WO2005063829A1 - Catalyst system for olefin polymerization - Google Patents
Catalyst system for olefin polymerization Download PDFInfo
- Publication number
- WO2005063829A1 WO2005063829A1 PCT/EP2004/014609 EP2004014609W WO2005063829A1 WO 2005063829 A1 WO2005063829 A1 WO 2005063829A1 EP 2004014609 W EP2004014609 W EP 2004014609W WO 2005063829 A1 WO2005063829 A1 WO 2005063829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- aryl
- catalyst system
- formula
- arylalkyl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2420/00—Metallocene catalysts
- C08F2420/02—Cp or analog bridged to a non-Cp X anionic donor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/639—Component covered by group C08F4/62 containing a transition metal-carbon bond
- C08F4/6392—Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/65922—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/65927—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
Definitions
- the present invention relates to a catalyst system for the polymerization of olefins, which comprises an organic transition compound and, as cocatalyst, an ionic compound made up of anions comprising aluminum and trifluoromethyl groups and Lewis-acid cations or Br ⁇ nsted acids as cations. Furthermore, the present invention relates to a process for preparing such catalyst systems and to a process for the polymerization of olefins using these catalyst systems.
- Organic transition metal compounds such as metailocene complexes are of great interest as cata- lysts for olefin polymerization because they make it possible to synthesize polyolefins which cannot be obtained using conventional Ziegler-Natta catalysts.
- single-site catalysts lead to polymers having a narrow molar mass distribution and uniform incorporation of co- monomers.
- a frequently used class of cocatalysts comprises aluminoxanes such as methy- laluminoxane (MAO).
- MAO methy- laluminoxane
- Further compounds which can be used as cocatalysts are compounds which convert the organic transition metal compounds into cationic complexes.
- EP-A 427 697 discloses, for example, catalyst systems comprising an uncharged metailocene compound, an aluminum alkyl and a Lewis acid such as trispentafluorophenylborane.
- a Lewis acid such as trispentafluorophenylborane.
- EP-A 558 158 describes zwitterionic catalyst systems which are obtainable from dialkyl- metallocene compounds and salts of the formula [R 3 NH] + [BPh 4 ] ' .
- US-A 5,384,299 discloses ionic polymerization catalysts which are stabilized by noncoordinating anions, and these, too, are obtainable from dialkyl- netallocene compounds and salts of the formula [R 3 NH] + [BPh 4 ] " .
- catalyst systems for olefin polymerization comprising an organic transition metal compound and, as cocatalyst, an ionic compound made up of anions of the formula (la),
- R are identical or different and are each, independently of one another, a radical R R (CF 3 ) 2
- R 2 is a carbon or silicon atom
- R 3 is hydrogen, C 1 -C 2 o-alkyl, C ⁇ -C 20 -fluoroalkyl, C 6 -C 2 o-aryl, C 6 -C 2 o-fluoroaryl, C 7 -C 40 -arylalkyl, C 7 -C 0 -fluoroarylalkyl, C 7 -C 40 -alkylaryI, C 7 -C 40 -fluoroalkylaryl or an SiR 4 3 group, where
- R 4 may be identical or different and is each C C 20 -alkyl, C C 2 o-fluoroalkyl, C 6 -C 2 o-aryl, C 6 -C 2 o- fluoroaryl, C 7 -C 40 -arylaIkyl, C 7 -C 40 -fluoroarylalkyl, C 7 -C 40 -alkylaryl or C 7 -C 40 -fluoroalkylaryl,
- the catalyst systems of the present invention are suitable for the polymerization of olefins and especially for the polymerization of ⁇ -olefins, i.e. hydrocarbons having terminal double bonds.
- Suitable monomers include functionalized olefinically unsaturated compounds such as ester or amide derivatives of acrylic or methacrylic acid, for example acrylates, methacrylates or acryloni- trile.
- Preference is given to nonpolar olefinic compounds, including aryl-substituted ⁇ -olefins.
- Particularly preferred ⁇ -olefins are linear or branched C 2 -C 12 -1-alkenes, in particular linear C 2 -C 10 -1-.
- alkenes such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1- decene or branched C 2 -C 10 -1 -alkenes such as 4-methyl-1-pentene, conjugated and nonconju- gated dienes such as 1 ,3-butadiene, 1 ,4-hexadiene or 1 ,7-octadiene or vinylaromatic compounds such as styrene or substituted styrene. It is also possible to polymerize mixtures of various ⁇ - olefins.
- Suitable olefins also include ones in which the double bond is part of a cyclic structure comprising one or more ring systems. Examples are cyclopentene, norbornene, tetracyclododecene and methylnorbomene and dienes such as 5-ethylidene-2-norbomene, norbornadiene or ethylnorbor- nadiene.
- the supported cocatalyst of the present invention can be used for the polymerization or copolymerization of ethylene or propylene.
- comonomers in ethylene polymerization preference is given to Using C 3 -C 8 - ⁇ -olefins, in particular 1-butene, 1-pentene, 1-hexene and/or 1-. octene.
- Preferred comonomers in propylene polymerization are ethylene and/or 1-butene.
- the catalyst systems of the present invention comprise an ionic compound comprising anions of the formula (la),
- radicals R 1 are identical or different, preferably identical, and are each, independently of one another, a radical R R (CF 3 ) 2 ,
- R is a carbon or silicon atom, preferably a carbon atom
- R 3 is hydrogen, C ⁇ -C 2 o-alkyl, preferably C ⁇ -C 4 -alkyl and in particular methyl, C C 2 o-fluoroalkyl, preferably C- ⁇ -C 4 -fluoroalkyl and in particular trifluoromethyl, C 6 -C 2 o-aryl, preferably phenyl, C 6 -C 20 -fluoroaryl, preferably pentafluorophenyl, C 7 -C 0 -arylalkyl, C 7 -C 40 -fluoroarylalkyl, C 7 -C 40 -alkylaryl, C 7 -C 40 -fluoroalkylaryI or an SiR 4 3 group, where
- R 4 may be identical or different and is each C ⁇ -C 2(r alkyl, CrC 2 o-fluoroalkyl, preferably C- ⁇ -C - fluoroalkyl and in particular trifluoromethyl, C 6 -C 20 -aryl, C 6 -C 20 -fluoroaryI, C 7 -C 40 -arylalkyl, C 7 -C 40 -fluoroarylalkyl, C 7 -C 0 -alkylaryl or C 7 -C 40 -fluoroalkylaryl.
- radicals R 1 are C(CF 3 ) 3 , CCH 3 (CF 3 ) 2 , CH(CF 3 ) 2 , CPh(CF 3 ) 2 , C(C 6 F 5 )(CF 3 ) 2 , C ⁇ Si(CF 3 ) 3 ⁇ 3l Si(CF 3 ) 3 , SiCH 3 (CF 3 ) 2 , SiPh(CF 3 ) 2 , with preference being given to C(CF 3 ) 3 , CCH 3 (CF 3 ) 2 , CH(CF 3 ) 2 and CPh(CF 3 ) 2 , in particular C(CF 3 ) 3 .
- anions of the formula (la) are AI[OC(CF 3 ) 3 ] 4 " ,
- the counterions of the anions of the formula (la) can be Lewis-acid cations or Bronsted acids in the form of cations.
- Suitable Lewis-acid cations include cations of the formula (lb),
- M 1 is an element of groups 1 to 16 of the Periodic Table of the Elements
- Q ! to Q 2 are singly negatively charged groups such as C ⁇ C ⁇ -alky!, C 6 -C 15 -aryl, alkylaryl, arylalkyl, haloalkyl, haloaryl each having from 6 to 20 carbon atoms in the aryl radical and from 1 to 28 carbon atoms in the alkyl radical, C 3 -C 10 -cycloalkyl which may bear CrCio-alk l groups as substituents, halogen, C Cas-alkoxy, C 6 -C 15 -aryloxy, silyl or mercaptyl groups,
- a is an integer from 1 to 6 and
- z is an integer from 0 to 5
- d corresponds to the difference a-z, but d is greater than or equal to 1.
- Particularly useful cations are carbonium cations, oxonium cations and sulfonium cations and also cationic transition metal complexes. Particular mention may be made of the triphenylmethyl cation, the silver cation and the 1,1'-dimethylferrocenyl cation.
- Suitable Bronsted acids in the form of cations have the formula (lc), (lc)
- R 5 may be identical or different and is each, independently of one another, C C 20 -alkyl, C C 20 -haloalkyl, C C ⁇ 0 -alkoxyl C 6 -C 20 -aryl, C 6 -C 20 -haloaryl, C 6 -C 20 -aryloxy, C 7 -C 40 - arylalkyl, C 7 -C 40 -haloarylalkyl, C 7 -C 0 -alkylaryl or C 7 -C 40 -haloalkylaryl.
- protinated amine or aniline derivatives are N,N-dimethylanilinium, N,N-dimethyIcyclohexylammonium and N,N-dimethylbenzylammonium and also derivatives of the latter two.
- R 1 and R 5 are as defined above.
- the preparation of cocatalysts comprising the anions of the formula (la) can, for example, be car- ried out by the method described in I. Krossing, Chem. Eur. J. 2001 , 7, pages 490-502.
- LiAIH 4 is reacted with the appropriate alcohol or alcohols HOR 1 to give the lithium salt of the anions of the formula (la).
- This lithium salt can be used as such as cocatalyst in the catalyst systems of the present invention, but preference is given to replacing the lithium cation by other cations, in particular cations of the formula (lb) or (lc). Replacement by the silver cation is likewise described in I. Krossing, Chem. Eur. J. 2001 , 7, pages 490-502.
- Possible ways of introducing other cations as counterions of the anions of the formula (la) are also known to those skilled in the art.
- the catalyst systems of the present invention for olefin polymerization further comprise at least one organic transition metal compound.
- organic transition metal compound it is in principle possible to use all com pounds of the transition metals of groups 3 to 12 of the Periodic Table or the lanthanides which contain organic groups and after reaction with the cocatalyst and, if appropriate, organometallic compounds form active catalysts for olefin polymerization. These are usually compounds in which at least one monodentate or polydentate ligand is bound to the central atom via a sigma or pi bond. Possible ligands include both ligands containing cyclopentadienyl groups and ligands which are free of cyclopentadienyl groups.
- Suitable organic transition metal compounds include, in particular, compounds having at least one cyclopentadienyl-type ligand; those having two cyclopentadienyl-type ligands are generally referred to as metailocene complexes.
- organic transition metal compounds having at least one cyclopentadienyl-type ligand particularly useful compounds are those of the formula (III)
- M 1A is titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, or an element of group 3 of the Periodic Table and the lanthanides,
- radicals X 1A are identical or different and are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C ⁇ -C 10 -alkyl, C 2 -C ⁇ 0 - alkenyl, C 6 -C 15 -aryl C 7 -C 40 -alkylaryl, C 7 -C 40 -arylalkyI, -OR 6A or -NR 6A R 7A or two radicals X A are joined to one another and form, for example, a substituted or unsubstituted diene ligand, in particular a 1 ,3-diene ligand, or a biaryloxy group, where
- R 6A and R 7A are each C C 10 -alkyl, C 6 -C 15 -aryI, C 7 -C 40 -arylalkyl, C 7 -C 40 -aIkylaryl, fluoroalkyl or fluoroaryl each having from 1 to 16 carbon atoms in the alkyl radical and from 6 to 21 carbon atoms in the aryl radical,
- n A is 1 , 2 or 3 and is such that, depending on the valence of M, the metailocene complex of the formula (III) is uncharged
- R 1A to R 5A are each, independently of one another, hydrogen, C C 22 -alkyl, 5- to 7-membered cycloalkyl or cycloalkenyl which may in turn bear C ⁇ -C 10 -alkyl groups as substituents, C 2 -C 22 -alkenyl, C 6 -C 22 -aryl, C 7 -C 40 -arylalkyl, C 7 -C 40 - alkylaryl, -NR 8A 2 , -N(SiR 8A 3 ) 2 , -OR 8A , -OSiR 8A 3 , -SiR 8A 3 , where the radicals R 1A to R 5A may also be substituted by halogen and/or two radicals R 1A to R 5A , in particular adjacent radicals, together
- R 8A may be identical or different and is each C C ⁇ 0 -alkyl, C 3 -C ⁇ 0 -cycloalkyl, C 6 -C 15 -aryl, C C 4 -alkoxyl or C 6 -C 10 -aryloxy and
- Z A is as defined for X A or is where the radicals
- R 9A tQ R 13A gre eac f 1 ⁇ independently of one another, hydrogen, CrC 22 -alkyl, 5- to 7- membered cycloalkyl or cycloalkenyl which may in turn bear groups as substituents, C 2 -C 22 -alkenyI, C 6 -C 22 -aryl, C 7 -C 40 -arylalkyl, C 7 -C 0 - alkylaryl, -NR 14A 2 , -N(SiR 14A 3 ) 2 , -OR 14A , -OSiR 14A 3 , -SiR 14A 3 , where the radicals R IA tQ R 5A mg y g
- R 14A my be identical or different and is each C- ⁇ -C 10 -alkyl, C 3 -C 10 -cycloalkyl, C 6 -C 15 - aryl, C r C 4 -alkoxy or C 6 -C 10 -aryloxy,
- R 16A , R 17A and R 18A are identical or different and are each a hydrogen atom, a halogen atom, a trimethylsilyl group, a CrC 10 -alkyl group, a C C 10 -fluoroalkyl group, a C 6 -C 10 - fluoroaryl group, a C 6 -C 10 -aryl group, a C C ⁇ 0 -alkoxy group, a C7-C15- alkylaryloxy group, a C 2 -C 1C ralkeny
- M 2A is silicon, germanium or tin, preferably silicon, 0 A A is -0-, -S-, -0-R 19A , -NR 19A 2 , -PR 19A 2
- R 19A - are each, independently of one another, C C ⁇ o-alkyl, C 6 -C ⁇ 5 -aryl, C 3 -C 10 -5 cycloalkyl, C 7 -C 18 -alkylaryl or -Si(R 20A ) 3 ,
- R 20A is hydrogen, CrC 10 -alkyl, C 6 -C 15 -aryl which may in turn bear C ⁇ -C -alkyl groups as substituents or C 3 -C 10 -cycloalkyl, 0 is 1 or when A A is an unsubstituted, substituted or fused, heterocyclic ring system can be 1 or 0
- radicals X A in the formula (III) are preferably identical and are preferably fluorine, chlorine, bromine, d-C 7 -alkyl or arylalkyl, in particular chlorine, methyl or benzyl.
- M 1A is titanium or chromium
- X* is chlorine, C C -alkyl, phenyl, alkoxy or aryloxy, is 1 or 2 and
- R 1A to R ! 5A are each hydrogen or C C 4 -alkyl or two adjacent radicals R 1A to R 5A together with the atoms connecting them form a substituted or unsubstituted unsatu- rated six-membered ring.
- M 1A is titanium, zirconium, hafnium or chromium
- X A is chlorine, C r C 4 -alkyl or benzyl or two radicals X form a substituted or unsubstituted butadiene ligand, n A is 1 or 2, preferably 2, or when M 1A is chromium is 0,
- R 1A to R 5A are each hydrogen, C C 8 -alkyl, C 6 -C 10 -aryl, -NR 8A 2 , -OSiR 8A 3 , -SiR 8A 3 or -Si(R 8A ) 3 and
- R 9A to R 13A are each hydrogen, C Cs-alkyl, C 6 -C 10 -aryl, -NR 8A 2 , -OSiR 8A 3 , -SiR 8A 3 or 8A -Si(R 0A ) 3
- Examples of particularly useful compounds of the formula (lllb) are bis(cyclopentadienyl) zirconium dichloride, bis(pentamethylcyclopentadienyl) zirconium dichloride, bis(methylcyclopentadienyl) zirconium dichloride, bis(ethylcyclopentadienyl) zirconium dichloride, bis(n-butylcyclopentadienyl) zirconium dichloride, bis(1 -n-butyl-3-methyIcyclopentadienyl) zirconium dichloride, bis(indenyl) zirconium dichloride, bis(tetrahydroindenyl) zirconium dichloride and bis(trimethylsilylcyclopentadienyl) zirconium dichloride, and also the corresponding dimethylzirconium compounds.
- Particularly useful metallocenes of the formula (lllc) are those in which
- R 1A and R 9A are identical or different and are each hydrogen or a C C ⁇ -alkyl group
- R 5A and R 3A are identical or different and are each hydrogen or a methyl, ethyl, isopropyl or tert-butyl group,
- R 3A and R 11A • are each C C 4 -alkyl and
- R 2A and R 10A are each hydrogen
- R 15A is -M 2A R 16A R 17A - or -CR 16A R 17A -CR 16A R 17A - or -BR 16A - or -BNR 16A R 17A -
- M is titanium, zirconium or hafnium
- X A are identical or different and are each chlorine, C ⁇ -C 4 -alkyl, benzyl, phenyl or C 7 -C 15 -alkylaryloxy.
- R' may be identical or different and is each hydrogen, or C 3 -C t0 - cycloalkyl, preferably methyl, ethyl, isopropyl or cyclohexyl, C 6 -C 20 -aryl, preferably phenyl, naphthyl or mesityl, C 7 -C 40 -arylalkyI, C 7 -C 40 -alkylaryl, preferably 4-tert-butylphenyI or 3,5-di-tert-butylphenyl, or C 8 -C 40 -arylalkenyl,
- R 5A and R 13A are identical or different and are each hydrogen, C C 6 -aIkyl, preferably methyl, ethyl, isopropyl, n-propyl, n-butyl, n-hexyl or tert-butyl,
- the indenyl or tetrahydroindenyl ligands of the metallocenes of the formula (lllc') are preferably substituted in the 2 position, the 2,4 positions, the 4,7 positions, the 2,4,7 positions, the 2,6 positions, the 2,4,6 positions, the 2,5,6 positions/the 2,4,5,6 positions or the 2,4,5,6,7 positions, in particular in the 2,4 positions, with the following numbering applying to the site of substitution:
- Examples of particularly useful metallocenes (lllc) and (lllc') include dimethylsilanediylbis(cyclopentadienyl) zirconium dichloride, dimethylsilanediylbis(indenyl) zirconium dichloride, dimethylsilanediylbis(tetrahydroindenyl) zirconium dichloride, ethylenebis(cyclopentadienyl) zirconium dichloride, ethylenebis(indenyl) zirconium dichloride, ethylenebis(tetrahydroindenyl) zirconium dichloride, tetramethylethylene-9-fluorenyIcyclopentadienyl) zirconium dichloride, dimethylsilanediylbis(3-tert-butyl-5-methylcyclopentadienyl) zirconium dichloride, dimethylsilanediylbis(3-tert-butyl-5-methyl
- Particularly useful compounds of the formula (Hid) are those in which M 1A is titanium or zirconium, in particular titanium, and
- X A is chlorine, C C 4 -alkyl or phenyl or two radicals X A are joined to form a substituted or unsubstituted butadiene ligand,
- R 15A is -SiR 16A R 17A - or -CR 16A R 17A -CR 16A R 17A - and
- a A is -O-, -S- or -NR 9A -,
- R 1A to R 3A and R 5A are each hydrogen, C C 10 -alkyl, preferably methyl, C 3 -C 10 -cycloalkyl, .
- C 6 -C 15 -aryl or -Si(R 8A ) 3 or two adjacent radicals form a cyclic group having from 4 to 12 carbon atoms, with particular preference being given to all R 1A to R 3A and R A being methyl.
- M A is titanium or chromium, preferably in the oxidation state III, and
- X A is chlorine, C C -alkyl or phenyl or two radicals X A form a substituted or unsubstituted butadiene ligand,
- R 15A is -SiR 16A R 17A . or -CR 16A R 17A -CR 16A R 17A - and
- IK is -O-R 19A -NR 19A 2 - -PR 19A 2 ,
- R IA tQ R 3A and R 5A gre each nydrogen
- Such complexes can be synthesized by methods known per se, preferably by reacting the appropriately substituted, cyclic hydrocarbon anions with halides of titanium, zirconium, hafnium, vanadium, niobium, tantalum or chromium.
- organic transition metal compounds include metallocenes having at least one ligand formed by a cyclopentadienyl or heterocyclopentadienyl group having a fused-on heterocycle in which at least one carbon atom is replaced by a heteroatom, preferably a heteroatom from group 15 or 16 of the Periodic Table and in particular nitrogen or sulfur.
- metallocenes having at least one ligand formed by a cyclopentadienyl or heterocyclopentadienyl group having a fused-on heterocycle in which at least one carbon atom is replaced by a heteroatom, preferably a heteroatom from group 15 or 16 of the Periodic Table and in particular nitrogen or sulfur.
- Such compounds are described, for example, in WO 98/22486. They are, in particular:
- organic transition metal compounds suitable for the purposes of the present invention are transition metal complexes with at least one ligand of the formulae (IVa) to (IVe),
- transition metal is selected from among the elements Ti, Zr, Hf, Sc, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Pd, Pt and the elements of the rare earth metals. Preference is given to compounds having nickel, iron, cobalt or palladium as central metal.
- E B is an element of group 15 of the Periodic Table of the Elements, preferably N or P, with particular preference being given to N.
- the two or three atoms E B in a molecule can be identical or different.
- the radicals .R 1 B to R 19B which may be identical or different within a ligand system of the formula (IVa) to (IVe), are as follows:
- R 1B and R 4B are each, independently of one another, a hydrocarbon radical or a sub- stituted hydrocarbon radical, preferably a hydrocarbon radical in which the carbon atom adjacent to the element E B is bound to at least two carbon atoms,
- R 2B and R 3B are each, independently of one another, hydrogen, a hydrocarbon radi- cal or a substituted hydrocarbon radical, where R 2B and R 3B may together also form a ring system in which one or more heteroatoms may be present,
- R 6B and R 8B are each, independently of one another, a hydrocarbon radical or a sub- stituted hydrocarbon radical,
- R 5B and R 9B are each, independently of one another, hydrogen, a hydrocarbon radical or a substituted hydrocarbon radical,
- R 6B and R 5B or R 8B and R 9B may together also form a ring system
- R 7B are each, independently of one another, hydrogen, a hydrocarbon radical or a substituted hydrocarbon radical, where two radicals R 7A may together also form a ring system,
- R 10B and R 14B are each, independently of one another, a hydrocarbon radical or a substituted hydrocarbon radical,
- R 11B , R 12B , R 12B' and R 3B are each, independently of one another, hydrogen, a hydrocarbon radi- cal or a substituted hydrocarbon radical, where two or more geminal or vicinal radicals R 11 B , R 12B , R 12B' and R 13B may together also form a ring system,
- R 15B and R 18B are each, independently of one another, hydrogen, a hydrocarbon radi- cal or a substituted hydrocarbon radical,
- R 16B and R 17B are each, independently of one another, hydrogen, a hydrocarbon radical or a substituted hydrocarbon radical
- R 19B is an organic radical which forms a 5- to 7-membered substituted or unsubstituted, in particular unsaturated or aromatic, heterocyclic ring system, in particular together with E B forms a pyridine system
- n 1B is 0 or 1 , with the compounds of the formula (IVe) being negatively charged when n 1 B is 0, and
- n 2B is an integer from 1 to 4, preferably 2 or 3.
- transition metal complexes with ligands of the formulae (IVa) to (IVd) are, for example, complexes of the transition metals Fe, Co, Ni, Pd or Pt with ligands of the formula (IVa).
- diimine complexes of Ni or Pd e.g.:
- dichloride di(2,6-di-i-propylphenyl)-2,3-dimethyldiazabutadienedimethyIpalladium, di(2,6-di-i-propylphenyl)-2,3-dimethyldiazabutadienedimethylnickel, di(2,6-dimethylphenyI)-2,3-dimethyldiazabutadienepalladium dichloride, di(2,6-dimethylphenyl)-2,3-dimethyldiazabutadienenickel dichloride, di(2,6-dimethylphenyl)-2,3-dimethyldiazabutadienedimethylpalladium, di(2,6-dimethylphenyl)-2,3-dimethyldiazabutadienedimethylnickeI, di(2-methylphenyl)-2,3-dimethyldiazabutadienedimethylnickeI, di(2-methylphenyl)-2,3-di
- Iminophenoxide complexes can also be used as organic transition metal compounds.
- the ligands can be prepared, for example, from substituted or unsubstituted salicylaldehydes and primary amines, in particular substituted or unsubstituted arylamines.
- Transition metal complexes with pi ligands having one or more heteroatoms in the pi system for example the boratabenzene ligand, the pyrrolyl anion or the phospholyl anion, can also be used as organic transition metal compounds D).
- transition metal compounds which are suitable for the purposes of the present invention are substituted monocyclopentadienyl, monoindenyl, monofluorenyl or heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring bears a rigid donor function which is not bound exclusively via sp 3 - hybridized carbon or silicon atoms.
- the most direct link to the donor function contains at least one sp- or sp 2 -hybridized carbon atom, preferably from one to three sp 2 - hybridized carbon atoms.
- the direct link preferably contains an unsaturated double bond, an aro- matic or together with the donor forms a partially unsaturated or aromatic heterocyclic system.
- the cyclopentadienyl ring can also be a heterocyclopentadienyl ligand, i.e. at least one carbon atom can be replaced by a heteroatom from group 15 or 16.
- a C 5 ring carbon is preferably replaced by phosphorus.
- the cyclopentadienyl ring is substituted by further alkyl groups which may also form a five- or six-membered ring, e.g. tetrahydroindenyl, indenyl, benzindenyl or fluorenyl.
- Possible donors are uncharged functional groups containing an element of group 15 or 16 of the Periodic Table, e.g. amine, imine, carboxamide, carboxylic ester, ketone (oxo), ether, thioketone, phosphine, phosphite, phosphine oxide, sulfonyl, sulfonamide or unsubstituted, substituted or fused, partially unsaturated heterocyclic or heteroaromatic ring systems.
- amine imine, carboxamide, carboxylic ester, ketone (oxo), ether, thioketone, phosphine, phosphite, phosphine oxide, sulfonyl, sulfonamide or unsubstituted, substituted or fused, partially unsaturated heterocyclic or heteroaromatic ring systems.
- M L is chromium, molybdenum or tungsten and has the formula (Va)
- E 1C -E 5C are each carbon or not more than one atom
- E C to E 5C is phosphorus or nitrogen
- a b is -NR 5C R 6C , -PR 5C R 6C , -OR 5G , -SR 5C or an unsubstituted, substituted or fused, partially unsaturated heterocyclic or heteroaromatic ring system,
- R ⁇ is one of the following groups:
- a c is an unsubstituted, substituted or fused, partially unsaturated heterocyclic or heteroaromatic ring system, may also be
- L 10 , L 2C are each silicon or carbon
- k c is 1 or when A 1c is an unsubstituted, substituted or fused, partially unsaturated heterocyclic or heteroaromatic ring system may also be 0,
- X c is each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, d-do-alkyl, C 2 -C 10 -alkenyl, C 6 -C 20 -aryl, C 7 -C 40 -alkylaryl, -NR 15C R 16C , -OR 15C , -SR 15C -SS00 33 RR 1155cc ,, --OOCC(0)R 5C , -CN, -SCN, ⁇ -diketonate, -CO, BF 4 " , PF 6 " or a bulky noncoor- dinating anion,
- R ⁇ c_ R i6 c are egc ⁇ j nf j e p enc j en t
- R 17C is each, independently of one another, hydrogen, C C 20 -alkyI, C 2 -C 20 -aIkenyl, C 6 -C 20 -aryl, C 7 -C 40 -alkylaryI, and two geminal radicals R 17C may also be joined to form a five- or six-membered ring,
- n c is 1 , 2 or 3 and
- m 1 , 2 or 3.
- Chromium is particularly preferred as transition metal M G .
- organic transition metal compounds of the formula (V) are examples of organic transition metal compounds of the formula (V).
- the metal complexes in particular the chromium complexes, can be obtained in a simple manner by reacting the appropriate metal salts, e.g. metal chlorides, with the ligand anion (e.g. in a man- ner analogous to the examples in DE-A 197 10 615).
- the appropriate metal salts e.g. metal chlorides
- the ligand anion e.g. in a man- ner analogous to the examples in DE-A 197 10 615.
- transition metal compounds which are suitable for the purposes of the present invention are imidochromium compounds of the formula (VI),
- X c is each, independently of one another, fluorine, chlorine, bromine, iodine, -NR 3D R 4D , -NP(R 3D ) 3 , -OR 3D , -0Si(R 3D ) 3 , -S0 3 R 3D , -OC(0)R 3D , ⁇ -diketonate, BF 4 " , PF 6 ' or a bulky weakly coordinating or noncoordinating anion, R 1D -R 4D .are each, independently of one another, C C 20 -alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryI, C 7 -C 40 -alkylaryl, hydrogen if this is bound to a carbon atom, where the organic radicals R 1D to R 4D may also bear inert substituents,
- n D 1 or 2
- m D is 1 , 2 or 3 and is such that, depending on the valence of Cr, the metailocene complex of the formula (VI) is uncharged,
- L D is an uncharged donor
- y D is from 0 to 3.
- organic transition metal compounds are transition metal complexes with a triden- tate macrocyclic ligand, e.g.
- the molar ratio of organic transition metal compound to the cocatalyst comprising anions of the formula (la) is usually, based on anions of the formula (la), from 1 :0.1 to 1 :1000, preferably from 1 :0.4 to 1 :100 and in particular from 1 :0.7 to 1 :10.
- the catalyst system of the present invention comprises at least one organometallic compound in addition to the cocatalyst comprising the anions of the formula (la) and the organic transition metal compounds.
- organometallic compounds are compounds of the formula (VII),
- M 2 (R 6 ) r (R 7 ) s (R 8 ) t (VII)
- M 2 is an alkali metal, an alkaline earth metal or a metal of group 13 of the Periodic Table, i.e. boron, aluminum, gallium, indium or thallium,
- R 6 is hydrogen, C C 10 -alkyl, C 6 -C 1s -aryl, halogen-C C 10 -alkyl, halogen-C 6 -C 15 -aryl, C 7 -C 40 -arylalkyl, C 7 -C 0 -alkylaryl, C C ⁇ 0 -alkoxyl or halogen-C 7 -C 40 -alkylaryl, halo- gen-C 7 -C 40 -arylalkyl or halogen-C C 10 -alkoxy,
- R 7 and R 8 are each hydrogen, halogen, C C 10 -alkyl, C 6 -C 15 -aryl, halogen-C Cio-alkyl, halo- gen-C 6 -C ⁇ s-aryl, C 7 -C 40 -arylaIkyl, C 7 -C 40 -alkylaryl, C C 10 -alkoxyl or halogen- C 7 -C 40 -alkylaryl, halogen-C 7 -C 40 -arylalkyl or halogen-C ⁇ C- 10 -alkoxy,
- r is an integer from 1 to 3
- s and t are integers from 0 to 2, with the sum r+s+t corresponding to the valence of M 1 .
- organometallic compounds of the formula (VII) preference is given to those in which
- M 2 is lithium, boron or magnesium
- R 6 , R 7 and R 8 are each C C 10 -alkyl.
- organometallic compounds of the formula (VII) are those in which M 2 is alumi- num and r, s and t are each 1.
- R 6 is C C ⁇ o-alkyI, in particular C 3 -C ⁇ 0 -alkyl.
- organoaluminum compounds of the formula (VII) are ones in which R 7 and R B are each hydrogen, halogen or C Cio-alk l, in particular hydrogen or C 3 -C 10 -alkyl.
- organoaluminum compounds of the formula (VII) in which R 6 , R 7 and R 8 are identical and are each C 3 -C 10 -alkyl.
- Particularly preferred metal compounds of the formula (VII) are n-butyllithium, n-butyl- n-octylmagnesium, n-butyl-n-heptylmagnesium, triphenylaluminum, tri ' soprenylaluminum, tri-n- octylaluminum, tri-n-hexylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n- propylaluminum, triisopropylaluminum, triethylaluminum, trispentafluorophenylborane and trimeth- ylaluminum and mixtures thereof.
- the catalyst . .systems of the present invention can also comprise compounds of the aluminoxane type as organometallic compounds. Such compounds are described, for example, in WO 00/31090. Particularly useful aluminoxanes are open-chain or cyclic aluminoxane compounds of the formula (VIII) or (IX)
- R a is a C C 4 -alkyl group, preferably a methyl or ethyl group, and
- n is an integer from 5 to 30, preferably from 10 to 25.
- oligomeric aluminoxane compounds are usually prepared by reaction of a solution of trial- kylaluminum with water.
- the oligomeric aluminoxane compounds obtained in this way are in the form of mixtures of both linear and cyclic chain molecules of various lengths, so that m is to be regarded as a mean.
- the aluminoxane compounds can also be present in admixture with other metal alkyls, usually aluminum alkyls.
- modified aluminoxanes in which some of the hydrocarbon radicals or hydrogen at- oms have been replaced by alkoxy, aryloxy, siloxy or amide radicals can also be used in place of the aluminoxane compounds of the formula (VIII) or (IX).
- the molar ratio of organometallic compound, based . on metal atoms of the organometallic compound, to organic transition metal compound is generally from 800:1 to 1 :1 , preferably from 200:1 to 2:1.
- the catalyst system of the present invention further comprises an inorganic or organic support. Suitable supports are inert solids.
- the support can be a porous support such as talc, a sheet silicate, an inorganic oxide or a finely divided polymer powder.
- Inorganic oxides suitable as supports may be found among the oxides of elements of groups 2, 3, 4, 5, 13, 14, 15 and 16 of the Periodic Table of the Elements. Preference is given to oxides or mixed oxides of the elements calcium, aluminum, silicon, magnesium or titanium and also corresponding oxide mixtures.
- Other inorganic oxides which can be used alone or in combination with the abovementioned preferred oxidic supports are, for example, Zr0 2 or B 2 0 3 .
- Preferred oxides are silicon dioxide, particularly in the form of a silica gel or a pyrogenic silica, and aluminum oxide.
- a preferred mixed oxide is, for example, calcined hydrotalcite.
- the support materials used preferably have a specific surface area in the range from 10 to 1 000 m 2 /g, preferably from 50 to 500 m 2 /g and in particular from 200 to 400 m 2 /g, and a pore volume in the range from 0.1 to 5 ml/g, preferably from 0.5 to 3.5 ml/g and in particular from 0.8 to 3.0 ml/g.
- the mean particle size of the finely divided supports is generally in the range from 1 to 500 ⁇ m, preferably from 5 to 350 ⁇ m and in particular from 10 to 100 ⁇ m.
- the inorganic support can be subjected to a thermal treatment, e.g. to remove adsorbed water.
- a drying treatment is generally carried out at from 80 to 300°C, preferably from 100 to 200°C, with drying preferably being carried out under reduced pressure and/or in a stream of inert gas, for example nitrogen or argon.
- the inorganic support can also be calcined at from 200 to 1 000°C to set the concentration of the OH groups on the surface and possibly alter the structure of the solid.
- the support can be treated chemically using customary desiccants such as metal alkyls, preferably aluminum alkyls, chlorosilanes or SiCI 4 , or else methylaluminoxane. Appropriate treatment methods are described, for example, in WO 00/31090.
- the inorganic support material can also be chemically modified.
- the treatment of silica gel with NH SiF 6 leads to fluorination of the silica gel surface, or treatment of silica gels with silanes containing nitrogen-, fluorine- or sulfur-containing groups leads to correspondingly modified silica gel surfaces.
- Further possible support materials are finely divided polymer powders, for example powders com- prising polyolefins such as polyethylene or polypropylene or polystyrene.
- These are preferably functionalized polymer supports, e.g. supports based on polystyrenes via whose functional groups, for example ammonium or hydroxyl groups, the aluminoxane can be immobilized. They should preferably be freed of adhering moisture, solvent residues or other impurities by means of appropriate purification or drying operations before use. Preference is given to using finely divided supports which have functional groups on their surface.
- Preferred functional groups are groups containing active hydrogen. Examples of suitable functional groups are hydroxyl groups, primary and secondary amino groups, mercapto groups, silanol groups, carboxyl groups, amido groups and imido groups, with hydroxyl groups being particularly preferred.
- the components can be brought into contact with one another in any order. It is usual to bring the cocatalyst comprising the anions of the formula (la), the organic transition metal compound and, if appropriate, the or- ganometallic compound into contact with one another first before the mixture is used for the polymerization.
- the cocatalyst comprising the anions of the formula (la) and the organic transition metal compound are firstly immobilized on the support and the catalyst solid obtained in this way is used for the polymerization.
- a support material in particular silica gel, is firstly brought into contact with an organometallic compound, preferably a trialkylaluminum and very particularly preferably triisobutylaluminum.
- an organometallic compound preferably a trialkylaluminum and very particularly preferably triisobutylaluminum.
- the solid is subsequently washed and dried.
- the modified support is subsequently combined with the organic transition metal compound and the cocatalyst comprising the anions of the formula (la).
- the organic transition metal compound is firstly combined with an organometallic compound such as a trialkylaluminum before it is brought into contact with the cocatalyst and only then is it combined with the cocatalyst comprising the anions of the formula (la).
- organometallic compound such as a trialkylaluminum
- the mixture of modified support, the cocatalyst comprising the anions of the formula (la) and organic transition metal compound is reacted and dried without a further organometallic compound being added, resulting in formation of a catalyst solid.
- the catalyst solid obtained is then brought into contact with an organometallic compound such as a trialkylaluminum shortly before or during the polymerization.
- the components are usually combined in the presence of an organic solvent in which the support, the reaction products of the supports and the catalyst solid formed are suspended.
- Suitable solvents include aromatic or aliphatic solvents such as hexane, heptane, toluene or xylene and halo- genated hydrocarbons such as methylene chloride and halogenated aromatic hydrocarbons such as o-dichlorobenzene.
- the components are generally combined at from -20°C to 150°C, preferably from 0°C to 80°C.
- the time for which the components which have been brought into contact with one another are allowed to react is generally from 1 minute to 48 hours. Preference is given to reaction times of from 10 minutes to 6 hours.
- the catalyst solid firstly to be prepolymerized with ⁇ -olefins, preferably linear C 2 -C 10 -1 -alkenes and in particular ethylene or propylene, and the resulting prepolymerized catalyst solid then to be used in the actual polymerization.
- ⁇ -olefins preferably linear C 2 -C 10 -1 -alkenes and in particular ethylene or propylene
- the mass ratio of catalyst solid used in the prepolymerization to monomer polymerized onto it is usually in the range from 1 :0.1 to 1 :200.
- an olefin preferably an ⁇ -olefin, for example vinylcyclohexane, styrene or phenyldimethylvinylsilane
- an antistatic or a suitable inert compound such as a wax or oil
- the molar ratio of additives to organic transition metal compound D) is usually from 1 :1 000 to 1 000:1 , preferably from 1 :5 to 20:1.
- the polymerization can be carried out in a known manner in bulk, in suspension, in the gas phase or in a supercritical medium in the customary reactors used for the polymerization of olefins. This can be carried out batchwise or preferably continuously in one or more stages. Solution processes, suspension processes, stirred gas-phase processes and gas-phase fluidized-bed processes are all possible. As solvent or suspension medium, it is possible to use inert hydrocarbons, for example isobutene, or else the monomers themselves.
- the polymerizations can be carried out at from -60 to 300°C and pressures in the range from 0.5 to 3 000 bar. Preference is given to temperatures in the range from 50 to 200°C, In particular from 60 to 100°C, and pressures in the range from 5 to 100 bar, in particular from 15 to 70 bar.
- the mean residence times are usually from 0.5 to 5 hours, preferably from 0.5 to 3 hours.
- Molar mass regulators for example hydrogen, or customary additives such as antistatics can also be used in the polymerization.
- the invention is illustrated by the following nonlimiting examples:
- the determination of the limiting viscosity which indicates the limit of the viscosity number on extrapolation of the polymer concentration to zero, was carried out using an automatic Ubbelohde viscometer (Lauda PVS 1) using decalin as solvent at 130°C in accordance with ISO 1628.
- IR spectra were measured on 0.1 mm thick PE films which had been produced by pressing at 180°C for 15 minutes.
- the number of methyl side chains per 1000 carbon atoms of the polymer chain (CH 3 /1000) was determined by IR in accordance with ASTM D 6248-98.
- the density of the polymer samples was determined by IR spectroscopy via a chemical calibration of IR spectra versus density determined by the buoyancy method in accordance with ISO 1183.
- organic transition metal compound As organic transition metal compound, the following complexes A, B, C and D were used:
- 2,6-diacetylpyridine bis(2-chloro-6-methylanil) was prepared as in ex. 2 of WO 98/27124 and reacted analogously with iron(ll) chloride to give [2,6-diacetylpyridine bis(2-chloro-6-methylanil)]iron dichloride, as likewise disclosed in WO 98/27124.
- Me 2 Si-(2-Me-4,5-benzoind) 2 ZrCI 2 was prepared as disclosed in EP549900.
- LiAI(OC(CF 3 ) 3 ) 4 was prepared by the method described in I. Krossing, Chem. Eur. J. 2001, 7, 490.
- the polymerization tests were carried out in a 1 I four-necked flask provided with contact thermometer, Teflon blade stirrer, gas inlet tube, condenser and heating mantel. 250 ml of toluene were placed in this flask, and the appropriate amounts of the complex and LiAI(OC(CF 3 ) 3 ) 4 were added under argon at 40°C. The solution was then heated at 75°C for 10 minutes and subse- quently cooled back down to 40°C and admixed with the appropriate amount of 2 molar TIBAL solution in heptane from Crompton (triisobutylaluminum), as indicated in table 1.
- silica gel (Sylopol 2107 from Grace) were deactivated by addition of 140 mmol of TIBAL in heptane (2.8 mmol of TIBAL/g of Si0 2 ) at room temperature, filtered off and dried.
- 154 mg of complex D (267 ⁇ mol) and 520 mg (534 ⁇ mol) of LiAI(OC(CF 3 ) 3 ) 4 were suspended in 25 ml of toluene and stirred at room temperature for 45 minutes and at 75°C for 15 minutes.
- the ratio of Zr to LiAI was 1 :2.
- 5.0 g of deactivated silica gel Sylopol 2107 were admixed with the above solution and the mixture was stirred at room temperature for 30 minutes. The solvent was subsequently removed at 40°C under reduced pressure. A free-flowing catalyst powder was obtained.
- complex A was carried out by a method analogous to supported catalyst example " 1. 45.1 mg of complex A (74.4 ⁇ mol) were suspended in 20 ml of toluene. 147.8 mg of LiAI(OC(CF 3 ) 3 ) 4 (151.7 ⁇ mol) were added to this suspension and the mixture was stirred at RT for 15 minutes. The ratio of Fe to LiAI was 1 :2. 5.0 g of deactivated silica gel Sylopol 2107 were admixed with the above solution and stirred at room temperature for 30 minutes. The solvent was subsequently removed at 40°C under reduced pressure. A free-flowing catalyst powder was obtained. Polymerization examples 5-7
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04804205.5A EP1697428B1 (en) | 2003-12-23 | 2004-12-22 | Catalyst system for olefin polymerization |
US10/583,065 US7579416B2 (en) | 2003-12-23 | 2004-12-22 | Catalyst system for olefin polymerization |
BRPI0418130-1A BRPI0418130A (en) | 2003-12-23 | 2004-12-22 | catalyst system for olefin polymerization |
JP2006546059A JP2007515533A (en) | 2003-12-23 | 2004-12-22 | Catalyst composition for olefin polymerization |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10361505.9 | 2003-12-23 | ||
DE2003161505 DE10361505A1 (en) | 2003-12-23 | 2003-12-23 | System useful for polymerization of olefins comprises organic transition metal compound and as co-catalyst, ionic compound made up of aluminate anions comprising trifluoromethyl groups, and Lewis-acid cations or Bronsted acids as cations |
US54801904P | 2004-02-25 | 2004-02-25 | |
US60/548,019 | 2004-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005063829A1 true WO2005063829A1 (en) | 2005-07-14 |
Family
ID=34740516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/014609 WO2005063829A1 (en) | 2003-12-23 | 2004-12-22 | Catalyst system for olefin polymerization |
Country Status (6)
Country | Link |
---|---|
US (1) | US7579416B2 (en) |
EP (1) | EP1697428B1 (en) |
JP (1) | JP2007515533A (en) |
KR (1) | KR20060118564A (en) |
BR (1) | BRPI0418130A (en) |
WO (1) | WO2005063829A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019027586A1 (en) * | 2017-08-04 | 2019-02-07 | Exxonmobil Chemical Patents Inc. | Mixed catalysts with 2, 6-bis(imino)pyridy| iron complexes and bridged hafnocenes |
US10844150B2 (en) | 2017-08-04 | 2020-11-24 | Exxonmobil Chemical Patents Inc. | Mixed catalysts with 2,6-bis(imino)pyridyl iron complexes and bridged hafnocenes |
US11447586B2 (en) | 2018-03-30 | 2022-09-20 | Dow Global Technologies Llc | Olefin polymerization activators |
US11447584B2 (en) | 2018-03-30 | 2022-09-20 | Dow Global Technologies Llc | Olefin polymerization activators |
US11542350B2 (en) | 2018-03-30 | 2023-01-03 | Dow Global Technologies Llc | Binuclear olefin polymerization activators |
US11787880B2 (en) | 2018-03-30 | 2023-10-17 | Dow Global Technologies Llc | Highly soluble alkyl substituted carbenium borate as co-catalysts for olefin polymerizations |
US12037440B2 (en) | 2018-03-30 | 2024-07-16 | Dow Global Technologies Llc | Highly soluble bis-borate as binuclear co-catalysts for olefin polymerization |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201217351D0 (en) * | 2012-09-28 | 2012-11-14 | Scg Chemicals Co Ltd | Catalyst systems |
US11111154B2 (en) | 2012-09-28 | 2021-09-07 | Scg Chemicals Co., Ltd. | Aqueous miscible organic-layered double hydroxide |
CN109835908B (en) * | 2017-11-28 | 2021-01-01 | 中国石油天然气股份有限公司 | Preparation method of carrier silica gel for polyolefin catalyst |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5895771A (en) * | 1997-06-05 | 1999-04-20 | Akzo Nobel Nv | Fluorinated alkoxy and/or aryloxy aluminates as cocatalysts for metallocene-catalyzed olefin polymerizations |
US6583238B1 (en) * | 1998-03-27 | 2003-06-24 | Basell Polyolefine Gmbh | Catalyst system, method for the production thereof, and the utilization thereof for the polymerization of olefins |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2530624B2 (en) * | 1986-09-01 | 1996-09-04 | 三井石油化学工業株式会社 | Olefin Polymerization Method |
IL85097A (en) | 1987-01-30 | 1992-02-16 | Exxon Chemical Patents Inc | Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes |
US5384299A (en) * | 1987-01-30 | 1995-01-24 | Exxon Chemical Patents Inc. | Ionic metallocene catalyst compositions |
CA2027145C (en) | 1989-10-10 | 2002-12-10 | Michael J. Elder | Metallocene catalysts with lewis acids and aluminum alkyls |
US5763549A (en) * | 1989-10-10 | 1998-06-09 | Fina Technology, Inc. | Cationic metallocene catalysts based on organoaluminum anions |
US5721185A (en) | 1991-06-24 | 1998-02-24 | The Dow Chemical Company | Homogeneous olefin polymerization catalyst by abstraction with lewis acids |
US5830821A (en) * | 1991-11-30 | 1998-11-03 | Targor Gmbh | Process for olefin preparation using metallocenes having benzo-fused indenyl derivatives as ligands |
AU651915B2 (en) * | 1991-11-30 | 1994-08-04 | Basell Polyolefine Gmbh | Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts |
JPH05155927A (en) * | 1991-12-11 | 1993-06-22 | Mitsui Toatsu Chem Inc | Polymerization of olefin |
DE19710615A1 (en) | 1997-03-14 | 1998-09-17 | Studiengesellschaft Kohle Mbh | New catalysts for polymerisation of alkene |
US6255418B1 (en) * | 1996-07-30 | 2001-07-03 | Studiengesellschaft Kohle Mbh | Catalysts containing organochromium compounds and their use for polymerizing alkenes |
EP1327636B1 (en) | 1996-11-15 | 2006-01-11 | Basell Polyolefine GmbH | Heterocyclic metallocenes and polymerisation catalysts |
IL129929A0 (en) | 1996-12-17 | 2000-02-29 | Du Pont | Polymerization of ethylene with specific iron or cobalt complexes novel pyridinebis (imines) and novel complexes of pyridinebis(imines) with iron and cobalt |
JP4275311B2 (en) * | 1997-09-11 | 2009-06-10 | コロラド ステート ユニバーシティ リサーチ ファンデーション | Weakly coordinated anions containing polyfluoroalkoxide ligands |
WO2000020472A1 (en) * | 1998-10-05 | 2000-04-13 | The B.F. Goodrich Company | Catalyst and methods for polymerizing cycloolefins |
DE59914158D1 (en) | 1998-11-25 | 2007-03-08 | Basell Polyolefine Gmbh | Metallocenmonohalogenide |
CN1554680A (en) * | 1998-12-09 | 2004-12-15 | ס�ѵ�ľ��ʽ���� | In mold addition polymerization composition of norbornene-type monomers and its crosslinking addition polymer |
DE19935592A1 (en) * | 1999-08-02 | 2001-02-08 | Elenac Gmbh | Imidochrome compounds in catalyst systems for olefin polymerization |
-
2004
- 2004-12-22 JP JP2006546059A patent/JP2007515533A/en active Pending
- 2004-12-22 US US10/583,065 patent/US7579416B2/en active Active
- 2004-12-22 KR KR1020067012524A patent/KR20060118564A/en not_active Application Discontinuation
- 2004-12-22 BR BRPI0418130-1A patent/BRPI0418130A/en not_active IP Right Cessation
- 2004-12-22 WO PCT/EP2004/014609 patent/WO2005063829A1/en not_active Application Discontinuation
- 2004-12-22 EP EP04804205.5A patent/EP1697428B1/en not_active Not-in-force
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5895771A (en) * | 1997-06-05 | 1999-04-20 | Akzo Nobel Nv | Fluorinated alkoxy and/or aryloxy aluminates as cocatalysts for metallocene-catalyzed olefin polymerizations |
US6583238B1 (en) * | 1998-03-27 | 2003-06-24 | Basell Polyolefine Gmbh | Catalyst system, method for the production thereof, and the utilization thereof for the polymerization of olefins |
Non-Patent Citations (1)
Title |
---|
KROSSING, CHEM. EUR. J., vol. 7, 2001, pages 490 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019027586A1 (en) * | 2017-08-04 | 2019-02-07 | Exxonmobil Chemical Patents Inc. | Mixed catalysts with 2, 6-bis(imino)pyridy| iron complexes and bridged hafnocenes |
US10844150B2 (en) | 2017-08-04 | 2020-11-24 | Exxonmobil Chemical Patents Inc. | Mixed catalysts with 2,6-bis(imino)pyridyl iron complexes and bridged hafnocenes |
US11447586B2 (en) | 2018-03-30 | 2022-09-20 | Dow Global Technologies Llc | Olefin polymerization activators |
US11447584B2 (en) | 2018-03-30 | 2022-09-20 | Dow Global Technologies Llc | Olefin polymerization activators |
US11542350B2 (en) | 2018-03-30 | 2023-01-03 | Dow Global Technologies Llc | Binuclear olefin polymerization activators |
US11787880B2 (en) | 2018-03-30 | 2023-10-17 | Dow Global Technologies Llc | Highly soluble alkyl substituted carbenium borate as co-catalysts for olefin polymerizations |
US12037440B2 (en) | 2018-03-30 | 2024-07-16 | Dow Global Technologies Llc | Highly soluble bis-borate as binuclear co-catalysts for olefin polymerization |
Also Published As
Publication number | Publication date |
---|---|
KR20060118564A (en) | 2006-11-23 |
EP1697428B1 (en) | 2014-01-15 |
EP1697428A1 (en) | 2006-09-06 |
US7579416B2 (en) | 2009-08-25 |
BRPI0418130A (en) | 2007-04-17 |
US20070149386A1 (en) | 2007-06-28 |
JP2007515533A (en) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7094724B2 (en) | Catalytic solid supported on calcined hydrotalcite for olefinic polymerisation | |
EP1521782B1 (en) | Preparation of catalyst systems | |
US7618912B2 (en) | Preparation of supported catalyst systems | |
US7579416B2 (en) | Catalyst system for olefin polymerization | |
EP1697432B1 (en) | Preparation of supported cocatalysts | |
EP1569968B1 (en) | Preparation of catalyst compositions having improved activity | |
EP1608690B1 (en) | Preparation of polyolefins having high molecular weights in the presence of an organic transition metal compound in a gas-phase fluidized-bed reactor | |
EP1861409A1 (en) | Monocyclopentadienyl complexes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480038695.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004804205 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007149386 Country of ref document: US Ref document number: 10583065 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067012524 Country of ref document: KR Ref document number: 2006546059 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2004804205 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067012524 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0418130 Country of ref document: BR |
|
WWP | Wipo information: published in national office |
Ref document number: 10583065 Country of ref document: US |