-16 Panasonic Corporation Mode shift calibration in power amplifiers
JP5131201B2 (ja) * 2007-01-24 2013-01-30 日本電気株式会社 電力増幅器
US7684767B2 (en) * 2007-02-26 2010-03-23 Broadcom Corporation Voice, data and RF integrated circuit with multiple modulation modes and methods for use therewith
JP4877087B2 (ja) * 2007-06-15 2012-02-15 日本電気株式会社 送信電力制御方法及び送信電力制御装置
WO2008156800A1 (en) * 2007-06-19 2008-12-24 Parkervision, Inc. Combiner-less multiple input single output (miso) amplification with blended control
US8451886B2 (en) * 2007-08-16 2013-05-28 St-Ericsson Sa Apparatus method and computer readable medium for a transmitter
KR100927650B1 (ko) 2007-08-29 2009-11-20 한국전자통신연구원 이동통신 단말기용 송신기 및 그것의 송신 방법
US8385465B2 (en) * 2008-03-29 2013-02-26 Qualcomm Incorporated Transmitter chain timing and transmit power control
JP2009273110A (ja) * 2008-04-10 2009-11-19 Panasonic Corp ポーラ変調送信装置及びポーラ変調送信方法
US8255009B2 (en) * 2008-04-25 2012-08-28 Apple Inc. Radio frequency communications circuitry with power supply voltage and gain control
US8654886B2 (en) * 2008-05-29 2014-02-18 Electronics & Telecommunications Research Institute Method and apparatus for transmitting/receiving broadcasting-communication data
US8854019B1 (en) 2008-09-25 2014-10-07 Rf Micro Devices, Inc. Hybrid DC/DC power converter with charge-pump and buck converter
US8331883B2 (en) * 2008-10-30 2012-12-11 Apple Inc. Electronic devices with calibrated radio frequency communications circuitry
CN101478815B (zh) * 2008-12-15 2010-10-13 华为技术有限公司 微波系统中的发射装置、发信功率控制方法及其控制装置
WO2010089971A1 (ja) * 2009-02-05 2010-08-12 日本電気株式会社 電力増幅器及び電力増幅方法
US9166471B1 (en) 2009-03-13 2015-10-20 Rf Micro Devices, Inc. 3D frequency dithering for DC-to-DC converters used in multi-mode cellular transmitters
US8315576B2 (en) 2009-05-05 2012-11-20 Rf Micro Devices, Inc. Capacitive compensation of cascaded directional couplers
US8165642B2 (en) * 2009-05-13 2012-04-24 Apple Inc. Electronic device with data-rate-dependent power amplifier bias
US8442153B2 (en) * 2009-07-02 2013-05-14 Panasonic Corporation Transmission circuit
US8509714B2 (en) * 2009-09-04 2013-08-13 Electronics And Telecommunications Research Institute Bias modulation apparatus, and apparatus and method for transmitting signal for wideband mobile communication using the same
EP2302788A1 (en) * 2009-09-29 2011-03-30 Alcatel-Lucent Deutschland AG Load management for improved envelope tracking performance
US8548398B2 (en) * 2010-02-01 2013-10-01 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
WO2011124116A1 (zh) * 2010-04-09 2011-10-13 华为终端有限公司 功率放大器的电压驱动装置、功率放大系统、射频功率放大器的供电设备和通信设备
US8538355B2 (en) 2010-04-19 2013-09-17 Rf Micro Devices, Inc. Quadrature power amplifier architecture
US8983410B2 (en) 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Configurable 2-wire/3-wire serial communications interface
US8831544B2 (en) 2010-04-20 2014-09-09 Rf Micro Devices, Inc. Dynamic device switching (DDS) of an in-phase RF PA stage and a quadrature-phase RF PA stage
US8983407B2 (en) 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Selectable PA bias temperature compensation circuitry
US9577590B2 (en) 2010-04-20 2017-02-21 Qorvo Us, Inc. Dual inductive element charge pump buck and buck power supplies
US9214865B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Voltage compatible charge pump buck and buck power supplies
US8842399B2 (en) 2010-04-20 2014-09-23 Rf Micro Devices, Inc. ESD protection of an RF PA semiconductor die using a PA controller semiconductor die
US8892063B2 (en) 2010-04-20 2014-11-18 Rf Micro Devices, Inc. Linear mode and non-linear mode quadrature PA circuitry
US8913967B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Feedback based buck timing of a direct current (DC)-DC converter
US9362825B2 (en) 2010-04-20 2016-06-07 Rf Micro Devices, Inc. Look-up table based configuration of a DC-DC converter
US9008597B2 (en) 2010-04-20 2015-04-14 Rf Micro Devices, Inc. Direct current (DC)-DC converter having a multi-stage output filter
US9553550B2 (en) 2010-04-20 2017-01-24 Qorvo Us, Inc. Multiband RF switch ground isolation
US9214900B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Interference reduction between RF communications bands
US9077405B2 (en) 2010-04-20 2015-07-07 Rf Micro Devices, Inc. High efficiency path based power amplifier circuitry
US9048787B2 (en) 2010-04-20 2015-06-02 Rf Micro Devices, Inc. Combined RF detector and RF attenuator with concurrent outputs
US8942651B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. Cascaded converged power amplifier
US9030256B2 (en) 2010-04-20 2015-05-12 Rf Micro Devices, Inc. Overlay class F choke
US8947157B2 (en) 2010-04-20 2015-02-03 Rf Micro Devices, Inc. Voltage multiplier charge pump buck
US8989685B2 (en) 2010-04-20 2015-03-24 Rf Micro Devices, Inc. Look-up table based configuration of multi-mode multi-band radio frequency power amplifier circuitry
US9184701B2 (en) 2010-04-20 2015-11-10 Rf Micro Devices, Inc. Snubber for a direct current (DC)-DC converter
US8913971B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Selecting PA bias levels of RF PA circuitry during a multislot burst
US8958763B2 (en) 2010-04-20 2015-02-17 Rf Micro Devices, Inc. PA bias power supply undershoot compensation
US9900204B2 (en) 2010-04-20 2018-02-20 Qorvo Us, Inc. Multiple functional equivalence digital communications interface
US8942650B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. RF PA linearity requirements based converter operating mode selection
JP5742186B2 (ja) 2010-11-22 2015-07-01 富士通株式会社 増幅装置
DK2608415T3 (da) 2011-12-20 2014-11-10 Ericsson Telefon Ab L M Sender, transceiver, kommunikationsindretning, fremgangsmåde og computerprogram
US9065505B2 (en) 2012-01-31 2015-06-23 Rf Micro Devices, Inc. Optimal switching frequency for envelope tracking power supply
US9287829B2 (en) 2012-12-28 2016-03-15 Peregrine Semiconductor Corporation Control systems and methods for power amplifiers operating in envelope tracking mode
US11128261B2 (en) 2012-12-28 2021-09-21 Psemi Corporation Constant Vds1 bias control for stacked transistor configuration
US9716477B2 (en) 2012-12-28 2017-07-25 Peregrine Semiconductor Corporation Bias control for stacked transistor configuration
US9369161B1 (en) * 2014-08-12 2016-06-14 Sprint Communications Company L.P. Mitigation of radio-frequency interference at a remote radio head
US9837965B1 (en) 2016-09-16 2017-12-05 Peregrine Semiconductor Corporation Standby voltage condition for fast RF amplifier bias recovery
DE102016220349A1 (de) * 2016-10-18 2018-04-19 Trumpf Schweiz Ag Hochfrequenztreiberschaltung für eine akustooptische Komponente und Verfahren zum Betrieb einer HF-Treiberschaltung
US9960737B1 (en) 2017-03-06 2018-05-01 Psemi Corporation Stacked PA power control
JP6883659B2 (ja) * 2017-04-28 2021-06-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 測定装置及び測定方法
US10276371B2 (en) 2017-05-19 2019-04-30 Psemi Corporation Managed substrate effects for stabilized SOI FETs
KR102080110B1 (ko) * 2018-03-28 2020-02-24 한국과학기술원 포락선 추적을 수행하는 통신 장치
US10873488B2 (en) * 2019-01-22 2020-12-22 Qualcomm Incorporated Intra-packet rate adaptation for high capacity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534732A (ja) * 1990-11-30 1993-02-12 Tonen Corp 電解質薄膜
JP2002033672A (ja) * 2000-06-06 2002-01-31 Lucent Technol Inc 無線デバイス用送信器と送信器内のパワー増幅器の効率を改善する方法と装置
JP2003023468A (ja) * 2001-07-10 2003-01-24 Hitachi Ltd ディジタル変調器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654878B2 (ja) 1990-03-27 1994-07-20 日本電信電話株式会社 出力可変送信装置
JP3044057B2 (ja) 1990-03-27 2000-05-22 日本電信電話株式会社 出力可変送信装置
US5432473A (en) * 1993-07-14 1995-07-11 Nokia Mobile Phones, Limited Dual mode amplifier with bias control
US6191653B1 (en) 1998-11-18 2001-02-20 Ericsson Inc. Circuit and method for linearizing amplitude modulation in a power amplifier
US6043707A (en) 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
US6567653B1 (en) * 2000-04-12 2003-05-20 Ericsson Inc. Dual-mode communications transmitter
US6975686B1 (en) * 2000-10-31 2005-12-13 Telefonaktiebolaget L.M. Ericsson IQ modulation systems and methods that use separate phase and amplitude signal paths
JP2003018026A (ja) 2001-06-29 2003-01-17 Taiyo Yuden Co Ltd 無線通信方法および装置
JP2003051751A (ja) 2001-08-07 2003-02-21 Hitachi Ltd 電子部品および無線通信機
JP3979237B2 (ja) 2002-09-05 2007-09-19 株式会社日立製作所 無線通信装置及びそれに使用する高周波集積回路
JP2004173249A (ja) 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd 送信機
US7072626B2 (en) * 2003-04-30 2006-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Polar modulation transmitter
JP3841416B2 (ja) * 2003-10-07 2006-11-01 松下電器産業株式会社 送信装置、送信出力制御方法、および無線通信装置
US7177370B2 (en) * 2003-12-17 2007-02-13 Triquint Semiconductor, Inc. Method and architecture for dual-mode linear and saturated power amplifier operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534732A (ja) * 1990-11-30 1993-02-12 Tonen Corp 電解質薄膜
JP2002033672A (ja) * 2000-06-06 2002-01-31 Lucent Technol Inc 無線デバイス用送信器と送信器内のパワー増幅器の効率を改善する方法と装置
JP2003023468A (ja) * 2001-07-10 2003-01-24 Hitachi Ltd ディジタル変調器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1710918A4 *

Also Published As

Publication number Publication date
EP1710918A1 (en) 2006-10-11
EP1710918A4 (en) 2009-05-06
US7684514B2 (en) 2010-03-23
JP2005244935A (ja) 2005-09-08
EP1710918B1 (en) 2012-05-23
US20070291873A1 (en) 2007-12-20
JP4199181B2 (ja) 2008-12-17

Similar Documents

Publication Publication Date Title
WO2005071849A1 (ja) 送信装置及び無線通信装置
US7496334B2 (en) Transmitter apparatus and wireless communication apparatus
KR100359600B1 (ko) 진폭 엔벨로프를 생성하기 위한 부하 제어를 갖는 증폭기시스템
US9107167B2 (en) Envelope tracking signal bandwidth control
US8081935B2 (en) Multiple-mode modulator to process baseband signals
JP4918366B2 (ja) 送受信器における電力消費を削減する、電力増幅器の制御
US7688156B2 (en) Polar modulation transmission circuit and communication device
EP1933455B1 (en) Method and system for optimizing transmit power of a power amplifier using a battery voltage (Vbat) monitor
KR20020081069A (ko) 고주파 증폭 회로 및 이것을 사용한 무선 통신 장치
US20040196921A1 (en) Adaptive broadband post-distortion receiver for digital radio communication system
US8417199B2 (en) Method and apparatus for improving efficiency in a power supply modulated system
JP2004048703A (ja) 増幅回路、送信装置、増幅方法、および送信方法
US7688157B2 (en) Selective envelope modulation enabling reduced current consumption
US7515648B2 (en) Transmitter and wireless communication apparatus using same
CN111740708A (zh) 一种基于发射机支路增益设置进行调节功率放大器多电平电源电压的系统及方法
CN100586031C (zh) 发送装置及无线通信装置
KR100927650B1 (ko) 이동통신 단말기용 송신기 및 그것의 송신 방법
IL155261A (en) Adjustment of bias current in a first integrated circuit based on a signal gain of a second integrated circuit
JP2010130207A (ja) 無線通信装置と方法
Groe A multimode cellular radio
JP4903789B2 (ja) 送信装置及び変調方式切替方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10597153

Country of ref document: US

Ref document number: 2005703418

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580003297.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005703418

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10597153

Country of ref document: US