WO2005055683A1 - 電子部品およびその製造方法 - Google Patents

電子部品およびその製造方法 Download PDF

Info

Publication number
WO2005055683A1
WO2005055683A1 PCT/JP2004/017678 JP2004017678W WO2005055683A1 WO 2005055683 A1 WO2005055683 A1 WO 2005055683A1 JP 2004017678 W JP2004017678 W JP 2004017678W WO 2005055683 A1 WO2005055683 A1 WO 2005055683A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor pattern
substrate
electronic component
forming
oxide layer
Prior art date
Application number
PCT/JP2004/017678
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Himori
Shogo Hirai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/541,321 priority Critical patent/US7510759B2/en
Priority to EP04819794A priority patent/EP1581032A4/en
Publication of WO2005055683A1 publication Critical patent/WO2005055683A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0315Oxidising metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer

Definitions

  • the present invention relates to an electronic component used for various electronic devices, communication devices, and the like, and a method for manufacturing the same.
  • FIG. 9 is a cross-sectional view.
  • a conductor pattern 22 is formed on a substrate 21 by a screen printing method or the like.
  • an electrode material such as Ag is used as the material of the conductor pattern 22 which has excellent conductivity but may cause migration
  • the insulation protection film 23 is coated on the conductor pattern 22 in terms of ensuring reliability and power. That is usually done.
  • the glass insulating protective film 23 is made of a glass paste containing glass powder as a main component and mixed with a binder and a solvent by a screen printing method to a predetermined thickness. It is formed by printing and then drying and firing.
  • the substrate 21 is made of a glass epoxy material, which is a composite organic material, it is difficult to perform heat treatment at a very high temperature. Therefore, the substrate 21 is screen-printed using a resin paste mainly composed of an organic material. Thereafter, the resin is thermally cured to form an insulating protective film 23 made of an organic material. In addition, the insulation protection of SiO film etc.
  • the formation of the film 23 is also performed.
  • a fine conductor pattern 22 is formed on a substrate 21 made of the above various materials using an electrode material such as Ag, and an insulating protective film 23 formed thereon by a printing method such as screen printing. Tends to lack the uniformity of the thickness of the coating film and generate bubbles 24 and voids 25. As a result, there is a problem that the insulation reliability of the conductor pattern 22 is reduced. It is difficult to form the insulating protective film 23 with high precision and uniformity due to the viscoelastic properties of the force paste, which is characterized in that the printing method is excellent in productivity.
  • the thickness of the insulating protective film 23 is reduced at the edge portion of the conductor pattern 22, or bubbles 24 are entrapped between the conductor patterns 22 or rinsed. Further, when the gap between the conductor patterns 22 is narrow, the gap between the conductor patterns 22 may not be sufficiently filled with the paste, and as a result, the gap 25 is generated.
  • the present invention solves the above conventional problems and provides a highly reliable electronic component having a conductor pattern with a high aspect ratio.
  • the present invention provides a method for forming a conductive pattern on an insulating substrate, forming a metal film on the surface of the conductive pattern by plating, and oxidizing the metal film to form a metal oxide layer on the conductive pattern.
  • Electronic components provided on the surface of the component.
  • the present invention also provides a step of forming a conductive pattern on an insulating substrate, a step of forming a nickel film on at least a surface of the conductive pattern by a plating method, and forming the nickel film at a temperature of 850 ° C.
  • nickel oxide is formed on at least the surface of the conductor pattern by a metal oxide. Forming as an oxide layer.
  • FIG. 1 is a perspective view of a common mode choke coil which is an example of an electronic component according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along a line AA of a common mode choke coil, which is an example of an electronic component according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view of a common mode choke coil as another example of the electronic component according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view taken along a line BB of a common mode choke coil as another example of the electronic component according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view of a common mode choke coil as another example of the electronic component according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view of another example of the electronic component according to Embodiment 1 of the present invention, taken along a line CC of a common mode choke coil.
  • FIG. 7A is a cross-sectional view for explaining a manufacturing process of the electronic component in Embodiment 1 of the present invention.
  • FIG. 7B is a cross-sectional view for explaining a manufacturing process of the electronic component in Embodiment 1 of the present invention.
  • FIG. 7C is a cross-sectional view for explaining the manufacturing process of the electronic component according to Embodiment 1 of the present invention.
  • FIG. 7D is a cross-sectional view for explaining the manufacturing process of the electronic component according to Embodiment 1 of the present invention.
  • FIG. 7E is a cross-sectional view for explaining a manufacturing step of the electronic component according to Embodiment 1 of the present invention.
  • FIG. 7F is a cross-sectional view for explaining the manufacturing process of the electronic component according to Embodiment 1 of the present invention.
  • FIG. 8 is a cross-sectional view of an electronic component according to Embodiment 2 of the present invention.
  • FIG. 9 is a cross-sectional view of a conventional electronic component. Explanation of reference numerals
  • a conductor pattern is provided on an insulating substrate, a metal film is provided on the surface of the conductor pattern by plating, and a metal oxide layer obtained by oxidizing the metal film is provided. Provided on the surface of the conductor pattern. Since a thin and uniform insulating film is provided on the conductor pattern in this manner, a highly reliable electronic component having a conductor pattern with a high aspect ratio can be realized.
  • a conductor pattern is provided on an insulating substrate, a metal film by plating is provided on the surface of the conductor pattern and the surface of the substrate between the conductor patterns, and the metal film is formed of an acid.
  • a metal oxide layer obtained by performing the conductive pattern is provided on the surface of the conductive pattern and the surface of the substrate between the conductive patterns.
  • the electronic component of the present invention is provided with a conductor pattern on an insulating substrate.
  • a metal film by plating is provided on the surface of the substrate provided with the pattern, and a metal oxide layer obtained by oxidizing the metal film is provided on the surface of the substrate.
  • a thin and uniform insulating film is formed on the entire surface of the conductor pattern and the insulating substrate, so that an electronic component having a more reliable and finer conductor pattern can be realized.
  • the electronic component of the present invention uses a ceramic substrate having high heat resistance and excellent thermal conductivity, so that a fine conductor pattern such as a power supply module for which high heat resistance and heat dissipation are required is used.
  • An electronic component having:
  • the electronic component of the present invention can realize a small-sized multilayer electronic component having a fine conductor pattern by using a glass-ceramic substrate that is easily multilayered and has excellent productivity. .
  • the electronic component of the present invention can realize an electronic component having a fine conductor pattern having excellent productivity, flexibility, and excellent impact resistance by using an organic substrate as the substrate. it can.
  • the electronic component of the present invention uses an electrode material containing at least Ag for the conductor pattern, thereby providing a highly reliable electronic component having a fine conductor pattern with low loss due to low conductor wiring resistance. Can be realized.
  • the electronic component of the present invention can realize an electronic component with higher migration resistance by selecting the electrode material of the conductor pattern to be a group force composed of Ag, Ag—Pt, and Ag—Pd.
  • the electronic component of the present invention has a configuration in which the metal oxide layer contains any one of NiO, ZnO, and CuO. Since the metal film formed by the plating method can be easily formed by oxidation, an electronic component having a fine conductor pattern excellent in productivity can be realized.
  • a metal oxide layer having a uniform film quality with a metal oxide layer thickness of 0.5 to 5 ⁇ m can be obtained.
  • An electronic component having a conductor pattern can be realized.
  • the electronic component of the present invention can realize an electronic component on which a semiconductor or another component can be solder-mounted by exposing a part of the conductor pattern. Further, the electronic component of the present invention can realize an electronic component capable of forming another conductive pattern and forming another component by exposing a part of the conductive pattern and the substrate.
  • a step of forming a conductor pattern on an insulating substrate, and a step of forming a metal film on the surface of the conductor pattern and the surface of the substrate between the conductor patterns by plating Forming and oxidizing the metal film to form a metal oxide layer on the surface of the conductor pattern and the surface of the substrate between the conductor patterns. In this manner, a highly uniform metal oxide layer can be formed on the substrate surface between the conductor patterns formed at a narrow pitch.
  • the method for manufacturing an electronic component of the present invention includes a step of forming a conductor pattern on an insulating substrate, and a step of forming a metal film by plating on the surface of the substrate on which the conductor pattern is formed. Forming a metal oxide layer on the surface of the substrate by oxidizing the metal film. In this manner, a thin and uniform metal oxide layer can be formed on the entire surface of the substrate.
  • the plating method is an electroless plating method. In this way, a thin and uniform metal oxide layer can be formed on an electronic component having a complicated conductor pattern shape.
  • the oxidation treatment is performed by heat treatment.
  • the heat treatment and the oxidizing treatment can be performed by a simple process.
  • the heat treatment is performed at a temperature equal to or lower than the melting point of the conductor pattern.
  • a conductive pattern is formed on an insulating substrate.
  • the uniform and dense insulating film, nickel oxide can be formed as a metal oxide layer, so that a highly reliable electronic component having a fine conductor pattern with a high aspect ratio can be obtained. Can be provided.
  • a conductor pattern 2 is formed as a double spiral coil pattern on both sides of a substrate 1 made of a ceramic substrate having excellent thermal conductivity, such as alumina, using an electrode material such as Ag. I have.
  • a metal film 5 of Ni or the like (described later) is formed by a plating method, and then the metal oxide layer 3 is obtained by oxidizing the metal film 5 by heat treatment or chemical treatment. Is formed. If necessary, through holes 4 are provided for electrically connecting the conductor patterns 2 on both surfaces of the substrate 1 to each other.
  • the metal film 5 can be formed only on the surface of the conductor pattern 2 without using a resist mask.
  • the substrate 1 is immersed in an electroplating solution for Ni (Watt solution) and electrolysis is performed so that the Ni metal film 5 is formed only on the surface of the conductor pattern 2. Can be formed.
  • the conductor pattern 2 for forming a coil has a tendency to have a high aspect ratio. The reason is that in order to increase the inductance value of the coil and increase the Q value of the coil, it is necessary to reduce the electrode width and electrode spacing of the conductor pattern 2 and increase the electrode height. Because.
  • the wall surface (perpendicular to the surface of the substrate 1) or the edge of the conductor pattern 2 having such a configuration is It was difficult to cover with a uniform protective film by the conventional technology.
  • the metal film 5 of Ni or the like is formed on the surface of the conductor pattern 2 using a plating method, the metal oxide layer 3 is uniformly formed regardless of the shape of the conductor pattern 2. it can. At the same time, the edge of the conductor pattern 2 can be covered with the metal oxide layer 3 having the same thickness as the flat portion.
  • the metal film 5 uniformly formed by the plating method is oxidized by the heat treatment or the chemical treatment method to form the metal oxidized layer 3, so that the surface of the conductor pattern 2 is uniformly formed. It becomes possible to form a dense insulating protective film. As a result, a small, high-precision, high-reliability electronic component provided with a fine conductor pattern 2 having a fine high aspect ratio using a conductor material containing Ag as a main component and having excellent conductor resistance can be realized.
  • the electronic component uses a ceramic substrate having excellent thermal conductivity, such as an alumina substrate, for the substrate 1, it is useful for small power supply module components and the like that require heat radiation.
  • a glass ceramic substrate as the substrate 1, it is possible to realize a multilayer wiring structure in which Ag is embedded as an inner layer as a wiring material, and a small high-frequency module component for a portable device that needs to be downsized.
  • the electronic component of the present invention can maximize its effect particularly when an electrode material containing Ag is used for the conductor pattern 2, and the Ag, Ag—Pt, and Ag—Pd are used for the conductor pattern 2.
  • a highly reliable electronic component having a low conductor resistance value can be obtained.
  • the metal oxide layer 3 capable of realizing high reliability may be any material as long as it becomes the metal oxide layer 3 by heat-treating the metal film 5 in the air. It is preferable to use at least one of NiO, ZnO, and CuO. The reason is that the Ni, Cu metal film 5 can be formed by the electroless plating method, and the Ni, Zn, Cu metal film 5 can be formed by the electroplating method. . Further, the metal oxide film layer 3 is a single layer of these or It may be a multilayer.
  • the thickness of the metal oxide layer 3 is preferably in the range of 0.5 to 5 ⁇ m. If the thickness of the metal oxide layer 3 is less than 0.5 m, sufficient reliability cannot be obtained, and if the thickness is more than 5 m, the electrode pitch of the conductor pattern 2 cannot be fine.
  • the effect of the present invention can be exerted even with only one force forming the conductor pattern 2 on both surfaces of the substrate 1.
  • a glass ceramic substrate using a mixed powder of alumina powder and glass powder is used as the substrate 1. 1 and 2 in particular is that the metal oxide layer 3 is formed on the surface of the conductor pattern 2 and on the surface of the substrate 1 between the conductor patterns 2.
  • the electronic component uses a glass ceramic substrate having excellent dielectric properties and productivity and a low-temperature sintering property for the substrate 1, multi-layer fabrication is easy, and it is useful for small-sized module components for high frequencies. .
  • FIGS. 5 and 6 the portions different from the configurations of FIGS. 1 and 2 have a metal oxide layer 3 formed on the entire surface of the substrate 1 on which the conductor pattern 2 is formed. That is.
  • the conductive pattern 2 of Ag or the like formed over the entire surface of the substrate 1 as well as the predetermined region where the fine conductive pattern 2 is formed can be protected by the metal oxide layer 3. . Therefore, it is possible to realize an electronic component suitable for electrical equipment requiring environmental resistance.
  • a place where a fine conductor pattern 2 is not required such as a composite part composed of L and C
  • another electrode material having a high conductor resistance may be used.
  • the metal oxide layer 5 on the entire surface of the substrate 1, it is possible to realize an electronic component such as a composite component having excellent reliability. it can.
  • an example of a ceramic substrate is a 96% pure alumina substrate 1
  • a glass ceramic substrate which is excellent in productivity by low-temperature sintering may be used.
  • a through hole 4 is formed in the substrate 1!
  • a conductor pattern 2 is formed on the surface of the substrate 1.
  • the formation is performed by printing using an Ag paste by an intaglio printing method and then firing at 900 ° C.
  • the conductive pattern 2 can be formed by a thin film method, a plating method, or the like.
  • the metal film 5 is formed on the surface of the conductor pattern 2 and the surface layer of the substrate 1 by electroless plating using a plating solution of Ni—P or Ni—B.
  • the film is formed to a thickness of 2 ⁇ m.
  • the patterned metal film 5 can be easily formed by a photolithography method using a resist material.
  • the metal film 5 was subjected to a heat treatment in air under a thermal oxidation condition of a heating rate of 200 ° C. Zh, an oxidizing temperature of 900 ° C., and a holding time of 4 hours, so that NiO was A metal oxide layer 3 is formed.
  • the thickness of the metal oxide layer 3 was about 3.2 m due to the oxidation treatment.
  • the temperature is 850 ° C. or higher for thermally oxidizing the metal film 5 made of Ni, and the melting of the electrode material forming the conductor pattern 2 is performed. It is more preferable to perform the process at or below the point. If the temperature is lower than 850 ° C., the time of thermal oxidation becomes longer, and if heat treatment is performed at a temperature higher than the melting point of the electrode material, the conductor pattern 2 is deteriorated or it becomes difficult to maintain the pattern shape.
  • an insulating material such as glass is formed as a protective film 6 on the surface of the metal oxide layer 3 from the viewpoint of enhancing reliability.
  • a desired electronic component can be obtained by forming the end face electrode 7.
  • the end face electrode 7 may be made of a conductive material, but it is generally preferable that the end face electrode 7 be formed of a plurality of layers instead of a single layer.
  • solder wettability As for the configuration of the end surface electrode 7, in the case of surface mounting, it is necessary to take into consideration solder wettability, solder cracking, and the like when mounting on a printed wiring board. Specifically, use the same material as conductor pattern 2 for the lowermost layer, and solder It is preferable to use a nickel electrode to prevent the problem, and to use a solder electrode or a tin electrode having good wettability to the solder as the outermost layer. However, this is only an example, and it is not always necessary to adopt this configuration. In addition to metals and other highly conductive materials, conductive resin materials, alloys of silver and platinum, and alloys of silver and palladium And so on.
  • the metal oxide layer 3 formed by oxidizing the metal film 5 does not have to cover the entire surface of the substrate 1. That is, by covering the surface of the conductor pattern 2, the function of the Ag constituting the conductor pattern 2 as an insulating protective film can be exhibited.
  • the metal oxide layer 3 also covers the surface of the conductor pattern 2 and the surface of the substrate 1 between the electrodes, so that it is necessary to dispose the conductor pattern 2 closer. A more reliable function as an insulating protective film can be exhibited even between an electronic component having a certain or an electrode of the conductor pattern 2 to which a high potential force is applied.
  • Embodiment 2 will be described with reference to FIG.
  • the components having the same configuration as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference from the first embodiment is that the substrate 1 is formed of an organic substrate such as a glass epoxy material.
  • the area can be increased, and the efficiency of productivity can be increased.
  • a metal film 5 is obtained by forming a Ni plating layer as shown in FIG.
  • the metal film 5 is oxidized.
  • the oxidation treatment is performed as follows.
  • Ni is oxidized to NiO by a chemical treatment such as immersion in an acidic solution of pH 3 or less or coexistence with an acidic solution of pH 3 or less in a closed space.
  • the metal oxide layer 3 thus obtained has a thin and uniform film thickness distribution, so that it can be uniformly formed even on a fine portion of the conductor pattern 2.
  • the terminal electrode portion 10 is provided on the surface of the substrate 1 so that the surface of the conductor pattern 2 is partially exposed without being covered with the metal oxide layer 3. That is.
  • a high frequency module component is configured by providing such a terminal electrode portion 10
  • a component 9 having a terminal electrode 11 such as a semiconductor device or a coil, a capacitor and a resistor is mounted on the terminal electrode portion 10
  • the terminal electrode 11 and the terminal electrode section 10 can be easily connected by soldering.
  • the metal oxide layer 3 acts as a pattern mask for solder mounting, a terminal electrode portion 10 which can be easily used as a mounting land without using a resist or the like was provided. Electronic components can be realized.
  • the resistance pattern 8 can be formed on the substrate 1 by using a thick film or thin film technique.
  • the resistance pattern 8 is formed, if the metal oxide layer 3 is present below the resistance pattern 8, a chemical reaction between the metal oxide layer 3 and the resistor material forming the resistance pattern 8 is caused by heat.
  • the resistance value and temperature coefficient of the resistor material due to reactions, etc. have a large possibility of adversely affecting resistance noise and so on.
  • a carbon resistor or the like is formed as the resistance pattern 8, the surface roughness or material of the underlying material may affect the resistance characteristics.
  • the electronic component of the present invention uses a metal oxide layer obtained by oxidizing a metal film uniformly formed on the insulating layer using a plating method as an insulating protective film. Even with a fine conductor pattern having a specific ratio, a uniform and dense insulating film can be easily obtained. Therefore, even if an electrode material containing Ag is used for the conductor pattern, migration is unlikely to occur, and an electronic component with high insulation reliability and small size and high accuracy can be provided.
  • the electronic component according to the present invention can efficiently form a uniform and dense insulating protective film, and thus can be widely used as a highly reliable small electronic component used for portable electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

 本発明の電子部品は、絶縁性の基板(1)の上に導体パターン(2)を設け、導体パターン(2)の表面にめっき法で金属膜を設け、金属膜を酸化して得た金属酸化物層(3)を導電パターン(2)の表面に設けた構成を有し、薄く均一な絶縁膜を導体パターン上に設けているので高アスペクト比の導体パターンを有する信頼性の高い電子部品を提供できる。

Description

明 細 書
電子部品およびその製造方法
技術分野
[0001] 本発明は各種電子機器、通信機器などに利用される電子部品およびその製造方 法に関する。
背景技術
[0002] 従来この種の電子部品は小型化あるいは薄型化さらには多機能化が要求されてい る。さらに、高速信号ィ匕ゃデジタルィ匕に伴い導体パターンには高精度 ·高微細化が 求められている。これらの要求を満たすために小型でありかつ高精度化と微細化を 実現するために、導体パターンのファイン化と配線抵抗の上昇を防ぐための高膜厚 ィ匕とが進んでいる。その結果、高アスペクト比の導体パターンを形成する必要性が高 まってきている。
[0003] 以下従来の導体パターンを含む電子部品を、図 9を用いて説明する。図 9はその断 面図である。図 9において、基板 21の上に導体パターン 22がスクリーン印刷方法な どにより形成されている。導体パターン 22の材料として、導電性には優れるがマイグ レーシヨンの恐れがある Agなどの電極材料を用いた場合、信頼性の確保と ヽぅ観点 力も導体パターン 22の上に絶縁保護膜 23を被覆することが通常行われている。
[0004] 例えば、基板 21がアルミナなどのセラミック基板である場合、ガラスの絶縁保護膜 2 3はガラス粉を主成分としてバインダ '溶剤等を混合したガラスペーストなどをスクリー ン印刷工法で所定の厚みに印刷形成し、その後乾燥、焼成することで形成される。ま た基板 21が複合有機材料であるガラスエポキシ材料で構成されている場合、あまり 高温で熱処理することが困難であることから、有機材料を主材料とする榭脂ペースト を用いてスクリーン印刷し、その後榭脂を熱硬化することで有機材料の絶縁保護膜 2 3が形成される。さらに、薄膜法であるスパッタ法などを用いて SiO膜等の絶縁保護
2
膜 23を構成することなども行われて 、る。
[0005] なお、導体パターンを有する電子部品の例が特開平 11— 288779号公報ゃ特開 平 09— 237976号公報に開示されて 、る。 [0006] 上記各種材料カゝらなる基板 21の上に Agなどの電極材料を用いて微細な導体パタ ーン 22を形成し、その上にスクリーン印刷などの印刷工法により形成した絶縁保護 膜 23は塗膜の厚みの均一性に欠けたり、気泡 24や空隙 25を発生させやすい。その 結果、導体パターン 22の絶縁信頼性が低下するという課題を有している。上記印刷 工法は生産性に優れるという特徴を有している力 ペーストの粘弾性特性に起因する 原因から絶縁保護膜 23の膜厚を高精度に均一形成することが困難である。
[0007] 特に、導体パターン 22のエッジ部分では絶縁保護膜 23の厚みが薄くなつたり、導 体パターン 22の間に気泡 24を巻き込んだりしゃすい。さらに導体パターン 22間の隙 間が狭い場合には、導体パターン 22同士の間を十分にペーストで埋めきれないこと があり、その結果空隙 25を発生させていた。
[0008] また、薄膜法では導体パターン 22の平面部(基板 21の面に対して平行)は均一に 成膜できることから問題は発生しないが、その壁面 (基板 21の面に対して垂直)には 平面部と同じように均一に形成することは困難である。
[0009] つまり、従来の方法で絶縁保護膜 23を形成すると、上記絶縁保護膜 23の欠陥によ る Ag電極のマイグレーションの課題を十分防ぐことが困難となる。そして、導体バタ ーン 22のアスペクト比(幅に対する高さの比)が高くなると、絶縁保護膜 23の種々の 欠陥が発生する可能性はさらに大きくなる。その結果、耐マイグレーション性に対す る十分な信頼性が確保できな ヽと ヽぅ課題を有することになる。本発明は上記従来の 課題を解決し、高アスペクト比の導体パターンを有する信頼性の高 ヽ電子部品を提 供する。
発明の開示
[0010] 本発明は、絶縁性の基板上に導体パターンを設け、前記導体パターンの表面にめ つきによる金属膜を設け、前記金属膜を酸化して得た金属酸化物層を前記導体バタ ーンの表面に設けた電子部品を提供する。
[0011] また本発明は、絶縁性の基板上に導体パターンを形成するステップと、少なくとも 前記導体パターンの表面にめっき法によりニッケル膜を形成するステップと、前記- ッケル膜を 850°Cと導体パターンを形成する電極材料の融点以下との間の温度で酸 化熱処理することにより少なくとも前記導体パターンの表面に酸化ニッケルを金属酸 化物層として形成するステップとを有する電子部品の製造方法を提供する。
図面の簡単な説明
[図 1]図 1は本発明の実施の形態 1における電子部品の一例であるコモンモードチヨ ークコイルの斜視図である。
[図 2]図 2は本発明の実施の形態 1における電子部品の一例であるコモンモードチヨ ークコイルの A— A部における断面図である。
[図 3]図 3は本発明の実施の形態 1における電子部品の他の例のコモンモードチョー クコイルの斜視図である。
[図 4]図 4は本発明の実施の形態 1における電子部品の他の例のコモンモードチョー クコイルの B— B部における断面図である。
[図 5]図 5は本発明の実施の形態 1における電子部品の別の例のコモンモードチョー クコイルの斜視図である。
[図 6]図 6は本発明の実施の形態 1における電子部品の別の例のコモンモードチョー クコイルの C-C部における断面図である。
[図 7A]図 7Aは本発明の実施の形態 1における電子部品の製造工程を説明するため の断面図である。
[図 7B]図 7Bは本発明の実施の形態 1における電子部品の製造工程を説明するため の断面図である。
[図 7C]図 7Cは本発明の実施の形態 1における電子部品の製造工程を説明するため の断面図である。
[図 7D]図 7Dは本発明の実施の形態 1における電子部品の製造工程を説明するため の断面図である。
[図 7E]図 7Eは本発明の実施の形態 1における電子部品の製造工程を説明するため の断面図である。
[図 7F]図 7Fは本発明の実施の形態 1における電子部品の製造工程を説明するため の断面図である。
[図 8]図 8は本発明の実施の形態 2における電子部品の断面図である。
[図 9]図 9は従来の電子部品の断面図である。 符号の説明
[0013] 1, 21 基板
2, 22 導体パターン
3 金属酸化物層
4 スノレホーノレ
5 金属膜
6 保護膜
7 端面電極
8 抵抗パターン
9 部品
10 端子電極部
11 端子電極
23 絶縁保護膜
24 気泡
25 空隙
発明を実施するための最良の形態
[0014] 本発明の電子部品は、絶縁性の基板上に導体パターンを設け、この導体パターン の表面にめっきによる金属膜を設け、この金属膜を酸化して得た金属酸化物層を前 記導体パターンの表面に設ける。このようにして、薄く均一な絶縁膜を導体パターン 上に設けて 、るので、高アスペクト比の導体パターンを有する信頼性の高 、電子部 品を実現することができる。
[0015] また本発明の電子部品は、絶縁性の基板上に導体パターンを設け、この導体バタ ーンの表面と導体パターン間の基板の表面にめっきによる金属膜を設け、この金属 膜を酸ィ匕して得た金属酸ィ匕物層を前記導体パターンの表面と導体パターン間の基 板の表面に設ける。このようにして、薄く均一な絶縁膜を導体パターン上および導体 パターンのパターンピッチ間の基板上にも形成するので、高アスペクト比で微細なパ ターンピッチの導体を有する、より信頼性の高い電子部品を実現することができる。
[0016] また本発明の電子部品は、絶縁性の基板上に導体パターンを設け、この導体バタ ーンを設けた基板の表面にめっきによる金属膜を設け、この金属膜を酸化して得た 金属酸ィ匕物層を基板の表面に設ける。このようにして、薄く均一な絶縁膜を導体バタ ーンと絶縁性の基板の全面に形成するので、さらに信頼性の高 ヽ微細な導体パター ンを有する電子部品を実現することができる。
[0017] また本発明の電子部品は、耐熱性が高く熱伝導性に優れたセラミック基板を使用 することにより、パワー用電源モジュールなどの高い耐熱性と放熱性が要求される微 細な導体パターンを有する電子部品を実現することができる。
[0018] また本発明の電子部品は、多層化が容易で生産性に優れたガラスセラミック基板を 使用することにより、微細な導体パターンを有する小型の積層構造の電子部品を実 現することができる。
[0019] また本発明の電子部品は、基板として有機基板を使用することにより、生産性に優 れ、柔軟性があり耐衝撃性に優れた微細な導体パターンを有する電子部品を実現 することができる。
[0020] また本発明の電子部品は、導体パターンに少なくとも Agを含む電極材料を用いる ことにより、導体配線抵抗が低いため損失の少ない、微細な導体パターンを有する信 頼性に優れた電子部品を実現することができる。
[0021] また本発明の電子部品は、導体パターンの電極材料を Ag, Ag-Pt, Ag— Pdから なる群力 選ぶことにより、より耐マイグレーション性の高い電子部品を実現すること ができる。
[0022] また本発明の電子部品は、金属酸化物層を NiO, ZnO, CuOのうちいずれか一つ を含む構成とする。めっき法により形成された金属膜を酸ィ匕することにより容易に構 成することができるので、生産性に優れた微細な導体パターンを有する電子部品を 実現することができる。
[0023] また本発明の電子部品は、金属酸化物層の厚みを 0. 5— 5 μ mとする均一な膜質 を有する金属酸化物層を得ることができるので、信頼性に優れた微細な導体パター ンを有する電子部品を実現することができる。
[0024] また本発明の電子部品は、導体パターンの一部を表出させることにより、半導体や 他の部品のはんだ実装が可能な電子部品を実現することができる。 [0025] また本発明の電子部品は、導体パターンおよび基板の一部を表出させることにより 、他の導体パターンの形成や他の部品の形成が可能な電子部品を実現することがで きる。
[0026] また本発明の電子部品の製造方法は、絶縁性の基板上に導体パターンを形成す るステップと、この導体パターンの表面にめっき法により金属膜を形成するステップと 、この金属膜を酸化処理することにより導体パターンの表面に金属酸化物層を形成 するステップを有している。このようにして、高アスペクト比で凹凸の激しい導体パター ンの表面であっても均一性の高い金属酸ィ匕物層を形成することができる。
[0027] また本発明の電子部品の製造方法は、絶縁性の基板上に導体パターンを形成す るステップと、この導体パターンの表面と導体パターン間の基板の表面にめっき法に より金属膜を形成するステップと、この金属膜を酸化処理することにより前記導体バタ ーンの表面と導体パターン間の基板の表面に金属酸ィ匕物層を形成するステップを有 する。このようにして、狭ピッチで形成された導体パターン間の基板表面にも均一性 が高い金属酸ィ匕物層を形成することができる。
[0028] また本発明の電子部品の製造方法は、絶縁性の基板上に導体パターンを形成す るステップと、この導体パターンを形成した基板の表面にめっき法により金属膜を形 成するステップと、この金属膜を酸化処理することにより前記基板の表面に金属酸ィ匕 物層を形成するステップを有する。このようにして、基板全面に薄く均一な金属酸ィ匕 物層を形成することができる。
[0029] また本発明の電子部品の製造方法は、めっき方法を無電解めつき法とする。このよ うにして、複雑な導体パターン形状の電子部品に対して、薄く均一に金属酸化物層 を形成することができる。
[0030] また本発明の電子部品の製造方法は、酸化処理を熱処理にて行う。熱処理と 、う 簡単なプロセスで酸ィ匕処理を行うことができる。
[0031] また本発明の電子部品の製造方法は、熱処理の温度を導体パターンの融点以下 で行う。熱処理を融点以下で行うことで導体パターンの変質や配線抵抗の変化が少 ない電子部品を提供することができる。
[0032] また本発明の電子部品の製造方法は、絶縁性の基板上に導体パターンを形成す るステップと、少なくともこの導体パターンの表面にめっき法によりニッケル膜を形成 するステップと、このニッケル膜を 850°C以上カゝら導体パターンを形成する電極材料 の融点以下の間の温度で酸ィ匕熱処理することにより少なくとも導体パターンの表面に 酸化ニッケルを金属酸化物層として形成するステップを有する。このようにして、均一 で緻密な絶縁膜である酸ィ匕ニッケルを金属酸ィ匕物層として形成することができるので 、高アスペクト比で微細な導体パターンを有する信頼性の高 ヽ電子部品を提供する ことができる。
[0033] 以下本発明の実施の形態を、図面を用いて詳細に説明する。なお、図面は模式図 であり、各位置関係を寸法的に正しく示すものではない。また同一構成部品には同 一の参照符号を付与し、詳細な説明は省略する。
[0034] (実施の形態 1)
図 1一 6を用いて実施の形態 1を説明する。図 1において、アルミナなどの熱伝導性 に優れたセラミック基板カゝらなる基板 1の両面に、 Agなどの電極材料を用いて導体パ ターン 2が 2重の螺旋状にコイルパターンとして形成されている。
[0035] この導体パターン 2の表面には、 Niなどの金属膜 5 (後述)をめつき法で形成した後 、金属膜 5を熱処理あるいは化学処理によって酸化して得られた金属酸化物層 3が 形成されている。また必要に応じて、基板 1の両面の導体パターン 2同士を電気的に 接続するために、スルホール 4が設けられる。
[0036] 上記金属膜 5の形成にめっき法のうちの電気めつきを利用すると、導体パターン 2 の表面のみにレジストマスクを使用せずに金属膜 5を形成することができる。この電気 めっきで Niの金属膜 5を形成する場合、 Ni用電気めつき液 (ワット液)中に基板 1を浸 漬して電解を行うことにより導体パターン 2の表面のみに Niの金属膜 5を形成すること ができる。
[0037] また、近年コイルを形成するための導体パターン 2は、高アスペクト比になる傾向が 大きくなつてきている。その理由は、コイルのインダクタンス値を大きくすることとコイル の Q値を高めるために、導体パターン 2の電極幅と電極間隔を小さくし、電極の高さ を大きくすることが必然的に要求されるからである。
[0038] このような構成の導体パターン 2の壁面(基板 1の面に垂直)あるいはエッジ部に、 従来の技術では均一の保護膜で被覆することは困難であった。しかし、本実施の形 態のような構成とすることにより、 Agなどの電極材料を用いて形成した導体パターン 2 の表面全てを緻密かつ均一に金属酸化物層 3にて被覆することが可能となる。つまり 、高アスペクト比であっても Agのマイグレーションを防止し、絶縁不良を起こさないと いう効果を発揮することが可能である。また、導体パターン 2の表面にめっき法を用い て Niなどの金属膜 5を形成して 、るので、どのような形状の導体パターン 2であっても 均一に金属酸ィ匕物層 3を形成できる。それと同時に、導体パターン 2のエッジ部にお いても平坦な部分と同一厚みの金属酸ィ匕物層 3にて被覆することが可能となる。
[0039] このように、めっき法で均一に形成された金属膜 5を熱処理あるいは化学処理方法 により酸ィ匕して金属酸ィ匕物層 3とすることによって、導体パターン 2の表面に均一で緻 密な絶縁保護膜を形成することが可能となる。その結果、導体抵抗に優れた Agを主 成分とする導体材料を用いた微細な高アスペクト比を有する導体パターン 2を設けた 小型の高精度 ·高信頼性の電子部品を実現することができる。
[0040] また、この電子部品は基板 1にアルミナ基板などの熱伝導性に優れたセラミック基 板を用いているので、放熱性が要求される電源用小型モジュール部品などに有用で ある。また、基板 1をガラスセラミック基板とすることにより、内層に Agを配線材料とし て内蔵した多層配線構造を実現することが可能となり、小型化が要求される携帯機 器用の小型高周波用モジュール部品などに有用である。
[0041] また、本発明の電子部品は特に導体パターン 2に Agを含む電極材料を用いたとき にその効果を最大限に発揮できるものであり、 Ag, Ag-Pt, Ag— Pdを導体パターン 2に用いることにより導体抵抗値の低い高信頼性の電子部品とすることができる。つま り、熱処理を大気中で行っても不導体膜を表層に生じない金属を選択することが重 要である。
[0042] また、高信頼性を実現できる金属酸ィ匕物層 3は、金属膜 5を大気中で熱処理するこ とによって金属酸化物層 3となる材料であればよい。そして、 NiO, ZnO, CuOのうち 少なくともいずれか一つを用いることが好ましい。その理由は、無電解めつき法を用 いて Ni, Cuの金属膜 5を形成することができ、電気めつき法により Ni, Zn, Cuの金 属膜 5を形成することができるからである。また金属酸ィ匕物層 3はこれらの単層または 複層であってもよい。
[0043] また、金属酸化物層 3の厚みは 0. 5— 5 μ mの範囲が好ましい。金属酸化物層 3の 厚みが 0. 5 mより薄くなると十分な信頼性が得られなくなり、 5 mより厚くなると導 体パターン 2の電極ピッチが微細にできなくなるからである。
[0044] また、本実施の形態では基板 1の両面に導体パターン 2を形成している力 片面の みであっても本発明の効果を発揮することができる。
[0045] 次に、図 3および図 4を用いて他のコイル部品について説明する。図 3および図 4に ぉ 、て、基板 1にはアルミナ粉とガラス粉との混合粉体を用いたガラスセラミック基板 を用いる。特に図 1および図 2の構成と異なっている部分は、金属酸化物層 3が導体 パターン 2の表面と導体パターン 2の間の基板 1の表面とに形成していることである。 このような構成とすることにより電極間隔の狭い微細な導体パターン 2を形成した領域 においても、より信頼性の高い導体パターン 2を形成した電子部品を実現することが できる。またこの電子部品は基板 1に誘電特性、生産性に優れた低温焼成性のガラ スセラミック基板を用いていることから多層ィ匕も容易であり、高周波用の小型モジユー ル部品などに有用である。
[0046] 次に図 5および図 6を用いて、さらに別のコイル部品について説明する。図 5と図 6 に示すように、図 1と 2の構成と異なっている部分は金属酸ィ匕物層 3を、導体パターン 2を形成している基板 1の表面に全面に形成していることである。このような構成とす ることにより、微細な導体パターン 2の形成した所定の領域においてのみならず基板 1の全面にわたって形成した Agなどの導体パターン 2を金属酸ィ匕物層 3で保護でき る。したがって、耐環境性を要求される電装用に適した電子部品を実現することがで きる。例えば、 Lと Cとからなる複合部品などのように微細な導体パターン 2が必要で ない箇所においては、導体抵抗値の高い他の電極材料を用いることもある。しかし、 これらの異なった電極材料を用いた場合であっても基板 1の全面に金属酸ィ匕物層 5 を形成することにより、信頼性に優れた複合部品などの電子部品を実現することがで きる。
[0047] 次に、図 7A—図 7Fを用いて本発明の電子部品の製造方法について説明する。ま ず、図 7Aに示すように、セラミック基板の一例である純度 96%のアルミナ製の基板 1 を準備する。基板 1にはその他にも低温焼結で生産性に優れたガラスセラミック基板 を用いてもょ 、。また基板 1にはスルホール 4が形成されて!、る。
[0048] 次に図 7Bに示すように、基板 1の表面に導体パターン 2を形成する。その形成は、 Agペーストを用いて凹版印刷法により印刷形成した後、 900°Cで焼成して行われる 。導体パターン 2の形成方法は薄膜法、めっき法などによっても形成することが可能 である。
[0049] 次に図 7Cに示すように、導体パターン 2の表面と基板 1の表層とに金属膜 5として、 Ni— Pあるいは Ni— Bのめつき液を用いて無電解めつき法により Ni膜を 2 μ mの厚み に形成する。このとき金属膜 5を所定のパターンに形成したい場合は、レジスト材料を 用いてフォトリソ工法により、パターン化された金属膜 5を容易に形成することが可能 である。
[0050] その後図 7Dに示すように、金属膜 5を、昇温速度 200°CZh、酸化温度 900°C、保 持時間 4時間の熱酸化条件にて空気中で熱処理することにより、 NiOからなる金属 酸化物層 3を形成する。このとき酸化処理により金属酸化物層 3の厚みは約 3. 2 m になっていた。
[0051] この酸ィ匕処理工程において、生産性を考慮すると Niからなる金属膜 5を熱酸化させ るためには 850°C以上の温度であり、かつ導体パターン 2を構成する電極材料の融 点以下で行うことがより好ましい。 850°Cより低い温度では熱酸ィ匕の時間が長くなり、 電極材料の融点以上の温度で熱処理を行うと導体パターン 2が変質するかあるいは パターン形状の維持が困難となる。
[0052] 次に、図 7Eに示すように金属酸ィ匕物層 3の表面に、信頼性をより高める観点カもガ ラスなどの絶縁性材料を保護膜 6として形成する。その後、図 7Fに示すようなチップ 状の電子部品とするために、端面電極 7を形成することにより所望の電子部品を得る ことができる。端面電極 7としては導電性材料であればよいが、一般的には単一層で なく複数層から構成されることが望まし 、。
[0053] 端面電極 7の構成としては、表面実装用の場合にはプリント配線板への実装時の 実装強度ある ヽは実装時の半田の濡れ性、半田くわれなどを考慮する必要がある。 具体的には最下層には導体パターン 2と同じ材料を用い、中間層には半田くわれを 防止するニッケル電極を用い、最外層にははんだに対して濡れ性の良いはんだ電極 あるいはスズ電極などを用いることが好ましい。し力しながら、これは一例であり、必ず しもこの構成を採用する必要はなぐ金属等の導電性に優れた材料以外に導電性榭 脂材料、銀と白金の合金や銀とパラジウムの合金などでもよ 、。
[0054] なお図 7Dに示すように、金属膜 5を酸化処理して形成した金属酸化物層 3は、基 板 1の表面全体でなくてもよい。つまり、導体パターン 2の表面部を被覆することにより 、導体パターン 2を構成する Agの絶縁保護膜としての機能は発揮することができる。 また、図 6に示すように、金属酸ィ匕物層 3を導体パターン 2の表面部と電極間の基板 1 の表面にも被覆することにより、より近接して導体パターン 2を配置する必要性のある 電子部品あるいは高い電位力かかる導体パターン 2の電極間においても、より信頼 性の高い絶縁保護膜としての機能を発揮することができる。
[0055] (実施の形態 2)
図 8を用いて、実施の形態 2を説明する。なお、実施の形態 1と同様の構成を有す るものについては、同一符号を付しその説明を省略する。図 8において、実施の形態 1と相違する点は基板 1がガラスエポキシ材料などの有機基板で構成されていること である。基板 1にこのような有機基板を用いることにより、大面積化が図れるので生産 性の効率を高めることができる。
[0056] 有機材料を基板 1とした場合、フォトリソグラフィの工法を用いてあらかじめ有機基板 に形成された表層が Ag力もなる導体パターン 2の表層に、無電解めつきにより: L m の膜厚となるよう Niめっき層を形成して金属膜 5を得る。
[0057] 次に、金属膜 5の酸化処理を行う。基板 1が有機基板の場合には、加熱温度に上 限があるため、酸ィ匕処理は以下のようにして行う。例えば pH3以下の酸性溶液中に 浸漬したり、密閉空間に PH3以下の酸性溶液と共存させて酸ィ匕させるような化学処 理により Niを NiOに酸ィ匕する。
[0058] こうして得られた金属酸ィ匕物層 3は薄く均一な膜厚分布となることから導体パターン 2の微細な部分にも均一に形成することができる。
[0059] 次に相違する点は、この基板 1の表面に導体パターン 2の表面が金属酸ィ匕物層 3 に被覆されることなく部分的に露出している端子電極部 10を設けていることである。 このような端子電極部 10を設けることにより、高周波用のモジュール部品を構成する 場合、端子電極部 10に半導体デバイスあるいはコイル、コンデンサおよび抵抗器な どの端子電極 11を有する部品 9を実装する時、端子電極 11と端子電極部 10とをは んだで接続することが容易に実現できる。
[0060] このとき、金属酸ィ匕物層 3がはんだ実装するときのパターンマスクとして作用するの で、レジストなどを用いることなく容易に実装用のランドとして利用できる端子電極部 1 0を設けた電子部品を実現することができる。
[0061] また、本発明の一例である基板 1の表面を部分的に露出したモジュール部品の場 合、基板 1の上に厚膜あるいは薄膜技術を用いて抵抗パターン 8を形成することがで きる。抵抗パターン 8を形成するとき、抵抗パターン 8の下層に金属酸ィ匕物層 3が存 在すると、金属酸化物層 3と抵抗パターン 8を構成する抵抗体材料との化学反応ある Vヽは熱反応などにより抵抗体材料の抵抗値、温度係数ある!/、は抵抗ノイズなどに悪 影響を及ぼす可能性が大き 、。また抵抗パターン 8としてカーボン抵抗体などを形成 する場合、下地材料の表面粗さや材質が抵抗特性に影響を与えることがある。本発 明の構成とすることにより。安定した素子を基板 1の上に設けることができる電子部品 を実現することができる。
[0062] 本発明の電子部品は、絶縁層にめっき法を用いて均一に形成した金属膜を酸ィ匕し て得られる金属酸ィ匕物層を絶縁保護膜として用いているので、高アスペクト比を有す る微細な導体パターンであっても均一で緻密な絶縁膜を容易〖こ得ることができる。し たがって、 Agを含んだ電極材料を導体パターンに用いてもマイグレーションの発生し にく 、絶縁信頼性の高 、小型高精度の電子部品を提供することができると 、う効果 を奏する。
産業上の利用可能性
[0063] 本発明にかかる電子部品は、均一で緻密な絶縁保護膜を効率よく形成できるので 携帯用電子機器に用いる高信頼性の小型の電子部品として広く利用できる。

Claims

請求の範囲
[I] 絶縁性の基板上に導体パターンを設け、前記導体パターンの表面にめっきによる金 属膜を設け、前記金属膜を酸化して得た金属酸化物層を前記導体パターンの表面 に設けた電子部品。
[2] 絶縁性の基板上に導体パターンを設け、前記導体パターンの表面と前記導体バタ ーン間の前記基板の表面とにめつきによる金属膜を設け、前記金属膜を酸化して得 た金属酸ィ匕物層を前記導体パターンの表面と前記導体パターン間の前記基板の表 面とに設けた電子部品。
[3] 絶縁性の基板上に導体パターンを設け、前記導体パターンを設けた前記基板の表 面にめっきによる金属膜を設け、前記金属膜を酸化して得た金属酸化物層を前記基 板の表面に設けた電子部品。
[4] 前記基板をセラミック基板とした請求項 1一 3の 、ずれか一つに記載の電子部品。
[5] 前記基板をガラスセラミック基板とした請求項 1一 3の 、ずれか一つに記載の電子部
P
PPo
[6] 前記基板を有機基板とした請求項 1一 3のいずれか一つに記載に電子部品。
[7] 前記導体パターンに少なくとも Agを含む電極材料を用いた請求項 1一 3の 、ずれか 一つに記載の電子部品。
[8] 前記電極材料は Ag, Ag-Pt, Ag— Pdからなる群のうちから選ばれた一つを含む請 求項 7に記載の電子部品。
[9] 前記金属酸ィ匕物層は NiO, ZnO, CuO力 なる群のうち力 選ばれる一つを有する 請求項 1一 3のいずれか一つに記載の電子部品。
[10] 前記金属酸化物層の厚みを 0. 5— 5 mとした請求項 1一 3のいずれか一つに記載 の電子部品。
[II] 前記金属酸化物層の厚みを 0. 5— 5 μ mとした請求項 9に記載の電子部品。
[12] 前記導体パターンの一部を表出させた請求項 1一 3のいずれか一つに記載の電子 部品。
[13] 前記導体パターンおよび前記基板の一部を表出させた請求項 2または 3に記載の電 子部品。
[14] 絶縁性の基板上に導体パターンを形成するステップと、前記導体パターンの表面に めっき法により金属膜を形成するステップと、前記金属膜を酸化処理することにより前 記導体パターンの表面に金属酸ィ匕物層を形成するステップとを有する電子部品の製 造方法。
[15] 絶縁性の基板上に導体パターンを形成するステップと、前記導体パターンの表面と 導体パターン間の基板の表面にめっき法により金属膜を形成するステップと、前記金 属膜を酸ィ匕処理することにより前記導体パターンの表面と前記導体パターン間の前 記基板の表面に金属酸化物層を形成するステップとを有する電子部品の製造方法。
[16] 絶縁性の基板上に導体パターンを形成するステップと、前記導体パターンを形成し た前記基板の表面にめっき法により金属膜を形成するステップと、前記金属膜を酸 化処理することにより前記基板の表面に金属酸化物層を形成するステップとを有する 電子部品の製造方法。
[17] 前記めつき法が無電解めつき法である請求項 14一 16のいずれか一つに記載の電 子部品の製造方法。
[18] 前記酸ィ匕処理を熱処理にて行う請求項 14一 16のいずれか一つに記載の電子部品 の製造方法。
[19] 前記熱処理の温度を前記導体パターンの融点以下で行う請求項 18に記載の電子 部品の製造方法。
[20] 絶縁性の基板上に導体パターンを形成するステップと、少なくとも前記導体パターン の表面にめっき法によりニッケル膜を形成するステップと、前記ニッケル膜を 850°Cと 導体パターンを形成する電極材料の融点以下との間の温度で酸ィ匕熱処理することに より少なくとも前記導体パターンの表面に酸ィ匕ニッケルを金属酸ィ匕物層として形成す るステップとを有する電子部品の製造方法。
PCT/JP2004/017678 2003-12-02 2004-11-29 電子部品およびその製造方法 WO2005055683A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/541,321 US7510759B2 (en) 2003-12-02 2004-11-29 Electronic part and manufacturing method thereof
EP04819794A EP1581032A4 (en) 2003-12-02 2004-11-29 ELECTRONIC COMPONENT AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-402606 2003-12-02
JP2003402606A JP4556422B2 (ja) 2003-12-02 2003-12-02 電子部品およびその製造方法

Publications (1)

Publication Number Publication Date
WO2005055683A1 true WO2005055683A1 (ja) 2005-06-16

Family

ID=34650037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017678 WO2005055683A1 (ja) 2003-12-02 2004-11-29 電子部品およびその製造方法

Country Status (5)

Country Link
US (1) US7510759B2 (ja)
EP (1) EP1581032A4 (ja)
JP (1) JP4556422B2 (ja)
CN (1) CN100473258C (ja)
WO (1) WO2005055683A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1761120A1 (en) 2005-09-05 2007-03-07 Nitto Denko Corporation Wired circuit board
CN105225845A (zh) * 2015-10-20 2016-01-06 国家纳米科学中心 一种超级电容器电极材料及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572759B2 (ja) * 2005-07-06 2010-11-04 セイコーエプソン株式会社 半導体装置及び電子機器
JP4790447B2 (ja) * 2006-03-02 2011-10-12 日東電工株式会社 回路付サスペンション基板
KR100764386B1 (ko) 2006-03-20 2007-10-08 삼성전기주식회사 고온공정에 적합한 절연구조체 및 그 제조방법
JP4749221B2 (ja) * 2006-05-01 2011-08-17 日東電工株式会社 配線回路基板
US9615463B2 (en) 2006-09-22 2017-04-04 Oscar Khaselev Method for producing a high-aspect ratio conductive pattern on a substrate
ES2612734T3 (es) * 2007-08-03 2017-05-18 Alpha Metals, Inc. Método de fabricación de placa de circuitos impresos
US20090077093A1 (en) * 2007-09-19 2009-03-19 Joydeep Sen Sarma Feature Discretization and Cardinality Reduction Using Collaborative Filtering Techniques
JP4850309B2 (ja) * 2008-11-27 2012-01-11 三井・デュポンポリケミカル株式会社 電子部品用保護フィルム、その製造方法および用途
JP5482152B2 (ja) * 2009-11-27 2014-04-23 トヨタ自動車株式会社 トランス素子とその製造方法
JP6069893B2 (ja) * 2012-06-04 2017-02-01 株式会社ジェイテクト 電子回路装置
US9113583B2 (en) * 2012-07-31 2015-08-18 General Electric Company Electronic circuit board, assembly and a related method thereof
JP6311200B2 (ja) * 2014-06-26 2018-04-18 住友電工プリントサーキット株式会社 プリント配線板、電子部品及びプリント配線板の製造方法
KR101823194B1 (ko) * 2014-10-16 2018-01-29 삼성전기주식회사 칩 전자부품 및 그 제조방법
JP6569545B2 (ja) * 2016-01-27 2019-09-04 住友金属鉱山株式会社 厚膜銅電極または配線とその形成方法
US11521785B2 (en) 2016-11-18 2022-12-06 Hutchinson Technology Incorporated High density coil design and process
US11387033B2 (en) * 2016-11-18 2022-07-12 Hutchinson Technology Incorporated High-aspect ratio electroplated structures and anisotropic electroplating processes
JP7323268B2 (ja) * 2018-03-16 2023-08-08 日東電工株式会社 磁性配線回路基板およびその製造方法
KR102564099B1 (ko) * 2018-09-27 2023-08-04 덴카 주식회사 접합 기판, 금속 회로 기판 및 회로 기판
CN111370210B (zh) * 2020-04-27 2021-12-10 安捷利(番禺)电子实业有限公司 一种充电线圈及无线充电终端
WO2023281838A1 (ja) * 2021-07-05 2023-01-12 株式会社村田製作所 回路基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486766A (en) * 1977-12-22 1979-07-10 Tokyo Shibaura Electric Co Ic substrate
US4915759A (en) 1986-01-30 1990-04-10 Moran Peter L Method for producing a multilayer system
JPH08181423A (ja) * 1994-12-27 1996-07-12 Nippon Telegr & Teleph Corp <Ntt> はんだバンプ実装用端子電極構造
US5650595A (en) 1995-05-25 1997-07-22 International Business Machines Corporation Electronic module with multiple solder dams in soldermask window
JP2000031625A (ja) * 1998-07-08 2000-01-28 Nec Corp はんだレジストを備えた高周波回路プリント基板
JP2000174423A (ja) * 1998-12-09 2000-06-23 Denso Corp 配線基板およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745045A (en) * 1971-01-06 1973-07-10 R Brenneman Electrical contact surface using an ink containing a plating catalyst
US3916056A (en) * 1972-12-29 1975-10-28 Rca Corp Photomask bearing a pattern of metal plated areas
JPS5145276A (en) * 1974-10-17 1976-04-17 Taiyo Yuden Kk Denkikairobuhinno seizohoho
JPS5821839B2 (ja) * 1979-05-18 1983-05-04 富士通株式会社 プリント板
DE3028044C1 (de) * 1980-07-24 1981-10-08 Vdo Adolf Schindling Ag, 6000 Frankfurt Lötfähiges Schichtensystem
JPS6099699A (ja) * 1983-11-07 1985-06-03 Fuji Photo Film Co Ltd 光情報記録媒体
JPS62265796A (ja) * 1986-05-14 1987-11-18 株式会社住友金属セラミックス セラミツク多層配線基板およびその製造法
JP3508789B2 (ja) * 1994-07-04 2004-03-22 セイコーエプソン株式会社 基板の表面処理方法
JP3331083B2 (ja) * 1995-03-06 2002-10-07 株式会社住友金属エレクトロデバイス 低温焼成セラミック回路基板
US5924623A (en) * 1997-06-30 1999-07-20 Honeywell Inc. Diffusion patterned C4 bump pads
US6586683B2 (en) * 2001-04-27 2003-07-01 International Business Machines Corporation Printed circuit board with mixed metallurgy pads and method of fabrication
US6717266B1 (en) * 2002-06-18 2004-04-06 Advanced Micro Devices, Inc. Use of an alloying element to form a stable oxide layer on the surface of metal features
US6756306B2 (en) * 2002-07-31 2004-06-29 Advanced Micro Devices, Inc. Low temperature dielectric deposition to improve copper electromigration performance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486766A (en) * 1977-12-22 1979-07-10 Tokyo Shibaura Electric Co Ic substrate
US4915759A (en) 1986-01-30 1990-04-10 Moran Peter L Method for producing a multilayer system
JPH08181423A (ja) * 1994-12-27 1996-07-12 Nippon Telegr & Teleph Corp <Ntt> はんだバンプ実装用端子電極構造
US5650595A (en) 1995-05-25 1997-07-22 International Business Machines Corporation Electronic module with multiple solder dams in soldermask window
JP2000031625A (ja) * 1998-07-08 2000-01-28 Nec Corp はんだレジストを備えた高周波回路プリント基板
JP2000174423A (ja) * 1998-12-09 2000-06-23 Denso Corp 配線基板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1581032A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1761120A1 (en) 2005-09-05 2007-03-07 Nitto Denko Corporation Wired circuit board
US7586046B2 (en) 2005-09-05 2009-09-08 Nitto Denko Corporation Wired circuit board
CN105225845A (zh) * 2015-10-20 2016-01-06 国家纳米科学中心 一种超级电容器电极材料及其制备方法

Also Published As

Publication number Publication date
EP1581032A4 (en) 2009-10-21
CN100473258C (zh) 2009-03-25
US7510759B2 (en) 2009-03-31
CN1717964A (zh) 2006-01-04
US20060118905A1 (en) 2006-06-08
JP4556422B2 (ja) 2010-10-06
JP2005166873A (ja) 2005-06-23
EP1581032A1 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
WO2005055683A1 (ja) 電子部品およびその製造方法
Barlow III et al. Ceramic interconnect technology handbook
US6068782A (en) Individual embedded capacitors for laminated printed circuit boards
JP4254757B2 (ja) 導電材料及び導電性ペースト及び基板
JPS61194794A (ja) 混成集積回路基板の製造方法
JPH11163525A (ja) 多層配線基板の製造方法
JP2009267291A (ja) コイル部品およびその製造方法
JPH11288841A (ja) セラミック電子部品の実装方法及びセラミック電子部品
JP4540223B2 (ja) 電子部品搭載基板
JP4396426B2 (ja) 抵抗素子及びその抵抗素子を内蔵した多層プリント配線板
JP2009081142A (ja) 導電材料、導電材料の製造方法、回路基板、及び回路基板の製造方法
JPH0595071U (ja) 厚膜回路基板
KR100715152B1 (ko) 금속 지지 기판 상에 금속 콘택 패드를 형성시키는 방법
JP2001244367A (ja) 電気素子内蔵配線基板
JPS6231190A (ja) 電子回路基板及びその製造方法
JP2002232104A (ja) 配線モジュール
JP2866512B2 (ja) 配線基板
JP3170429B2 (ja) 配線基板
JP4645212B2 (ja) 配線回路板内蔵抵抗素子
EP0417749A2 (en) Thick film resistor/integrated circuit substrate and method of manufacture
JP2537893B2 (ja) 電子回路基板の製造方法
JP2003297636A (ja) コイル部品
JP2004179485A (ja) プリント配線板の製造方法及びプリント配線板
JP2006173650A (ja) 多層配線基板
JPH0823158A (ja) 電子回路基板及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 20048016292

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2004819794

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004819794

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006118905

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541321

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004819794

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10541321

Country of ref document: US