WO2005044382A1 - Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement - Google Patents
Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement Download PDFInfo
- Publication number
- WO2005044382A1 WO2005044382A1 PCT/US2004/035651 US2004035651W WO2005044382A1 WO 2005044382 A1 WO2005044382 A1 WO 2005044382A1 US 2004035651 W US2004035651 W US 2004035651W WO 2005044382 A1 WO2005044382 A1 WO 2005044382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ofthe
- ion current
- level
- egr
- target
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 192
- 238000000034 method Methods 0.000 title claims abstract description 105
- 230000006835 compression Effects 0.000 title claims description 17
- 238000007906 compression Methods 0.000 title claims description 17
- 238000005259 measurement Methods 0.000 title description 7
- 238000002347 injection Methods 0.000 claims abstract description 35
- 239000007924 injection Substances 0.000 claims abstract description 35
- 150000002500 ions Chemical class 0.000 claims description 299
- 239000000446 fuel Substances 0.000 claims description 79
- 239000000203 mixture Substances 0.000 claims description 23
- 239000002283 diesel fuel Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 230000009977 dual effect Effects 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 claims 4
- 238000012935 Averaging Methods 0.000 claims 3
- 230000000979 retarding effect Effects 0.000 claims 3
- 239000000126 substance Substances 0.000 claims 1
- 230000007246 mechanism Effects 0.000 abstract description 4
- 230000000875 corresponding effect Effects 0.000 description 15
- 238000001514 detection method Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 239000007921 spray Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000013400 design of experiment Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- PBZHKWVYRQRZQC-UHFFFAOYSA-N [Si+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound [Si+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PBZHKWVYRQRZQC-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B47/00—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
- F02B47/04—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
- F02B47/08—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/12—Engines characterised by fuel-air mixture compression with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/021—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D37/00—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
- F02D37/02—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0052—Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3035—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates generally to ignition systems with ionization feedback in diesel engines, and more particularly relates to such systems in reciprocating compression ignition engines in which cold start combustion is started with a plasma discharge ignition system.
- a second consideration is that the controlled combustion in diesel engines occurs when the fuel and air exist at a near stoichiometric equivalence ratio which leads to high temperatures.
- the high temperatures cause high NO x emissions.
- Lean burn spark ignited engines burn their fuel at much leaner equivalence ratios which results in significantly lower temperatures leading to much lower NO x emissions.
- Stoichiometric spark ignited engines have high NO x emissions due to the high flame temperatures resulting from stoichiometric combustion.
- the virtually oxygen free exhaust allows the NO x emissions to be reduced to very low levels with a three-way catalyst.
- HCCI homogeneous charge compression ignition
- HCCI combustion is characterized in that the vast majority ofthe fuel is sufficiently premixed with the air to form a combustible mixture throughout the charge by the time of ignition and throughout combustion and combustion is initiated by compression ignition.
- the timing ofthe fuel delivery for example the timing of injection, in a HCCI engine does not strongly affect the timing of ignition.
- the early delivery of fuel in a HCCI engine results in a premixed charge that is very well mixed, and preferably nearly homogeneous, thus reducing emissions, unlike the stratified charge combustion of a diesel, which generates higher emissions.
- HCCI combustion is characterized in that most ofthe mixture is significantly leaner than stoichiometric to reduce emissions, which is unlike the typical diesel engine cycle in which a large portion, or all, of the mixture exists in a rich state during combustion
- ion current detectors are typically incorporated into glow plugs.
- an electric conductive layer made of platinum is formed on a surface ofthe heating element ofthe glow plug and is electrically insulated from the combustion chamber and the glow plug clamping fixture.
- glow plugs ignition and combustion of fuel are generally promoted by a heating action ofthe glow plug heating element when the engine starts at low temperature.
- the heating state ofthe heating element usually continues after warm-up ofthe engine has been completed until the combustion is stabilized (generally, referred to as "afterglow”). After completion ofthe afterglow, the heating action ofthe glow plug is stopped and the process of detecting ion current is started.
- a flow of leakage current may be created through the adhered carbon even if no ion is derived from the combustion gases.
- the ion current detected shows a waveform different from a desired one due to occurrence ofthe leakage current, and such an incorrect detection result causes deterioration in the accuracy of ignition stage and flame failure detections.
- the electrode is almost completely exposed into the combustion chamber and the space between the housing and the electrode is narrow. For this reason, there is a danger that the electrode is shorted to the ground and the housing is made conductive due to adhesion of carbon to the electrode surface, resulting in an error in detecting ion current.
- an object ofthe present invention is to reliably detect ionization signals in compression ignition engines and dual mode engines and use the ionization signals as feedback in the control ofthe engines.
- the foregoing object is among those attained by the invention, which provides a method and apparatus for reliably detecting ionization current and using the ionization current as feedback in the control ofthe invention.
- the ion sensor may be a spark plug type of sensor that is shielded completely or partially from direct impingement of fuel spray and the engulfment of a diffusive flame or a sensing apparatus integrated into the fuel injector of the combustion chamber.
- the spark plug sensor may also be used to replace glow plugs to provide a cold start mechanism for diesel ignition.
- the apparatus In addition to using the apparatus to provide cold starts for diesel ignition, the apparatus is used in a control loop that controls the amount of exhaust gas recirculation (EGR) into an engine based on the ion sensor's measurement of ionization current flowing in the combustion chamber.
- EGR exhaust gas recirculation
- FIG. 1 is a schematic view of a plasma ignition control ofthe present invention
- FIG. 2 is a block diagram view ofthe a portion ofthe plasma ignition control of
- FIG. 1 A first figure.
- FIG. 3 is a graphical illustration of pressure and ionization current versus engine piston crank angle at various levels of NO x ;
- FIG. 4 is a graphical illustration ofthe first peak of ionization current versus engine-out emissions at various loads
- FIGS. 5-8 are graphical illustrations of pressure and ionization current versus engine piston crank angle for various conditions of speed and load;
- FIG. 9 is a graphical illustration of pressure and ionization current versus engine piston crank angle from plug fouling
- FIG. 10a is a schematic view of an embodiment of an ion sensor used with the present invention showing the ion sensor during a fuel spray impingement;
- FIG. 10b is a schematic ofthe ion sensor of FIG. 10a during a diffusive flame engulfment
- FIG. 11 a is an isometric view of an end of a standard type of spark plug
- FIG. 1 lb is an isometric view ofthe spark plug of FIG. 1 la with a shroud attached;
- FIG. 12a is a schematic view of an alternate embodiment of an ion sensor used with the present invention in a sleeve integrated into a fuel injector;
- FIG. 12b is an enlarged view of the ion sensor of FIG. 12a;
- FIG. 13 is a schematic view of a further embodiment of an ion sensor used with the present invention integrated into the nozzle tip of a fuel injector;
- FIG. 14 is a graphical illustration of pressure and ionization current versus engine piston crank angle at various levels of EGR;
- FIG. 15 is a flow chart illustrating the steps to control EGR based on ionization current in accordance with the teachings ofthe present invention.
- FIG. 16a is a graphical representation of pressure and ionization current versus engine piston crank angle for a normal combustion event
- FIG. 16b is a graphical representation of pressure and ionization current versus engine piston crank angle for a misfire event
- FIG. 16c is a graphical illustration of experimental data showing a correlation between indicated mean effective pressure of an engine cylinder and misfire that is used in sizing the floating bounded space ofthe present invention
- FIG. 17 is a flow chart illustrating the steps to prevent misfire using a spark plug type of ion sensor
- FIG. 18 is a graphical illustration of average ion signals and average pressure curves with injector timing changes of 2 degrees per step in a diesel engine having a load of
- FIG. 19 is a flow chart illustrating the steps to control injection timing using ionization current in accordance with the teachings ofthe present invention.
- FIG. 20 is a graphical illustration of average ion signals and average pressure curves with various EGR levels in an engine having a load of 50 Nm.
- the present invention provides an apparatus and method to detect combustion ion current in a diesel combustion engine and perform various control functions using ionization signals such as EGR (Exhaust Gas Recirculation) control, diesel injection timing control from ignition, and cold starts of diesel engines.
- EGR Exhaust Gas Recirculation
- diesel injection timing control from ignition and cold starts of diesel engines.
- compression ignition engine refers to typical reciprocating diesel engines, HCCI engines and dual mode engines.
- FIG. 1 a system 100 exemplifying the operating environment ofthe present invention is shown.
- the system includes an ionization module 102, a plasma driver 104, an engine electronic control unit (ECU) 106, and a compression ignition engine.
- the ionization module 102 communicates with the ECU 106 and other modules via the CAN (Controller Area Network) bus 108.
- the compression ignition engine includes engine cylinder 110 (e.g., a combustion chamber) that has a piston 112, an intake valve 114 and one or more exhaust valves 116.
- An intake manifold 118 is in communication with the cylinder 110 through the intake valve 114.
- An exhaust manifold 120 receives exhaust gases from the cylinder 110 via exhaust valve(s) 116.
- the intake valve and exhaust valve(s) may be electronically, mechanically, hydraulically, or pneumatically controlled or controlled via a camshaft.
- a fuel injector 122 injects fuel 124 into the cylinder 110 via nozzle 126.
- An ion sensing apparatus 128 is used to sense ion current and in one embodiment, ignites the air/fuel mixture in the combustion chamber 130 ofthe cylinder 110 during cold start ofthe engine.
- the plasma driver 104 provides power to the ion sensing apparatus 128 to provide a high energy plasma discharge to keep the ion sensing detection area ofthe ion sensing apparatus clean from fuel contamination due to carbon buildup. While shown separate from the fuel injector 122, the ion sensing apparatus 128 may be integrated with the fuel injector 122.
- the exhaust manifold 120 is in fluid communication with EGR valve 132.
- the EGR valve is controlled by EGR module 134.
- the EGR valve 132 provides exhaust gas to the intake manifold 118.
- the recirculation path from the EGR valve 132 to the intake is designated by arrows 136.
- the exhaust gas may be further cooled by means of a cooler in the exhaust gas recirculation path.
- the exhaust valve(s) 116 can be controlled with variable timing to assist in keeping some ofthe exhaust gas in the cylinder 128. While the ionization module 102, the plasma driver 104, the engine control unit 106, and the EGR module 132 are shown separately, it is recognized that these components may be combined into a single module or be part of an engine controller having other inputs and outputs.
- the ionization module contains circuitry for detecting and analyzing the ionization signal.
- the ionization module 102 includes an ionization signal detection module 140, an ionization signal analyzer 142, and an ionization signal control module 144.
- the ionization module 102 supplies power to the ion sensing apparatus 128 after the air and fuel mixture is ignited and measures ionization signals from ion sensing apparatus 128 via ionization signal detection module 140.
- Ionization signal analyzer 142 receives the ionization signal from ionization signal detection module 140 and determines if an abnormal combustion condition exists.
- the ionization signal control module 144 controls ionization signal analyzer 142 and ionization signal detection module 140.
- the ionization signal control module 144 provides an indication to the engine ECU 106 as described below.
- the ionization module 102 sends the indication to other modules in the engine system. While the ionization signal detection module 140, the ionization signal analyzer 142, and the ionization signal control module 144 are shown separately, it is recognized that they may be combined into a single module and/or be part of an engine controller having other inputs and outputs.
- the ECU 106 controls fuel injection 122 to deliver fuel (and air), at a desired rate and amount, to the engine cylinder 110.
- the ECU also controls the amount and rate of exhaust gas being recirculated into the combustion chamber 130.
- the ECU 106 receives feedback from the ionization module and adjusts the fuel and EGR as described below.
- the ionization signal can be correlated to the level of NO x emission and in-cylinder pressure produced during compression.
- FIG. 3 the correlation between cylinder pressure traces, ion current traces and NO x levels is shown.
- Curves 300 to 310 are ion current traces and curves 320 to 330 are cylinder pressure traces.
- Curves 300 and 320 correspond to a ⁇ of 1.58 and a NO x level of 3.2 gr/BHP*hour, where
- Curves 302 and 322 correspond to a ⁇ of 1.60 and a NO x level of 1.9 gr/BHP*hour.
- Curves 304 and 324 correspond to a ⁇ of 1.61 and a NO x level of 1.2 gr/BHP*hour.
- Curves 306 and 326 correspond to a ⁇ of 1.62 and aNO x level of 1.1 gr/BHP*hour.
- Curves 308 and 328 correspond to a ⁇ of 1.63 and a NO x level of 0.79 gr/BHP*hour.
- Curves 310 and 330 correspond to a ⁇ of 1.64 and a NO x level of 0.35 gr/BHP*hour.
- FIG. 4 illustrates how the amplitude ofthe first peak ofthe ion current changes with respect to NO engine out emissions.
- Operating parameters ofthe engine are an engine speed of 1600 ⁇ m, a variable torque (25, 50, 75 Nm), a variable start of ignition, and a variable amount of EGR (40% to 50%).
- the circles represent actual data points and the line 402 is a fitted line based on the actual data points. From this figure, it can be seen that the amplitude ofthe first peak ofthe ion current increases as the NO engine out emissions increase.
- FIGS. 5-8 the relationship between diesel combustion pressure and ion current at various speeds and loads is shown.
- FIG. 5 shows the relationship of pressure 500 and ion current 502 at an engine speed of 1500 ⁇ m and a load of 50 ft-lb.
- the start of combustion 504 and combustion duration 506 are also shown.
- FIG. 6 shows the relationship of pressure 600 and ion current 602 at an engine speed of 1500 ⁇ m and a load of 150 ft-lb.
- the start of combustion 604 and combustion duration 606 are also shown.
- FIG. 7 shows the relationship of pressure 700 and ion current 702 at an engine speed of 2000 m and a load of 150 ft-lb.
- the start of combustion 704 and combustion duration 706 are also shown.
- FIG. 8 shows the relationship of pressure 800 and ion current 802 at an engine speed of 2500 ⁇ m and a load of 150 ft-lb.
- the start of combustion 804 and combustion duration 806 are also shown. From these figures, it can be seen that the rise ofthe ion current is located proximate to or at the start of combustion and the width ofthe ionization signal (i.e., the "crank angle" between the rise ofthe ion current and the fall of ion current) approximately lines up with the combustion duration that is derived from the combustion pressure.
- ion current signals can be used to control and optimize engine performance.
- the ion sensing apparatus can be a separate unit or it can be integrated with the fuel injector.
- the sensor apparatus should be shielded from direct impingement of fuel spray from the fuel injector. If the fuel spray impinges the sensing mechanism, the ion current does not track combustion pressure because the fuel shorts the sensor. This is illustrated in FIG. 9 where it can be seen that the ion current 902 does not track the combustion pressure 900.
- the preferred method of sensing ion current is to use a negative charge (i.e., negative voltage polarity) on the electrode ofthe ion sensing apparatus.
- a negative charge i.e., negative voltage polarity
- humidity i.e., water vapor and high temperature steam
- the water vapor and steam react with the positive charge and "pull" positive charge from the electrode.
- the magnitude ofthe ion signal increases, which may result in erroneous readings.
- the ion signal due to humidity reaction is difficult to remove as it often has a frequency spectrum that is similar to noise.
- FIGS. 10a - 12b illustrate various types of ion sensing apparatuses 126 that may be used by the invention. Other types of ion sensors may be used.
- FIGS. 10a - 10b a spark plug type of sensor is shown.
- FIGS. 10a and 10b show a block diagram of a spark plug type of sensor.
- the sensor electrodes 1002, 1004 of sensor 1000 is shielded by shield 1006.
- the presence ofthe shield 1006 drastically reduces fouling ofthe sensor electrodes 1002, 1004 and sensor conduction area 1008 from the liquid fuel spray 1020.
- the diffusive flame 1022 is filtered through the induction orifices 1008, which causes primarily premixed flame 1024 to occur within the sensor's shielded space 1010.
- the presence ofthe shield 1006 allows detection of combustion ions from the pre-mixed flame instead ofthe diffusive flame, thereby allowing correlation with combustion quality (e.g., NO x emission level).
- the size, number, and direction of induction orifices 1008 are determined in one embodiment using design of experiments (DOE) as is known in the art. It should be noted that the shield does not have to completely enclose the sensor electrodes 1002, 1004. Turning to FIGS.
- a shroud 1102 located at the sensor area can be attached to the sensor body 1100 ofthe plug shown in FIG. 10a.
- the shroud 1102 is sized such that fuel spray does not directly impinge the sensor electrodes 1002, 1004 and sensor conduction area 1008.
- the sensor electrodes 1002, 1004 can be energized with a high-energy current that creates a high-energy plasma discharge that keeps the sensor electrode area clean from fuel contamination and carbon build-up.
- the spark plug sensor may also be used to replace glow plugs to provide a cold start mechanism for diesel ignition. Energy is provided to the spark plug sensor of sufficient magnitude to create sparks that are able to ignite the diesel fuel mixture in the combustion chamber.
- the use of a shield/shroud overcomes the failure of prior art spark ignition systems by keeping the plugs clean from spark plug fouling by diesel fuel. The plugs stay clean by the super heating effects ofthe plasma sparks caused by the high-energy plasma discharge. High-energy plasma discharges are generated at currents in the ampere range as compared to high energy sparks that are generated in the hundreds of milli-amperes range.
- the ion sensor e.g., the spark plug sensor
- the spark plug sensor can detect and prevent abnormal engine conditions such as misfire to essentially provide a safety net for the combustion process at low load, high EGR, or HCCI modes of combustion.
- the spark plug sensor can lower the cold start emissions of a diesel engine.
- the spark plug sensor can replace the glow plugs used in systems and reduce or eliminate the need for block heaters and intake air heaters that have been used to assist in the cold start process of a diesel engine.
- the spark plug can be used to provide a high current spark to prevent late combustion or prevent a misfire when the engine ECU (or ionization module) senses that combustion has not begun on time.
- FIGS. 12a and 12b a fuel injector 112 with an ion-sensing sleeve 1200 around the nozzle 114 is shown.
- the controls 1208, 1210 for the sensor 1200 are routed down the injector 112 and are routed to the ionization module 102 and driver 104 via connection 1202 that is away from fuel injector inlet line 122.
- the controls comprise the ion bias voltage and heating current control 1210 that heat the electrode 1206 and a thermocouple 1208 for sensor temperature feedback control.
- the ion bias voltage and heating current control 1210 provide sufficient current to maintain or otherwise keep the electrode 1206 at the desired temperature. In one embodiment, this is accomplished by heating the sensor sleeve 1204 (e.g., a ceramic wafer).
- the sensor sleeve 1204 can be made, for example, out of Silicon Nitrate wafer, with an imbedded electrode 1206 made, for example, out of Titanium Oxide.
- the ion sensor is integrated directly into the nozzle tip ofthe fuel injector.
- FIG. 13 a heater 1300 and an ion sensing element 1302 are integrated directly into the nozzle tip 114.
- the integrated heater 1300 is controlled via line 1304 by driver 104.
- the heater 1300 keeps the temperature at around 700 C to protect the ion sensor from contamination.
- the ion sensing element 1302 is controlled by ionization module 102 via line 1306.
- the principle objective is to integrate the ion-sensor in the fuel injector 112 to eliminate the need of adding an extra opening in the engine cylinder head for the ion-sensor apparatus.
- a temperature control should be used that keeps the insulating element ofthe sensor at sufficiently high temperature to prevent the formation of conductive contaminants that can short the ion-sensing electrode.
- the integrated heater eliminates signal deterioration due to fuel fouling by keeping the ion sensing element 1302 clean from fuel contamination.
- the ionization signal is acquired with respect to an engine parameter over the combustion cycle.
- the engine parameter may be crank angle, time after ignition, time from top dead center, etc.
- Crank angle is used herein in its most generic sense to include all of these.
- crank angle is intended to be generic to measurement ofthe engine rotational parameter no matter whether it is measured directly in terms of crank angle degrees, or measured indirectly or inferred by measurement. It may be specified with respect to top dead center, with respect to ignition point, etc.
- EGR exhaust Gas Recirculation
- the ionization signal is used to control the level of EGR during steady state and transient operation.
- Curves 1400 to 1406 are average pressures and curves 1410 to 1416 are average ion currents.
- the engine operating parameters for the curves are that the engine load is 75 Nm and the start of combustion is at approximately 4 degrees after TDC for all curves.
- Curves 1400 and 1410 are for an EGR level of 40%.
- Curves 1402 and 1412 are for an EGR level of 45%.
- Curves 1404 and 1414 are for an EGR level of 50%.
- Curves 1406 and 1416 are for an EGR level of 55%. Note that curves 1406 and 1416 represent an engine condition where the engine has transitioned into HCCI combustion. It can be seen from FIG. 14 that as the average level of the ion signal lowers, the level of EGR increases, which results in correspondingly lower NO x emissions. Additionally, the timing or delay after injection of fuel where the start of the ion current occurs corresponds to an EGR level. Based upon these relationships, the level of EGR can be controlled from the level ofthe ion signal.
- the ion current signal can be used in a closed loop control to control the amount of EGR admitted into a combustion chamber based on the measurement ofthe ion signal.
- the ion current can be used in a feedback loop in a closed loop control system.
- the control system determines what the average ion current level is for the desired level of EGR and adjusts the level of EGR until the measured average ion current level is within a tolerance band ofthe average ion current corresponding to the desired level of EGR using control techniques as known in the art.
- the level of EGR can be maximized by increasing the level of EGR until misfire is reached.
- the misfire can be detected in any number of ways.
- One way that misfire can be detected is using the ion signal.
- the method described in U.S. patent 6,742,499, entitled “Method And Apparatus For Detecting Abnormal Combustion Conditions In Lean Burn Reciprocating Engines", hereby inco ⁇ orated by reference in its entirety, is used.
- the variation of an ionization signal that changes with respect to an engine parameter over a combustion event ofthe engine is measured, a floating bounded space is associated with the ionization signal, and a determination is made if a portion ofthe ionization signal is within the floating bounded space.
- An indication is provided that the misfire condition has been detected if the portion ofthe ionization signal is within the floating bounded space.
- the floating bounded space and a starting point for the floating bounded space are determined. This includes receiving a set of ionization signals that change with respect to an engine parameter over a combustion event.
- the set of ionization signals has ionization signals corresponding to normal combustion conditions and ionization signals corresponding to a misfire condition for the engine.
- the starting point and size ofthe floating bounded space are adjusted such that selected portions ofthe ionization signals corresponding to the misfire condition reliably fall within the floating bounded space and the ionization signals corresponding to normal combustion conditions reliably fall outside the floating bounded space.
- FIGS 16a- 16c the floating box 1600 for a misfire event is shown.
- FIG. 16a is an illustration of a representative cylinder pressure 1602 and ionization signal 1504 of a normal combustion condition.
- FIG. 16a is an illustration of a representative cylinder pressure 1602 and ionization signal 1504 of a normal combustion condition.
- FIG. 16b is an illustration of a representative cylinder pressure 1606 and ionization signal 1608 for a misfire condition.
- a representative set of data points ofthe engine parameter for 70 engine cycles is shown in FIG. 16c.
- the engine parameter used is the IMEP of a cylinder. If the IMEP of any data point is below a selected amount, the data point is classified as a misfire condition.
- the selected amount should be set to a point that detects all the misfires. In one embodiment, the selected amount is a predetermined percentage of nominal.
- Data points 1610 in FIG. 16c correspond to a misfire condition. It can be seen that the ionization signal 1604 of a normal combustion condition has an initial short flattened portion from the initial starting point followed by a peaked portion.
- misfire condition remains substantially constant for a given duration.
- One characteristic of a misfire condition in the ionization signal for many engines is that a portion ofthe ionization signal remains substantially constant from the initial starting point 1612 of the ionization signal for an extended interval as can be seen in FIG. 16b and can be confined within a bounded space. Other characteristics may be used.
- the tuning process is used to determine the starting point and size ofthe floating box using the characteristics ofthe ionization signals.
- the tuning process adjusts the size and position ofthe floating box to reliably capture the misfire condition and exclude the normal combustion condition.
- the starting point and size ofthe floating box is adjusted until the floating box is of sufficient size and at a location ofthe ionization signal with respect to crank angle such that a portion ofthe ionization signal of a misfire condition reliably remains within the floating box 1600 for the duration ofthe floating box 1600 as shown in FIG. 16b and leaves the floating box 1600 for a normal combustion condition as shown in FIG. 16a. This is accomplished by overlaying the floating box on the ionization signals corresponding to the normal and abnormal combustion cycles shown in FIG.
- the floating box is superimposed on ionization signals corresponding to the upper and lower extremes of data points 1610 (i.e., the misfire conditions) in the engine being characterized and the box parameters are adjusted such that the portion ofthe ionization signal reliably remains within the box for each condition.
- the floating box is then superimposed on the ionization signal for the normal ionization signals that are closest in form to the ionization signals for misfire conditions.
- the ionization signals corresponding to data points 1612, 1614, and 1616 are likely to be closest in shape or form to ionization signals corresponding to misfire conditions.
- the floating box is then adjusted until the portion ofthe ionization signal ofthe normal combustion condition is not captured by the floating box. This process is repeated for all ofthe ionization signals in the data set for the various engine operating conditions (e.g., speed, engine load, desired air/fuel ratio, etc.) to ensure that the floating box reliably captures misfire conditions and excludes other conditions.
- the box parameters are then used during engine operation to detect misfire conditions.
- the ionization signal analyzer 142 receives the ionization signal. It floats the floating box over the ionization signal in accordance with the box parameters. In one embodiment, the lowest magnitude ofthe ionization signal is determined beginning at the starting point ofthe floating box and ending at the boundary of the floating box (i.e., for the duration ofthe floating box). For example, if the duration of the floating box is thirty degrees of crank angle, the lowest magnitude ofthe ionization signal is determined over the thirty degrees of crank angle. The starting point ofthe floating box is then positioned at the starting point crank angle (i.e., time after ignition) at the lowest magnitude of the ionization signal.
- the ionization signal analyzer 142 determines if the ionization signal remains within the floating box over the duration ofthe floating box.
- the ionization signal analyzer 142 provides an indication to the ionization signal control module 144 that a misfire has been detected if the ionization signal remains within the floating box over the duration ofthe floating box.
- FIG. 16b illustrates the ionization signal remaining within the floating box over the duration of the floating box.
- the ionization signal control module 144 provides an indication to the engine ECU 106 ofthe misfire condition and to other modules as requested.
- the ECU 106 determines what action to take. In the case of EGR control, the ECU 106 commands EGR module 134 to reduce the amount of EGR admitted into the engine until misfire is either no longer happening or to a level of misfire that is acceptable for operation.
- the EGR module 134 adjusts the amount and/or rate of EGR admitted into the engine by increasing the level of EGR until the area under a running average of individual cycles ofthe ion current signal is at or below a specified threshold value.
- the integral ofthe ion current signal is below a threshold value.
- the threshold value is zero.
- the running average at the point where the area under the ion current signal is at or below the specified value (e.g., zero) is defined to be the misfire limit.
- the level of EGR and/or the rate of EGR admitted into the combustion chamber 130 are lowered to a highest level such that the average ionization curve for an engine condition is at the minimum level above the misfire limit where misfire does not occur.
- a target ion current waveform is set to the average ion current corresponding to the predetermined amount above the misfire limit.
- the real time average ion current waveform is compared to the target ion current waveform.
- the level and/or rate of EGR are adjusted so that the real-time average ion current waveform is within a tolerance window ofthe target ion current waveform. If a level of EGR is desired, the target ion current is lowered to increase the level of EGR from the present level corresponding to the present target ion current.
- the target ion current is raised to decrease the level of EGR.
- the level of EGR is increased until an individual ionization signal waveform has an area at or below the threshold value (e.g., zero).
- a target level is defined to be the running average ofthe ionization signal at the point that is one cycle before the individual signal waveform with the area at or below the threshold value. In other words, the target level is set to be just above the misfire limit.
- the level of EGR is then lowered to a level such that the running average ofthe ionization signal stays at the target level (i.e., just above the misfire limit).
- One method to perform this is to determine the desired starting point or rise ofthe average ionization current above a threshold level (e.g., above a zero level) that corresponds to the desired EGR target level and compare the starting point ofthe average ionization current during operation to the desired starting point and adjusting the EGR level until the starting point ofthe average ionization current is within a tolerance window ofthe desired starting point.
- a threshold level e.g., above a zero level
- One approach to compare the real-time average ion current waveform to the target ion current waveform is to compare the location of a peak ofthe average ion current waveform to a peak ofthe target ion current waveform.
- the ionization signal has a second peak that corresponds to the peak combustion chamber temperature.
- the level of EGR and/or the rate of EGR injection are adjusted such that the location ofthe peak (e.g., the second peak) ofthe average ion current waveform is within a tolerance window ofthe peak ofthe target ion current waveform.
- the real-time angular delta between the start of combustion and the average peak location ofthe average ion current waveform is compared to the target angular delta between the start of combustion and the peak location ofthe target ion current waveform.
- the level of EGR and/or the rate of EGR injection are adjusted such that the real-time angular delta between the start of combustion and the average peak location ofthe average ion current waveform is within a tolerance window ofthe target angular delta between the start of combustion and the peak location ofthe target ion current waveform.
- the level of EGR is increased if the real-time angular delta is advanced ofthe target angular delta and is decreased if the real-time angular delta is retarded ofthe target angular delta.
- the level of EGR is adjusted by variably actuating one ofthe exhaust valves for varying lengths of time during the intake stroke of the particular combustion chamber in order to achieve the desired level of EGR.
- Other exhaust valves are actuated in a conventional manner.
- misfire is prevented via use of a spark plug type of ion sensor.
- a spark plug type of ion sensor the engine is characterized and a specified crank angle is determined where combustion ofthe diesel fuel mixture should have started prior to the crank angle being reached for various operating conditions.
- energy of a level sufficient to cause a high energy spark is provided to the spark plug type of ion sensor if combustion ofthe diesel fuel mixture has not been sensed prior to the specified crank angle. For example, if the rise of ion current has not been detected after the specified crank angle that corresponds to the desired start of combustion has passed, energy is provided to the spark plug type of ion sensor so that a spark is produced that ignites the diesel fuel mixture.
- the ion sensor apparatus can also be used to control the start of injection in a direct injection reciprocating compression ignition engine such as the injection timing of a diesel engine.
- a direct injection reciprocating compression ignition engine such as the injection timing of a diesel engine.
- FIG. 18 average ion signals 1800 -1804 and average pressure curves 1810-1814 with injector timing changes of 2 degrees per step are shown.
- the diesel engine load is 50 Nm and the EGR level is 50% for all curves.
- Curves 1800 and 1810 correspond to a start of combustion at two degrees before top dead center (BTDC).
- Curves 1802 and 1812 correspond to a start of combustion at top dead center.
- Curves 1804 and 1814 correspond to a start of combustion at two degrees after top dead center(ATDC).
- Curves 1806 and 1816 correspond to a start of combustion at four degrees ATDC.
- the peak ofthe ion current and the location ofthe peak changes with the injector timing.
- the injector timing increases beyond TDC (i.e., start of combustion is at a higher degree ATDC)
- the peak ofthe ion current increases and the location ofthe peak moves away from TDC to an increasing number of degrees ATDC.
- the injector timing moves before TDC
- the peak ofthe ion current decreases and the location ofthe peak moves to an increasing number of degrees BTDC.
- the rise ofthe ion signal also moves in the same relationship as the location ofthe peak of the ion signal. This relationship is used to control injection timing (e.g., start of combustion).
- the crank shaft angle can be determined by detecting when the ion current signal rises.
- the crank shaft angle is the angle at the point that the ion current signal changes and starts to rise.
- FIG. 19 the engine is characterized to determine crank shaft angles where the rise of ion current should occur for various operating conditions.
- the start of fuel injection is controlled in a closed loop fashion by sensing where the crank shaft angle ofthe rise ofthe ion signal occurs. This angle is compared to a desired crank angle based on the engine characterization. If the rise ofthe ion signal occurs at a different angle, corrective action is taken so that the crank shaft angle ofthe rise ofthe ion signal moves to within a tolerance window ofthe desired angle of injection.
- an average of at least two prior cycles is used to determine an average ofthe rise of ion current.
- the ion sensor apparatus can also be used to control the maximum power ofthe compression ignition engine.
- One methodology to control the maximum power is to control the burn rate ofthe engine.
- the burn rate is the speed at which the combustion propagates across a cylinder. As an engine burns leaner, the combustion takes longer to propagate away from the ignition point. The slowing down ofthe combustion causes a longer burn time between the ignition point and the location in crank angles where approximately half ofthe mixture is burned. The position where approximately half of the mixture is burned is called the "50% Burn Point" and is often measured in crank angle degrees.
- the engine is characterized and the relationship between the second peak of the ion current waveform and burn rate is determined.
- the real time average ofthe crank shaft angle ofthe second peak ofthe ion current waveform is compared to a target crank angle that corresponds to the desired burn rate according to the engine characterization.
- the rate of fuel admitted into a cylinder is adjusted such that the real time average ofthe angle ofthe second peak ofthe ion current waveform is within a tolerance window ofthe target angle. If the real time average ofthe crank shaft angle ofthe second peak ofthe ion current wave form is advanced ofthe target angle, the rate of fuel admitted into the combustion chamber is decreased until the real time average ofthe crank shaft angle ofthe second peak ofthe ion current wave form is within a tolerance ofthe target angle.
- the rate of fuel admitted into the combustion chamber is increased until the real time average ofthe crank shaft angle ofthe second peak ofthe ion current wave form is within a tolerance of the target angle.
- the burn rate can also be controlled by adjusting the amount and/or rate of EGR admitted into the engine.
- FIG. 20 shows ion current and cylinder pressure for an engine operating with a fixed load.
- Curves 2000 to 2006 are curves of cylinder pressure and curves 2010 to 2016 are curves of ion current.
- Curves 2000 and 2010 are curves corresponding to an EGR level of 45%.
- Curves 2002 and 2012 are curves corresponding to an EGR level of 50%.
- Curves 2004 and 2014 are curves corresponding to an EGR level of 55%.
- Curves 2006 and 2016 are curves corresponding to an EGR level of 59%.
- the burn rate can be controlled by determining a desired EGR percentage associated with the desired burn rate and adjusting the EGR admitted into the engine based on the ion current waveform.
- the apparatus eliminates the need for a glow plug by using a spark plug type of sensor or an ion sensor integrated onto a fuel injector.
- the spark plug type of ion sensor can also be used to provide cold start of diesel ignition at reduced levels of NO x .
- Signal deterioration ofthe ion sensor due to fuel fouling is eliminated by means of either a high energy plasma discharge (or a heater) that keeps the sensor area clean from fuel contamination.
- the spark plug type of sensor also allows detection of combustion ions from pre-mixed flame instead of diffusive flame, thereby allowing correlation ofthe combustion ions with combustion quality (e.g., NO x emission level).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04818299A EP1689991A4 (en) | 2003-10-31 | 2004-10-27 | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
US10/576,989 US7707992B2 (en) | 2003-10-31 | 2004-10-27 | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
JP2006538218A JP4545759B2 (en) | 2003-10-31 | 2004-10-27 | Method for controlling exhaust gas recirculation and combustion initiation in a reciprocating compression ignition engine with an ignition system using ionization measurements |
US12/726,463 US7856959B2 (en) | 2003-10-31 | 2010-03-18 | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51614803P | 2003-10-31 | 2003-10-31 | |
US60/516,148 | 2003-10-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/576,989 A-371-Of-International US7707992B2 (en) | 2003-10-31 | 2004-10-27 | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
US12/726,463 Continuation US7856959B2 (en) | 2003-10-31 | 2010-03-18 | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005044382A1 true WO2005044382A1 (en) | 2005-05-19 |
WO2005044382A9 WO2005044382A9 (en) | 2005-07-21 |
Family
ID=34572871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/035651 WO2005044382A1 (en) | 2003-10-31 | 2004-10-27 | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
Country Status (5)
Country | Link |
---|---|
US (2) | US7707992B2 (en) |
EP (1) | EP1689991A4 (en) |
JP (4) | JP4545759B2 (en) |
KR (1) | KR20060120136A (en) |
WO (1) | WO2005044382A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1813789A2 (en) * | 2006-01-26 | 2007-08-01 | Deere & Company | Method of operating an internal combustion engine |
JP2007270719A (en) * | 2006-03-31 | 2007-10-18 | Mazda Motor Corp | Diagnosing device of exhaust gas recirculation device |
US7603226B2 (en) | 2006-08-14 | 2009-10-13 | Henein Naeim A | Using ion current for in-cylinder NOx detection in diesel engines and their control |
CN101839185A (en) * | 2009-02-15 | 2010-09-22 | 福特环球技术公司 | Use ion sense feedback and multi-strike spark to manage the burning control of highly diluted and rare air fuel ratio |
US7856959B2 (en) | 2003-10-31 | 2010-12-28 | Woodward Governor Company | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
WO2011011378A1 (en) | 2009-07-20 | 2011-01-27 | Wayne State University | Multi-sensing fuel injection system and method for making the same |
EP2812668A4 (en) * | 2012-02-09 | 2017-11-15 | SEM Aktiebolag | Engine with misfire detection for vehicles using alternative fuels |
IT201800005010A1 (en) * | 2018-05-02 | 2019-11-02 | METHOD AND SYSTEM FOR MONITORING AN ENGINE CYLINDER IN AN INTERNAL COMBUSTION ENGINE, METHOD AND DEVICE FOR THE CONTROL OF COMBUSTION IN SAID ENGINE CYLINDER AND IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4006015B2 (en) * | 2004-02-02 | 2007-11-14 | ヤマハ発動機株式会社 | ENGINE OPERATION CONTROL DEVICE, VEHICLE HAVING THE SAME, METHOD FOR CALCULATION OF COMBUSTION CENTER OF ENGINE IN ENGINE AND ENGINE OPERATION CONTROL |
JP4553865B2 (en) * | 2006-05-18 | 2010-09-29 | 三菱電機株式会社 | Control device for internal combustion engine |
JP2008115808A (en) * | 2006-11-07 | 2008-05-22 | Denso Corp | Control device for internal combustion engine |
JP5467285B2 (en) * | 2007-07-12 | 2014-04-09 | イマジニアリング株式会社 | Uniform premixed compression auto-ignition engine and engine |
DE102007042577B3 (en) * | 2007-09-07 | 2009-04-02 | Continental Automotive Gmbh | Method for controlling a combustion process and control unit |
US7654246B2 (en) * | 2007-10-04 | 2010-02-02 | Southwest Research Institute | Apparatus and method for controlling transient operation of an engine operating in a homogeneous charge compression ignition combustion mode |
US7753025B2 (en) * | 2008-04-11 | 2010-07-13 | Southwest Research Institute | Surface ignition mechanism for diesel engines |
KR100937570B1 (en) * | 2008-04-18 | 2010-01-19 | 대동공업주식회사 | Disel engine equipped Spark igniter |
US8132556B2 (en) | 2008-08-29 | 2012-03-13 | Ford Global Technologies, Llc | Ignition energy management with ion current feedback to correct spark plug fouling |
US8176893B2 (en) | 2008-08-30 | 2012-05-15 | Ford Global Technologies, Llc | Engine combustion control using ion sense feedback |
JP2010101182A (en) * | 2008-10-21 | 2010-05-06 | Daihatsu Motor Co Ltd | Method for controlling operation of spark-ignition internal combustion engine |
JP5058121B2 (en) * | 2008-10-21 | 2012-10-24 | ダイハツ工業株式会社 | Operation control method for spark ignition internal combustion engine |
US8050848B2 (en) * | 2008-10-24 | 2011-11-01 | Hoerbiger Kompressortechnik Holding Gmbh | Method and system for igniting a lean fuel mixture in a main chamber of an internal combustion engine |
FR2938019B1 (en) * | 2008-10-31 | 2015-05-15 | Inst Francais Du Petrole | METHOD FOR CONTROLLING THE COMBUSTION OF A CONTROLLED IGNITION ENGINE USING A COMBUSTION PHASE CONTROL |
JP2010150952A (en) | 2008-12-24 | 2010-07-08 | Nippon Soken Inc | Control device for internal combustion engine |
US8060293B2 (en) * | 2009-06-16 | 2011-11-15 | Ford Global Technologies Llc | System and method for controlling an engine during transient events |
JP5295013B2 (en) * | 2009-06-29 | 2013-09-18 | ダイハツ工業株式会社 | Operation control method for spark ignition internal combustion engine |
US20110010074A1 (en) * | 2009-07-09 | 2011-01-13 | Visteon Global Technologies, Inc. | Methods Of Controlling An Internal Combustion Engine Including Multiple Fuels And Multiple Injectors |
JP5425575B2 (en) * | 2009-09-18 | 2014-02-26 | ダイハツ工業株式会社 | Method for determining the combustion state of a spark ignition internal combustion engine |
US8078384B2 (en) * | 2010-06-25 | 2011-12-13 | Ford Global Technologies, Llc | Engine control using spark restrike/multi-strike |
DE102010045689A1 (en) * | 2010-09-16 | 2011-04-21 | Daimler Ag | Method for operating internal combustion engine of passenger car, involves accomplishing measure for compensation of deviation, and adjusting quantity of fuel for compensating deviation, where measure affects combustion in cylinder |
JP5565295B2 (en) * | 2010-12-21 | 2014-08-06 | ダイヤモンド電機株式会社 | Exhaust gas recirculation control device for internal combustion engine |
TWI403640B (en) * | 2011-04-14 | 2013-08-01 | Sanyang Industry Co Ltd | Can identify the action of the intake control mechanism |
FR2978209B1 (en) * | 2011-07-21 | 2013-07-12 | IFP Energies Nouvelles | METHOD FOR DETECTION AND ABNORMAL COMBUSTION CHARACTERIZATION FOR INTERNAL COMBUSTION ENGINES |
KR101294187B1 (en) * | 2011-11-23 | 2013-08-08 | 기아자동차주식회사 | Apparatus and method for preventing inflowing exhaustion gas for vehicle |
US10054067B2 (en) * | 2012-02-28 | 2018-08-21 | Wayne State University | Using ion current signal for engine performance and emissions measuring techniques and method for doing the same |
JP5220212B1 (en) * | 2012-03-13 | 2013-06-26 | 三菱電機株式会社 | Control device and control method for compression self-ignition internal combustion engine |
DE102012104654B3 (en) * | 2012-05-30 | 2013-11-14 | Borgwarner Beru Systems Gmbh | Method for knock detection |
US9234444B2 (en) * | 2013-02-28 | 2016-01-12 | Caterpillar Inc. | Flame detection system for particulate filter regeneration |
JP2015081527A (en) * | 2013-10-21 | 2015-04-27 | マツダ株式会社 | Heat insulation layer provided on member surface facing engine combustion chamber |
CN110173364B (en) * | 2013-12-23 | 2022-05-31 | 康明斯有限公司 | Internal combustion engine control responsive to exhaust gas recirculation system conditions |
KR20150111047A (en) * | 2014-03-25 | 2015-10-05 | 두산인프라코어 주식회사 | Engine |
JP5859060B2 (en) | 2014-05-08 | 2016-02-10 | 三菱電機株式会社 | Control device for internal combustion engine |
US20170082083A1 (en) * | 2014-05-16 | 2017-03-23 | Plasma Igniter, LLC | Combustion environment diagnostics |
JP6445928B2 (en) * | 2015-05-19 | 2018-12-26 | 本田技研工業株式会社 | Ignition device for internal combustion engine |
US9945344B2 (en) * | 2015-07-31 | 2018-04-17 | Ford Global Technologies, Llc | Method and system for ignition control |
JP6328293B1 (en) * | 2017-04-19 | 2018-05-23 | 三菱電機株式会社 | Control device and control method for internal combustion engine |
IT201700055908A1 (en) * | 2017-05-23 | 2018-11-23 | Fpt Ind Spa | METHOD AND COMBUSTION CONTROL SYSTEM IN A COMBUSTION CHAMBER OF AN INTERNAL COMBUSTION ENGINE |
KR102451912B1 (en) * | 2018-07-30 | 2022-10-06 | 현대자동차 주식회사 | Method of calculating egr rate using combustion pressure of cylinder |
US20210079856A1 (en) * | 2019-04-29 | 2021-03-18 | Wayne State University | In situ valuation of auto-ignition quality of fuel in compression ignition engines |
US11035317B2 (en) * | 2019-06-06 | 2021-06-15 | Caterpillar Inc. | Controlling pilot fuel injection in an engine |
US11542899B2 (en) * | 2020-11-30 | 2023-01-03 | Matthew M Delleree | Ion sensing for vapor start control |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040084035A1 (en) * | 2002-11-01 | 2004-05-06 | Newton Stephen J. | Device to provide a regulated power supply for in-cylinder ionization detection by using the ignition coil fly back energy and two-stage regulation |
US20040084034A1 (en) * | 2002-11-01 | 2004-05-06 | Huberts Garlan J. | Device for reducing the part count and package size of an in-cylinder ionization detection system by integrating the ionization detection circuit and ignition coil driver into a single package |
US20040187847A1 (en) * | 2002-11-01 | 2004-09-30 | Woodward Governor Company | Method and apparatus for detecting abnormal combustion conditions in reciprocating engines having high exhaust gas recirculation |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2944834A1 (en) * | 1979-11-07 | 1981-05-27 | Robert Bosch Gmbh, 7000 Stuttgart | METHOD FOR REGULATING THE LAMBDA AIR NUMBER IN A SELF-IGNITION COMBUSTION ENGINE |
JPS56118565A (en) * | 1980-02-26 | 1981-09-17 | Nissan Motor Co Ltd | Plasma ignition device for internal combustion engine |
US4614175A (en) * | 1983-12-27 | 1986-09-30 | Mitsubishi Denki Kabushiki Kaisha | Engine exhaust gas recirculation control system |
JPS63215878A (en) * | 1987-03-05 | 1988-09-08 | Mazda Motor Corp | Spark assist diesel engine |
EP0358419A3 (en) * | 1988-09-09 | 1990-08-16 | LUCAS INDUSTRIES public limited company | Control system for an internal combustion engine |
EP0361779A1 (en) * | 1988-09-26 | 1990-04-04 | Hewlett-Packard Company | Micro-strip architecture for membrane test probe |
JPH04136408A (en) * | 1990-09-27 | 1992-05-11 | Mazda Motor Corp | Exhaust gas purificating device for diesel engine |
JPH04134182A (en) * | 1990-09-27 | 1992-05-08 | Mitsubishi Electric Corp | Spark plug for internal combustion engine |
SE508563C2 (en) * | 1994-02-22 | 1998-10-12 | Scania Cv Ab | Sensor for detecting degree of ionization in the combustion engine's combustion chamber and combustion engine equipped with ionization sensor |
JPH0949485A (en) * | 1995-08-08 | 1997-02-18 | Mitsubishi Motors Corp | Glow plug control device for engine |
JP4036906B2 (en) * | 1996-05-15 | 2008-01-23 | 三菱電機株式会社 | In-cylinder injection internal combustion engine control device |
US6029627A (en) * | 1997-02-20 | 2000-02-29 | Adrenaline Research, Inc. | Apparatus and method for controlling air/fuel ratio using ionization measurements |
JP3930103B2 (en) * | 1997-06-17 | 2007-06-13 | 富士重工業株式会社 | Control device for compression ignition engine |
DE19912895A1 (en) * | 1999-03-23 | 2000-10-05 | Daimler Chrysler Ag | Monitoring exhaust gas feedback system involves comparing measured value with stored reference values to determine actual quantity of residual gas present in combustion chamber |
JP2003286933A (en) * | 2002-03-26 | 2003-10-10 | Ngk Spark Plug Co Ltd | Ignition device for internal combustion engine |
EP1514013A4 (en) * | 2002-06-17 | 2009-12-02 | Southwest Res Inst | Method for controlling exhausted gas emissions |
US6805099B2 (en) * | 2002-10-31 | 2004-10-19 | Delphi Technologies, Inc. | Wavelet-based artificial neural net combustion sensing |
US7086382B2 (en) * | 2002-11-01 | 2006-08-08 | Visteon Global Technologies, Inc. | Robust multi-criteria MBT timing estimation using ionization signal |
US7137382B2 (en) * | 2002-11-01 | 2006-11-21 | Visteon Global Technologies, Inc. | Optimal wide open throttle air/fuel ratio control |
US6980903B2 (en) * | 2002-11-01 | 2005-12-27 | Visteon Global Technologies, Inc. | Exhaust gas control using a spark plug ionization signal |
JP4161789B2 (en) * | 2003-04-25 | 2008-10-08 | いすゞ自動車株式会社 | Fuel injection control device |
US7707992B2 (en) | 2003-10-31 | 2010-05-04 | Woodward Governor Company | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
US6994073B2 (en) * | 2003-10-31 | 2006-02-07 | Woodward Governor Company | Method and apparatus for detecting ionization signal in diesel and dual mode engines with plasma discharge system |
US20080178843A1 (en) * | 2007-01-25 | 2008-07-31 | Duffy Kevin P | Combustion balancing in a homogeneous charge compression ignition engine |
-
2004
- 2004-10-27 US US10/576,989 patent/US7707992B2/en active Active
- 2004-10-27 JP JP2006538218A patent/JP4545759B2/en not_active Expired - Fee Related
- 2004-10-27 EP EP04818299A patent/EP1689991A4/en not_active Withdrawn
- 2004-10-27 KR KR1020067009977A patent/KR20060120136A/en not_active Application Discontinuation
- 2004-10-27 WO PCT/US2004/035651 patent/WO2005044382A1/en active Application Filing
-
2007
- 2007-10-26 JP JP2007279042A patent/JP2008115860A/en active Pending
- 2007-10-26 JP JP2007279053A patent/JP2008069788A/en active Pending
- 2007-10-26 JP JP2007279038A patent/JP4733679B2/en not_active Expired - Fee Related
-
2010
- 2010-03-18 US US12/726,463 patent/US7856959B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040084035A1 (en) * | 2002-11-01 | 2004-05-06 | Newton Stephen J. | Device to provide a regulated power supply for in-cylinder ionization detection by using the ignition coil fly back energy and two-stage regulation |
US20040084034A1 (en) * | 2002-11-01 | 2004-05-06 | Huberts Garlan J. | Device for reducing the part count and package size of an in-cylinder ionization detection system by integrating the ionization detection circuit and ignition coil driver into a single package |
US20040187847A1 (en) * | 2002-11-01 | 2004-09-30 | Woodward Governor Company | Method and apparatus for detecting abnormal combustion conditions in reciprocating engines having high exhaust gas recirculation |
Non-Patent Citations (1)
Title |
---|
See also references of EP1689991A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7856959B2 (en) | 2003-10-31 | 2010-12-28 | Woodward Governor Company | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement |
EP1813789A3 (en) * | 2006-01-26 | 2013-11-06 | Deere & Company | Method of operating an internal combustion engine |
EP1813789A2 (en) * | 2006-01-26 | 2007-08-01 | Deere & Company | Method of operating an internal combustion engine |
JP2007270719A (en) * | 2006-03-31 | 2007-10-18 | Mazda Motor Corp | Diagnosing device of exhaust gas recirculation device |
US7603226B2 (en) | 2006-08-14 | 2009-10-13 | Henein Naeim A | Using ion current for in-cylinder NOx detection in diesel engines and their control |
DE112007001877B4 (en) | 2006-08-14 | 2023-03-30 | Naeim A. Henein | Using an ion current to measure NOx in combustion chambers of a diesel engine |
CN101839185A (en) * | 2009-02-15 | 2010-09-22 | 福特环球技术公司 | Use ion sense feedback and multi-strike spark to manage the burning control of highly diluted and rare air fuel ratio |
EP2457077A4 (en) * | 2009-07-20 | 2016-01-13 | Univ Wayne State | Multi-sensing fuel injection system and method for making the same |
WO2011011378A1 (en) | 2009-07-20 | 2011-01-27 | Wayne State University | Multi-sensing fuel injection system and method for making the same |
EP2812668A4 (en) * | 2012-02-09 | 2017-11-15 | SEM Aktiebolag | Engine with misfire detection for vehicles using alternative fuels |
IT201800005010A1 (en) * | 2018-05-02 | 2019-11-02 | METHOD AND SYSTEM FOR MONITORING AN ENGINE CYLINDER IN AN INTERNAL COMBUSTION ENGINE, METHOD AND DEVICE FOR THE CONTROL OF COMBUSTION IN SAID ENGINE CYLINDER AND IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE | |
WO2019211703A1 (en) * | 2018-05-02 | 2019-11-07 | Eldor Corporation S.P.A. | A method and system for monitoring an engine cylinder in an internal combustion engine, a method and device for controlling combustion in said engine cylinder and an ignition apparatus for an internal combustion engine |
CN112739898A (en) * | 2018-05-02 | 2021-04-30 | 艾尔多股份有限公司 | Method and system for monitoring an engine cylinder in an internal combustion engine, method and device for controlling combustion in an engine cylinder and ignition device for an internal combustion engine |
US11371446B2 (en) | 2018-05-02 | 2022-06-28 | Eldor Corporation S.P.A. | Method and system for monitoring an engine cylinder in an internal combustion engine, a method and device for controlling combustion in said engine cylinder and an ignition apparatus for an internal combustion engine |
CN112739898B (en) * | 2018-05-02 | 2023-07-04 | 艾尔多股份有限公司 | Method and system for monitoring engine cylinders in an internal combustion engine, method and device for controlling combustion in engine cylinders and ignition device for an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP4545759B2 (en) | 2010-09-15 |
WO2005044382A9 (en) | 2005-07-21 |
JP2008101624A (en) | 2008-05-01 |
JP2007510092A (en) | 2007-04-19 |
EP1689991A4 (en) | 2012-09-19 |
US7856959B2 (en) | 2010-12-28 |
EP1689991A1 (en) | 2006-08-16 |
JP2008069788A (en) | 2008-03-27 |
JP2008115860A (en) | 2008-05-22 |
US20100185381A1 (en) | 2010-07-22 |
US7707992B2 (en) | 2010-05-04 |
JP4733679B2 (en) | 2011-07-27 |
US20070079817A1 (en) | 2007-04-12 |
KR20060120136A (en) | 2006-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7707992B2 (en) | Method and apparatus for controlling exhaust gas recirculation and start of combustion in reciprocating compression ignition engines with an ignition system with ionization measurement | |
US6994073B2 (en) | Method and apparatus for detecting ionization signal in diesel and dual mode engines with plasma discharge system | |
JP2007510092A5 (en) | ||
US6786200B2 (en) | Method and apparatus for controlling combustion quality in lean burn reciprocating engines | |
US7603226B2 (en) | Using ion current for in-cylinder NOx detection in diesel engines and their control | |
JP3961471B2 (en) | Closed-loop cold start delay spark control using ionization feedback | |
JP4015606B2 (en) | Closed loop individual cylinder air-fuel ratio balancing | |
US7007661B2 (en) | Method and apparatus for controlling micro pilot fuel injection to minimize NOx and UHC emissions | |
JP4025278B2 (en) | Optimal full throttle throttle air / fuel ratio control | |
JP3971730B2 (en) | Multi-criteria robust MBT timing estimation using ionization signal | |
US6935310B2 (en) | Method and apparatus for detecting abnormal combustion conditions in reciprocating engines having high exhaust gas recirculation | |
WO2010038355A1 (en) | Knock control device for a gasoline engine | |
WO2019028102A1 (en) | Pressure-based detection of poor fire and misfire | |
US11473550B2 (en) | Internal combustion engines having super knock mitigation controls and methods for their operation | |
US10519879B2 (en) | Determining in-cylinder pressure by analyzing current of a spark plug | |
KR100189187B1 (en) | Misfire detecting method of gasoline engine | |
Adair et al. | Ion Sensing for Off-Highway Diesel Engines to Meet Future Emissions Regulations | |
WO1991013248A1 (en) | Engine condition determining and operating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
COP | Corrected version of pamphlet |
Free format text: PAGES 1/16-16/16 DRAWINGS, ADDED |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006538218 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004818299 Country of ref document: EP Ref document number: 1020067009977 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004818299 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067009977 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007079817 Country of ref document: US Ref document number: 10576989 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10576989 Country of ref document: US |