WO2005048357A1 - Radiation detector - Google Patents
Radiation detector Download PDFInfo
- Publication number
- WO2005048357A1 WO2005048357A1 PCT/US2003/035726 US0335726W WO2005048357A1 WO 2005048357 A1 WO2005048357 A1 WO 2005048357A1 US 0335726 W US0335726 W US 0335726W WO 2005048357 A1 WO2005048357 A1 WO 2005048357A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dopant
- concentration
- compound
- mixture
- znι
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 9
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 9
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 8
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 8
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 8
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 8
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 8
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 8
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 8
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 8
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 8
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 8
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- 239000002019 doping agent Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052793 cadmium Inorganic materials 0.000 claims description 12
- 239000000370 acceptor Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 229910052716 thallium Inorganic materials 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 10
- 239000000956 alloy Substances 0.000 abstract description 10
- 230000007547 defect Effects 0.000 description 24
- 239000013078 crystal Substances 0.000 description 17
- 239000012535 impurity Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 9
- 239000002800 charge carrier Substances 0.000 description 9
- 239000000460 chlorine Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- QWUZMTJBRUASOW-UHFFFAOYSA-N cadmium tellanylidenezinc Chemical compound [Zn].[Cd].[Te] QWUZMTJBRUASOW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- -1 GaAs Chemical class 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0296—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02562—Tellurides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02581—Transition metal or rare earth elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/085—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
Definitions
- the present invention relates to radiation detectors and a method of making the same. More specifically, the present invention is a fundamentally new approach for growing semi-insulating Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) crystals with full active volume for detecting radiation in the 1 keV - 5 MeV photon energy range.
- CdZnTe Cadmium Zinc Telluride
- High-purity intrinsic Cd x Zn 1-x Te (0 ⁇ x ⁇ 1) typically has low electrical resistivity due to the formation of a large density of intrinsic or native defects, notably cadmium (Cd) vacancies in tellurium (Te) rich growth conditions or Cd interstitials in Cd rich growth conditions.
- Cd cadmium
- Te tellurium
- Cd interstitials in Cd rich growth conditions.
- an intrinsic defect of unknown origin with a deep level at the middle of the band gap is formed in large concentrations. This intrinsic defect has electronic properties that do not permit full depletion of the device when the defect is present in large concentrations.
- High resistivity Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) is typically obtained by doping with column III elements, e.g., In, Al and Ga, in a vertical or horizontal Bridgman process or with column VII elements, e.g., Cl, in the travelling heater method.
- column III elements e.g., In, Al and Ga
- column VII elements e.g., Cl
- This latter phenomenon refers to the reduction of the effective volume, i.e., efficiency, due to the collapse of the internal electric field due to carrier trapping caused by the introduced dopants or other defects.
- the invention is a radiation detector made from a compound, or alloy, comprising: Cd x Zn ⁇ -x Te, where 0 ⁇ x ⁇ 1; an element from column III or column VII of the periodic table in a concentration about 10 to 10,000 atomic parts per billion; and an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in a concentration about 10 to 10,000 atomic parts per billion.
- the invention is also a method of forming a radiation detector compound, or alloy, comprising: (a) providing a mixture of Cd, Zn and Te; (b) heating the mixture of Cd, Zn and Te to a liquid state; (c) adding to the liquid mixture a first dopant that adds shallow level donors, i.e., electrons, to the top of an energy band gap of said mixture when it is solidified; (d) adding to the liquid mixture a second dopant that adds deep level donors and/or acceptors to the middle of said band gap of said mixture when it is solidified; and (e) solidifying said mixture including said first and second dopants to form the compound, or alloy.
- the first dopant is at least one element selected from one of column III or column VII of the periodic table. More specifically, the first dopant can be at least one element selected from the group consisting of B, Al, Ga, In, Tl, F, Cl, Br and I.
- the concentration of the first dopant in the compound, or alloy can be about 10 to 10,000 atomic parts per billion.
- the second dopant can be an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu having a concentration in the compound, or alloy, about 10 to 10,000 atomic parts per billion.
- the single figure is a perspective view of a portion of a crystal wafer including a plurality of picture elements or pixels formed into a pixilated array.
- Cd x Zn 1-x Te (0 ⁇ x ⁇ 1) in a controlled way in quantities appropriate to the growth method to reliably produce useful extrinsic or doped Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) with high resistivity (semi-insulating) and excellent carrier transport properties that fully depletes under applied bias.
- co-doping two different elements or dopants are incorporated to the Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) crystals during the crystal growth process.
- a first dopant formed from an element from column III of the periodic table namely, boron (B), aluminum (Al), gallium (Ga), indium (In), thallium (Tl), or column VII of the periodic table, namely, fluorine (F), chlorine (Cl), bromine (Br) or iodine (I) is introduced to Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) in the 10 atomic parts per billion (ppb) to 10,000 atomic ppb concentration range (10 - 10,000 atomic ppb) along with a second dopant, formed from a rare earth element, such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho),
- a rare earth element
- the resulting Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) crystals are referred to as co-doped by X-Y, where X equals any of the elements B, Al, Ga, In, Tl, F, Cl, Br and I, and Y equals any of the elements La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, i.e., co-doping by a Al-Er, In-Gd, Cl-Yb, etc.
- Intrinsic or undoped Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) varies in resistivity due to doping by the uncontrolled amount of residual impurities and native defects such as cadmium vacancies, dislocations and an intrinsic deep level defect incorporated into the material during crystal growth. Some of these crystal defects are ionized at ambient temperature and provide an ample supply of free charge carriers, e.g., electrons or holes, resulting in conductive or low-resistivity Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1). The concentration of free charge carriers in these undoped crystals is typically proportional to the concentration of the defects and their origins.
- acceptors and donors Defects and impurities that produce free holes and electrons are referred to as acceptors and donors, respectively.
- concentration of free charge carriers can be made proportional to the difference of the concentrations of acceptor and donor defects.
- the column III impurities B, Al, Ga, In and Tl
- column VII impurities F, Cl, Br and I
- the net carrier concentration equals the difference in the concentration of the column III impurity or the column VII impurity and the concentration of the cadmium vacancies.
- the net carrier concentration is typically reduced by 2 to 6 orders of magnitude. It is, however, difficult to precisely and reliably control the exact concentration of acceptor and donor defects to achieve a fully compensated, i.e., high resistivity > 10 10 Ohm-cm, material.
- resistivity in the 10 - 10 9 Ohm-cm range is achieved by column III or column VII impurity doping in Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1).
- this process does not produce satisfactory radiation detector performance, which is associated with the presence of deep level intrinsic defects.
- a second dopant is introduced in addition to the first dopant formed from a column III or column VII impurity during the growth process of Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) to achieve a material that has full electrical compensation, high-resistivity (semi-insulating), full depletion and excellent charge transport.
- the depletion properties of the detector as well as control of the electrical resistivity of Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) material can be controlled and a fully compensated material obtained.
- semi-insulating Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) with electrical resistivity exceeding 10 1 Ohm-cm is reliably and reproducibly achieved.
- the second dopant electrically compensates the residual net charge carriers given by the difference of the concentrations of acceptors, i.e., cadmium vacancies, and donors, i.e., column III or column VII impurities.
- acceptors i.e., cadmium vacancies
- donors i.e., column III or column VII impurities.
- Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) with resistivity at or near the theoretical maximum value is reliably achieved.
- column III or column VII impurities also combine with cadmium vacancies to form impurity- vacancy pairs commonly known and referred to as A-centers.
- the energy level of the cadmium vacancy defect is shifted to the lower energy level of the A-center.
- the lower energy of the new defect i.e., A-center, reduces the residency time of charge carriers or holes at the defect and improves the transport properties of carriers generated by external x- ray and gamma ray radiation.
- the performance of radiation detectors fabricated from the co-doped Cd x Zn 1-x Te (0 ⁇ x ⁇ 1) crystals is greatly improved.
- the high concentration of a dopant in a single dopant scheme masks the effects of the intrinsic deep level and does not passivate intrinsic deep level donors or acceptors thereby causing incomplete depletion of radiation detectors formed from Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) doped with a single dopant, space charge build up during operation of the device and the collapse of the internal electric field in the radiation detector commonly known as polarization.
- the co-doped semi-insulating Cd x Zn ⁇ -x Te (0 ⁇ x ⁇ 1) crystals discussed above can be grown from, without limitation, melt by high-pressure Bridgman, vapor phase transport, gradient freeze, and electro -dynamic gradient.
- a slice or wafer 2 of the crystal is removed therefrom.
- Wafer 2 can then be formed into a pixilated array where each picture element or pixel 4 is capable of converting incident radiation, such as x-rays and gamma rays, or incident particles, such as alpha or beta particles, into an electrical signal independent of every other pixel 4 of the array.
- incident radiation such as x-rays and gamma rays, or incident particles, such as alpha or beta particles
- wafer 2 can be a crystal that outputs an electrical signal in response to incident radiation or an incident particle, but which does not include a plurality of individual pixels 4.
- FIG. 1 An example of wafer 2 including a single pixel 4 isolated from the reminder of wafer 2 is shown in Fig. 1. However, this is not to be construed as limiting the invention since a planar crystal can be formed in any desired and manufacturable size and shape.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005510648A JP4549973B2 (en) | 2003-11-10 | 2003-11-10 | Radiation detector |
US10/578,057 US20070193507A1 (en) | 2003-11-10 | 2003-11-10 | Radiation detector |
PCT/US2003/035726 WO2005048357A1 (en) | 2003-11-10 | 2003-11-10 | Radiation detector |
EP03768821A EP1683204A4 (en) | 2003-11-10 | 2003-11-10 | Radiation detector |
AU2003291424A AU2003291424A1 (en) | 2003-11-10 | 2003-11-10 | Radiation detector |
IL175524A IL175524A0 (en) | 2003-11-10 | 2006-05-09 | Radiation detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2003/035726 WO2005048357A1 (en) | 2003-11-10 | 2003-11-10 | Radiation detector |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005048357A1 true WO2005048357A1 (en) | 2005-05-26 |
Family
ID=34589314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/035726 WO2005048357A1 (en) | 2003-11-10 | 2003-11-10 | Radiation detector |
Country Status (6)
Country | Link |
---|---|
US (1) | US20070193507A1 (en) |
EP (1) | EP1683204A4 (en) |
JP (1) | JP4549973B2 (en) |
AU (1) | AU2003291424A1 (en) |
IL (1) | IL175524A0 (en) |
WO (1) | WO2005048357A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8049178B2 (en) * | 2007-08-30 | 2011-11-01 | Washington State University Research Foundation | Semiconductive materials and associated uses thereof |
US8070987B2 (en) | 2006-03-03 | 2011-12-06 | Washington State University Research Foundation | Compositions of doped, co-doped and tri-doped semiconductor materials |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009042827A1 (en) * | 2007-09-28 | 2009-04-02 | Ev Products, Inc. | Variable pixel pitch x-ray imaging system |
JP5953116B2 (en) * | 2012-05-18 | 2016-07-20 | Jx金属株式会社 | Compound semiconductor crystal for radiation detection element, radiation detection element, and radiation detector |
JP6310794B2 (en) * | 2014-07-11 | 2018-04-11 | Jx金属株式会社 | Radiation detection element, radiation detector, and manufacturing method of radiation detection element |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950615A (en) * | 1989-02-06 | 1990-08-21 | International Solar Electric Technology, Inc. | Method and making group IIB metal - telluride films and solar cells |
US5187116A (en) * | 1989-07-05 | 1993-02-16 | Sharp Kabushiki Kaisha | Process for preparing electroluminescent device of compound semiconductor |
US5314651A (en) * | 1992-05-29 | 1994-05-24 | Texas Instruments Incorporated | Fine-grain pyroelectric detector material and method |
US6331705B1 (en) * | 1997-05-08 | 2001-12-18 | State Of Israel, Atomic Energy Commission | Room temperature solid state gamma or X-ray detectors |
US20020192929A1 (en) * | 2000-11-13 | 2002-12-19 | Bernard Pelliciari | Method for growing a solid type II-VI semiconductor material |
US20030209184A1 (en) * | 2002-03-05 | 2003-11-13 | Anne Kazandjian | Process for the production of CdXTe semiconductor crystals with high resistivity and resulting crystalline material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0195395B1 (en) * | 1985-03-22 | 1989-12-13 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Electroluminescent device |
JP3520613B2 (en) * | 1995-07-26 | 2004-04-19 | 株式会社島津製作所 | Driving method of radiation detector |
JP4547760B2 (en) * | 2000-02-28 | 2010-09-22 | 株式会社島津製作所 | Radiation detector and radiation imaging apparatus |
US7008559B2 (en) * | 2001-06-06 | 2006-03-07 | Nomadics, Inc. | Manganese doped upconversion luminescence nanoparticles |
EP1953801B1 (en) * | 2002-06-10 | 2010-08-11 | eV Products, Inc. | Radiation detector |
-
2003
- 2003-11-10 WO PCT/US2003/035726 patent/WO2005048357A1/en active Application Filing
- 2003-11-10 JP JP2005510648A patent/JP4549973B2/en not_active Expired - Lifetime
- 2003-11-10 AU AU2003291424A patent/AU2003291424A1/en not_active Abandoned
- 2003-11-10 EP EP03768821A patent/EP1683204A4/en not_active Withdrawn
- 2003-11-10 US US10/578,057 patent/US20070193507A1/en not_active Abandoned
-
2006
- 2006-05-09 IL IL175524A patent/IL175524A0/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950615A (en) * | 1989-02-06 | 1990-08-21 | International Solar Electric Technology, Inc. | Method and making group IIB metal - telluride films and solar cells |
US5187116A (en) * | 1989-07-05 | 1993-02-16 | Sharp Kabushiki Kaisha | Process for preparing electroluminescent device of compound semiconductor |
US5314651A (en) * | 1992-05-29 | 1994-05-24 | Texas Instruments Incorporated | Fine-grain pyroelectric detector material and method |
US6331705B1 (en) * | 1997-05-08 | 2001-12-18 | State Of Israel, Atomic Energy Commission | Room temperature solid state gamma or X-ray detectors |
US20020192929A1 (en) * | 2000-11-13 | 2002-12-19 | Bernard Pelliciari | Method for growing a solid type II-VI semiconductor material |
US20030209184A1 (en) * | 2002-03-05 | 2003-11-13 | Anne Kazandjian | Process for the production of CdXTe semiconductor crystals with high resistivity and resulting crystalline material |
Non-Patent Citations (1)
Title |
---|
See also references of EP1683204A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8070987B2 (en) | 2006-03-03 | 2011-12-06 | Washington State University Research Foundation | Compositions of doped, co-doped and tri-doped semiconductor materials |
US8049178B2 (en) * | 2007-08-30 | 2011-11-01 | Washington State University Research Foundation | Semiconductive materials and associated uses thereof |
US8283637B2 (en) | 2007-08-30 | 2012-10-09 | Washington State University Research Foundation | Semiconductive materials and associated uses thereof |
Also Published As
Publication number | Publication date |
---|---|
US20070193507A1 (en) | 2007-08-23 |
AU2003291424A1 (en) | 2005-06-06 |
IL175524A0 (en) | 2006-09-05 |
EP1683204A1 (en) | 2006-07-26 |
EP1683204A4 (en) | 2009-12-02 |
JP2007525812A (en) | 2007-09-06 |
JP4549973B2 (en) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fiederle et al. | Comparison of undoped and doped high resistivity CdTe and (Cd, Zn) Te detector crystals | |
US20120045887A1 (en) | Compositions of doped, co-doped and tri-doped semiconductor materials | |
KR20190096932A (en) | Compound Semiconductor And Method Of Manufacturing The Same | |
US7192481B2 (en) | Radiation detector | |
US20070193507A1 (en) | Radiation detector | |
US20090001277A1 (en) | GaTe semiconductor for radiation detection | |
Li et al. | A new method for growing detector-grade cadmium zinc telluride crystals | |
US7612345B2 (en) | Radiation detector crystal and method of formation thereof | |
Bourgoin et al. | Potential of thick GaAs epitaxial layers for pixel detectors | |
Lai et al. | Comparison of cadmium manganese telluride crystals grown by traveling heater method and vertical Bridgman method | |
Roy et al. | CdZnTeSe: A Promising Material for Radiation Detector Applications | |
Mycielski et al. | Very high quality crystals of wide-gap II-VI semiconductors: What for? | |
Terterian et al. | Uniformity and reproducibility studies of low-pressure-grown Cd 0.90 Zn 0.10 Te crystalline materials for radiation detectors | |
Roy et al. | Crystal growth of CdZnTeSe (CZTS) gamma detectors: a promising alternative to CdZnTe | |
Roy et al. | CdZnTeSe: An Emerging Material Toward Advancement of Radiation Detector and Substrate Applications | |
Roy et al. | CdZnTeSe: Recent Advances for Radiation Detector Applications | |
Egarievwe et al. | Advances in CdZnTe and CdMnTe semiconductors for detection of radiological and nuclear threats | |
Li et al. | New progress in large-size CZT single-crystal growth for nuclear radiation detectors | |
Camarda et al. | Crystal growth of CdZnTeSe (CZTS) gamma detectors: A promising alternative to CdZnTe | |
Solodin et al. | Study of point defects in CdTe: Mn crystals by electrical measurements supported by positron lifetime spectroscopy | |
Li et al. | Large-size CdZnTe (Zn= 10%) radiation detector materials and device performance | |
Littler et al. | RII spectroscopy of trap levels in bulk and LPE Hg1-xCdxTe | |
Yatskiv et al. | Particle detectors based on semiconducting InP epitaxial layers | |
He et al. | II–VI Semiconductors and their device applications | |
Wei et al. | Band coupling model of electron and hole mediated ferromagnetism in semiconductors: the case of GaN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 175524 Country of ref document: IL Ref document number: 2005510648 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003768821 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003768821 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007193507 Country of ref document: US Ref document number: 10578057 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10578057 Country of ref document: US |