WO2005045582A2 - Modifying collection-value and scalar valued columns in a single statement - Google Patents
Modifying collection-value and scalar valued columns in a single statement Download PDFInfo
- Publication number
- WO2005045582A2 WO2005045582A2 PCT/US2004/024522 US2004024522W WO2005045582A2 WO 2005045582 A2 WO2005045582 A2 WO 2005045582A2 US 2004024522 W US2004024522 W US 2004024522W WO 2005045582 A2 WO2005045582 A2 WO 2005045582A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collection
- update
- values
- statement
- column
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/40—Data acquisition and logging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/235—Update request formulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2291—User-Defined Types; Storage management thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/289—Object oriented databases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99932—Access augmentation or optimizing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99933—Query processing, i.e. searching
- Y10S707/99934—Query formulation, input preparation, or translation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99941—Database schema or data structure
- Y10S707/99944—Object-oriented database structure
Definitions
- the present invention relates to database systems and, more particularly, to a system and method for using nested relational SQL language extensions to modify tables with a hierarchical structure (such as nested tables and tables that store complex-structured objects or XML) in arbitrary ways in one step and for providing the mechanisms (such as change descriptor and leveraging of query optimization and query execution techniques) to achieve complex and partial updates efficiently.
- a hierarchical structure such as nested tables and tables that store complex-structured objects or XML
- the mechanisms such as change descriptor and leveraging of query optimization and query execution techniques
- the SQL query language provides a user with the ability to query (and modify) tabular data stored using the relational data model.
- the relational data model dictates that each cell in a table (a column of a row) is a single scalar (or atomic) value.
- the structured query language (SQL) is an American National Standards Institute (ANSI) standard used to communicate with a relational database. SQL statements are used to perform tasks such as update data or retrieve data from a relational database. Although many database systems use SQL, many of them also have their own additional proprietary extensions that are usually only used on their system.
- the trigger code may include references to parent values; however, the triggers are designed to fire when a row of a database table or a table view is updated, inserted or deleted. In other words, only a single row is updated at a time. This process is slow and tedious and does not permit updates at any designated nested level.
- US Patent 6,493,708 discloses a mechanism for defining a hierarchical dimension, the various levels thereof, and the relationships among the levels using a CREATE DIMENSION statement that includes various LEVEL statements to identify the levels of the hierarchy.
- a dimension table embeds the hierarchical relationships between granules in various levels of the dimension, assuming that the levels go from a finer to a coarser level.
- the present invention meets the above-mentioned needs in the art by providing a new way to update collection- valued columns in a nested table using a nested extension of the SQL UPDATE statement.
- the proposed extension uses syntax and semantics to modify collection- valued columns that is analogous to the syntax and semantics of the conventional UPDATE statement that is used to modify scalar- valued columns of the table (called the outer UPDATE). This is desirable since using the same syntactic and semantic constructs as the table at the outer level allows an existing implementation that processes modifications to relational tables to reuse its implementation techniques for processing updates to modify collection- valued columns as well.
- UPDATE extensions in accordance with the invention enable the specification of updates to nested collections embedded at arbitrary levels of depth in the hierarchy.
- the new syntax is embedded inside the outer UPDATE statement in a way that parallels the structure of the data itself.
- the syntax thus maps more directly to the user's conceptual model of the data and is hence easier to understand.
- the proposed extension to the UPDATE statement allows updates to both the collection-valued columns and to other scalar- valued columns simultaneously using the same statement which allows for efficient processing of the modification.
- a relational database system that implements UPDATE statements using change descriptors in accordance with the invention includes a parser that parses a database modification (query) statement and produces a logical description of changes to the table as specified by the UPDATE statement, a query optimizer that produces the execution algorithm that will perform the modifications, and finally a query execution engine that implements the execution algorithm.
- the execution algorithm consists of the following steps: (i) determine the rows in the complex structured type column (e.g., nested table) that need to be updated and calculate the new values for the columns in the complex structured type column to be updated, and (ii) apply the calculated new values to the complex structured type column.
- step (ii) uses a data structure (change descriptor) that represents an aggregation of changes to the values in the collection- valued column and the location of the values to be updated in the hierarchy of the complex structured type column.
- the query execution engine reads the change descriptor and applies the changes as described by it to the collection- valued columns in addition to using simple scalar updates for the scalar valued columns.
- the method for implementing the UPDATE extensions uses a technique, called the change descriptor, which is a data structure that aggregates all changes, both scalar and collection- valued, into a single value that provides a complete description of the changes to be made in a collection- valued column.
- the change descriptor tells the query execution engine what to change and where and is packaged as a conventional scalar but with all the hierarchical information needed to modify the scalars in the designated hierarchical levels.
- the change descriptor thus enables the efficient application of multiple updates at various granularity levels in a single operation.
- the change descriptor also enables the implementation of efficient index maintenance algorithms by updating only the indexes affected by the specific scalar fields modified at various nesting levels by the SET clause in the UPDATE operation and also updating only those rows of the index that correspond to the actual elements that got modified by the UPDATE operation.
- the change descriptor also has the benefit of separating the computation of the changes from their application itself (known as Halloween Protection), i.e. to prevent the update statement from side effecting itself. This could happen if the computation and the application of the changes were not strongly separated, because the first phase could be improperly affected, as a result of seeing the intermediate changes to the data the second phase might have produced.
- the invention thus enables the use of nested relational SQL language extensions to modify tables with a hierarchical structure (such as nested tables and tables that store complex structured objects or XML) in arbitrary ways in one step and provides the mechanisms (change descriptor, leveraging of query optimization and query execution techniques) to achieve complex and partial updates efficiently.
- the SQL language extensions of the invention also enable rich and efficient support for managing and querying complex structured type relational or XML data in a database adapted to implement the invention.
- FIG. 1 illustrates a nested table update of the Salary scalar which is implemented by enumerating the rows that satisfy the predicate in the query and calculating the new value of the Salary column for each row.
- Figures 2-4 illustrate three examples of nested UPDATE statements in accordance with the invention including diagrams outlining the change descriptor content and the effects of its application.
- Figure 5 illustrates the steps of parsing, optimizing and executing a regular update of a table using a conventional UPDATE instruction in a conventional SQL Server system.
- Figure 6 illustrates the nested update case of the invention whereby the query execution process is modified to compute the change descriptor in accordance with the invention.
- a complex structured type consists of a set of fields, properties and methods. Each field or property can be one of: - a scalar type; - a complex structured type itself; - a multiset in which each element is a complex structured type.
- Complex structured types are restricted to be non-recursive. In other words, a complex structured type cannot include a property of field of that same type.
- a complex structured type as defined herein includes nested tables, collection- valued tables, and other multidimensional data structures.
- Multisets A multiset is a type of collection. It is a set of unordered objects with possible duplicates. The multiset is strongly typed in the sense that it defines the type of the elements it contains. This document will use the notation Multiset ⁇ T> to denote a multiset of elements of type T.
- a complex structured type may be represented canonically with the following syntax.
- the AddressType has a field called PhoneNos which is collection-valued and is typed Multiset ⁇ PhoneNoType>: class AddressType ⁇ SqlString Street, SqlString City, SqlString Country, Multiset ⁇ PhoneNoType> PhoneNos ⁇
- PhoneNoType is defined as class PhoneNoType ⁇ SqlString AreaCode, SqlString Number, SqlString Extension ⁇
- the present invention provides a technique for providing data modification capabilities for tables with complex structures (i.e., tables that contain both structured columns and multiset- valued columns).
- these features are part of a SQL Server engine for updating data stored in a relational database.
- the present invention is efficiently used in conjunction with applications that often have a data model that is more complex than a INF (or "flat") relational model.
- the data types that they model have complex internal structure and/or include multisets of values. Typically, such applications model this data using a set of flat tables.
- Complex structured types and multisets provide a way to model such data whose logical schema maps more naturally to the original data model.
- the present invention may be used to update relational data in multisets that are embedded inside such a complex structured type.
- the invention also includes the ability to modify multiset data with the level of richness and expressive power that SQL provides at the outer most level on flat tables.
- an SQL statement is being enhanced to support modifications to collection- valued columns (multisets) of a table.
- the SQL statement that is being enhanced to support modifications to collection- valued columns of a table in accordance with the invention is the UPDATE statement.
- the general format of the conventional UPDATE statement is as follows, where syntax elements surrounded by o are non-terminals that are expanded later in the description:
- WHERE ⁇ search-condition> where ⁇ target-table> is the table being modified, ⁇ scalar-column-modification> specifies the modification of a scalar- valued column and is of the following form:
- ⁇ target-columnl> ⁇ value-expression>
- ⁇ target-column> is the name of the column being modified
- ⁇ value- expression> is a scalar valued expression that supplies the new value to which ⁇ target-column> should be modified.
- a ⁇ collection-column-modification> is one of the following forms: (UPDATE ⁇ collection-valued-column> SET ... WHERE ⁇ search-condition>)
- INSERT/UPDATE/DELETE syntax that is similar to INSERT/UPDATE/DELETE against the outer-table.
- the SET clause of the inner UPDATE can in turn specify modifications to collection- valued columns inside the outer collection- valued column, and thus enables modifications to collection- valued columns in any level of nesting using the same recursively nested syntactic approach.
- modifications on collection-valued columns are modeled as UPDATES on the outer table by embedding the LNSERT/UPDATE/DELETE in the SET clause of the outer UPDATE statement.
- the data structure that aggregates all changes, both scalar and collection- alued, into a single value that provides a complete description of the changes to be made in a complex-structured, object- valued or collection- valued column in accordance with the invention is referred to herein as a "change descriptor.”
- the change descriptor tells the UPDATE instruction what to change and where in the complex structured type hierarchy and is packaged as a conventional scalar so as to permit the UPDATE instruction to update scalars in the designated hierarchical levels.
- the change descriptor enables the implementation of efficient index maintenance algorithms by updating only the indexes affected by scalar or collection- valued fields affected by the set clause in the UPDATE operation and also updating only those rows of the index that correspond to the actual elements of the collection that got modified by the UPDATE operation.
- the present invention thus uses a change descriptor to implement complex and partial updates to table columns that are not scalar, but rather have a hierarchical structure.
- Examples of the implementation of the change descriptor will be provided below with respect to updates to an Employees table, with the scalar- valued columns: FirstName, LastName and EmployeelD, Salary and a collection-valued column called Addresses which stores a set of addresses. Each address in the collection- valued column has the following scalar- valued columns: Street, City, State, ZipCode and a collection-valued column called PhoneNos. For example:
- Such UPDATES are processed using two phases. During the first phase, the rows to be changed are enumerated and the new values for the columns to be modified are calculated. This process produces a stream of data representing the changes to be performed, called herein a delta stream. In the second phase, the columns are modified as per this delta stream.
- UPDATE statements modify parts of a complex-structured collection- valued column using a variation of the same mechanism using two phases. In the first phase, in accordance with the invention, the delta stream uses a new data structure that aggregates all the changes to the collection valued column.
- the first phase of the update will be implemented by enumerating the rows that satisfy the predicate in the query and calculating the new value of the Salary column for each of them. This will produce the delta stream for the update.
- the second phase includes the step of applying the delta stream to the table itself, so as to perform the previously gathered changes.
- the change descriptor technique is a way to implement finegrained, rather than full, changes to complex-structured or collection-valued columns, extending the concept of delta stream mentioned above.
- the set of changes to be applied to a collection- valued column as part of a nested update can be seen as a delta stream in itself. This delta stream is nested inside the top-most delta stream representing the changes to the table. Changes to collection- valued columns contained inside a collection- valued column again can be represented with a further nested delta stream.
- the change descriptor is a compact and scalar representation of the nested delta streams. Representing it as a scalar value allows it to be seamlessly gathered together with the other new values of regular table columns during the generation of the top-most, table level delta stream. This allows scalar and multi-level nested updates to be mixed together in the same statement.
- the second statement ( Figure 3) is similar, but it also updates the AreaCode field inside some of phones contained inside the addresses being updated. This shows the ability to modify scalar values in 3 levels of the hierarchy in the same statement (Salary in level 1, Zipcode in level 2 and AreaCode in level 3).
- the code for implementing the change descriptors in accordance with the invention operates to build the change descriptors and to consume the change descriptors.
- the change descriptors are built from the bottom up in the hierarchy, and operators receiving the change descriptors break them down in accordance with the syntax set forth in detail above.
- the syntax specifies the update location in the hierarchical nested table structure and maintains a hierarchical record of the multi-valued stored data. Since the change descriptor embodies location information as well as scalar information, hierarchical data within a cell may be updated using a single step in the query execution algorithm as in the examples above.
- Figures 5 and 6 illustrate the implementation of the change descriptors of the invention in the examples of Figures 2-4 above.
- Figure 5 illustrates the steps of parsing, optimizing and executing a regular update of a cell using a conventional UPDATE instruction in a conventional SQL Server system.
- Figure 6 illustrates the nested update case of the invention whereby the query execution process is modified to compute the change descriptor in accordance with the syntax above.
- the relational database system includes a SQL parser that parses the received SQL statement and produces a logical description of what the user requires to be done by the database (e.g., insert, update, or delete data) and a query optimizer that produces an execution algorithm using techniques known in the art.
- the conventional query execution of Figure 5 is modified to further include the step of computing the change descriptor for making each of the changes in the nested tables set forth in the change descriptor.
- the query execution engine in accordance with the invention is enhanced to read the change descriptor and apply the changes as described by the change descriptor to the table.
- the Addresses are updated in addition to the salary. Once the changes are gathered, they are applied to the Employees table in the database (not shown) that is associated with the SQL Server system of the invention.
- the change descriptor of the invention enables the implementation of efficient index maintenance algorithms by updating only the indexes affected by the specific scalar fields modified at various nesting levels by the SET clause in the UPDATE operation and also updating only those rows of the index that correspond to the actual elements that got modified by the UPDATE operation.
- the change descriptor also has the benefit of separating the computation of the changes from their application (known as Halloween Protection), i.e. to prevent the update statement from side effecting itself. This could happen if the computation and the application of the changes were not strongly separated in two separate steps, because the first phase could be improperly affected, as a result of seeing the intermediate changes to the data the second phase might have produced.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020057012345A KR101085686B1 (en) | 2003-10-24 | 2004-07-29 | Sql language extensions for modifying collection-valued and scalar valued columns in a single statement |
JP2006536590A JP4604041B2 (en) | 2003-10-24 | 2004-07-29 | An extension to the SQL language to modify set-valued and scalar-valued columns with a single statement |
EP04779537A EP1597655A4 (en) | 2003-10-24 | 2004-07-29 | Sql language extensions for modifying collection-valued and scalar valued columns in a single statement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/693,302 US7433886B2 (en) | 2003-10-24 | 2003-10-24 | SQL language extensions for modifying collection-valued and scalar valued columns in a single statement |
US10/693,302 | 2003-10-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005045582A2 true WO2005045582A2 (en) | 2005-05-19 |
WO2005045582A3 WO2005045582A3 (en) | 2005-12-29 |
Family
ID=34522359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/024522 WO2005045582A2 (en) | 2003-10-24 | 2004-07-29 | Modifying collection-value and scalar valued columns in a single statement |
Country Status (6)
Country | Link |
---|---|
US (1) | US7433886B2 (en) |
EP (1) | EP1597655A4 (en) |
JP (1) | JP4604041B2 (en) |
KR (1) | KR101085686B1 (en) |
CN (1) | CN100474286C (en) |
WO (1) | WO2005045582A2 (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7890532B2 (en) * | 2004-12-15 | 2011-02-15 | Microsoft Corporation | Complex data access |
US7624374B2 (en) * | 2005-08-30 | 2009-11-24 | Microsoft Corporation | Readers and scanner design pattern |
US20070174305A1 (en) * | 2006-01-06 | 2007-07-26 | International Business Machines Corporation | Method to reduce the number of copies of values in procedural language |
US8656272B2 (en) * | 2006-04-28 | 2014-02-18 | Microsoft Corporation | Persisting instance-level report customizations |
US20080071730A1 (en) * | 2006-09-14 | 2008-03-20 | Roland Barcia | Method and Apparatus to Calculate Relational Database Derived Fields During Data Modification |
US8387004B2 (en) * | 2007-02-09 | 2013-02-26 | Microsoft Corporation | Compositional application programming interface and literal syntax |
US8595231B2 (en) * | 2007-04-26 | 2013-11-26 | International Business Machines Corporation | Ruleset generation for multiple entities with multiple data values per attribute |
US7676525B2 (en) * | 2007-07-02 | 2010-03-09 | Microsoft Corporation | Efficient query processing of merge statement |
US7974981B2 (en) | 2007-07-19 | 2011-07-05 | Microsoft Corporation | Multi-value property storage and query support |
US8200668B2 (en) * | 2008-06-24 | 2012-06-12 | Microsoft Corporation | Scalar representation for a logical group of columns in relational databases |
US10534606B2 (en) | 2011-12-08 | 2020-01-14 | Oracle International Corporation | Run-length encoding decompression |
US9697174B2 (en) | 2011-12-08 | 2017-07-04 | Oracle International Corporation | Efficient hardware instructions for processing bit vectors for single instruction multiple data processors |
US9792117B2 (en) | 2011-12-08 | 2017-10-17 | Oracle International Corporation | Loading values from a value vector into subregisters of a single instruction multiple data register |
US9600522B2 (en) * | 2012-08-20 | 2017-03-21 | Oracle International Corporation | Hardware implementation of the aggregation/group by operation: filter method |
US9563658B2 (en) | 2012-08-20 | 2017-02-07 | Oracle International Corporation | Hardware implementation of the aggregation/group by operation: hash-table method |
US9727606B2 (en) | 2012-08-20 | 2017-08-08 | Oracle International Corporation | Hardware implementation of the filter/project operations |
US9514187B2 (en) | 2012-09-28 | 2016-12-06 | Oracle International Corporation | Techniques for using zone map information for post index access pruning |
US8996544B2 (en) | 2012-09-28 | 2015-03-31 | Oracle International Corporation | Pruning disk blocks of a clustered table in a relational database management system |
US9430550B2 (en) | 2012-09-28 | 2016-08-30 | Oracle International Corporation | Clustering a table in a relational database management system |
US10642837B2 (en) | 2013-03-15 | 2020-05-05 | Oracle International Corporation | Relocating derived cache during data rebalance to maintain application performance |
CN103177123B (en) * | 2013-04-15 | 2016-05-11 | 昆明理工大学 | A kind of method that improves database retrieval information correlation |
US11113054B2 (en) | 2013-09-10 | 2021-09-07 | Oracle International Corporation | Efficient hardware instructions for single instruction multiple data processors: fast fixed-length value compression |
US9430390B2 (en) | 2013-09-21 | 2016-08-30 | Oracle International Corporation | Core in-memory space and object management architecture in a traditional RDBMS supporting DW and OLTP applications |
US10025822B2 (en) | 2015-05-29 | 2018-07-17 | Oracle International Corporation | Optimizing execution plans for in-memory-aware joins |
US10067954B2 (en) | 2015-07-22 | 2018-09-04 | Oracle International Corporation | Use of dynamic dictionary encoding with an associated hash table to support many-to-many joins and aggregations |
US10055358B2 (en) | 2016-03-18 | 2018-08-21 | Oracle International Corporation | Run length encoding aware direct memory access filtering engine for scratchpad enabled multicore processors |
US10061714B2 (en) | 2016-03-18 | 2018-08-28 | Oracle International Corporation | Tuple encoding aware direct memory access engine for scratchpad enabled multicore processors |
US10061832B2 (en) | 2016-11-28 | 2018-08-28 | Oracle International Corporation | Database tuple-encoding-aware data partitioning in a direct memory access engine |
US10402425B2 (en) | 2016-03-18 | 2019-09-03 | Oracle International Corporation | Tuple encoding aware direct memory access engine for scratchpad enabled multi-core processors |
US10599488B2 (en) | 2016-06-29 | 2020-03-24 | Oracle International Corporation | Multi-purpose events for notification and sequence control in multi-core processor systems |
US10380058B2 (en) | 2016-09-06 | 2019-08-13 | Oracle International Corporation | Processor core to coprocessor interface with FIFO semantics |
US10783102B2 (en) | 2016-10-11 | 2020-09-22 | Oracle International Corporation | Dynamically configurable high performance database-aware hash engine |
US10176114B2 (en) | 2016-11-28 | 2019-01-08 | Oracle International Corporation | Row identification number generation in database direct memory access engine |
US10459859B2 (en) | 2016-11-28 | 2019-10-29 | Oracle International Corporation | Multicast copy ring for database direct memory access filtering engine |
US10725947B2 (en) | 2016-11-29 | 2020-07-28 | Oracle International Corporation | Bit vector gather row count calculation and handling in direct memory access engine |
US10656964B2 (en) | 2017-05-16 | 2020-05-19 | Oracle International Corporation | Dynamic parallelization of a calculation process |
US10719372B2 (en) | 2017-05-22 | 2020-07-21 | Oracle International Corporation | Dynamic parallelization of data loading |
US11086876B2 (en) | 2017-09-29 | 2021-08-10 | Oracle International Corporation | Storing derived summaries on persistent memory of a storage device |
CN109725898B (en) * | 2018-11-30 | 2024-05-28 | 平安科技(深圳)有限公司 | Configuration method and device of credential rules, computer equipment and storage medium |
US11748352B2 (en) * | 2021-08-26 | 2023-09-05 | International Business Machines Corporation | Dynamical database system resource balance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6122644A (en) | 1998-07-01 | 2000-09-19 | Microsoft Corporation | System for halloween protection in a database system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412804A (en) * | 1992-04-30 | 1995-05-02 | Oracle Corporation | Extending the semantics of the outer join operator for un-nesting queries to a data base |
US6016497A (en) * | 1997-12-24 | 2000-01-18 | Microsoft Corporation | Methods and system for storing and accessing embedded information in object-relational databases |
US6460043B1 (en) * | 1998-02-04 | 2002-10-01 | Microsoft Corporation | Method and apparatus for operating on data with a conceptual data manipulation language |
JP4346158B2 (en) * | 1999-06-28 | 2009-10-21 | 株式会社東芝 | Data generation apparatus and computer-readable storage medium storing program |
US6484179B1 (en) * | 1999-10-25 | 2002-11-19 | Oracle Corporation | Storing multidimensional data in a relational database management system |
US6564203B1 (en) * | 2000-02-24 | 2003-05-13 | Oracle Corporation | Defining instead-of triggers over nested collection columns of views |
US6493708B1 (en) * | 2000-03-02 | 2002-12-10 | Oracle Corporation | Techniques for handling function-defined hierarchical dimensions |
WO2002059793A2 (en) * | 2000-10-31 | 2002-08-01 | Michael Philip Kaufman | System and method for generating automatic user interface for arbitrarily complex or large databases |
US6892204B2 (en) * | 2001-04-16 | 2005-05-10 | Science Applications International Corporation | Spatially integrated relational database model with dynamic segmentation (SIR-DBMS) |
-
2003
- 2003-10-24 US US10/693,302 patent/US7433886B2/en not_active Expired - Fee Related
-
2004
- 2004-07-29 WO PCT/US2004/024522 patent/WO2005045582A2/en active Application Filing
- 2004-07-29 CN CNB2004800032581A patent/CN100474286C/en not_active Expired - Fee Related
- 2004-07-29 JP JP2006536590A patent/JP4604041B2/en not_active Expired - Fee Related
- 2004-07-29 KR KR1020057012345A patent/KR101085686B1/en active IP Right Grant
- 2004-07-29 EP EP04779537A patent/EP1597655A4/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6122644A (en) | 1998-07-01 | 2000-09-19 | Microsoft Corporation | System for halloween protection in a database system |
Non-Patent Citations (3)
Title |
---|
LARSON, P.-A.: "The Data Model and Query Language of LauRel", IEEE DATA ENGINEERING BULLETIN, vol. 11, no. 3, September 1988 (1988-09-01), pages 23 - 30, XP002491550 |
SACKS-DAVIS R ET AL.: "Atlas: a nested relational database system for text applications", IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING USA, vol. 7, 3 June 1995 (1995-06-03), pages 454 - 470, XP002491551, DOI: doi:10.1109/69.390250 |
See also references of EP1597655A4 |
Also Published As
Publication number | Publication date |
---|---|
US7433886B2 (en) | 2008-10-07 |
KR101085686B1 (en) | 2011-11-22 |
CN1875358A (en) | 2006-12-06 |
US20050091256A1 (en) | 2005-04-28 |
JP2007509422A (en) | 2007-04-12 |
EP1597655A4 (en) | 2008-12-10 |
WO2005045582A3 (en) | 2005-12-29 |
CN100474286C (en) | 2009-04-01 |
JP4604041B2 (en) | 2010-12-22 |
KR20060112191A (en) | 2006-10-31 |
EP1597655A2 (en) | 2005-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7433886B2 (en) | SQL language extensions for modifying collection-valued and scalar valued columns in a single statement | |
CA2259544C (en) | Extensible indexing | |
US7016910B2 (en) | Indexing, rewriting and efficient querying of relations referencing semistructured data | |
US7178100B2 (en) | Methods and apparatus for storing and manipulating variable length and fixed length data elements as a sequence of fixed length integers | |
US5511186A (en) | System and methods for performing multi-source searches over heterogeneous databases | |
Linnemann et al. | Design and Implementation of an Extensible Database Management System Supporting User Defined Data Types and Functions. | |
US5778355A (en) | Database method and apparatus for interactively retrieving data members and related members from a collection of data | |
AU2005203667B2 (en) | Durable storage of .NET data types and instances | |
US20010018690A1 (en) | Integrating both modifications to an object model and modifications to a databse into source code by an object-relational mapping tool | |
ZA200200389B (en) | A database system for viewing effects of changes to a index for a query optimization plan. | |
US7509332B1 (en) | Customized indexes for user defined data types | |
US20030154189A1 (en) | Indexing, rewriting and efficient querying of relations referencing spatial objects | |
US6360218B1 (en) | Compact record format for low-overhead databases | |
US7213014B2 (en) | Apparatus and method for using a predefined database operation as a data source for a different database operation | |
US7287216B1 (en) | Dynamic XML processing system | |
EP1192561A1 (en) | Database management system with capability of fine-grained indexing and querying | |
US6845376B1 (en) | Method for accessing hierarchical data via JDBC | |
Fiebig et al. | Natix: A technology overview | |
Pal et al. | XML support in Microsoft SQL Server 2005 | |
Chen | An object-oriented database system for efficient information retrieval applications | |
US10025588B1 (en) | Parsing of database queries containing clauses specifying methods of user-defined data types | |
Leymann | UDH: A universal relation system | |
Liang et al. | An object-oriented database management system for computer-aided design of tall buildings | |
Ter Bekke | Semantic requirements for databases in casual environments | |
Dehainsala et al. | Managing instance data in ontologybased databases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2443/DELNP/2005 Country of ref document: IN Ref document number: 2446/DELNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006536590 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2004779537 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004779537 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057012345 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 20048032581 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2004779537 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057012345 Country of ref document: KR |