WO2005054430A2 - Hepatitis c virus inhibitors - Google Patents

Hepatitis c virus inhibitors Download PDF

Info

Publication number
WO2005054430A2
WO2005054430A2 PCT/US2004/038967 US2004038967W WO2005054430A2 WO 2005054430 A2 WO2005054430 A2 WO 2005054430A2 US 2004038967 W US2004038967 W US 2004038967W WO 2005054430 A2 WO2005054430 A2 WO 2005054430A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
hcv
optionally substituted
alkoxy
Prior art date
Application number
PCT/US2004/038967
Other languages
French (fr)
Other versions
WO2005054430A3 (en
Inventor
Yong Tu
Paul Michael Scola
Andrew Charles Good
Jeffrey Allen Campbell
Original Assignee
Bristol-Myers Squibb Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol-Myers Squibb Company filed Critical Bristol-Myers Squibb Company
Priority to JP2006541549A priority Critical patent/JP4675332B2/en
Priority to EP04811656.0A priority patent/EP1684745B1/en
Publication of WO2005054430A2 publication Critical patent/WO2005054430A2/en
Publication of WO2005054430A3 publication Critical patent/WO2005054430A3/en
Priority to NO20062185A priority patent/NO20062185L/en
Priority to IS8475A priority patent/IS8475A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu

Definitions

  • the present invention is generally directed to antiviral compounds, and more specifically directed to compounds which inhibit the functioning of the NS3 protease (also referred to herein as "serine protease") encoded by Hepatitis C virus (HCV), compositions comprising such compounds and methods for inhibiting the functioning of the NS3 protease.
  • NS3 protease also referred to herein as "serine protease”
  • HCV Hepatitis C virus
  • HCV is a major human pathogen, infecting an estimated 170 million persons worldwide - roughly five times the number infected by human immunodeficiency virus type 1. A substantial fraction of these HCV infected individuals develop serious progressive liver disease, including cirrhosis and hepatocellular carcinoma. (Lauer, G. M.; Walker, B. D. N. Engl. J. Med. (2001), 345, 41-52).
  • HCV is a positive-stranded R ⁇ A virus. Based on a comparison of the deduced amino acid sequence and the extensive similarity in the 5' untranslated region, HCV has been classified as a separate genus in the Flaviviridae family. All members of the Flaviviridae family have enveloped virions that contain a positive stranded RNA genome encoding all known virus-specific proteins via translation of a single, uninterrupted, open reading frame.
  • the single strand HCV RNA genome is approximately 9500 nucleotides in length and has a single open reading frame (ORF) encoding a single large polyprotein of about 3000 amino acids. In infected cells, this polyprotein is cleaved at multiple sites by cellular and viral proteases to produce the structural and non- structural (NS) proteins. In the case of HCV, the generation of mature non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) is effected by twO viral proteases.
  • the first one is believed to cleave at the NS2-NS3 junction; the second one is a serine protease contained within the N-terminal region of NS3 and mediates all the subsequent cleavages downstream of NS3, both in cis, at the NS3-NS4A cleavage site, and in trans, for the remaining NS4A- NS4B, NS4B-NS5A, NS5A-NS5B sites.
  • the NS4A protein appears to serve multiple functions, acting as a cofactor for the NS3 protease and possibly assisting in the membrane localization of NS3 and other viral replicase components. The complex formation of the NS3 protein with NS4A seems necessary to the processing events, enhancing the proteolytic efficiency at all of the sites.
  • the NS3 protein also exhibits nucleoside triphosphatase and RNA helicase activities.
  • NS5B is a RNA-dependent RNA polymerase that is involved in the replication of HCV.
  • the present invention provides compounds of formula I;
  • Ri is Het or aryl
  • m is l or 2;
  • n 1 or 2;
  • R 2 is H; or C 1-6 alkyl, C -6 alkenyl or C 3-7 cycloalkyl, each optionally substituted with halogen;
  • R 3 is C 1-8 alkyl optionally substituted with halo, cyano, amino, C 1-6 dialkylamino, C 6-10 aryl, C -14 alkylaryl, C 1-6 alkoxy, carboxy, hydroxy, aryloxy, C -14 alkylaryloxy, C 2-6 alkylester or C 8- i 5 alkylarylester; C 3-12 alkenyl, C 3-7 cycloalkyl, or C 4-1 o alkylcycloalkyl, wherein the cycloalkyl or alkylcycloalkyl are optionally substituted with hydroxy, C 1-6 alkyl, C 2-6 alkenyl or C 1-6 alkoxy; or R 3 together with the carbon atom to which it is attached forms a C 3-7 cycloalkyl group optionally substituted with C -6 alkenyl;
  • Y is H, phenyl substituted with nitro, pyridyl substituted with nitro, or C 1-6 alkyl optionally substituted with cyano, OH or C 3-7 cycloalkyl; provided that if i or R 5 is H then Yis H;
  • is (i) C ⁇ _ ⁇ o alkyl optionally substituted with phenyl, carboxyl, C 1-6 alkanoyl, 1-3 halogen, hydroxy, -OC(O)C 1-6 alkyl, C 1-6 alkoxy, amino optionally substituted with C 1-6 alkyl, amido, or (lower alkyl) amido; (ii) C 3-7 cycloalkyl, C 3-7 cycloalkoxy, or C 4-10 alkylcycloalklyl, each optionally substituted with hydroxy, carboxyl, (C ⁇ -6 alkoxy)carbonyl, amino optionally substituted with C 1-6 alkyl, amido, or (lower alkyl) amido; (iii) C 6-10 aryl or C 7-16 arylalkyl, each optionally substituted with phenyl, carboxyl, C 1-6 alkanoyl, 1-3 halogen, hydroxy, -OC(O)C 1-6 alkyl, C
  • R 5 is H; C 1-6 alkyl optionally substituted with 1-3 halogens; or C ⁇ -6 alkoxy provided R 4 is Cno alkyl;
  • X is O, S, SO, SO 2 , OCH 2 , CH 2 O or NH;
  • R' is Het, C 6-1 Q aryl or C 7-1 alkylaryl, each optionally substituted with
  • R a is Ci- 6 alkyl, C 3-7 cycloalkyl, C 1-6 alkoxy, C 3-7 cycloalkoxy, halo-Ci- 6 alkyl, CF , mono-or di- halo-C 1-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO , SH, , amino, C 1-6 alkylamino, di (C ⁇ - 6 ) alkylamino, di ( -, 5 ) alkylamide, carboxyl, (Ci- 6 ) carboxyester, C 1-6 alkylsulfone, C 1-6 alkylsulfonamide, di (Ci- 6 ) alkyl(alkoxy)amine, C 6- 10 aryl, C 7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle;
  • the present invention also provides compositions comprising the compounds or pharmaceutically acceptable salts, solvates or prodrugs thereof and a pharmaceutically acceptable carrier.
  • the present invention provides pharmaceutical compositions useful for inhibiting HCV NS3 comprising a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable carrier.
  • the present invention further provides methods for treating patients infected with HCV, comprising administering to the patient a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
  • the present invention provides methods of inhibiting HCV NS3 protease by contacting the NS3 protease with a compound of the present invention.
  • the present invention provides peptide compounds that can inhibit the functioning of the NS3 protease, e.g., in combination with the NS4A protease.
  • the present invention makes it possible to administer combination therapy to a patient whereby a compound in accordance with the present invention, which is effective to inhibit the HCV NS3 protease, can be administered with another compound having anti-HCV activity, e.g., a compound which is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH and a nucleoside analog for the treatment of an HCV infection.
  • a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH and a nucleoside analog for the treatment of an HCV infection.
  • d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory and (+) or d, meaning the compound, is dextrorotatory.
  • these compounds called stereoisomers, are identical except that they are mirror images of one another.
  • a specific stereoisomer of a mirror image pair may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
  • (R) or (S) it is to designate the absolute configuration of a substituent in context to the whole compound and not in context to the substituent alone.
  • racemic mixture and “racemate” refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • stereoisomers refers to compounds which have identical chemical composition, but differ with regard to the arrangement of the atoms or groups in space.
  • diastereomer refers to a stereoisomer which is not an enantiomer, e.g., a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another.
  • Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
  • enantiomers refers to two stereoisomers of a compound which are non-superimposable mirror images of one another.
  • pharmaceutically acceptable salt is intended to include nontoxic salts synthesized from a compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred.
  • terapéuticaally effective amount means the total amount of each active component that is sufficient to show a meaningful patient benefit, e.g., a sustained reduction in viral load.
  • a meaningful patient benefit e.g., a sustained reduction in viral load.
  • the term refers to that ingredient alone.
  • the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
  • solvate means a physical association of a compound of this invention with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid.
  • Solvate encompasses both solution-phase and isolable solvates. Exemplary solvates include hydrates, ethanolates, methanolates, isopropanolates and the like.
  • prodrug means derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become, by solvolysis or under physiological conditions, the compounds of the invention which are pharmaceutically active in vivo.
  • a prodrug of a compound may be formed in a conventional manner with a functional group of the compounds such as with an amino, hydroxy or carboxy group when present.
  • the prodrug derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985).
  • Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine.
  • patient includes both human and other mammals.
  • composition means a composition comprising a compound of the invention in combination with at least one additional pharmaceutical carrier, i.e., adjuvant, excipient or vehicle, such as diluents, preserving agents, fillers, flow regulating agents, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifungal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms.
  • additional pharmaceutical carrier i.e., adjuvant, excipient or vehicle, such as diluents, preserving agents, fillers, flow regulating agents, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifungal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms.
  • additional pharmaceutical carrier i.e., adjuvant, excipient
  • phrases "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable risk/benefit ratio.
  • treating refers to: (i) preventing a disease, disorder or condition from occurring in a patient which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; (ii) inhibiting the disease, disorder or condition, i.e., arresting its development; and (iii) relieving the disease, disorder or condition, i.e., causing regression of the disease, disorder and/or condition.
  • substituted includes substitution at from one to the maximum number of possible binding sites on the core, e.p., organic radical, to which the subsirutent is bonded, e.g., mono-, di-, tri- or tetra- substituted, unless otherwise specifically stated.
  • organic radicals e.g., hydrocarbons and substituted hydrocarbons
  • groups e.g., alkylalkoxyamine or arylalkyl
  • groups include all possible stable configurations, unless otherwise specifically stated. Certain radicals and combinations are defined below for purposes of illustration.
  • halo as used herein means a halogen substituent selected from bromo, chloro, fluoro or iodo.
  • haloalkyi means an alkyl group that in substituted with one or more halo substituents.
  • alkyl as used herein means acyclic, straight or branched chain alkyl substituents having the specified number of carbon atoms and includes, for example, methyl, ethyl, propyl, butyl, tert-butyl, hexyl, 1-methylethyl, 1- methylpropyl, 2-methypropyl, 1,1-dimethylethyl.
  • C 1-6 alkyl refers to an alkyl group having from one to six carbon atoms.
  • lower alkyl means an alkyl group having from one to six, preferably from one to four carbon atoms.
  • alkylester means an alkyl group additionally containing on ester group. Generally, a stated carbon number range, e.g., C 2-6 alkylester, includes all of the carbon atoms in the radical.
  • alkenyl as used herein means an alkyl radical containing at least one double bond, e.g., ethenyl (vinyl) and alkyl.
  • alkoxy as used herein means an alkyl group with the indicated number of carbon atoms attached to an oxygen atom. Alkoxy includes, for example, methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy and 1,1-dimethylethoxy. The latter radical is referred to in the art as tert-butoxy.
  • alkoxycarbonyl means an alkoxy group additionally containing a carbonyl group.
  • cycloalkyl as used herein means a cycloalkyl substituent containing the indicated number of carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and spiro cyclic groups such as spirocyclopropyl as spirocyclobutyl.
  • cycloalkoxy as used herein means a cycloalkyl group linked to an oxygen atom, such as, for example, cyclobutyloxy or cyclopropyloxy.
  • alkylcycloalkyl means a cycloalkyl group linked to an alkyl group.
  • the stated carbon number range includes the total number of carbons in the radical, unless otherwise specfically stated.
  • This a C 4-10 alkylcycloalkyl may contain from 1-7 carbon atoms in the alkyl group and from 3-9 carbon atoms in the ring, e.g., cyclopropylmethyl or cyclohexylethyl.
  • aryl as used herein means an aromatic moiety containing the indicated number of carbon atoms, such as, but not limited to phenyl, indanyl or naphthyl.
  • C 6-10 aryl refers to an aromatic moiety having from six to ten carbon atoms which may be in the form of a monocyclic or bicyclic structure.
  • haloaryl refers to an aryl mono, di or tri substituted with one or more halogen atoms.
  • alkylaryl arylalkyl
  • aralalkyl mean an aryl group substituted with one or more alkyl groups. Unless the carbon range of each group is specified, the stated range applies to the entire substituent.
  • a C -14 alkylaryl group many have from 1-8 carbon atoms in the alkyl group for a monocyclic aromatic and from 1-4 carbon atoms in the alkyl group for a fused aromatic.
  • the attachment of the group to bonding site on the molecule can be either at the aryl group or the alkyl group.
  • aryl radicals include those substituted with typical substituents known to those skilled in the art, e.g., halogen, hydroxy, carboxy, carbonyl, nitro, sulfo, amino, cyano, dialkylamino haloalkyl, CF 3 , haloalkoxy, thioalkyl, alkanoyl, SH, alkylamino, alkylamide, dialkylamide, carboxyester, alkylsulfone, alkylsulfonamide and alkyl(alkoxy)amine.
  • alkylaryl groups include benzyl, butylphenyl and 1-naphthylmethyl.
  • alkanoyl as used herein means straight or branched 1-oxoalkyl radicals containing the indicated number of carbon atoms and includes, for example, formyl, acetyl, 1-oxopropyl (propionyl), 2-methyl-l-oxopropyl, 1-oxohexyl and the like.
  • alkylamide as used herein means an amide mono-substituted with an alkyl, such as
  • heterocycle also referred to as “Het”, as used herein means 7-12 membered bicyclic heterocycles and 5-9 membered monocyclic heterocycles.
  • Preferred bicyclic heterocycles are 7-12 membered fused bicyclic ring systems (both rings share an adjacent pair of atoms) containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur, wherein one or both rings of the heterocycle can be saturated, partially saturated or fully unsaturated ring system
  • the nitrogen and sulfur heteroatoms atoms may be optionally oxidized.
  • the bicyclic heterocycle may contain the heteroatoms in one or both rings. Unless a specific heterocycle is specified, e.g., a fluorinated 7-12 membered bicyclic heterocycle, or the heterocycle is stated to be unsubstituted, the heterocycles include those substituted with typical substituents known to those skilled in the art.
  • the bicyclic heterocycle may also contain substituents on any of the ring carbon atoms, e.g., one to three substituents.
  • substituents include C 1-6 alkyl, C 3-7 cycloalkyl, Ci- 6 alkoxy, C 3-7 cycloalkoxy, halo-Ci- 6 alkyl, CF 3 , mono-or di- halo-C ⁇ -6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO 2 , SH, , amino, C 1-6 alkylamino, di (C ⁇ - 6 ) alkylamino, di (Ci- 6 ) alkylamide, carboxyl, ( - ⁇ ) carboxyester, C 1-6 alkylsulfone, C ⁇ -6 alkylsulfonamide, Ci ⁇ alkylsulfoxide, di (Ci- 6 ) alkyl(alkoxy)amine, C 6-10 aryl, C -1 alkylaryl, and a 5-7 membered monocyclic heterocycle.
  • bicyclic heterocycle When two substituents are attached to vicinal carbon atoms of the bicyclic heterocycle, they can join to form a ring, e.g., a five, six or seven membered ring system containing up to two heteroatoms selecting from oxygen and nitrogen.
  • the bicyclic heterocycle may be attached to the molecule, e.g. R ⁇ in formula I, at any atom in the ring and preferably carbon.
  • bicyclic heterocycles include, but are not limited to, the following ring systems:
  • Preferred monocyclic heterocycles are 5-9 membered saturated, partially saturated or fully unsaturated ring system (this latter subset also herein referred to as unsaturated heteroaromatic) containing in the ring from one to four heteroatoms selected from nitrogen, oxygen and sulfur, wherein the sulfur and nitrogen heteroatoms may be optionally oxidized.
  • unsaturated heteroaromatic unsaturated heteroaromatic
  • the heterocycles include those substituted with typical substituents known to those skilled in the art.
  • the monocyclic heterocycle may also contain substituents on any of the ring atoms, e.g., one to three substituents.
  • suitable substituents include C 1-6 alkyl, C 3-7 cycloalkyl, C ⁇ -6 alkoxy, C -7 cycloalkoxy, halo-Ci- 6 alkyl, CF 3 , mono-or di- halo-C 1-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO 2 , SH, , amino, C ⁇ -6 alkylamino, di (Ci- 6 ) alkylamino, di (Cr 6 ) alkylamide, carboxyl, (C ⁇ - ⁇ ) carboxyester, C 1-6 alkylsulfone, C ⁇ - 6 alkylsulfoxide, C ⁇ -6 alkylsulfonamide, di ( - ⁇ ) alkyl(alkoxy)amine, C 6-1 o
  • monocyclic heterocycles include, but are not limited to, the following (and their tautomers): O O C
  • heterocycles used in the compounds of the present invention should be stable.
  • stable compounds are those which can be synthesized, isolated and formulated using techniques known the those skilled in the art without degradation of the compound.
  • substituted with reference to an amino acid or amino acid derivative means a radical derived from the corresponding ⁇ -amino acid.
  • substituents methyl, iso-propyl, and phenyl represent the amino acids alanine, valine, and phenyl glycine, respectively.
  • Pl ⁇ PI, P2, P3 and P4" map the relative positions of the amino acid residues of a protease inhibitor binding relative to the binding of the natural peptide cleavage substrate.
  • Cleavage occurs in the natural substrate between PI and PI ' where the nonprime positions designate amino acids starting from the C-terminus end of the peptide natural cleavage site extending towards the N-terminus; whereas, the prime positions emanate from the N-terminus end of the cleavage site designation and extend towards the C-terminus.
  • PI ' refers to the first position away from the right hand end of the C-terminus of the cleavage site (ie. N-terminus first position); whereas PI starts the numbering from the left hand side of the
  • ter-t-butylglycine refers to a compound of the formula:
  • reduct with reference to an amino acid or amino acid derivative means a radical derived from the corresponding ⁇ -amino acid by eliminating the hydroxyl of the carboxy group and one hydrogen of the ⁇ -amino acid group.
  • the terms Gin, Ala, Gly, He, Arg, Asp, Phe, Ser, Leu, Cys, Asn, Sar and Tyr represent the "residues" of E-glutamine, E-alanine, glycine, E-isoleucine, E-arginine, E-aspartic acid, E-phenylalanine, E-serine, E-leucine, E-cysteine, E-asparagine, sarcosine and E-tyrosine, respectively.
  • side chain with reference to an amino acid or amino acid residue means a group attached to the ⁇ -carbon atom of the ⁇ -amino acid.
  • R-group side chain for glycine is hydrogen, for alanine it is methyl, for valine it is isopropyl.
  • specific R-groups or side chains of the ⁇ -amino acids reference is made to A.L. Lehninger's text on Biochemistry (see chapter 4).
  • Ri is Het or aryl
  • R 2 is H; or C 1-6 alkyl, C2- 6 alkenyl or C 3- cycloalkyl, each optionally substituted with halogen;
  • R 3 is C ⁇ -8 alkyl optionally substituted with halo, cyano, amino, C 1-6 dialkylamino, C ⁇ -io aryl, C -1 alkylaryl, C 1-6 alkoxy, carboxy, hydroxy, aryloxy, C -1 alkylaryloxy, C 2 - 6 alkylester or C 8-15 alkylarylester; C 3-12 alkenyl, C 3-7 cycloalkyl, or C - ⁇ o alkylcycloalkyl, wherein the cycloalkyl or alkylcycloalkyl are optionally substituted with hydroxy, C 1-6 alkyl, C 2-6 alkenyl or C ⁇ -6 alkoxy; or R 3 together with the carbon atom to which it is attached forms a C 3-7 cycloalkyl group optionally substituted with C 2-6 alkenyl;
  • Y is H, phenyl substituted with nitro, pyridyl substituted with nitro, or C 1-6 alkyl optionally substituted with cyano, OH or C 3-7 cycloalkyl; provided that if i or R 5 is H then Yis H;
  • R 4 is (i) Ci-io alkyl optionally substituted with phenyl, carboxyl, C 1-6 alkanoyl, 1-3 halogen, hydroxy, -OC(O)C 1-6 alkyl, C 1-6 alkoxy, amino optionally substituted with C 1-6 alkyl, amido, or (lower alkyl) amido; (ii) C 3-7 cycloalkyl, C -7 cycloalkoxy, or C 4-10 alkylcycloalklyl, each optionally substituted with hydroxy, carboxyl, (C 1-6 alkoxy)carbonyl, amino optionally substituted with C 1-6 alkyl, amido, or (lower alkyl) amido; (iii) C 6-1 o aryl or C -16 arylalkyl, each optionally substituted with C 1-6 alkyl, halogen, nitro, hydroxy, amido, (lower alkyl) amido, or amino optionally substituted with C 1-6
  • R' is Het, C -10 aryl or C 7-1 alkylaryl, each optionally substituted with R a ; and (1) R a is Ci- 6 alkyl, C 3-7 cycloalkyl, C 1-6 alkoxy, C 3-7 cycloalkoxy, halo- - l ⁇ alkyl, CF 3 , mono-or di- halo-C 1-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO 2 , SH, , amino, C 1-6 alkylamino, di (C ⁇ ) alkylamino, di ( - ⁇ ) alkylamide, carboxyl, (Cj ⁇ - 6 ) carboxyester, C 1-6 alkylsulfone, C 1- alkylsulfonamide, di C ⁇ - ) alkyl(alkoxy)amine, C 6- 10 aryl, C 7-14 alkylaryl, or a 5-7 membered
  • Het is unsubstituted Het or Het substituted with from one to three of halo, cyano, trifluoromethyl, nitro, C 1-6 alkyl, C 1-6 alkoxy, amido, C 1-6 alkanoylamino, amino, phenyl or phenylthio, said phenyl or phenyl portion of phenylthio being unsubstituted or substituted with one to three substituents selected from halo, cyano, nitro, C 1-6 alkyl, C 1-6 alkoxy, amido or phenyl;
  • R ⁇ is selected from the group consisting of ⁇
  • Ri is a monocyclic aryl, preferably a C 6 aryl, optionally substituted with halo, e.g., chloro, hydroxyl, C ⁇ . 6 alkoxy, e.g., methoxy, or haloC 1-6 alkoxy, e.g., trifluoromethoxy.
  • R 2 is C 1-6 alkyl, C 2-6 alkenyl or C 3-7 cycloalkyl. More preferably, R 2 is C 2-6 alkenyl.
  • R 3 is C 1-8 alkyl optionally substituted with C 6 aryl, C 1-6 alkoxy, carboxy, hydroxy, aryloxy, C 7-] alkylaryloxy, C 2-6 alkylester or C 8-15 alkylarylester; C 3-12 alkenyl; C 3-7 cycloalkyl; or C 4-10 alkylcycloalkyl. More preferably, R 3 is C ⁇ -8 alkyl optionally substituted with C 1-6 alkoxy; or C 3-7 cycloalkyl.
  • Y is H.
  • Rj is (i) C 1-10 alkyl optionally substituted with phenyl, carboxyl, C 1-6 alkanoyl, 1-3 halogen, hydroxy, C 1-6 alkoxy; (ii) C 3-7 cycloalkyl, C 3-7 cycloalkoxy, or C 4-10 alkylcycloalklyl; or (iii) C 6 - 10 aryl or C 7-16 arylalkyl, each optionally substituted with C 1-6 alkyl or halogen.
  • i is (i) Ci-io alkyl optionally substituted with 1-3 halogen or C ⁇ - alkoxy; or (ii) C 3- cycloalkyl or C -10 alkylcycloalkyl.
  • R 5 is H or C 1-6 alkyl optionally substituted with 1-3 halogens. More preferably, R 5 is H.
  • X is O or NH.
  • R' is Het or C 6-1 Q aryl each optionally substituted with R a . More preferably, R' is Het.
  • the heterocycle contains 1 or 2 nitrogen atoms and optionally a sulfur atom or an oxygen atom in the ring.
  • the heterocycle is substituted with at least one of C 1-6 alkyl, C 1-6 alkoxy, halo, C 6-10 aryl, C 7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle.
  • R a is C 1-6 alkyl, C 3-7 cycloalkyl, C 1-6 alkoxy, halo- -, 5 alkyl, halo, amino, C 6 aryl, or a 5-7 membered monocyclic heterocycle.
  • substituents from each grouping may be selected individually and combined in any combination which provides a stable compound in accordance with the present invention. Also, more than one substituent from each group may be substituted on the core group provided there are sufficient available binding sites. For example, each of the following R 6 ⁇ R 7 , R 8 or R 9 substituents, C 1-6 alkoxy, C 6 aryl and a 5-7 membered monocyclic heterocycle, may be substituted on a bicyclic heterocycle.
  • the compounds of the present invention have the structure of Formula II:
  • Ri is unsubstituted Het or Het substituted with from one to three of halo, cyano, trifluoromethyl, C 1-6 alkyl, C 1-6 alkoxy, amido, C ⁇ -6 amino, phenyl, said phenyl being unsubstituted or substituted with one to three substituents selected from halo, cyano, nitro, C 1-6 alkyl, C 1-6 alkoxy, amido or phenyl; or C 6 aryl;
  • R 2 is C 1-6 alkyl, C 2-6 alkenyl or C 3-7 cycloalkyl;
  • R 3 is C 1-8 alkyl optionally substituted with C 6 aryl, C ⁇ -6 alkoxy, carboxy, hydroxy, aryloxy, C -14 alkylaryloxy, C 2-6 alkylester, ,C 8-15 alkylarylester; C 3-12 alkenyl, C 3-7 cycloalkyl, or C -10 alkylcycloalkyl;
  • R4 is (i) C ⁇ -10 alkyl optionally substituted with phenyl, carboxyl, C 1-6 alkanoyl, 1-3 halogen, hydroxy, C 1-6 alkoxy; (ii) C 3-7 cycloalkyl, C 3-7 cycloalkoxy, or C 4-10 alkylcycloalklyl; or (iii) C ⁇ -io aryl or C 7- ⁇ 6 arylalkyl, each optionally substituted with C 1-6 alkyl or halogen;
  • R 5 is H or C 1-6 alkyl optionally substituted with 1-3 halogens;
  • X is O or NH;
  • GO R' is Het; or C 6-10 aryl optionally substituted with R a ;
  • R a is C 1-6 alkyl, C 3-7 cycloalkyl, C 1-6 alkoxy, halo-Ci- alkyl, halo, amino, C 6 aryl, or a 5-7 membered monocyclic heterocycle; or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof.
  • R' is a bicyclic heterocycle.
  • the heterocycle contains 1 or 2 nitrogen atoms and optionally a sulfur atom or an oxygen atom in the ring. More preferably, the heterocycle is substituted with at least one of Ci- 6 alkyl, C 1-6 alkoxy, halo, C 6 aryl, and a 5-7 membered monocyclic heterocycle. Even more preferably, R' is a bicyclic heterocycle containing 1 nitrogen atom and substituted with methoxy and at least one of a C 6 aryl and a 5-7 membered monocyclic heterocycle.
  • R' is a monocyclic heterocycle.
  • the heterocycle contains 1 or 2 nitrogen, atoms and optionally a sulfur atom or an oxygen atom in the ring. More preferably, the heterocycle is substituted with at least one of C 1-6 alkyl, C 1-6 alkoxy, halo, C 6-1 o aryl, C 7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle. Even more preferably, R' is a monoyclic heterocycle containing 1 or 2 nitrogen atoms and substituted with methoxy and at least one of a C 6 aryl and a 5-7 membered monocyclic heterocycle.
  • the compounds have the structure of Formula III
  • Ri is unsubstituted Het or Het substituted with one to three of halo, cyano, trifluoromethyl, C 1-6 alkyl, C 1-6 alkoxy, amido, or amino; or a C 6 aryl;
  • R 2 is C 2-6 alkenyl;
  • R 3 is C 1-8 alkyl
  • R' is a bicyclic heterocycle optionally substituted with R ; and (g) R a is Ci- 6 alkyl, C 1-6 alkoxy, halo, C 6 aryl, or a 5-7 membered monocyclic heterocycle;
  • R2 is vinyl
  • R 3 is t-butyl
  • i is t-butyl
  • R' is quinoline or isoquinoline optionally substituted with R a .
  • R a is C 1-6 alkoxy. More preferably, R a further includes at least one of C 6 aryl or a 5-7 membered monocyclic heterocycle.
  • the compounds of the present invention can be manufactured by methods known to those skilled in the art, see e.p., US Patent No. 6,323,180 and US Patent Appl. 20020111313 Al.
  • the following methods set forth below are provided for illustrative purposes and are not intended to limit the scope of the claimed invention. It will be recognized that it may be preferred or necessary to prepare such a compound in which a functional group is protected using a conventional protecting group then to remove the protecting group to provide a compound of the present invention.
  • the details concerning the use of protecting groups in accordance with the present invention are known to those skilled in the art.
  • the compounds of the present invention may, for example, be synthesized according to a general process as illustrated in Scheme I (wherein CPG is a carboxyl protecting group and APG is an amino protecting group): Scheme I
  • the PI, P2, and P3 can be linked by well known peptide coupling techniques.
  • the PI, P2, and P3 groups may be linked together in any order as long as the final compound corresponds to peptides of the invention.
  • P3 can be linked to P2-P1; or PI linked to P3-P2.
  • peptides are elongated by deprotecting the ⁇ -amino group of the N-terminal residue and coupling the unprotected carboxyl group of the next suitably N-protected amino acid through a peptide linkage using the methods described. This deprotection and coupling procedure is repeated until the desired sequence is obtained. This coupling can be performed with the constituent amino acids in stepwise fashion, as depicted in Scheme I.
  • Coupling between two amino acids, an amino acid and a peptide, or two peptide fragments can be carried out using standard coupling procedures such as the azide method, mixed carbonic-carboxylic acid anhydride (isobutyl chloroformate) method, carbodiimide (dicyclohexylcarbodiimide, diisopropylcarbodiimide, or water-soluble carbodiimide) method, active ester (p-nitrophenyl ester, N-hydroxysuccinic imido ester) method, Woodward reagent K-method, carbonyldiimidazole method, phosphorus reagents or oxidation-reduction methods. Some of these methods (especially the carbodiimide method) can be enhanced by adding 1-hydroxybenzotriazole or 4-DMAP. These coupling reactions can be performed in either solution (liquid phase) or solid phase.
  • the coupling step involves the dehydrative coupling of a free carboxyl of one reactant with the free amino group of the other reactant in the present of a coupling agent to form a linking amide bond.
  • coupling agents are found in general textbooks on peptide chemistry, for example, M. Bodanszky, "Peptide Chemistry", 2 nd rev ed., Springer- Verlag, Berlin, Germany, (1993).
  • suitable coupling agents are N,N'-dicyclohexylcarbodiimide, 1-hydroxybenzotriazole in the presence of N,N'-dicyclohexylcarbodiimide or N-ethyl-N'-[(3-dimethylamino)propyl]carbodiimide.
  • a practical and useful coupling agent is the commercially available (benzotriazol- 1 -yloxy)tris-(dimethylamino)phosphonium hexafluorophosphate, either by itself or in the present of 1-hydroxybenzotriazole or 4-DMAP.
  • Another practical and useful coupling agent is commercially available 2-(lH-benzotriazol-l-yl)-N, N, N0 N'-tetramethyluronium tetrafluoroborate. Still another practical and useful coupling agent is commercially available O-(7-azabenzotrizol-l-yl)-N,N,N0N'-tetramethyluronium hexafluorophosphate.
  • the coupling reaction is conducted in an inert solvent, e.g. dichloromethane, acetonitrile or dimethylformamide.
  • An excess of a tertiary amine e.g.
  • reaction temperature usually ranges between 0 °C and 50 °C and the reaction time usually ranges between
  • the functional groups of the constituent amino acids generally must be protected during the coupling reactions to avoid formation of undesired bonds.
  • Protecting groups that can be used are listed, for example, in Greene, "Protective
  • APG ⁇ -amino group of each amino acid to be coupled to the growing peptide chain
  • acyl groups such as formyl, trifluoroacetyl, phthalyl, and p-toluenesulfonyl
  • aromatic carbamate groups such as benzyloxycarbonyl (Cbz or Z) and substituted bensyloxycarbonyls, and 9-fluorenylmethyloxycarbonyl (Fmoc)
  • 3) aliphatic carbamate groups such as tert-butylo ⁇ ycarbonyl (Boc), ethoxycarbonyl, diisopropylmethoxycarbonyl, and allyloxyca bonyl
  • cyclic alkyl carbamate groups such as cyclopentyloxycarbonyl and adamarityloxycarbonyl
  • alkyl groups such as triphenylmethyl and benzyl
  • 6)trialkylsilyl such as trimethylsilyl
  • thiol containing groups such as phenylthio
  • the preferred ⁇ -amino protecting group is either Boc or Fmoc. Many amino acid derivatives suitably protected for peptide synthesis are commercially available. The ⁇ -amino protecting group of the newly added amino acid residue is cleaved prior to the coupling of the next amino acid.
  • Boc group the methods of choice are trifluoroacetic acid, neat or in dichloromethane, or HCI in dioxane or in ethyl acetate.
  • the resulting ammonium salt is then neutralized either prior to the coupling or in situ with basic solutions such as aqueous buffers, or tertiary amines in dichloromethane or acetonitrile or dimethylformamide.
  • the reagents of choice are piperidine or substituted piperidine in dimethylformamide, but any secondary amine can be used.
  • the deprotection is carried out at a temperature between 0°C and room temperature (rt or RT) usually 20-22°C.
  • any of the amino acids having side chain functionalities must be protected during the preparation of the peptide using any of the above-described groups.
  • Those skilled in the art will appreciate that the selection and use of appropriate protecting groups for these side chain functionalities depend upon the amino acid and presence of other protecting groups in the peptide. The selection of such protecting groups is important in that the group must not be removed during the deprotection and coupling of the ⁇ -amino group.
  • -toluenesulfonyl (tosyl) moieties can be used to protect the amino side chain of amino acids such as Lys and Arg; acetamidomethyl, benzyl (Bn), or tert-butylsulfonyl moieties can be used to protect the sulfide containing side chain of cysteine; bencyl (Bn) ethers can be used to protect the hydroxy containing side chains of serine, threonine or hydroxyproline; and benzyl esters can be used to protect the carboxy containing side chains of aspartic acid and glutamic acid.
  • Fmoc is chosen for the ⁇ -amine protection
  • usually ter-t-butyl based protecting groups are acceptable.
  • Boc can be used for lysine and arginine, tert-butyl ether for serine, threonine and hydroxyproline, and tert-butyl ester for aspartic acid and glutamic acid.
  • Triphenylmethyl (Trityl) moiety can be used to protect the sulfide containing side chain of cysteine.
  • Cyclopentanol is treated with phosgene to furnish the corresponding chloroformate.
  • the chloroformate is treated with the desired NH 2 -tripeptide in the presence of abase such as triethylamine to afford the cyclopentylcarbamate.
  • the ⁇ -carboxyl group of the C-terminal residue is usually protected as an ester (CPG) that can be cleaved to give the carboxylic acid.
  • CPG ester
  • Protecting groups that can be used include: 1 ) alkyl esters such as methyl, trimethylsilylethyl and t-butyl, 2) aralkyl esters such as benzyl and substituted benzyl, or 3) esters that can be cleaved by mild base treatment or mild reductive means such as trichloroethyl and phenacyl esters.
  • the resulting oc-carboxylic acid (resulting from cleavage by mild acid, mild base treatment or mild reductive means) is coupled with a R-[SO 2 NH 2 .
  • Compounds of the present invention can be prepared by many methods including those described in the examples, below, and as described in U.S. Patent No. 6,323,180 and U.S. Patent Application No. 10/001,850 filed on November 20, 2001. The teachings of U.S. Patent No. 6,323,180 and U.S. Patent Application No. 10/001,850 are incorporated herein, in their entirety, by reference.
  • Scheme II further shows the general process wherein compounds of Formula I are constructed by the coupling of tripeptide carboxylic acid intermediate (1) with a PL sulfonamide.
  • Said coupling reaction requires treatment of carboxylic acid (1) with a coupling reagent such as carbonyl diimidazole in a solvent such as THF, which can be heated to reflux, followed by the addition of the formed derivative of (1), to the PT sulfonamide, in a solvent such as THF or methylene chloride in the presence of a base such as DBU.
  • TFA amine salt can be directly employed in the subsequent coupling reaction or as an alternative the TFA amine salt can be first converted to the HCI amine salt, and this HCI amine salt is used in said coupling reaction as shown in Scheme III.
  • the coupling of said HCI amine salt (3) with the carboxyl terminus a P4-P3-P2 intermediate can be achieved using coupling reagents, such as HATU, in solvents such as dichloromethane to provide compounds of Formula I (4).
  • the resulting trifluoroacetic acid salt can be coupled with the carboxyl terminus of the P4-P3 element using standard coupling agents such as PyBop in the presence of base such as diisopropyl amine, and using solvents such methylene chloride to provide compounds of Formula I (4).
  • standard coupling agents such as PyBop in the presence of base such as diisopropyl amine, and using solvents such methylene chloride to provide compounds of Formula I (4).
  • the P4-P3-P2 intermediate utilized in the above schemes can be constructed as previously described with a further description of this process shown in general Scheme V.
  • the free carboxyl terminus of the P4-P3 intermediate (1) can be coupled to the amino terminus of the P2 element to provide the P4-P3-P2 dipeptide (2).
  • the carboxyl terminus of the P4-P3-P2 intennediate can be deprotected by saponification of the ester group to provide P4-P3-P2 as the free carboxylic acid (3).
  • Intermediates like (3) can be converted to compounds of Formula I using the methods described herein.
  • Process P4-P3 »- P4-P3-P2 Compounds of Formula 1 can also be converted into other compounds of Formula I as described herein.
  • An example of such a process is shown in Scheme VI wherein a compound of Formula 1 (1) which bears a Boc group at the P4 position is converted in a compound of Formula I (3) wherein said compound bears a urea group at the P4 position.
  • the conversion of (1) to (3) can be carried out in a two step process the first of which is the conversion of (1) to amine (2) by treatment of (1) with an acid such as TFA in a solvent such as methylene chloride.
  • the resulting amine TFA salt can be treated with an isocyanate in the presence of one equivalent of base to provide a compound of Fonnula I (3) wherein the P3 moiety is capped with a urea.
  • mtermediate (2) can be used as starting materials for the preparation of compounds of Formula I wherein the P3 group is capped with an amide or a sulfonamide, or thiourea, or a sulfamide.
  • the construction of said compounds of Formula I can be achieved using standard conditions for the formation of said P4 functionalities from amines.
  • the PT terminus is incorporated into the molecules using one of the general processes outlined above and described in more detail below.
  • the PT elements, that is the heterocyclesulfonamides are commercially available or can be prepared as described herein.
  • the PI elements utilized in generating compounds of Formula I are in some cases commercially available, but are otherwise synthesized using the methods described herein and subsequently incorporated into compounds of Formula I using the methods described herein.
  • the substituted PI cyclopropylamino acids can be synthesized following the general process outline in Scheme VIII.
  • this reaction is selective in that one of the enantiomers undergoes the reaction at a much greater rate than its mirror image providing for a kinetic resolution of the intermediate racemate.
  • the more preferred stereoisomer for integration into compounds of Formula I is 5a which houses the (IR, 2S) stereochemistry.
  • this enantiomer does not undergo ester cleavage and thereby this enantiomer 5a is recovered from the reaction mixture.
  • the less preferred enantiomer ,5b with houses the (IS, 2R) stereochemistry undergoes ester cleavage, i.e., hydrolysis, to provide the free acid 6.
  • the ester 5a can be separated from the acid product 6 by routine methods such as, for example, aqueous extraction methods or chromotography.
  • Scheme DC shows the coupling of an N-protected C4-hydroxyproline moiety with a heterocycle to form intermediate (4) and the subsequent modification of said intermediate (4) to a compound of Formula I by the process of peptide elongation as described herein.
  • a base is employed in the first step.
  • this coupling can be done using bases such as potassium tert-butoxide, or sodium hydride, in solvent such as DMF or DMSO or THF.
  • This coupling to the isoquinoline ring system occurs at the CI position (numbering for isoquinoline ring system shown in mtermediate 2 of Scheme IX) and is directed by the chloro group which is displaced in this process.
  • the alternative leaving groups can be utilized at this position such as a fluoro as shown in the Scheme.
  • Said fluoro intermediates (3) are available from the corresponding chloro compound using literature procedures described herein.
  • the position of the leaving group (chloro or fluoro) in a given ring system can vary as shown in Scheme X, wherein the leaving group (fluoro in this example) is in the C6 position of the isoquinoline ring system of intermediate
  • isoquinolines are incorporated into the final compounds and specifically into the P2 region of said compounds.
  • One skilled in the art would recognize that a number of general methods are available for the synthesis of isoquinolines. Moreoever, said isoquinolines generated by these methods can be readily incorporated into final compounds of Formula I using the processes described herein.
  • One general methodology for the synthesis of isoquinolines is shown in Scheme XII, wherein cinnamic acid derivatives, shown in general form as structure (2) are
  • acylazides from carboxylic acids as for example said carboxylic acid can be treated with diphenylphosphorylazide (DPP A) in an aprotic solvent such as methylene chloride in the presence of a base.
  • DPP A diphenylphosphorylazide
  • the acylazide (3) is coverted to the corresponding isoquinolone (4) as shown in the Scheme.
  • the acylazide is heated to a temperature of approximately 190 degress celcius in a high boiling solvent such a diphenylmethane. This reaction is general and provides moderate to good yields of substituted isoquinolone from the conesponding cinnamic acid derivatives.
  • said cinnamic acid derivatives are available commercially or can be obtained from the corresponding benzaldehyde (1) derivative by direct condensation with malonic acid or derivatives thereof and also by employing a Wittig reaction.
  • the intermediate isoquinolones (4) of Scheme XII can be converted to the corresponding 1- chloroisoquinoline by treatment with phosphorous oxychioride. This reaction is general and can be applied to any of the isoquinolones, quinolones or additional heterocycles as shown herein to covert a hydroxy substituent to the corresponding chloro compound when said hydroxy is in conjugation with a nitrogen atom in said heterocylic ring systems.
  • the first step in this sequence is the formation of the isoquinoline N-oxide(4) by treatment of isoquinoline (3) with meta-chloroperbenzoic acid in an aprotic solvent such as dichloromethane.
  • Intermediate (4) can be converted to the corresponding 1-chloroquinoline by treatment with phosphorous oxychloroide in refiuxing chloroform.
  • This two step process is general and can be employed to procure chloroisoquinolines and chloroquinolines from the corresponding isoquinolines and quinolines respectively.
  • Another method for the synthesis of the isoquinoline ring system is shown in Scheme XrV. In this process an ortho-alkylbenzamide derivative (1) is treated with a strong Scheme XIV
  • keto imine (2) can be converted to the conesponding isoquinoline by condensation with ammonium acetate at elevated temperatures.
  • This method is general and can be used for the synthesis of substituted isoquinolines.
  • Said isoquinolines can be converted to the conesponding 1-chloroquinoline by the methods described herein.
  • 6-fluoro-isoquinoline to the conesponding l-chloro-6-alkoxy-isoquinoline species by treatment of (1) of (eq.l) with a sodium or potassium alkoxide species in the alcohol solvent from which the alkoxide is derived at room temperature. In some cases it may be necessary to heat the reaction to drive it to completion.
  • Said chloroquinoline can be incorporated into a compound of Formula I using the art described herein. Modifications of a P2 heterocyclic element can also be done after it's incorporation into compounds of Fonnula I as shown in (eq.2) of Scheme VXII. Specifically compounds such as (1) in (eq.2) of Scheme VXII. Specifically compounds such as (1) in (eq.
  • reaction which contain a leaving group in the pthalazine nucleus can be displaced by a nucleophile such as an alkoxide in solvents such as the conesponding alcohol from which the alkoxide is derived.
  • a nucleophile such as an alkoxide in solvents such as the conesponding alcohol from which the alkoxide is derived.
  • Scheme XVIII provides a general example for the modification of heterocycles as defined herein by employing palladium mediated coupling reactions.
  • Said couplings can be employed to functionalize a heterocycle at each position of the ring system providing said ring is suitably activated or functionalized, as for example with a chloride as shown in the Scheme.
  • This sequence begins with 1-chloroisoquinoline (1) which upon treatment with metachloroperbenzoic acid can be converted to the conesponding N-oxide (2).
  • Said intermediate (2) can be converted to the conesponding 1,3-dichloroisoquinoline (3) by treatment with phosphorous oxychloride in refluxing chloroform.
  • Intermediate (3) can be coupled with N-Boc-4- hydroxyproline by the methods described herein to provide intermediate (5) as shown in the Scheme.
  • Intermediate (5) can undergo a Suzuki coupling with an aryl boronic acid, in the presence of a palladium reagent and base, and in a solvent such as THF or toluene or DMF to provide the C3-arylisoquinoline intermediate (6).
  • Heteroarylboronic acids can also be employed in this Pd mediated coupling process to provide C3-heteroarylisoquinolines.
  • Intermediate (6) can be converted into final compounds of Formula I by the methods described herein.
  • the isoquinoline ring system of intermediate (3) can be further functionalized by employing either Suzuki couplings (Process 1 : subjecting (3) to heteroaryl or aryl boronic acids in the presence of a palladium catalyst such as palladium tetra(triphenylphosphine) and a base such as cesium carbonate in solvents such as DMF) or Stille couplings (Process 2: subjecting (3) to heteraryl or aryl tin dervatives in the presence of palladium catalyst such as palladium tetra(triphenylphosphine in solvents such as toluene).
  • Suzuki couplings Process 1 : subjecting (3) to heteroaryl or aryl boronic acids in the presence of a palladium catalyst such as palladium tetra(triphenylphosphine) and a base such as cesium carbonate in solvents such as DMF
  • Stille couplings Process 2: subjecting (3) to heteraryl or
  • Palladium reactions can also be employed to couple C4-amino proline elements with functionalized heterocycles.
  • Scheme XX shows intermediate (1) coupling with a functionalized isoquinoline in the presence of a palladium catalyst and a base in a solvent such as toluene.
  • Intermediates like (3) can be converted to compounds of Formula I using the methods described herein.
  • compositions comprising a compound of the present invention, or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof, and a pharmaceutically acceptable canier.
  • Pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof, and a pharmaceutically acceptable canier, with a pharmaceutically acceptable canier, e.g., excipient, or vehicle diluent.
  • the active ingredient, i.e., compound, in such compositions typically comprises from 0.1 weight percent to 99.9 percent by weight of the composition, and often comprises from about 5 to 95 weight percent.
  • a composition comprising the compound of formula 1 and a pharmaceutically acceptable canier.
  • the composition further comprises a compound having anti-HCV activity.
  • anti-HCV activity means the compound is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH and a nucleoside analog for the treatment of an HCV infection.
  • the other compound having anti-HCV activity is effective to inhibit the function of target in the HCV life cycle other than the HCV NS3 protease protein.
  • the compound having anti-HCV activity is an interferon.
  • the interferon is selected from the group consisting of interferon alpha 2B, pegylated interferon alpha, consensus interferon, interferon alpha 2A, lymphoblastiod interferon tau.
  • the compound having anti-HCV activity is selected from the group consisting of interleukin 2, interleukin 6, interleukin 12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, Imiqimod, ribavirin, an inosine 5'-monophospate dehydrogenase inhibitor, amantadine, and rimantadine.
  • the composition comprises a compound of the invention, an interferon and ribavirin.
  • the compound having anti-HCV activity is a small molecule compound.
  • small molecule compound means a compound having a molecular weight of less than 1,500 daltons, preferably less than 1000 daltons.
  • the small molecule compound is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, inosine monophophate dehydrogenase ("JJVIPDH”) and a nucleoside analog for the treatment of an HCV infection.
  • a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, inosine monophophate dehydrogenas
  • Table 1 lists some illustrative examples of compounds that can be administered with the compounds of this invention.
  • the compounds of the invention can be administered with other anti-HCV activity compounds in combination therapy, either jointly or separately, or by combining the compounds into a composition.
  • compositions of this invention maybe administered orally, parenterally or via an implanted reservoir. Oral administration or administration by injection are prefened. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.
  • parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra- articular, intrasynovial, intrasternal, intrathecal, and intralesional injection or infusion techniques.
  • the pharmaceutical compositions of this invention may be administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspensions and solutions.
  • earners which are commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried corn starch.
  • aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
  • Other suitable earners for the above noted compositions can be found in standard pharmaceutical texts, e.g. in "Remington's Pharmaceutical Sciences", 19th ed., Mack Publishing Company, Easton, Perm., 1995.
  • compositions of this invention can be prepared by known procedures using well-known and readily available ingredients.
  • the compositions of this invention maybe formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures well known in the art.
  • the active ingredient will usually be admixed with a canier, or diluted by a canier, or enclosed within a canier which may be in the form of a capsule, sachet, paper or other container.
  • the canier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, excipient or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, beadlets, lozenges, sachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols, (as a solid or in a liquid medium), soft and hard gelatin capsules, suppositories, sterile injectable solutions, sterile packaged powders and the like. Further details concerning the design and preparation of suitable delivery forms of the pharmaceutical compositions of the invention are known to those skilled in the art.
  • Dosage levels of between about 0.01 and about 1000 milligram per kilogram (“mg/kg”) body weight per day, preferably between about 0.5 and about 250 mg/kg body weight per day of the compounds of the invention are typical in a monotherapy for the prevention and treatment of HCV mediated disease.
  • the pharmaceutical compositions of this invention will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy.
  • the amount of active ingredient that may be combined with the canier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • the treatment is initiated with small dosages substantially less than the optimum dose of the peptide. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached.
  • the compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.
  • compositions of this invention comprise a combination of a compound of the invention and one or more additional therapeutic or prophylactic agent
  • both the compound and the additional agent are usually present at dosage levels of between about 10 to 100%, and more preferably between about 10 and 80% of the dosage normally administered in a monotherapy regimen.
  • the resulting composition may be administered in vivo to mammals, such as man, to inhibit HCV NS3 protease or to treat or prevent HCV virus infection.
  • another aspect of this invention provides methods of inhibiting HCV NS3 protease activity in patients by administering a compound of the present invention or a pharmaceutically acceptable enantiomer, diastereomer, salt or solvate thereof.
  • a method of treating an HCV infection in a patient comprising administering to the patient a therapeutically effective amount of the compound of the invention, or a pharmaceutically acceptable enantiomer, diastereomer, solvate, prodrug or salt thereof.
  • the method of administering the compound is effective to inhibit the function of the HCV NS3 protease protein.
  • the method further comprises administering another compound having anti-HCV activity (as described above) prior to, after or concunently with a compound of the invention.
  • the compounds of the invention may also be used as laboratory reagents.
  • Compounds may be instrumental in providing research tools for designing of viral replication assays, validation of animal assay systems and structural biology studies to further enhance knowledge of the HCV disease mechanisms. Further, the compounds of the present invention are useful in establishing or determining the binding site of other antiviral compounds, for example, by competitive inhibition.
  • the compounds of this invention may also be used to treat or prevent viral contamination of materials and therefore reduce the risk of viral infection of laboratory or medical personnel or patients who come in contact with such materials, e.g., blood, tissue, surgical instruments and garments, laboratory instruments and garments, and blood collection or transfusion apparatuses and materials.
  • materials e.g., blood, tissue, surgical instruments and garments, laboratory instruments and garments, and blood collection or transfusion apparatuses and materials.
  • Solution percentages express a weight to volume relationship, and solution ratios express a volume to volume relationship, unless stated otherwise.
  • Nuclear magnetic resonance (NMR) spectra were recorded either on a Bruker 300, 400 or 500 MHz spectrometer; the chemical shifts ( ⁇ ) are reported in parts per million. Flash chromatography was canied out on silica gel (SiO 2 ) according to Still's flash chromatography technique (W.C. Still et al, J. Org. Chem., (1978), 43, 2923).
  • each compound was analyzed by LC/MS, using one of seven methodologies, having the following conditions.
  • Method B - YMC ODS-A S7 C18 3.0x50 mm
  • Method C - YMC S7 C18 3.0x50 mm
  • Method D - YMC Xtena ODS S7 3.0x50 mm
  • Method E - YMC Xtena ODS S7 3.0x50 mm
  • Solvent A 10% MeOH / 90% H 2 O / 0.1% TFA
  • Solvent B 10% H 2 O / 90% MeOH / 0.1% TFA.
  • Glycine ethyl ester hydrochloride (303.8 g, 2.16 mole) was suspended in tert- butylmethyl ether (1.6 L). Benzaldehyde (231 g, 2.16 mole) and anhydrous sodium sulfate (154.6 g, 1.09 mole) were added and the mixture cooled to 0 °C using an ice- water bath. Triethylamine (455 mL, 3.26 mole) was added dropwise over 30 min and the mixture stined for 48 h at rt. The reaction was then quenched by addition of ice- cold water (1 L) and the organic layer was separated.
  • the organic phases were combined, 1 ⁇ HCI (1 L) was added and the mixture stined at room temperature for 2 h. The organic phase was separated and extracted with water (0.8 L). The aqueous phases were then combined, saturated with salt (700 g), TBME (1 L) was added and the mixture cooled to 0 °C. The stined mixture was then basified to pH 14 by the dropwise addition of 10 N NaOH, the organic layer separated, and the aqueous phase extracted with TBME (2 x 500 mL). The combined organic extracts were dried (MgSO 4 ) and concentrated to a volume of IL.
  • the enantio-excess of the ester was determined to be 97.2%, and the reaction was cooled to room temperature (26°C) and stined overnight (16h) after which the enantio-excess of the ester was determined to be 100%.
  • the pH of the reaction mixture was then adjusted to 8.5 with 50% ⁇ aOH and the resulting mixture was extracted with MTBE (2 x 2 L).
  • the combined MTBE extract was then washed with 5% ⁇ aHCO 3 (3 x 100 mL), water (3 x 100 mL), and evaporated in vacuo to give the enantiomerically pure N-Boc-(lR,2S)/-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester as light yellow solid (42.55 g; purity: 97% @ 210 nm, containing no acid; 100% enantiomeric excess ("ee").
  • the aqueous layer from the extraction process was then acidified to pH 2 with 50% H 2 SO 4 and extracted with MTBE (2 x 2 L).
  • the MTBE extract was washed with water (3 x 100 mL) and evaporated to give the acid as light yellow solid (42.74 g; purity: 99% @ 210 nm, containing no ester).
  • enantio-excess of the ester was determined to be 44.3% as following: 0.1 mL of the reaction mixture was removed and mixed well with 1 mL ethanol; after centrifugation, 10 microliter (" ⁇ l") of the supernatant was analyzed with the chiral HPLC. To the remaining reaction mixture, 0.1 mL of DMSO was added, and the plate was incubated for additional 3 days at 250 rpm at 40°C, after which four mL of ethanol was added to the well. After centrifugation, 10 ⁇ l of the supernatant was analyzed with the chiral HPLC and enantio-excess of the ester was determined to be 100%.
  • enantio-excess of the ester was determined to be 39.6% as following: 0.1 mL of the reaction mixture was removed and mixed well with 1 mL ethanol; after cenrifugation, 10 ⁇ l of the supernatant was analyzed with the chiral HPLC. To the remaining reaction mixture, 0.1 mL of DMSO was added, and the plate was incubated for additional 3 days at 250 rpm at 40°C, after which four mL of ethanol was added to the well. After centrifugation, 10 ⁇ l of the supernatant was analyzed with the chiral HPLC and enantio-excess of the ester was determined to be 100%.
  • UV Detection 210 nm.
  • Step 1 Preparation of 2-Ethylcyclopropane- 1 , 1 -dicarboxylic acid di-tert-butyl ester, shown below.
  • Step 2 Preparation of racemic 2-Ethylcyclopropane- 1,1 -dicarboxylic acid tert-butyl ester, shown below.
  • Step 1 The product of Step 1 (18.3 g, 67.8 mmol) was added to a suspension of potassium tert-butoxide (33.55 g, 299.0 mmol) in dry ether (500 mL) at 0 °C, followed by H 2 0 (1.35 mL, 75.0 mmol) and was vigorously stined overnight at rt.
  • the reaction mixture was poured in a mixture of ice and water and washed with ether (3x).
  • the aqueous layer was acidified with a 10% aq. citric acid solution at 0°C and extracted with EtOAc (3x).
  • Step 3 Preparation of (1R,2R)/(1S,2S) 2-Ethyl-l-(2- trimethylsilanylethoxycarbonylamino)cyclopropane-carboxylic acid tert-butyl ester, shown below.
  • reaction mixture was filtered, diluted with Et 2 O, washed with a 10% aqueous citric acid solution, water, saturated aqueous NaHCO 3 , water (2x), brine (2X), dried (MgSO ) and concentrated in vacuo.
  • Step 4 Preparation of racemic (1R,2R)/(1S,2S) l-Amino-2- ethylcyclopropanecarboxylic acid tert-butyl ester, shown below. ethyl syn to carboxy
  • a 1.0 M TBAF solution in THF 9.3 mL, 9.3 mmol
  • EtOAc 500 ml
  • the solution was successively washed with water (2x100 mL), brine (2x100 mL), dried (MgSO 4 ), concentrated in vacuo to provide the title intermediate
  • Step 2 Preparation of spiro[2,3]hexane- 1,1 -dicarboxylic acid methyl ester, shown below.
  • Step 3 Preparation of the titled product, l-amino-spiro[2.3]hexane-l -carboxylic acid methyl ester hydrochloride salt.
  • Step 1 Spiro[2.4]heptane-l,l-dicarboxylic acid dimethyl ester, shown below, was prepared as follows.
  • Step 2 Preparation of Spiro[2.4]heptane- 1,1 -dicarboxylic acid methyl ester, shown below, was prepared as follows.
  • Step 3 Preparation of l-Amino-spiro[2.4]heptane-l -carboxylic acid methyl ester hydrochloride salt, shown below, was prepared as follows.
  • Step 1 Spiro[2.2]pentane- 1,1 -dicarboxylic acid dimethyl ester, shown below, was prepared as follows.
  • Step 2 Spiro[2.2]pentane- 1,1 -dicarboxylic acid methyl ester, shown below, was prepared as follows.
  • Step 3 l-Amino-spiro[2.2]pentane-l-carboxylic acid methyl ester hydrochloride salt, shown below, was prepared as follows.
  • Isoquinoline (1) and substituted analogues thereof can be incorporated into P2 elements using the two methods outline above and described in detail herein. Said P2 elements (3) can then be converted into compounds of Formula I using procedures analogous to those described herein for similar isoquinoline analogues. 2. Isoxazolepyridine and Oxazolepyridine(l)
  • Isoxazole and oxazole heterocycle (1) and analogues thereof can be prepared using know chemistry and incorporated into compounds of Formula I using the chemistry described herein for similar isoxazolepyridine intermediates as shown in section B.
  • Step 2 6-Methoxy-2H-isoquinolin-l-one ( 5.0 g, 28.4 mmol) in POCl 3 (10 mL) was heated to gentle reflux for 3 h the evaporated in vacuo (Nicolas Briet at el, Tetrahedron,
  • step 1
  • Compound 1004 was prepared in the same procedure as described in Step 3 of
  • This in vitro assay was to measure the inhibition of HCV NS3 protease complexes, derived from the BMS strain, H77 strain or J4L6S strain, as described below, by compounds of the present invention. This assay provides an indication of how effective compounds of the present invention would be in inhibiting HCV NS3 proteolytic activity.
  • Serum from an HCV-infected patient was obtained from Dr. T. Wright, San Francisco Hospital.
  • An engineered full-length cDNA (compliment deoxyribonucleic acid) template of the HCV genome was constructed from DNA fragments obtained by reverse transcription-PCR (RT-PCR) of serum RNA (ribonucleic acid) and using primers selected on the basis of homology between other genotype la strains. From the determination of the entire genome sequence, a genotype la was assigned to the HCV isolate according to the classification of Simmonds et al. (See P Simmonds, KA Rose, S Graham, SW Chan, F McOmish, BC Dow, EA Follett, PL Yap and H Marsden, J. Clin.
  • the amino acid sequence of the nonstructural region, NS2-5B was shown to be >97% identical to HCV genotype la (H77) and 87% identical to genotype lb (J4L6S).
  • the infectious clones, H77 (la genotype) and J4L6S (lb genotype) were obtained from R. Purcell (NIH) and the sequences are published in Genbank
  • the H77 and J4L6S strains were used for production of recombinant NS3/4A protease complexes.
  • DNA encoding the recombinant HCV NS3/4A protease complex (amino acids 1027 to 1711) for these strains were manipulated as described by P. Gallinari et al. (see Gallinari P, Paolini C, Brennan D, Nardi C, Steinkuhler C, De Francesco R. Biochemistry. 38(17):5620-32, (1999)). Briefly, a three-lysine solubilizing tail was added at the 3'-end of the NS4A coding region.
  • the cysteine in the PI position of the NS4A-NS4B cleavage site was changed to a glycine to avoid the proteolytic cleavage of the lysine tag. Furthermore, a cysteine to serine mutation was introduced by PCR at amino acid position 1454 to prevent the autolytic cleavage in the NS3 helicase domain.
  • the variant DNA fragment was cloned in the pET21b bacterial expression vector (Novagen) and the NS3/4A complex was expressed in Escherichia. coli strain BL21 (DE3) (Invitrogen) following the protocol described by P. Gallinari et al.
  • the cells were resuspended in lysis buffer (10 mL/g) consisting of 25 mM N-(2-Hydroxyethyl)Piperazine-N'-(2-Ethane Sulfonic acid) (HEPES), pH 7.5, 20% glycerol, 500 mM Sodium Chloride (NaCl), 0.5% Triton X-100, 1 microgram/milliliter (" ⁇ g/mL”) lysozyme, 5 mM Magnesium Chloride (MgCl 2 ), 1 ⁇ g/ml Dnasel, 5mM ⁇ -Mercaptoethanol ( ⁇ ME), Protease inhibitor - Ethylenediamine Tetraacetic acid (EDTA) free (Roche), homogenized and incubated for 20 minutes (min) at 4°C.
  • lysis buffer 10 mL/g
  • HEPES N-(2-Hydroxyethyl)Piperazine-N
  • the homogenate was sonicated and clarified by ultra-centrifugation at 235000 g for 1 h at 4°C. Imidazole was added to the supernatant to a final concentration of 15 mM and the pH adjusted to 8.0.
  • the crude protein extract was loaded on a Nickel - Nitrilotriacetic acid (Ni-NTA) column pre- equilibrated with buffer B (25 mM HEPES, pH 8.0, 20% glycerol, 500 mM NaCl, 0.5% Triton X-100, 15 mM imidazole, 5 mM ⁇ ME). The sample was loaded at a flow rate of 1 mL/min.
  • the column was washed with 15 column volumes of buffer C (same as buffer B except with 0.2% Triton X-100).
  • the protein was eluted with 5 column volumes of buffer D (same as buffer C except with 200 mM Imidazole).
  • NS3/4A protease complex-containing fractions were pooled and loaded on a desalting column Superdex-S200 pre-equilibrated with buffer D (25mM HEPES, pH 7.5, 20% glycerol, 300 mM NaCl, 0.2% Triton X-100, 10 mM ⁇ ME). Sample was loaded at a flow rate of 1 mL/min. NS3/4A protease complex-containing fractions were pooled and concentrated to approximately 0.5 mg/ml. The purity of the
  • NS3/4A protease complexes derived from the BMS, H77 and J4L6S strains, were judged to be greater than 90% by SDS-PAGE and mass spectrometry analyses.
  • the enzyme was stored at -80°C, thawed on ice and diluted prior to use in assay buffer.
  • the substrate used for the NS3/4A protease assay was RET S 1
  • the peptide substrate was incubated with one of the three recombinant NS3/4A protease complexes, in the absence or presence of a compound of the present invention, and the formation of fluorescent reaction product was followed in real time using a Cytofiuor Series 4000.
  • HEPES and Glycerol were obtained from GIBCO-BRL.
  • Dimethyl Sulfoxide (DMSO) was obtained from Sigma, ⁇ - Mercaptoethanol was obtained from Bio Rad.
  • Assay buffer 50 mM HEPES, pH 7.5; 0.15 M NaCl; 0.1% Triton; 15% Glycerol;10 mM ⁇ ME.
  • Substrate 2 ⁇ M final concentration (from a 2 mM stock solution in DMSO stored at -20°C).
  • HCV NS3/4A protease type 1 a (lb) 2-3 nM final concentration (from a 5 ⁇ M stock solution in 25 mM HEPES, pH 7.5, 20% glycerol, 300 mM NaCl, 0.2% Triton-XlOO, 10 mM ⁇ ME).
  • the assay was made more sensitive by adding 50 ⁇ g/ml Bovine Serum Albumin (Sigma) to the assay buffer and reducing the end protease concentration to 300 pM.
  • the assay was performed in a 96-well polystyrene black plate from Falcon. Each well contained 25 ⁇ l NS3/4A protease complex in assay buffer, 50 ⁇ l of a compound of the present invention in 10% DMSO/assay buffer and 25 ⁇ l substrate in assay buffer. A control (no compound) was also prepared on the same assay plate. The enzyme complex was mixed with compound or control solution for 1 min before initiating the enzymatic reaction by the addition of substrate. The assay plate was read immediately using the Cytofiuor Series 4000 (Perspective Biosystems). The instrument was set to read an emission of 340 nm and excitation of 490 nm at 25°C. Reactions were generally followed for approximately 15 min.
  • ⁇ F is the change in fluorescence over the linear range of the curve.
  • IC 50 50% effective concentration
  • Specificity Assays were performed to demonstrate the in vitro selectivity of the compounds of the present invention in inhibiting HCV NS3/4A protease complex as compared to other serine or cysteine proteases.
  • the specificities of compounds of the present invention were determined against a variety of serine proteases: human neutrophil elastase (HNE), porcine pancreatic elastase (PPE) and human pancreatic chymotrypsin and one cysteine protease: human liver cathepsin B.
  • HNE human neutrophil elastase
  • PPE porcine pancreatic elastase
  • chymotrypsin human liver cathepsin B.
  • pNA colorimetric p-nitroaniline
  • Each assay included a 2 h enzyme-inhibitor pre-incubation at room temperature followed by addition of substrate and hydrolysis to ⁇ 30% conversion as measured on a Spectramax Pro microplate reader. Compound concentrations varied from 100 to 0.4 ⁇ M depending on their potency.
  • Tris(hydroxymethyl)aminomethane hydrochloride pH 8
  • Hul ⁇ 7 cells constitutively expressing the HCV replicon, were grown in Dulbecco's Modified Eagle Media (DMEM) containing 10% Fetal calf serum (FCS) and 1 mg/ml G418 (Gibco-BRL). Cells were seeded the night before (1.5 x 10 4 cells/well) in 96-well tissue-culture sterile plates. Compound and no compound controls were prepared in DMEM containing 4% FCS, 1 : 100 Penicillin / Streptomysin, 1:100 L-glutamine and 5% DMSO in the dilution plate (0.5% DMSO final concentration in the assay). Compound / DMSO mixes were added to the cells and incubated for 4 days at 37°C.
  • DMEM Dulbecco's Modified Eagle Media
  • FCS Fetal calf serum
  • G418 Gibco-BRL
  • lysis assay reagent containing the FRET peptide (RET SI, as described for the in vitro enzyme assay).
  • the lysis assay reagent was made from 5X cell Luciferase cell culture lysis reagent (Promega #E153A) diluted to IX with distilled water, NaCl added to 150 mM final, the FRET peptide diluted to 10 ⁇ M final from a 2 mM stock in 100% DMSO.
  • the plate was then placed into the Cytofiuor 4000 instrument which had been set to 340 nm excitation / 490 nm emission, automatic mode for 21 cycles and the plate read in a kinetic mode. EC 50 determinations were canied out as described for the IC 50 determinations.
  • EC 50 determinations from the replicon FRET assay were confirmed in a luciferase reporter assay. Utilization of a replicon luciferase reporter assay was first described by Krieger et al (Krieger N, Lohmann V, and
  • the luciferase reporter assay was set up by seeding huh7 cells the night before at a density of 2 x 10 ⁇ cells per T75 flask. Cells were washed the next day with 7.5 ml Opti-MEM. Following the Invitrogen protocol, 40 ⁇ l DMRIE-C was vortexed with 5 ml Opti-MEM before adding 5 ⁇ g HCV reporter replicon RNA. The mix was added to the washed huh7 cells and left for 4 h at 37°C. In the mean time, serial compound dilutions and no compound controls were prepared in DMEM containing 10% FCS and 5% DMSO in the dilution plate (0.5% DMSO final concentration in the assay).
  • Lysate (40 ⁇ l) from each well was transfened to a 96-well black plate (clear bottom) followed by 200 ⁇ l lx Renilla Luciferase assay substrate. Plates were read immediately on a Packard TopCount NXT using a luminescence program.
  • % control average luciferase signal in experimental wells (+ compound) average luciferase signal in DMSO control wells (- compound)
  • IC50 Activity Ranges (NS3/4A BMS Strain): A is 10 - 100 micromolar ( ⁇ M); B is 1 - 10 ⁇ M; C is 0.1 - 1 ⁇ M; D is O.l ⁇ M EC50 Activity Range (for compounds tested): A is 10 - 100 ⁇ M; B is 1 - 10 ⁇ M; C is
  • the compounds have a biological activity (EC 0 ) of 10 ⁇ M or less, more preferably 1 ⁇ M or less and most preferably 100 nM or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Hepatitis C virus inhibitors are disclosed having the general formula: (I) wherein R1, R2, R3, R', B, Y and X are described in the description. Compositions comprising the compounds and methods for using the compounds to inhibit HCV are also disclosed.

Description

HEPATITIS C VIRUS INHIBITORS
FIELD OF THE INVENTION
The present invention is generally directed to antiviral compounds, and more specifically directed to compounds which inhibit the functioning of the NS3 protease (also referred to herein as "serine protease") encoded by Hepatitis C virus (HCV), compositions comprising such compounds and methods for inhibiting the functioning of the NS3 protease.
BACKGROUND OF THE INVENTION
HCV is a major human pathogen, infecting an estimated 170 million persons worldwide - roughly five times the number infected by human immunodeficiency virus type 1. A substantial fraction of these HCV infected individuals develop serious progressive liver disease, including cirrhosis and hepatocellular carcinoma. (Lauer, G. M.; Walker, B. D. N. Engl. J. Med. (2001), 345, 41-52).
Presently, the most effective HCV therapy employs a combination of alpha- interferon and ribavirin, leading to sustained efficacy in 40% of patients. (Poynard, T. et al. Lancet (1998), 352, 1426-1432). Recent clinical results demonstrate that pegylated alpha-interferon is superior to unmodified alpha-interferon as monotherapy (Zeuzem, S. et al. N. Engl. J. Med. (2000), 343, 1666-1672). However, even with experimental therapeutic regimens involving combinations of pegylated alpha- interferon and ribavirin, a substantial fraction of patients do not have a sustained v reduction in viral load. Thus, there is a clear and long-felt need to develop effective therapeutics for treatment of HCV infection.
HCV is a positive-stranded RΝA virus. Based on a comparison of the deduced amino acid sequence and the extensive similarity in the 5' untranslated region, HCV has been classified as a separate genus in the Flaviviridae family. All members of the Flaviviridae family have enveloped virions that contain a positive stranded RNA genome encoding all known virus-specific proteins via translation of a single, uninterrupted, open reading frame.
Considerable heterogeneity is found within the nucleotide and encoded amino acid sequence throughout the HCV genome. At least six major genotypes have been characterized, and more than 50 subtypes have been described. The major genotypes of HCV differ in their distribution worldwide, and the clinical significance of the genetic heterogeneity of HCV remains elusive despite numerous studies of the possible effect of genotypes on pathogenesis and therapy.
The single strand HCV RNA genome is approximately 9500 nucleotides in length and has a single open reading frame (ORF) encoding a single large polyprotein of about 3000 amino acids. In infected cells, this polyprotein is cleaved at multiple sites by cellular and viral proteases to produce the structural and non- structural (NS) proteins. In the case of HCV, the generation of mature non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) is effected by twO viral proteases. The first one is believed to cleave at the NS2-NS3 junction; the second one is a serine protease contained within the N-terminal region of NS3 and mediates all the subsequent cleavages downstream of NS3, both in cis, at the NS3-NS4A cleavage site, and in trans, for the remaining NS4A- NS4B, NS4B-NS5A, NS5A-NS5B sites. The NS4A protein appears to serve multiple functions, acting as a cofactor for the NS3 protease and possibly assisting in the membrane localization of NS3 and other viral replicase components. The complex formation of the NS3 protein with NS4A seems necessary to the processing events, enhancing the proteolytic efficiency at all of the sites. The NS3 protein also exhibits nucleoside triphosphatase and RNA helicase activities.
NS5B is a RNA-dependent RNA polymerase that is involved in the replication of HCV.
Among the compounds that have demonstrated efficacy in inhibiting HCV replication, as selective HCV serine protease inhibitors, are the peptide compounds disclosed in U.S. Patent No. 6,323,180. SUMMARY OF THE INVENTION
The present invention provides compounds of formula I;
Figure imgf000005_0001
wherein:
(a) Ri is Het or aryl; (b) m is l or 2;
(c) n is 1 or 2;
(d) R2 is H; or C1-6 alkyl, C -6 alkenyl or C3-7 cycloalkyl, each optionally substituted with halogen;
(e) R3 is C1-8 alkyl optionally substituted with halo, cyano, amino, C1-6 dialkylamino, C6-10 aryl, C -14 alkylaryl, C1-6 alkoxy, carboxy, hydroxy, aryloxy, C -14 alkylaryloxy, C2-6 alkylester or C8-i5 alkylarylester; C3-12 alkenyl, C3-7 cycloalkyl, or C4-1o alkylcycloalkyl, wherein the cycloalkyl or alkylcycloalkyl are optionally substituted with hydroxy, C1-6 alkyl, C2-6 alkenyl or C1-6 alkoxy; or R3 together with the carbon atom to which it is attached forms a C3-7 cycloalkyl group optionally substituted with C -6 alkenyl;
(f) Y is H, phenyl substituted with nitro, pyridyl substituted with nitro, or C1-6 alkyl optionally substituted with cyano, OH or C3-7 cycloalkyl; provided that if i or R5 is H then Yis H; (g) B is H, Cι.6 alkyl, R4-(C=O)-, R4O(C=O)-, R4-N(R5)-C(=O)-,
R4-N(R5)-C(=S)-, R4SO2-, or R4-N(R5)-SO2-; (h) φ is (i) Cι_ιo alkyl optionally substituted with phenyl, carboxyl, C1-6 alkanoyl, 1-3 halogen, hydroxy, -OC(O)C1-6 alkyl, C1-6 alkoxy, amino optionally substituted with C1-6 alkyl, amido, or (lower alkyl) amido; (ii) C3-7 cycloalkyl, C3-7 cycloalkoxy, or C4-10 alkylcycloalklyl, each optionally substituted with hydroxy, carboxyl, (Cι-6 alkoxy)carbonyl, amino optionally substituted with C1-6 alkyl, amido, or (lower alkyl) amido; (iii) C6-10 aryl or C7-16 arylalkyl, each optionally substituted with Ci-6 alkyl, halogen, nitro, hydroxy, amido, (lower alkyl) amido, or amino optionally substituted with C1-6 alkyl; (iv) Het; (v) bicyclo(l.l.l)pentane; or (vi) -C(O)OCι-6 alkyl, C2-6alkenyl or C2-6 alkynyl;
(i) R5 is H; C1-6 alkyl optionally substituted with 1-3 halogens; or Cι-6 alkoxy provided R4 is Cno alkyl;
(j) X is O, S, SO, SO2, OCH2, CH2O or NH; (k) R' is Het, C6-1Q aryl or C7-1 alkylaryl, each optionally substituted with
Ra; and
(1) Ra is Ci-6 alkyl, C3-7 cycloalkyl, C1-6 alkoxy, C3-7 cycloalkoxy, halo-Ci- 6 alkyl, CF , mono-or di- halo-C1-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO , SH, , amino, C1-6 alkylamino, di (Cι-6) alkylamino, di ( -,5) alkylamide, carboxyl, (Ci-6) carboxyester, C1-6 alkylsulfone, C1-6 alkylsulfonamide, di (Ci-6) alkyl(alkoxy)amine, C6- 10 aryl, C7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle;
or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof.
The present invention also provides compositions comprising the compounds or pharmaceutically acceptable salts, solvates or prodrugs thereof and a pharmaceutically acceptable carrier. In particular, the present invention provides pharmaceutical compositions useful for inhibiting HCV NS3 comprising a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable carrier. The present invention further provides methods for treating patients infected with HCV, comprising administering to the patient a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, solvate or prodrug thereof. Additionally, the present invention provides methods of inhibiting HCV NS3 protease by contacting the NS3 protease with a compound of the present invention.
By virute of the present invention, it is now possible to provide improved drugs comprising the compounds of the invention which can be effective in the treatment of patients infected with HCV. Specifically, the present invention provides peptide compounds that can inhibit the functioning of the NS3 protease, e.g., in combination with the NS4A protease. Further, the present invention makes it possible to administer combination therapy to a patient whereby a compound in accordance with the present invention, which is effective to inhibit the HCV NS3 protease, can be administered with another compound having anti-HCV activity, e.g., a compound which is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH and a nucleoside analog for the treatment of an HCV infection.
DETAILED DESCRIPTION OF THE INVENTION
Stereochemical definitions and conventions used herein generally follow McGraw-Hill Dictionary of Chemical Terms, S. P. Parker, Ed., McGraw-Hill Book Company, New York (1984) and Stereochemistry of Organic Compounds, Eliel, E. and Wilen, S., John Wiley & Sons, Inc., New York (1994). Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L or R and S are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory and (+) or d, meaning the compound, is dextrorotatory. For a given chemical structure, these compounds, called stereoisomers, are identical except that they are mirror images of one another. A specific stereoisomer of a mirror image pair may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. With reference to the instances where (R) or (S) is used, it is to designate the absolute configuration of a substituent in context to the whole compound and not in context to the substituent alone.
Unless otherwise specifically noted herein, the terms set forth below will have the following definitions.
The terms "racemic mixture" and "racemate" refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
The term "chiral" refers to molecules which have the property of non- superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner.
The term "stereoisomers" refers to compounds which have identical chemical composition, but differ with regard to the arrangement of the atoms or groups in space.
The term "diastereomer" refers to a stereoisomer which is not an enantiomer, e.g., a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
The term "enantiomers" refers to two stereoisomers of a compound which are non-superimposable mirror images of one another. The term "pharmaceutically acceptable salt" is intended to include nontoxic salts synthesized from a compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Company, Easton, PA, 1990, p. 1445. The compounds of the present invention are useful in the form of the free base or acid or in the form of a pharmaceutically acceptable salt thereof. All forms are within the scope of the invention.
The term "therapeutically effective amount" means the total amount of each active component that is sufficient to show a meaningful patient benefit, e.g., a sustained reduction in viral load. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
The term "compounds of the invention", and equivalent expressions, are meant to embrace compounds of formula I, and pharmaceutically acceptable enantiomer, diastereomer salts, and solvates, e.g. hydrates, and prodrugs. Similarly, references to intermediates, are meant to embrace their salts, and solvates, where the context so permits. References to the compound of the invention also include the preferred compounds, e.g. formula II and A-M.
The term "derivative" means a chemically modified compound wherein the modification is considered routine by the ordinary skilled chemist, such as an ester or an amide of an acid, protecting groups, such as a benzyl group for an alcohol or thiol, and tert-butoxycarbonyl group for an amine. The term "solvate" means a physical association of a compound of this invention with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Exemplary solvates include hydrates, ethanolates, methanolates, isopropanolates and the like.
The term "prodrug" as used herein means derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become, by solvolysis or under physiological conditions, the compounds of the invention which are pharmaceutically active in vivo. A prodrug of a compound may be formed in a conventional manner with a functional group of the compounds such as with an amino, hydroxy or carboxy group when present. The prodrug derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine.
The term "patient" includes both human and other mammals.
The term "pharmaceutical composition" means a composition comprising a compound of the invention in combination with at least one additional pharmaceutical carrier, i.e., adjuvant, excipient or vehicle, such as diluents, preserving agents, fillers, flow regulating agents, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifungal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms. Ingredients listed in Remington's Pharmaceutical Sciences, 18 ed., Mack Publishing Company, Easton, PA (1999) for example, maybe used. The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable risk/benefit ratio.
The term "treating" refers to: (i) preventing a disease, disorder or condition from occurring in a patient which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; (ii) inhibiting the disease, disorder or condition, i.e., arresting its development; and (iii) relieving the disease, disorder or condition, i.e., causing regression of the disease, disorder and/or condition.
The term "substituted" as used herein includes substitution at from one to the maximum number of possible binding sites on the core, e.p., organic radical, to which the subsirutent is bonded, e.g., mono-, di-, tri- or tetra- substituted, unless otherwise specifically stated.
The nomenclature used to describe organic radicals, e.g., hydrocarbons and substituted hydrocarbons, generally follows standard nomenclature known in the art, unless otherwise specifically defined. Combinations of groups, e.g., alkylalkoxyamine or arylalkyl, include all possible stable configurations, unless otherwise specifically stated. Certain radicals and combinations are defined below for purposes of illustration.
The term "halo" as used herein means a halogen substituent selected from bromo, chloro, fluoro or iodo. The term "haloalkyi" means an alkyl group that in substituted with one or more halo substituents.
The term "alkyl" as used herein means acyclic, straight or branched chain alkyl substituents having the specified number of carbon atoms and includes, for example, methyl, ethyl, propyl, butyl, tert-butyl, hexyl, 1-methylethyl, 1- methylpropyl, 2-methypropyl, 1,1-dimethylethyl. Thus, C1-6 alkyl refers to an alkyl group having from one to six carbon atoms. The term "lower alkyl" means an alkyl group having from one to six, preferably from one to four carbon atoms. The term "alkylester" means an alkyl group additionally containing on ester group. Generally, a stated carbon number range, e.g., C2-6 alkylester, includes all of the carbon atoms in the radical.
The term "alkenyl" as used herein means an alkyl radical containing at least one double bond, e.g., ethenyl (vinyl) and alkyl.
The term "alkoxy" as used herein means an alkyl group with the indicated number of carbon atoms attached to an oxygen atom. Alkoxy includes, for example, methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy and 1,1-dimethylethoxy. The latter radical is referred to in the art as tert-butoxy. The tenn "alkoxycarbonyl" means an alkoxy group additionally containing a carbonyl group.
The term "cycloalkyl" as used herein means a cycloalkyl substituent containing the indicated number of carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and spiro cyclic groups such as spirocyclopropyl as spirocyclobutyl. The term "cycloalkoxy" as used herein means a cycloalkyl group linked to an oxygen atom, such as, for example, cyclobutyloxy or cyclopropyloxy. The term "alkylcycloalkyl" means a cycloalkyl group linked to an alkyl group. The stated carbon number range includes the total number of carbons in the radical, unless otherwise specfically stated. This a C4-10 alkylcycloalkyl may contain from 1-7 carbon atoms in the alkyl group and from 3-9 carbon atoms in the ring, e.g., cyclopropylmethyl or cyclohexylethyl.
The term "aryl" as used herein means an aromatic moiety containing the indicated number of carbon atoms, such as, but not limited to phenyl, indanyl or naphthyl. For example, C6-10 aryl refers to an aromatic moiety having from six to ten carbon atoms which may be in the form of a monocyclic or bicyclic structure. The term "haloaryl" as used herein refers to an aryl mono, di or tri substituted with one or more halogen atoms. The terms "alkylaryl", "arylalkyl" and "aralalkyl" mean an aryl group substituted with one or more alkyl groups. Unless the carbon range of each group is specified, the stated range applies to the entire substituent. Thus, a C -14 alkylaryl group many have from 1-8 carbon atoms in the alkyl group for a monocyclic aromatic and from 1-4 carbon atoms in the alkyl group for a fused aromatic. The attachment of the group to bonding site on the molecule can be either at the aryl group or the alkyl group. Unless a specific aryl radical is specified, e.g., fluoro-phenyl, or the radical is stated to be unsubstituted, the aryl radicals include those substituted with typical substituents known to those skilled in the art, e.g., halogen, hydroxy, carboxy, carbonyl, nitro, sulfo, amino, cyano, dialkylamino haloalkyl, CF3, haloalkoxy, thioalkyl, alkanoyl, SH, alkylamino, alkylamide, dialkylamide, carboxyester, alkylsulfone, alkylsulfonamide and alkyl(alkoxy)amine. Examples of alkylaryl groups include benzyl, butylphenyl and 1-naphthylmethyl.
The term "alkanoyl" as used herein means straight or branched 1-oxoalkyl radicals containing the indicated number of carbon atoms and includes, for example, formyl, acetyl, 1-oxopropyl (propionyl), 2-methyl-l-oxopropyl, 1-oxohexyl and the like.
The term "alkylamide" as used herein means an amide mono-substituted with an alkyl, such as
Figure imgf000013_0001
The term "heterocycle" , also referred to as "Het", as used herein means 7-12 membered bicyclic heterocycles and 5-9 membered monocyclic heterocycles.
Preferred bicyclic heterocycles are 7-12 membered fused bicyclic ring systems (both rings share an adjacent pair of atoms) containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur, wherein one or both rings of the heterocycle can be saturated, partially saturated or fully unsaturated ring system
(this latter subset also herein referred to as unsaturated heteroaromatic). The nitrogen and sulfur heteroatoms atoms may be optionally oxidized. The bicyclic heterocycle may contain the heteroatoms in one or both rings. Unless a specific heterocycle is specified, e.g., a fluorinated 7-12 membered bicyclic heterocycle, or the heterocycle is stated to be unsubstituted, the heterocycles include those substituted with typical substituents known to those skilled in the art. For example, the bicyclic heterocycle may also contain substituents on any of the ring carbon atoms, e.g., one to three substituents. Examples of suitable substituents include C1-6 alkyl, C3-7 cycloalkyl, Ci-6 alkoxy, C3-7 cycloalkoxy, halo-Ci-6 alkyl, CF3, mono-or di- halo-Cι-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO2, SH, , amino, C1-6 alkylamino, di (Cι-6) alkylamino, di (Ci-6) alkylamide, carboxyl, ( -β) carboxyester, C1-6 alkylsulfone, Cι-6 alkylsulfonamide, Ci^ alkylsulfoxide, di (Ci-6) alkyl(alkoxy)amine, C6-10 aryl, C -1 alkylaryl, and a 5-7 membered monocyclic heterocycle. When two substituents are attached to vicinal carbon atoms of the bicyclic heterocycle, they can join to form a ring, e.g., a five, six or seven membered ring system containing up to two heteroatoms selecting from oxygen and nitrogen. The bicyclic heterocycle may be attached to the molecule, e.g. R\ in formula I, at any atom in the ring and preferably carbon.
Examples of bicyclic heterocycles include, but are not limited to, the following ring systems:
Figure imgf000014_0001
Preferred monocyclic heterocycles are 5-9 membered saturated, partially saturated or fully unsaturated ring system (this latter subset also herein referred to as unsaturated heteroaromatic) containing in the ring from one to four heteroatoms selected from nitrogen, oxygen and sulfur, wherein the sulfur and nitrogen heteroatoms may be optionally oxidized. Unless a specific heterocycle is specified, e.g., a C1-6 alkoxy substituted 5-7 membered monocyclic heterocycle, or the heterocycle is stated to be unsubstituted, the heterocycles include those substituted with typical substituents known to those skilled in the art. For example, the monocyclic heterocycle may also contain substituents on any of the ring atoms, e.g., one to three substituents. Examples of suitable substituents include C1-6 alkyl, C3-7 cycloalkyl, Cι-6 alkoxy, C -7 cycloalkoxy, halo-Ci-6 alkyl, CF3, mono-or di- halo-C1-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO2, SH, , amino, Cι-6 alkylamino, di (Ci-6) alkylamino, di (Cr6) alkylamide, carboxyl, (Cχ-β) carboxyester, C1-6 alkylsulfone, Cι-6 alkylsulfoxide, Cι-6 alkylsulfonamide, di ( -β) alkyl(alkoxy)amine, C6-1o aryl, C -1 alkylaryl and an additional 5-7 membered monocyclic heterocycle. The monocyclic heterocycle may be attached to the molecule, e.g. R in formula I, at any atom in the ring.
Examples of monocyclic heterocycles include, but are not limited to, the following (and their tautomers):
Figure imgf000015_0001
O O C
Figure imgf000015_0002
Those skilled in the art will recognize that the heterocycles used in the compounds of the present invention should be stable. Generally, stable compounds are those which can be synthesized, isolated and formulated using techniques known the those skilled in the art without degradation of the compound.
The term "substituent" with reference to an amino acid or amino acid derivative means a radical derived from the corresponding α-amino acid. For instance, the substituents methyl, iso-propyl, and phenyl represent the amino acids alanine, valine, and phenyl glycine, respectively. Where used in naming compounds of the present invention, the designations "Plø PI, P2, P3 and P4", as used herein, map the relative positions of the amino acid residues of a protease inhibitor binding relative to the binding of the natural peptide cleavage substrate. Cleavage occurs in the natural substrate between PI and PI ' where the nonprime positions designate amino acids starting from the C-terminus end of the peptide natural cleavage site extending towards the N-terminus; whereas, the prime positions emanate from the N-terminus end of the cleavage site designation and extend towards the C-terminus. For example, PI ' refers to the first position away from the right hand end of the C-terminus of the cleavage site (ie. N-terminus first position); whereas PI starts the numbering from the left hand side of the
C-terminus cleavage site, P2: second position from the C-terminus, etc.)(see Berger A. & Schechter I., Transactions of the Royal Society London series (1970), B257, 249-264],
As used herein the term "1-aminocyclopropyl-carboxylic acid" (Acca) refers to a compound of formula:
Figure imgf000016_0001
As used herein the term "ter-t-butylglycine" refers to a compound of the formula:
Figure imgf000016_0002
The term "residue" with reference to an amino acid or amino acid derivative means a radical derived from the corresponding α-amino acid by eliminating the hydroxyl of the carboxy group and one hydrogen of the α-amino acid group. For instance, the terms Gin, Ala, Gly, He, Arg, Asp, Phe, Ser, Leu, Cys, Asn, Sar and Tyr represent the "residues" of E-glutamine, E-alanine, glycine, E-isoleucine, E-arginine, E-aspartic acid, E-phenylalanine, E-serine, E-leucine, E-cysteine, E-asparagine, sarcosine and E-tyrosine, respectively.
The term "side chain" with reference to an amino acid or amino acid residue means a group attached to the α-carbon atom of the α-amino acid. For example, the R-group side chain for glycine is hydrogen, for alanine it is methyl, for valine it is isopropyl. For the specific R-groups or side chains of the α-amino acids reference is made to A.L. Lehninger's text on Biochemistry (see chapter 4).
The compounds of the present invention have the structure of Formula I:
Figure imgf000017_0001
wherein:
(a) Ri is Het or aryl;
(b) is 1 or 2; (c) n is 1 or 2;
(d) R2 is H; or C1-6 alkyl, C2-6 alkenyl or C3- cycloalkyl, each optionally substituted with halogen;
(e) R3 is Cι-8 alkyl optionally substituted with halo, cyano, amino, C1-6 dialkylamino, Cβ-io aryl, C -1 alkylaryl, C1-6 alkoxy, carboxy, hydroxy, aryloxy, C -1 alkylaryloxy, C2-6 alkylester or C8-15 alkylarylester; C3-12 alkenyl, C3-7 cycloalkyl, or C -ιo alkylcycloalkyl, wherein the cycloalkyl or alkylcycloalkyl are optionally substituted with hydroxy, C1-6 alkyl, C2-6 alkenyl or Cι-6 alkoxy; or R3 together with the carbon atom to which it is attached forms a C3-7 cycloalkyl group optionally substituted with C2-6 alkenyl;
(f) Y is H, phenyl substituted with nitro, pyridyl substituted with nitro, or C1-6 alkyl optionally substituted with cyano, OH or C3-7 cycloalkyl; provided that if i or R5 is H then Yis H;
(g) B is H, C1-6 alkyl, *-(«))-, ^O^O)-, R4-N(R5)-C(=O)-,
Figure imgf000018_0001
R4SO2-, or R4-N(R5)-SO2-;
(h) R4 is (i) Ci-io alkyl optionally substituted with phenyl, carboxyl, C1-6 alkanoyl, 1-3 halogen, hydroxy, -OC(O)C1-6 alkyl, C1-6 alkoxy, amino optionally substituted with C1-6 alkyl, amido, or (lower alkyl) amido; (ii) C3-7 cycloalkyl, C -7 cycloalkoxy, or C4-10 alkylcycloalklyl, each optionally substituted with hydroxy, carboxyl, (C1-6 alkoxy)carbonyl, amino optionally substituted with C1-6 alkyl, amido, or (lower alkyl) amido; (iii) C6-1o aryl or C -16 arylalkyl, each optionally substituted with C1-6 alkyl, halogen, nitro, hydroxy, amido, (lower alkyl) amido, or amino optionally substituted with C1-6 alkyl; (iv) Het; (v) bicyclo(l.l.l)pentane; or (vi) -C(O)OC1-6 alkyl, C2-6alkenyl or C2-6 alkynyl; (i) R5 is H; C1- alkyl optionally substituted with 1-3 halogens; or C1-6 alkoxy provided R4 is C1-10 alkyl; (j) X is O, S, SO, SO2, OCH2, CH2O or NH;
(k) R' is Het, C -10 aryl or C7-1 alkylaryl, each optionally substituted with Ra; and (1) Ra is Ci-6 alkyl, C3-7 cycloalkyl, C1-6 alkoxy, C3-7 cycloalkoxy, halo- - l β alkyl, CF3, mono-or di- halo-C1-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO2, SH, , amino, C1-6 alkylamino, di (C^) alkylamino, di ( -ό) alkylamide, carboxyl, (Cjι-6) carboxyester, C1-6 alkylsulfone, C1- alkylsulfonamide, di Cχ- ) alkyl(alkoxy)amine, C6- 10 aryl, C7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle;
or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof. Preferably, Het is unsubstituted Het or Het substituted with from one to three of halo, cyano, trifluoromethyl, nitro, C1-6 alkyl, C1-6 alkoxy, amido, C1-6 alkanoylamino, amino, phenyl or phenylthio, said phenyl or phenyl portion of phenylthio being unsubstituted or substituted with one to three substituents selected from halo, cyano, nitro, C1-6 alkyl, C1-6 alkoxy, amido or phenyl;
More preferably, R\ is selected from the group consisting of ^
,cι
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000020_0002
In another aspect of the invention, Ri is a monocyclic aryl, preferably a C6 aryl, optionally substituted with halo, e.g., chloro, hydroxyl, Cι.6 alkoxy, e.g., methoxy, or haloC1-6 alkoxy, e.g., trifluoromethoxy. Preferably, R2 is C1-6 alkyl, C2-6 alkenyl or C3-7 cycloalkyl. More preferably, R2 is C2-6 alkenyl. Preferably, R3 is C1-8 alkyl optionally substituted with C6aryl, C1-6 alkoxy, carboxy, hydroxy, aryloxy, C7-] alkylaryloxy, C2-6 alkylester or C8-15 alkylarylester; C3-12 alkenyl; C3-7 cycloalkyl; or C4-10 alkylcycloalkyl. More preferably, R3 is Cι-8 alkyl optionally substituted with C1-6 alkoxy; or C3-7 cycloalkyl.
Preferably, Y is H. Preferably, B is H, C1-6 alkyl, R C=O)-, R4O(C=O)-, R4-N(R5)-C(=O)-, R4-N(R5)-C(=S)-, R4S02-, or R4-N(R5)-SO2-. More preferably, B is R4-(C=O)-, RtO^O)-, or R4-N(R5)-C(=O)-. Even more preferably, B is R O(C=O)- and R4 is C1-6 alkyl. Preferably, Rj is (i) C1-10 alkyl optionally substituted with phenyl, carboxyl, C1-6 alkanoyl, 1-3 halogen, hydroxy, C1-6 alkoxy; (ii) C3-7 cycloalkyl, C3-7 cycloalkoxy, or C4-10 alkylcycloalklyl; or (iii) C6-10 aryl or C7-16 arylalkyl, each optionally substituted with C1-6 alkyl or halogen. More preferably, i is (i) Ci-io alkyl optionally substituted with 1-3 halogen or Cι- alkoxy; or (ii) C3- cycloalkyl or C -10 alkylcycloalkyl. Preferably, R5 is H or C1-6 alkyl optionally substituted with 1-3 halogens. More preferably, R5 is H.
Preferably, X is O or NH. Preferably, R' is Het or C6-1Q aryl each optionally substituted with Ra. More preferably, R' is Het. Preferably, the heterocycle contains 1 or 2 nitrogen atoms and optionally a sulfur atom or an oxygen atom in the ring.
More preferably, the heterocycle is substituted with at least one of C1-6 alkyl, C1-6 alkoxy, halo, C6-10 aryl, C7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle. Preferably, Rais C1-6 alkyl, C3-7 cycloalkyl, C1-6 alkoxy, halo- -,5 alkyl, halo, amino, C6 aryl, or a 5-7 membered monocyclic heterocycle.
The substituents from each grouping may be selected individually and combined in any combination which provides a stable compound in accordance with the present invention. Also, more than one substituent from each group may be substituted on the core group provided there are sufficient available binding sites. For example, each of the following R R7, R8 or R9 substituents, C1-6 alkoxy, C6 aryl and a 5-7 membered monocyclic heterocycle, may be substituted on a bicyclic heterocycle. In a preferred aspect, the compounds of the present invention have the structure of Formula II:
Figure imgf000022_0001
wherein:
(a) Ri is unsubstituted Het or Het substituted with from one to three of halo, cyano, trifluoromethyl, C1-6 alkyl, C1-6 alkoxy, amido, Cι-6 amino, phenyl, said phenyl being unsubstituted or substituted with one to three substituents selected from halo, cyano, nitro, C1-6 alkyl, C1-6 alkoxy, amido or phenyl; or C6 aryl;
( ) R2 is C1-6 alkyl, C2-6 alkenyl or C3-7 cycloalkyl; (c) R3 is C1-8 alkyl optionally substituted with C6 aryl, Cι-6 alkoxy, carboxy, hydroxy, aryloxy, C -14 alkylaryloxy, C2-6 alkylester, ,C8-15 alkylarylester; C3-12 alkenyl, C3-7 cycloalkyl, or C -10 alkylcycloalkyl;
(d) B is H, Ci-β alkyl, R4-(C=O)-, R4θ(C=O)-, R4-N(R5)-C(=O)-,
R4-N(R5)-C(=S)-, R4SO2-, or R4-N(R5)-SO2-;
(e) R4 is (i) Cι-10 alkyl optionally substituted with phenyl, carboxyl, C1-6 alkanoyl, 1-3 halogen, hydroxy, C1-6 alkoxy; (ii) C3-7 cycloalkyl, C3-7 cycloalkoxy, or C4-10 alkylcycloalklyl; or (iii) Cβ-io aryl or C7-ι6 arylalkyl, each optionally substituted with C1-6 alkyl or halogen;
(f) R5 is H or C1-6 alkyl optionally substituted with 1-3 halogens; (g) X is O or NH;
GO R' is Het; or C6-10 aryl optionally substituted with Ra; and
(i) Rais C1-6 alkyl, C3-7 cycloalkyl, C1-6 alkoxy, halo-Ci- alkyl, halo, amino, C6 aryl, or a 5-7 membered monocyclic heterocycle; or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof.
In one aspect of the invention, R' is a bicyclic heterocycle. Preferably, the heterocycle contains 1 or 2 nitrogen atoms and optionally a sulfur atom or an oxygen atom in the ring. More preferably, the heterocycle is substituted with at least one of Ci-6 alkyl, C1-6 alkoxy, halo, C6 aryl, and a 5-7 membered monocyclic heterocycle. Even more preferably, R' is a bicyclic heterocycle containing 1 nitrogen atom and substituted with methoxy and at least one of a C6 aryl and a 5-7 membered monocyclic heterocycle.
In another aspect of the invention, R' is a monocyclic heterocycle. Preferably, the heterocycle contains 1 or 2 nitrogen, atoms and optionally a sulfur atom or an oxygen atom in the ring. More preferably, the heterocycle is substituted with at least one of C1-6 alkyl, C1-6 alkoxy, halo, C6-1o aryl, C7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle. Even more preferably, R' is a monoyclic heterocycle containing 1 or 2 nitrogen atoms and substituted with methoxy and at least one of a C6 aryl and a 5-7 membered monocyclic heterocycle.
In a more preferred aspect of the invention, the compounds have the structure of Formula III
Figure imgf000023_0001
wherein:
(a) Ri is unsubstituted Het or Het substituted with one to three of halo, cyano, trifluoromethyl, C1-6 alkyl, C1-6 alkoxy, amido, or amino; or a C6 aryl; (b) R2 is C2-6 alkenyl;
(c) R3 is C1-8 alkyl;
(d) B is R4θ(C=O)-, or R4-N(H)-C(=O)-;
(e) i is d.io alkyl;
(f) R' is a bicyclic heterocycle optionally substituted with R ; and (g) Ra is Ci-6 alkyl, C1-6 alkoxy, halo, C6 aryl, or a 5-7 membered monocyclic heterocycle;
or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof.
Preferably, R2 is vinyl, R3 is t-butyl, i is t-butyl, R' is quinoline or isoquinoline optionally substituted with Ra. Preferably, Ra is C1-6 alkoxy. More preferably, Ra further includes at least one of C6 aryl or a 5-7 membered monocyclic heterocycle.
The compounds of the present invention can be manufactured by methods known to those skilled in the art, see e.p., US Patent No. 6,323,180 and US Patent Appl. 20020111313 Al. The following methods set forth below are provided for illustrative purposes and are not intended to limit the scope of the claimed invention. It will be recognized that it may be preferred or necessary to prepare such a compound in which a functional group is protected using a conventional protecting group then to remove the protecting group to provide a compound of the present invention. The details concerning the use of protecting groups in accordance with the present invention are known to those skilled in the art.
The compounds of the present invention may, for example, be synthesized according to a general process as illustrated in Scheme I (wherein CPG is a carboxyl protecting group and APG is an amino protecting group): Scheme I
PI Pl-CPG + APG-P2 APG-P2-P1-CPG
Figure imgf000025_0001
APG-P3-P2-P1-CPG P2-P1-CPG + APG-P3
Figure imgf000025_0002
B-P3-P2-P1 B-P3-P2-P1-P1'
Briefly, the PI, P2, and P3 can be linked by well known peptide coupling techniques. The PI, P2, and P3 groups may be linked together in any order as long as the final compound corresponds to peptides of the invention. For example, P3 can be linked to P2-P1; or PI linked to P3-P2.
Generally, peptides are elongated by deprotecting the α-amino group of the N-terminal residue and coupling the unprotected carboxyl group of the next suitably N-protected amino acid through a peptide linkage using the methods described. This deprotection and coupling procedure is repeated until the desired sequence is obtained. This coupling can be performed with the constituent amino acids in stepwise fashion, as depicted in Scheme I.
Coupling between two amino acids, an amino acid and a peptide, or two peptide fragments can be carried out using standard coupling procedures such as the azide method, mixed carbonic-carboxylic acid anhydride (isobutyl chloroformate) method, carbodiimide (dicyclohexylcarbodiimide, diisopropylcarbodiimide, or water-soluble carbodiimide) method, active ester (p-nitrophenyl ester, N-hydroxysuccinic imido ester) method, Woodward reagent K-method, carbonyldiimidazole method, phosphorus reagents or oxidation-reduction methods. Some of these methods (especially the carbodiimide method) can be enhanced by adding 1-hydroxybenzotriazole or 4-DMAP. These coupling reactions can be performed in either solution (liquid phase) or solid phase.
More explicitly, the coupling step involves the dehydrative coupling of a free carboxyl of one reactant with the free amino group of the other reactant in the present of a coupling agent to form a linking amide bond. Descriptions of such coupling agents are found in general textbooks on peptide chemistry, for example, M. Bodanszky, "Peptide Chemistry", 2nd rev ed., Springer- Verlag, Berlin, Germany, (1993). Examples of suitable coupling agents are N,N'-dicyclohexylcarbodiimide, 1-hydroxybenzotriazole in the presence of N,N'-dicyclohexylcarbodiimide or N-ethyl-N'-[(3-dimethylamino)propyl]carbodiimide. A practical and useful coupling agent is the commercially available (benzotriazol- 1 -yloxy)tris-(dimethylamino)phosphonium hexafluorophosphate, either by itself or in the present of 1-hydroxybenzotriazole or 4-DMAP. Another practical and useful coupling agent is commercially available 2-(lH-benzotriazol-l-yl)-N, N, N0 N'-tetramethyluronium tetrafluoroborate. Still another practical and useful coupling agent is commercially available O-(7-azabenzotrizol-l-yl)-N,N,N0N'-tetramethyluronium hexafluorophosphate. The coupling reaction is conducted in an inert solvent, e.g. dichloromethane, acetonitrile or dimethylformamide. An excess of a tertiary amine, e.g. diisopropylethylamine, N-methylmorpholine, N-methylpyrrolidine or 4-DMAP is added to maintain the reaction mixture at a pH of about 8. The reaction temperature usually ranges between 0 °C and 50 °C and the reaction time usually ranges between
15 min and 24 h.
The functional groups of the constituent amino acids generally must be protected during the coupling reactions to avoid formation of undesired bonds. Protecting groups that can be used are listed, for example, in Greene, "Protective
Groups in Organic Chemistry", John Wiley & Sons, New York (1981) and "The Peptides: Analysis, Synthesis, Biology", Vol. 3, Academic Press, New York (1981), the disclosures of which are hereby incorporated by reference. The α-amino group of each amino acid to be coupled to the growing peptide chain must be protected (APG). Any protecting group known in the art can be used. Examples of such groups include: 1) acyl groups such as formyl, trifluoroacetyl, phthalyl, and p-toluenesulfonyl; 2) aromatic carbamate groups such as benzyloxycarbonyl (Cbz or Z) and substituted bensyloxycarbonyls, and 9-fluorenylmethyloxycarbonyl (Fmoc); 3) aliphatic carbamate groups such as tert-butyloκycarbonyl (Boc), ethoxycarbonyl, diisopropylmethoxycarbonyl, and allyloxyca bonyl; 4) cyclic alkyl carbamate groups such as cyclopentyloxycarbonyl and adamarityloxycarbonyl; 5) alkyl groups such as triphenylmethyl and benzyl; 6)trialkylsilyl such as trimethylsilyl; and 7) thiol containing groups such as phenylthiocarbonyl and dithiasuccinoyl.
The preferred α-amino protecting group is either Boc or Fmoc. Many amino acid derivatives suitably protected for peptide synthesis are commercially available. The α-amino protecting group of the newly added amino acid residue is cleaved prior to the coupling of the next amino acid. When the Boc group is used, the methods of choice are trifluoroacetic acid, neat or in dichloromethane, or HCI in dioxane or in ethyl acetate. The resulting ammonium salt is then neutralized either prior to the coupling or in situ with basic solutions such as aqueous buffers, or tertiary amines in dichloromethane or acetonitrile or dimethylformamide. When the Fmoc group is used, the reagents of choice are piperidine or substituted piperidine in dimethylformamide, but any secondary amine can be used. The deprotection is carried out at a temperature between 0°C and room temperature (rt or RT) usually 20-22°C.
Any of the amino acids having side chain functionalities must be protected during the preparation of the peptide using any of the above-described groups. Those skilled in the art will appreciate that the selection and use of appropriate protecting groups for these side chain functionalities depend upon the amino acid and presence of other protecting groups in the peptide. The selection of such protecting groups is important in that the group must not be removed during the deprotection and coupling of the α-amino group. For example, when Boc is used as the α-amino protecting group, the following side chain protecting group are suitable: -toluenesulfonyl (tosyl) moieties can be used to protect the amino side chain of amino acids such as Lys and Arg; acetamidomethyl, benzyl (Bn), or tert-butylsulfonyl moieties can be used to protect the sulfide containing side chain of cysteine; bencyl (Bn) ethers can be used to protect the hydroxy containing side chains of serine, threonine or hydroxyproline; and benzyl esters can be used to protect the carboxy containing side chains of aspartic acid and glutamic acid.
When Fmoc is chosen for the α-amine protection, usually ter-t-butyl based protecting groups are acceptable. For instance, Boc can be used for lysine and arginine, tert-butyl ether for serine, threonine and hydroxyproline, and tert-butyl ester for aspartic acid and glutamic acid. Triphenylmethyl (Trityl) moiety can be used to protect the sulfide containing side chain of cysteine.
Once the elongation of the peptide is completed all of the protecting groups are removed. When a liquid phase synthesis is used, the protecting groups are removed in whatever manner is dictated by the choice of protecting groups. These procedures are well known to those skilled in the art.
Further, the following guidance may be followed in the preparation of compounds of the present invention. For example, to form a compound where Rt-C(O)-, R4-S(O)2„ a protected P3 or the whole peptide or a peptide segment is coupled to an appropriate acyl chloride or sulfonyl chloride respectively, that is either commercially available or for which the synthesis is well known in the art. In preparing a compound where R O-C(O)-, a protected P3 or the whole peptide or a peptide segment is coupled to an appropriate chloroformate that is either commercially available or for which the synthesis is well known in the art. For Boc-derivatives (Boc)2O is used.
For example: + H2N-P3- [ P2-P1 ] -COOEt
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
[P2-P1] -COOBt
Cyclopentanol is treated with phosgene to furnish the corresponding chloroformate.
The chloroformate is treated with the desired NH2-tripeptide in the presence of abase such as triethylamine to afford the cyclopentylcarbamate.
In preparing a compound where Pv4-N(R5)-C(O)-, or R4-NH-C(S)-, a protected P3 or the whole peptide or a peptide segment is treated with phosgene followed by amine as described in SynLett. Feb 1995; (2); 142-144 or is reacted with the commercially available isocyanate and a suitable base such as triethylamine.
In preparing a compound where R4-N(R5)-S(O2), a protected P3 or the whole peptide or a peptide segment is treated with either a freshly prepared or commercially available sulfamyl chloride followed by amine as described in patent Ger. Offen.(1998), 84 pp. DE 19802350 or WO 98/32748.
The α-carboxyl group of the C-terminal residue is usually protected as an ester (CPG) that can be cleaved to give the carboxylic acid. Protecting groups that can be used include: 1 ) alkyl esters such as methyl, trimethylsilylethyl and t-butyl, 2) aralkyl esters such as benzyl and substituted benzyl, or 3) esters that can be cleaved by mild base treatment or mild reductive means such as trichloroethyl and phenacyl esters. The resulting oc-carboxylic acid (resulting from cleavage by mild acid, mild base treatment or mild reductive means) is coupled with a R-[SO2NH2 . Compounds of the present invention can be prepared by many methods including those described in the examples, below, and as described in U.S. Patent No. 6,323,180 and U.S. Patent Application No. 10/001,850 filed on November 20, 2001. The teachings of U.S. Patent No. 6,323,180 and U.S. Patent Application No. 10/001,850 are incorporated herein, in their entirety, by reference.
Scheme II further shows the general process wherein compounds of Formula I are constructed by the coupling of tripeptide carboxylic acid intermediate (1) with a PL sulfonamide. (It should be noted that the groups R6, R7) R8j R9; R10; Rn as shown below represent substituents of the heterocyclic system.) Said coupling reaction requires treatment of carboxylic acid (1) with a coupling reagent such as carbonyl diimidazole in a solvent such as THF, which can be heated to reflux, followed by the addition of the formed derivative of (1), to the PT sulfonamide, in a solvent such as THF or methylene chloride in the presence of a base such as DBU.
Scheme II
Process P4-P3-P2-P1 P- — *- P4-P3-P2-P1-P1"
Figure imgf000030_0001
An alternative process for the construction of compounds of Formula I is shown in Scheme III. Therein the PI" sulfonamide element is coupled to the PI element using the process employed in Scheme 1. The resulting PI -PI" moiety can then be deprotected at it's amino terminus. In this general example a Boc protecting group is employed but one skilled in the art would recognize that a number of suitable amino protecting groups could be employed in this process. Said Boc protecting group can be removed using acid such as trifluoroacetic acid in a solvent such as dichloroethane to provide the deprotected amine as the TFA salt. Said TFA amine salt can be directly employed in the subsequent coupling reaction or as an alternative the TFA amine salt can be first converted to the HCI amine salt, and this HCI amine salt is used in said coupling reaction as shown in Scheme III. The coupling of said HCI amine salt (3) with the carboxyl terminus a P4-P3-P2 intermediate can be achieved using coupling reagents, such as HATU, in solvents such as dichloromethane to provide compounds of Formula I (4).
Scheme III
Process P1 . P1' „ P1-P1' P4-P3-P2 „ P4-P3-P2-P1-P1'
Figure imgf000031_0001
Compounds fo Formula I
An alternative process for the construction of compounds of Formula I is shown in Scheme IV. Herein the hydrochloride salt of the PI-PL terminal amine (1) is coupled to the free carboxyl group of the P2 element using coupling agents such as PyBOP, in the presence of a base such as diisopropyl amme, and in a solvent such as methylene chloride. The resulting P2-P1-PL intermediate can be converted to compounds of Formula I in a two step process wherein the first step is deprotection of the P2 amine terminus using an acid such as TFA in a solvent such as methylene chloride. The resulting trifluoroacetic acid salt can be coupled with the carboxyl terminus of the P4-P3 element using standard coupling agents such as PyBop in the presence of base such as diisopropyl amine, and using solvents such methylene chloride to provide compounds of Formula I (4). Scheme IV
Process P1-P1' — P2-P1-P1' P4"P3 „ P4-P3-P2-P1-P1"
Figure imgf000032_0001
The P4-P3-P2 intermediate utilized in the above schemes can be constructed as previously described with a further description of this process shown in general Scheme V. Therein the free carboxyl terminus of the P4-P3 intermediate (1), can be coupled to the amino terminus of the P2 element to provide the P4-P3-P2 dipeptide (2). The carboxyl terminus of the P4-P3-P2 intennediate can be deprotected by saponification of the ester group to provide P4-P3-P2 as the free carboxylic acid (3). Intermediates like (3) can be converted to compounds of Formula I using the methods described herein. Scheme V
P2
Process P4-P3 »- P4-P3-P2
Figure imgf000032_0002
Compounds of Formula 1 can also be converted into other compounds of Formula I as described herein. An example of such a process is shown in Scheme VI wherein a compound of Formula 1 (1) which bears a Boc group at the P4 position is converted in a compound of Formula I (3) wherein said compound bears a urea group at the P4 position. The conversion of (1) to (3) can be carried out in a two step process the first of which is the conversion of (1) to amine (2) by treatment of (1) with an acid such as TFA in a solvent such as methylene chloride. The resulting amine TFA salt can be treated with an isocyanate in the presence of one equivalent of base to provide a compound of Fonnula I (3) wherein the P3 moiety is capped with a urea. As previously noted one skilled in the art will recognize that mtermediate (2) can be used as starting materials for the preparation of compounds of Formula I wherein the P3 group is capped with an amide or a sulfonamide, or thiourea, or a sulfamide. The construction of said compounds of Formula I can be achieved using standard conditions for the formation of said P4 functionalities from amines. Scheme VI
Process P4-P3-P2-P1-P1' >- P3-P2-P1-P1' >- P4-P3-P2-P1-P1'
Figure imgf000033_0001
Compounds fo Formula I
Figure imgf000033_0002
I
In the construction of compounds of Formula I, the PT terminus is incorporated into the molecules using one of the general processes outlined above and described in more detail below. In some examples the PT elements, that is the heterocyclesulfonamides are commercially available or can be prepared as described herein.
The PI elements utilized in generating compounds of Formula I are in some cases commercially available, but are otherwise synthesized using the methods described herein and subsequently incorporated into compounds of Formula I using the methods described herein. The substituted PI cyclopropylamino acids can be synthesized following the general process outline in Scheme VIII.
Treatment of commercially available or easily synthesized imine (1) with 1,4- dihalobutene (2) in presence of abase produces, provides the resulting imine (3). Acid hydrolysis of 3 then provides 4, which has an allyl substituent syn to the carboxyl group as a major product. The amine moiety of 4 can protected using a Boc group to provide the fully protected amino acid 5. This intermediate is a racemate which can be resolved by an enzymatic process wherein the ester moiety of 5 is cleaved by a protease to provide the corresponding carboxylic acid. Without being bound to any particular theory, it is believed that this reaction is selective in that one of the enantiomers undergoes the reaction at a much greater rate than its mirror image providing for a kinetic resolution of the intermediate racemate. In the examples cited herein, the more preferred stereoisomer for integration into compounds of Formula I is 5a which houses the (IR, 2S) stereochemistry. In the presence of the enzyme, this enantiomer does not undergo ester cleavage and thereby this enantiomer 5a is recovered from the reaction mixture. However, the less preferred enantiomer ,5b with houses the (IS, 2R) stereochemistry undergoes ester cleavage, i.e., hydrolysis, to provide the free acid 6. Upon completion of this reaction, the ester 5a can be separated from the acid product 6 by routine methods such as, for example, aqueous extraction methods or chromotography. Scheme \TII
Figure imgf000035_0001
Procedures for making P2 intermediates and compounds of Formula I are shown in the Schemes below. It should be noted that in many cases reactions are depicted for only one position of an intermediate. However, it is to be understood that such reactions could be used to impart modifications to other positions within this intermediate. Moreover, said intermediates, reaction conditions and methods given in the specific examples are broadly applicable to compounds with other substitution patterns. The general Schemes outlined below are followed with examples herein. Both general and specific examples are non-limiting, as for example the isoquinoline nucleus is shown as part of the general scheme, Scheme IX, however, this pathway represents a viable process for the construction of alternate heterocycle substituents as replacements for the isoquinoline element, such as quinolines, or pyridines.
Figure imgf000036_0001
Scheme DC shows the coupling of an N-protected C4-hydroxyproline moiety with a heterocycle to form intermediate (4) and the subsequent modification of said intermediate (4) to a compound of Formula I by the process of peptide elongation as described herein. It should be noted that in the first step, that is the coupling of the C4-hydroxy proline group with the heteroaryl element, a base is employed. One skilled in the art would recognized that this coupling can be done using bases such as potassium tert-butoxide, or sodium hydride, in solvent such as DMF or DMSO or THF. This coupling to the isoquinoline ring system occurs at the CI position (numbering for isoquinoline ring system shown in mtermediate 2 of Scheme IX) and is directed by the chloro group which is displaced in this process. It should be noted that the alternative leaving groups can be utilized at this position such as a fluoro as shown in the Scheme. Said fluoro intermediates (3) are available from the corresponding chloro compound using literature procedures described herein. It should also be noted that the position of the leaving group (chloro or fluoro) in a given ring system can vary as shown in Scheme X, wherein the leaving group (fluoro in this example) is in the C6 position of the isoquinoline ring system of intermediate
(2).
Scheme X
Figure imgf000036_0002
It should be further noted that the position of the ring heteroatom(s) in intermediates like (2) of Scheme IX and Scheme X is also variable, as defined by the term heterocycle described herein. In Scheme X intermediate (2) can be coupled to a C4 hydroxy proline derivative to provide the P2 element (3). This C6-substituted isoquinoline derivative can be converted to compounds of Formula I using the methods described herein.
An alternative to the method described above for the coupling of the C4- hydroxyproline to aromatics and heteroaromatics, is provided in the Mitsunobu reaction as depicted in Scheme XI
Figure imgf000037_0001
step 1 of Scheme XI. In this general reaction Scheme a C4-hydroxy proline derivative is coupled to a quinazoline ring system. This reaction makes use of reagents such as triphenylphosphine and DEAD (diethylazodicarboxylate) in aprotic solvents such as THF or dioxane and can be used for the formation of aryl and heteroaryl ethers. Note that in the course of this coupling reaction the stereochemistry of the C4 chiral center in the C4-hydroxyproline derivative is inverted and thereby it is necessary to use the C4-hydroxyproline derivative housing the (S) stereochemistry at the C4 position as starting material, (as shown in Scheme XI). It should be noted that numerous modifications and improvements of the Mitsunobu reaction have been described in the literature, the teachings of which are incorporated herein.
In a subset of examples herein, isoquinolines are incorporated into the final compounds and specifically into the P2 region of said compounds. One skilled in the art would recognize that a number of general methods are available for the synthesis of isoquinolines. Moreoever, said isoquinolines generated by these methods can be readily incorporated into final compounds of Formula I using the processes described herein. One general methodology for the synthesis of isoquinolines is shown in Scheme XII, wherein cinnamic acid derivatives, shown in general form as structure (2) are
Scheme XII
Figure imgf000038_0001
Reference: N. Briet at al, Tetrahedron, 2002, 5761 converted to 1-chloroisoquinolines in a four step process. Said chloroisoquinolines can be subsequently used in coupling reactions to C4-hydroxyproline derivatives as described herein. The conversion of cinnamic acids to chloroquinolines begins with the treatment of cinnamic acid with an alkylcholorformate in the presence of a base. The resulting anhydride is then treated with sodium azide which results in the formation of an acylazide (3) as shown in the Scheme. Alternate methods are available for the formation of acylazides from carboxylic acids as for example said carboxylic acid can be treated with diphenylphosphorylazide (DPP A) in an aprotic solvent such as methylene chloride in the presence of a base. In the next step of the reaction sequence the acylazide (3) is coverted to the corresponding isoquinolone (4) as shown in the Scheme. In the event the acylazide is heated to a temperature of approximately 190 degress celcius in a high boiling solvent such a diphenylmethane. This reaction is general and provides moderate to good yields of substituted isoquinolone from the conesponding cinnamic acid derivatives. It should noted that said cinnamic acid derivatives are available commercially or can be obtained from the corresponding benzaldehyde (1) derivative by direct condensation with malonic acid or derivatives thereof and also by employing a Wittig reaction. The intermediate isoquinolones (4) of Scheme XII can be converted to the corresponding 1- chloroisoquinoline by treatment with phosphorous oxychioride. This reaction is general and can be applied to any of the isoquinolones, quinolones or additional heterocycles as shown herein to covert a hydroxy substituent to the corresponding chloro compound when said hydroxy is in conjugation with a nitrogen atom in said heterocylic ring systems.
An alternative method for the synthesis of the isoquinoline ring system is the Pomeranz-Fritsh procedure. This general method is outlined in Scheme XIII. The process begins with the conversion of a benzaldehyde derivative (1) to a functionalized imine (2). Said imine is then converted to the isoquinoline ring system by treatment with acid at elevated Scheme XIII
Figure imgf000039_0001
Pomeranz-Fritsch synthesis
K. Hirao, R. Tsuchiya, Y. Yano, H. Tsue, Heterocycles 42(1) 1996, 415-422 temperature. This isoquinoline synthesis of Scheme XIII is general, and it should be noted that this process is particularly useful in procuring isoquinoline intermediates that are substituted at the C8 position (note: in intermediate (3) of Scheme XIII the C8 position of the isoquinoline ring is substituted with substutuent Rn). The mtermediate isoquinolines (3) can be converted to the corresponding 1- chloroquinolines (5) in a two step process as shown. The first step in this sequence is the formation of the isoquinoline N-oxide(4) by treatment of isoquinoline (3) with meta-chloroperbenzoic acid in an aprotic solvent such as dichloromethane. Intermediate (4) can be converted to the corresponding 1-chloroquinoline by treatment with phosphorous oxychloroide in refiuxing chloroform. Note this two step process is general and can be employed to procure chloroisoquinolines and chloroquinolines from the corresponding isoquinolines and quinolines respectively. Another method for the synthesis of the isoquinoline ring system is shown in Scheme XrV. In this process an ortho-alkylbenzamide derivative (1) is treated with a strong Scheme XIV
Figure imgf000040_0001
base such as tert-butyl lithium in a solvent such as THF at low temperature. To this reaction mixture is then added a nitrile derivative, which undergoes an addition reaction with the anion derived from deprotonation of (1), resulting in the formation of (2). This reaction is general and can be used for the formation of substituted isoquinolines. hitermediate (2) of Scheme XIV can be converted to the conesponding 1 -chloroquinoline by the methods described herein.
An additional method for the synthesis of isoquinolines is shown in Scheme XV. The deprotonation of intermediate (1) using tert-butyl lithium is. described above. In the present method however, said intermediate anion is trapped by an ester, resulting in the formation of intermediate (2) as shown below. In a subsequent reaction ketone (2) is condensed with ammoniumn acetate at elevated temperature providing for the formation of quinolone (3). This reaction is general and can be applied for the construction of substituted isoquinolones which can then be converted to the conesponding 1-chloroisoquinolines as described herein. Scheme XV
Figure imgf000040_0002
Yet an additional method for the construction of isoquinolines is found in Scheme XVI. In the first step of this process an ortho-alkylarylimine derivatives such as (1) is subjected to deprotonation conditions (sec-butyl lithium, THF) and the resulting anion is quenched by
Figure imgf000041_0001
L Flippin, J. Muchowski, JOC, 1993, 2631-2632 the addition of an activated carboxylic acid derivative such as a Weinreb amide. The resulting keto imine (2) can be converted to the conesponding isoquinoline by condensation with ammonium acetate at elevated temperatures. This method is general and can be used for the synthesis of substituted isoquinolines. Said isoquinolines can be converted to the conesponding 1-chloroquinoline by the methods described herein.
The heterocycles described herein, and which are incorporated into the compounds of Formula I can be further functionalized. It is obvious to one skilled in the art that additional functionalization of said heterocycles can be done either before or after incorporation of these functionalities into compounds of Formula I. The following Schemes illustrate this point. For example Scheme XVII shows the conversion of a 1-chloro-
Scheme XVII
Figure imgf000041_0002
6-fluoro-isoquinoline to the conesponding l-chloro-6-alkoxy-isoquinoline species, by treatment of (1) of (eq.l) with a sodium or potassium alkoxide species in the alcohol solvent from which the alkoxide is derived at room temperature. In some cases it may be necessary to heat the reaction to drive it to completion. Said chloroquinoline can be incorporated into a compound of Formula I using the art described herein. Modifications of a P2 heterocyclic element can also be done after it's incorporation into compounds of Fonnula I as shown in (eq.2) of Scheme VXII. Specifically compounds such as (1) in (eq. 2) which contain a leaving group in the pthalazine nucleus can be displaced by a nucleophile such as an alkoxide in solvents such as the conesponding alcohol from which the alkoxide is derived. These reaction scan be conducted at room temperature but in some cases it may be necessary to heat the reaction to drive it to completion.
Scheme XVIII provides a general example for the modification of heterocycles as defined herein by employing palladium mediated coupling reactions. Said couplings can be employed to functionalize a heterocycle at each position of the ring system providing said ring is suitably activated or functionalized, as for example with a chloride as shown in the Scheme. This sequence begins with 1-chloroisoquinoline (1) which upon treatment with metachloroperbenzoic acid can be converted to the conesponding N-oxide (2). Said intermediate (2) can be converted to the conesponding 1,3-dichloroisoquinoline (3) by treatment with phosphorous oxychloride in refluxing chloroform. Intermediate (3) can be coupled with N-Boc-4- hydroxyproline by the methods described herein to provide intermediate (5) as shown in the Scheme. Intermediate (5) can undergo a Suzuki coupling with an aryl boronic acid, in the presence of a palladium reagent and base, and in a solvent such as THF or toluene or DMF to provide the C3-arylisoquinoline intermediate (6). Heteroarylboronic acids can also be employed in this Pd mediated coupling process to provide C3-heteroarylisoquinolines. Intermediate (6) can be converted into final compounds of Formula I by the methods described herein. Scheme XVIII
Figure imgf000043_0001
Palladium mediated couplings of heteroaryl systems with aryl or heteroaryl elements can also be employed at a later synthetic stage in the construction of compounds of Formula I as shown in Scheme IXX. Therein tripeptide acylsulfonamide intermediate (1) is coupled to a l-chloro-3-bromoisoquinoline (2) using the previously described process of alkoxide displacement of an heteroarylhalo moiety to provide intermediate (3). The coupling of (1) and (2) is most efficient in the presence of a catalyst such as lanthanum chloride as described herein. The isoquinoline ring system of intermediate (3) can be further functionalized by employing either Suzuki couplings (Process 1 : subjecting (3) to heteroaryl or aryl boronic acids in the presence of a palladium catalyst such as palladium tetra(triphenylphosphine) and a base such as cesium carbonate in solvents such as DMF) or Stille couplings (Process 2: subjecting (3) to heteraryl or aryl tin dervatives in the presence of palladium catalyst such as palladium tetra(triphenylphosphine in solvents such as toluene).
Scheme IXX
Figure imgf000044_0001
Palladium reactions can also be employed to couple C4-amino proline elements with functionalized heterocycles. Scheme XX shows intermediate (1) coupling with a functionalized isoquinoline in the presence of a palladium catalyst and a base in a solvent such as toluene. Intermediates like (3) can be converted to compounds of Formula I using the methods described herein.
Figure imgf000044_0002
The construction of functionalized isoquinoline ring systems is also possible employing [4+2] cycloaddition reactions. For example (Scheme XXI) the use of vinyl isocyantes (1) in cycloaddition reactions with benzyne precusors (2) provides functionalized isoquinolones (3). Said isoquinolines can be incorporated into compounds of Formula I using the methods described herein. Scheme XXI
Figure imgf000045_0001
Compounds of the invention can also be prepared by utilizing methods known to thise skilled in the art, such as, for example, the methods described in patent application WO 03/099274, published December 3, 2003, and WO 03/099316, published December 4, 2003.
The present mvention also provides compositions comprising a compound of the present invention, or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof, and a pharmaceutically acceptable canier. Pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof, and a pharmaceutically acceptable canier, with a pharmaceutically acceptable canier, e.g., excipient, or vehicle diluent.
The active ingredient, i.e., compound, in such compositions typically comprises from 0.1 weight percent to 99.9 percent by weight of the composition, and often comprises from about 5 to 95 weight percent.
Thus, in one aspect of the invention, there is provided a composition comprising the compound of formula 1 and a pharmaceutically acceptable canier. Preferably, the composition further comprises a compound having anti-HCV activity. As used herein, the term "anti-HCV activity" means the compound is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH and a nucleoside analog for the treatment of an HCV infection. Often, the other compound having anti-HCV activity is effective to inhibit the function of target in the HCV life cycle other than the HCV NS3 protease protein.
In one prefened aspect, the compound having anti-HCV activity is an interferon. Preferably, the interferon is selected from the group consisting of interferon alpha 2B, pegylated interferon alpha, consensus interferon, interferon alpha 2A, lymphoblastiod interferon tau.
In another aspect of the invention, the compound having anti-HCV activity is selected from the group consisting of interleukin 2, interleukin 6, interleukin 12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, Imiqimod, ribavirin, an inosine 5'-monophospate dehydrogenase inhibitor, amantadine, and rimantadine.
In one prefened aspect of the invention, the composition comprises a compound of the invention, an interferon and ribavirin.
In another prefened aspect of the invention, the compound having anti-HCV activity is a small molecule compound. As used herein, the term "small molecule compound" means a compound having a molecular weight of less than 1,500 daltons, preferably less than 1000 daltons. Preferably, the small molecule compound is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, inosine monophophate dehydrogenase ("JJVIPDH") and a nucleoside analog for the treatment of an HCV infection.
Certain illustrative HCV inhibitor compounds which can be administered with the compounds of the present invention include those disclosed in the following publications: WO 02/04425 A2 published January 17, 2002, WO 03/007945 Al published January 30, 2003, WO 03/010141 A2 published February 6, 2003, WO 03/010142 A2 published February 6, 2003, WO 03/010143 Al published February 6, 2003, WO 03/000254 Al published January 3, 2003, WO 01/32153 A2 published May 10, 2001, WO 00/06529 published February 10, 2000, WO 00/18231 published April 6, 2000, WO 00/10573 published March 2, 2000, WO 00/13708 published March 16, 2000, WO 01/85172 Al published November 15, 2001, WO 03/037893 Al published May 8, 2003, WO 03/037894 Al published May 8, 2003, WO 03/037895 Al published May 8, 2003, WO 02/100851 A2 published December 19, 2002, WO 02/100846 Al published December 19, 2002, EP 1256628 A2 published November 13, 2002, WO 99/01582 published January 14, 1999, WO 00/09543 published February 24, 2000.
Table 1 below lists some illustrative examples of compounds that can be administered with the compounds of this invention. The compounds of the invention can be administered with other anti-HCV activity compounds in combination therapy, either jointly or separately, or by combining the compounds into a composition.
TABLE 1
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
The pharmaceutical compositions of this invention maybe administered orally, parenterally or via an implanted reservoir. Oral administration or administration by injection are prefened. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra- articular, intrasynovial, intrasternal, intrathecal, and intralesional injection or infusion techniques.
When orally administered, the pharmaceutical compositions of this invention may be administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspensions and solutions. In the case of tablets for oral use, earners which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added. Other suitable earners for the above noted compositions can be found in standard pharmaceutical texts, e.g. in "Remington's Pharmaceutical Sciences", 19th ed., Mack Publishing Company, Easton, Perm., 1995.
The pharmaceutical compositions can be prepared by known procedures using well-known and readily available ingredients. The compositions of this invention maybe formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures well known in the art. In making the compositions of the present invention, the active ingredient will usually be admixed with a canier, or diluted by a canier, or enclosed within a canier which may be in the form of a capsule, sachet, paper or other container. When the canier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, excipient or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, beadlets, lozenges, sachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols, (as a solid or in a liquid medium), soft and hard gelatin capsules, suppositories, sterile injectable solutions, sterile packaged powders and the like. Further details concerning the design and preparation of suitable delivery forms of the pharmaceutical compositions of the invention are known to those skilled in the art. Dosage levels of between about 0.01 and about 1000 milligram per kilogram ("mg/kg") body weight per day, preferably between about 0.5 and about 250 mg/kg body weight per day of the compounds of the invention are typical in a monotherapy for the prevention and treatment of HCV mediated disease. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the canier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
As the skilled artisan will appreciate, lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular
1 patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the infection, the patient's disposition to the infection and the judgment of the treating physician. Generally, treatment is initiated with small dosages substantially less than the optimum dose of the peptide. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. In general, the compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.
When the compositions of this invention comprise a combination of a compound of the invention and one or more additional therapeutic or prophylactic agent, both the compound and the additional agent are usually present at dosage levels of between about 10 to 100%, and more preferably between about 10 and 80% of the dosage normally administered in a monotherapy regimen.
When these compounds or their pharmaceutically acceptable enantiomers, diastereomers, salts, solvates or prodrugs are formulated together with a pharmaceutically acceptable canier, the resulting composition may be administered in vivo to mammals, such as man, to inhibit HCV NS3 protease or to treat or prevent HCV virus infection.
Accordingly, another aspect of this invention provides methods of inhibiting HCV NS3 protease activity in patients by administering a compound of the present invention or a pharmaceutically acceptable enantiomer, diastereomer, salt or solvate thereof.
In one aspect of the invention, there is provided a method of treating an HCV infection in a patient, comprising administering to the patient a therapeutically effective amount of the compound of the invention, or a pharmaceutically acceptable enantiomer, diastereomer, solvate, prodrug or salt thereof.
Preferably, the method of administering the compound is effective to inhibit the function of the HCV NS3 protease protein. In a prefened aspect, the method further comprises administering another compound having anti-HCV activity (as described above) prior to, after or concunently with a compound of the invention.
The compounds of the invention may also be used as laboratory reagents. Compounds may be instrumental in providing research tools for designing of viral replication assays, validation of animal assay systems and structural biology studies to further enhance knowledge of the HCV disease mechanisms. Further, the compounds of the present invention are useful in establishing or determining the binding site of other antiviral compounds, for example, by competitive inhibition.
The compounds of this invention may also be used to treat or prevent viral contamination of materials and therefore reduce the risk of viral infection of laboratory or medical personnel or patients who come in contact with such materials, e.g., blood, tissue, surgical instruments and garments, laboratory instruments and garments, and blood collection or transfusion apparatuses and materials.
Further, the compounds and compositions of the invention can be used for the manufacture of a medicament for treating HCV infection in a patient. EXAMPLES
The specific examples that follow illustrate the syntheses of the compounds of the instant invention, and are not to be construed as limiting the invention in sphere or scope. The methods may be adapted to variations in order to produce compounds embraced by this invention but not specifically disclosed. Further, variations of the methods to produce the same compounds in somewhat different manner will also be evident to one skilled in the art.
Solution percentages express a weight to volume relationship, and solution ratios express a volume to volume relationship, unless stated otherwise. Nuclear magnetic resonance (NMR) spectra were recorded either on a Bruker 300, 400 or 500 MHz spectrometer; the chemical shifts (δ) are reported in parts per million. Flash chromatography was canied out on silica gel (SiO2) according to Still's flash chromatography technique (W.C. Still et al, J. Org. Chem., (1978), 43, 2923).
All Liquid Chromatography (LC) data were recorded on a Shimadzu LC-10AS liquid chromatograph using a SPD-10AV UV-Vis detector and Mass Spectrometry (MS) data were determined with a Micromass Platform for LC in electrospray mode (ES+).
Unless otherwise noted, in the following examples each compound was analyzed by LC/MS, using one of seven methodologies, having the following conditions.
Columns: (Method A) - YMC ODS S7 C 18 3.0x50 mm
(Method B) - YMC ODS-A S7 C18 3.0x50 mm (Method C) - YMC S7 C18 3.0x50 mm (Method D) - YMC Xtena ODS S7 3.0x50 mm (Method E) - YMC Xtena ODS S7 3.0x50 mm
(Method F) - YMC ODS-A S7 C18 3.0x50 mm (Method G) - YMC C18 S5 4.6x50 mm] Gradient: 100% Solvent A/0% Solvent B to 0% Solvent A 100% Solvent B Gradient time: 2 min. (A, B, D, F, G); 8 min. (C, E) Hold time: 1 min. (A, B, D, F, G); 2 min. (C, E) Flow rate: 5 mL/min Detector Wavelength: 220 nm
Solvent A: 10% MeOH / 90% H2O / 0.1% TFA Solvent B: 10% H2O / 90% MeOH / 0.1% TFA.
The abbreviations used in the present application, including particularly in the illustrative examples which follow, are well-known to those skilled in the art. Some of the abbreviations used are as follows:
rt room temperature
Boc tert-butyloxycarbonyl
DMSO dimethylsulfoxide
EtOAc ethyl acetate t-BuOK potassium t-butoxide
Et2O diethyl ether
TBME tert-butylmethyl ether
THF tetrahydrofuran
GDI carbonyldiimidazole
DBU l,8-diazabicyclo[5.4.0]undec-7-ene
TFA trifluoroacetic acid
NMM N-methylmorpholine
HATU O-7-azabenzotriazol- 1 -yl
HBTU O- { 1 H-benzotriazol- 1 -yl)-N,N,N',N'- tetramethyluronium hexafluorophosphate
HOBT N-hydroxybenzotriazole PyBrop bromo-bis-pynolidine-phosphonium hexafluorophosphate
DMF dimethylformamide
MeOH methanol
EDTA ethylenediaminetetraacetic acid HRMS high resolution mass spectrometry
DMAP 4-dimethylaminopyridine
DIPEA diisopropylethylamine
DCM dichloromethane DCE dichloroethane
The compounds and chemical intermediates of the present invention, described in the following examples, were prepared according to the following methods. It should be noted that the following exemplification section is presented in sections. Example numbers and compound numbers are not contiguous throughout the entire Examples portion of the application and hence, each section indicates a "break" in the numbering. The numbering within each section is generally contiguous.
Section A:
Preparation of Intennediates: Preparation of PI Intermediates:
The PI intermediates described in this section can be used to prepare compounds of Formula I by the methods described herein.
I PI elements:
1. Preparation of racemic (lR,2S)/(lS,2R)-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester
Figure imgf000056_0001
Method A Step l
Figure imgf000057_0001
Glycine ethyl ester hydrochloride (303.8 g, 2.16 mole) was suspended in tert- butylmethyl ether (1.6 L). Benzaldehyde (231 g, 2.16 mole) and anhydrous sodium sulfate (154.6 g, 1.09 mole) were added and the mixture cooled to 0 °C using an ice- water bath. Triethylamine (455 mL, 3.26 mole) was added dropwise over 30 min and the mixture stined for 48 h at rt. The reaction was then quenched by addition of ice- cold water (1 L) and the organic layer was separated. The aqueous phase was extracted with tert-butylmethyl ether (0.5 L) and the combined organic phases washed with a mixture of saturated aqueous NaHCO3 (1 L) and brine (1 L). The solution was dried over MgSO4, concentrated in vacuo to afford 392.4 g of the N- benzyl imine product as a thick yellow oil that was used directly in the next step. 1H ΝMR (CDC13, 300 MHz) 6 1.32 (t, J=7.1 Hz, 3H), 4.24 (q, J=7.1 Hz, 2H), 4.41 (d, J=l.l Hz, 2H), 7.39-7.47 (m, 3H), 7.78-7.81 (m, 2H), 8.31 (s, IH).
Step 2
Figure imgf000057_0002
toluene/RT
2 ) H30+
3 ) NaOH
4 ) (BOC) 20
To a suspension of lithium tert-butoxide (84.06 g, 1.05 mol) in dry toluene (1.2 L), was added dropwise a mixture of the N-benzyl imine of glycine ethyl ester (100.4 g, 0.526 mol) and tr<ms-l,4-dibromo-2-butene (107.0 g, 0.500 mol) in dry toluene (0.6 L) over 60 min. After completion of the addition, the deep red mixture was quenched by addition of water (1 L) and tert-butylmethyl ether (TBME, 1 L). The aqueous phase was separated and extracted a second time with TBME (1 L). The organic phases were combined, 1 Ν HCI (1 L) was added and the mixture stined at room temperature for 2 h. The organic phase was separated and extracted with water (0.8 L). The aqueous phases were then combined, saturated with salt (700 g), TBME (1 L) was added and the mixture cooled to 0 °C. The stined mixture was then basified to pH 14 by the dropwise addition of 10 N NaOH, the organic layer separated, and the aqueous phase extracted with TBME (2 x 500 mL). The combined organic extracts were dried (MgSO4) and concentrated to a volume of IL. To this solution of free amine, was added BOC O or di-tert-butyldicarbonate (131.0 g, 0.6 mol) and the mixture stined 4 days at rt. Additional di-ter-t-butyldicarbonate (50 g, 0.23 mol) was added to the reaction, the mixture refluxed for 3 h, and was then allowed cool to room temperature overnight. The reaction mixture was dried over MgSO4 and concentrated in vacuo to afford 80 g of crude material. This residue was purified by flash chromatography (2.5 Kg of Si02, eluted with 1% to 2% MeOH/CH2Cl2) to afford 57 g (53%) of racemicN-Boc-(lR,2S)/(lS,2R)-l-amino-2- vinylcyclopropane carboxylic acid ethyl ester as a yellow oil which solidified while sitting in the refrigerator: JH ΝMR (CDC13, 300 MHz) δ 1.26 (t, J=7.1 Hz, 3H), 1.46 (s, 9H), 1.43-1.49 (m, IH), 1.76-1.82 (br m, IH), 2.14 (q, J=8.6 Hz, IH), 4.18 (q, J=7.2 Hz, 2H), 5.12 (dd J=10.3, 1.7 Hz, IH), 5.25 (br s, IH), 5.29 (dd, J=17.6, 1.7 Hz, IH), 5.77 (ddd, J=17.6, 10.3, 8.9 Hz, IH); MS m/z 254.16 (M-l)
Step 3 Preparation of Racemic (1R,2S)/(1S,2R) l-amino-2-vinylcyclopropane carboxylic acid ethyl ester hydrochloride
Figure imgf000058_0001
N-Boc-(lR,2S)/(lS,2R)-l-amino-2-vinylcyclopropane carboxylic acid.ethyl ester (9.39 g, 36.8 mmol) was dissolved in 4 Ν HCl/dioxane (90 ml, 360 mmol) and was stined for 2 h at rt. The reaction mixture was concentrated to supply (lR,2S)/(lS,2R)-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester hydrochloride in quanitative yield (7 g, 100%). 1H ΝMR (methanol-αø) δ 1.32 (t, J=7.1, 3H), 1.72 (dd, J=10.2, 6.6 Hz, IH), 1.81 (dd, J=8.3, 6.6 Hz, IH), 2.38 (q, J=8.3 Hz, IH), 4.26-4.34 (m, 2H), 5.24 (dd, 10.3, 1.3 Hz, IH) 5.40 (d, J=17.2, IH), 5.69-5.81 (m, IH).
Alternate route for the preparation of Racemic N-Boc-l-amino-2- vinylcyclopropane carboxylic acid ethyl ester hydrochloride
Figure imgf000059_0001
To a solution of potassium tert-butoxide (11.55 g, 102.9 mmol) in THF (450 mL) at —78 °C was added the commercially available N,N-dibenzyl imine of glycine ethyl ester (25.0 g, 93.53 mmol) in THF (112 mL). The reaction mixture was warmed to 0 °C, stined for 40 min, and was then cooled back to -78 °C. To this solution was added trα7W-l,4-dibromo-2-butene (20.0 g, 93.50 mmol), the mixture stined for 1 h at 0°C and was cooled back to -78°C. Potassium tert-butoxide (11.55 g, 102.9 mmol) was added, the mixture immediately warmed to 0°C, and was stined one more hour before concentrating in vacuo. The crude product was taken up in Et2O (530 mL), IN aq. HCI solution (106 mL, 106 mmol) added and the resulting biphasic mixture stined for 3.5 h at rt. The layers were separated and the aqueous layer was washed with Et2O (2x) and basified with a saturated aq. ΝaHCO3 solution. The desired amine was extracted with Et2O (3x) and the combined organic extract was washed with brine, dried (MgSO ), and concentrated in vacuo to obtain the free amine. This material was treated with a 4N HCI solution in dioxane (100 mL, 400 mmol) and concentrated to afford (lR,2S)/(lS,2R)-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester hydrochloride as a brown semisolid (5.3 g, 34% yield) identical to the material obtained from procedure A, except for the presence of a small unidentified aromatic impurity (8%). Resolution of N-Boc~(lR,2S)/(lS,2R)-l-amino-2-vinylcycIopropane carboxylic acid ethyl ester
Figure imgf000060_0001
Resolution A
To an aqueous solution of sodium phosphate buffer (0.1 M, 4.25 liter ("L"), pH 8) housed in a 12 Liter jacked reactor, maintained at 39°C, and stined at 300 rpm was added 511 grains of Acalase 2.4L (about 425 mL) (Novozymes North America Inc.). When the temperature of the mixture reached 39°C, the pH was adjusted to 8.0 by the addition of a 50% NaOH in water. A solution of the racemic N-Boc- (lR,2S)/(lS,2R)-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester (85g) in 850 mL of DMSO was then added over a period of 40 min. The reaction temperature was then maintained at 40°C for 24.5h during which time the pH of the mixture was adjusted to 8.0 at the 1.5h and 19.5h time points using 50% ΝaOH in water. After 24.5h, the enantio-excess of the ester was determined to be 97.2%, and the reaction was cooled to room temperature (26°C) and stined overnight (16h) after which the enantio-excess of the ester was determined to be 100%. The pH of the reaction mixture was then adjusted to 8.5 with 50% ΝaOH and the resulting mixture was extracted with MTBE (2 x 2 L). The combined MTBE extract was then washed with 5% ΝaHCO3 (3 x 100 mL), water (3 x 100 mL), and evaporated in vacuo to give the enantiomerically pure N-Boc-(lR,2S)/-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester as light yellow solid (42.55 g; purity: 97% @ 210 nm, containing no acid; 100% enantiomeric excess ("ee"). The aqueous layer from the extraction process was then acidified to pH 2 with 50% H2SO4 and extracted with MTBE (2 x 2 L). The MTBE extract was washed with water (3 x 100 mL) and evaporated to give the acid as light yellow solid (42.74 g; purity: 99% @ 210 nm, containing no ester).
Figure imgf000061_0001
1R, 2S-ester 1S,2R-acid
Figure imgf000061_0002
Figure imgf000062_0001
Resolution B
To 0.5 L 100 M Heρs»Na buffer (pH 8.5) in a well of a 24 well plate (capacity: 10 ml well), 0.1 mL of Savinase 16.0L (protease from Bacillus clausii) (Novozymes North America Inc.) and a solution of the racemic N-Boc- (lR,2S)/(lS,2R)-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester (10 mg) in 0.1 mL of DMSO were added. The plate was sealed and incubated at 250 rpm at 40°C. After 18h, enantio-excess of the ester was determined to be 44.3% as following: 0.1 mL of the reaction mixture was removed and mixed well with 1 mL ethanol; after centrifugation, 10 microliter ("μl") of the supernatant was analyzed with the chiral HPLC. To the remaining reaction mixture, 0.1 mL of DMSO was added, and the plate was incubated for additional 3 days at 250 rpm at 40°C, after which four mL of ethanol was added to the well. After centrifugation, 10 μl of the supernatant was analyzed with the chiral HPLC and enantio-excess of the ester was determined to be 100%.
Resolution C
To 0.5 ml 100 mM Heps«Νa buffer (pH 8.5) in a well of a 24 well plate
(capacity: 10 mL/well), 0.1 ml of Esperase 8.0L, (protease from Bacillus halodurans) (Novozymes North America Inc.) and a solution of the racemic N-Boc- (lR,2S)/(lS,2R)-l-amino-2-vinylcyclopropane carboxylic acid ethyl ester (10 mg) in 0.1 mL of DMSO were added. The plate was sealed and incubated at 250 rpm at 40°C. After 18 hour, enantio-excess of the ester was determined to be 39.6% as following: 0.1 mL of the reaction mixture was removed and mixed well with 1 mL ethanol; after cenrifugation, 10 μl of the supernatant was analyzed with the chiral HPLC. To the remaining reaction mixture, 0.1 mL of DMSO was added, and the plate was incubated for additional 3 days at 250 rpm at 40°C, after which four mL of ethanol was added to the well. After centrifugation, 10 μl of the supernatant was analyzed with the chiral HPLC and enantio-excess of the ester was determined to be 100%.
Samples analysis was canied out in the following manner:
1) Sample preparation: About 0.5 ml of the reaction mixture was mixed well with 10 volume of EtOH. After centrifugation, 10 μl of the supernatant was injected onto HPLC column.
2) Conversion determination:
Column: YMC ODS A, 4.6 x 50 mm, S-5 μm
Solvent: A, 1 mM HCI in water; B, MeCN
Gradient: 30% B for 1 min; 30% to 45% B over 0.5 min; 45% B for 1.5 min; 45% to
30% B over 0.5 min. Flow rate: 2 ml/min
UV Detection: 210 nm
Retention time: acid, 1.2 min; ester, 2.8 min.
3) Enantio-excess determination for the ester: Column: CHIRACEL OD-RH, 4.6 x 150 mm, S-5 μm
Mobile phase: MeCN/50 mM HClO4 in water (67/33)
Flow rate: 0.75 ml/min.
UV Detection: 210 nm.
Retention time: (IS, 2R) isomer as acid: 5.2 min;
Rcaemate: 18.5 min and 20.0 min;
(IR, 2S) isomer as ester: 18.5 min. 2. Preparation of N-Boc-(lR,2S)-l-amino-2-cycIopropyIcyclopropane carboxylic acid ethyl ester
Figure imgf000064_0001
A solution of N-Boc-(lR,2S)-l-amino-2-vinylcyclopropane carboxylic acid (255 mg, 1.0 mmol) in ether (10 mL) was treated with palladium acetate (5 mg, 0.022 mmol). The orange/red solution was placed under an atmosphere of Ν2. An excess of diazomethane in ether was added dropwise over the course of 1 h. The resulting solution was stined at rt for 18 h. The excess diazomethane was removed using a stream of nitrogen. The resulting solution was concentrated by rotary evaporation to give the crude product. Flash chromatography (10% EtOAc/hexane) provided 210 mg (78%) of N-Boc-(lR,2S)-l-amino-2-cyclopropylcyclopropane carboxylic acid ethyl ester as a colorless oil. LC-MS (retention time: 2.13, similar to method A except: gradient time 3 min, Xtena MS C18 S7 3.0 x 50mm column), MS m e 270 (M++l).
3. l-tert-butoxycarbonylamino-cyclopropane-carboxylic acid is commercially available
Figure imgf000064_0002
4. Preparation of 1-aminocyclobutanecarboxylic acid methyl ester-hydrochloride
Figure imgf000064_0003
1-aminocyclobutanecarboxylic acid (100 mg, 0.869 mmol)(Tocris) was dissolved in 10 mL of MeOH, HCI gas was bubbled in for 2h. The reaction mixture was stined for 18 h, and then concentrated in vacuo to give 144 mg of a yellow oil. Trituration with 10 mL of ether provided 100 mg of the titled product as a white solid. 1H NMR (CDC13) δ 2.10-2.25 (m, IH), 2.28-2.42 (m, IH), 2.64-2.82 (m, 4H), 3.87 (s, 3H), 9.21 (br s, 3H).
5. Preparation of racemic (1R,2R)/(1S,2S) l-Amino-2- ethylcyclopropanecarboxylic acid tert-butyl ester, shown below.
Figure imgf000065_0001
ethyl syn to carboxy
Step 1 : Preparation of 2-Ethylcyclopropane- 1 , 1 -dicarboxylic acid di-tert-butyl ester, shown below.
Figure imgf000065_0002
To a suspension of benzyltriethylammonium chloride (21.0 g, 92.2 mmol) in a 50% aqueous NaOH solution (92.4 g in 185 mL H2O) was added 1,2-dibromobutane (30.0 g, 138.9 mmol) and di-tert-butylmalonate (20.0 g, 92.5 mmol). The reaction mixture was vigorously stined 18 h at rt, a mixture of ice and water was then added. The crude product was extracted with CH2C12 (3x) and sequentially washed with water (3x), brine and the organic extracts combined. The organic layer was dried (MgSO4), filtered and concentrated in vacuo. The resulting residue was flash chromatographed (100 g SiO2, 3%o Et2O in hexane) to afford the titled product (18.3 g, 67.8 mmol, 73% yield) which was used directly in the next reaction.
Step 2: Preparation of racemic 2-Ethylcyclopropane- 1,1 -dicarboxylic acid tert-butyl ester, shown below.
Figure imgf000066_0001
The product of Step 1 (18.3 g, 67.8 mmol) was added to a suspension of potassium tert-butoxide (33.55 g, 299.0 mmol) in dry ether (500 mL) at 0 °C, followed by H20 (1.35 mL, 75.0 mmol) and was vigorously stined overnight at rt. The reaction mixture was poured in a mixture of ice and water and washed with ether (3x). The aqueous layer was acidified with a 10% aq. citric acid solution at 0°C and extracted with EtOAc (3x). The combined organic layers were washed with water (2x), brine, dried (MgSO ) and concentrated in vacuo to afford the titled product as a pale yellow oil (10 g, 46.8 mmol, 69% yield). Step 3: Preparation of (1R,2R)/(1S,2S) 2-Ethyl-l-(2- trimethylsilanylethoxycarbonylamino)cyclopropane-carboxylic acid tert-butyl ester, shown below.
Figure imgf000066_0002
To a suspension, of the product of Step 2 (10 g, 46.8 mmol) and 3 g of freshly activated 4A molecular sieves in dry benzene (160 mL), was added Et3N (7.50 mL, 53.8 mmol) and DPPA (11 mL, 10.21 mmol). The reaction mixture was refluxed for 3.5 h, 2-trimethylsilyl-ethanol (13.5 mL, 94.2 mmol) was then added, and the reaction mixture was refluxed overnite. The reaction mixture was filtered, diluted with Et2O, washed with a 10% aqueous citric acid solution, water, saturated aqueous NaHCO3, water (2x), brine (2X), dried (MgSO ) and concentrated in vacuo. The residue was suspended with lOg of Aldrich polyisocyanate scavenger resin in 120 mL of CH2C12, stined at rt overnite and filtered to afford the titled product (8 g, 24.3 mmol; 52%) as a pale yellow oil: 1H NMR (CDC13) δ 0.03 (s, 9H), 0.97 (m, 5H), 1.20 (bm, IH), 1.45 (s, 9H), 1.40-1.70 (m, 4H), 4.16 (m, 2H), 5.30 (bs, IH). Step 4: Preparation of racemic (1R,2R)/(1S,2S) l-Amino-2- ethylcyclopropanecarboxylic acid tert-butyl ester, shown below.
Figure imgf000067_0001
ethyl syn to carboxy To the product of Step 3 (3 g, 9 mmol) was added a 1.0 M TBAF solution in THF (9.3 mL, 9.3 mmol) and the mixture heated to reflux for 1.5 h, cooled to rt and then diluted with 500 ml of EtOAc. The solution was successively washed with water (2x100 mL), brine (2x100 mL), dried (MgSO4), concentrated in vacuo to provide the title intermediate
ό.Preparation of l-Amino-spiro[2.3]hexane-l-carboxylic acid methyl ester hydrochloride salt
Figure imgf000067_0002
Step 1 Preparation of [2,3]hexane- 1,1 -dicarboxylic acid dimethyl ester, shown below.
Figure imgf000067_0003
To a mixture of methylene-cyclobutane (1.5 g, 22 mmol) and Rh2(OAc)4 (125 mg, 0.27 mmol) in anhydrous CH2C12 (15 mL) was added 3.2 g (20 mmol) of dύnethyl diazomalonate (prepared according to J. Lee et al. Synth. Comm., 1995, 25, 1511- 1515) at 0°C over a period of 6 h. The reaction mixture was then warmed to rt and stined for another 2 h. The mixture was concentrated and purified by flash chromatography (eluting with 10:1 hexane Et2O to 5:1 hexane/Et2O) to give 3.2 g
(72%) of [2,3]hexane- 1,1 -dicarboxylic acid dimethyl ester as a yellow oil. *H NMR (300 MHz, CDCI3) δ 3.78 (s, 6 H), 2.36 (m, 2 H), 2.09 (m, 3 H), 1.90 (m, 1 H), 1.67 (s, 2 H). LC-MS: MS m/z 199 (M++l).
Step 2: Preparation of spiro[2,3]hexane- 1,1 -dicarboxylic acid methyl ester, shown below.
Figure imgf000068_0001
To the mixture of spiro [2,3]hexane- 1,1 -dicarboxylic acid dimethyl ester (200 mg,
1.0 mmol) in 2 L of MeOH and 0.5 mL of water was added KOH (78 mg, 1.4 mmol). This solution was sti ed at rt for 2 days. It was then acidified with dilute HCI and extracted two times with ether. The combined organic phases were dried
(MgS04) and concentrated to yield 135 mg (73%) of 2 as a white solid. H NMR (300 MHz, CDCI3) δ 3.78 (s, 3 H), 2.36-1.90 (m, 8 H). LC-MS: MS m z 185 (M++l)
Step 3: Preparation of the titled product, l-amino-spiro[2.3]hexane-l -carboxylic acid methyl ester hydrochloride salt.
To a mixture of spiro[2,3]hexane- 1,1 -dicarboxylic acid methyl ester (660 mg, 3.58 mmol) in 3 mL of anhydrous t-BuOH was added 1.08 g (3.92 mmol) of DPP A and 440 mg (4.35 mmol) of Et3N. The mixture was heated at reflux for 21 h and then partitioned between H2O and ether. The ether phase was dried over magnesium sulfate, filtered and concentrated in vacuo to yield an oil. To this oil was added 3 mL of a 4 M HCl/dioxane solution. This acidic solution was stined at rt for 2 h and then concentrated in vacuo. The residue was triturated with ether to give 400 mg (58 %) of desried prodict as a white solid. *H NMR (300 MHz, d6-DMSO) δ 8.96 (br s, 3 H), 3.71 (s, 3 H), 2.41 (m, 1 H), 2.12 (m, 4 H), 1.93 (m, 1 H), 1.56 (q, 2 H, J=8 Hz). LC- MS of free amine: MS m/z 156 (M++l).
7. Preparation of l-Amino-spiro[2.4]heptane-l-carboxylic acid methyl ester hydrochloride salt, shown below, was prepared as follows.
0 / >X NH2° . HCI
Step 1: Spiro[2.4]heptane-l,l-dicarboxylic acid dimethyl ester, shown below, was prepared as follows.
Figure imgf000069_0001
Using the same procedure described in the preparation of l-Amino-spiro[2.3]hexane-
1 -carboxylic acid methyl ester hydrochloride salt
1.14g (13.9 mmol) of methylenecyclopentane and 2.0 g (12.6 mmol) of dimethyl diazomalonate were reacted to yield 1.8 g (67%) of the dimethyl ester. H NMR (300 MHz, CDCI3) δ 3.73 (s, 6 H), 1.80 ( , 2 H), 1.70 (m, 4 H), 1.60 (m, 4 H). LC-MS: MS m z 213 (M++l).
Step 2: Preparation of Spiro[2.4]heptane- 1,1 -dicarboxylic acid methyl ester, shown below, was prepared as follows.
Figure imgf000069_0002
Using the same procedure described in the preparation of l-Amino-spiro[2.3]hexane-
1 -carboxylic acid methyl ester hydrochloride salt
1.7 g (8.0 mmol) of the produc of Step 1 and 493 mg (8.8 mmol) of KOH gave 1.5 g (94%) of spiro[2.4]heptane-l,l-dicarboxylic acid methyl ester. IH NMR (300 MHz, CDCI3) δ 3.80 (s, 3 H), 2.06 (d, 1 H, J=5 Hz), 1.99 (d, 1 H, J=5 Hz), 1.80-1.66 (m, 8 H). LC-MS: MS m/z 199 (M++l).
Step 3: Preparation of l-Amino-spiro[2.4]heptane-l -carboxylic acid methyl ester hydrochloride salt, shown below, was prepared as follows.
Figure imgf000069_0003
Using the same procedure described above in preparation of 1-Amino- spiro[2.3]hexane-l -carboxylic acid methyl ester hydrochloride salt, 500 mg (2.5 mmol) of the product of Step 2, 705 mg (2.5 mmol) of DPPA and 255 mg (2.5 mmol) of Et3N gave 180 mg (35%) of this hydrochloride salt. *H NMR (300 MHz, d6- DMSO) δ 8.90 (br s, 3 H), 3.74 (s, 3 H), 1.84 (m, 1 H), 1.69 (m, 4 H), 1.58 (m, 4 H), 1.46 (d, 1 H, J=6 Hz). LC-MS of free amine: MS m/z 170 (M++l).
8. Preparation of l-Amino-spiro[2.2]pentane-l-carboxy!ic acid methyl ester hydrochloride salt, shown below, was prepared as follows.
Figure imgf000070_0001
Step 1: Spiro[2.2]pentane- 1,1 -dicarboxylic acid dimethyl ester, shown below, was prepared as follows.
Figure imgf000070_0002
To a mixture of methylenecyclopropane (1.0 g, 18.5 mmol)(prepared according to P. Binger US Patent Serial No. 5,723,714) and Rh2(OAc)4 (82mg, 0.185 mmol) in anhydrous CH2C12 (10 mL), was added dimethyl diazomalonate (2.9 g, 18.3 mmol) at 0°C. At the top of the flask was installed a cold finger, the temperature of which was kept at — 10°C. The reaction mixture was warmed to rt and stined for another 2 h. The mixture was concentrated in vacuo and purified by flash chromatography (eluting with 10:1 hexane/Et2O to 5:1 hexane/Et2O) to give 0.85 g (25%) of the dimethyl ester as a yellow oil. IH NMR (300 MHz, CDCI3) δ 3.73 (s, 6 H), 1.92 (s, 2 H), 1.04 (d, 4 H, J=3 Hz).
Step 2: Spiro[2.2]pentane- 1,1 -dicarboxylic acid methyl ester, shown below, was prepared as follows.
Figure imgf000070_0003
Using the same procedure described above in preparation of 1-Amino- spiro[2.3]hexane-l -carboxylic acid methyl ester hydrochloride salt, 800 mg (4.3 mmol) of the product of step 1 and 240 mg (4.3 mmol) of KOH gave 600 mg (82%) of Spiro[2.2]pentane- 1 , 1 -dicarboxylic acid methyl ester. * H NMR (300 MHz, CDCI3) δ 3.82 (s, 6 H), 2.35 (d, 1 H, J=3 Hz), 2.26 (d, 1 H, J=3 Hz), 1.20 (m, 1 H), 1.15 (m, 1 H), 1.11 (m, 1 H), 1.05 (m, 1 H). LRMS: MS m/z 169 (M+-l) (Method D).
Step 3: l-Amino-spiro[2.2]pentane-l-carboxylic acid methyl ester hydrochloride salt, shown below, was prepared as follows.
Figure imgf000071_0001
Using the same procedure described above for the preparation of 1-Amino- spiro[2.3]hexane-l -carboxylic acid methyl ester hydrochloride salt, 400 mg (2.3 mmol) of the product of step 2, 700 mg (2.5 mmol) of DPPA and 278 mg (2.7 mmol) of Et3N gave 82 mg (20%) of the hydrochloride salt. IH NMR (300 MHz, CDCI3) δ 9.19 (br s, 3 H), 3.81 (s, 3 H), 2.16, (d, J=5.5 Hz, 1 H), 2.01 (d, J=5.5 Hz, 1 H), 1.49 (m, 1 H), 1.24, (m, 1 H), 1.12 (m, 2 H). LRMS of free amine: MS m/z 142 (M++l).
9. Preparation of 5-Amino-spiro[2.3]hexane-5-carboxylic acid ethyl ester, shown below, was prepared as follows.
Figure imgf000071_0002
Spiro[2.3]hexan-4-one (500 mg, 5 mmol), which was prepared from bicyclopropylidene (A. Meijere et al. Org. Syn. 2000, 78, 142-151) according to A. Meijere et al. J. Org. Chem. 1988, 53, 152-161, was combined with ammonium carbamate (1.17 g, 15 mmol) and potassium cyanide (812 mg, 12.5 mmol) in 50 mL of EtOH and 50 mL of water. The mixture was heated at 55 °C for 2 days. Then NaOH (7 g, 175 mmol) was added and the solution was heated under reflux overnight. The mixture was then chilled to 0 °C, acidified to pH 1 with concentrated HCI, and concentrated in vacuo. EtOH was added to the crude amino acid mixture and then concentrated to dryness (5x) so as to remove residual water. The residue dissolved in 100 mL of EtOH was cooled to 0 °C. It was then treated with 1 mL of SOCl2 and refluxed for 3 days. The solids were removed by filtration, and the filtrate was concentrated in vacuo to give the crude product. The crude product was partitioned between 3 N NaOH, NaCl and EtOAc. The organic phase was dried over potassium carbonate and concentrated. The residue was purified using column chromatography on C18 silica gel (eluting with MeOH/H O) to yield 180 mg (21%) of 15 as an oil. IH NMR (300 MHz, CDCI3) δ 8.20 (br s, 2 H), 4.27 (s, 2 H), 2.80 (s,
I H), 2.54 (s, 1 H), 2.34 (m, 2 H), 1.31 (s, 3 H), 1.02 (s, 1 H), 0.66 (m, 3 H). 13C NMR (300 MHz, CDCI3) δ 170.2(s), 63.0(s), 62.8 (s), 26.1 (s), 26.0 (s), 24.9 (s), 13.9 (s), 11.4 (s), 10.9 (s). LC-MS: MS m/z 170 (M++l).
II Heterocycles to be used as starting material in the construction of P2 elements for subsequent incorporation into compounds of Formula I.
1. Isoquinolines
Figure imgf000072_0001
Commercial material using the chemsitry described Method 1 \ jn ^e following sections HO alkoxide promoted Method 2 coupling
Mitsunobu H coupling Boc °
Figure imgf000072_0002
Compounds of Formula
Figure imgf000072_0003
Isoquinoline (1) and substituted analogues thereof, can be incorporated into P2 elements using the two methods outline above and described in detail herein. Said P2 elements (3) can then be converted into compounds of Formula I using procedures analogous to those described herein for similar isoquinoline analogues. 2. Isoxazolepyridine and Oxazolepyridine(l)
Compounds of Formula I compounds of Formula I
Figure imgf000073_0001
Isoxazole and oxazole heterocycle (1) and analogues thereof can be prepared using know chemistry and incorporated into compounds of Formula I using the chemistry described herein for similar isoxazolepyridine intermediates as shown in section B.
Section B
Preparation of Compounds The following LC MS conditions were used in the synthesis of the compounds in section B LC-MS condition: Columns: (Method A) - Xtena S7 CI 8 3.0x50 mm
Example 1000: Preparation of Intermediate 1.
Figure imgf000074_0001
Intermediate 1
Scheme 1
Figure imgf000074_0002
Step 1:
To a solution of 3-methoxy cinnamic acid (11.04 g, 62 mmol) and triethylamine (12.52 g, 124 mmol) in acetone (80 mL) was added ethyl chloroformate
(approximately 1.5 equivalents) dropwise at 0°C. After stining at this temperature for 1 h, aqueous NaN (6.40 g, 100 mmol in 35 mL H2O) was added dropwise and the reaction mixture was stined for 16 h at the ambient temperature. Water (100 mL) was added to the mixture and the volatile was removed in vacuo. The resulting sluny was extracted with toluene (3X50 mL) and the combined organic layers were dried over MgSO4. This dried solution was added dropwise to a heated solution of diphenylmethane (50 mL) and tributylamine (30 mL) at 190°C. The toluene was distilled off as added. After complete addition, the reaction temperature was raised to 210°C for 2 h. After cooling, the precipitated product was collected by filtration, washed with hexane (2X50 mL), and dried to yield the desired product as a white solid (5.53 g, 51%) (Nicolas Briet at el, Tetrahedron, 2002, 5761-5766). LC-MS (retention time: 0.82 min, method B), MS m/z 176 (M++H). Step 2: 6-Methoxy-2H-isoquinolin-l-one ( 5.0 g, 28.4 mmol) in POCl3 (10 mL) was heated to gentle reflux for 3 h the evaporated in vacuo (Nicolas Briet at el, Tetrahedron,
2002, 5761-5766). The residue was poured into iced water (20 mL) and neutralized to pΗ 10 with 10 M NaOΗ. Extracted with CΗC13. The organic layer was washed with brine, dried over MgSO4, filtered, evaporated. The residue was purified by flash chromatography (1 : 1 hexane-EtOAc) to afford 4.41 g (80%) of the desired product as a white solid. 1H NMR (CD3OD) δ 3.98 (s, 3H), 7.34-7.38 (m, 2 H), 7.69 (d, J=5.5 Hz, IH), 8.10 (d, J=6.0 Hz, IH), 8.23 (d, J=9.5 Hz, IH); LC-MS (retention time: 1.42 min, method B), MS m/z 194 (M++H).
Figure imgf000075_0001
Step 3:
To a solution of N-BOC-3-(R)-hydroxy-L-proline (892 mg, 3.89 mmol) in DMSO
(40 mL) at the ambient temperature was added potassium tert-butoxide (1.34 g, 12.0 mmol) in one portion. The formed suspension was stined at this temperature for 30 min before being cooled to 10°C. l-chloro-6-methoxy-isoquinolin (785 mg, 4.05 mmol) was added as solid in one portion and the final mixture was stined at the ambient temperature for 12 h. Quenched with iced 5% citric acid (aq), extracted with EtOAC (100 mL). The aqueous phase was extracted with EtOAC again. The combined organic layers were washed with 5% citric acid (aq) and brine respectively, dried over MgSO4, filtered. The filtrate was evaporated in vacuo to dryness to yield 1.49 g (99%) of the desired product as an off-white foam. This material was used in the next step reaction as crude without further purification. 1H NMR (CD3OD) δ 1.42, 1.44 (rotamers, 9H), 2.38-2.43 (m, IH), 2.66-2.72 (m, IH), 3.80-3.87 (m, 2H), 3.92 (s, 3H), 4.44-4.52 (m, IH), 5.73 (b, IH), 7.16-7.18 (m, 2H), 7.24-7.25 (m, IH), 7.87-7.88 (m, IH), 8.07 (d, J=8.5 Hz, IH); LC-MS (retention time: 1.62 min, method B), MS m/z 389 (M++H).
Example 1001 Preparation of Compound 1001
Figure imgf000076_0001
compound 1001
Figure imgf000076_0002
Figure imgf000076_0003
compound 1001
step 1:
A sluny of P2 Boc-(4R)-(6-methoxy-isoquinoline-l-oxo)-S-proline]-Pl(lR,2S Vinyl Acca)-COOEt (7.88 g, 14.99 mmol) in 4M HCI/dioxane (120 mL, 480 mmol) was stined for 2 h, removed the solvent in vacuo and azeotroped with dry dioxane. To the residue was added DMF (75 mL), N-mehtylmorpholine (6.27 mL, 57.07 mmol), Boc- E-tert-leucine (5.20 g, 22.49 mmol), and HATU (8.53 g, 22.49 mmol). The reaction mixture was stined at rt overnite and worked up by pouring the reaction mixture into ice water and adjusted to pH 5 with aqueous 1.0 N HCI and extracted with EtOAc. The extract was washed with NaHCO3 (aq.), brine, dried (MgSO4) and concentrated. The residue was purified over Biotage 65M column (EtOAc-hexanes: 5-100%) to provide the product (8.07 g, 84%): Retention time: 1.88 method C) MS m/z 639 (M++l). Step 2:
To a suspension of the product (4.0 g, 6.26 mrriol) of Step 1 of Example 384 {Boc - NH-P3(Z-tert-BuGly)-P2[(4R)-(6-methoxyl-isoquinoline-l-oxo)-S-proline]-Pl(lR,2S Vinyl Acca)-COOEt} in THF(250 mL), CH3OH (31 mL), and H2O (125 mL) was added LiOH (2.4 g, 100.2 mmol). The reaction mixture was stined for overnite and then adjusted to pH 7 with aqueous 1.0 N HCI. The organic solvents were removed in vacuo. The aqueous residue was acidified to pH 4 and extracted with EtOAc (2x). The combined organic solvent was dried (Na SO4/MgSO4), and concentrated in vacuo to supply the product (3.79 g, 99%): 1H 1 MR (methanol-αø) δ ppm 1.05 (s, 9 H), 1.25 (m, 1 H), 1.29 (s, 9 H), 1.46 (m, 1 H), 1.72 (dd, J=8.24, 5.19 Hz, 1 H), 2.23 (q, J=8.55 Hz, 1 H), 2.68 (dd, J=13.89, 7.78 Hz, 1 H), 3.94 (s, 3 H), 4.05 (dd, J=l 1.60, 3.05 Hz, 1 H), 4.23 (d, J=8.85 Hz, 1 H), 4.46 (d, J=l 1.60 Hz, 1 H), 4.63 (t, J=8.39 Hz, 1 H), 5.10 (d, J=10.38 Hz, 1 H), 5.29 (d, J=17.40 Hz, 1 H), 5.85 (m, 2 H), 7.10 (d, J=9.16 Hz, 1 H), 7.19 (s, 1 H), 7.26 (d, J=5.49 Hz, 1 H), 7.91 (d, J=5.80 Hz, 1 H), 8.12 (d, J=9.16 Hz, 1 H). LC-MS (Retention time: 1.81 method C) MS m/z 611 (M++l).
Step 3:
A solution of GDI (0.143 g, 0.88 mmol) and the product (0.36 g, 0.59 mmol) of Step 2 of Example 300 {BOCNH-P3(E-t-BuGly)-P2[(4R)-6-methoxy-sioquinoline-l-oxo)- S-proline]-Pl(lR,2S Vinyl Acca)-CO2H} in THF (8 mL) was heated at 70 °C for 60 min and allowed to cool down to rt. The reaction solution was evenly divided by syringe into five flasks. To one of the flask was added 4,5-dichloro-thiophene-2- sulfonic acid amide
(0.034 g, 0.15 mmol) and followed by the addition of a solution of neat DBU (0.022 mL, 0.15 mmol). The reaction was stined for overnite, then filtered through syringe filter and purified by preparative HPLC (solvent B: 30% to 100%) and to provide the Comound 1001 (0.0335 mg); 1H NMR (500 MHz, Solvent: methanol- j) δ ppm 1.06
(s, 9 H) 1.30 (s, 9 H) 1.40 (m, 1 H) 1.87 (dd, J=7.93, 5.49 Hz, 1 H) 2.23 (q, J=8.75 Hz, 1 H) 2.31 (m, 1 H) 2.64 (dd, J=13.89, 7.17 Hz, 1 H) 3.95 (s, 3 H) 4.08 (m, 1 H) 4.27 (s, 1 H) 4.47 (d, J=l 1.60 Hz, 1 H) 4.57 (dd, J=9.61, 7.78 Hz, 1 H) 5.05 (d, J=10.38 Hz, 1 H) 5.25 (d, J=17.09 Hz, 1 H) 5.63 (s, 1 H) 5.85 (s, 1 H) 7.12 (d, J=8.85 Hz, 1 H) 7.21 (s, 1 H) 7.27 (d, J=5.80 Hz, 1 H) 7.66 (s, 1 H) 7.91 (d, J=6.10 Hz, 1 H) 8.12 (d, J=9.16 Hz, 1 H); LC-MS (Retention time: 2.04 method A), MS m/z 824 (M++l).
Example 1002 Preparation of Compound 1002
Figure imgf000078_0001
compound 1002
Figure imgf000078_0002
compound 1002
Figure imgf000078_0003
Compound 1002 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of 6-Ethoxy- benzothiazole-2-sulfonic acid amide (0.038 g, 0.15 mmol), was used in the place of 4,5-dichloro-thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the the Comound 1002 (0.0269 mg): IH NMR (300 MHz, Solvent methanol-ch) δ ppm 1.04 (s, 9 H) 1.28 (s, 9 H) 1.42 (m, 4 H) 1.77 (dd, J=8.05, 5.86 Hz, 1 H) 2.20 (m, 1 H) 2.30 (m, 1 H) 2.62 (dd, J=13.54, 6.95 Hz, 1 H) 3.92 (s, 3 H) 4.12 (m, 3 H) 4.26 (s, 1 H) 4.44 (d, J=10.98 Hz, 1 H) 4.56 (dd, J=9.33, 7.50 Hz, 1 H) 4.79 (d, J=11.34 Hz, 1 H) 5.14 (d, J=17.57 Hz, 1 H) 5.40 (m, 1 H) 5.84 (s, 1 H) 7.10 (d, J=9.15 Hz, 1 H) 7.23 (m, 3 H) 7.60 (d, J=2.20 Hz, 1 H) 7.89 (d, J=6.22 Hz, 1 H) 7.96 (d, J=8.78 Hz, 1 H) 8.10 (d, J=9.15 Hz, 1 H); LC-MS (Retention time: 1.97 method A), MS m/z 851 (M++l).
Example 1003 Preparation of Compound 1003
Figure imgf000079_0001
compound 1003
Figure imgf000079_0002
compound 1003
Compound 1003 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of 2,4-Dimethyl-thiazole- 5-sulfonic acid amide (0.028 g, 0.15 mmol), was used in the place of 4,5-dichloro- thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1003 (0.037 mg): IH NMR (500 MHz, DMSO-D6) δ ppm 1.05 (s, 9 H) 1.28 (s, 9 H) 1.36 (m, 1 H) 1.78 (d, J=6.41 Hz, 1 H) 2.18 (m, 1 H) 2.27 (m, 1 H) 2.59 (s, 3 H) 2.61 (m, 1 H) 2.66 (s, 3 H) 3.92 (s, 3 H) 4.05 (d, J=9.16 Hz, 1 H) 4.26 (s, 1 H) 4.45 (d, J=l 1.90 Hz, 1 H) 4.55 (m, 1 H) 4.95 (d, J=10.07 Hz, 1 H) 5.19 (d, J=17.09 Hz, 1 H) 5.40 (m, 1 H) 5.82 (s, 1 H) 7.09 (d, J=8.85 Hz, 1 H) 7.17 (s, 1 H) 7.24 (d, J=5.49 Hz, 1 H) 7.88 (d, J=5.80 Hz, 1 H) 8.09 (d, J=9.16 Hz, 1 H); LC-MS (Retention time: 1.84 method A), MS m/z 785 (M++l).
Example 1004 Preparation of Compound 1004
Figure imgf000080_0001
compound 1004
Figure imgf000080_0002
Figure imgf000080_0003
compound 1004
Compound 1004 was prepared in the same procedure as described in Step 3 of
Example 1001 in preparation of Compound 1001 instead of 5-Chloro-l,3-dimethyl- lH-pyrazole-4-sulfonic acid amide (0.031 g, 0.15 mmol), was used in the place of 4,5-dichloro-thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1004 (0.0662 mg): 1H NMR (500 MHz, Solvent methanol-αø) δ ppm 1.05 (s, 9 H) 1.28 (s, 9 H) 1.34 (dd, J=9.31, 5.65 Hz, 1 H) 1.75 (dd, J=7.93, 5.80 Hz, 1 H) 2.14 (m, 1 H) 2.28 (m, 1 H) 2.39 (s, 3 H) 2.61 (dd, J=13.58, 6.87 Hz, 1 H) 3.78 (s, 3 H) 3.92 (s, 3 H) 4.06 (m, 1 H) 4.26 (s, 1 H) 4.44 (d, J=10.99 Hz, 1 H) 4.56 (m, 1 H) 4.92 (dd, J=10.38, 1.53 Hz, 1 H) 5.17 (d, J=17.70 Hz, 1 H) 5.32 (m, 1 H) 5.83 (s, 1 H) 7.09 (d, J=10.38 Hz, 1 H) 7.18 (s, 1 H) 7.25 (d, J=6.10 Hz, 1 H) 7.89 (d, J=6.10 Hz, 1 H) 8.09 (d, J=9.16 Hz, 1 H); LC-MS (Retention time: 1.83 method A), MS m/z 802 (M++l).
Example 1005 Preparation of Compound 1005
Figure imgf000081_0001
compound 1005
Figure imgf000081_0002
Compound 1005 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of 1-Methyl-1H- imidazole-4-sulfonic acid amide (0.022 g, 0.15 mmol), was used in the place of 4,5- dichloro-thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1005 (0.0251 mg): 1H NMR (300 MHz, Solvent methanol-d δ ppm 1.02 (s, 9 H) 1.28 (s, 9 H) 1.37 (dd, J=9.15, 5.49 Hz, 1 H) 1.75 (dd, J=7.87, 5.67 Hz, 1 H) 2.13 (m, 1 H) 2.29 (m, 1 H) 2.61 (dd, J=13.72, 7.14 Hz, 1 H) 3.78 (s, 3 H) 3.92 (s, 3 H) 4.06 (d, J=8.42 Hz, 1 H) 4.25 (s, 1 H) 4.41 (d, J=12.08 Hz, 1 H) 4.53 (m, 1 H) 4.94 (d, J=10.25 Hz, 1 H) 5.15 (d, J=17.20 Hz, 1 H) 5.42 (m, 1 H) 5.84 (s, 1 H) 7.09 (m, 1 H) 7.18 (s, 1 H) 7.25 (d, J=5.86 Hz, 1 H) 7.70 (s, 1 H) 7.81 (s, 1 H) 7.89 (d, J=5.86 Hz, 1 H) 8.09 (d, J=9.15 Hz, 1 H); LC-MS (Retention time: 1.69 method A), MS m/z 754 (M++l).
Example 1006 Preparation of Compound 1006 compound 1006
Figure imgf000082_0002
compound 100S
Compound 1006 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of Thiophene-2-sulfonic acid amide (0.022 g, 0.13 mmol), was used in the place of 4,5-dichloro-thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1006 (0.0498 mg): 1H NMR (500 MHz, BENZENE-D6) 6 ppm 1.04 (s, 9 H) 1.27 (s, 9 H) 1.36 (m, 1 H) 1.77 (m, 1 H) 2.17 (q, J=8.65 Hz, 1 H) 2.25 (m, 1 H) 2.59 (dd, J=13.58, 6.87 Hz, 1 H) 3.91 (s, 3 H) 4.04 (m, 1 H) 4.25 (s, 1 H) 4.43 (d, J=l 1.60 Hz, 1 H) 4.53 (m, 1 H) 4.96 (d, J=10.38 Hz, 1 H) 5.18 (d, J=17.40 Hz, 1 H) 5.50 (m, 1 H) 5.82 (s, 1 H) 7.11 (m, 2 H) 7.17 (s, 1 H) 7.24 (d, J=5.49 Hz, 1 H) 7.80 (m, 1 H) 7.87 (dd, J=9.61, 5.65 Hz, 2 H) 8.08 (d, J=8.85 Hz, 1 H); LC-MS (Retention time: 1.88 method A), MS m/z 756 (M++l).
Example 1007 Preparation of Compound 1007
Figure imgf000083_0001
compound 1007
Figure imgf000083_0002
Figure imgf000083_0003
compound 1007
Compound 1007 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of Benzenesulfonamide (0.0179 g, 0.13 mmol), was used in the place of 4,5-dichloro-thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1007 (0.0507 mg): 1H NMR (300 MHz, ACETONE-D6) δ ppm 1.05 (s, 9 H) 1.28 (s, 9 H) 1.34 (dd, J=9.33, 5.67 Hz, 1 H) 1.72 (dd, J=7.87, 5.67 Hz, 1 H) 2.22 (m, 2 H) 2.61 (dd, 7=13.17, 6.59 Hz, 1 H) 3.92 (s, 3 H) 4.06 (d, .7=11.34 Hz, 1 H) 4.27 (s, 1 H) 4.45 (d, 7=11.71 Hz, 1 H) 4.55 (dd, J=9.88, 7.32 Hz, 1 H) 5.17 (d, 7=17.20 Hz, 1 H) 5.42 (m, 1 H) 5.83 (s, 1 H) 7.09 (m, 1 H) 7.18 (s, 1 H) 7.25 (d, J=5.86 Hz, 1 H) 7.54 (m, 2 H) 7.66 (t, J=7.50 Hz, 1 H) 7.89 (d, .7=5.86 Hz, 1 H) 7.97 (m, 2 H) 8.09 (d, 7=9.15 Hz, 1 H)); LC-MS (Retention time: 1.89 method A), MS m/z 750 (M++l).
Example 1008 Preparation of Compound 1008
Figure imgf000084_0001
compound 1008
Figure imgf000084_0002
Compound 1008 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of 4-Methoxy- benzenesulfonamide (0.025 g, 0.13 mmol), was used in the place of 4,5-dichloro- thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 10O%) to provide the compound 1008 (0.004 mg): 1H NMR (500 MHz, Solvent methanol- <h) δ ppm 1.09 (s, 9 H) 1.31 (s, 9 H) 1.36 (dd, 7=9.31, 5.34 Hz, 1 H) 1.74 (dd,
J=7.93, 5.80 Hz, 1 H) 2.17 (q, J=8.75 Hz, 1 H) 2.29 (m, 1 H) 2.63 (dd, 7=13.73, 7.02 Hz, 1 H) 3.91 (s, 3 H) 3.95 (s, 3 H) 4.09 (d, 7=11.29 Hz, 1 H) 4.30 (s, 1 H) 4.47 (d, 7=11.90 Hz, 1 H) 4.56 (dd, 7=9.92, 7.17 Hz, 1 H) 4.96 (d, J=10.38 Hz, 1 H) 5.20 (d, J=17.09 Hz, 1 H) 5.48 (m, 1 H) 5.86 (s, 1 H) 7.07 (m, 2 H) 7.12 (d, 7=7.93 Hz, 1 H) 7.21 (s, 1 H) 7.28 (d, J=5.80 Hz, 1 H) 7.93 (m, 3 H) 8.12 (d, J=8.85 Hz, 1 H); LC- MS (Retention time: 1.91 method A), MS m/z 780 (M++l).
Example 1009 Preparation of Compound 1009 83
Figure imgf000085_0001
compound 1009
Figure imgf000085_0002
Figure imgf000085_0003
compound 1009
Compound 1009 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of 5-Methyl-pyridine-2- sulfonic acid amide (0.023 g, 0.13 mmol), was used in the place of 4,5-dichloro- thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%>) to provide the compound 1009 (0.0388 mg): 1H NMR (500 MHz, Solvent methanol- ( ) δ ppm 1.06 (s, 9 H) 1.31 (s, 9 H) 1.39 (m 1 H) 1.75 (m, 1 H) 2.18 (m, 1 H) 2.34 (m, 1 H) 2.46 (s, 3 H) 2.62 (m, 1 H) 3.95 (s, 3 H) 4.09 (m, 1 H) 4.28 (m, 1 H) 4.45 (d, J=10.99 Hz, 1 H) 4.57 (m, 1 H) 4.93 (d, 7=10.68 Hz, 1 H) 5.19 (d, J=17.09 Hz, 1 FT) 5.37 (m, 1 H) 5.86 (s, 1 H) 7.12 (d, 7=8.55 Hz, 1 H) 7.21 (s, 1 H) 7.28 (d, J=5.80 Hz, 1 H) 7.92 (m, 2 H) 8.01 (d, 7=5.49 Hz, 1 H) 8.12 (d, J=8.85 Hz, 1 H) 8.49 (s, 1 H); LC-MS (Retention time: 1.85 method A), MS m/z 765 (M++l).
Example 1010 Preparation of Compound 1010
Figure imgf000085_0004
compound 1010
Figure imgf000086_0001
compound 1010
Compound 1010 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead of 6-Chloro-3-methyl- benzo[b]thiophene-2-sulfonic acid amide (0.035 g, 0.13 mmol), was used in the place of 4,5-dichloro-thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1010 (0.0292 mg): 1H NMR (300 MHz, Solvent methanol-ch) δ ppm 1.07 (s, 9 H) 1.29 (s, 9 H) 1.34 (m, 1 H) 1.74 (dd, J=7.87, 5.67 Hz, 1 H) 2.16 (m, 1 H) 2.29 (m, 1 H) 2.62 (m, 1 H) 2.68 (s, 3 H) 3.92 (s, 3 H) 4.06 (m, 1 H) 4.26 (s, 1 H) 4.46 (d, J=12.08 Hz, 1 H) 4.59 (m, 2 H) 5.10 (m, 1 H) 5.22 (m, 1 H) 5.82 (s, 1 H) 7.10 (d, 7=9.15 Hz, 1 H) 7.19 (d, 7=2.20 Hz, 1 H) 7.25 (d, 7=5.86 Hz, 1 H) 7.52 (dd, J=8.78, 1.83 Hz, 1 H) 7.91 (m, 3 H) 8.10 (d, J=8.78 Hz, 1 H); LC-MS (Retention time: 2.12 method A) MS m/z 854 (M++l).
Example 1011 Preparation of Compound 1011
Figure imgf000086_0002
Figure imgf000087_0001
Compound 1011 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead N-(5-Sulfamoyl- [l,3,4]thiadiazol-2-yl)-acetamide (0.0179 g, 0.13 mmol), was used in the place of 4,5-dichloro-thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1011 (0.0388 mg): 1H NMR (500 MHz, Solvent methanol-ch) δ ppm 1.03 (s, 9 H) 1.28 (s, 9 H) 1.41 (m, 1 H) 1.81 (dd, 7=8.24, 5.49 Hz, 1 H) 2.26 (m, 2 H) 2.28 (s, 3 H) 2.61 (dd, 7=14.04, 7.02 Hz, 1 H) 3.92 (s, 3 H) 4.06 (m, 1 H) 4.24 (s, 1 H) 4.43 (d, 7=11.60 Hz, 1 H) 4.55 (m, 1 H) 4.99 (d, 7=11.29 Hz, 1 H) 5.21 (d, J=17.09 Hz, 1 H) 5.52 (m, 1 H) 5.83 (s, 1 H) 7.10 (d, J=8.85 Hz, 1 H) 7.18 (d, 7=1.83 Hz, 1 H) 7.25 (d, 7=6.10 Hz, 1 H) 7.88 (d, J=5.80 Hz, 1 H) 8.09 (d, 7=8.85 Hz, 1 H); LC-MS (Retention time: 1.84 method A), MS m/z 815 (M++l).
Example 1012 Preparation of Compound 1012
Figure imgf000087_0002
compound 1012
Figure imgf000088_0001
compound 1012
Compound 1012 was prepared in the same procedure as described in Step 3 of Example 1001 in preparation of Compound 1001 instead 3,5-Dimethyl-isoxazole-4- sulfonic acid amide (0.033 g, 0.15 mmol), was used in the place of 4,5-dichloro- thiophene-2-sulfonic acid amide, purified by Prep-HPLC (solvent B: 30% to 100%) to provide the compound 1012 (0.0462 mg): 1H NMR (500 MHz, Solvent methanol- dø) δ ppm 1.08 (s, 9 H) 1.30 (s, 9 H) 1.37 (dd, 7=9.16, 5.49 Hz, 1 H) 1.80 (m, 1 H) 2.21 (q, 7=8.55 Hz, 1 H) 2.31 (m, 1 H) 2.40 (s, 3 H) 2.66 (m, 1 H) 2.68 (s, 3 H) 3.95 (s, 3 H) 4.08 (d, 7=8.85 Hz, 1 H) 4.28 (s, 1 H) 4.48 (d, 7=11.29 Hz, 1 H) 4.61 (m, 1 H) 4.98 (d, 7=10.38 Hz, 1 H) 5.22 (d, J=17.09 Hz, 1 H) 5.36 (m, 1 H) 5.85 (s, 1 H) 7.12 (d, J=8.85 Hz, 1 H) 7.21 (s, 1 H) 7.28 (d, 7=6.10 Hz, 1 H) 7.91 (d, 7=6.10 Hz, 1 H) 8.13 (d, 7=9.16 Hz, 1 H); LC-MS (Retention time: 2.05 method A), MS m/z 769(M++1).
Section C
Biological Studies
Recombinant HCV NS3/4A protease complex FRET peptide assay
The purpose of this in vitro assay was to measure the inhibition of HCV NS3 protease complexes, derived from the BMS strain, H77 strain or J4L6S strain, as described below, by compounds of the present invention. This assay provides an indication of how effective compounds of the present invention would be in inhibiting HCV NS3 proteolytic activity.
Serum from an HCV-infected patient was obtained from Dr. T. Wright, San Francisco Hospital. An engineered full-length cDNA (compliment deoxyribonucleic acid) template of the HCV genome (BMS strain) was constructed from DNA fragments obtained by reverse transcription-PCR (RT-PCR) of serum RNA (ribonucleic acid) and using primers selected on the basis of homology between other genotype la strains. From the determination of the entire genome sequence, a genotype la was assigned to the HCV isolate according to the classification of Simmonds et al. (See P Simmonds, KA Rose, S Graham, SW Chan, F McOmish, BC Dow, EA Follett, PL Yap and H Marsden, J. Clin. Microbiol., 31(6), 1493-1503 (1993)). The amino acid sequence of the nonstructural region, NS2-5B, was shown to be >97% identical to HCV genotype la (H77) and 87% identical to genotype lb (J4L6S). The infectious clones, H77 (la genotype) and J4L6S (lb genotype) were obtained from R. Purcell (NIH) and the sequences are published in Genbank
(AAB67036, see Yanagi,M., Purcell,R.H., EmersomS.U. and Bukh,J. Proc. Natl. Acad. Sci. U.S.A. 94(16),8738-8743 (1997); AF054247, see Yanagi,M., St Claire,M., Shapiro,M., Emerson,S.U., PurcelLRH. and Bukh,J, Virology 244 (1), 161-172. (1998)).
The H77 and J4L6S strains were used for production of recombinant NS3/4A protease complexes. DNA encoding the recombinant HCV NS3/4A protease complex (amino acids 1027 to 1711) for these strains were manipulated as described by P. Gallinari et al. (see Gallinari P, Paolini C, Brennan D, Nardi C, Steinkuhler C, De Francesco R. Biochemistry. 38(17):5620-32, (1999)). Briefly, a three-lysine solubilizing tail was added at the 3'-end of the NS4A coding region. The cysteine in the PI position of the NS4A-NS4B cleavage site (amino acid 1711) was changed to a glycine to avoid the proteolytic cleavage of the lysine tag. Furthermore, a cysteine to serine mutation was introduced by PCR at amino acid position 1454 to prevent the autolytic cleavage in the NS3 helicase domain. The variant DNA fragment was cloned in the pET21b bacterial expression vector (Novagen) and the NS3/4A complex was expressed in Escherichia. coli strain BL21 (DE3) (Invitrogen) following the protocol described by P. Gallinari et al. (see Gallinari P, Brennan D, Nardi C, Brunetti M, Tomei L, Steinkuhler C, De Francesco R., J Virol. 72(8):6758- 69 (1998)) with modifications. Briefly, the NS3/4A protease complex expression was induced with 0.5 millimolar (mM) Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 22 hours (h) at 20°C. A typical fermentation (1 Liter (L)) yielded approximately 10 grams (g) of wet cell paste. The cells were resuspended in lysis buffer (10 mL/g) consisting of 25 mM N-(2-Hydroxyethyl)Piperazine-N'-(2-Ethane Sulfonic acid) (HEPES), pH 7.5, 20% glycerol, 500 mM Sodium Chloride (NaCl), 0.5% Triton X-100, 1 microgram/milliliter ("μg/mL") lysozyme, 5 mM Magnesium Chloride (MgCl2), 1 μg/ml Dnasel, 5mM β-Mercaptoethanol (βME), Protease inhibitor - Ethylenediamine Tetraacetic acid (EDTA) free (Roche), homogenized and incubated for 20 minutes (min) at 4°C. The homogenate was sonicated and clarified by ultra-centrifugation at 235000 g for 1 h at 4°C. Imidazole was added to the supernatant to a final concentration of 15 mM and the pH adjusted to 8.0. The crude protein extract was loaded on a Nickel - Nitrilotriacetic acid (Ni-NTA) column pre- equilibrated with buffer B (25 mM HEPES, pH 8.0, 20% glycerol, 500 mM NaCl, 0.5% Triton X-100, 15 mM imidazole, 5 mM βME). The sample was loaded at a flow rate of 1 mL/min. The column was washed with 15 column volumes of buffer C (same as buffer B except with 0.2% Triton X-100). The protein was eluted with 5 column volumes of buffer D (same as buffer C except with 200 mM Imidazole).
NS3/4A protease complex-containing fractions were pooled and loaded on a desalting column Superdex-S200 pre-equilibrated with buffer D (25mM HEPES, pH 7.5, 20% glycerol, 300 mM NaCl, 0.2% Triton X-100, 10 mM βME). Sample was loaded at a flow rate of 1 mL/min. NS3/4A protease complex-containing fractions were pooled and concentrated to approximately 0.5 mg/ml. The purity of the
NS3/4A protease complexes, derived from the BMS, H77 and J4L6S strains, were judged to be greater than 90% by SDS-PAGE and mass spectrometry analyses.
The enzyme was stored at -80°C, thawed on ice and diluted prior to use in assay buffer. The substrate used for the NS3/4A protease assay was RET S 1
(Resonance Energy Transfer Depsipeptide Substrate; AnaSpec, Inc. cat # 22991)(FRET peptide), described by Taliani et al. in Anal. Biochem. 240(2):60-67 (1996). The sequence of this peptide is loosely based on the NS4A/NS4B natural cleavage site for the HCV NS3 protease except there is an ester linkage rather than an amide bond at the cleavage site. The peptide substrate was incubated with one of the three recombinant NS3/4A protease complexes, in the absence or presence of a compound of the present invention, and the formation of fluorescent reaction product was followed in real time using a Cytofiuor Series 4000.
, The reagents were as follow: HEPES and Glycerol (Ultrapure) were obtained from GIBCO-BRL. Dimethyl Sulfoxide (DMSO) was obtained from Sigma, β- Mercaptoethanol was obtained from Bio Rad.
Assay buffer: 50 mM HEPES, pH 7.5; 0.15 M NaCl; 0.1% Triton; 15% Glycerol;10 mM βME. Substrate: 2 μM final concentration (from a 2 mM stock solution in DMSO stored at -20°C). HCV NS3/4A protease type 1 a (lb), 2-3 nM final concentration (from a 5 μM stock solution in 25 mM HEPES, pH 7.5, 20% glycerol, 300 mM NaCl, 0.2% Triton-XlOO, 10 mM βME). For compounds with potencies approaching the assay limit, the assay was made more sensitive by adding 50 μg/ml Bovine Serum Albumin (Sigma) to the assay buffer and reducing the end protease concentration to 300 pM.
The assay was performed in a 96-well polystyrene black plate from Falcon. Each well contained 25 μl NS3/4A protease complex in assay buffer, 50 μl of a compound of the present invention in 10% DMSO/assay buffer and 25 μl substrate in assay buffer. A control (no compound) was also prepared on the same assay plate. The enzyme complex was mixed with compound or control solution for 1 min before initiating the enzymatic reaction by the addition of substrate. The assay plate was read immediately using the Cytofiuor Series 4000 (Perspective Biosystems). The instrument was set to read an emission of 340 nm and excitation of 490 nm at 25°C. Reactions were generally followed for approximately 15 min.
The percent inhibition was calculated with the following equation:
100 - [(δFinh/δFcon)xl00]
where δF is the change in fluorescence over the linear range of the curve. A nonlinear curve fit was applied to the inhibition-concentration data, and the 50% effective concentration (IC50) was calculated by the use of Excel Xl-fit software using the equation, y=A+((B-A)/(l+((C/x)ΛD))).
All of the compounds tested were found to inhibit the activity of the NS3/4A protease complex with IC50's of 1.2 μM or less. Further, compounds of the present invention, which were tested against more than one type of NS3/4A complex, were found to have similar inhibitory properties though the compounds uniformly demonstrated greater potency against the lb strains as compared to the la strains.
Specificity Assays The specificity assays were performed to demonstrate the in vitro selectivity of the compounds of the present invention in inhibiting HCV NS3/4A protease complex as compared to other serine or cysteine proteases.
The specificities of compounds of the present invention were determined against a variety of serine proteases: human neutrophil elastase (HNE), porcine pancreatic elastase (PPE) and human pancreatic chymotrypsin and one cysteine protease: human liver cathepsin B. In all cases a 96- well plate format protocol using colorimetric p-nitroaniline (pNA) substrate specific for each enzyme was used as described previously (PCT Patent Application No. WO 00/09543) with some modifications to the serine protease assays. All enzymes were purchased from Sigma while the substrates were from Bachem.
Each assay included a 2 h enzyme-inhibitor pre-incubation at room temperature followed by addition of substrate and hydrolysis to ~30% conversion as measured on a Spectramax Pro microplate reader. Compound concentrations varied from 100 to 0.4 μM depending on their potency.
The final conditions for each assay were as follows:
50 mM Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) pH 8,
0.5 M Sodium Sulfate (Na2SO4), 50 mM NaCl, 0.1 mM EDTA, 3% DMSO, 0.01% Tween-20 with: 133 μM succ-AAA-pNA and 20 nM HNE or 8 nM PPE; 100 μM succ-AAPF- pNA and 250 pM Chymotrypsin.
100 mM NaHPO4 (Sodium Hydrogen Phosphate) pH 6, 0.1 mM EDTA, 3% DMSO, 1 mM TCEP (Tris(2-carboxyethyl)phosphine hydrochloride), 0.01% Tween-20, 30 μM Z-FR-pNA and 5 nM Cathepsin B (enzyme stock activated in buffer containing 20 mM TCEP before use).
The percentage of inhibition was calculated using the formula:
[l-((UV-UVbiank)/(UVctl-UVblank))] x 100
A non-linear curve fit was applied to the inhibition-concentration data, and the 50% effective concentration (IC50) was calculated by the use of Excel Xl-fit software.
Generation of HC Replicon
An HCV replicon whole cell system was established as described by
Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R., Science 285(5424): 110-3 (1999). This system enabled us to evaluate the effects of our HCV Protease compounds on HCV RNA replication. Briefly, using the HCV strain lb sequence described in the Lohmann paper (Assession number: AJ238799), an HCV cDNA was generated encoding the 5' internal ribosome entry site (IRES), the neomycin resistance gene, the EMCV (encephalomyocarditis viurs)-IRES and the HCV nonstructural proteins, NS3-NS5B, and 3' non-translated region (NTR). In vitro transcripts of the cDNA were fransfected into the human hepatoma cell line, Huh7. Selection for cells constitutively expressing the HCV replicon was achieved in the presence of the selectable marker, neomycin (G418). Resulting cell lines were characterized for positive and negative strand RNA production and protein production over time. FRET Assay
Hulι7 cells, constitutively expressing the HCV replicon, were grown in Dulbecco's Modified Eagle Media (DMEM) containing 10% Fetal calf serum (FCS) and 1 mg/ml G418 (Gibco-BRL). Cells were seeded the night before (1.5 x 104 cells/well) in 96-well tissue-culture sterile plates. Compound and no compound controls were prepared in DMEM containing 4% FCS, 1 : 100 Penicillin / Streptomysin, 1:100 L-glutamine and 5% DMSO in the dilution plate (0.5% DMSO final concentration in the assay). Compound / DMSO mixes were added to the cells and incubated for 4 days at 37°C. After 4 days, plates were rinsed thoroughly with Phosphate-Buffered Saline (PBS) (3 times 150 μl). The cells were lysed with 25 μl of a lysis assay reagent containing the FRET peptide (RET SI, as described for the in vitro enzyme assay). The lysis assay reagent was made from 5X cell Luciferase cell culture lysis reagent (Promega #E153A) diluted to IX with distilled water, NaCl added to 150 mM final, the FRET peptide diluted to 10 μM final from a 2 mM stock in 100% DMSO. The plate was then placed into the Cytofiuor 4000 instrument which had been set to 340 nm excitation / 490 nm emission, automatic mode for 21 cycles and the plate read in a kinetic mode. EC50 determinations were canied out as described for the IC50 determinations.
Luciferase Assay
As a secondary assay, EC50 determinations from the replicon FRET assay were confirmed in a luciferase reporter assay. Utilization of a replicon luciferase reporter assay was first described by Krieger et al (Krieger N, Lohmann V, and
Bartenschlager R, J. Virol. 75(10):4614-4624 (2001)). The replicon construct described for our FRET assay was modified by replacing the resistance gene neomycin with the Blasticidin-resistance gene fused to the N-terminus of the humanized form of Renilla luciferase (restriction sites Ascl / Pmel used for the subcloning). The adaptive mutation at position 1179 (serine to isoleucine) was also introduced (Blight KJ, Kolykhalov, AA, Rice, CM, Science 290(5498):1972-1974). The luciferase reporter assay was set up by seeding huh7 cells the night before at a density of 2 x 10^ cells per T75 flask. Cells were washed the next day with 7.5 ml Opti-MEM. Following the Invitrogen protocol, 40 μl DMRIE-C was vortexed with 5 ml Opti-MEM before adding 5 μg HCV reporter replicon RNA. The mix was added to the washed huh7 cells and left for 4 h at 37°C. In the mean time, serial compound dilutions and no compound controls were prepared in DMEM containing 10% FCS and 5% DMSO in the dilution plate (0.5% DMSO final concentration in the assay). Compound / DMSO mixes were added to each well of a 24-well plate. After 4 h, the transfection mix was aspirated, and cells washed with 5 ml of Opti-MEM before trypsinization. Trypsinized cells were resuspended in 10% DMEM and seeded at 2 x 104 cells/well in the 24-well plates containing compound or no compound controls. Plates were incubated for 4 days. After 4 days, media was removed and cells washed with PBS. 100 μl lx Renilla Luciferase Lysis Buffer (Promega) was immediately added to each well and the plates either frozen at -80°C for later analysis, or assayed after 15 min of lysis. Lysate (40 μl) from each well was transfened to a 96-well black plate (clear bottom) followed by 200 μl lx Renilla Luciferase assay substrate. Plates were read immediately on a Packard TopCount NXT using a luminescence program.
The percentage inhibition was calculated using the formula below:
% control = average luciferase signal in experimental wells (+ compound) average luciferase signal in DMSO control wells (- compound)
The values were graphed and analyzed using XLFit to obtain the EC50 value.
Compounds in accordance with the present invention were tested for biological activity as described above and found to have activities in the ranges as follow: IC50 Activity Ranges (NS3/4A BMS Strain): A is 10 - 100 micromolar (μM); B is 1 - 10 μM; C is 0.1 - 1 μM; D is O.lμM EC50 Activity Range (for compounds tested): A is 10 - 100 μM; B is 1 - 10 μM; C is
0.1 - l μM; D is <0.1μM
Note that by using the Patent example number and the Patent compound number shown in Table 2, the structures of compounds can be found herein.
In accordance with the present invention, preferably the compounds have a biological activity (EC 0) of 10 μM or less, more preferably 1 μM or less and most preferably 100 nM or less.
Figure imgf000096_0001
Figure imgf000097_0001
Those skilled in the art will recognize that although the invention has been described above with respect to specific aspects, other aspects are intended to be within the scope of the claims which follow. All documents referenced herein are hereby incorporated by reference as if set out in full.

Claims

1. A compound having the formula
Figure imgf000098_0001
wherein:
(a) Ri is Het or aryl;
(b) m is 1 or 2; (c) n is i or 2;
(d) R2 is H; or C1-6 alkyl, C -6 alkenyl or C3-7 cycloalkyl, each optionally substituted with halogen;
(e) R3 is Cι-8 alkyl optionally substituted with halo, cyano, amino, C1-6 dialkylamino, C6-1o aryl, C7-1 alkylaryl, C1-6 alkoxy, carboxy, hydroxy, aryloxy, C -14 alkylaryloxy, C2-6 alkylester or C8-15 alkylarylester; C3-ι alkenyl, C -7 cycloalkyl, or C4-10 alkylcycloalkyl, wherein the cycloalkyl or alkylcycloalkyl are optionally substituted with hydroxy, C1-6 alkyl, C2-6 alkenyl or C1-6 alkoxy; or R together with the carbon atom to which it is attached forms a C3-7 cycloalkyl group optionally substituted with C2-6 alkenyl;
(f) Y is H, phenyl substituted with nitro, pyridyl substituted with nitro, or C1-6 alkyl optionally substituted with cyano, OH or C3-7 cycloalkyl; provided that if R. or R5 is H then Yis H;
(g) B is H, C1-6 alkyl, R C=O)-, R4θ(C=O)-, R4-N(R5)-C(=O)-, R4-N(R5)-C(=S)-, R4SO2-, or R4-N(R5)-SO2-;
(h) j is (i) C1-10 alkyl optionally substituted with phenyl, carboxyl, C1-6 alkanoyl, 1-3 halogen, hydroxy, -OC(O)C1-6 alkyl, C1-6 alkoxy, amino optionally substituted with C1-6 alkyl, amido, or (lower alkyl) amido; (ii) C3- cycloalkyl, C3-7 cycloalkoxy, or C4-10 alkylcycloalklyl, each optionally substituted with hydroxy, carboxyl, (C1-6 alkoxy)carbonyl, amino optionally substituted with Cι-6 alkyl, amido, or (lower alkyl) amido; (iii) C6-10 aryl or C7-16 arylalkyl, each optionally substituted with C1-6 alkyl, halogen, nitro, hydroxy, amido, (lower alkyl) amido, or a ino optionally substituted with C1-6 alkyl; (iv) Het; (v) bicyclo(l.l.l)pentane; or (vi) -C(O)OCι-6 alkyl, C2-6alkenyl or C2-6 alkynyl; (i) R5 is H; C1-6 alkyl optionally substituted with 1 -3 halogens; or C1-6 alkoxy provided j is C1-10 alkyl; 0) X is O, S, SO, SO2, OCH2, CH2O or NH;
(k) R' is Het, C6-ι0 aryl or C -1 alkylaryl, each optionally substituted with Ra; and (1) R is C1-6 alkyl, C3-7 cycloalkyl, Cι-6 alkoxy, C -7 cycloalkoxy, halo-Ci- β alkyl, CF3, mono-or di- halo-C1-6 alkoxy, cyano, halo, thioalkyl, hydroxy, alkanoyl, NO2, SH, , amino, C1-6 alkylamino, di (Cι-6) alkylamino, di (Cι-6) alkylamide, carboxyl, (Cι- ) carboxyester, C1-6 alkylsulfone, C1-6 alkylsulfonamide, di (Cι-6) alkyl(alkoxy)amine, C6- 10 aryl, C7-14 alkylaryl, or a 5-7 membered monocyclic heterocycle;
or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof.
2. A compound of Claim 1 wherein Ri is
Figure imgf000100_0001
Figure imgf000100_0002
Figure imgf000101_0001
3. The compound of Claim 1 wherin R is C1-6 alkyl, C -6 alkenyl or C3- cycloalkyl.
4. The compound of Claim 3 wherein R2 is C -6 alkenyl.
5. The compound of Claim 1 wherein R3 is C1-8 alkyl optionally substituted with C6aryl, C1-6 alkoxy, carboxy, hydroxy, aryloxy, C7-14 alkylaryloxy, C -6 alkylester or C8-15 alkylarylester; C3.12 alkenyl; C3-7 cycloalkyl; or C4-10 alkylcycloalkyl.
6. The compound of Claim 5 wherein R3 is C1-8 alkyl optionally substituted with Ci-6 alkoxy; or C3-7 cycloalkyl.
7. The compound of Claim 1 wherein Y is H.
8. The compound of Claim 1 wherein B is H, d-6 alkyl, Rt-(C=O)-, R4O(C=O)-, R4-N(R5)-C(=O)-, R4-N(R5)-C(=S)-, R4SO2-, or R4-N(R5)-SO2-.
9. The compound of Claim 8 wherein B is
Figure imgf000101_0002
or
Figure imgf000101_0003
10. The compound of Claim 9 wherein B is R O(C=O)- and R4 is Cι-6 alkyl.
11. The compound of Claim 1 wherein j is (i) C1-10 alkyl optionally substituted with phenyl, carboxyl, C1-6 alkanoyl, 1-3 halogen, hydroxy, Ci_6 alkoxy; (ii) C3-7 cycloalkyl, C3-7 cycloalkoxy, or C4-ι0 alkylcycloalklyl; or (iii) C6-10 aryl or C7-16 arylalkyl, each optionally substituted with C1-6 alkyl or halogen.
12. The compound of Claim 11 wherem Rj is (i) C1-10 alkyl optionally substituted with 1-3 halogen or C1-6 alkoxy; or (ii) C3- cycloalkyl or C4-1o alkylcycloalkyl.
13. The compound of Claim 1 wherein R5 is H or C1-6 alkyl optionally substituted with 1-3 halogens.
14. The compound of Claim 13 wherein R5 is H.
15. The compound of Claim 1 wherein X is O or NH.
16. The compound of Claim 1 wherein R' is Het or C6-1o aryl each optionally substituted with Ra.
17. The compound of Claim 16 wherein R' is Het.
18. The compound of Claim 17 wherein the heterocycle contains 1 or 2 nitrogen atoms and optionally a sulfur atom or an oxygen atom in the ring.
19. The compound of Claim 18 wherein the heterocycle is substituted with at least one of C1-6 alkyl, C1-6 alkoxy, halo, C6-ιo aryl, C -1 alkylaryl, or a 5-7 membered monocyclic heterocycle.
20. The compound of Claim 1 wherein Ra is C1-6 alkyl, C3-7 cycloalkyl, Ci-6 alkoxy, halo-Ci-6 alkyl, halo, amino, C6 aryl, or a 5-7 membered monocyclic heterocycle.
21. A compound having the formula
Figure imgf000103_0001
wherein:
(a) Ri is unsubstituted Het or Het substituted with from one to three of halo, cyano, trifluoromethyl, C1-6 alkyl, C1-6 alkoxy, amido, C1-6 amino, phenyl, said phenyl being unsubstituted or substituted with one to three substituents selected from halo, cyano, nitro, C1-6 alkyl, C1-6 alkoxy, amido or phenyl; or a monocyclic aryl;
(b) R2 is C1-6 alkyl, C2-6 alkenyl or C3-7 cycloalkyl; (c) R3 is C1-8 alkyl optionally substituted with C6 aryl, Cι_6 alkoxy, carboxy, hydroxy, aryloxy, C7-14 alkylaryloxy, C2-6 alkylester, C8_i5 alkylarylester; C3-12 alkenyl, C3- cycloalkyl, or C4-10 alkylcycloalkyl;
(d) B is H, Cι-6 alkyl, R4-(C=O)-, R4θ(C=O , R4-N(R5)-C(=O)-,
R4-N(R5)-C(=S)-, RtSO2-, or R4-N(R5)-SO2-;
(e) R* is (i) Ci-io alkyl optionally substituted with phenyl, carboxyl, C1-6 alkanoyl, 1-3 halogen, hydroxy, C1-6 alkoxy; (ii) C3-7 cycloalkyl, C3- cycloalkoxy, or C4-10 alkylcycloalklyl; or (iii) C6-10 aryl or C7-16 arylalkyl, each optionally substituted with C1-6 alkyl or halogen;
09 R5 is H or C1-6 alkyl optionally substituted with 1-3 halogens;
(g) X is O orNH; (h) R' is Het; or C6-1o aryl optionally substituted with Ra; and (i) Ra is C1-6 alkyl, C3- cycloalkyl, C1-6 alkoxy, halo-Ci~6 alkyl, halo, amino, C aryl, or a 5-7 membered monocyclic heterocycle;
or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof.
22. The compound of Claim 21 wherein R' is a bicyclic heterocycle.
23. The compound of Claim 22 wherein the heterocycle contains 1 or 2 nitrogen atoms and optionally a sulfur atom or an oxygen atom in the ring.
24. The compound of Claim 22 wherein the heterocycle is substituted with at least one of C1-6 alkyl, Cι-6 alkoxy, halo, C6 aryl, and a 5-7 membered monocyclic heterocycle.
25. The compound of Claim 21 wherein R' is a bicyclic heterocycle containing 1 nitrogen atom and substituted with methoxy and at least one of a C6 aryl and a 5-7 membered monocyclic heterocycle.
26. The compound of Claim 21 wherein R' is a monocyclic heterocycle.
27. The compound of Claim 26 wherein the heterocycle contains 1 or 2 nitrogen atoms and optionally a sulfur atom or an oxygen atom in the ring.
28. The compound of Claim 26 wherein the heterocycle is substituted with at least one of Cι-6 alkyl, Cι-6 alkoxy, halo, C6-ιo aryl, C7-ι4 alkylaryl, or a 5-7 membered monocyclic heterocycle.
29. The compound of Claim 21 wherein R' is a monoyclic heterocycle containing 1 or 2 nitrogen atoms and substituted with methoxy and at least one of a C6 aryl and a 5-7 membered monocyclic heterocycle.
30. A compound having the formula 103
Figure imgf000105_0001
(HI)
wherein:
(a) Ri is unsubstituted Het or Het substituted with one to three of halo, cyano, trifluoromethyl, Cι-6 alkyl, C1-6 alkoxy, amido, or amino; or a
C6 aryl;
(b) R2 is C2-6 alkenyl; (c) R3 is C1-8 alkyl; (d) B is R4O(C=O)-, or R4-N(H)-C(=O)-;
(e) R4 is Ci-io alkyl; (* R' is a bicyclic heterocycle optionally substituted with Ra; and (g) Ra is Cι- alkyl, C1-6 alkoxy, halo, C6 aryl, or a 5-7 membered monocyclic heterocycle;
or a pharmaceutically acceptable enantiomer, diastereomer, salt, solvate or prodrug thereof.
31. The compound of Claim 30 wherein R2 is vinyl.
32. The compound of Claim 30 wherein R3 is t-butyl.
33. The compound of Claim 30 wherein t is t-butyl.
34. The compound of Claim 30 wherein R' is quinoline or isoquinoline optionally substituted with Ra.
35. The compound of Claim 30 wherein R2 is vinyl, R3 is t- butyl, R4 is t-butyl, and R' is isoquinoline substituted with Ra.
36. The compound of Claim 35 wherein Ra is C1- alkoxy.
37. The compound of Claim 36 wherein R further includes at least one of C6 aryl or a 5-7 membered monocyclic heterocycle.
38. A composition comprising the compound of Claim 1 and a pharmaceutically acceptable canier.
39. The composition according to Claim 38 further comprising a compound having anti-HCV activity.
40. The composition according to Claim 39 wherein the compound having anti- HCV activity is an interferon.
41. The composition according to Claim 40 wherein the interferon is selected from the group consisting of interferon alpha 2B, pegylated interferon alpha, consensus interferon, interferon alpha 2A, and lymphoblastiod interferon tau.
42. The composition according to Claim 39 wherein the compound having anti- HCV activity is selected from the group consisting of interleukin 2, interleukin 6, interleukin 12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, Imiqimod, ribavirin, an inosine 5'- monophospate dehydrogenase inhibitor, amantadine, and rimantadine.
43. The composition according to the Claim 38 further comprising an interferon and ribavirin.
44. The composition according to Claim 39 wherein the compound having anti- HCV activity is a small molecule compound.
45. The composition according to Claim 39 wherein the compound having anti- HCV activity is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH and a nucleoside analog for the treatment of an HCV infection.
46. A method of inhibiting the function of the HCV serine protease comprising contacting the HCV serine protease with the compound of Claim 1.
47. A method of treating an HCV infection in a patient, comprising administering to the patient a therapeutically effective amount of the compound of Claim 1, or a pharmaceutically acceptable enantiomer, diastereomer, solvate, prodrug or salt thereof.
48. The method according to Claim 47 wherein the compound is effective to inhibit the function of the HCV serine protease.
49. The method according to Claim 47 further comprising administering another compound having anti-HCV activity prior to, after or simultaneously with the compound of Claim 1.
50. The method according to Claim 49 wherein the other compound having anti- HCV activity is an interferon.
51. The method according to Claim 50 wherein the interferon is selected from the group consisting of interferon alpha 2B, pegylated interferon alpha, consensus interferon, interferon alpha 2A, lymphoblastiod interferon tau.
52. The method according to Claim 49 wherein the other compound having anti- HCV activity is selected from the group consisting of interleukin 2, interleukin 6, interleukin 12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, Imiqimod, ribavirin, an inosine 5'- monophospate dehydrogenase inhibitor, amantadine, and rimantadine.
53. The method according to Claim 52 wherein the compound having anti-HCV activity is a small molecule.
54. The method according to Claim 53 wherein the compound having anti-HCV activity is effective to inhibit the function of a target selected from the group consisting of HCV metalloprotease, HCV serine protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, IMPDH and a nucleoside analog for the treatment of an HCV infection.
55. The method according to Claim 49 wherein the other compound having anti- HCV activity is effective to inhibit the function of target in the HCV life cycle other than the HCV serine protease.
56. Use of the compound of Claim 1 for the manufacture of a medicament for treating HCV infection in a patient.
57. Use of the composition of Claim 38 for the manufacture of a medicament for treating HCV infection in a patient.
PCT/US2004/038967 2003-11-20 2004-11-19 Hepatitis c virus inhibitors WO2005054430A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006541549A JP4675332B2 (en) 2003-11-20 2004-11-19 Hepatitis C virus inhibitor
EP04811656.0A EP1684745B1 (en) 2003-11-20 2004-11-19 Hepatitis c virus inhibitors
NO20062185A NO20062185L (en) 2003-11-20 2006-05-15 Hepatitis C virus inhibitors
IS8475A IS8475A (en) 2003-11-20 2006-05-18 Hepatitis C virus inhibition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52376403P 2003-11-20 2003-11-20
US60/523,764 2003-11-20

Publications (2)

Publication Number Publication Date
WO2005054430A2 true WO2005054430A2 (en) 2005-06-16
WO2005054430A3 WO2005054430A3 (en) 2005-09-15

Family

ID=34652261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/038967 WO2005054430A2 (en) 2003-11-20 2004-11-19 Hepatitis c virus inhibitors

Country Status (6)

Country Link
US (1) US7309708B2 (en)
EP (1) EP1684745B1 (en)
JP (1) JP4675332B2 (en)
IS (1) IS8475A (en)
NO (1) NO20062185L (en)
WO (1) WO2005054430A2 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019674A1 (en) 2005-08-12 2007-02-22 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
WO2007009109A3 (en) * 2005-07-14 2007-06-07 Gilead Sciences Inc Antiviral compounds
WO2007082131A1 (en) * 2006-01-09 2007-07-19 Bristol-Myers Squibb Company Process for the preparation of hydroxy substituted heterocycles
US7323447B2 (en) 2005-02-08 2008-01-29 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7449479B2 (en) 2002-05-20 2008-11-11 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
WO2009005690A2 (en) * 2007-06-29 2009-01-08 Gilead Sciences, Inc. Antiviral compounds
JP2009501546A (en) * 2005-07-18 2009-01-22 ノバルティス アーゲー A small animal model for HCV replication
WO2009076173A2 (en) 2007-12-05 2009-06-18 Enanta Pharmaceuticals, Inc. Fluorinated tripeptide hcv serine protease inhibitors
WO2009076747A1 (en) 2007-12-19 2009-06-25 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US7592336B2 (en) 2005-05-10 2009-09-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7601686B2 (en) 2005-07-11 2009-10-13 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7622585B2 (en) 2005-01-10 2009-11-24 Bristol-Myers Squibb Company Phenylglycinamide derivatives useful as anticoagulants
US7741281B2 (en) 2005-11-03 2010-06-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
WO2010080874A1 (en) 2009-01-07 2010-07-15 Scynexis, Inc. Cyclosporine derivative for use in the treatment of hcv and hiv infection
US7763584B2 (en) 2006-11-16 2010-07-27 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
JP2010526834A (en) * 2007-05-10 2010-08-05 インターミューン・インコーポレーテッド Novel peptide inhibitors of hepatitis C virus replication
US7772183B2 (en) 2005-10-12 2010-08-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7772180B2 (en) 2006-11-09 2010-08-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7816348B2 (en) 2006-02-03 2010-10-19 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
WO2010132163A1 (en) 2009-05-13 2010-11-18 Enanta Pharmaceuticals, Inc. Macrocyclic compounds as hepatitis c virus inhibitors
US7888464B2 (en) 2006-11-16 2011-02-15 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7897622B2 (en) 2006-08-17 2011-03-01 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US7906619B2 (en) 2006-07-13 2011-03-15 Achillion Pharmaceuticals, Inc. 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication
US7935670B2 (en) 2006-07-11 2011-05-03 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7964560B2 (en) 2008-05-29 2011-06-21 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8003604B2 (en) 2006-11-16 2011-08-23 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
EP2364984A1 (en) 2005-08-26 2011-09-14 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US8044087B2 (en) 2008-09-29 2011-10-25 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8044023B2 (en) 2008-05-29 2011-10-25 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8163693B2 (en) 2007-09-24 2012-04-24 Achillion Pharmaceuticals, Inc. Urea-containing peptides as inhibitors of viral replication
US8163921B2 (en) 2008-04-16 2012-04-24 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8202996B2 (en) 2007-12-21 2012-06-19 Bristol-Myers Squibb Company Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N- ((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide
US8207341B2 (en) 2008-09-04 2012-06-26 Bristol-Myers Squibb Company Process or synthesizing substituted isoquinolines
US8242140B2 (en) 2007-08-03 2012-08-14 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8283310B2 (en) 2008-12-15 2012-10-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8343477B2 (en) 2006-11-01 2013-01-01 Bristol-Myers Squibb Company Inhibitors of hepatitis C virus
US8420596B2 (en) 2008-09-11 2013-04-16 Abbott Laboratories Macrocyclic hepatitis C serine protease inhibitors
US8435984B2 (en) 2007-02-26 2013-05-07 Achillion Pharmaceuticals, Inc. Tertiary amine substituted peptides useful as inhibitors of HCV replication
US8563505B2 (en) 2008-09-29 2013-10-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8614180B2 (en) 2008-12-10 2013-12-24 Achillion Pharmaceuticals, Inc. 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication
US8691757B2 (en) 2011-06-15 2014-04-08 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8937041B2 (en) 2010-12-30 2015-01-20 Abbvie, Inc. Macrocyclic hepatitis C serine protease inhibitors
US8951964B2 (en) 2010-12-30 2015-02-10 Abbvie Inc. Phenanthridine macrocyclic hepatitis C serine protease inhibitors
US8957203B2 (en) 2011-05-05 2015-02-17 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9006423B2 (en) 2013-03-15 2015-04-14 Achillion Pharmaceuticals Inc. Process for making a 4-amino-4-oxobutanoyl peptide cyclic analogue, an inhibitor of viral replication, and intermediates thereof
US9085607B2 (en) 2013-03-15 2015-07-21 Achillion Pharmaceuticals, Inc. ACH-0142684 sodium salt polymorph, composition including the same, and method of manufacture thereof
US9115175B2 (en) 2013-03-14 2015-08-25 Achillion Pharmaceuticals, Inc. Processes for Producing sovaprevir
US9227952B2 (en) 2013-03-15 2016-01-05 Achillion Pharmaceuticals, Inc. Sovaprevir polymorphs and methods of manufacture thereof
US9334279B2 (en) 2012-11-02 2016-05-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9333204B2 (en) 2014-01-03 2016-05-10 Abbvie Inc. Solid antiviral dosage forms
EP3020723A1 (en) 2010-09-21 2016-05-18 Enanta Pharmaceuticals, Inc. Macrocyclic proline derived hcv serine protease inhibitors
US9409943B2 (en) 2012-11-05 2016-08-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9499550B2 (en) 2012-10-19 2016-11-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9580463B2 (en) 2013-03-07 2017-02-28 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9598433B2 (en) 2012-11-02 2017-03-21 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9643999B2 (en) 2012-11-02 2017-05-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US10201541B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491794B2 (en) * 2003-10-14 2009-02-17 Intermune, Inc. Macrocyclic compounds as inhibitors of viral replication
US20090148407A1 (en) * 2005-07-25 2009-06-11 Intermune, Inc. Novel Macrocyclic Inhibitors of Hepatitis C Virus Replication
CN101273042B (en) * 2005-07-29 2013-11-06 泰博特克药品有限公司 Macrocyclic inhibitors of hepatitis C virus
MY141245A (en) * 2005-07-29 2010-03-31 Tibotec Pharm Ltd Macrocylic inhibitors of hepatitis c virus
PL1913015T3 (en) * 2005-07-29 2014-04-30 Janssen R&D Ireland Macrocyclic inhibitors of hepatitis c virus
MY139988A (en) * 2005-07-29 2009-11-30 Tibotec Pharm Ltd Macrocylic inhibitors of hepatitis c virus
TW200745061A (en) * 2005-07-29 2007-12-16 Tibotec Pharm Ltd Macrocylic inhibitors of hepatitis C virus
ATE493409T1 (en) 2005-10-11 2011-01-15 Intermune Inc COMPOUNDS AND METHODS FOR INHIBITING HEPATITIS C VIRUS REPLICATION
RU2008152171A (en) * 2006-07-05 2010-08-10 Интермьюн, Инк. (Us) NEW HEPATITIS C VIRAL REPLICATION INHIBITORS
US20090155209A1 (en) * 2007-05-03 2009-06-18 Blatt Lawrence M Novel macrocyclic inhibitors of hepatitis c virus replication
US8419332B2 (en) * 2007-10-19 2013-04-16 Atlas Bolt & Screw Company Llc Non-dimpling fastener
US8293705B2 (en) 2007-12-21 2012-10-23 Avila Therapeutics, Inc. HCV protease inhibitors and uses thereof
NZ586231A (en) 2007-12-21 2012-12-21 Avila Therapeutics Inc HCV protease inhibitors comprising a functionalised proline derivative
US8309685B2 (en) * 2007-12-21 2012-11-13 Celgene Avilomics Research, Inc. HCV protease inhibitors and uses thereof
AU2008340261C1 (en) * 2007-12-21 2015-12-10 Celgene Avilomics Research, Inc. HCV protease inhibitors and uses thereof
AU2009210789B2 (en) 2008-02-04 2014-01-30 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors
AP2010005416A0 (en) * 2008-04-15 2010-10-31 Intermune Inc Novel macrocyclic inhibitors of hepatitis c virus replication.
AR075584A1 (en) * 2009-02-27 2011-04-20 Intermune Inc THERAPEUTIC COMPOSITIONS THAT INCLUDE beta-D-2'-DESOXI-2'-FLUORO-2'-C-METHYLYCTIDINE AND A CARDIEX ISOINDOL ACID DERIVATIVE AND ITS USES. COMPOUND.
TW201040181A (en) 2009-04-08 2010-11-16 Idenix Pharmaceuticals Inc Macrocyclic serine protease inhibitors
US8232246B2 (en) * 2009-06-30 2012-07-31 Abbott Laboratories Anti-viral compounds
TW201117812A (en) 2009-08-05 2011-06-01 Idenix Pharmaceuticals Inc Macrocyclic serine protease inhibitors
CN102471239A (en) 2009-08-10 2012-05-23 住友化学株式会社 Method for producing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester
WO2011049908A2 (en) * 2009-10-19 2011-04-28 Enanta Pharmaceuticals, Inc. Bismacrokyclic compounds as hepatitis c virus inhibitors
WO2012109398A1 (en) 2011-02-10 2012-08-16 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating hcv infections

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323180B1 (en) 1998-08-10 2001-11-27 Boehringer Ingelheim (Canada) Ltd Hepatitis C inhibitor tri-peptides
US20020111313A1 (en) 2000-11-20 2002-08-15 Campbell Jeffrey Allen Hepatitis C virus inhibitors
WO2003053349A2 (en) 2001-12-20 2003-07-03 Bristol-Myers Squibb Company Inhibitors of hepatitis c virus
US20030186895A1 (en) 2002-02-01 2003-10-02 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
US6642204B2 (en) 2002-02-01 2003-11-04 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
WO2003099316A1 (en) 2002-05-20 2003-12-04 Bristol-Myers Squibb Company Heterocyclicsulfonamide hepatitis c virus inhibitors
WO2003099274A1 (en) 2002-05-20 2003-12-04 Bristol-Myers Squibb Company Hepatitis c virus inhibitors

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610054A (en) 1992-05-14 1997-03-11 Ribozyme Pharmaceuticals, Inc. Enzymatic RNA molecule targeted against Hepatitis C virus
MY147327A (en) 1995-06-29 2012-11-30 Novartis Ag Somatostatin peptides
GB9517022D0 (en) 1995-08-19 1995-10-25 Glaxo Group Ltd Medicaments
US5633388A (en) 1996-03-29 1997-05-27 Viropharma Incorporated Compounds, compositions and methods for treatment of hepatitis C
WO1997043310A1 (en) 1996-05-10 1997-11-20 Schering Corporation Synthetic inhibitors of hepatitis c virus ns3 protease
EP2409985A3 (en) 1996-10-18 2013-05-01 Vertex Pharmaceuticals Incorporated Inhibitors de serine proteases, especially of the NS3 protease of the hepatitis C virus
GB9623908D0 (en) 1996-11-18 1997-01-08 Hoffmann La Roche Amino acid derivatives
AU7127298A (en) 1997-04-14 1998-11-11 Emory University Serine protease inhibitors
GB9707659D0 (en) 1997-04-16 1997-06-04 Peptide Therapeutics Ltd Hepatitis C NS3 Protease inhibitors
ES2234144T3 (en) 1997-08-11 2005-06-16 Boehringer Ingelheim (Canada) Ltd. ANALOGS OF INHIBITING PEPTIDES OF HEPATITIS C.
ES2241157T3 (en) 1997-08-11 2005-10-16 Boehringer Ingelheim (Canada) Ltd. INHIBITING PEPTIDES OF HEPATITIS C.
IT1299134B1 (en) 1998-02-02 2000-02-29 Angeletti P Ist Richerche Bio PROCEDURE FOR THE PRODUCTION OF PEPTIDES WITH PROTEAS INHIBITING THE NS3 PROTEASIS OF THE HCV VIRUS, PEPTIDES SO OBTAINABLE AND PEPTIDES
EP1066247B1 (en) 1998-03-31 2006-11-22 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly hepatitis c virus ns3 protease
GB9812523D0 (en) 1998-06-10 1998-08-05 Angeletti P Ist Richerche Bio Peptide inhibitors of hepatitis c virus ns3 protease
DE69925918T2 (en) 1998-07-27 2006-05-11 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. DIKETIC ACID DERIVATIVES AS POLYMERASES INHIBITORS
AR022061A1 (en) 1998-08-10 2002-09-04 Boehringer Ingelheim Ca Ltd INHIBITING PEPTIDES OF HEPATITIS C, A PHARMACEUTICAL COMPOSITION CONTAINING THEM, THE USE OF THE SAME TO PREPARE A PHARMACEUTICAL COMPOSITION, THE USE OF AN INTERMEDIATE PRODUCT FOR THE PREPARATION OF THESE PEPTIDES AND A PROCEDURE FOR THE PREPARATION OF ANOGRAPH .
BR9913157A (en) 1998-08-21 2001-05-15 Viropharma Inc Processes for treating or preventing infection caused by at least one virus of the flaviviridae and diseases associated with said infection and infection caused by at least one virus of the genus hepacivirus of flavivirity and diseases associated with said infection, pharmaceutical composition to treat or prevent viral infections , it's composed
AU751201B2 (en) 1998-09-04 2002-08-08 Viropharma Incorporated Methods for treating or preventing viral infections and associated diseases
JP2002525295A (en) 1998-09-25 2002-08-13 バイロファーマ・インコーポレイテッド How to treat or prevent viral infections and related diseases
UA74546C2 (en) * 1999-04-06 2006-01-16 Boehringer Ingelheim Ca Ltd Macrocyclic peptides having activity relative to hepatitis c virus, a pharmaceutical composition and use of the pharmaceutical composition
CA2389745C (en) 1999-11-04 2010-03-23 Shire Biochem Inc. Method for the treatment or prevention of flaviviridae viral infection using nucleoside analogues
CN1623984A (en) 1999-12-27 2005-06-08 日本烟草产业株式会社 Fused-ring compounds and use thereof as drugs
WO2001085172A1 (en) 2000-05-10 2001-11-15 Smithkline Beecham Corporation Novel anti-infectives
US6448281B1 (en) 2000-07-06 2002-09-10 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
GB0017676D0 (en) 2000-07-19 2000-09-06 Angeletti P Ist Richerche Bio Inhibitors of viral polymerase
CA2369711A1 (en) 2002-01-30 2003-07-30 Boehringer Ingelheim (Canada) Ltd. Macrocyclic peptides active against the hepatitis c virus
CA2370396A1 (en) 2002-02-01 2003-08-01 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor tri-peptides
CA2369970A1 (en) 2002-02-01 2003-08-01 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor tri-peptides
US6828301B2 (en) 2002-02-07 2004-12-07 Boehringer Ingelheim International Gmbh Pharmaceutical compositions for hepatitis C viral protease inhibitors
DK1497019T3 (en) * 2002-04-23 2015-08-03 Bristol Myers Squibb Co PYRROLO-TRIAZINANILINE COMPOSITIONS USED AS KINase INHIBITORS
AU2003299519A1 (en) 2002-05-20 2004-05-04 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
AU2003301959A1 (en) 2002-05-20 2004-06-03 Bristol-Myers Squibb Company Substituted cycloalkyl p1' hepatitis c virus inhibitors
US20040180815A1 (en) * 2003-03-07 2004-09-16 Suanne Nakajima Pyridazinonyl macrocyclic hepatitis C serine protease inhibitors
US7132504B2 (en) 2003-11-12 2006-11-07 Bristol-Myers Squibb Company Hepatitis C virus inhibitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323180B1 (en) 1998-08-10 2001-11-27 Boehringer Ingelheim (Canada) Ltd Hepatitis C inhibitor tri-peptides
US20020111313A1 (en) 2000-11-20 2002-08-15 Campbell Jeffrey Allen Hepatitis C virus inhibitors
WO2003053349A2 (en) 2001-12-20 2003-07-03 Bristol-Myers Squibb Company Inhibitors of hepatitis c virus
US20030186895A1 (en) 2002-02-01 2003-10-02 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
US6642204B2 (en) 2002-02-01 2003-11-04 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
WO2003099316A1 (en) 2002-05-20 2003-12-04 Bristol-Myers Squibb Company Heterocyclicsulfonamide hepatitis c virus inhibitors
WO2003099274A1 (en) 2002-05-20 2003-12-04 Bristol-Myers Squibb Company Hepatitis c virus inhibitors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1999, MACK PUBLISHING COMPANY
BUNDGARD, H.: "Design of Prodrugs", 1985, ELSEVIER, pages: 7 - 9,21-24
ELIEL, E.; WILEN, S.: "Stereochemistry of Organic Compounds", 1994, JOHN WILEY & SONS, INC.
MCGRAW-HILL: "Dictionary of Chemical Terms", 1984, MCGRAW-HILL BOOK COMPANY

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710229B2 (en) 2002-05-20 2014-04-29 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8507722B2 (en) 2002-05-20 2013-08-13 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8889871B2 (en) 2002-05-20 2014-11-18 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8299094B2 (en) 2002-05-20 2012-10-30 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7449479B2 (en) 2002-05-20 2008-11-11 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9227940B2 (en) 2002-05-20 2016-01-05 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7915291B2 (en) 2002-05-20 2011-03-29 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9636375B2 (en) 2002-05-20 2017-05-02 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7622585B2 (en) 2005-01-10 2009-11-24 Bristol-Myers Squibb Company Phenylglycinamide derivatives useful as anticoagulants
US7323447B2 (en) 2005-02-08 2008-01-29 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7592336B2 (en) 2005-05-10 2009-09-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7601686B2 (en) 2005-07-11 2009-10-13 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
WO2007009109A3 (en) * 2005-07-14 2007-06-07 Gilead Sciences Inc Antiviral compounds
CN101243096B (en) * 2005-07-14 2013-02-06 吉里德科学公司 Antiviral compounds
JP2009501546A (en) * 2005-07-18 2009-01-22 ノバルティス アーゲー A small animal model for HCV replication
WO2007019674A1 (en) 2005-08-12 2007-02-22 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
EP2366704A1 (en) 2005-08-26 2011-09-21 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
EP2364984A1 (en) 2005-08-26 2011-09-14 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US7772183B2 (en) 2005-10-12 2010-08-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7741281B2 (en) 2005-11-03 2010-06-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
WO2007082131A1 (en) * 2006-01-09 2007-07-19 Bristol-Myers Squibb Company Process for the preparation of hydroxy substituted heterocycles
US7816348B2 (en) 2006-02-03 2010-10-19 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US7935670B2 (en) 2006-07-11 2011-05-03 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9610317B2 (en) 2006-07-13 2017-04-04 Achillion Pharmaceuticals, Inc. 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication
US7906619B2 (en) 2006-07-13 2011-03-15 Achillion Pharmaceuticals, Inc. 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication
US8785378B2 (en) 2006-07-13 2014-07-22 Achillion Pharmaceuticals, Inc. Macrocyclic peptides as inhibitors of viral replication
US9233136B2 (en) 2006-07-13 2016-01-12 Achillion Pharmaceuticals, Inc. 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication
US7897622B2 (en) 2006-08-17 2011-03-01 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8343477B2 (en) 2006-11-01 2013-01-01 Bristol-Myers Squibb Company Inhibitors of hepatitis C virus
US7772180B2 (en) 2006-11-09 2010-08-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8003604B2 (en) 2006-11-16 2011-08-23 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7888464B2 (en) 2006-11-16 2011-02-15 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7763584B2 (en) 2006-11-16 2010-07-27 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8435984B2 (en) 2007-02-26 2013-05-07 Achillion Pharmaceuticals, Inc. Tertiary amine substituted peptides useful as inhibitors of HCV replication
JP2010526834A (en) * 2007-05-10 2010-08-05 インターミューン・インコーポレーテッド Novel peptide inhibitors of hepatitis C virus replication
WO2009005690A2 (en) * 2007-06-29 2009-01-08 Gilead Sciences, Inc. Antiviral compounds
WO2009005690A3 (en) * 2007-06-29 2009-03-05 Gilead Sciences Inc Antiviral compounds
US8242140B2 (en) 2007-08-03 2012-08-14 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8163693B2 (en) 2007-09-24 2012-04-24 Achillion Pharmaceuticals, Inc. Urea-containing peptides as inhibitors of viral replication
WO2009076173A2 (en) 2007-12-05 2009-06-18 Enanta Pharmaceuticals, Inc. Fluorinated tripeptide hcv serine protease inhibitors
US8912182B2 (en) 2007-12-19 2014-12-16 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
WO2009076747A1 (en) 2007-12-19 2009-06-25 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8476257B2 (en) 2007-12-19 2013-07-02 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8541402B2 (en) 2007-12-19 2013-09-24 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8202996B2 (en) 2007-12-21 2012-06-19 Bristol-Myers Squibb Company Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N- ((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide
US8338606B2 (en) 2007-12-21 2012-12-25 Bristol-Myers Squibb Company Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N-((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide
US8163921B2 (en) 2008-04-16 2012-04-24 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7964560B2 (en) 2008-05-29 2011-06-21 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8044023B2 (en) 2008-05-29 2011-10-25 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8357806B2 (en) 2008-09-04 2013-01-22 Bristol-Myers Squibb Company Process for synthesizing substituted isoquinolines
US8207341B2 (en) 2008-09-04 2012-06-26 Bristol-Myers Squibb Company Process or synthesizing substituted isoquinolines
US8877929B2 (en) 2008-09-04 2014-11-04 Bristol-Myers Squibb Company Process for synthesizing substituted isoquinolines
US9309279B2 (en) 2008-09-11 2016-04-12 Abbvie Inc. Macrocyclic hepatitis C serine protease inhibitors
US8420596B2 (en) 2008-09-11 2013-04-16 Abbott Laboratories Macrocyclic hepatitis C serine protease inhibitors
US8642538B2 (en) 2008-09-11 2014-02-04 Abbvie, Inc. Macrocyclic hepatitis C serine protease inhibitors
US8563505B2 (en) 2008-09-29 2013-10-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8044087B2 (en) 2008-09-29 2011-10-25 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8614180B2 (en) 2008-12-10 2013-12-24 Achillion Pharmaceuticals, Inc. 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication
US9133115B2 (en) 2008-12-10 2015-09-15 Achillion Pharmaceuticals, Inc. 4-amino-4-oxobutanoyl peptides as inhibitors of viral replication
US8283310B2 (en) 2008-12-15 2012-10-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
WO2010080874A1 (en) 2009-01-07 2010-07-15 Scynexis, Inc. Cyclosporine derivative for use in the treatment of hcv and hiv infection
WO2010132163A1 (en) 2009-05-13 2010-11-18 Enanta Pharmaceuticals, Inc. Macrocyclic compounds as hepatitis c virus inhibitors
EP3020723A1 (en) 2010-09-21 2016-05-18 Enanta Pharmaceuticals, Inc. Macrocyclic proline derived hcv serine protease inhibitors
US8951964B2 (en) 2010-12-30 2015-02-10 Abbvie Inc. Phenanthridine macrocyclic hepatitis C serine protease inhibitors
US8937041B2 (en) 2010-12-30 2015-01-20 Abbvie, Inc. Macrocyclic hepatitis C serine protease inhibitors
US8957203B2 (en) 2011-05-05 2015-02-17 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9527885B2 (en) 2011-05-05 2016-12-27 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US10201584B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US10201541B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US8691757B2 (en) 2011-06-15 2014-04-08 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9499550B2 (en) 2012-10-19 2016-11-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9598433B2 (en) 2012-11-02 2017-03-21 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9643999B2 (en) 2012-11-02 2017-05-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9334279B2 (en) 2012-11-02 2016-05-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9409943B2 (en) 2012-11-05 2016-08-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9580463B2 (en) 2013-03-07 2017-02-28 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9481708B2 (en) 2013-03-14 2016-11-01 Achillion Pharmaceuticals, Inc. Process for producing Sovaprevir
US9115175B2 (en) 2013-03-14 2015-08-25 Achillion Pharmaceuticals, Inc. Processes for Producing sovaprevir
US9540346B2 (en) 2013-03-15 2017-01-10 Achillion Pharmaceuticals, Inc. Sovaprevir polymorphs and methods of manufacture thereof
US9006423B2 (en) 2013-03-15 2015-04-14 Achillion Pharmaceuticals Inc. Process for making a 4-amino-4-oxobutanoyl peptide cyclic analogue, an inhibitor of viral replication, and intermediates thereof
US9227952B2 (en) 2013-03-15 2016-01-05 Achillion Pharmaceuticals, Inc. Sovaprevir polymorphs and methods of manufacture thereof
US9085607B2 (en) 2013-03-15 2015-07-21 Achillion Pharmaceuticals, Inc. ACH-0142684 sodium salt polymorph, composition including the same, and method of manufacture thereof
US9333204B2 (en) 2014-01-03 2016-05-10 Abbvie Inc. Solid antiviral dosage forms
US9744170B2 (en) 2014-01-03 2017-08-29 Abbvie Inc. Solid antiviral dosage forms
US10105365B2 (en) 2014-01-03 2018-10-23 Abbvie Inc. Solid antiviral dosage forms

Also Published As

Publication number Publication date
EP1684745A2 (en) 2006-08-02
JP2007515405A (en) 2007-06-14
NO20062185L (en) 2006-08-18
EP1684745B1 (en) 2014-12-17
US20050143316A1 (en) 2005-06-30
EP1684745A4 (en) 2008-11-19
WO2005054430A3 (en) 2005-09-15
IS8475A (en) 2006-05-18
JP4675332B2 (en) 2011-04-20
US7309708B2 (en) 2007-12-18

Similar Documents

Publication Publication Date Title
EP1684745B1 (en) Hepatitis c virus inhibitors
EP1687018B1 (en) Hepatitis c virus inhibitors
JP4688815B2 (en) Hepatitis C virus inhibitor
US6869964B2 (en) Heterocyclicsulfonamide hepatitis C virus inhibitors
US6878722B2 (en) Substituted cycloalkyl P1′ hepatitis C virus inhibitors
US7041698B2 (en) Hepatitis C virus inhibitors
US7741281B2 (en) Hepatitis C virus inhibitors
ES2389054T3 (en) Hepatitis C virus inhibitors
JP2010508362A (en) Hepatitis C virus inhibitor
EP1904516A2 (en) Hepatitis c virus inhibitors
EP2049474A2 (en) Hepatitis c virus inhibitors
JP2010508361A (en) Hepatitis C virus inhibitor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004811656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006541549

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004811656

Country of ref document: EP