WO2005069384A1 - Light transmission/reception module and light transmission/reception device - Google Patents

Light transmission/reception module and light transmission/reception device Download PDF

Info

Publication number
WO2005069384A1
WO2005069384A1 PCT/JP2004/018131 JP2004018131W WO2005069384A1 WO 2005069384 A1 WO2005069384 A1 WO 2005069384A1 JP 2004018131 W JP2004018131 W JP 2004018131W WO 2005069384 A1 WO2005069384 A1 WO 2005069384A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
optical
metal plate
light
emitting element
Prior art date
Application number
PCT/JP2004/018131
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Nojima
Satoshi Furusawa
Toru Nishikawa
Hiroaki Asano
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/576,660 priority Critical patent/US20070086708A1/en
Publication of WO2005069384A1 publication Critical patent/WO2005069384A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies

Definitions

  • the present invention relates to an optical transmitting and receiving module and an optical transmitting and receiving device in which a light emitting element and a light receiving element are arranged in the same module and capable of performing bidirectional reception, and more particularly to a light transmitting and receiving element in a module.
  • the present invention relates to an optical transmitting / receiving module and an optical transmitting / receiving device that reduce electrical interference and have excellent high-frequency characteristics.
  • an optical communication system that performs data communication using an optical fiber called FTTH (ber To The Home) is also generally used for general subscriber communication that is not limited to a trunk communication system. It is becoming.
  • FTTH ber To The Home
  • an optical signal having a different wavelength in the upstream and downstream of one fiber for example, as the wavelength to be used, upstream 1. and downstream 1. Transmission method using near infrared light such as 5m) is adopted.
  • FIG. 10 is a plan view of the inside of the module, also showing the top surface force.
  • the optical transceiver module 100 includes a metal plate 101 provided inside the package 100A, and electrically connects the inside and the outside of the knockage 100A.
  • the first (outer) lead 102A through the eighth (outer) lead 102H is provided.
  • On a metal plate 101 a first substrate 103 and a second substrate 106 are provided separately and independently.
  • the light emitting element 104 is mounted on the first substrate 103, and the light receiving element 107 is mounted on the second substrate 106.
  • the light emitting element 104 is configured to emit light when a current flows from the upper surface (anode terminal) to the lower surface (force source terminal) of the element. That is, current flows from the first lead 102A to the lower surface of the light emitting element 104 through the first bonding wire 105A and the anode terminal electrode 104A of the light emitting element 104 on the first substrate 103. Through the second bonding wire 105B and the second lead 102B connected to a predetermined terminal (not shown) on the side, an external force of the package 100A also drives the light emitting element 104 by current.
  • the light receiving element 107 applies a voltage to the force source terminal and the anode terminal on the lower surface of the element, so that when an optical signal is received, a current flows from the force source terminal to the anode terminal.
  • the amount of current changes according to the light level. That is, the input terminal of an amplifier (not shown) outside the package 100 is connected to the third lead 102C, the third bonding wire 105C, and the force source terminal electrode 107A of the light receiving element 107 on the second substrate 106, thereby receiving the light receiving element 107A. Connected to the cathode terminal.
  • the anode terminal of the light receiving element 107 is connected to an unillustrated DC voltage outside the package 100A through the anode terminal electrode 107B, the fourth bonding wire 105D, and the fourth lead 102D of the light receiving element on the second substrate 106. Connected to the source. Therefore, by applying a voltage between the third lead 102C and the fourth lead 102D from outside of the knockout 100A, when receiving an optical signal from a communication partner, a light receiving current corresponding to the optical signal level is received. Can be obtained.
  • each of the first optical fiber 108A and the second optical fiber 108B is sandwiched by a wavelength filter (for example, an interference film filter) not shown. Are located.
  • the other end of the first optical fiber 108A (the left end in FIG. 10) is Although not shown, it is arranged in the light emitting portion of the light emitting element 104, and the other end of the second optical fiber 108B becomes an external optical interface (optical connector) of the package 100A.
  • the optical signal output from the light emitting element 104 propagates inside the optical fiber 108A to the right in FIG. 10 and after passing through the wavelength filter, and then propagates inside the optical fiber 108B in the same direction. Output to the outside of the optical transceiver module 100.
  • an optical signal to which the external force of the communication partner is also input via the optical fiber 108B is reflected by the wavelength filter and received by the light receiving section of the light receiving element 107 as an optical signal.
  • the optical transceiver module 100 described in Patent Document 1 includes a substrate on which the light emitting element 104 and the light receiving element 107 are mounted, and a first substrate 103 on which the light emitting element 104 is mounted and the light receiving element 107.
  • the structure is such that the electrical crosstalk can be reduced by separating the substrate into two parts, that is, the second substrate 106 and the second substrate 106.
  • the ground potential inside the package fluctuates at high frequency due to the inductance L-L.
  • High frequency characteristics are degraded by the parasitic inductance L on the bonding wire 105C side.
  • parasitic inductances L, L of the third and fourth bonding wires 105C, 105D, etc. are generated on the force side and the anode side of the light emitting element 107. For this reason,
  • the potential of the anode terminal of the light-emitting element 107 also changes with the high-frequency signal.
  • the change in the anode terminal potential of the light emitting element 107 due to the high frequency signal is transmitted from the anode terminal electrode 104A of the light emitting element 107 (see FIG. 10) to the metal plate 101 through the silicon substrate 103.
  • the first substrate 103 shown in FIG. 10 can be modeled as an equivalent circuit of a capacitor and a resistor as shown in FIG.
  • the metal plate 101 has a high frequency due to the parasitic inductance L of the fifth lead 102E as shown in FIG.
  • the fluctuation in the potential of the force source terminal of the light receiving element 107 directly changes the light receiving current. That is, as shown in FIG. 11, when a capacitor C is added to the force source terminal of the light receiving element 107 in the conventional optical transmitting and receiving module 100 (described in Patent Document 1) for the purpose of improving high-frequency characteristics in optical reception, as shown in FIG. Then, the electric crosstalk increases again.
  • the present invention has been made in view of the above circumstances, and is an optical transmission / reception module capable of reducing electric crosstalk between a light emitting element and a light receiving element and improving high frequency characteristics in optical reception. And an optical transmitting and receiving apparatus having the same.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-345475 (FIG. 5)
  • the present invention firstly provides a substantially box-shaped package having a transmission / reception room inside,
  • the semiconductor device is characterized by comprising a plurality of leads provided on the package for establishing electrical connection between each electrode of the light emitting element and the light receiving element and the outside of the package. Therefore, according to the above configuration, the respective substrates on which the light emitting element and the light receiving element are mounted are mounted on different metal plates, respectively, so that the parasitic capacitance can be reduced. Therefore, when the light-emitting element is driven by a high-frequency signal with a current, a part of the high-frequency signal causes a fluctuation in the potential of the terminal of the light-receiving element. (Specifically, for example, the anode terminal force of the light-emitting element 3.) Electric crosstalk can be effectively suppressed.
  • the present invention is characterized in that the package is formed of resin.
  • the mass production of the cage portion is facilitated by resin molding, so that the cost can be reduced.
  • the present invention is characterized in that a capacitor is provided between the second metal plate and the force source terminal of the light receiving element, for electrically connecting the two. .
  • the potential of the power source of the light receiving element is stabilized at a high frequency, thereby improving the high frequency characteristics. While improving, it is possible to suppress electric crosstalk between the anode terminal of the light emitting element and the force terminal of the light receiving element.
  • the present invention is characterized in that the first substrate on which the light-emitting element is mounted has a specific resistance of lk Q ⁇ cm or more.
  • the present invention is characterized in that at least one of the first and second metal plates is connected to a ground outside the package through one of the leads. I have.
  • the present invention provides, in a sixth aspect, a preamplifier mounted on the second metal plate, wherein a preamplifier is provided between an anode terminal of the light receiving element and an input terminal of the preamplifier, and an output of the bridge amplifier is provided.
  • the present invention is characterized in that a terminal is electrically connected to any one of the leads.
  • the amplification degree is increased by the preamplifier.
  • the package has a through-hole penetrating from a floor of the transmission / reception room to a bottom of the package.
  • At least one of the first and second metal plates is electrically connected to the lower surface of the package via a lower surface of the metal plate and a through hole.
  • the present invention is characterized in that the first and second metal plates have a shape of a crank portion or a curved line shape in which a boundary portion adjacent to and opposed to each other complements each other. ing.
  • the gap between the two metals does not have the metal, that is, it is a portion of only the resin and easily weakened in strength, but the portion of the resin alone is a straight ( Avoids (linear) shapes.
  • parts with low strength are formed like a zigzag shape to prevent them from being formed linearly long, dispersing the concentration of stress, and mounting parts in the cage or package. It is possible to effectively prevent breakage or the like from occurring.
  • a part of the transmission / reception room of the package is open to the outside
  • the opening is closed by a lid made of metal or ceramic.
  • the strength of the package can be further increased due to the provision of the lid.
  • the present invention provides an optical transmission and reception module according to any one of the first to ninth aspects.
  • an optical transmitting and receiving device equipped with a yule equipped with a yule
  • the substrate of the optical transceiver module on which the package is mounted has a conductive pattern deficient area in a region where the package is mounted on an upper surface where the lower surface of the package contacts.
  • a capacitance is generated between the conductive pattern on the lower surface of the package and the first and second metal plates, and by the action of a capacitor, the capacitance between the first and second metal plates is increased. Troubles such as an increase in crosstalk due to an increase in the capacitance of the source can be prevented.
  • FIG. 1 is a longitudinal sectional view mainly showing an optical configuration of an optical transceiver module according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view mainly showing an electrical configuration of the optical transceiver module according to the first embodiment of the present invention.
  • FIG. 3 shows various shapes between the first and second metal plates of the optical transceiver module according to the present invention, wherein (A) is an explanatory view showing the shape in the first embodiment, (B) — (E) is an explanatory diagram showing various modifications
  • FIG. 4 is an explanatory diagram showing an equivalent circuit and the like in the optical transceiver module according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing a change in the amount of crosstalk between the optical transceiver module according to the first embodiment of the present invention and a conventional optical transceiver module.
  • FIG. 6 is a cross-sectional view mainly showing an electrical configuration of an optical transceiver module according to a second embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view mainly showing an electrical configuration of an optical transceiver module according to a third embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing a pattern wiring on a mounting board of an optical transceiver according to a fourth embodiment of the present invention.
  • FIG. 9 is a virtual equivalent circuit diagram used to explain the principle of an optical transceiver according to a fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view mainly showing an electrical configuration of a conventional optical transceiver module.
  • FIG. 11 is an explanatory diagram showing an equivalent circuit and the like of the conventional optical transceiver module
  • 1 is an optical transmitting and receiving module
  • 10 is a package
  • 10A is a transmitting and receiving room
  • 10B is a floor surface
  • 10C is a side wall
  • 10D is a lid
  • 10E is a bottom
  • 10F and 10G are through holes
  • 11 is a first metal plate
  • 1 1A is the external connection metal
  • 12 is the second metal plate
  • 12A is the external connection metal
  • 13 is the first substrate (silicon substrate)
  • 14 is the second substrate (glass substrate)
  • 15 is the light emitting element
  • 15A is an electrode for an anode terminal
  • 16 is a light receiving element
  • 16A is an electrode for a force source terminal
  • 16B is an electrode for an anode terminal
  • 17 is an optical waveguide
  • 17A is a first optical fiber
  • 17B is a second optical fiber
  • 171 is a wavelength filter
  • 18 is a plurality of leads
  • 18A-18H is a first lead and an eighth lead
  • 2 is an optical transceiver module
  • 21 is a preamplifier (preamplifier)
  • 22 is a second capacitor
  • 231—236 is an eighth bonding wire, 13th bonding wire
  • 4 is an optical transceiver, 41 is a mounting board, 41A is an upper surface, 42 is a pattern wiring, C, C, C is a capacitance, L, L, L, L, L is an inductance,
  • a is the package mounting area
  • FIGS. 1 and 2 show the configuration of an optical transceiver module according to a first embodiment of the present invention.
  • the optical transceiver module 1 is provided separately and independently in a knocker 10.
  • a light receiving element 16 mounted on the second substrate 14, an optical waveguide 17, a plurality of leads 18, and a capacitor 19 are provided.
  • the package 10 uses a resin package formed of an appropriate resin material in order to reduce costs, and is formed in a substantially box-like shape with a bottom.
  • the node / cage 10 is provided with a removable lid 10D for improving strength and protecting the internal optical elements and electric elements.
  • the lid 10D may be formed of the same resin material as the package body, or may be formed of an appropriate metal or ceramic to increase the strength of the knockout.
  • the transmitter / receiver chamber 10A is formed inside the nozzle / cage 10. This transmitting and receiving room
  • 10A is a first and second metal plate 11, 1 having a function as an internal ground on the floor 10B.
  • the ground (not shown) (referred to as “outer ground”) is formed outside the package 10.
  • Both the first and second metal plates 11 and 12 have a lead 1.
  • the first and second metal plates 11, 12 are separated so as to keep the capacity C generated between the first and second metal plates 11, 12 small. Can demonstrate
  • Metal conductors with specific thicknesses specifically Cu alloys, Fe-Ni alloys, etc., and the outer peripheral edges facing each other (referred to as “opposite edges”) have a simple straight shape. It is formed in a shape that avoids the problem.
  • the opposed edges of the first and second metal plates 11 and 12 have, for example, a shape bent in a crank shape.
  • the knockage 10 has a floor surface 10B of the transmission / reception room 10A corresponding to a space between the opposing edges of the metal plates 11 and 12 (that is, a gap between the metal plates 11 and 12).
  • a long (large) part that is weak in strength which may be broken into two).
  • the shapes of the opposing edges of the first and second metal plates 11 and 12 adjacent to each other are not limited to those of the present embodiment, for example, as shown in FIGS. 3 (B)-(E).
  • Various shapes as shown in FIG. However, an island-shaped isolated structure as shown in FIG. 8E is not preferred because it is difficult in terms of manufacturing method.
  • the first metal plate 11 has a first substrate 13 mounted on the upper surface
  • the second metal plate 12 has a second substrate 14 mounted on the upper surface.
  • the first substrate 13 is formed of a material having a high resistance, for example, a specific resistance of at least lk ⁇ ′cm, for example, silicon (silicon substrate) in order to suppress electric crosstalk.
  • the second substrate 14 a glass substrate formed of a general glass material such as quartz is used. Further, as shown in FIG. 2, the second substrate 14 is provided with an optical waveguide 17 described later between glass substrates constituting upper and lower layers.
  • an optical signal that also propagates an external force propagates inside the second substrate 14 after being reflected by a wavelength filter 171 to be described later and before traveling to the light receiving section 161 of the light receiving element 16. Therefore, in order to propagate the optical signal as efficiently as possible, it is preferable that the optical signal is formed of a material with low optical attenuation. Note that, strictly speaking, this optical signal passes through the second substrate 14 and then propagates in the air to reach the force light receiving unit 161.
  • the light emitting element 15 and the light receiving element 16 are mounted on the first substrate 13 and the second substrate 14 via an insulating film formed of an appropriate insulating material. Therefore, in the case of the present embodiment, the silicon substrate as the first substrate 13 is provided with an insulating film such as silicon oxide on the upper surface. However, since the second substrate 14 is a glass substrate having a high insulating property, and the above-mentioned optical signal is emitted from the upper surface, no insulating film is provided on the upper surface.
  • the light emitting element 15 uses a semiconductor laser (LD) that emits coherent light for the convenience of using a wavelength filter 171 (described later) having a high wavelength dependency. It is designed to emit 3 m near-infrared light.
  • This semiconductor laser (LD) The device emits near-infrared light by passing a current from the upper surface (anode) to the lower surface (force sword) of the device. In the present embodiment, a current flows from the first lead 18A, which will be described later, through the first bonding wire 181 and the anode terminal electrode 15A of the light emitting element 15 on the first substrate 13 to the lower surface of the light emitting element 15. ing. Also, the light emitting element 15 can be driven from the outside of the package 10 through the second bonding wire 182 and the second lead 18B from the upper surface of the light emitting element 15.
  • the light emitting element 15 is not limited to the semiconductor laser according to the present embodiment, but may be a light emitting diode (LED) for short-distance communication, for example.
  • LED light emitting diode
  • the light receiving element 16 receives a transmitted optical signal and converts it into an electric signal.
  • the electric signal is transmitted.
  • a PIN photodiode (PIN-PD) is used, and an image is formed on the light receiving unit 161 via an imaging lens (not shown).
  • a force electrode (terminal electrode 16A) provided on the lower surface of the element is provided with predetermined electrons (not shown) outside the package 10 via sixth and fifth bonding wires 186, 185 and a sixth lead 18F. Connected to the circuit.
  • an anode terminal provided on the lower surface of the element is connected to a predetermined electronic circuit (not shown) outside the knocker 10 via a seventh bonding wire 187 and a seventh lead 18G.
  • the light receiving element 16 applies a voltage to the force source terminal and the anode terminal, so that when an optical signal is received from a communication partner, a current flows toward the force source terminal and the anode terminal. The current amount changes according to the received light level. As a result, the optical signal transmitted from the other party is converted into an electrical signal.
  • the light receiving element 16 may be a photodiode such as an avalanche photodiode (APD), which is not limited to the PIN photodiode (PIN-PD) as in the present embodiment.
  • APD avalanche photodiode
  • the optical waveguide 17 optically couples the light emitting element 15 and the light receiving element 16, respectively.
  • an optical fiber is used.
  • the optical fiber has a single-piece made of quartz glass or the like for communication with a relatively remote place.
  • Mode (SM) type is used, and the wavelength band used is 1.3 m for transmission and 1.5 m for reception.
  • an optical fiber When an optical fiber is used as the optical waveguide 17, an optical fiber (POF) using a plastic material such as PMMA (polymethyl methacrylate) is used for a relatively short distance.
  • PMMA polymethyl methacrylate
  • the optical fiber is not particularly limited to the single mode, but may be a multi-mode optical fiber such as a step index (SI) type or a graded index (GI) type.
  • SI step index
  • GI graded index
  • optical waveguide 17 for example, a planar optical waveguide for confining light two-dimensionally, a channel optical waveguide for confining light in a three-dimensional line, etc., instead of the optical fiber as in the present embodiment, are used. You can use it.
  • a wavelength filter 171 is installed at a predetermined position in the optical waveguide 17 while being buried inside the second substrate 14. I have.
  • the wavelength filter 171 transmits an optical signal having a wavelength of 1.3 ⁇ m transmitted from the light emitting element 15 to the communication partner and selectively receives an optical signal having a wavelength of 1.5 m transmitted from the communication partner.
  • a multilayer interference filter using a dielectric multilayer film is used as selective reflection means having wavelength dependence.
  • the optical waveguide 17 is installed in a state where the optical waveguide 17 is inclined at an appropriate predetermined angle with respect to the optical waveguide.
  • the leads 18 serve to electrically connect the electrodes of the light emitting element 15 and the light receiving element 16 to the outside of the package 10, and are composed of a first lead 18A to an eighth lead 18H.
  • the first lead 18A connects the anode (terminal electrode 15A) of the light emitting element 15 to a predetermined portion outside the package 10, and is connected via the first bonding wire 181. ing.
  • This first bonding wire 181 is formed by wire bonding using a gold wire (or an aluminum wire) like the second bonding wire 182 to the seventh bonding wire 187 described later!
  • the second lead 18B electrically connects the upper surface of the light emitting element 15 to the outside of the knockout 10 via the second bonding wire 182, and is connected to the outside of the knockout 10 from outside.
  • the light emitting element 15 is driven by current.
  • the third lead 18C is electrically connected to the first metal plate 11, and the first metal plate 11 and the outside of the package 10 are illustrated in order to suppress fluctuations in the potential of the first metal plate 11. Connected to outside ground.
  • the fourth lead 18D and the fifth lead 18E are spare terminals, and connect the first metal plate 11 and a ground (not shown) via bonding wires 183 and 184 in Fig. 2.
  • the sixth lead 18F is connected to the fifth bonding wire 185, the sixth bonding wire 186, and the force source (terminal electrode 16A) of the light receiving element 16 on the glass substrate 14 to force the light receiving element 16 (not shown).
  • the sword terminal is electrically connected to a DC voltage source outside the package 10.
  • the seventh lead 18 G is connected to an anode terminal (not shown) of the light receiving element 16 and an amplifier outside the package through the anode terminal electrode 16 B of the light receiving element 16 on the glass substrate 14 and the seventh bonding wire 187.
  • the light receiving element 16 can detect the optical signal level when the external communication partner power optical signal is received. It is now possible to obtain a light receiving current according to!
  • the eighth lead 18H is electrically connected to the second metal plate 12, and is connected to a ground (not shown) outside the package 10 in order to suppress potential fluctuation of the second metal plate 12. I have.
  • the capacitor 19 forms the required capacitance on the front and back sides on the force source (terminal electrode 16A) side of the light receiving element 16, and for example, a chip capacitor or the like is used.
  • the capacitor 19 has a rear surface connected to a ground (not shown) outside the package 10 through the metal plate 12 and the sixth lead 18F, thereby stabilizing the potential of the power source (terminal electrode 16A) of the light receiving element 16 at a high frequency.
  • the surface is connected to a force source (terminal electrode 16A) of the light receiving element by a sixth bonding wire 186.
  • the optical system of the optical transceiver module 1 of the present embodiment has the same configuration as that of the conventional one, and as described above, in FIG. And the first One end of each of the second optical fibers 17B is disposed with the wavelength filter 171 interposed therebetween.
  • the other end of the first optical fiber 17A close to the light emitting surface of the light emitting element 15, an optical signal emitted from the light emitting element 15 can be directly incident on the first fiber 17A, or appropriately.
  • an optical element such as an LD having an anisotropic light-emitting pattern is used as the light-emitting element 15. It may be arranged above.
  • the other end of the second optical fiber 17B becomes an external optical interface of the knockout 10.
  • the light-emitting element 15 When an LED having a substantially isotropic light-emitting pattern is used as the light-emitting element 15, for example, a microlens is provided between the light-emitting element 15 and the first optical fiber 17A, and an image of the light source is obtained. Should be narrowed down to the core diameter to increase the coupling efficiency.
  • the optical signal input externally through the first optical fiber 17A is reflected by the wavelength filter 171 and received by the light receiving section 161 of the light receiving element 16.
  • the optical signal from which the power of the light emitting element 15 is also output propagates inside the first optical fiber 17A, passes through the wavelength filter 171 and propagates inside the second optical fiber 17B, and is output to the outside of the optical transceiver module 1. Is to be done.
  • FIG. 4 shows a circuit equivalent model of the optical transceiver module 1 according to the first embodiment of the present invention.
  • the potential of the anode terminal of the light emitting element 15 also fluctuates with the high frequency signal.
  • the fluctuation of the anode terminal potential of the light emitting element 15 due to the high frequency signal is caused by the anode terminal electrode 15A of the light emitting element 15 (see FIG. 2) through the silicon substrate as the first substrate 13 through the first metal plate 11. Propagated to
  • the first substrate 13 which is a silicon substrate can be modeled by a capacitor and a resistor.
  • the silicon substrate to have a high resistance (specific resistance is equal to or more than lk ⁇ ′cm).
  • the amount by which the potential change of the anode terminal (on the light emitting element 15 side) due to the high frequency signal propagates to the first metal plate 11 is reduced.
  • the first metal plate 11 is connected to the external ground by the third lead 18C, The amount of change in the potential of the anode terminal on the element 16 side can be suppressed.
  • a capacitance C is generated between the first metal plate 11 and the second metal plate 12, but the capacitance C is generated between the first metal plate 11 and the second metal plate 12.
  • a very small capacitance (C) can be obtained by leaving a space of about 0.5-lmm. As a result, gold
  • the potential fluctuation in the second metal plate 12 is further suppressed.
  • the second metal plate 12 is connected to the external ground via the eighth lead 18H, the fluctuation of the potential due to the high frequency signal of the light emitting element 15 is small, and the cathode of the light receiving element 16 is reduced. Even if a capacitor 19 is added between the electrode (terminal electrode 16A) and the second metal plate 12, the force source terminal of the light receiving element 16 fluctuates only slightly.
  • the resistance value of the silicon substrate as the first substrate 13 is increased, and the metal plate is separated into the first and second metal plates 11 and 12, so that the first Each of the second metal plates 11 and 12 is connected to an external ground. Therefore, the potential fluctuation of the force source terminal of the light receiving element 16 due to the high-frequency signal leaking from the potential fluctuation of the anode terminal of the light emitting element 15, that is, electric crosstalk can be extremely reduced. Further, since the capacitor 19 is disposed between the force source terminal of the light receiving element 16 and the second metal plate 12, the high frequency characteristics of the light receiving element 16 are also improved.
  • Fig. 5 shows the results of the simulation of the electrical crosstalk to be performed.
  • the horizontal axis represents the frequency (GHz)
  • the vertical axis represents the electric crosstalk amount (dB)
  • the numerical value of the crosstalk amount is small! /, (The absolute value is large,;).
  • the capacitor 19 connected to the ground at the force source terminal of the light receiving element 16 is provided inside the package 10 to improve the high-frequency characteristics.
  • the anode terminal force of the light emitting element 15 can also suppress the crosstalk to the force terminal of the light receiving element 16.
  • the opposing edges (sides) of the separated and independent first and second metal plates 11 and 12 are substantially parallel to each other. , Formed in a crank shape with irregularities. Therefore, even when a relatively fragile resin package or the like is used as the cage 10, a decrease in the bending strength of the optical transceiver module 1 can be effectively suppressed. Further, the bending strength can be further improved by using ceramic or metal for the lid 10D of the package 10 (see FIG. 1).
  • FIG. 6 shows a configuration of an optical transceiver module 2 according to a second embodiment of the present invention.
  • This optical transceiver module 2 has the same configuration as the optical transceiver module 1 according to the first embodiment.
  • a preamplifier (preamplifier) 21 and a second capacitor 22 are additionally installed on the second metal plate 12 !!
  • the preamplifier 21 is for increasing the degree of amplification, and a terminal (not shown) of the preamplifier 21 (for connection to the power source of the light receiving element 16) and a power source (terminal)
  • the child electrode 16A is electrically connected to the force via the sixth bonding wire 186 and the eighth bonding wire 231.
  • a terminal (not shown) of the preamplifier 21 (for connection to the anode of the light receiving element 16) and an anode terminal of the light receiving element 16 (electrode 16B for anode terminal) are electrically connected to the preamplifier 21 via the ninth bonding wire 232. It is connected to the.
  • the preamplifier 21 of the present embodiment is an amplifier that amplifies a photocurrent according to the optical input intensity output from the light receiving element 16 and converts the photocurrent into a differential signal, and has two outputs. Is output from the twelfth bonding wire 235 and the sixth lead 18F, and the other is output from the thirteenth bonding wire 236 and the seventh lead 18G.
  • the power supply to the preamplifier 21 is performed via the eighth lead 18H, the tenth bonding wire 233, and the eleventh bonding wire 234.
  • the second capacitor 22 is provided for stabilizing the power supply potential supplied to the light receiving element 16, and is connected to a force source (terminal electrode 16A) of the light receiving element 16 by a sixth bond. It is provided between the wire 186 and the second metal plate 12.
  • crosstalk to the force source terminal of the light receiving element 16 is reduced as in the optical transmitting and receiving module 1 according to the first embodiment. it can. Furthermore, according to the present embodiment, by incorporating the preamplifier 21 in the transmitting / receiving room 10A of the package 10, the high-frequency characteristics are further improved as compared with the first embodiment, and the amplitude is reduced. A large signal can be output.
  • FIG. 7 shows a configuration of an optical transceiver module 3 according to the third embodiment of the present invention.
  • the optical transceiver module 3 according to the third embodiment is the same as the optical module 1 according to the first embodiment.
  • a through hole 10F provided through the bottom 10E of the package 10 on the lower surface of the first metal plate 11, a conductive external connection metal 11A provided in the through hole 10F, and a second The difference is that a through hole 10G provided through the package 10 on the lower surface of the metal plate 12 and a conductive external connection metal 12A provided in the through hole 10G are further provided.
  • the first metal plate 11 and the external connection metal 11A are each integrated metal or are electrically connected.
  • the second metal plate 12 and the external connection metal 12A are also integrated metal or electrically connected.
  • FIG. 8 shows an optical transmitting / receiving device 4 according to an embodiment of the present invention.
  • the optical transmitting / receiving device 4 includes a mounting substrate 41 having a predetermined pattern wiring 42 provided on an upper surface 41A, and
  • the optical transmission / reception module 113 used in the first to third embodiments mounted on the surface (upper surface) 41A of the substrate 41 is provided with a gap or a gap.
  • the mounting substrate 41 on which the optical transmitting / receiving module is mounted is configured to mount any one of the optical transmitting / receiving modules 113 used in the first to third embodiments.
  • a region in contact with the back surface of the package 10 of these optical transceiver modules 13 (the region indicated by hatching in FIG. 8 (hereinafter referred to as “package mounting region”)) A)
  • the conductive pattern is not provided on a (this is called “defect pattern”).
  • the pattern wiring 42 is not provided in the package mounting area a (deletion pattern)! /, But the reason is as follows. explain.
  • FIG. 9 shows an equivalent circuit model in a case where a pattern wiring 42 is provided (not a missing pattern) also in the package mounting area ⁇ on the surface (upper surface) of the mounting board 41. Show.
  • the package 10 of the optical transmitter / receiver module 1 (or 2, 3) is the same as that of the present embodiment.
  • the package 10 is made of resin and physically constitutes a dielectric. .
  • the first metal plate 11 is mounted.
  • the capacitance C is generated between the wiring and the pattern wiring on the substrate 41.
  • a capacitance C is also generated between the second metal plate 12 and the pattern wiring on the mounting board 41 immediately below the package 10.
  • the conductive pattern is formed just under the package 10 of the optical transmitting and receiving module which is the package mounting area a of the optical transmitting and receiving module 1 (or 2, 3). Not provided. Therefore, the generation of capacitances C and C as described above
  • the first metal plate on which the first substrate for mounting the light emitting element is mounted inside the resin package, and the second metal on which the second substrate on which the light receiving element is mounted are mounted
  • the board and the board are separated and independently provided, and the parasitic capacitance can be reduced, so when driving a light emitting element with a high frequency signal, a part of the high frequency signal is received while improving the high frequency characteristics. It has the effect of suppressing electric crosstalk that causes potential fluctuations in the terminals of the optical element, and is useful for an optical transceiver module and an optical transceiver equipped with the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

There is provided a light transmission/reception module capable of reducing electric cross-talk between a light emitting element and a light reception element and improving a high-frequency characteristic in the light reception. A light transmission/reception device using the module is also provided. The light transmission/reception module includes a resin package wherein a first substrate (13) on which a light emitting element is mounted is arranged on a first metal plate (11) which is arranged separately/independently from a second metal plate (12) having a second substrate (14) on which a light reception element (16) is arranged. This can reduce the parasitic capacity. Accordingly, when current-driving a light emitting element (15) with a high-frequency signal, it is possible to improve the high-frequency characteristic and suppress electric cross talk, i.e., potential fluctuation caused at the terminal of the light reception element (16) by a part of the high-frequency signal.

Description

明 細 書  Specification
光送受信モジュールおよび光送受信装置  Optical transceiver module and optical transceiver
技術分野  Technical field
[0001] 本発明は、発光素子と受光素子が同一モジュール内に配置され双方向の受信を 行うことができる光送受信モジュールおよび光送受信装置に係り、特にモジュール内 部の発光素子と受光素子間の電気的干渉を低減し、かつ、高周波特性にも優れた 光送受信モジュールおよび光送受信装置に関するものである。  The present invention relates to an optical transmitting and receiving module and an optical transmitting and receiving device in which a light emitting element and a light receiving element are arranged in the same module and capable of performing bidirectional reception, and more particularly to a light transmitting and receiving element in a module. The present invention relates to an optical transmitting / receiving module and an optical transmitting / receiving device that reduce electrical interference and have excellent high-frequency characteristics.
背景技術  Background art
[0002] 近年、インターネットの高速ィ匕等に伴い、幹線系の通信システムだけでなぐ一般 加入者通信においても FTTH ( ber To The Home)と呼ばれる光ファイバでデータ 通信を行う光通信システムが一般的となりつつある。このような光通信システムでは、 伝送路である光ファイバを効率的に使用するために、 1本のファイバで上り下りが異 なる波長の光信号 (例えば使用する波長として、上り 1. 、下り 1. 5 mなどの 近赤外光)を利用し伝送する方法が採用されて 、る。  [0002] In recent years, along with the high-speed Internet connection and the like, an optical communication system that performs data communication using an optical fiber called FTTH (ber To The Home) is also generally used for general subscriber communication that is not limited to a trunk communication system. It is becoming. In such an optical communication system, in order to use an optical fiber as a transmission line efficiently, an optical signal having a different wavelength in the upstream and downstream of one fiber (for example, as the wavelength to be used, upstream 1. and downstream 1. Transmission method using near infrared light such as 5m) is adopted.
[0003] ところで、これらのシステムを低コストで実現するため各種の試みがなされているが 、その一つとして送信側の発光素子および受信側の受光素子を 1つのパッケージに 収めることで低コストィ匕を図った送受信モジュールが提案されている。  [0003] By the way, various attempts have been made to realize these systems at low cost, but one of them is to reduce the cost by putting the light emitting element on the transmitting side and the light receiving element on the receiving side in one package. A transmission / reception module aiming at this has been proposed.
[0004] し力しながら、発光素子と受光素子を 1つのパッケージに収めた場合、発光素子の 駆動電流信号が受光素子や受信側回路の電気信号に干渉する電気クロストークが 発生し、このクロストーク量が無視できない (大きい)、という問題がある。特に、伝送す る信号がギガビット以上に高速ィ匕した場合は、これによる通信特性の劣化が顕著とな る。 [0004] If the light emitting element and the light receiving element are put together in one package, the electric current of the driving light signal of the light emitting element interferes with the electric signal of the light receiving element and the receiving side circuit. There is a problem that the talk volume cannot be ignored (is large). In particular, when a signal to be transmitted is transmitted at a speed of gigabit or more, the deterioration of communication characteristics due to this becomes remarkable.
[0005] そこで、このクロストークの低減を目的とした光送受信モジュールとして、例えば特 開 2001— 345475号公報に記載のものが提案されている。これについて、モジユー ルの内部を上面力も見た平面図である図 10を参照しながら説明する。  [0005] Therefore, as an optical transmission / reception module for the purpose of reducing the crosstalk, for example, a module described in Japanese Patent Application Publication No. 2001-345475 has been proposed. This will be described with reference to FIG. 10, which is a plan view of the inside of the module, also showing the top surface force.
[0006] この光送受信モジュール 100には、図 10に示すように、金属板 101がパッケージ 1 00Aの内部に設けられているとともに、ノッケージ 100Aの内部と外部を電気的に導 通する第 1の(ァウタ)リード 102A—第 8の(ァウタ)リード 102Hが設けられて 、る。 金属板 101には、第 1基板 103及び第 2基板 106が分離'独立して設けられている 。そのうち、第 1基板 103上には発光素子 104が実装されているとともに、第 2基板 10 6上には受光素子 107が実装されて 、る。 [0006] As shown in FIG. 10, the optical transceiver module 100 includes a metal plate 101 provided inside the package 100A, and electrically connects the inside and the outside of the knockage 100A. The first (outer) lead 102A through the eighth (outer) lead 102H is provided. On a metal plate 101, a first substrate 103 and a second substrate 106 are provided separately and independently. The light emitting element 104 is mounted on the first substrate 103, and the light receiving element 107 is mounted on the second substrate 106.
[0007] 以下、この光送受信モジュール 100の発光素子 104及び受光素子 107について、 構成及び作用を説明する。  [0007] The configuration and operation of the light emitting element 104 and the light receiving element 107 of the optical transceiver module 100 will be described below.
発光素子 104は、素子の上面 (アノード端子)から下面 (力ソード端子)に電流を流 すことで発光するように構成されている。即ち、第 1のリード 102Aから、第 1のボンデ イングワイヤ 105A、第 1基板 103上の発光素子 104のアノード端子用電極 104Aを 通じ、発光素子 104の下面に電流が流れるが、発光素子 104上面側の図示外の所 定の端子と接続された第 2のボンディングワイヤ 105B、第 2のリード 102Bを通じ、パ ッケージ 100A外部力も発光素子 104を電流駆動するようになっている。  The light emitting element 104 is configured to emit light when a current flows from the upper surface (anode terminal) to the lower surface (force source terminal) of the element. That is, current flows from the first lead 102A to the lower surface of the light emitting element 104 through the first bonding wire 105A and the anode terminal electrode 104A of the light emitting element 104 on the first substrate 103. Through the second bonding wire 105B and the second lead 102B connected to a predetermined terminal (not shown) on the side, an external force of the package 100A also drives the light emitting element 104 by current.
[0008] 一方、受光素子 107は、素子の下面の力ソード端子とアノード端子に電圧を印加す ることで、光信号を受光の際に力ソード端子からアノード端子の方向に電流が流れ、 受光した光レベルに応じて電流量が変化する。即ち、パッケージ 100外部の図示外 のアンプの入力端子が、第 3のリード 102C、第 3のボンディングワイヤ 105C、第 2基 板 106上の受光素子 107の力ソード端子用電極 107Aを通じ、受光素子 107のカソ ード端子と接続されている。一方、受光素子 107のアノード端子は、第 2基板 106上 の受光素子のアノード端子用電極 107B、第 4のボンディングワイヤ 105D、第 4のリ ード 102Dを通じ、パッケージ 100A外部の図示外の直流電圧源に接続されている。 従って、ノ ッケージ 100Aの外部から第 3のリード 102C、第 4のリード 102D間に電圧 を印加することで、通信相手からの光信号を受信する際に、その光信号レベルに応 じた受光電流を得ることができる。  [0008] On the other hand, the light receiving element 107 applies a voltage to the force source terminal and the anode terminal on the lower surface of the element, so that when an optical signal is received, a current flows from the force source terminal to the anode terminal. The amount of current changes according to the light level. That is, the input terminal of an amplifier (not shown) outside the package 100 is connected to the third lead 102C, the third bonding wire 105C, and the force source terminal electrode 107A of the light receiving element 107 on the second substrate 106, thereby receiving the light receiving element 107A. Connected to the cathode terminal. On the other hand, the anode terminal of the light receiving element 107 is connected to an unillustrated DC voltage outside the package 100A through the anode terminal electrode 107B, the fourth bonding wire 105D, and the fourth lead 102D of the light receiving element on the second substrate 106. Connected to the source. Therefore, by applying a voltage between the third lead 102C and the fourth lead 102D from outside of the knockout 100A, when receiving an optical signal from a communication partner, a light receiving current corresponding to the optical signal level is received. Can be obtained.
[0009] 次に、この光送受信モジュール 100に備える光学系の構成及び作用について説明 する。  Next, the configuration and operation of the optical system provided in the optical transceiver module 100 will be described.
図 10において、第 2基板 106内部(図示せず)には、第 1の光ファイバ 108A、第 2 の光ファイバ 108Bの各一端が図示外の波長フィルタ (例えば、干渉膜フィルタ)をは さんで配置されている。また、第 1の光ファイバ 108Aの他端 (図 10では左端)は、図 示しないが、発光素子 104の発光部に配置されているとともに、第 2の光ファイバ 108 Bの他端がパッケージ 100Aの外部光インターフェイス (光コネクタ)となる。 In FIG. 10, inside the second substrate 106 (not shown), one end of each of the first optical fiber 108A and the second optical fiber 108B is sandwiched by a wavelength filter (for example, an interference film filter) not shown. Are located. The other end of the first optical fiber 108A (the left end in FIG. 10) is Although not shown, it is arranged in the light emitting portion of the light emitting element 104, and the other end of the second optical fiber 108B becomes an external optical interface (optical connector) of the package 100A.
[0010] 従って、発光素子 104から出力する光信号は、光ファイバ 108Aの内部を図 10中 右方向に伝播するとともに波長フィルタを通過した後、光ファイバ 108Bの内部を同 方向に伝播してこの光送受信モジュール 100の外部へ出力される。一方、光ファイバ 108Bを通じて通信相手の外部力も入力する光信号は、波長フィルタで反射し、受光 素子 107の受光部で光信号として受信する。  Accordingly, the optical signal output from the light emitting element 104 propagates inside the optical fiber 108A to the right in FIG. 10 and after passing through the wavelength filter, and then propagates inside the optical fiber 108B in the same direction. Output to the outside of the optical transceiver module 100. On the other hand, an optical signal to which the external force of the communication partner is also input via the optical fiber 108B is reflected by the wavelength filter and received by the light receiving section of the light receiving element 107 as an optical signal.
[0011] 以上説明してきたように、特許文献 1に記載の光送受信モジュール 100は、発光素 子 104及び受光素子 107を搭載する基板を、発光素子 104を搭載する第 1基板 103 と受光素子 107を搭載する第 2基板 106との 2つに分離することで、電気的クロストー クを低減できるように構成して 、る。  [0011] As described above, the optical transceiver module 100 described in Patent Document 1 includes a substrate on which the light emitting element 104 and the light receiving element 107 are mounted, and a first substrate 103 on which the light emitting element 104 is mounted and the light receiving element 107. The structure is such that the electrical crosstalk can be reduced by separating the substrate into two parts, that is, the second substrate 106 and the second substrate 106.
[0012] ところで、この光送受信モジュールで使用するノ ッケージに、安価な榭脂パッケー ジを用いることで、さらに低コストィ匕を図ることが検討されて 、る。  [0012] By using an inexpensive resin package for the knockout used in the optical transmitting and receiving module, it has been studied to further reduce the cost.
し力しながら、特にこのパッケージ 100Aに榭脂などを用いた光送受信モジュール 1 00にあっては、ノ ッケージ自体に導電性がないため、ノ ッケージ外部のグランドと内 部のグランドとの間に寄生インダクタンス L が発生し易ぐこの寄生  In particular, in the optical transceiver module 100 using resin or the like for the package 100A, since the knocking itself is not conductive, the space between the ground outside the knocking and the ground inside the knocking package is not used. This parasitic inductance L is likely to occur.
1一 L (図 11参照)  1 L (see Fig. 11)
3  Three
インダクタンス L一 Lによってパッケージ内部のグランド電位が高周波で変動してし  The ground potential inside the package fluctuates at high frequency due to the inductance L-L.
1 3  13
まうことが多い。例えば lGbps以上の高周波信号を受信する際、前述したように、発 生する寄生インダクタンス L によって、以下のような問題を生じている。  It often happens. For example, when a high-frequency signal of 1 Gbps or more is received, as described above, the following problems occur due to the generated parasitic inductance L.
1一 L  1 L
3  Three
[0013] 即ち、この光送受信モジュールにあっては、受光素子 107とパッケージ 100A外部 とを接続するボンディングワイヤ、特に受光素子 107の力ソード端子用電極 107A( 図 10参照)と接続する第 3のボンディングワイヤ 105C側の寄生インダクタンス Lによ つて、高周波特性が劣化する。  That is, in this optical transceiver module, a bonding wire connecting the light receiving element 107 and the outside of the package 100A, in particular, a third electrode 107A (see FIG. 10) connected to the force source terminal electrode 107A of the light receiving element 107. High frequency characteristics are degraded by the parasitic inductance L on the bonding wire 105C side.
そこで、この高周波特性の劣化を抑えて良好な高周波特性を得るためには、受光 素子 107の力ソード端子側の寄生インダクタンス Lを低減する必要がある。このため 、一般的には、受光素子 107近くでグランドに接続したり、グランドに接続されたコン デンサと接続して、高周波特性の劣化防止対策を講じる必要がある。  Therefore, in order to obtain good high-frequency characteristics by suppressing the deterioration of the high-frequency characteristics, it is necessary to reduce the parasitic inductance L on the force source terminal side of the light receiving element 107. For this reason, it is generally necessary to connect to the ground near the light receiving element 107 or to connect to a capacitor connected to the ground to take measures to prevent deterioration of the high-frequency characteristics.
[0014] ここで、前述のように、受光素子 107の力ソード端子とパッケージ 100A内部のダラ ンドとしての金属板 101との間に、コンデンサ Cを接続した構成のものについて、その 作用を、図 11に示す回路等価モデルを用いて説明する。 [0014] Here, as described above, the force sword terminal of the light receiving element 107 and the dollar inside the package 100A. The operation of a capacitor having a configuration in which a capacitor C is connected to a metal plate 101 as a capacitor will be described with reference to a circuit equivalent model shown in FIG.
同図に示すように、発光素子 107の力ソード、アノード側には、第 3、第 4のボンディ ングワイヤ 105C、 105D等の寄生インダクタンス L、 Lが発生している。このため、高  As shown in the figure, parasitic inductances L, L of the third and fourth bonding wires 105C, 105D, etc. are generated on the force side and the anode side of the light emitting element 107. For this reason,
1 2  1 2
周波信号を含んだ電流で発光素子 104を駆動した場合、発光素子 107のアノード端 子の電位も高周波信号で変動する。そして、この発光素子 107のアノード端子電位 の高周波信号による変動は、発光素子 107のアノード端子用電極 104A (図 10参照 )から、シリコン基板 103を通じ金属板 101へと伝播される。  When the light-emitting element 104 is driven by a current including a frequency signal, the potential of the anode terminal of the light-emitting element 107 also changes with the high-frequency signal. The change in the anode terminal potential of the light emitting element 107 due to the high frequency signal is transmitted from the anode terminal electrode 104A of the light emitting element 107 (see FIG. 10) to the metal plate 101 through the silicon substrate 103.
[0015] 一方、図 10に示す第 1基板 103は、図 11に示すように、コンデンサと抵抗の等価 回路にモデルィ匕できる。また、金属板 101は、本来は外部グランドと接続されている 力 同図に示すように、第 5のリード 102Eの寄生インダクタンス Lによって高周波的 On the other hand, the first substrate 103 shown in FIG. 10 can be modeled as an equivalent circuit of a capacitor and a resistor as shown in FIG. In addition, the metal plate 101 has a high frequency due to the parasitic inductance L of the fifth lead 102E as shown in FIG.
3  Three
に不安定である。このため、発光素子 104のアノード端子電圧の高周波的な電位変 動は、金属板 101を通じ、前述の追カ卩したコンデンサ Cによって、受光素子 107の力 ソード端子へと伝播して 、く。  Unstable. For this reason, the high-frequency potential fluctuation of the anode terminal voltage of the light emitting element 104 propagates through the metal plate 101 to the force source terminal of the light receiving element 107 by the above-mentioned capacitor C.
[0016] 以上のような構成から、受光素子 107の力ソード端子の電位変動は、そのまま受光 電流の変動となる。即ち、光受信における高周波特性の改善を目的として、図 11に 示すように、従来 (特許文献 1に記載)の光送受信モジュール 100にお 、て受光素子 107の力ソード端子にコンデンサ Cを追加すると、再び電気的なクロストークの増大を ちたらすこととなる。 [0016] With the configuration described above, the fluctuation in the potential of the force source terminal of the light receiving element 107 directly changes the light receiving current. That is, as shown in FIG. 11, when a capacitor C is added to the force source terminal of the light receiving element 107 in the conventional optical transmitting and receiving module 100 (described in Patent Document 1) for the purpose of improving high-frequency characteristics in optical reception, as shown in FIG. Then, the electric crosstalk increases again.
[0017] 本発明は、上記事情に鑑みてなされたもので、発光素子と受光素子との間の電気 クロストークを低減し、かつ、光受信における高周波特性を改善することができる光送 受信モジュール及びこれを備えた光送受信装置を提供することを目的とする。  The present invention has been made in view of the above circumstances, and is an optical transmission / reception module capable of reducing electric crosstalk between a light emitting element and a light receiving element and improving high frequency characteristics in optical reception. And an optical transmitting and receiving apparatus having the same.
[0018] 特許文献 1 :特開 2001— 345475号公報(図 5)  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-345475 (FIG. 5)
発明の開示  Disclosure of the invention
[0019] 本発明は、第 1に、内部に送受信室を設けた略箱状のパッケージと、  The present invention firstly provides a substantially box-shaped package having a transmission / reception room inside,
このノ ケージの前記送受信室に互いに独立別個に設けられた第 1及び第 2の金 属板と、  First and second metal plates provided separately and independently from each other in the transmission / reception room of the cage,
この第 1の金属板上に設けられ、発光素子を実装する第 1の基板と、 前記第 2の金属板上に設けられ、受光素子を実装する第 2の基板と、 前記発光素子と受光素子とに光学的に結合された光導波路と、 A first substrate provided on the first metal plate and mounting the light emitting element, A second substrate provided on the second metal plate and mounting a light receiving element, an optical waveguide optically coupled to the light emitting element and the light receiving element,
前記パッケージに設けられ、前記発光素子および前記受光素子の各電極とパッケ ージ外部側との電気的な接続を図る複数のリードとを備えることを特徴としている。 従って、上記構成によれば、発光素子と受光素子を実装する各基板を、それぞれ 別々の金属板に搭載させており、寄生容量を小さくすることができる。従って、発光素 子を高周波信号で電流駆動する際、高周波信号の一部が受光素子の端子の電位 変動をもたらす (具体的には、例えば発光素子のアノード端子力 受光素子のカソー ド端子への)電気クロストークを、効果的に抑制することができる。  The semiconductor device is characterized by comprising a plurality of leads provided on the package for establishing electrical connection between each electrode of the light emitting element and the light receiving element and the outside of the package. Therefore, according to the above configuration, the respective substrates on which the light emitting element and the light receiving element are mounted are mounted on different metal plates, respectively, so that the parasitic capacitance can be reduced. Therefore, when the light-emitting element is driven by a high-frequency signal with a current, a part of the high-frequency signal causes a fluctuation in the potential of the terminal of the light-receiving element. (Specifically, for example, the anode terminal force of the light-emitting element 3.) Electric crosstalk can be effectively suppressed.
[0020] また、本発明は、第 2に、前記パッケージが、榭脂で形成してあることを特徴として いる。 [0020] Second, the present invention is characterized in that the package is formed of resin.
従って、上記構成によれば、ノ^ケージの部分は榭脂成形により量産化が容易とな るので、低コストィ匕を図ることができる。  Therefore, according to the above configuration, the mass production of the cage portion is facilitated by resin molding, so that the cost can be reduced.
[0021] また、本発明は、第 3に、前記第 2の金属板と前記受光素子の力ソード端子間に、こ れらの間を電気的に接続させるコンデンサを具備することを特徴としている。 [0021] Thirdly, the present invention is characterized in that a capacitor is provided between the second metal plate and the force source terminal of the light receiving element, for electrically connecting the two. .
従って、上記構成によれば、受光素子の力ソード端子にグランドへ接続するコンデ ンサをパッケージ内部に設けることで、受光素子の力ソードの電位を高周波的に安定 ィ匕させることにより、高周波特性を改善しつつ、発光素子のアノード端子力 受光素 子の力ソード端子への電気的なクロストークを抑えることができる。  Therefore, according to the above configuration, by providing a capacitor connected to the ground to the power source terminal of the light receiving element inside the package, the potential of the power source of the light receiving element is stabilized at a high frequency, thereby improving the high frequency characteristics. While improving, it is possible to suppress electric crosstalk between the anode terminal of the light emitting element and the force terminal of the light receiving element.
[0022] また、本発明は、第 4に、前記発光素子を搭載する第 1の基板の比抵抗値が lk Q · cm以上であることを特徴として 、る。 [0022] Fourth, the present invention is characterized in that the first substrate on which the light-emitting element is mounted has a specific resistance of lk Q · cm or more.
従って、上記構成によれば、高周波信号による発光素子からのアノード端子の電位 変動が第 1の金属板へ伝播するときに、その変動量を抑えることができるようになる。  Therefore, according to the above configuration, when the potential change of the anode terminal from the light emitting element due to the high frequency signal propagates to the first metal plate, the amount of the change can be suppressed.
[0023] また、本発明は、第 5に、前記第 1及び第 2の金属板の少なくとも一方が、前記いず れかのリードを通じて前記パッケージ外部のグランドと接続されていることを特徴とし ている。 Fifth, the present invention is characterized in that at least one of the first and second metal plates is connected to a ground outside the package through one of the leads. I have.
従って、上記構成によれば、外部グランドと接続された金属板の電位変動を抑える ことができる。 [0024] また、本発明は、第 6に、前記第 2の金属板に、プリアンプを搭載しているとともに、 前記受光素子のアノード端子と前記プリアンプの入力端子の間、および前記ブリア ンプの出力端子と前記リードのいずれ力との間を電気的に接続してあることを特徴と している。 Therefore, according to the above configuration, it is possible to suppress the potential fluctuation of the metal plate connected to the external ground. Sixth, the present invention provides, in a sixth aspect, a preamplifier mounted on the second metal plate, wherein a preamplifier is provided between an anode terminal of the light receiving element and an input terminal of the preamplifier, and an output of the bridge amplifier is provided. The present invention is characterized in that a terminal is electrically connected to any one of the leads.
従って、上記構成によれば、プリアンプにより増幅度が高められる。  Therefore, according to the above configuration, the amplification degree is increased by the preamplifier.
[0025] また、本発明は、第 7に、前記パッケージに、前記送受信室の床面から前記パッケ ージの底面まで貫通するスルーホールを有し、 [0025] In a seventh aspect of the present invention, the package has a through-hole penetrating from a floor of the transmission / reception room to a bottom of the package.
前記第 1及び第 2の金属板の少なくとも一方は、この金属板の下面側とスルーホー ルを介して前記パッケージ下面と電気的に導通して 、ることを特徴として 、る。  At least one of the first and second metal plates is electrically connected to the lower surface of the package via a lower surface of the metal plate and a through hole.
従って、上記構成によれば、ノ ッケージ外部との接続用のリードが不要になるので 、このリードに発生していた寄生インダクタンスに起因する各金属板の電位変動を抑 えることができるようになり、電気クロストークをさらに低減することができる。  Therefore, according to the above configuration, a lead for connection with the outside of the knockout becomes unnecessary, and thus, it is possible to suppress the potential fluctuation of each metal plate due to the parasitic inductance generated in this lead. In addition, electric crosstalk can be further reduced.
[0026] また、本発明は、第 8に、前記第 1及び第 2の金属板が、互いに対向して隣接する 境界部分の形状が、互いに補完するクランク状もしくは曲線状を呈することを特徴とし ている。 Eighth, the present invention is characterized in that the first and second metal plates have a shape of a crank portion or a curved line shape in which a boundary portion adjacent to and opposed to each other complements each other. ing.
従って、上記構成によれば、 2つの金属間の隙間部分はその金属がないので、つ まり榭脂だけの部分となり強度的に脆弱となり易いが、その榭脂だけの部分はストレ ートな (直線的な)形状となるのを避けている。換言すれば、強度の弱い部分がジグザ グ形状などのように形成して、直線的に長く形成されないようにすることで、応力の集 中を分散させ、ノ^ケージもしくはパッケージ内に搭載した部品の折損などが発生す るのを有効に防止できる。  Therefore, according to the above configuration, since the gap between the two metals does not have the metal, that is, it is a portion of only the resin and easily weakened in strength, but the portion of the resin alone is a straight ( Avoids (linear) shapes. In other words, parts with low strength are formed like a zigzag shape to prevent them from being formed linearly long, dispersing the concentration of stress, and mounting parts in the cage or package. It is possible to effectively prevent breakage or the like from occurring.
[0027] また、本発明は、第 9に、前記パッケージの前記送受信室の一部が外部に向けて 開口しているとともに、 In a ninth aspect of the present invention, a part of the transmission / reception room of the package is open to the outside,
前記開口部は、金属もしくはセラミックで形成した蓋で閉鎖してあることを特徴として いる。  The opening is closed by a lid made of metal or ceramic.
従って、上記構成によれば、さらに、蓋を有する分だけ、パッケージの強度を増大さ せることができる。  Therefore, according to the above configuration, the strength of the package can be further increased due to the provision of the lid.
[0028] 本発明は、第 10に、第 1の発明から第 9の発明のいずれかに記載の光送受信モジ ユールを搭載する光送受信装置において、 [0028] Tenthly, the present invention provides an optical transmission and reception module according to any one of the first to ninth aspects. In an optical transmitting and receiving device equipped with a yule,
光送受信モジュールの前記パッケージを搭載する基板は、前記パッケージの下面 が接する上面の前記パッケージを搭載する領域に導電パターン欠損領域を有するこ とを特徴としている。  The substrate of the optical transceiver module on which the package is mounted has a conductive pattern deficient area in a region where the package is mounted on an upper surface where the lower surface of the package contacts.
従って、上記構成によれば、パッケージ下面での導電パターンと第 1、第 2の金属 板との間に容量が発生してコンデンサのような作用により、第 1、第 2の金属板間のパ スの容量を大きくしてしまいクロストークが増大する、といったトラブルが防止できるよう になる。  Therefore, according to the above configuration, a capacitance is generated between the conductive pattern on the lower surface of the package and the first and second metal plates, and by the action of a capacitor, the capacitance between the first and second metal plates is increased. Troubles such as an increase in crosstalk due to an increase in the capacitance of the source can be prevented.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の第 1の実施形態に係る光送受信モジュールの主に光学的構成を示す 縦断面図 FIG. 1 is a longitudinal sectional view mainly showing an optical configuration of an optical transceiver module according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態に係る光送受信モジュールの主に電気的な構成を示 す横断面図  FIG. 2 is a cross-sectional view mainly showing an electrical configuration of the optical transceiver module according to the first embodiment of the present invention.
[図 3]本発明の係る光送受信モジュールの第 1、第 2の金属板間の各種形状を示すも のであり、(A)は第 1の実施形態での形状を示す説明図、(B)— (E)はその変形例を 各種示す説明図  FIG. 3 shows various shapes between the first and second metal plates of the optical transceiver module according to the present invention, wherein (A) is an explanatory view showing the shape in the first embodiment, (B) — (E) is an explanatory diagram showing various modifications
[図 4]本発明の第 1の実施形態に係る光送受信モジュールにおける等価回路などを 示す説明図  FIG. 4 is an explanatory diagram showing an equivalent circuit and the like in the optical transceiver module according to the first embodiment of the present invention.
[図 5]本発明の第 1の実施形態に係る光送受信モジュールと従来の光送受信モジュ ールとにおけるクロストーク量の変化を示すグラフ  FIG. 5 is a graph showing a change in the amount of crosstalk between the optical transceiver module according to the first embodiment of the present invention and a conventional optical transceiver module.
[図 6]本発明の第 2の実施形態に係る光送受信モジュールの主に電気的な構成を示 す横断面図  FIG. 6 is a cross-sectional view mainly showing an electrical configuration of an optical transceiver module according to a second embodiment of the present invention.
[図 7]本発明の第 3の実施形態に係る光送受信モジュールの主に電気的な構成を示 す縦断面図  FIG. 7 is a longitudinal sectional view mainly showing an electrical configuration of an optical transceiver module according to a third embodiment of the present invention.
[図 8]本発明の第 4の実施形態に係る光送受信装置の実装基板におけるパターン配 線を示す概略斜視図  FIG. 8 is a schematic perspective view showing a pattern wiring on a mounting board of an optical transceiver according to a fourth embodiment of the present invention.
[図 9]本発明の第 4の実施形態に係る光送受信装置の原理を説明するために用いる 仮想等価回路図 [図 10]従来の光送受信モジュールの主に電気的な構成を示す横断面図 [図 11]従来の光送受信モジュールにおける等価回路などを示す説明図 FIG. 9 is a virtual equivalent circuit diagram used to explain the principle of an optical transceiver according to a fourth embodiment of the present invention. FIG. 10 is a cross-sectional view mainly showing an electrical configuration of a conventional optical transceiver module. FIG. 11 is an explanatory diagram showing an equivalent circuit and the like of the conventional optical transceiver module
符号の説明  Explanation of symbols
[0030] 1は光送受信モジュール、 10はパッケージ、 10Aは送受信室、 10Bは床面、 10C は側壁、 10Dは蓋、 10Eは底部、 10F、 10Gはスルーホール、 11は第1の金属板、 1 1Aは外部接続用金属、 12は第 2の金属板、 12Aは外部接続用金属、 13は第 1の基 板 (シリコン基板)、 14は第 2の基板 (ガラス基板)、 15は発光素子、 15Aはアノード 端子用電極、 16は受光素子、 16Aは力ソード端子用電極、 16Bはアノード端子用電 極、 17は光導波路、 17Aは第 1の光ファイバ、 17Bは第 2の光ファイバ、 171は波長 フィルタ、 18は複数のリード、 18A— 18Hは第 1リード一第 8リード、 181— 187は第 1のボンディングワイヤー第 7のボンディングワイヤ、 19はコンデンサ、  [0030] 1 is an optical transmitting and receiving module, 10 is a package, 10A is a transmitting and receiving room, 10B is a floor surface, 10C is a side wall, 10D is a lid, 10E is a bottom, 10F and 10G are through holes, 11 is a first metal plate, 1 1A is the external connection metal, 12 is the second metal plate, 12A is the external connection metal, 13 is the first substrate (silicon substrate), 14 is the second substrate (glass substrate), 15 is the light emitting element , 15A is an electrode for an anode terminal, 16 is a light receiving element, 16A is an electrode for a force source terminal, 16B is an electrode for an anode terminal, 17 is an optical waveguide, 17A is a first optical fiber, 17B is a second optical fiber, 171 is a wavelength filter, 18 is a plurality of leads, 18A-18H is a first lead and an eighth lead, 181-187 is a first bonding wire, a seventh bonding wire, 19 is a capacitor,
2は光送受信モジュール、 21はプリアンプ (前置増幅器)、 22は第 2のコンデンサ、 231— 236は第 8のボンディングワイヤー第 13のボンディングワイヤ、  2 is an optical transceiver module, 21 is a preamplifier (preamplifier), 22 is a second capacitor, 231—236 is an eighth bonding wire, 13th bonding wire,
3は光送受信モジュール、  3 is an optical transceiver module,
4は光送受信装置、 41は実装基板、 41Aは上面、 42はパターン配線、 C、 C、 C は容量、 L、 L、 L、 L、 L、 L はインダクタンス、  4 is an optical transceiver, 41 is a mounting board, 41A is an upper surface, 42 is a pattern wiring, C, C, C is a capacitance, L, L, L, L, L, L is an inductance,
1 2 12 A B C F G H  1 2 12 A B C F G H
aはパッケージ実装領域  a is the package mounting area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、本発明の実施の形態について、添付図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[第 1の実施形態]  [First Embodiment]
図 1及び図 2は、本発明の第 1の実施例に係る光送受信モジュールの構成を示す ものであり、この光送受信モジュール 1は、ノ ッケージ 10内部に、分離'独立して別個 に設けられた第 1の金属板 11及び第 2の金属板 12と、これらの金属板にそれぞれ設 けた第 1の基板 13及び第 2の基板 14と、第 1の基板 13に実装した発光素子 15と、第 2の基板 14に実装した受光素子 16と、光導波路 17と、複数のリード 18と、コンデン サ 19とを備えている。  FIGS. 1 and 2 show the configuration of an optical transceiver module according to a first embodiment of the present invention. The optical transceiver module 1 is provided separately and independently in a knocker 10. A first metal plate 11 and a second metal plate 12, a first substrate 13 and a second substrate 14 respectively provided on these metal plates, and a light emitting element 15 mounted on the first substrate 13. A light receiving element 16 mounted on the second substrate 14, an optical waveguide 17, a plurality of leads 18, and a capacitor 19 are provided.
[0032] パッケージ 10には、低コストィ匕を図るために適宜の榭脂材料で形成した榭脂パッケ ージを用いており、有底略箱型状に形成している。 また、このノ¾ /ケージ 10には、強度の向上および内部の光学素子および電気的素 子を保護するために、取り外し可能な蓋 10Dを備えている。この蓋 10Dは、パッケ一 ジ本体と同一榭脂材料で形成してもよ 、が、適宜の金属或 、はセラミックで形成して ノ ッケージの強度アップを図るようにしてもよ ヽ。 The package 10 uses a resin package formed of an appropriate resin material in order to reduce costs, and is formed in a substantially box-like shape with a bottom. The node / cage 10 is provided with a removable lid 10D for improving strength and protecting the internal optical elements and electric elements. The lid 10D may be formed of the same resin material as the package body, or may be formed of an appropriate metal or ceramic to increase the strength of the knockout.
[0033] また、このようなパッケージ 10に榭脂製のものを使用する場合には、一般に、ノッケ ージ自体に導電性がないため、図示しない外部のグランドと内部のグランドとの間に 発生する寄生インダクタンス L、 L (図 4参照)によって、ノ ッケージ 10内部のグラン [0033] In addition, when a resin-made package is used for such a package 10, generally, a knock is generated between an external ground (not shown) and an internal ground because the knock package itself is not conductive. The parasitic inductance L, L (see Fig. 4)
C H  C H
ド電位が高周波で変動してしまうおそれがある。  There is a possibility that the potential may fluctuate at a high frequency.
そこで、本実施形態では、後述するように、コンデンサ 19を追加して設置することに よってこのようなトラブルを回避させて!/、る。  Therefore, in the present embodiment, such a trouble is avoided by additionally installing the capacitor 19 as described later.
[0034] また、このノ¾ /ケージ 10は、内部に送受信室 10Aが形成されている。この送受信室[0034] In addition, the transmitter / receiver chamber 10A is formed inside the nozzle / cage 10. This transmitting and receiving room
10Aは、床面 10Bに内部グランドとしての機能を有する第 1及び第 2の金属板 11、 110A is a first and second metal plate 11, 1 having a function as an internal ground on the floor 10B.
2が固設されているとともに、側壁 10Cには後述の各リード 18が送受信室 10Aの内 外を貫通するような状態で (床面 10Bに略平行な)水平方向に植設されて!/、る。 なお、このパッケージ 10の外部には、前述の図示しないグランド (これを「外側ダラ ンド」とよぶ)が形成されており、第 1及び第 2のいずれの金属板 11、 12ともにリード 12 is fixed, and the leads 18 to be described later are planted in the horizontal direction (substantially parallel to the floor 10B) on the side wall 10C so as to pass through the inside and outside of the transmission / reception room 10A! / The ground (not shown) (referred to as “outer ground”) is formed outside the package 10. Both the first and second metal plates 11 and 12 have a lead 1.
8を介してそのグランドと接続されて 、る。 It is connected to its ground via 8.
[0035] 第 1及び第 2の金属板 11、 12は、この第 1及び第 2の金属板 11、 12間に発生する 容量 C を小さく抑えるために分離させてあり、いずれも所要の一定強度を発揮でき[0035] The first and second metal plates 11, 12 are separated so as to keep the capacity C generated between the first and second metal plates 11, 12 small. Can demonstrate
12 12
る厚さを有する金属導体、具体的には Cu合金、 Fe— Ni合金などで構成されており、 互いに対向する外周縁部(これを「対向縁部」とよぶ)がストレートな単純形状となるの を避けた形状に形成されて 、る。  Metal conductors with specific thicknesses, specifically Cu alloys, Fe-Ni alloys, etc., and the outer peripheral edges facing each other (referred to as “opposite edges”) have a simple straight shape. It is formed in a shape that avoids the problem.
また、この第 1及び第 2の金属板 11、 12の対向縁部は、本実施形態の場合、例え ばクランク状に曲折した形状を呈している。このため、ノ ッケージ 10には、双方の金 属板 11、 12の対向縁部の間(つまり、双方の金属板 11、 12の隙間部分)に対応す る送受信室 10Aの床面 10Bの略中央部には、(2つに破断されるおそれのある)強度 的に脆弱な部分が長く(大きく)形成されるのを回避できるようになつている。  In the present embodiment, the opposed edges of the first and second metal plates 11 and 12 have, for example, a shape bent in a crank shape. For this reason, the knockage 10 has a floor surface 10B of the transmission / reception room 10A corresponding to a space between the opposing edges of the metal plates 11 and 12 (that is, a gap between the metal plates 11 and 12). At the center, it is possible to avoid the formation of a long (large) part that is weak in strength (which may be broken into two).
[0036] 即ち、第 1及び第 2の金属板 11、 12の互いに隣接する対向縁部の形状は、図 2及 び図 3 (A)に示すような 2箇所のクランク部分で折曲する 3つの辺で構成されている。 これにより、金属板間のパッケージ 10の床面 (底部) 10Bに強度的に脆弱な部位、つ まり金属板が設置されて ヽな 、部位 (破断されやす 、部位)が直線的 (ストレート)に長 く形成されるのを回避できるようになって 、る。 [0036] That is, the shapes of the opposing edges of the first and second metal plates 11, 12 adjacent to each other are as shown in Figs. And three sides bent at two crank parts as shown in Fig. 3 (A). As a result, a portion that is weak in strength on the floor surface (bottom portion) 10B of the package 10 between the metal plates, that is, a portion where the metal plate is installed, is straight (straight). It can avoid being formed for a long time.
なお、この第 1及び第 2の金属板 11、 12の互いに隣接する対向縁部の形状は、勿 論、本実施形態のものに限定されるものではなぐ例えば図 3 (B)—(E)に示すような 各種の形状が適用可能である。但し、同図 (E)に示すようなアイランド状に孤立した 構成のものは、製造工法上困難であるので、あまり好ましくない。  The shapes of the opposing edges of the first and second metal plates 11 and 12 adjacent to each other are not limited to those of the present embodiment, for example, as shown in FIGS. 3 (B)-(E). Various shapes as shown in FIG. However, an island-shaped isolated structure as shown in FIG. 8E is not preferred because it is difficult in terms of manufacturing method.
[0037] 第 1の金属板 11には、上面に第 1の基板 13を搭載しているとともに、第 2の金属板 12は、上面に第 2の基板 14を搭載している。また、第 1の基板 13は、電気クロストー クを抑制するために高抵抗、例えば比抵抗値が少なくとも lk Ω 'cmを有する材料、 例えばシリコンで形成 (シリコン基板)されて 、る。  The first metal plate 11 has a first substrate 13 mounted on the upper surface, and the second metal plate 12 has a second substrate 14 mounted on the upper surface. Further, the first substrate 13 is formed of a material having a high resistance, for example, a specific resistance of at least lkΩ′cm, for example, silicon (silicon substrate) in order to suppress electric crosstalk.
一方、第 2の基板 14には、石英などの一般的なガラス材料で形成したガラス基板が 用いてある。また、この第 2の基板 14には、図 2に示すように、上下層を構成するガラ ス基板の間に、後述する光導波路 17が配設されている。特に、外部力も伝播してくる 光信号が、後述する波長フィルタ 171で反射された後、受光素子 16の受光部 161に 進行するまでの間、この第 2の基板 14内部を伝播するようになっているので、その光 信号をできるだけ効率的に伝播させるため、光減衰性の低 、材料で形成するのが好 ましい。なお、この光信号は、厳密には第 2の基板 14を透過後、ー且、空気中を伝播 して力 受光部 161に達する。  On the other hand, as the second substrate 14, a glass substrate formed of a general glass material such as quartz is used. Further, as shown in FIG. 2, the second substrate 14 is provided with an optical waveguide 17 described later between glass substrates constituting upper and lower layers. In particular, an optical signal that also propagates an external force propagates inside the second substrate 14 after being reflected by a wavelength filter 171 to be described later and before traveling to the light receiving section 161 of the light receiving element 16. Therefore, in order to propagate the optical signal as efficiently as possible, it is preferable that the optical signal is formed of a material with low optical attenuation. Note that, strictly speaking, this optical signal passes through the second substrate 14 and then propagates in the air to reach the force light receiving unit 161.
[0038] また、これら第 1の基板 13及び第 2の基板 14には、適宜の絶縁材料で形成した絶 縁膜を介してから、発光素子 15及び受光素子 16を実装するのが好ましい。そのため 、本実施形態の場合、第 1の基板 13であるシリコン基板には、上面に酸ィ匕シリコンな どの絶縁膜を設けている。但し、第 2の基板 14は、絶縁性の高いガラス基板であるの で、また前述の光信号が上面力 出射するので、上面に絶縁膜は設置していない。  It is preferable that the light emitting element 15 and the light receiving element 16 are mounted on the first substrate 13 and the second substrate 14 via an insulating film formed of an appropriate insulating material. Therefore, in the case of the present embodiment, the silicon substrate as the first substrate 13 is provided with an insulating film such as silicon oxide on the upper surface. However, since the second substrate 14 is a glass substrate having a high insulating property, and the above-mentioned optical signal is emitted from the upper surface, no insulating film is provided on the upper surface.
[0039] 発光素子 15は、波長依存性の高い波長フィルタ 171(後述する)を用いる都合上、 コヒーレントな光を出射する半導体レーザ (LD)が用いられており、本実施形態では 、波長が 1. 3 mの近赤外光を出射するようになっている。この半導体レーザ (LD) は、素子の上面 (アノード)から下面 (力ソード)に電流を流すことで近赤外光を発光 するようになつている。本実施形態では、後述する第 1リード 18Aから、第 1のボンディ ングワイヤ 181、第 1の基板 13上の発光素子 15のアノード端子用電極 15Aを通り、 発光素子 15下面に電流が流れるようになつている。また、発光素子 15上面から第 2 のボンディングワイヤ 182、第 2リード 18Bを通り、パッケージ 10外部から発光素子 15 を電流駆動することができるようになって 、る。 The light emitting element 15 uses a semiconductor laser (LD) that emits coherent light for the convenience of using a wavelength filter 171 (described later) having a high wavelength dependency. It is designed to emit 3 m near-infrared light. This semiconductor laser (LD) The device emits near-infrared light by passing a current from the upper surface (anode) to the lower surface (force sword) of the device. In the present embodiment, a current flows from the first lead 18A, which will be described later, through the first bonding wire 181 and the anode terminal electrode 15A of the light emitting element 15 on the first substrate 13 to the lower surface of the light emitting element 15. ing. Also, the light emitting element 15 can be driven from the outside of the package 10 through the second bonding wire 182 and the second lead 18B from the upper surface of the light emitting element 15.
なお、この発光素子 15には、本実施形態の半導体レーザに限定されるものではな ぐこれ以外に、例えば近距離通信のためには、発光ダイオード (LED)などを用いて ちょい。  The light emitting element 15 is not limited to the semiconductor laser according to the present embodiment, but may be a light emitting diode (LED) for short-distance communication, for example.
[0040] 受光素子 16は、通信相手力 送信されてくる光信号を受信して電気信号に変換さ せるものであり、本実施形態では、波長 1. 5 mの伝送光を受信すると、電気信号を 出力する PINフォトダイオード(PIN— PD)を用いており、図示外の結像レンズを介し て受光部 161に結像させるようになって!/、る。  [0040] The light receiving element 16 receives a transmitted optical signal and converts it into an electric signal. In the present embodiment, when a transmitted light having a wavelength of 1.5 m is received, the electric signal is transmitted. A PIN photodiode (PIN-PD) is used, and an image is formed on the light receiving unit 161 via an imaging lens (not shown).
この受光素子 16は、素子の下面に設けた力ソード (端子用電極 16A)が第 6、第 5 のボンディングワイヤ 186, 185及び第 6リード 18Fを介してパッケージ 10外部の図 示しない所定の電子回路に接続されている。同様に、この受光素子 16は、素子の下 面に設けたアノード端子が第 7のボンディングワイヤ 187及び第 7リード 18Gを介して ノッケージ 10外部の図示しな 、所定の電子回路に接続されて 、る。  In this light receiving element 16, a force electrode (terminal electrode 16A) provided on the lower surface of the element is provided with predetermined electrons (not shown) outside the package 10 via sixth and fifth bonding wires 186, 185 and a sixth lead 18F. Connected to the circuit. Similarly, in the light receiving element 16, an anode terminal provided on the lower surface of the element is connected to a predetermined electronic circuit (not shown) outside the knocker 10 via a seventh bonding wire 187 and a seventh lead 18G. You.
[0041] 従って、この受光素子 16は、力ソード端子とアノード端子に電圧をかけることで、通 信相手側からの光信号を受光した時に、力ソード端子力 アノード端子方向に向けて 電流が流れ、受光した光レベルに応じて電流量が変化するようになっている。これに より、相手側カゝら送信された光信号を電気的信号に変換させている。  Accordingly, the light receiving element 16 applies a voltage to the force source terminal and the anode terminal, so that when an optical signal is received from a communication partner, a current flows toward the force source terminal and the anode terminal. The current amount changes according to the received light level. As a result, the optical signal transmitted from the other party is converted into an electrical signal.
なお、この受光素子 16には、本実施形態のような PINフォトダイオード(PIN— PD) に限定されるものではなぐアバランシェフオトダイオード (APD)などのフォトダイォー ドを用いてもよい。  The light receiving element 16 may be a photodiode such as an avalanche photodiode (APD), which is not limited to the PIN photodiode (PIN-PD) as in the present embodiment.
[0042] 光導波路 17は、発光素子 15及び受光素子 16をそれぞれ光学的に結合させるもの であり、本実施形態では光ファイバが使用されている。この光ファイバには、本実施 形態の場合、比較的遠隔地との通信を行うために石英ガラスなどで形成したシング ルモード (SM)型のものが使用されており、使用する波長帯として、送信用には 1. 3 m、受信用には 1. 5 mが用いられている。 [0042] The optical waveguide 17 optically couples the light emitting element 15 and the light receiving element 16, respectively. In the present embodiment, an optical fiber is used. In the case of the present embodiment, the optical fiber has a single-piece made of quartz glass or the like for communication with a relatively remote place. Mode (SM) type is used, and the wavelength band used is 1.3 m for transmission and 1.5 m for reception.
[0043] また、この光導波路 17として、光ファイバを使用する場合、比較的近距離の場合に は、 PMMA (ポリメチルメタアタリレート)などのプラスチック材料を用いた光ファイバ( POF)を使用してもよぐその場合に使用する光の波長としては、近赤外光よりも伝送 効率の良好な短波長帯域 (可視光域)のもの、例えば波長が 0. 6 μ m— 0. 8 m帯 のものなどが好ましい。  When an optical fiber is used as the optical waveguide 17, an optical fiber (POF) using a plastic material such as PMMA (polymethyl methacrylate) is used for a relatively short distance. In this case, the wavelength of the light used in the short wavelength band (visible light range) with better transmission efficiency than near-infrared light, for example, the wavelength is 0.6 μm—0.8 m Strips are preferred.
なお、この光ファイバには、特にこのシングルモードに限定されるものではなぐ例 えばステップインデックス(SI)型、グレーテッドインデックス(GI)型などのマルチモー ド光ファイバなどであってもよ 、。  The optical fiber is not particularly limited to the single mode, but may be a multi-mode optical fiber such as a step index (SI) type or a graded index (GI) type.
[0044] また、この光導波路 17としては、本実施形態のような光ファイバではなぐ例えば 2 次元的に光を閉じ込めるプレーナ一光導波路や、 3次元的路線に光を閉じ込めるチ ヤンネル光導波路などを用いてもょ 、。  As the optical waveguide 17, for example, a planar optical waveguide for confining light two-dimensionally, a channel optical waveguide for confining light in a three-dimensional line, etc., instead of the optical fiber as in the present embodiment, are used. You can use it.
[0045] さらに、この光導波路 17には、通信相手からの所定波長の光信号を取り出すため に、波長フィルタ 171が第 2の基板 14内部に埋設させた状態で所定の位置に設置さ れている。この波長フィルタ 171は、発光素子 15から通信相手へ伝送させる波長 1. 3 μ mの光信号を透過させるとともに、通信相手側から伝送されてくる波長 1. 5 m の光信号を選択的に受光させるようにするため、波長依存性を有する選択的な反射 手段として誘電体多層膜を用いた多層膜干渉フィルタで構成している。なお、この光 導波路 17には、光導波路に対して適正な所定の角度に傾斜した状態で設置されて いる。  Further, in order to extract an optical signal of a predetermined wavelength from a communication partner, a wavelength filter 171 is installed at a predetermined position in the optical waveguide 17 while being buried inside the second substrate 14. I have. The wavelength filter 171 transmits an optical signal having a wavelength of 1.3 μm transmitted from the light emitting element 15 to the communication partner and selectively receives an optical signal having a wavelength of 1.5 m transmitted from the communication partner. In order to achieve this, a multilayer interference filter using a dielectric multilayer film is used as selective reflection means having wavelength dependence. The optical waveguide 17 is installed in a state where the optical waveguide 17 is inclined at an appropriate predetermined angle with respect to the optical waveguide.
[0046] リード 18は、発光素子 15および受光素子 16の各電極とパッケージ 10外部側との 電気的な接続を図るものであり、第 1リード 18A—第 8リード 18Hで構成されている。 このうち、第 1リード 18Aは、発光素子 15のアノード (端子用電極 15A)とパッケージ 10外部の所定の部位とを接続させるものであり、第 1のボンディングワイヤ 181を介し て接続するようになっている。この第 1のボンディングワイヤ 181は、後述する第 2のボ ンデイングワイヤ 182—第 7のボンディングワイヤ 187と同様に、金線 (又はアルミ線) を用いてワイヤボンディングにより配線させて!/、る。 [0047] 第 2リード 18Bは、第 2のボンディングワイヤ 182を介して、発光素子 15の上面側と ノ ッケージ 10の外部側とを電気的に接続させるものであり、ノ ッケージ 10の外部か ら発光素子 15を電流駆動するようになっている。 The leads 18 serve to electrically connect the electrodes of the light emitting element 15 and the light receiving element 16 to the outside of the package 10, and are composed of a first lead 18A to an eighth lead 18H. Of these, the first lead 18A connects the anode (terminal electrode 15A) of the light emitting element 15 to a predetermined portion outside the package 10, and is connected via the first bonding wire 181. ing. This first bonding wire 181 is formed by wire bonding using a gold wire (or an aluminum wire) like the second bonding wire 182 to the seventh bonding wire 187 described later! / [0047] The second lead 18B electrically connects the upper surface of the light emitting element 15 to the outside of the knockout 10 via the second bonding wire 182, and is connected to the outside of the knockout 10 from outside. The light emitting element 15 is driven by current.
[0048] 第 3リード 18Cは、第 1の金属板 11と導通しており、この第 1の金属板 11の電位変 動を抑えるため、この第 1の金属板 11とパッケージ 10の外部の図示外のグランドとを 接続させている。 [0048] The third lead 18C is electrically connected to the first metal plate 11, and the first metal plate 11 and the outside of the package 10 are illustrated in order to suppress fluctuations in the potential of the first metal plate 11. Connected to outside ground.
[0049] 第 4リード 18Dおよび第 5リード 18Eは、予備の端子であり、図 2ではボンディングヮ ィャ 183および 184を介し、第 1の金属板 11と図示外のグランドとを接続している。  [0049] The fourth lead 18D and the fifth lead 18E are spare terminals, and connect the first metal plate 11 and a ground (not shown) via bonding wires 183 and 184 in Fig. 2.
[0050] 第 6リード 18Fは、第 5のボンディングワイヤ 185、第 6のボンディングワイヤ 186、ガ ラス基板 14上の受光素子 16の力ソード (端子用電極 16A)を通じて、受光素子 16の 図示しない力ソード端子と、パッケージ 10外部の直流電圧源とを電気的に接続させ ている。  [0050] The sixth lead 18F is connected to the fifth bonding wire 185, the sixth bonding wire 186, and the force source (terminal electrode 16A) of the light receiving element 16 on the glass substrate 14 to force the light receiving element 16 (not shown). The sword terminal is electrically connected to a DC voltage source outside the package 10.
[0051] 第 7リード 18Gは、ガラス基板 14上の受光素子 16のアノード端子用電極 16B、第 7 のボンディングワイヤ 187を通じて、受光素子 16の図示しないアノード端子と、パッケ ージ外部のアンプ等とを電気的に接続させている。これにより、ノ¾ /ケージ 10外部か ら第 6リード 18F及び第 7リード 18G間に電圧を印加することで、受光素子 16は、外 部の通信相手力 光信号を受信した時に、光信号レベルに応じた受光電流を得るこ とができるようになって!/、る。  The seventh lead 18 G is connected to an anode terminal (not shown) of the light receiving element 16 and an amplifier outside the package through the anode terminal electrode 16 B of the light receiving element 16 on the glass substrate 14 and the seventh bonding wire 187. Are electrically connected. Thus, by applying a voltage between the sixth lead 18F and the seventh lead 18G from outside the node / cage 10, the light receiving element 16 can detect the optical signal level when the external communication partner power optical signal is received. It is now possible to obtain a light receiving current according to!
[0052] 第 8リード 18Hは、第 2の金属板 12と電気的に導通しており、この第 2の金属板 12 の電位変動を抑えるため、パッケージ 10外部の図示外のグランドと接続されている。  [0052] The eighth lead 18H is electrically connected to the second metal plate 12, and is connected to a ground (not shown) outside the package 10 in order to suppress potential fluctuation of the second metal plate 12. I have.
[0053] コンデンサ 19は、受光素子 16の力ソード (端子用電極 16A)側において表裏で所 要の容量を形成するものであり、例えばチップコンデンサなどが用いられている。この コンデンサ 19は、裏面を金属板 12及び第 6リード 18Fを通じてパッケージ 10外部の 図示外のグランドに接続させることで、受光素子 16の力ソード (端子用電極 16A)の 電位を高周波的に安定させるようになっており、表面は受光素子の力ソード (端子用 電極 16A)と第 6のボンディングワイヤ 186で接続されている。  The capacitor 19 forms the required capacitance on the front and back sides on the force source (terminal electrode 16A) side of the light receiving element 16, and for example, a chip capacitor or the like is used. The capacitor 19 has a rear surface connected to a ground (not shown) outside the package 10 through the metal plate 12 and the sixth lead 18F, thereby stabilizing the potential of the power source (terminal electrode 16A) of the light receiving element 16 at a high frequency. The surface is connected to a force source (terminal electrode 16A) of the light receiving element by a sixth bonding wire 186.
[0054] なお、本実施形態の光送受信モジュール 1の光学系は、従来のものと同じ構成であ り、前述したように、図 1において、第 2の基板 14内部に第 1の光ファイバ 17A及び第 2の光ファイバ 17Bの各一端部が波長フィルタ 171を挟んで配置されている。 The optical system of the optical transceiver module 1 of the present embodiment has the same configuration as that of the conventional one, and as described above, in FIG. And the first One end of each of the second optical fibers 17B is disposed with the wavelength filter 171 interposed therebetween.
このうち、第 1の光ファイバ 17Aの他端は、発光素子 15の発光面と近接させることで 、発光素子 15から発光される光信号を直接第 1のファイバ 17Aに直接入光させるか 、適宜の光学素子、例えば非等方的な発光パターンである LDを発光素子 15とする 本実施形態の場合、図示しな 、球レンズやロッドレンズなどを有する LDモジュール などを介して発光素子 15と同軸上に配置させてもよい。一方、第 2の光ファイバ 17B の他端は、ノ ッケージ 10の外部光インターフェイスとなる。  Of these, by bringing the other end of the first optical fiber 17A close to the light emitting surface of the light emitting element 15, an optical signal emitted from the light emitting element 15 can be directly incident on the first fiber 17A, or appropriately. In this embodiment, an optical element such as an LD having an anisotropic light-emitting pattern is used as the light-emitting element 15. It may be arranged above. On the other hand, the other end of the second optical fiber 17B becomes an external optical interface of the knockout 10.
なお、発光素子 15として略等方的な発光パターンである LEDを使用する場合、こ の発光素子 15と第 1の光ファイバ 17Aとの間に、例えばマイクロレンズを配設し、発 光源の像をコア径の中に絞り込ませて結合効率を高めるようにすればょ 、。  When an LED having a substantially isotropic light-emitting pattern is used as the light-emitting element 15, for example, a microlens is provided between the light-emitting element 15 and the first optical fiber 17A, and an image of the light source is obtained. Should be narrowed down to the core diameter to increase the coupling efficiency.
[0055] 従って、第 1の光ファイバ 17Aを通じて外部力 入力された光信号は、波長フィルタ 171で反射し、受光素子 16の受光部 161で光信号を受信する。一方、発光素子 15 力も出力された光信号は、第 1の光ファイバ 17A内部を伝播し、波長フィルタ 171を 通過して、第 2の光ファイバ 17B内部を伝播して光送受信モジュール 1外部へ出力さ れるようになっている。 Therefore, the optical signal input externally through the first optical fiber 17A is reflected by the wavelength filter 171 and received by the light receiving section 161 of the light receiving element 16. On the other hand, the optical signal from which the power of the light emitting element 15 is also output propagates inside the first optical fiber 17A, passes through the wavelength filter 171 and propagates inside the second optical fiber 17B, and is output to the outside of the optical transceiver module 1. Is to be done.
[0056] 次に、図 4に本発明の第 1の実施形態に係る光送受信モジュール 1の回路等価モ デルを示す。  Next, FIG. 4 shows a circuit equivalent model of the optical transceiver module 1 according to the first embodiment of the present invention.
図 1に示す発光素子 15のアノード端子、力ソード端子側には、第 1、第 2のボンディ ングワイヤ 181、 182等に寄生インダクタンス L 、 L (図 4参照)がある。このため、高  On the anode terminal and force source terminal side of the light emitting element 15 shown in FIG. 1, there are parasitic inductances L and L (see FIG. 4) on the first and second bonding wires 181 and 182 and the like. For this reason,
A B  A B
周波信号を含んだ電流で発光素子 15を駆動した場合、発光素子 15のアノード端子 の電位も高周波信号で変動する。そして、この発光素子 15のアノード端子電位の高 周波信号による変動は、発光素子 15のアノード端子用電極 15A (図 2参照)から、第 1の基板 13であるシリコン基板を通じて第 1の金属板 11へと伝播される。  When the light emitting element 15 is driven by a current including a frequency signal, the potential of the anode terminal of the light emitting element 15 also fluctuates with the high frequency signal. The fluctuation of the anode terminal potential of the light emitting element 15 due to the high frequency signal is caused by the anode terminal electrode 15A of the light emitting element 15 (see FIG. 2) through the silicon substrate as the first substrate 13 through the first metal plate 11. Propagated to
[0057] シリコン基板である第 1の基板 13は、図 4に示すように、コンデンサと抵抗によって モデルィ匕できるが、シリコン基板を高抵抗 (比抵抗値が lk Ω 'cm以上)とすることで、 高周波信号による (発光素子 15側の)アノード端子の電位変動が第 1の金属板 11へ 伝播する量は小さくなる。 As shown in FIG. 4, the first substrate 13 which is a silicon substrate can be modeled by a capacitor and a resistor. However, by setting the silicon substrate to have a high resistance (specific resistance is equal to or more than lkΩ′cm). However, the amount by which the potential change of the anode terminal (on the light emitting element 15 side) due to the high frequency signal propagates to the first metal plate 11 is reduced.
一方、第 1の金属板 11は、第 3のリード 18Cで外部グランドと接続されており、受光 素子 16側のアノード端子の電位の変動量を抑えることができる。第 1の金属板 11と 第 2の金属板 12間には容量 C が発生するが、第 1の金属板 11と第 2の金属板 12の On the other hand, the first metal plate 11 is connected to the external ground by the third lead 18C, The amount of change in the potential of the anode terminal on the element 16 side can be suppressed. A capacitance C is generated between the first metal plate 11 and the second metal plate 12, but the capacitance C is generated between the first metal plate 11 and the second metal plate 12.
12  12
間隔を 0. 5— lmm程度あけることで、非常に小さな容量 (C )となる。その結果、金  A very small capacitance (C) can be obtained by leaving a space of about 0.5-lmm. As a result, gold
12  12
属板が共通な場合と比較し、第 2の金属板 12での電位変動はさらに抑えられる。  As compared with the case where the metal plates are common, the potential fluctuation in the second metal plate 12 is further suppressed.
[0058] 第 2の金属板 12は、第 8リード 18Hにて外部グランドと接続されているため、発光素 子 15側力もの高周波信号に起因した電位の変動は小さくなり、受光素子 16のカソー ド (端子用電極 16A)と第 2の金属板 12との間にコンデンサ 19を追加しても、受光素 子 16の力ソード端子の変動は微々たるものとなる。 [0058] Since the second metal plate 12 is connected to the external ground via the eighth lead 18H, the fluctuation of the potential due to the high frequency signal of the light emitting element 15 is small, and the cathode of the light receiving element 16 is reduced. Even if a capacitor 19 is added between the electrode (terminal electrode 16A) and the second metal plate 12, the force source terminal of the light receiving element 16 fluctuates only slightly.
[0059] このように、本実施形態では、第 1の基板 13であるシリコン基板の抵抗値を大きくす るとともに、金属板を第 1、第 2の金属板 11、 12に分離し、第 1、第 2の金属板 11、 12 のそれぞれを外部グランドに接続している。従って、発光素子 15のアノード端子の電 位変動から漏洩する高周波信号による受光素子 16の力ソード端子の電位変動、す なわち電気クロストークを極めて小さくできる。また、受光素子 16の力ソード端子には 、コンデンサ 19を第 2の金属板 12との間に配置しているため、受光素子 16の高周波 特性も良好となる。 As described above, in the present embodiment, the resistance value of the silicon substrate as the first substrate 13 is increased, and the metal plate is separated into the first and second metal plates 11 and 12, so that the first Each of the second metal plates 11 and 12 is connected to an external ground. Therefore, the potential fluctuation of the force source terminal of the light receiving element 16 due to the high-frequency signal leaking from the potential fluctuation of the anode terminal of the light emitting element 15, that is, electric crosstalk can be extremely reduced. Further, since the capacitor 19 is disposed between the force source terminal of the light receiving element 16 and the second metal plate 12, the high frequency characteristics of the light receiving element 16 are also improved.
[0060] 次に、従来の光送受信モジュールにおいて受光素子の力ソード端子側にコンデン サを追加して接続した場合 (比較例)と、本実施形態に係る光送受信モジュール 1の 場合とについて、発生する電気クロストークをシミュレーションで求めた結果を、図 5に 示す。なお、同図において、横軸が周波数 (GHz)、縦軸が電気クロストーク量 (dB) であり、クロストーク量の数値が小さ!/、(絶対値が大き 、;)ほど好ま 、。  Next, in the conventional optical transmitting and receiving module, the case where a capacitor is added and connected to the force source terminal side of the light receiving element (comparative example) and the case of the optical transmitting and receiving module 1 according to the present embodiment occur. Fig. 5 shows the results of the simulation of the electrical crosstalk to be performed. In the figure, the horizontal axis represents the frequency (GHz), and the vertical axis represents the electric crosstalk amount (dB), and the numerical value of the crosstalk amount is small! /, (The absolute value is large,;).
同図から、従来および本実施形態のどちらのものも、周波数が高くなるにつれて電 気クロストーク量は大きくなることがわ力つた力 特に本発明の双方向光モジュールで は、いずれの周波数帯についても電気クロストーク量が大きく改善されている、との知 見が得られた。  From the figure, it can be seen that the electric crosstalk amount increases as the frequency increases in both the conventional and the present embodiments. Also found that the amount of electric crosstalk was greatly improved.
[0061] 以上のように、本実施形態に係る光送受信モジュール 1の構成によれば、受光素子 16の力ソード端子にグランドへ接続するコンデンサ 19をパッケージ 10内部に設ける ことで、高周波特性を改善しつつ、発光素子 15のアノード端子力も受光素子 16の力 ソード端子へのクロストークを抑えることができる。 さらに、本実施形態に係る光送受信モジュール 1の構成によれば、分離'独立した 第 1及び第 2の金属板 11、 12の互いに隣接する対向縁部(辺)どうしを略平行で、か つ、凹凸となるクランク状に形成している。従って、ノ¾ケージ 10として比較的脆弱な 榭脂パッケージ等を用いた場合であっても、光送受信モジュール 1の曲げ強度が低 下することが効果的に抑止できる。さらにパッケージ 10の蓋 10D (図 1参照)をセラミツ クもしくは金属とすることで、さらに一層曲げ強度を向上させることができる。 As described above, according to the configuration of the optical transmitting and receiving module 1 according to the present embodiment, the capacitor 19 connected to the ground at the force source terminal of the light receiving element 16 is provided inside the package 10 to improve the high-frequency characteristics. In addition, the anode terminal force of the light emitting element 15 can also suppress the crosstalk to the force terminal of the light receiving element 16. Furthermore, according to the configuration of the optical transmitting and receiving module 1 according to the present embodiment, the opposing edges (sides) of the separated and independent first and second metal plates 11 and 12 are substantially parallel to each other. , Formed in a crank shape with irregularities. Therefore, even when a relatively fragile resin package or the like is used as the cage 10, a decrease in the bending strength of the optical transceiver module 1 can be effectively suppressed. Further, the bending strength can be further improved by using ceramic or metal for the lid 10D of the package 10 (see FIG. 1).
[0062] [第 2の実施形態] [Second Embodiment]
次に、本発明の第 2の実施形態について、図 6を参照しながら説明する。なお、本 実施形態において、第 1の実施形態と同一部分には同一符号を付して重複説明を 避ける。  Next, a second embodiment of the present invention will be described with reference to FIG. Note that, in the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description will be avoided.
図 6は本発明の第 2の実施形態に係る光送受信モジュール 2の構成を示すもので あり、この光送受信モジュール 2は、第 1の実施形態に係る光送受信モジュール 1と 同様の構成において、第 2の金属板 12の上にプリアンプ (前置増幅器) 21及び第 2 のコンデンサ 22を追加して設置して!/、る。  FIG. 6 shows a configuration of an optical transceiver module 2 according to a second embodiment of the present invention. This optical transceiver module 2 has the same configuration as the optical transceiver module 1 according to the first embodiment. A preamplifier (preamplifier) 21 and a second capacitor 22 are additionally installed on the second metal plate 12 !!
[0063] このプリアンプ 21は、増幅度を高めるためのものであり、このプリアンプ 21の図示し ない (受光素子 16の力ソードとの接続用である)端子と、受光素子 16の力ソード (端 子用電極 16A)と力 第 6のボンディングワイヤ 186及び第 8のボンディングワイヤ 23 1を介して電気的に接続されている。また、プリアンプ 21の図示しない(受光素子 16 のアノードとの接続用である)端子と、受光素子 16のアノード端子 (アノード端子用電 極 16B)と力 第 9のボンディングワイヤ 232を介して電気的に接続されている。  [0063] The preamplifier 21 is for increasing the degree of amplification, and a terminal (not shown) of the preamplifier 21 (for connection to the power source of the light receiving element 16) and a power source (terminal) The child electrode 16A) is electrically connected to the force via the sixth bonding wire 186 and the eighth bonding wire 231. In addition, a terminal (not shown) of the preamplifier 21 (for connection to the anode of the light receiving element 16) and an anode terminal of the light receiving element 16 (electrode 16B for anode terminal) are electrically connected to the preamplifier 21 via the ninth bonding wire 232. It is connected to the.
[0064] また、本実施形態のプリアンプ 21は、受光素子 16が出力する光入力強度に応じた 光電流を増幅し、差動信号に変換する増幅器であって 2出力を有しており、一方は 第 12のボンディングワイヤ 235と第 6リード 18Fから出力され、もう一方は第 13のボン デイングワイヤ 236及び第 7リード 18Gから出力されるように構成されている。なお、プ リアンプ 21への電源供給は、第 8リード 18H、第 10のボンディングワイヤ 233及び第 11のボンディングワイヤ 234を介して行われる。  The preamplifier 21 of the present embodiment is an amplifier that amplifies a photocurrent according to the optical input intensity output from the light receiving element 16 and converts the photocurrent into a differential signal, and has two outputs. Is output from the twelfth bonding wire 235 and the sixth lead 18F, and the other is output from the thirteenth bonding wire 236 and the seventh lead 18G. The power supply to the preamplifier 21 is performed via the eighth lead 18H, the tenth bonding wire 233, and the eleventh bonding wire 234.
[0065] 第 2のコンデンサ 22は、受光素子 16へ供給する電源電位の安定化のために設置 されており、受光素子 16の力ソード (端子用電極 16A)に接続する第 6のボンディン グワイヤ 186と第 2の金属板 12との間に設けている。 [0065] The second capacitor 22 is provided for stabilizing the power supply potential supplied to the light receiving element 16, and is connected to a force source (terminal electrode 16A) of the light receiving element 16 by a sixth bond. It is provided between the wire 186 and the second metal plate 12.
[0066] 従って、この第 2の実施形態に係る光送受信モジュール 2によれば、第 1の実施形 態に係る光送受信モジュール 1と同様に、受光素子 16の力ソード端子へのクロストー クを低減できる。さらに、本実施形態によれば、プリアンプ 21をパッケージ 10の送受 信室 10Aに内蔵することで、第 1の実施形態のものと比較して、高周波特性がさらに 改善されるようになり、振幅の大きな信号を出力することができる。  Therefore, according to the optical transmitting and receiving module 2 according to the second embodiment, crosstalk to the force source terminal of the light receiving element 16 is reduced as in the optical transmitting and receiving module 1 according to the first embodiment. it can. Furthermore, according to the present embodiment, by incorporating the preamplifier 21 in the transmitting / receiving room 10A of the package 10, the high-frequency characteristics are further improved as compared with the first embodiment, and the amplitude is reduced. A large signal can be output.
[0067] [第 3の実施形態]  [Third Embodiment]
次に、本発明の第 3の実施形態について、図 6を参照しながら説明する。なお、本 実施形態において、第 1の実施形態と同一部分には同一符号を付して重複説明を 避ける。  Next, a third embodiment of the present invention will be described with reference to FIG. Note that, in the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description will be avoided.
図 7は本発明の第 3の実施形態に係る光送受信モジュール 3の構成を示すもので あり、この第 3の実施形態に係る光送受信モジュール 3は、第 1の実施形態における 光モジュール 1と同一構成のものにおいて、第 1の金属板 11の下面にパッケージ 10 の底部 10Eを貫通して設けたスルーホール 10Fと、このスルーホール 10Fに設けた 導電性の外部接続用金属 11 Aと、第 2の金属板 12の下面にパッケージ 10を貫通し て設けたスルーホール 10Gと、このスルーホール 10Gに設けた導電性の外部接続用 金属 12Aとをさらに有する点が異なる。  FIG. 7 shows a configuration of an optical transceiver module 3 according to the third embodiment of the present invention. The optical transceiver module 3 according to the third embodiment is the same as the optical module 1 according to the first embodiment. In the configuration, a through hole 10F provided through the bottom 10E of the package 10 on the lower surface of the first metal plate 11, a conductive external connection metal 11A provided in the through hole 10F, and a second The difference is that a through hole 10G provided through the package 10 on the lower surface of the metal plate 12 and a conductive external connection metal 12A provided in the through hole 10G are further provided.
[0068] 第 1の金属板 11と外部接続用金属 11Aは、それぞれ一体化した金属か、電気的に 接続されている。同様に、第 2の金属板 12と外部接続用金属 12Aも、それぞれ一体 化した金属か、電気的に接続されている。  [0068] The first metal plate 11 and the external connection metal 11A are each integrated metal or are electrically connected. Similarly, the second metal plate 12 and the external connection metal 12A are also integrated metal or electrically connected.
[0069] 従って、前述のような外部接続用金属 11 A、 12Aを通じてパッケージ 10外部のダラ ンドと接続することで、第 1の金属板 11及び第 2金属板 12のクロストークによる電位 変動をさらに効果的に抑えることができ、電気クロストークを一層低減させることがで きる。  [0069] Therefore, by connecting to the outside of the package 10 through the external connection metals 11A and 12A as described above, potential fluctuation due to crosstalk between the first metal plate 11 and the second metal plate 12 is further reduced. This can be effectively suppressed, and electric crosstalk can be further reduced.
[0070] [第 4の実施形態]  [Fourth Embodiment]
次に、本発明の光送受信装置について、図 8を参照しながら説明する。 図 8は、本発明の実施形態に係る光送受信装置 4を示すものであり、この光送受信 装置 4は、上面 41Aに所定のパターン配線 42が設けられた実装基板 41と、この実装 基板 41の表面 (上面) 41Aに実装された第 1一第 3の実施形態で用いた光送受信モ ジュール 1一 3の!、ずれかを備えて 、る。 Next, an optical transmitting / receiving device of the present invention will be described with reference to FIG. FIG. 8 shows an optical transmitting / receiving device 4 according to an embodiment of the present invention. The optical transmitting / receiving device 4 includes a mounting substrate 41 having a predetermined pattern wiring 42 provided on an upper surface 41A, and The optical transmission / reception module 113 used in the first to third embodiments mounted on the surface (upper surface) 41A of the substrate 41 is provided with a gap or a gap.
[0071] 光送受信モジュールを実装させる実装基板 41には、前述したように、第 1一第 3の 実施形態で用いた光送受信モジュール 1一 3の 、ずれかを実装するように構成して いるが、特に実装基板 41の表面(上面) 41 Aにおいて、これら光送受信モジュール 1 一 3のパッケージ 10裏面と接する領域(図 8ではハッチングで示す領域(以下、これを 「パッケージ実装領域」とよぶ)) aには導電パターンを設けない (これを「欠損パター ン」とよぶ)ように構成して 、る。  As described above, the mounting substrate 41 on which the optical transmitting / receiving module is mounted is configured to mount any one of the optical transmitting / receiving modules 113 used in the first to third embodiments. However, in particular, on the front surface (upper surface) 41 A of the mounting substrate 41, a region in contact with the back surface of the package 10 of these optical transceiver modules 13 (the region indicated by hatching in FIG. 8 (hereinafter referred to as “package mounting region”)) A) The conductive pattern is not provided on a (this is called “defect pattern”).
[0072] このように、本発明の光送受信装置 4では、パッケージ実装領域 aにパターン配線 42を設けな ヽ (欠損パターン)ようになって!/、るが、この理由につ 、て以下に説明す る。  As described above, in the optical transmitting / receiving device 4 of the present invention, the pattern wiring 42 is not provided in the package mounting area a (deletion pattern)! /, But the reason is as follows. explain.
本実施形態とは異なり、仮に、実装基板 41の表面 (上面)のパッケージ実装領域 α にもパターン配線 42を設ける (欠損パターンとしな 、)構成とした場合の等価回路モ デノレを、図 9に示す。  Unlike the present embodiment, FIG. 9 shows an equivalent circuit model in a case where a pattern wiring 42 is provided (not a missing pattern) also in the package mounting area α on the surface (upper surface) of the mounting board 41. Show.
[0073] この場合も、本実施形態の場合も同様である力 光送受信モジュール 1 (又は 2, 3) のパッケージ 10は、榭脂で形成されており物性的には誘電体を構成している。一方 、 ノッケージ実装領域ひを欠損パターンとしないときの実装基板 41の表面 (上面) 41 Αには、ノ ッケージ 10直下にもパターン配線を有しているので、第 1の金属板 11と実 装基板 41上のパターン配線との間に容量 Cが発生してしまう。同様に、第 2の金属 板 12とパッケージ 10直下の実装基板 41上のパターン配線との間にも、容量 Cが発  In this case, the package 10 of the optical transmitter / receiver module 1 (or 2, 3) is the same as that of the present embodiment. The package 10 is made of resin and physically constitutes a dielectric. . On the other hand, since the surface (upper surface) 41Α of the mounting board 41 when the knocking mounting area is not used as a missing pattern has a pattern wiring just under the knocking 10, the first metal plate 11 is mounted. The capacitance C is generated between the wiring and the pattern wiring on the substrate 41. Similarly, a capacitance C is also generated between the second metal plate 12 and the pattern wiring on the mounting board 41 immediately below the package 10.
2 生する。  2 to produce.
このため、欠損パターンでない場合には、図 9に示すように、第 1の金属板 11と第 2 の金属板 12との間に容量接続が発生してしまう。その結果、そこで電気クロストーク を拡大してしまうこととなる。  For this reason, if the pattern is not a defective pattern, a capacitance connection occurs between the first metal plate 11 and the second metal plate 12, as shown in FIG. As a result, the electric crosstalk is enlarged.
[0074] 一方、本発明の第 4の実施形態に係る光送受信装置 4では、光送受信モジュール 1 (又は 2、 3)のパッケージ実装領域 aである光送受信モジュールのパッケージ 10直 下において導電パターンを設けない。従って、前述のような容量 C及び Cの発生が On the other hand, in the optical transmitting and receiving device 4 according to the fourth embodiment of the present invention, the conductive pattern is formed just under the package 10 of the optical transmitting and receiving module which is the package mounting area a of the optical transmitting and receiving module 1 (or 2, 3). Not provided. Therefore, the generation of capacitances C and C as described above
1 2 回避できるので、電気クロストークが大きくなることを抑止することができる。 [0075] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 1 2 Since it can be avoided, it is possible to suppress an increase in electric crosstalk. Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
本出願は、 2004年 1月 15日出願の日本特許出願 (特願 2004— 008118)に基づ くものであり、その内容はここに参照として取り込まれる。  This application is based on Japanese Patent Application (No. 2004-008118) filed on Jan. 15, 2004, the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0076] 本発明によれば、榭脂パッケージ内部で発光素子を実装する第 1の基板を搭載す る第 1の金属板と、受光素子を配置する第 2の基板を搭載する第 2の金属板とをそれ ぞれ分離'独立して設けており、寄生容量を小さくすることができるので、発光素子を 高周波信号で電流駆動する際、高周波特性を改善しつつ、高周波信号の一部が受 光素子の端子に電位変動をもたらす電気クロストークを抑圧することができる効果を 有し、光送受信モジュール及びこれを備えた光送受信装置などに有用である。 According to the present invention, the first metal plate on which the first substrate for mounting the light emitting element is mounted inside the resin package, and the second metal on which the second substrate on which the light receiving element is mounted are mounted The board and the board are separated and independently provided, and the parasitic capacitance can be reduced, so when driving a light emitting element with a high frequency signal, a part of the high frequency signal is received while improving the high frequency characteristics. It has the effect of suppressing electric crosstalk that causes potential fluctuations in the terminals of the optical element, and is useful for an optical transceiver module and an optical transceiver equipped with the same.

Claims

請求の範囲 The scope of the claims
[1] 内部に送受信室を設けた略箱状のパッケージと、  [1] A substantially box-shaped package with a transmitting and receiving room inside,
このノ ケージの前記送受信室に互いに独立別個に設けられた第 1及び第 2の金 属板と、  First and second metal plates provided separately and independently from each other in the transmission / reception room of the cage,
この第 1の金属板上に設けられ、発光素子を実装する第 1の基板と、  A first substrate provided on the first metal plate and mounting the light emitting element,
前記第 2の金属板上に設けられ、受光素子を実装する第 2の基板と、  A second substrate provided on the second metal plate and mounting a light receiving element;
前記発光素子と受光素子とに光学的に結合された光導波路と、  An optical waveguide optically coupled to the light emitting element and the light receiving element,
前記パッケージに設けられ、前記発光素子および前記受光素子の各電極とパッケ ージ外部側との電気的な接続を図る複数のリードと  A plurality of leads provided on the package for electrically connecting each electrode of the light emitting element and the light receiving element to the outside of the package;
を備えたことを特徴とする光送受信モジュール。  An optical transceiver module comprising:
[2] 前記パッケージは、榭脂で形成してあることを特徴とする請求項 1に記載の光送受 信モジユーノレ。 [2] The optical transmission / reception module according to claim 1, wherein the package is formed of resin.
[3] 前記第 2の金属板と前記受光素子の力ソード端子間には、これらの間を電気的に 接続させるコンデンサを具備することを特徴とする請求項 1又は 2に記載の光送受信 モジユーノレ。  3. The optical transmission and reception module according to claim 1, further comprising a capacitor between the second metal plate and the force source terminal of the light receiving element, for electrically connecting the second metal plate and the light source terminal. .
[4] 前記発光素子を搭載する前記第 1の基板は、その比抵抗値が lk Q ' cm以上であ ることを特徴とする請求項 1から 3のいずれ力 1項に記載の光送受信モジュール。  4. The optical transceiver module according to claim 1, wherein the first substrate on which the light emitting element is mounted has a specific resistance of lk Q ′ cm or more. .
[5] 前記第 1及び第 2の金属板の少なくとも一方は、前記いずれかのリードを通じて前 記パッケージ外部のグランドと接続されて 、ることを特徴とする請求項 1から 4の ヽず れか 1項に記載の光送受信モジュール。 [5] The method according to any one of [1] to [4], wherein at least one of the first and second metal plates is connected to a ground outside the package through one of the leads. 2. The optical transceiver module according to item 1.
[6] 前記第 2の金属板は、プリアンプを搭載しているとともに、 [6] The second metal plate has a preamplifier mounted thereon,
前記受光素子のアノード端子と前記プリアンプの入力端子の間、および前記ブリア ンプの出力端子と前記リードのいずれ力との間を電気的に接続してあることを特徴と する請求項 1から 5のいずれか 1項に記載の光送受信モジュール。  6. The electrical connection between an anode terminal of the light receiving element and an input terminal of the preamplifier and an output terminal of the bridge and any force of the lead. The optical transceiver module according to any one of the preceding claims.
[7] 前記パッケージは、前記送受信室の床面から前記パッケージの底面まで貫通する スルーホールを有し、 [7] The package has a through hole penetrating from the floor of the transmitting and receiving room to the bottom of the package,
前記第 1及び第 2の金属板の少なくとも一方は、この金属板の下面側とスルーホー ルを介して前記パッケージ下面と電気的に導通していることを特徴とする請求項 1か ら 6の 、ずれか 1項に記載の光送受信モジュール。 2. The device according to claim 1, wherein at least one of the first and second metal plates is electrically connected to the lower surface of the package via a lower surface of the metal plate and a through hole. 6. The optical transmitting and receiving module according to any one of claims 1 to 6.
[8] 前記第 1及び第 2の金属板は、互いに対向して隣接する境界部分の形状が、互い に補完するクランク状もしくは曲線状を呈することを特徴とする請求項 1から 7のいず れか 1項に記載の光送受信モジュール。 [8] The method according to any one of claims 1 to 7, wherein the first and second metal plates have a shape of a boundary portion adjacent to and opposed to each other in a crank shape or a curved shape complementary to each other. 2. The optical transceiver module according to claim 1.
[9] 前記パッケージは、前記送受信室の一部が外部に向けて開口しているとともに、 前記開口部は、金属もしくはセラミックで形成した蓋で閉鎖してあることを特徴とする 請求項 1から 8のいずれか 1項に記載の光送受信モジュール。 [9] The package according to claim 1, wherein a part of the transmission / reception chamber is open to the outside, and the opening is closed by a lid made of metal or ceramic. 9. The optical transmitting and receiving module according to any one of 8.
[10] 請求項 1から 9の 、ずれかに記載の光送受信モジュールを搭載する光送受信装置 において、 [10] The optical transmitting and receiving device according to any one of claims 1 to 9, wherein the optical transmitting and receiving module is mounted.
光送受信モジュールの前記パッケージを搭載する基板は、前記パッケージの下面 が接する上面の前記パッケージを搭載する領域に、導電パターン欠損領域を有する ことを特徴とする光送受信装置。  An optical transmission / reception device, wherein the substrate of the optical transmission / reception module on which the package is mounted has a conductive pattern deficient region in a region where the package is mounted on an upper surface in contact with a lower surface of the package.
PCT/JP2004/018131 2004-01-15 2004-12-06 Light transmission/reception module and light transmission/reception device WO2005069384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/576,660 US20070086708A1 (en) 2004-01-15 2004-12-06 Light transmission/reception module and light transmission/reception device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-008118 2004-01-15
JP2004008118A JP2005203553A (en) 2004-01-15 2004-01-15 Optical transmission/reception module and optical transmitter-receiver

Publications (1)

Publication Number Publication Date
WO2005069384A1 true WO2005069384A1 (en) 2005-07-28

Family

ID=34792210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018131 WO2005069384A1 (en) 2004-01-15 2004-12-06 Light transmission/reception module and light transmission/reception device

Country Status (4)

Country Link
US (1) US20070086708A1 (en)
JP (1) JP2005203553A (en)
CN (1) CN1902763A (en)
WO (1) WO2005069384A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784460B2 (en) * 2006-09-28 2011-10-05 住友電気工業株式会社 Optical communication module
US8145061B2 (en) 2009-01-13 2012-03-27 Sumitomo Electric Industries, Ltd. Optical module implementing a light-receiving device and a light-transmitting device within a common housing
TW201113985A (en) * 2009-06-10 2011-04-16 Coretek Opto Corp Header structure of opto-electronic element and opto-electronic element using the same
CN102714556B (en) 2010-04-28 2016-05-25 华为技术有限公司 Crosstalking in bi-directional light electronic equipment reduces
CN102714542B (en) * 2010-06-25 2015-08-19 Hoya美国公司 Crosstalk in bidirectional optoelectronic device reduces
US8750712B2 (en) * 2010-09-06 2014-06-10 Hoya Corporation Usa Cross-talk reduction in a bidirectional optoelectronic device
WO2013063410A1 (en) 2011-10-28 2013-05-02 Hoya Corporation Usa Optical waveguide splitter on a waveguide substrate for attenuating a light source
KR101307249B1 (en) * 2011-12-27 2013-09-11 주식회사 한택 Bi-directional optical module
JP5779155B2 (en) * 2012-08-28 2015-09-16 株式会社東芝 Semiconductor device
CN102854584A (en) * 2012-10-09 2013-01-02 索尔思光电(成都)有限公司 Single-fiber two-way optical transceiver
CN103777068A (en) * 2012-10-25 2014-05-07 英业达科技有限公司 Power consumption detecting apparatus, and motherboard and fan board using same
JP6542514B2 (en) * 2014-08-08 2019-07-10 住友電工デバイス・イノベーション株式会社 Semiconductor laser device
US9752925B2 (en) 2015-02-13 2017-09-05 Taiwan Biophotonic Corporation Optical sensor
CN108063362A (en) 2015-03-30 2018-05-22 青岛海信宽带多媒体技术有限公司 A kind of laser
CN104836619B (en) 2015-03-30 2017-08-29 青岛海信宽带多媒体技术有限公司 A kind of optical device
US11456532B2 (en) 2016-05-04 2022-09-27 California Institute Of Technology Modular optical phased array
EP3593408A4 (en) * 2017-03-09 2020-12-23 California Institute of Technology Co-prime optical transceiver array
WO2018165633A1 (en) 2017-03-09 2018-09-13 California Institute Of Technology Co-prime optical transceiver array
JP6878053B2 (en) * 2017-03-14 2021-05-26 日本ルメンタム株式会社 Optical receiving module and optical module
JP7098953B2 (en) * 2018-02-20 2022-07-12 三菱電機株式会社 Semiconductor device
JP7339807B2 (en) * 2019-08-06 2023-09-06 日本ルメンタム株式会社 semiconductor light emitting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194686A (en) * 1986-02-20 1987-08-27 Nec Corp Optically coupled semiconductor device
JPH05300188A (en) * 1992-04-23 1993-11-12 Hitachi Ltd Parallel light transmitting device
JPH05335603A (en) * 1992-05-27 1993-12-17 Sumitomo Electric Ind Ltd Package for optical transmission-reception module
JPH07162186A (en) * 1993-12-08 1995-06-23 Fujitsu Ltd Light transceiver unit
JPH1065079A (en) * 1996-06-28 1998-03-06 Motorola Inc Package assembly for optical transmitter and its manufacturing method
JP2001168449A (en) * 1999-12-13 2001-06-22 Mitsubishi Electric Corp Optical transmitter-receptor module
JP2001210841A (en) * 2000-01-24 2001-08-03 Sumitomo Electric Ind Ltd Optical communication equipment
JP2001345475A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Bidirectional light emitting/receiving device
JP2002111599A (en) * 2000-09-26 2002-04-12 Fujitsu Ltd Transmission/reception integrated type module and optical transmitter/receiver
JP2002223023A (en) * 2001-01-26 2002-08-09 Nec Corp Light sending/receiving module
JP2003229625A (en) * 2002-01-31 2003-08-15 Sumitomo Electric Ind Ltd Optical communication module and product thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844997B2 (en) * 2001-08-29 2011-12-28 古河電気工業株式会社 Laser module
JP3750649B2 (en) * 2001-12-25 2006-03-01 住友電気工業株式会社 Optical communication device
JP4066665B2 (en) * 2002-02-08 2008-03-26 住友電気工業株式会社 Parallel transceiver module
JP4352661B2 (en) * 2002-07-25 2009-10-28 住友電気工業株式会社 Optical module

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194686A (en) * 1986-02-20 1987-08-27 Nec Corp Optically coupled semiconductor device
JPH05300188A (en) * 1992-04-23 1993-11-12 Hitachi Ltd Parallel light transmitting device
JPH05335603A (en) * 1992-05-27 1993-12-17 Sumitomo Electric Ind Ltd Package for optical transmission-reception module
JPH07162186A (en) * 1993-12-08 1995-06-23 Fujitsu Ltd Light transceiver unit
JPH1065079A (en) * 1996-06-28 1998-03-06 Motorola Inc Package assembly for optical transmitter and its manufacturing method
JP2001168449A (en) * 1999-12-13 2001-06-22 Mitsubishi Electric Corp Optical transmitter-receptor module
JP2001210841A (en) * 2000-01-24 2001-08-03 Sumitomo Electric Ind Ltd Optical communication equipment
JP2001345475A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Bidirectional light emitting/receiving device
JP2002111599A (en) * 2000-09-26 2002-04-12 Fujitsu Ltd Transmission/reception integrated type module and optical transmitter/receiver
JP2002223023A (en) * 2001-01-26 2002-08-09 Nec Corp Light sending/receiving module
JP2003229625A (en) * 2002-01-31 2003-08-15 Sumitomo Electric Ind Ltd Optical communication module and product thereof

Also Published As

Publication number Publication date
US20070086708A1 (en) 2007-04-19
JP2005203553A (en) 2005-07-28
CN1902763A (en) 2007-01-24

Similar Documents

Publication Publication Date Title
WO2005069384A1 (en) Light transmission/reception module and light transmission/reception device
JP3750649B2 (en) Optical communication device
US7986020B2 (en) Optical communication module and flexible printed circuit board
JP6191348B2 (en) Optical receiver module
JP4058764B2 (en) Communication module
US10965098B2 (en) Transmitter optical subassembly and optical module comprising an impedance element to minimize a flow of an alternate current
US7512165B2 (en) Photoelectric conversion module and optical transceiver using the same
JPWO2016152152A1 (en) High frequency transmission line and optical circuit
CN107015318B (en) Optical receiver assembly
KR101929465B1 (en) Optical module
US20140099123A1 (en) Flexible printed circuit board and optical communication module including the same
JP7339807B2 (en) semiconductor light emitting device
JP7249745B2 (en) Optical subassemblies and optical modules
US10852493B2 (en) Optical subassembly and optical module
JP3788249B2 (en) Light emitting module
US20190238236A1 (en) Package for optical receiver module
JP7245620B2 (en) Optical subassemblies and optical modules
US20070019902A1 (en) Optical module
JP2015095471A (en) Light-emitting module
US11089683B2 (en) Optical module
US20180011264A1 (en) Optical module
JP4828103B2 (en) Optical transceiver module
US20170366277A1 (en) Optical receiver module and optical module
JP5117419B2 (en) Parallel transmission module
JP2008198640A (en) Lead frame type optical module and its manufacturing process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039297.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007086708

Country of ref document: US

Ref document number: 10576660

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10576660

Country of ref document: US