WO2005042663A1 - Fluorinated alkene refrigerant compositions - Google Patents

Fluorinated alkene refrigerant compositions Download PDF

Info

Publication number
WO2005042663A1
WO2005042663A1 PCT/US2004/035132 US2004035132W WO2005042663A1 WO 2005042663 A1 WO2005042663 A1 WO 2005042663A1 US 2004035132 W US2004035132 W US 2004035132W WO 2005042663 A1 WO2005042663 A1 WO 2005042663A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoroalkene
composition
lubricant
polyalkylene glycol
refrigerant
Prior art date
Application number
PCT/US2004/035132
Other languages
French (fr)
Inventor
Raymond H. Thomas
Rajiv R. Singh
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34549972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005042663(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020067010510A priority Critical patent/KR101335360B1/en
Priority to SI200431900T priority patent/SI1725628T1/en
Priority to EP04817445A priority patent/EP1725628B1/en
Priority to JP2006538130A priority patent/JP2007510039A/en
Priority to DK04817445.2T priority patent/DK1725628T3/en
Priority to PL10011589T priority patent/PL2277976T3/en
Priority to EP10010521.2A priority patent/EP2275509B1/en
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to KR1020127011477A priority patent/KR101335358B1/en
Priority to CN200480039094.8A priority patent/CN1898353B/en
Priority to EP10011589.8A priority patent/EP2277976B1/en
Priority to ES04817445T priority patent/ES2385650T3/en
Priority to PL10010521T priority patent/PL2275509T3/en
Priority to PL04817445T priority patent/PL1725628T3/en
Priority to EP19218149.3A priority patent/EP3680308A1/en
Publication of WO2005042663A1 publication Critical patent/WO2005042663A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • C10M2207/2895Partial esters containing free hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • C10M2209/1095Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • C10M2211/0225Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • C10M2211/063Perfluorinated compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to compositions used as refrigeration fluids in compression refrigeration, air-conditioning and heat pump systems.
  • chlorine-containing refrigerants such as chlorofluorocarbons (CFC's), hydrochlorofluorocarbons (HCF's) and the like
  • CFC's chlorofluorocarbons
  • HCF's hydrochlorofluorocarbons
  • any of the replacement materials In order for any of the replacement materials to be useful in connection with refrigeration compositions, the materials must be compatible with the lubricant utilized in the compressor.
  • many non-chlorine-containing refrigeration fluids including HFC's, are relatively insoluble and/or immiscible in the types of lubricants used traditionally with CFC's and HFC's, including, for example, mineral oils, alkylbenzenes or poly(alpha-olefins).
  • the lubricant In order for a refrigeration fluid-lubricant combination to work efficiently within a compression refrigeration, air-conditioning or heat pump system, the lubricant must be sufficiently soluble in the refrigeration liquid over a wide range of operating temperatures.
  • solubility lowers the viscosity of the lubricant and allows it to flow more easily throughout the system. In the absence of such solubility, lubricants tend to become lodged in the coils of the compression refrigeration, air-conditioning or heat pump system evaporator, as well as other parts of the system, and thus reduce the system efficiency.
  • Polyalkylene glycol, esterified polyalkylene glycol, and polyol ester lubricating oils have been developed as misicible lubricants for HFC refrigeration liquids.
  • Polyalkylene glycol refrigeration lubricants are disclosed by U.S. Patent No. 4,755,316; 4,971,712, and 4, 975, 212.
  • Polyalkylene glycol esters are disclosed by U.S. Patent No. 5,008,028.
  • the polyalkylene glycol and polyalkylene glycol ester lubricating oils are disclosed as being misicible in fluoroalkanes containing one or two carbon atoms and no double bonds.
  • Compression refrigeration generally involves changing the refrigerant from the liquid to the vapor phase through heat adsorption at a lower pressure and then from the vapor to the liquid phase through heat removal at an elevated pressure.
  • refrigeration composition substitutes for HFC's in many cases preferably possess certain performance properties to be considered acceptable substitutes, including acceptable refrigeration characteristics, chemical stability, low toxicity, non-flammability, lubricant compatibility and efficiency in use.
  • acceptable refrigeration characteristics including acceptable refrigeration characteristics, chemical stability, low toxicity, non-flammability, lubricant compatibility and efficiency in use.
  • the latter characteristic is important in many refrigeration systems, air-conditioning systems and heat pump applications, especially when a loss in refrigeration thermodynamic performance or energy efficiency may have secondary environmental impacts through increased fossil fuel usage arising from an increased demand for electrical energy.
  • HFC refrigeration composition substitutes it would be advantageous for HFC refrigeration composition substitutes to not require major engineering changes to conventional vapor compression technology and lubricant systems currently used with HFC refrigeration liquids.
  • Flammability is another important property for many applications. That is, it is considered either important or essential in many applications, including particularly in heat transfer applications, to use compositions which are non-flammable. Thus, it is frequently beneficial to use in such compositions compounds which are nonflammable.
  • nonflammable refers to compounds or compositions which are determined to be nonflammable in accordance with ASTM standard E-681 , dated 2002, which is incorporated herein by reference. Unfortunately, many HFC's which might otherwise be desirable for used in refrigerant compositions are not nonflammable.
  • fluoroalkane difluoroethane HFC-152a
  • fluoroalkene 1,1,1-trifluoropropene HFO- 1243zf
  • fluorinated olefins described in Smutny may have some level of effectiveness in heat transfer applications, it is believed that such compounds may also have certain disadvantages. For example, some of these compounds may tend to attack substrates, particularly general-purpose plastics such as acrylic resins and ABS resins. Furthermore, the higher olefinic compounds described in Smutny may also be undesirable in certain applications because of the potential level of toxicity of such compounds which may arise as a result of pesticide activity noted in Smutny. Also, such compounds may have a boiling point which is too high to make them useful as a refrigerant in certain applications.
  • compositions, and particularly fluid transfer compositions that are potentially useful in numerous applications, including vapor compression heating and cooling systems and methods, while avoiding one or more of the disadvantages noted above.
  • applicant has also recognized that in many applications there remains a need for fluorocarbon and hydrofluorocarbon-based refrigeration liquids that are environmentally safer than HFC's, possess similar or better characteristics with respect to at least certain refrigerant thermodynamic performance properties, and are compatible with existing lubricant systems.
  • fluoroalkenes containing from 2 to 5 carbon atoms and at least 1 but no more than 2 double bonds in the vicinity of a body to be heated and thereby evaporating the fluoroalkene are preferred.
  • a liquid composition for use in compression refrigeration, air-conditioning and heat pump systems in which a fluoroalkene containing from 2 to 5 carbon atoms and at least 1 but no more than 2 double bonds is combined with a sufficient amount to provide lubrication of an essentially miscible organic lubricant selected from polyalkylene glycol, polyalkylene glycol ester and polyol ester lubricants for compression refrigeration, air-conditioning and heat pump systems.
  • the lubricants of this invention are organic compounds which are comprised of carbon, hydrogen and oxygen with a ratio of oxygen to carbon sufficient to provide a degree of miscibility with the fluoroalkene such the when about 1 to 5 weight percent of the lubricant is added to the refrigerant fluid the mixture has one liquid phase.
  • the mixture has one liquid phase when 1 to 20 weight percent of the lubricant is present in the mixture.
  • the mixture is one liquid phase in all proportions of the components of mixture.
  • This solubility or miscibility preferably exists at at least one temperature from about — 40°C and 70°C, and more preferably over essentially the entire temperature range.
  • refrigeration system refers to any system or apparatus, or any part or portion of such a system or apparatus, which employs a refrigeration liquid or refrigerant to provide cooling.
  • refrigeration systems include, for example, air-conditioners, electric refrigerators, chillers, transport refrigeration systems, commercial refrigeration systems, and the like.
  • the present invention substitutes HFO's for HFC's, which, despite being safeor the ozone layer, are suspected of contributing to global warming. At least certain
  • the polyalkylene glycol lubricants suitable for use with the present invention typically containing from about 5 to 50 oxylakylene repeating units that contain from 1 to 5 carbon atoms.
  • the polyalkylene glycol can be straight chain or branched and can be a homopolymer or co-polymer of 2, 3 or more oxyethylene, oxypropylene, oxybutylene or oxypentylene groups or combinations thereof in any proportions.
  • Preferred polyalkylene glycols contain at least 50% oxypropylene groups.
  • Compositions according to the present invention may contain one or more polyalkylene glycols as the lubricant, one or more polyalkylene glycol esters as the lubricant, one or more polyol esters as the lubricant, or a mixture of one of more polyalkylene glycols, one or more polyalkylene glycol esters and one or more polyol esters.
  • Vinyl ethers are also useful in this invention.
  • Suitable polyalkylene glycols include the polyalkylene glycols of U.S. Patent No. 4, 971,712 and the polyalkylene glycol having hydroxy groups at each terminus disclosed by U.S. Patent No. 4,755,316. The disclosures of both patents are incorporated herein by reference.
  • suitable polyalkylene glycols include glycols terminating at each end with a hydroxyl group
  • other suitable HFO lubricants include polyalkylene glycols in which either or both terminal hydroxyl group is capped.
  • the hydroxyl group may be capped with alkyl groups containing from 1 to 10 carbon atoms, 1 to 10 carbon atom alkyl groups containing heteroatoms such as nitrogen, the fluoroalkyl groups described by U.S. Patent No. 4,975,212, the disclosure of which is incorporated herein by reference, and the like.
  • the same type or a combination of two different types of terminal capping groups can be used.
  • Either or both hydroxyl groups can also be capped by forming the ester thereof with a carboxylic acid as disclosed by U.S. Patent No. 5,008,028, the disclosure of which is also incorporated herein by reference.
  • the lubricating oils of this patent are referred to as polyol esters and polyalkylene glycol esters.
  • the carboxylic acid can also be fluorinated.
  • polyalkylene glycol lubricants include Goodwrench Refrigeration Oil for HFC-134a systems from General Motors and MOPAR-56 from Daimler-Chrysler, which is a polyalkylene glycol that is bis-capped by acetyl groups.
  • polyalkylene glycol esters include Mobil EAL 22 cc available from Exxon-Mobil and Solest 120 available from CPI Engineering Services, Inc.
  • a wide variety of polyalkylene glycol lubricants are also available from Dow Chemical.
  • the lubricants of this invention have viscosities of from about 1 to 1000 centistokes at about 37°C, more preferably in the range of from about 10 to about 200 centistokes at about 37°C and even more preferably of from about 30 to about 150 centistokes.
  • compositions according to the present invention can include other additives or materials of the type used in refrigeration, air-conditioning and heat pump compositions to enhance their performance.
  • the compositions can also include extreme pressure and anti-wear additives, oxidation and thermal stability improvers, pour and floe point depressants, anti-foaming agents, other lubricants soluble in HFO's, and the like. Examples of such additives are disclosed in U.S. Patent No. 5,254,280, the disclosure of which is incorporated herein by reference.
  • compositions of the present invention can thus further include a quantity of mineral oil lubricant that would not otherwise be misicible or soluble with the HFO but is at least partially misicible or partially soluble when added to the HFO in combination with a polyalkylene glycol,
  • polyalkylene glycol ester or polyol ester typically, this is a quantity up to about 5-20 weight %.
  • a surfactant may also be added to compatibilize the mineral oil with the polyalkylene glycol, polyalkylene glycol ester or polyol ester and the HFO, as disclosed in U.S. Patent No. 6,516,837, the disclosure of which is incorporated herein by reference.
  • any of a wide range of methods for introducing the refrigeration compositions of the present invention to a compression refrigeration, air-conditioning or heat pump system can be used from the present invention.
  • one method comprises attaching a refrigerant container to the low-pressure side of a refrigeration system and turning on the refrigeration system compressor to pull the refrigeration composition into the system.
  • the refrigerant container may be placed on a scale such that the amount of refrigeration composition entering the system can be monitored.
  • charging is stopped.
  • a wide range of charging tools known to those skilled in the art, are commercially available. Accordingly, in light of the above disclosure, those of skill in the art will be readily able to introduce the HFO refrigerant and refrigeration compositions of the present invention into compression refrigeration, air-conditioning and heat pump systems without undue experimentation.
  • COP coefficient of performance
  • refrigerant performance is a universally accepted measure of refrigerant performance, especially useful in representing the relative thermodynamic efficiency of a refrigerant in a specific heating or cooling cycle involving evaporation or condensation of the refrigerant.
  • this term expresses the ratio of useful refrigeration to the energy applied by the compressor in compressing the vapor.
  • capacity of a refrigerant represents the volumetric
  • a refrigeration/air conditioning cycle system where the condenser temperature is about 150°F and the evaporator temperature is about -35°F under nominally isentropic compression with a compressor inlet temperature of about 50°F.
  • COP is determined for several compositions of the present invention over a range of condenser and evaporator temperatures and reported in Table I below, based upon HFC-134a having a COP value of 1.00, a capacity value of 1.00 and a discharge temperature of 175 °F.
  • the lubricant compositions are placed in heavy-walled glass tubes.
  • the tubes are evacuated, the refrigerant compound in accordance with the present invention is added, and the tubes are then sealed.
  • the tubes are then put into an air bath environmental chamber, the temperature of which is varied from about -50°C to 70°C.
  • the temperature of which is varied from about -50°C to 70°C.
  • visual observations of the tube contents are made for the existence of one or more liquid phases. In a case where more than one liquid phase is observed, the mixture is reported to be immiscible. In a case where there is only one liquid phase observed, the mixture is reported to be miscible. In those cases where two liquid phases were observed, but with one of the liquid phases occupying only a very small volume, the mixture is reported to be partially miscible.
  • the polyalkylene glycol and ester oil lubricants were judged to be miscible in all tested proportions over the entire temperature range, except that for the HFO- 1225ye mixtures with polyalkylene glycol, the refrigerant mixture was found to be immiscible over the temperature range of-50°C to -30°C and to be partially miscible over from -20 to 50°C. At 50 weight percent concentration of the PAG in refrigerant and at 60°, the refrigerant/PAG mixture was miscible. At 70°C, it was miscible from 5 weight percent lubricant in refrigerant to 50 weight percent lubricant in refrigerant.
  • Aluminum, copper and steel coupons are added to heavy walled glass tubes. Two grams of oil are added to the tubes. The tubes are then evacuated and one gram of refrigerant is added. The tubes are put into an oven at 350°F for one week and visual observations are made. At the end of the exposure period, the tubes are removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Lubricants (AREA)

Abstract

Liquid compositions for use in compression refrigeration, air-conditioning and heat pump systems in which a fluoroalkene containing from 3 to 4 carbon atoms and at least 1 but no more than 2 double bonds is combined with an effective amount to provide lubrication of an essentially miscible organic lubricant comprised of carbon, hydrogen and oxygen and having a ratio of oxygen to carbon effective to provide a degree of miscibility with said fluoroalkene so that when up to five weight percent of lubricant is added to said fluoroalkene the refrigerant has one liquid phase at at least one temperature between - 40 and +70°C. Methods for producing refrigeration and heating with the fluoroalkenes, alone or in combination with the disclosed lubricants, are also disclosed.

Description

F LUORINATED A KENE REFRIGERANT COMPOSITIONS
RELATED APPLICATIONS The present application is related to and claims the priority benefit of U.S. Provisional Application Nos. 60/421,263, and 60/421,435, each of which was filed on Oct. 25, 2002 and each of which is incorporated herein by reference. The present application is also related to and incorporates by reference each of the following concurrently filed U.S. Patent Applications: Attorney Docket Number H0004412 (26,269) entitled "COMPOSITIONS CONTAINING FLUORINE SUBSTITUTED OLEFINS," by Singh et al. and Attorney Docket Number H0003789 (26,267) entitled "PROCESS FOR PRODUCING FLUOROPROPENES," by Tung et al.
FIELD OF THE INVENTION The present invention relates to compositions used as refrigeration fluids in compression refrigeration, air-conditioning and heat pump systems.
BACKGROUND OF THE INVENTION The use of chlorine-containing refrigerants, such as chlorofluorocarbons (CFC's), hydrochlorofluorocarbons (HCF's) and the like, as refrigerants in air- conditioning and refrigeration systems has become disfavored because of the ozone-depleting properties associated with such compounds. As a result, it has become desirable to retrofit chlorine-containing refrigeration systems by replacing chlorine-containing refrigerants with non-chlorine-containing refrigerant compounds that will not deplete the ozone layer, such as hydrofluorocarbons (HFC's).
In order for any of the replacement materials to be useful in connection with refrigeration compositions, the materials must be compatible with the lubricant utilized in the compressor. Unfortunately, many non-chlorine-containing refrigeration fluids, including HFC's, are relatively insoluble and/or immiscible in the types of lubricants used traditionally with CFC's and HFC's, including, for example, mineral oils, alkylbenzenes or poly(alpha-olefins). In order for a refrigeration fluid-lubricant combination to work efficiently within a compression refrigeration, air-conditioning or heat pump system, the lubricant must be sufficiently soluble in the refrigeration liquid over a wide range of operating temperatures. Such solubility lowers the viscosity of the lubricant and allows it to flow more easily throughout the system. In the absence of such solubility, lubricants tend to become lodged in the coils of the compression refrigeration, air-conditioning or heat pump system evaporator, as well as other parts of the system, and thus reduce the system efficiency.
Polyalkylene glycol, esterified polyalkylene glycol, and polyol ester lubricating oils have been developed as misicible lubricants for HFC refrigeration liquids. Polyalkylene glycol refrigeration lubricants are disclosed by U.S. Patent No. 4,755,316; 4,971,712, and 4, 975, 212. Polyalkylene glycol esters are disclosed by U.S. Patent No. 5,008,028. The polyalkylene glycol and polyalkylene glycol ester lubricating oils are disclosed as being misicible in fluoroalkanes containing one or two carbon atoms and no double bonds.
Consequently fluorocarbon-based fluids have found widespread use in industry for refrigeration system applications, including air-conditioning systems and heat pump applications as well, all of which involve compression refrigeration. Compression refrigeration generally involves changing the refrigerant from the liquid to the vapor phase through heat adsorption at a lower pressure and then from the vapor to the liquid phase through heat removal at an elevated pressure.
While the primary purpose of refrigeration is to remove energy at low temperature, the primary purpose of a heat pump is to add energy at higher temperature. Heat pumps are considered reverse cycle systems because for heating, the operation of the condenser is interchanged with that of the refrigeration evaporator. The art is continually seeking new fluorocarbon and hydrofluorocarbon-based pure fluids that offer alternatives for refrigeration and heat pump applications. Applicants have come to appreciate that fluoro-olefin-based materials (fluoroalkenes) are of particular interest because they have characteristics that make them environmentally safer substitutes for the presently used fluoroalkanes (HFC's), that despite being safe for the ozone layer are suspected of causing global warming.
Applicant has also come to recognize that refrigeration composition substitutes for HFC's in many cases preferably possess certain performance properties to be considered acceptable substitutes, including acceptable refrigeration characteristics, chemical stability, low toxicity, non-flammability, lubricant compatibility and efficiency in use. The latter characteristic is important in many refrigeration systems, air-conditioning systems and heat pump applications, especially when a loss in refrigeration thermodynamic performance or energy efficiency may have secondary environmental impacts through increased fossil fuel usage arising from an increased demand for electrical energy. Furthermore, it would be advantageous for HFC refrigeration composition substitutes to not require major engineering changes to conventional vapor compression technology and lubricant systems currently used with HFC refrigeration liquids.
Flammability is another important property for many applications. That is, it is considered either important or essential in many applications, including particularly in heat transfer applications, to use compositions which are non-flammable. Thus, it is frequently beneficial to use in such compositions compounds which are nonflammable. As used herein, the term "nonflammable" refers to compounds or compositions which are determined to be nonflammable in accordance with ASTM standard E-681 , dated 2002, which is incorporated herein by reference. Unfortunately, many HFC's which might otherwise be desirable for used in refrigerant compositions are not nonflammable. For example, the fluoroalkane difluoroethane (HFC-152a) and the fluoroalkene 1,1,1-trifluoropropene (HFO- 1243zf) are each flammable and therefore not viable for use in many applications.
Higher fluoroalkenes, that is fluorine-substituted alkenes having at least five carbon atoms, have been suggested for use as refrigerants. Smutry, U.S. Patent No. 4,788,352 is directed to production of fluorinated C5 to C8 compounds having at least some degree of unsaturation. The Smutny patent identifies such higher olefins as being known to have utility as refrigerants, pesticides, dielectric fluids, heat transfer fluids, solvents, and intermediates in various chemical reactions.
While the fluorinated olefins described in Smutny may have some level of effectiveness in heat transfer applications, it is believed that such compounds may also have certain disadvantages. For example, some of these compounds may tend to attack substrates, particularly general-purpose plastics such as acrylic resins and ABS resins. Furthermore, the higher olefinic compounds described in Smutny may also be undesirable in certain applications because of the potential level of toxicity of such compounds which may arise as a result of pesticide activity noted in Smutny. Also, such compounds may have a boiling point which is too high to make them useful as a refrigerant in certain applications.
Applicant have thus come to appreciate a need for compositions, and particularly fluid transfer compositions that are potentially useful in numerous applications, including vapor compression heating and cooling systems and methods, while avoiding one or more of the disadvantages noted above. Moreover, applicant has also recognized that in many applications there remains a need for fluorocarbon and hydrofluorocarbon-based refrigeration liquids that are environmentally safer than HFC's, possess similar or better characteristics with respect to at least certain refrigerant thermodynamic performance properties, and are compatible with existing lubricant systems. PAGES 5-10 OF DESCRIPTION NOT FURNISHED UPON FILING
producing heating by condensing a fluoroalkene containing from 2 to 5 carbon atoms and at least 1 but no more than 2 double bonds in the vicinity of a body to be heated and thereby evaporating the fluoroalkene. Again, fluoroalkenes containing 3 carbon atoms and 1 double bond are preferred.
It has also been discovered that the fluoroalkenes of the present invention are misicible with existing polyalkylene glycol, polyalkylene glycol ester and polyol ester lubricating oils. Therefore, according to another aspect of the present invention, a liquid composition is provided for use in compression refrigeration, air-conditioning and heat pump systems in which a fluoroalkene containing from 2 to 5 carbon atoms and at least 1 but no more than 2 double bonds is combined with a sufficient amount to provide lubrication of an essentially miscible organic lubricant selected from polyalkylene glycol, polyalkylene glycol ester and polyol ester lubricants for compression refrigeration, air-conditioning and heat pump systems. In certain preferred embodiments, the lubricants of this invention are organic compounds which are comprised of carbon, hydrogen and oxygen with a ratio of oxygen to carbon sufficient to provide a degree of miscibility with the fluoroalkene such the when about 1 to 5 weight percent of the lubricant is added to the refrigerant fluid the mixture has one liquid phase. Preferably, the mixture has one liquid phase when 1 to 20 weight percent of the lubricant is present in the mixture. Most preferably, the mixture is one liquid phase in all proportions of the components of mixture. This solubility or miscibility preferably exists at at least one temperature from about — 40°C and 70°C, and more preferably over essentially the entire temperature range.
As used herein the term "refrigeration system" refers to any system or apparatus, or any part or portion of such a system or apparatus, which employs a refrigeration liquid or refrigerant to provide cooling. Such refrigeration systems include, for example, air-conditioners, electric refrigerators, chillers, transport refrigeration systems, commercial refrigeration systems, and the like.
The present invention substitutes HFO's for HFC's, which, despite being safeor the ozone layer, are suspected of contributing to global warming. At least certain
11 of the preferred HFO's according to the present invention have physical characteristics that allow for their substitution for HFC's with only a minimum of equipment changes.
The polyalkylene glycol lubricants suitable for use with the present invention typically containing from about 5 to 50 oxylakylene repeating units that contain from 1 to 5 carbon atoms. The polyalkylene glycol can be straight chain or branched and can be a homopolymer or co-polymer of 2, 3 or more oxyethylene, oxypropylene, oxybutylene or oxypentylene groups or combinations thereof in any proportions. Preferred polyalkylene glycols contain at least 50% oxypropylene groups. Compositions according to the present invention may contain one or more polyalkylene glycols as the lubricant, one or more polyalkylene glycol esters as the lubricant, one or more polyol esters as the lubricant, or a mixture of one of more polyalkylene glycols, one or more polyalkylene glycol esters and one or more polyol esters. Vinyl ethers are also useful in this invention.
Suitable polyalkylene glycols include the polyalkylene glycols of U.S. Patent No. 4, 971,712 and the polyalkylene glycol having hydroxy groups at each terminus disclosed by U.S. Patent No. 4,755,316. The disclosures of both patents are incorporated herein by reference.
While suitable polyalkylene glycols include glycols terminating at each end with a hydroxyl group, other suitable HFO lubricants include polyalkylene glycols in which either or both terminal hydroxyl group is capped. The hydroxyl group may be capped with alkyl groups containing from 1 to 10 carbon atoms, 1 to 10 carbon atom alkyl groups containing heteroatoms such as nitrogen, the fluoroalkyl groups described by U.S. Patent No. 4,975,212, the disclosure of which is incorporated herein by reference, and the like. When both polyalkylene glycol hydroxyl groups are end capped, the same type or a combination of two different types of terminal capping groups can be used.
12 Either or both hydroxyl groups can also be capped by forming the ester thereof with a carboxylic acid as disclosed by U.S. Patent No. 5,008,028, the disclosure of which is also incorporated herein by reference. The lubricating oils of this patent are referred to as polyol esters and polyalkylene glycol esters. The carboxylic acid can also be fluorinated. When both ends of the polyalkylene glycol are capped, either or both ends may be capped with an ester, or one end may be capped with an ester and the other not capped or capped with one of the aforementioned alkyl, heteroalkyl or fluoroalkyl groups.
Commercially available polyalkylene glycol lubricants include Goodwrench Refrigeration Oil for HFC-134a systems from General Motors and MOPAR-56 from Daimler-Chrysler, which is a polyalkylene glycol that is bis-capped by acetyl groups. Commercially available polyalkylene glycol esters include Mobil EAL 22 cc available from Exxon-Mobil and Solest 120 available from CPI Engineering Services, Inc. A wide variety of polyalkylene glycol lubricants are also available from Dow Chemical.
In preferred embodiments, the lubricants of this invention have viscosities of from about 1 to 1000 centistokes at about 37°C, more preferably in the range of from about 10 to about 200 centistokes at about 37°C and even more preferably of from about 30 to about 150 centistokes.
In addition to the HFO refrigerant and lubricant, compositions according to the present invention can include other additives or materials of the type used in refrigeration, air-conditioning and heat pump compositions to enhance their performance. For example, the compositions can also include extreme pressure and anti-wear additives, oxidation and thermal stability improvers, pour and floe point depressants, anti-foaming agents, other lubricants soluble in HFO's, and the like. Examples of such additives are disclosed in U.S. Patent No. 5,254,280, the disclosure of which is incorporated herein by reference. Compositions of the present invention can thus further include a quantity of mineral oil lubricant that would not otherwise be misicible or soluble with the HFO but is at least partially misicible or partially soluble when added to the HFO in combination with a polyalkylene glycol,
13 polyalkylene glycol ester or polyol ester. Typically, this is a quantity up to about 5-20 weight %. A surfactant may also be added to compatibilize the mineral oil with the polyalkylene glycol, polyalkylene glycol ester or polyol ester and the HFO, as disclosed in U.S. Patent No. 6,516,837, the disclosure of which is incorporated herein by reference.
Any of a wide range of methods for introducing the refrigeration compositions of the present invention to a compression refrigeration, air-conditioning or heat pump system can be used from the present invention. For example, one method comprises attaching a refrigerant container to the low-pressure side of a refrigeration system and turning on the refrigeration system compressor to pull the refrigeration composition into the system. In such embodiments, the refrigerant container may be placed on a scale such that the amount of refrigeration composition entering the system can be monitored. When a desired amount of refrigeration composition has been introduced into the system, charging is stopped. Alternatively, a wide range of charging tools, known to those skilled in the art, are commercially available. Accordingly, in light of the above disclosure, those of skill in the art will be readily able to introduce the HFO refrigerant and refrigeration compositions of the present invention into compression refrigeration, air-conditioning and heat pump systems without undue experimentation.
EXAMPLES The following examples are provided for the purpose of illustrating the present invention but without limiting the scope thereof.
EXAMPLE 1 The coefficient of performance (COP) is a universally accepted measure of refrigerant performance, especially useful in representing the relative thermodynamic efficiency of a refrigerant in a specific heating or cooling cycle involving evaporation or condensation of the refrigerant. In refrigeration engineering, this term expresses the ratio of useful refrigeration to the energy applied by the compressor in compressing the vapor. The capacity of a refrigerant represents the volumetric
14 efficiency of the refrigerant and provides some measure of the capability of a compressor to pump quantities of heat for a given volumetric flow rate of refrigerant. In other words, given a specific compressor, a refrigerant with a higher capacity will deliver more cooling or heating power. One means for estimating COP of a refrigerant at specific operating conditions is from the thermodynamic properties of the refrigerant using standard refrigeration cycle analysis techniques (see for example, R.C. Downing, FLUOROCARBON REFRIGERANTS HANDBOOK, Chapter 3, Prentice-Hall, 1988).
A refrigeration/air conditioning cycle system is provided where the condenser temperature is about 150°F and the evaporator temperature is about -35°F under nominally isentropic compression with a compressor inlet temperature of about 50°F. COP is determined for several compositions of the present invention over a range of condenser and evaporator temperatures and reported in Table I below, based upon HFC-134a having a COP value of 1.00, a capacity value of 1.00 and a discharge temperature of 175 °F.
TABLE I
Figure imgf000011_0001
This example shows that certain of the preferred compounds for use with the present compositions each have a better energy efficiency than HFC-134a (1.02, 1.04 and 1.13 compared to 1.0O) and the compressor using the present refrigerant compositions will produce discharge temperatures (158, 165 and 155 compared to 175), which is advantageous since such result will likely leading to reduced maintenance problems.
15 EXAMPLE 2 The miscibility of HFO-1225ye and HFO-1234ze with various refrigeration lubricants is tested. The lubricants tested are mineral oil (C3), alkyl benzene (Zerol 150), ester oil (Mobil EAL 22 cc and Solest 120), polyalkylene glycol (PAG) oil (Goodwrench Refrigeration Oil for 134a systems), and a poly(alpha-olefin) oil (CP- 6005-100). For each refrigerant/oil combination, three compositions are tested, namely 5, 20 and 50 weight percent of lubricant, with the balance of each being the compound of the present invention being tested
The lubricant compositions are placed in heavy-walled glass tubes. The tubes are evacuated, the refrigerant compound in accordance with the present invention is added, and the tubes are then sealed. The tubes are then put into an air bath environmental chamber, the temperature of which is varied from about -50°C to 70°C. At roughly 10°C intervals, visual observations of the tube contents are made for the existence of one or more liquid phases. In a case where more than one liquid phase is observed, the mixture is reported to be immiscible. In a case where there is only one liquid phase observed, the mixture is reported to be miscible. In those cases where two liquid phases were observed, but with one of the liquid phases occupying only a very small volume, the mixture is reported to be partially miscible.
The polyalkylene glycol and ester oil lubricants were judged to be miscible in all tested proportions over the entire temperature range, except that for the HFO- 1225ye mixtures with polyalkylene glycol, the refrigerant mixture was found to be immiscible over the temperature range of-50°C to -30°C and to be partially miscible over from -20 to 50°C. At 50 weight percent concentration of the PAG in refrigerant and at 60°, the refrigerant/PAG mixture was miscible. At 70°C, it was miscible from 5 weight percent lubricant in refrigerant to 50 weight percent lubricant in refrigerant.
EXAMPLE 3 The compatibility of the refrigerant compounds and compositions of the present invention with PAG lubricating oils while in contact with metals used in refrigeration and air conditioning systems is tested at 350° C, representing conditions
16 much more severe than are found in many refrigeration and air conditioning applications.
Aluminum, copper and steel coupons are added to heavy walled glass tubes. Two grams of oil are added to the tubes. The tubes are then evacuated and one gram of refrigerant is added. The tubes are put into an oven at 350°F for one week and visual observations are made. At the end of the exposure period, the tubes are removed.
This procedure was done for the following combinations of oil and the compound of the present invention: a) HFC-1234ze and GM Goodwrench PAG oil b) HFC1243zf and GM Goodwrench oil PAG oil c) HFC-1234ze and MOPAR-56 PAG oil d) HFC-1243zf and MOPAR-56 PAG oil e) HFC-1225 ye and MOPAR-56 PAG oil.
In all cases, there is minimal change in the appearance of the contents of the tube. This indicates that the refrigerant compounds and compositions of the present invention are stable in contact with aluminum, steel and copper found in refrigeration and air conditioning systems, and the types of lubricating oils that are likely to be included in such compositions or used with such compositions in these types of systems.
COMPARATIVE EXAMPLE Aluminum, copper and steel coupons are added to a heavy walled glass tube with mineral oil and CFC-1 2 and heated for one week at 350°C, as in Example 3. At the end of the exposure period, the tube is removed and visual observations are made. The liquid contents are observed to turn black, indicating there is severe decomposition of the contents of the tube.
17 CFC-12 and mineral oil have heretofore been the combination of choice in many refrigerant systems and methods. Thus, the refrigerant compounds and compositions of the present invention possess significantly better stability with many commonly used lubricating oils than the widely-used prior art refrigerant-lubricating oil combination.
18

Claims

WHAT IS CLAIMED IS:
1. A liquid composition for use in compression refrigeration, air-conditioning and heat pump systems comprising:
(A) a fluoroalkene containing from 3 to 4 carbon atoms and at least 1 but no more than 2 double bonds; and
(B) an effective amount to provide lubrication of an essentially miscible organic lubricant comprised of carbon, hydrogen and oxygen and having a ratio of oxygen to carbon effective to provide a degree of miscibility with said fluoroalkene so that when up to five weight percent of lubricant is added to said fluoroalkene the mixture has one liquid phase at at least one temperature between -40 and +70°C.
2. The composition of claim 1 , wherein the mixture has one liquid phase when up to five weight percent of lubricant is added to said fluoroalkene.
3. The composition of claim 2, wherein the mixture has one liquid phase when up to 20 weight percent of lubricant is added to said fluoroalkene.
4. The composition of claim 3, wherein the mixture has one liquid phase in all proportions of fluoroalkene and lubricant.
5. The composition of claim 1 , wherein the mixture has one liquid phase over essentially the entire temperature range.
6. The composition of claim 1 , wherein said lubricant is selected from the group consisting of polyalkylene glycol, polyalkylene glycol ester and polyol ester lubricants for compressor refrigeration, air-conditioning and heat pump systems.
7. The composition of claim 1 , wherein said fluoroalkene has the structure:
19 XCFzR3-z wherein X is a C2 or a C3 unsaturated, substituted or unsubstituted alkyl radical, R is independently selected from the group consisting of Cl, Br, I or H, and z is 1 to 3.
8. The composition of claim 7, wherein said fluoroalkene has the structure:
Figure imgf000016_0001
wherein each R is independently Cl, F, Br, I or H; R' is (CR2)nY; Y is CRF2 ; and n is O or 1.
9. The composition of claim 8, wherein said fluoroalkene is 1 ,3,3,3-tetrafluoro- propene or 3,3,3-trifluoropropene.
10. The composition of claim 1 , wherein said organic lubricant is a polyalkylene glycol.
11. The composition of claim 10, wherein said polyalkylene glycol has at least one terminal hydroxyl group.
12. The composition of claim 11 , wherein both terminal groups of said polyalkylene glycol are hydroxyl groups.
13. The composition of claim 10, wherein said polyalkylene glycol has at least one alkyl terminal group.
14. The composition of claim 13, wherein at least one terminal alkyl group of said polyalkylene glycol contains at least one heteroatom.
20
15. The composition of claim 14, wherein said polyalkylene glycol has at least one fluoroalkyl terminal group.
16. The composition of claim 1 , wherein said organic lubricant is a polyalkylene glycol ester.
17. The composition of claim 1, further comprising an amount of hydrocarbon lubricant essentially miscible with said fluoroalkene and said organic lubricant.
18. The composition of claim 17, further comprising a surfactant for solubilizing said hydrocarbon lubricant with said organic lubricant, in an amount effective to form an essentially miscible blend.
19. A method for producing refrigeration which comprises condensing a refrigerant composition comprising a fluoroalkene containing from 3 to 4 carbon atoms and at least 1 but no more than 2 double bonds, and thereafter evaporating said refrigerant composition in the vicinity of a body to be cooled.
20. The method of claim 19, wherein said fluoroalkene has the structure:
XCFzRβ-z
wherein X is a C2 or a C3 unsaturated, substituted or unsubstituted alkyl radical, R is independently selected from the group consisting of Cl, Br, I or H, and z is 1 to 3.
21. The method of claim 20, wherein said fluoroalkene has the structure:
Figure imgf000017_0001
wherein each R is independently Cl, F, Br, I or H; R' is (CR2)nY; Y is CRF2 ; and n is 0 or 1.
21
22. The method of claim 21, wherein said fluoroalkene is 1,3,3,3- tetrafluoropropene or 3,3,3-trifluoropropene.
23. The method of claim 19, wherein said refrigeration method is performed in a compression refrigeration system.
24. The method of claim 19, wherein said refrigeration method is performed in an air-conditioning system.
25. The method of claim 19, wherein an organic lubricant is added to said refrigerant in an amount effective to provide lubrication comprised of carbon, hydrogen and oxygen and having a ratio of oxygen to carbon effective to provide a degree of miscibility with said fluoroalkene so that when up to five weight percent of lubricant is added to said fluoroalkene the refrigerant has one liquid phase at at least one temperature between -40 and +70°C.
26. The method of claim 25, wherein the refrigerant has one liquid phase when up to 20 weight percent of lubricant is added to said fluoroalkene.
27. The method of claim 26, wherein the refrigerant has one liquid phase in all proportions of fluoroalkene and lubricant.
28. The method of claim 25, wherein the refrigerant has one liquid phase over essentially the entire temperature range.
29. The method of claim 25, wherein said lubricant is selected from the group consisting of polyalkylene glycol, polyalkylene glycol ester and polyol ester lubricants for compressor refrigeration and air-conditioning systems.
22
30. The method of claim 25, wherein there is further added to said refrigerant an amount of a hydrocarbon lubricant essentially miscible with said fluoroalkene and said organic lubricant.
31. The method of claim 30, wherein there is further added to said refrigerant a surfactant for solubilizing said hydrocarbon lubricant with said fluoroalkene and said organic lubricant in an amount effective to form an essentially miscible blend.
32. A method for producing heating which comprises condensing a fluoroalkene composition containing from 3 to 4 carbon atoms and at least 1 but no more than 2 double bonds in the vicinity of a body to be heated and thereafter evaporating said fluoroalkene composition.
33. The method of claim 32, wherein said fluoroalkene has the structure:
XCFzR3-z
wherein X is a C2 or a C3 unsaturated, substituted or unsubstituted alkyl radical, R is independently selected from the group consisting of Cl, Br, I or H, and z is 1 to 3.
34. The method of claim 33, wherein said fluoroalkene has the structure:
Figure imgf000019_0001
wherein each R is independently Cl, F, Br, I or H; R' is (CR2)nY; Y is CRF2 ; and n is 0 or 1.
35. The method of claim 34, wherein said fluoroalkene is 1,3,3,3- tetrafluoropropene or 3,3,3-trifluoropropene.
23
36. The method of claim 32, wherein an organic lubricant is added to said fluoroalkene composition in an amount effective to provide lubrication comprised of carbon, hydrogen and oxygen and having a ratio of oxygen to carbon effective to provide a degree of miscibility with said fluoroalkene composition so that when up to five weight percent of lubricant is added to said fluoroalkene composition, said composition has one liquid phase at at least one temperature between - 40 and +70°C.
37. The method of claim 36, wherein the fluoroalkene composition has one liquid phase when up to 20 weight percent of lubricant is added thereto.
38. The method of claim 37, wherein the fluoroalkene composition has one liquid phase in all proportions of fluoroalkene composition and lubricant.
39. The method of claim 36, wherein the fluoroalkene composition has one liquid phase over essentially the entire temperature range.
40. The method of claim 36, wherein said lubricant is selected from the group consisting of polyalkylene glycol, polyalkylene glycol ester and polyol ester lubricants for compressor refrigeration and air-conditioning systems.
41. The method of claim 36, wherein there is further added to said fluoroalkene composition an amount of a hydrocarbon lubricant essentially miscible with said fluoroalkene and said organic lubricant.
42. The method of claim 41 , wherein there is further added to said fluoroalkene composition a surfactant for solubilizing said hydrocarbon lubricant with said fluoroalkene and said organic lubricant in an amount effective to form an essentially miscible blend.
24
PCT/US2004/035132 2003-10-27 2004-10-25 Fluorinated alkene refrigerant compositions WO2005042663A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP19218149.3A EP3680308A1 (en) 2003-10-27 2004-10-25 Fluorinated alkene refrigerant compositions
EP10010521.2A EP2275509B1 (en) 2003-10-27 2004-10-25 Use of fluorinated alkene refrigerant compositions
EP04817445A EP1725628B1 (en) 2003-10-27 2004-10-25 Fluorinated alkene refrigerant compositions
JP2006538130A JP2007510039A (en) 2003-10-27 2004-10-25 Fluorinated alkene refrigerant composition
KR1020127011477A KR101335358B1 (en) 2003-10-27 2004-10-25 Fluorinated Alkene Refrigerant Compositions
PL10011589T PL2277976T3 (en) 2003-10-27 2004-10-25 Compositions comprising hfc-1234ze and lubricant
SI200431900T SI1725628T1 (en) 2003-10-27 2004-10-25 Fluorinated alkene refrigerant compositions
KR1020067010510A KR101335360B1 (en) 2003-10-27 2004-10-25 Fluorinated Alkene Refrigerant Compositions
DK04817445.2T DK1725628T3 (en) 2003-10-27 2004-10-25 Refrigerant compositions with fluorinated alkene
CN200480039094.8A CN1898353B (en) 2003-10-27 2004-10-25 Compositions containing fluorine substituted olefins
EP10011589.8A EP2277976B1 (en) 2003-10-27 2004-10-25 Compositions comprising hfc-1234ze and lubricant
ES04817445T ES2385650T3 (en) 2003-10-27 2004-10-25 Refrigerating compositions of fluorinated alkenes
PL10010521T PL2275509T3 (en) 2003-10-27 2004-10-25 Use of fluorinated alkene refrigerant compositions
PL04817445T PL1725628T3 (en) 2003-10-27 2004-10-25 Fluorinated alkene refrigerant compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/695,212 US20040089839A1 (en) 2002-10-25 2003-10-27 Fluorinated alkene refrigerant compositions
US10/695,212 2003-10-27

Publications (1)

Publication Number Publication Date
WO2005042663A1 true WO2005042663A1 (en) 2005-05-12

Family

ID=34549972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/035132 WO2005042663A1 (en) 2003-10-27 2004-10-25 Fluorinated alkene refrigerant compositions

Country Status (14)

Country Link
US (5) US20040089839A1 (en)
EP (6) EP2009075B1 (en)
JP (6) JP2007510039A (en)
KR (2) KR101335360B1 (en)
CN (5) CN103923610B (en)
DE (1) DE08011766T1 (en)
DK (3) DK2277976T3 (en)
ES (5) ES2385650T3 (en)
HU (2) HUE046570T2 (en)
PL (5) PL2009075T3 (en)
PT (4) PT2275509T (en)
SI (3) SI2277976T1 (en)
TR (1) TR201708747T4 (en)
WO (1) WO2005042663A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1563032A2 (en) 2002-10-25 2005-08-17 Honeywell International Inc. Compositions containing flourine substituted olefins
WO2008105256A1 (en) * 2007-02-27 2008-09-04 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
WO2008105366A1 (en) * 2007-02-27 2008-09-04 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
JP2008544072A (en) * 2005-06-24 2008-12-04 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine-substituted olefins
EP2009075A2 (en) 2003-10-27 2008-12-31 Honeywell International Inc. Fluorinated alkene refrigerant compositions
JP2009518460A (en) * 2005-11-01 2009-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions containing fluoroolefins and uses thereof
US7569170B2 (en) 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
JP2009530489A (en) * 2006-03-21 2009-08-27 ハネウェル・インターナショナル・インコーポレーテッド Composition comprising foaming agent and fluorine-substituted olefin and ether, and foaming method
US7708903B2 (en) 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US8033120B2 (en) 2002-10-25 2011-10-11 Honeywell International Inc. Compositions and methods containing fluorine substituted olefins
US8065882B2 (en) 2002-10-25 2011-11-29 Honeywell International Inc. Compositions containing fluorine substituted olefins
US8082746B2 (en) 2008-02-22 2011-12-27 Denso Corporation Refrigeration cycle device for vehicle
JP2012140629A (en) * 2005-11-01 2012-07-26 E I Du Pont De Nemours & Co Composition comprising fluoroolefin and use thereof
US8318040B2 (en) 2007-03-27 2012-11-27 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerating machine
US8333901B2 (en) 2007-10-12 2012-12-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
RU2474601C2 (en) * 2007-10-29 2013-02-10 Ниппон Ойл Корпорейшн Refrigerator oil and composition of working medium for cooling apparatus
WO2013110868A1 (en) 2012-01-25 2013-08-01 Arkema France Heat transfer compositions having improved miscibility with lubricating oil
US8512591B2 (en) 2007-10-12 2013-08-20 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
JP2013249478A (en) * 2007-02-27 2013-12-12 Jx Nippon Oil & Energy Corp Refrigerator oil, and hydraulic fluid composition for refrigerator
US8628681B2 (en) 2007-10-12 2014-01-14 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8808570B2 (en) 2010-05-20 2014-08-19 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
JP2014177648A (en) * 2007-02-27 2014-09-25 Jx Nippon Oil & Energy Corp Refrigerating machine oil and working fluid composition for refrigerating machine
US8911641B2 (en) 2010-05-20 2014-12-16 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8926856B2 (en) 2010-02-16 2015-01-06 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8939742B2 (en) 2009-06-19 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Compressor with steel and cast iron sliding materials
US9028706B2 (en) 2011-02-10 2015-05-12 Arkema France Binary compositions of 2,3,3,3-tetrafluoropropene and of ammonia
US9175202B2 (en) 2010-02-16 2015-11-03 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US9315708B2 (en) 2011-05-04 2016-04-19 Arkema France Heat-transfer compositions exhibiting improved miscibility with the lubricating oil
WO2016140187A1 (en) * 2015-03-02 2016-09-09 Jxエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerators
US9523026B2 (en) 2007-06-27 2016-12-20 Arkema Inc. Stabilized hydrochlorofluoroolefins and hydrofluoroolefins
US10023780B2 (en) 2013-07-11 2018-07-17 Arkema France 2,3,3,3-tetrafluoropropene compositions having improved miscibility
US10266736B2 (en) 2010-06-25 2019-04-23 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US10330364B2 (en) 2014-06-26 2019-06-25 Hudson Technologies, Inc. System and method for retrofitting a refrigeration system from HCFC to HFC refrigerant
US10450488B2 (en) 2012-01-26 2019-10-22 Arkema France Heat transfer compositions having improved miscibility with lubricating oil
US11624534B2 (en) 2007-05-11 2023-04-11 The Chemours Company Fc, Llc Method for exchanging heat in vapor compression heat transfer systems and vapor compression heat transfer systems comprising intermediate heat exchangers with dual-row evaporators or condensers
US11629278B2 (en) 2018-02-15 2023-04-18 Arkema France Heat transfer compositions as replacement for R-134A
US11674067B2 (en) 2005-03-04 2023-06-13 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050096246A1 (en) * 2003-11-04 2005-05-05 Johnson Robert C. Solvent compositions containing chlorofluoroolefins
US9994750B2 (en) * 2002-10-25 2018-06-12 Honeywell International Inc. Compositions containing fluorine substituted olefins and methods and systems using same
US9085504B2 (en) * 2002-10-25 2015-07-21 Honeywell International Inc. Solvent compositions containing fluorine substituted olefins and methods and systems using same
US7524805B2 (en) * 2004-04-29 2009-04-28 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and hydrofluorocarbons
US9499729B2 (en) 2006-06-26 2016-11-22 Honeywell International Inc. Compositions and methods containing fluorine substituted olefins
US7655610B2 (en) 2004-04-29 2010-02-02 Honeywell International Inc. Blowing agent compositions comprising fluorinated olefins and carbon dioxide
US8008244B2 (en) 2004-04-29 2011-08-30 Honeywell International Inc. Compositions of tetrafluoropropene and hydrocarbons
US20060243944A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
PT3255115T (en) 2005-03-04 2019-10-24 Chemours Co Fc Llc Compositions consisting of hfc-1234yf and hfc-134a
US8574451B2 (en) * 2005-06-24 2013-11-05 Honeywell International Inc. Trans-chloro-3,3,3-trifluoropropene for use in chiller applications
US20070210276A1 (en) * 2006-03-10 2007-09-13 Honeywell International Inc. Method for generating pollution credits
GB0611742D0 (en) 2006-06-14 2006-07-26 Ineos Fluor Holdings Ltd Desiccants for fluids
ES2539939T3 (en) 2006-06-27 2015-07-07 E.I. Du Pont De Nemours And Company Production procedures of 1,2,3,3,3-pentafluoropropene
JP2009542883A (en) * 2006-07-12 2009-12-03 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Heating / cooling method using fluoroether compound, composition suitable for this, and use thereof
EP2057245B2 (en) * 2006-09-01 2019-11-06 The Chemours Company FC, LLC Phosphorus-containing stabilizers for fluoroolefins
CA2661007A1 (en) * 2006-09-01 2008-03-06 E.I. Du Pont De Nemours And Company Method for circulating selected heat transfer fluids through a closed loop cycle
JP5139665B2 (en) 2006-11-02 2013-02-06 出光興産株式会社 Lubricating oil composition for refrigerator
EP2119760B1 (en) * 2007-03-08 2018-10-31 Idemitsu Kosan Co., Ltd. Composition for lubricating a compression type refrigerating
WO2008121778A1 (en) * 2007-03-29 2008-10-09 Arkema Inc. Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins
KR101512205B1 (en) * 2007-04-18 2015-04-14 이데미쓰 고산 가부시키가이샤 Lubricating oil composition for refrigerators and compressors with the composition
JP5226242B2 (en) * 2007-04-18 2013-07-03 出光興産株式会社 Lubricating oil composition for refrigerator
JP2008267251A (en) * 2007-04-19 2008-11-06 Sanden Corp Compressor
EP2161323B1 (en) * 2007-06-12 2017-08-23 Idemitsu Kosan Co., Ltd. Lubricant composition for refrigerator and compressor using the same
JP5599706B2 (en) * 2007-06-27 2014-10-01 アーケマ・インコーポレイテッド Stabilized hydrochlorofluoroolefins and hydrofluoroolefins
JP2010534743A (en) * 2007-07-27 2010-11-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions containing fluoroolefins and uses thereof
JP5241261B2 (en) 2008-02-15 2013-07-17 出光興産株式会社 Lubricating oil composition for refrigerator
JP5241262B2 (en) * 2008-02-15 2013-07-17 出光興産株式会社 Lubricating oil composition for refrigerator
JP5241263B2 (en) * 2008-02-15 2013-07-17 出光興産株式会社 Lubricating oil composition for refrigerator
WO2009114397A2 (en) 2008-03-07 2009-09-17 Arkema Inc. Stable formulated systems with chloro-3,3,3-trifluoropropene
JP5612250B2 (en) 2008-03-07 2014-10-22 出光興産株式会社 Lubricating oil composition for refrigerator
JP2009222032A (en) 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating apparatus
JP2009222360A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Heat exchanger
PL2260231T3 (en) * 2008-04-01 2022-01-03 Honeywell International Inc. Methods for using two-phase refrigerant-lubricant mixtures in vapor-compression refrigeration devices
US20110232306A1 (en) * 2008-04-30 2011-09-29 Honeywell International Inc. Absorption refrigeration cycles using a lgwp refrigerant
US9994751B2 (en) * 2008-04-30 2018-06-12 Honeywell International Inc. Absorption refrigeration cycles using a LGWP refrigerant
JP2011163565A (en) * 2008-06-09 2011-08-25 Mitsubishi Electric Corp Air conditioning device
JP5339788B2 (en) * 2008-06-13 2013-11-13 三菱電機株式会社 Compressor and refrigeration cycle equipment
US8443624B2 (en) * 2008-06-16 2013-05-21 Mitsubishi Electric Corporation Non-Azeotropic refrigerant mixture and refrigeration cycle apparatus
CN102066759B (en) * 2008-06-16 2014-12-03 三菱电机株式会社 Scroll compressor
JP5294719B2 (en) * 2008-06-17 2013-09-18 三菱電機株式会社 Rotary compressor
CN102077040A (en) * 2008-06-24 2011-05-25 三菱电机株式会社 Refrigerating cycle apparatus, and air-conditioning apparatus
US8820079B2 (en) * 2008-12-05 2014-09-02 Honeywell International Inc. Chloro- and bromo-fluoro olefin compounds useful as organic rankine cycle working fluids
FR2936806B1 (en) 2008-10-08 2012-08-31 Arkema France REFRIGERANT FLUID
FR2937906B1 (en) * 2008-11-03 2010-11-19 Arkema France METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE
US8871112B2 (en) * 2008-11-19 2014-10-28 E I Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene and hydrocarbons and uses thereof
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
CN102264877B (en) * 2008-12-23 2014-12-10 瑞弗化工有限公司 Refrigerant lubricant composition
EP2396293A1 (en) * 2009-02-11 2011-12-21 Arkema France Azeotrope and azeotrope-like compositions of chlorotrifluoropropene and pentane
JP2011047329A (en) * 2009-08-27 2011-03-10 Panasonic Corp Rotary compressor
CN107022343A (en) 2009-09-09 2017-08-08 霍尼韦尔国际公司 Monochloro trifluoro propene compound and the composition and method using it
FR2950065B1 (en) * 2009-09-11 2012-02-03 Arkema France BINARY REFRIGERANT FLUID
FR2950066B1 (en) 2009-09-11 2011-10-28 Arkema France LOW AND MEDIUM TEMPERATURE REFRIGERATION
ES2581516T3 (en) 2009-09-16 2016-09-06 The Chemours Company Fc, Llc Cooling device containing trans-1,1,1,4,4,4-hexafluoro-2-butene and procedures to produce cooling in it
US9481820B2 (en) 2009-12-29 2016-11-01 Arkema Inc. Method of selecting refrigerant-lubricant combinations
FR2957083B1 (en) 2010-03-02 2015-12-11 Arkema France HEAT TRANSFER FLUID FOR CENTRIFUGAL COMPRESSOR
JP5546918B2 (en) * 2010-03-19 2014-07-09 Jx日鉱日石エネルギー株式会社 Refrigerator oil and working fluid composition for refrigerator
CN102844400B (en) * 2010-04-16 2016-10-12 纳幕尔杜邦公司 Comprise 2,3,3,3-tetrafluoropropenes and the compositions of HFA 134a, the cooler comprising them and the method producing cooling wherein
FR2959999B1 (en) 2010-05-11 2012-07-20 Arkema France HEAT TRANSFER FLUIDS AND THEIR USE IN COUNTER-CURRENT HEAT EXCHANGERS
FR2959997B1 (en) 2010-05-11 2012-06-08 Arkema France HEAT TRANSFER FLUIDS AND THEIR USE IN COUNTER-CURRENT HEAT EXCHANGERS
MX340708B (en) * 2010-07-06 2016-07-20 Arkema Inc Compositions of a tetrafluoropropene and polyol ester lubricants.
FR2964976B1 (en) 2010-09-20 2012-08-24 Arkema France COMPOSITION BASED ON 1,3,3,3-TETRAFLUOROPROPENE
FR2964977B1 (en) 2010-09-20 2013-11-01 Arkema France COMPOSITION BASED ON 3,3,3-TETRAFLUOROPROPENE
MY161767A (en) * 2010-12-14 2017-05-15 Du Pont Combinations of e-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane and their use for heating
IT1406472B1 (en) 2010-12-22 2014-02-28 Nuovo Pignone Spa TEST FOR SIMILITUDE OF COMPRESSOR PERFORMANCE
US9187682B2 (en) 2011-06-24 2015-11-17 Emerson Climate Technologies, Inc. Refrigeration compressor lubricant
FR2977707B1 (en) 2011-07-05 2014-05-23 Schneider Electric Ind Sas USE OF HYDROFLUOROOLEFIN AS A MEDIUM VOLTAGE ARC INSULATION AND / OR EXTINGUISHMENT MEDIUM AND GAS INSULATED MEDIUM VOLTAGE ELECTRICAL APPARATUS COMPRISING SAME
WO2013062058A1 (en) 2011-10-26 2013-05-02 Jx日鉱日石エネルギー株式会社 Refrigerating machine working fluid composition and refrigerant oil
CA3202964A1 (en) 2011-12-06 2013-06-13 Delta Faucet Company Ozone distribution in a faucet
US10144855B2 (en) 2012-03-27 2018-12-04 Jxtg Nippon Oil And Energy Corporation Working fluid composition for refrigerator
EP3470501B1 (en) * 2012-03-29 2021-11-10 JX Nippon Oil & Energy Corporation Working fluid composition for refrigerator
TW201410856A (en) 2012-08-23 2014-03-16 Du Pont Refrigerant mixtures comprising tetrafluoropropenes and difluoromethane and uses thereof
JP6224965B2 (en) 2013-09-12 2017-11-01 出光興産株式会社 Mixing composition for refrigerator
JP2016531196A (en) 2013-09-19 2016-10-06 ダウ グローバル テクノロジーズ エルエルシー Vacuum assisted method for making closed cell rigid polyurethane foam using mixed foaming agents
JPWO2015050137A1 (en) 2013-10-02 2017-03-09 Jxエネルギー株式会社 Refrigerator oil, working fluid composition for refrigerator
US10386099B2 (en) 2014-01-16 2019-08-20 Shrieve Chemical Products, Inc. Desicating synthetic refrigeration oil composition for fluoro-olefin refrigeration systems
GB201410174D0 (en) 2014-06-09 2014-07-23 Mexichem Amanco Holding Sa Process
JP5681829B1 (en) * 2014-07-25 2015-03-11 Jx日鉱日石エネルギー株式会社 Refrigerator oil, working fluid composition for refrigerator
CN105089001B (en) * 2015-04-14 2017-02-22 宁波职业技术学院 Treatment method of PM2.5 in suburban areas of Beijing
CN108463437B (en) 2015-12-21 2022-07-08 德尔塔阀门公司 Fluid delivery system comprising a disinfection device
CN109072053B (en) * 2016-05-09 2021-12-14 3M创新有限公司 Hydrofluoroolefins and methods of use thereof
JP6381614B2 (en) * 2016-11-29 2018-08-29 マクセルホールディングス株式会社 Support material composition
WO2019147363A1 (en) * 2018-01-23 2019-08-01 The Chemours Company Fc, Llc Compositions, system and methods for introducing pag lubricant or refrigerant into an air-conditioning or system using lower or low gwp refrigerant or refrigerant blends
US10883063B2 (en) * 2018-01-23 2021-01-05 The Chemours Company Fc, Llc Compositions, system and methods for introducing PAG lubricant or refrigerant into an air-conditioning or system using lower or low GWP refrigerant or refrigerant blends
WO2019173172A1 (en) 2018-03-06 2019-09-12 Shrieve Chemical Products, Inc. Lubricant and refrigerant compositions comprising polyalkylene glycols and uses thereof
US11209196B2 (en) 2018-10-26 2021-12-28 The Chemours Company Fc, Llc HFO-1234ZE, HFO-1225ZC and HFO-1234YF compositions and processes for producing and using the compositions
BR112021022059A2 (en) 2018-10-26 2021-12-28 Chemours Co Fc Llc Fluoropropene compositions, methods of producing a mixture and cooling, processes for transferring heat, for treating a surface and for forming a composition, refrigeration system, refrigeration apparatus, use of the fluoropropene composition and method for replacing a soda
CN117430799A (en) 2018-12-21 2024-01-23 墨西哥氟石股份公司 Halogenated polyether composition
FR3139342A1 (en) * 2022-09-02 2024-03-08 Pascal RETOU Heat transfer fluid for on-board refrigeration systems.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723318A (en) * 1971-11-26 1973-03-27 Dow Corning Propellants and refrigerants based on trifluoropropene
US4788352A (en) 1986-07-21 1988-11-29 Shell Oil Company Trifluoroalkenes and a method for their preparation
US5008028A (en) 1988-12-14 1991-04-16 The Lubrizol Corporation Liquid compositions containing carboxylic esters
US5053155A (en) * 1989-12-19 1991-10-01 E. I. Du Pont De Nemours And Company Compositions and process for use in refrigeration
EP0582451A1 (en) 1992-08-05 1994-02-09 Nippon Oil Co. Ltd. Refrigerator oil composition for fluoroalkane refrigerant
US5714083A (en) * 1995-01-30 1998-02-03 Turner; Donald E. A non-flammable refrigerant fluid containing hexa fluoropropane and hydrocarbons
US6258292B1 (en) * 1996-08-08 2001-07-10 Donald E. Turner Alternative refrigerant including hexafluoropropylene
EP1167894A1 (en) * 2000-06-28 2002-01-02 Praxair Technology, Inc. Food freezing method using a multicomponent refrigerant

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE536296A (en) 1954-03-22
BE538608A (en) 1954-06-10
US2970988A (en) 1955-10-14 1961-02-07 Minnesota Mining & Mfg New fluorine-containing polymers and preparation thereof
US2846458A (en) 1956-05-23 1958-08-05 Dow Corning Organosiloxane ethers
US2889379A (en) * 1957-02-06 1959-06-02 Dow Chemical Co Preparation of 3, 3, 3-trifluoropropene
US2931840A (en) 1958-11-25 1960-04-05 Du Pont Process for preparing 2, 3, 3, 3-tetrafluoropropene
NL121693C (en) 1959-05-22
US2996555A (en) 1959-06-25 1961-08-15 Dow Chemical Co Preparation of 2, 3, 3, 3-tetrafluoropropene
DE1122697B (en) 1960-05-06 1962-01-25 Bayer Ag Process for the production of foams based on isocyanate
US3085065A (en) 1960-07-11 1963-04-09 Du Pont Process of transferring heat
FR1422125A (en) 1964-09-23 1965-12-24 Labo Cent Telecommunicat Improvements to phase-shifting circuits
US3472826A (en) 1968-05-23 1969-10-14 Union Carbide Corp Saturated hydrocarbon prepolymer and reaction products thereof
US3659023A (en) 1970-05-11 1972-04-25 Baxter Laboratories Inc Method of inducing anesthesia with 2-bromo-1 1 2 3 3-pentafluoropropane
US3884828A (en) * 1970-10-15 1975-05-20 Dow Corning Propellants and refrigerants based on trifluoropropene
US3726318A (en) * 1971-10-28 1973-04-10 Pryde Inc Faucet
US4465786A (en) * 1982-09-27 1984-08-14 General Electric Company Catalyst composition for the preparation of 3,3,3-trifluoropropene
US4650914A (en) 1983-07-06 1987-03-17 Monsanto Company Process for producing 1,1,2,3-tetrachloropropene
JPH0688920B2 (en) 1987-02-27 1994-11-09 ダイキン工業株式会社 Method for producing 2,3,3,3-tetrafluoropropene
JPH0749391B2 (en) 1987-06-04 1995-05-31 ダイキン工業株式会社 Fluorine-containing compound and method for producing the same
US4755316A (en) * 1987-10-23 1988-07-05 Allied-Signal Inc. Refrigeration lubricants
US4798818A (en) * 1987-11-27 1989-01-17 Dow Corning Corporation Catalyst composition and process for its preparation
JPH01207250A (en) 1988-02-12 1989-08-21 Daikin Ind Ltd Production of fluorine-containing olefin
US5008428A (en) 1989-10-26 1991-04-16 W. R. Grace & Co.-Conn. Integrated process for the production of aminoacetonitriles
US5254280A (en) * 1988-12-27 1993-10-19 Allied-Signal Inc. Refrigeration compositions having polyoxyalkylene glycols with alkylene groups having at least 4 carbon atoms therein
US4975212A (en) * 1988-12-27 1990-12-04 Allied-Signal Inc. Fluorinated lubricating compositions
EP0416113B1 (en) 1989-02-02 1995-05-03 Asahi Glass Company Ltd. Process for producing a hydrogen-containing 2,2-difluoropropane
US4945119A (en) 1989-05-10 1990-07-31 The Dow Chemical Company Foaming system for rigid urethane and isocyanurate foams
US4944890A (en) 1989-05-23 1990-07-31 E. I. Du Pont De Nemours And Company Compositions and process of using in refrigeration
US4971712A (en) * 1989-06-02 1990-11-20 E. I. Du Pont De Nemours And Company Compositions for compression refrigeration and methods of using them
US4971212A (en) * 1989-10-06 1990-11-20 Owens-Illinois Closure Inc. Tamper indicating packages
US4994890A (en) * 1989-11-27 1991-02-19 Snap-On Tools Corporation Rectifier structure with individual links
US5094768A (en) * 1990-03-30 1992-03-10 Lubrizol Genetics, Inc. Liquid compositions for refrigeration systems containing boron compositions
DK0568115T3 (en) 1990-07-26 1996-04-29 Du Pont Quasi-azeotropic mixtures for use as refrigerants
JPH04110388A (en) * 1990-08-31 1992-04-10 Daikin Ind Ltd Fluid for heat transfer
US5100569A (en) * 1990-11-30 1992-03-31 Allied-Signal Inc. Polyoxyalkylene glycol refrigeration lubricants having pendant, non-terminal perfluoroalkyl groups
JPH04288452A (en) 1991-03-15 1992-10-13 Daikin Ind Ltd Method of operating freezer
DE69210994T2 (en) 1991-03-18 1996-10-10 Alliedsignal Inc., Morristown, N.J. NON-AZEOTROPIC COMPOSITIONS CONTAINING DIFLUORMETHANE, 1,1,1-TRIFLUORETHANE AND PROPANE
US5648017A (en) 1991-03-28 1997-07-15 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of 1,1,2,2-tetrafluoroethane and (iso) butane
US5182040A (en) 1991-03-28 1993-01-26 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of 1,1,2,2-tetrafluoroethane
US5155082A (en) 1991-04-12 1992-10-13 Allied-Signal Inc. Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons
BE1005096A3 (en) 1991-07-10 1993-04-20 Solvay PROCESS FOR THE PREPARATION OF 1-chloro-1,1,3,3,3-PENTAFLUOROPROPANE AND 1,1,1,3,3,3-hexafluoropropane.
JPH0585970A (en) 1991-09-25 1993-04-06 Daikin Ind Ltd Refrigerant
US7105152B1 (en) 1991-12-18 2006-09-12 3M Innovative Properties Company Suspension aerosol formulations
US5250208A (en) 1992-04-02 1993-10-05 E. I. Du Pont De Nemours And Company Ternary azeotropic compositions
WO1993024588A1 (en) * 1992-06-03 1993-12-09 Henkel Corporation Polyol ester lubricants for high efficiency refrigerators
US5518643A (en) 1992-06-04 1996-05-21 Idemitsu Kosan Co., Ltd. Lubricating oil containing a polyvinyl ether compound for compression-type refrigerators
US5679875A (en) 1992-06-05 1997-10-21 Daikin Industries, Ltd. Method for manufacturing 1,1,1,2,3-pentafluoropropene 1,1,1,2,3-pentafluoropropane
DE4233531A1 (en) * 1992-10-06 1994-04-07 Hoechst Ag Perfluorisohexene as a cooling and insulating medium
DE4241969A1 (en) * 1992-12-12 1994-06-16 Hoechst Ag High purity perfluoro (4-methyl-2-pentene), its preparation and use
GB2276392B (en) 1993-02-22 1997-03-26 D G P Improved production of natural flavours and fragrances
US5611210A (en) 1993-03-05 1997-03-18 Ikon Corporation Fluoroiodocarbon blends as CFC and halon replacements
US5538659A (en) 1993-03-29 1996-07-23 E. I. Du Pont De Nemours And Company Refrigerant compositions including hexafluoropropane and a hydrofluorocarbon
US5370812A (en) * 1993-06-28 1994-12-06 Union Carbide Chemicals & Plastics Technology Corporation Lubricant compositions for refrigerators comprising polyalkylene glycol and a hydrocarbon solvent
CA2166971C (en) 1993-07-29 2005-09-27 Michael Van Der Puy Process for the preparation of 1,1,1,3,3-pentafluoropropane
US5395997A (en) 1993-07-29 1995-03-07 Alliedsignal Inc. Process for the preparation of hydrofluorocarbons having 3 to 7 carbon atoms
US6809226B1 (en) 1993-08-04 2004-10-26 Solvay (Societe Anonyme) Process for the preparation of 1-chloro-1-fluoroethane and/or 1,1-difluoroethane
US5736062A (en) 1993-08-13 1998-04-07 Ausimont S.P.A. Azeotrope-like mixtures utilizable as refrigerating fluids
US5510173A (en) 1993-08-20 1996-04-23 Southwall Technologies Inc. Multiple layer thin films with improved corrosion resistance
US5578137A (en) 1993-08-31 1996-11-26 E. I. Du Pont De Nemours And Company Azeotropic or azeotrope-like compositions including 1,1,1,2,3,4,4,5,5,5-decafluoropentane
EP0681933B1 (en) 1994-05-10 1999-01-27 Calsonic Corporation Air conditioning system of heat pump type
US5446217A (en) * 1994-05-16 1995-08-29 Alliedsignal Inc. Processes for the preparation of fluorinated olefins and hydrofluorocarbons using fluorinated olefin
DE69507034C5 (en) 1994-07-11 2009-04-30 Honeywell Intellectual Properties Inc., Tempe PROCESS FOR PREPARING 1,1,1,3,3-PENTAFLUORO PROPANE
JPH10502960A (en) 1994-07-14 1998-03-17 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Refrigerant composition
US5866030A (en) * 1994-09-07 1999-02-02 Witco Corporation Enhanced hydrocarbon lubricants for use with immiscible refrigerants
US5792383A (en) * 1994-09-07 1998-08-11 Witco Corporation Reduction of enterfacial tension between hydrocarbon lubricant and immiscible liquid refrigerant
US5673144A (en) * 1994-09-14 1997-09-30 International Business Machines, Corporation Oblique viewing microscope system
JPH08157847A (en) * 1994-12-08 1996-06-18 Japan Energy Corp Lubricating oil composition for hfc fluorocarbon compressor, improvement of lubricating property of hfc fluorocarbon compressor and actuation fluid composition containing the same lubricating oil composition
RU2073058C1 (en) 1994-12-26 1997-02-10 Олег Николаевич Подчерняев Ozone-noninjurious working fluid
US6013609A (en) 1995-07-10 2000-01-11 Idemitsu Kosan Co., Ltd. Refrigerator oil and process for lubrication using the refrigerator oil
JPH09100483A (en) * 1995-10-02 1997-04-15 Japan Energy Corp Refrigerator oil and working fluid for refrigerator using the oil
IT1277085B1 (en) 1995-12-14 1997-11-04 Ausimont Spa ALMOST AZEOTROPIC TERNARY COMPOSITIONS CONSISTING OF HYDROGENATED FLUOROCARBONS AND HYDROCARBONS SUITABLE AS REFRIGERANT FLUIDS
US6235951B1 (en) 1996-01-17 2001-05-22 Central Glass Company, Limited Method for producing 1,1,1,3,3-pentafluoropropane
US6316681B1 (en) 1996-03-05 2001-11-13 Central Glass Company, Limited Method for producing 1,1,1,3,3-pentafluoropropane
US6111150A (en) 1996-06-20 2000-08-29 Central Glass Company, Limited Method for producing 1,1,1,3,3,-pentafluoropropane
JP3465865B2 (en) 1996-06-20 2003-11-10 セントラル硝子株式会社 Method for producing 1,3,3,3-tetrafluoropropene
US5710352A (en) 1996-09-19 1998-01-20 Alliedsignal Inc. Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
US6300378B1 (en) 1996-09-27 2001-10-09 University Of New Mexico Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants foam blowing agents solvents aerosol propellants and sterilants
US6023004A (en) 1996-11-12 2000-02-08 Alliedsignal, Inc. Liquid phase catalytic fluorination of hydrochlorocarbon and hydrochlorofluorocarbon
JP4031052B2 (en) 1997-01-31 2008-01-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Contact production of pentafluoropropene
US5986151A (en) 1997-02-05 1999-11-16 Alliedsignal Inc. Fluorinated propenes from pentafluoropropane
US5788886A (en) 1997-05-05 1998-08-04 E. I. Du Pont De Nemours And Company Pentafluoropropane compositions
US5988517A (en) 1997-06-09 1999-11-23 Ford Global Technologies, Inc. Method and system for controlling an automotive HVAC system based on the principle of HVAC work
FR2764883B1 (en) 1997-06-18 1999-07-16 Atochem Elf Sa PROCESS FOR THE MANUFACTURE OF HYDROFLUOROALCANES
US5969198A (en) 1997-06-27 1999-10-19 Alliedsignal Inc. Process for the preparation of 1,1,1,3,3-pentafluoropropane
US6031141A (en) 1997-08-25 2000-02-29 E. I. Du Pont De Nemours And Company Fluoroolefin manufacturing process
US6089032A (en) 1998-10-28 2000-07-18 Interdynamics Inc. Method of retrofitting air conditioner and system therefor
JP3886229B2 (en) 1997-11-11 2007-02-28 セントラル硝子株式会社 Method for producing 1,3,3,3-tetrafluoropropene
US5811603A (en) 1997-12-01 1998-09-22 Elf Atochem North America, Inc. Gas phase fluorination of 1230za
US6092589A (en) 1997-12-16 2000-07-25 York International Corporation Counterflow evaporator for refrigerants
US5856595A (en) 1998-03-03 1999-01-05 Alliedsignal Inc. Purified 1,1,1,3,3,3-hexafluoropropane and method for making same
DE19830628C1 (en) 1998-07-09 2000-04-20 Lauffer Maschf Method for crimping multilayer printed circuit boards (multilayer)
US6124510A (en) 1998-07-21 2000-09-26 Elf Atochem North America, Inc. 1234ze preparation
US6045444A (en) 1998-08-28 2000-04-04 General Motors Corporation Compact automotive air conditioning module
US6059027A (en) 1998-11-12 2000-05-09 Daimlerchrysler Corporation Anti-fog controller for reversible air conditioning and heat pump HVAC system for electric vehicles
JP2000169404A (en) 1998-12-11 2000-06-20 Tosoh Corp Bromination of fluorine-containing olefins
US6176102B1 (en) 1998-12-30 2001-01-23 Praxair Technology, Inc. Method for providing refrigeration
US6041621A (en) 1998-12-30 2000-03-28 Praxair Technology, Inc. Single circuit cryogenic liquefaction of industrial gas
US6076372A (en) * 1998-12-30 2000-06-20 Praxair Technology, Inc. Variable load refrigeration system particularly for cryogenic temperatures
US5969188A (en) * 1999-01-05 1999-10-19 Nipa Hardwicke, Inc. Process for producing trifluoromethylacetophenones
US6374629B1 (en) 1999-01-25 2002-04-23 The Lubrizol Corporation Lubricant refrigerant composition for hydrofluorocarbon (HFC) refrigerants
US6783691B1 (en) 1999-03-22 2004-08-31 E.I. Du Pont De Nemours And Company Compositions of difluoromethane, pentafluoroethane, 1,1,1,2-tetrafluoroethane and hydrocarbons
US6304803B1 (en) 1999-09-22 2001-10-16 Honda Giken Kogyo Kabushiki Kaisha HVAC control system for an automobile
EP1092573B2 (en) 1999-10-15 2007-10-31 Calsonic Kansei Corporation Heating, ventilation, and air conditioning unit for automotive vehicles
US6589355B1 (en) 1999-10-29 2003-07-08 Alliedsignal Inc. Cleaning processes using hydrofluorocarbon and/or hydrochlorofluorocarbon compounds
GB0001981D0 (en) 2000-01-31 2000-03-22 Ici Materials Refrigerant lubricant compositions
EP1301277A2 (en) 2000-07-17 2003-04-16 Honeywell International Inc. Supported catalyst systems
KR20020019682A (en) 2000-09-06 2002-03-13 권오석 The composition of refrigerant mixtures for high back pressure condition
US6516837B2 (en) * 2000-09-27 2003-02-11 Honeywell International Inc. Method of introducing refrigerants into refrigeration systems
US6991744B2 (en) 2000-12-08 2006-01-31 E. I. Du Pont De Nemours And Company Refrigerant compositions containing a compatibilizer
US6548719B1 (en) 2001-09-25 2003-04-15 Honeywell International Process for producing fluoroolefins
ES2357225T3 (en) 2001-11-01 2011-04-20 Uab Research Foundation COMBINATIONS OF ANTI-DR5 ANTIBODIES AND ANTI-DR4 ANTIBODIES AND OTHER THERAPEUTIC AGENTS.
DE10203779A1 (en) 2002-01-30 2003-07-31 Solvay Fluor & Derivate Mixtures with 1,1,1,3,3-pental fluorobutane and 1,1,1,2,3,3,3-heptafluoropropane
US9994750B2 (en) * 2002-10-25 2018-06-12 Honeywell International Inc. Compositions containing fluorine substituted olefins and methods and systems using same
US9085504B2 (en) * 2002-10-25 2015-07-21 Honeywell International Inc. Solvent compositions containing fluorine substituted olefins and methods and systems using same
US20040089839A1 (en) 2002-10-25 2004-05-13 Honeywell International, Inc. Fluorinated alkene refrigerant compositions
US7230146B2 (en) 2003-10-27 2007-06-12 Honeywell International Inc. Process for producing fluoropropenes
US7279451B2 (en) 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
PT1563032E (en) * 2002-10-25 2012-05-28 Honeywell Int Inc Compositions containing flourine substituted olefins
JP4110388B2 (en) * 2003-01-10 2008-07-02 荒川化学工業株式会社 Cleaning agent and rinsing agent for gold-plated parts, cleaning method and rinsing method
US7345209B2 (en) 2004-04-29 2008-03-18 Honeywell International Inc. Processes for synthesis of 1,3,3,3-tetrafluoropropene
US7592494B2 (en) 2003-07-25 2009-09-22 Honeywell International Inc. Process for the manufacture of 1,3,3,3-tetrafluoropropene
US7524805B2 (en) * 2004-04-29 2009-04-28 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and hydrofluorocarbons
US6991532B2 (en) 2003-12-09 2006-01-31 Valeo Climate Control Corp. Method and apparatus for decontamination for automotive HVAC systems
FR2865731B1 (en) 2004-01-30 2007-09-07 Solvay PROCESS FOR PRODUCING A HYDROFLUOROALCAN
US7605117B2 (en) * 2004-04-16 2009-10-20 Honeywell International Inc. Methods of replacing refrigerant
US7074751B2 (en) * 2004-04-16 2006-07-11 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
US7341984B2 (en) * 2004-04-16 2008-03-11 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
MXPA06011979A (en) 2004-04-16 2007-01-25 Honeywell Int Inc Azeotrope-like compositions of difluoromethane and trifluoroiodomethane.
US7622435B2 (en) * 2004-04-16 2009-11-24 Honeywell International Inc. Methods of replacing refrigerant
US7098176B2 (en) * 2004-04-16 2006-08-29 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and pentafluoropropene
EP1735398B2 (en) 2004-04-16 2016-08-17 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
US6969701B2 (en) * 2004-04-16 2005-11-29 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
US8008244B2 (en) * 2004-04-29 2011-08-30 Honeywell International Inc. Compositions of tetrafluoropropene and hydrocarbons
US6958424B1 (en) 2004-12-10 2005-10-25 Honeywell International Inc. Process for fluoroalkenes
US20060243944A1 (en) 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
TWI482748B (en) 2005-06-24 2015-05-01 Honeywell Int Inc Compositions containing fluorine substituted olefins
US20070098646A1 (en) 2005-11-01 2007-05-03 Nappa Mario J Aerosol propellants comprising unsaturated fluorocarbons
US20070100010A1 (en) 2005-11-01 2007-05-03 Creazzo Joseph A Blowing agents for forming foam comprising unsaturated fluorocarbons
US7708903B2 (en) 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US7759532B2 (en) 2006-01-13 2010-07-20 E.I. Du Pont De Nemours And Company Refrigerant additive compositions containing perfluoropolyethers
US7563384B2 (en) * 2006-07-28 2009-07-21 Honeywell International Inc. Essentially non-flammable low global warming compositions
PL2260231T3 (en) * 2008-04-01 2022-01-03 Honeywell International Inc. Methods for using two-phase refrigerant-lubricant mixtures in vapor-compression refrigeration devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723318A (en) * 1971-11-26 1973-03-27 Dow Corning Propellants and refrigerants based on trifluoropropene
US4788352A (en) 1986-07-21 1988-11-29 Shell Oil Company Trifluoroalkenes and a method for their preparation
US5008028A (en) 1988-12-14 1991-04-16 The Lubrizol Corporation Liquid compositions containing carboxylic esters
US5053155A (en) * 1989-12-19 1991-10-01 E. I. Du Pont De Nemours And Company Compositions and process for use in refrigeration
EP0582451A1 (en) 1992-08-05 1994-02-09 Nippon Oil Co. Ltd. Refrigerator oil composition for fluoroalkane refrigerant
US5714083A (en) * 1995-01-30 1998-02-03 Turner; Donald E. A non-flammable refrigerant fluid containing hexa fluoropropane and hydrocarbons
US6258292B1 (en) * 1996-08-08 2001-07-10 Donald E. Turner Alternative refrigerant including hexafluoropropylene
EP1191080A2 (en) * 1996-08-08 2002-03-27 Donald E. Turner Alternative refrigerant including hexafluoropropylene
EP1167894A1 (en) * 2000-06-28 2002-01-02 Praxair Technology, Inc. Food freezing method using a multicomponent refrigerant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1725628A1

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098581A2 (en) 2002-10-25 2009-09-09 Honeywell International Inc. Compositions containing fluorine substituted olefin
US9631129B2 (en) 2002-10-25 2017-04-25 Honeywell International Inc. Fluorinated alkene refrigerant compositions
EP1563032A2 (en) 2002-10-25 2005-08-17 Honeywell International Inc. Compositions containing flourine substituted olefins
US8065882B2 (en) 2002-10-25 2011-11-29 Honeywell International Inc. Compositions containing fluorine substituted olefins
US8033120B2 (en) 2002-10-25 2011-10-11 Honeywell International Inc. Compositions and methods containing fluorine substituted olefins
EP2009075A2 (en) 2003-10-27 2008-12-31 Honeywell International Inc. Fluorinated alkene refrigerant compositions
EP2277970A2 (en) 2003-10-27 2011-01-26 Honeywell International Inc. Fluorinated alkene refrigerant compositions
EP2277977B1 (en) 2004-04-29 2018-09-19 Honeywell International Inc. Compositions containing fluorine substituted olefins
EP2258802A3 (en) * 2004-04-29 2012-10-24 Honeywell International Inc. Compositions containing fluorine substituted olefins
US10513645B2 (en) 2005-03-04 2019-12-24 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US11034872B2 (en) 2005-03-04 2021-06-15 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US11674067B2 (en) 2005-03-04 2023-06-13 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US7862742B2 (en) 2005-03-04 2011-01-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7862741B2 (en) 2005-03-04 2011-01-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7862740B2 (en) 2005-03-04 2011-01-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7569170B2 (en) 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7879253B2 (en) 2005-03-04 2011-02-01 E. I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7906037B2 (en) 2005-03-04 2011-03-15 E. I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7914698B2 (en) 2005-03-04 2011-03-29 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7959825B2 (en) 2005-03-04 2011-06-14 E.I. Du Pont De Nemours And Company Compositions comprising HFC-1234yf and HFC-125
US9670393B2 (en) 2005-03-04 2017-06-06 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US9879165B2 (en) 2005-03-04 2018-01-30 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US10316232B2 (en) 2005-03-04 2019-06-11 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US10533120B2 (en) 2005-03-04 2020-01-14 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US8524110B2 (en) 2005-03-04 2013-09-03 E I Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US10683443B2 (en) 2005-03-04 2020-06-16 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US10883030B2 (en) 2005-03-04 2021-01-05 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
US11046875B2 (en) 2005-03-04 2021-06-29 The Chemours Company Fc, Llc Compositions comprising a fluoroolefin
JP2008544072A (en) * 2005-06-24 2008-12-04 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine-substituted olefins
CN107011862A (en) * 2005-06-24 2017-08-04 霍尼韦尔国际公司 Composition containing fluorine-substituted alkene
JP2013049859A (en) * 2005-06-24 2013-03-14 Honeywell Internatl Inc Compositions containing fluorine-substituted olefins
JP2014221903A (en) * 2005-06-24 2014-11-27 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine substituted olefins
US11046877B1 (en) 2005-11-01 2021-06-29 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
JP7058685B2 (en) 2005-11-01 2022-04-22 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Compositions Containing Fluoroolefins and Their Use
US10563107B2 (en) 2005-11-01 2020-02-18 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US8070976B2 (en) 2005-11-01 2011-12-06 E. I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US9410064B2 (en) 2005-11-01 2016-08-09 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US10329467B2 (en) 2005-11-01 2019-06-25 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US9540557B2 (en) 2005-11-01 2017-01-10 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
JP2012140629A (en) * 2005-11-01 2012-07-26 E I Du Pont De Nemours & Co Composition comprising fluoroolefin and use thereof
JP2020109194A (en) * 2005-11-01 2020-07-16 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Compositions comprising fluoroolefin and uses thereof
US11046876B2 (en) 2005-11-01 2021-06-29 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US8911640B2 (en) 2005-11-01 2014-12-16 E I Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US9890311B2 (en) 2005-11-01 2018-02-13 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
JP2009518460A (en) * 2005-11-01 2009-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Compositions containing fluoroolefins and uses thereof
US11124685B2 (en) 2005-11-01 2021-09-21 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US8012368B2 (en) 2005-11-01 2011-09-06 E. I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US7708903B2 (en) 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
JP2009530489A (en) * 2006-03-21 2009-08-27 ハネウェル・インターナショナル・インコーポレーテッド Composition comprising foaming agent and fluorine-substituted olefin and ether, and foaming method
US10214671B2 (en) 2007-02-27 2019-02-26 Jx Nippon Oil & Energy Corporation Refrigerator oil and working fluid composition for refrigerator
WO2008105256A1 (en) * 2007-02-27 2008-09-04 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
JP2016128584A (en) * 2007-02-27 2016-07-14 Jxエネルギー株式会社 Refrigerator oil and actuation fluid composition for refrigerator
WO2008105366A1 (en) * 2007-02-27 2008-09-04 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
US9321948B2 (en) 2007-02-27 2016-04-26 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
JP2009074017A (en) * 2007-02-27 2009-04-09 Nippon Oil Corp Refrigerator oil and working fluid composition for refrigerator
JP2013249478A (en) * 2007-02-27 2013-12-12 Jx Nippon Oil & Energy Corp Refrigerator oil, and hydraulic fluid composition for refrigerator
JP2014177648A (en) * 2007-02-27 2014-09-25 Jx Nippon Oil & Energy Corp Refrigerating machine oil and working fluid composition for refrigerating machine
JP2009074018A (en) * 2007-02-27 2009-04-09 Nippon Oil Corp Refrigerator oil and working fluid composition for refrigerator
US8318040B2 (en) 2007-03-27 2012-11-27 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerating machine
US11624534B2 (en) 2007-05-11 2023-04-11 The Chemours Company Fc, Llc Method for exchanging heat in vapor compression heat transfer systems and vapor compression heat transfer systems comprising intermediate heat exchangers with dual-row evaporators or condensers
US9523026B2 (en) 2007-06-27 2016-12-20 Arkema Inc. Stabilized hydrochlorofluoroolefins and hydrofluoroolefins
US8999190B2 (en) 2007-10-12 2015-04-07 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8333901B2 (en) 2007-10-12 2012-12-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8628681B2 (en) 2007-10-12 2014-01-14 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8512591B2 (en) 2007-10-12 2013-08-20 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
RU2474601C2 (en) * 2007-10-29 2013-02-10 Ниппон Ойл Корпорейшн Refrigerator oil and composition of working medium for cooling apparatus
EP2719750A1 (en) * 2007-10-29 2014-04-16 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerating machine
US8082746B2 (en) 2008-02-22 2011-12-27 Denso Corporation Refrigeration cycle device for vehicle
US8939742B2 (en) 2009-06-19 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Compressor with steel and cast iron sliding materials
US9175202B2 (en) 2010-02-16 2015-11-03 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8926856B2 (en) 2010-02-16 2015-01-06 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8808570B2 (en) 2010-05-20 2014-08-19 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8808571B2 (en) 2010-05-20 2014-08-19 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8911641B2 (en) 2010-05-20 2014-12-16 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US9309450B2 (en) 2010-05-20 2016-04-12 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US10266736B2 (en) 2010-06-25 2019-04-23 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US10844260B2 (en) 2010-06-25 2020-11-24 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US11760911B2 (en) 2010-06-25 2023-09-19 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US9028706B2 (en) 2011-02-10 2015-05-12 Arkema France Binary compositions of 2,3,3,3-tetrafluoropropene and of ammonia
US9676984B2 (en) 2011-05-04 2017-06-13 Arkema France Heat-transfer compositions exhibiting improved miscibility with the lubricating oil
US9315708B2 (en) 2011-05-04 2016-04-19 Arkema France Heat-transfer compositions exhibiting improved miscibility with the lubricating oil
WO2013110868A1 (en) 2012-01-25 2013-08-01 Arkema France Heat transfer compositions having improved miscibility with lubricating oil
US10450488B2 (en) 2012-01-26 2019-10-22 Arkema France Heat transfer compositions having improved miscibility with lubricating oil
US10377935B2 (en) 2013-07-11 2019-08-13 Arkema France 2,3,3,3-tetrafluoropropene compositions having improved miscibility
US10023780B2 (en) 2013-07-11 2018-07-17 Arkema France 2,3,3,3-tetrafluoropropene compositions having improved miscibility
US10330364B2 (en) 2014-06-26 2019-06-25 Hudson Technologies, Inc. System and method for retrofitting a refrigeration system from HCFC to HFC refrigerant
US10513666B2 (en) 2015-03-02 2019-12-24 Jxtg Nippon Oil & Energy Corporation Refrigerator oil and working fluid composition for refrigerators
JPWO2016140187A1 (en) * 2015-03-02 2017-12-14 Jxtgエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerator
WO2016140187A1 (en) * 2015-03-02 2016-09-09 Jxエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerators
US11629278B2 (en) 2018-02-15 2023-04-18 Arkema France Heat transfer compositions as replacement for R-134A

Also Published As

Publication number Publication date
PL2009075T3 (en) 2015-10-30
EP2009075A2 (en) 2008-12-31
KR20060103324A (en) 2006-09-28
EP2275509A2 (en) 2011-01-19
PL2277970T3 (en) 2017-09-29
JP2017197753A (en) 2017-11-02
PT2277970T (en) 2017-06-26
EP2277970A3 (en) 2013-05-22
JP2019048996A (en) 2019-03-28
EP2009075A3 (en) 2009-03-11
EP3680308A1 (en) 2020-07-15
ES2748910T3 (en) 2020-03-18
PT1725628E (en) 2012-07-12
EP2009075B1 (en) 2015-05-27
US20040089839A1 (en) 2004-05-13
PT2277976T (en) 2020-04-09
US20070069175A1 (en) 2007-03-29
EP2275509A3 (en) 2013-04-17
DK2275509T3 (en) 2019-10-21
DE08011766T1 (en) 2009-06-04
KR20120051102A (en) 2012-05-21
JP2014159604A (en) 2014-09-04
US9631129B2 (en) 2017-04-25
JP2013166962A (en) 2013-08-29
CN103923610B (en) 2018-04-10
EP2277976A2 (en) 2011-01-26
EP1725628B1 (en) 2012-05-30
CN103215013A (en) 2013-07-24
KR101335360B1 (en) 2013-12-03
SI2275509T1 (en) 2019-11-29
CN103642461A (en) 2014-03-19
SI1725628T1 (en) 2012-09-28
US20170233624A1 (en) 2017-08-17
EP2277976B1 (en) 2020-02-19
SI2277976T1 (en) 2020-06-30
PT2275509T (en) 2019-10-24
PL2275509T3 (en) 2020-01-31
JP2007510039A (en) 2007-04-19
EP1725628A1 (en) 2006-11-29
CN1898353A (en) 2007-01-17
ES2628746T3 (en) 2017-08-03
CN103923610A (en) 2014-07-16
CN103923611B (en) 2017-11-17
EP2275509B1 (en) 2019-07-17
EP2277976A3 (en) 2014-08-27
JP2016104886A (en) 2016-06-09
PL2277976T3 (en) 2020-07-27
DK1725628T3 (en) 2012-07-23
US20180094179A1 (en) 2018-04-05
CN1898353B (en) 2014-05-07
CN103642461B (en) 2017-01-18
CN103923611A (en) 2014-07-16
TR201708747T4 (en) 2018-11-21
DK2277976T3 (en) 2020-04-14
HUE032542T2 (en) 2017-09-28
ES2784188T3 (en) 2020-09-23
EP2277970B1 (en) 2017-03-15
US20200208034A1 (en) 2020-07-02
HUE046570T2 (en) 2020-03-30
KR101335358B1 (en) 2013-12-03
ES2546024T3 (en) 2015-09-17
CN103923723B (en) 2016-09-14
CN103923723A (en) 2014-07-16
ES2385650T3 (en) 2012-07-27
PL1725628T3 (en) 2012-09-28
EP2277970A2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
EP2277976B1 (en) Compositions comprising hfc-1234ze and lubricant
US20180171195A1 (en) Use of low gwp refrigerants comprising cf3i with stable lubricants
JP2007510039A5 (en)
CN103215013B (en) Compositions containing fluorine substituted olefins
TWI376409B (en) Fluorinated alkene refrigerant compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039094.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004817445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006538130

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067010510

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067010510

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004817445

Country of ref document: EP