WO2005041327A1 - 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池 - Google Patents

二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池 Download PDF

Info

Publication number
WO2005041327A1
WO2005041327A1 PCT/JP2004/015836 JP2004015836W WO2005041327A1 WO 2005041327 A1 WO2005041327 A1 WO 2005041327A1 JP 2004015836 W JP2004015836 W JP 2004015836W WO 2005041327 A1 WO2005041327 A1 WO 2005041327A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrode material
cathode material
discharge
Prior art date
Application number
PCT/JP2004/015836
Other languages
English (en)
French (fr)
Inventor
Naoki Hatta
Toshikazu Inaba
Izumi Uchiyama
Original Assignee
Mitsui Engineering & Shipbuilding Co.,Ltd.
Research Institute Of Innovative Technology For The Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co.,Ltd., Research Institute Of Innovative Technology For The Earth filed Critical Mitsui Engineering & Shipbuilding Co.,Ltd.
Priority to US10/577,279 priority Critical patent/US8119285B2/en
Priority to CA2543851A priority patent/CA2543851C/en
Priority to JP2005515001A priority patent/JP4656653B2/ja
Priority to EP04792957.5A priority patent/EP1689011B1/en
Priority to KR1020067008069A priority patent/KR101156828B1/ko
Publication of WO2005041327A1 publication Critical patent/WO2005041327A1/ja
Priority to HK07100905.7A priority patent/HK1095431A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/13915Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Positive electrode material for secondary battery method for producing positive electrode material for secondary battery, and secondary battery
  • the present invention relates to a positive electrode material for a secondary battery, a method for producing a positive electrode material for a secondary battery, and a secondary battery having the positive electrode material.
  • lithium iron phosphate LiFePO serving as a positive electrode material is discharged or charged excessively.
  • the positive electrode system having an olivine type crystal structure is different from many other positive electrode systems, for example, lithium cobalt oxide [LiCoO] of the current positive electrode and the like.
  • A is an alkali metal
  • M is Fe
  • Mn is Fe
  • V is Ti
  • Mo molybdenum
  • Nb transition metal
  • W transition metal
  • Z is S
  • Patent Document 1 realizes an improvement in the electrical conductivity of the surface of the composite oxide particles as described above, and creates a composite in which carbon is deposited on the surface of positive electrode material particles such as LiFePO.
  • an amorphous carbon material such as acetylene black is added, and the oxygen concentration in the firing atmosphere is reduced to 1012 ppm (volume) or less.
  • a method for producing a positive electrode active material has also been proposed (see Patent Document 2).
  • a conductive substance such as carbon is deposited or mixed on the surface of the cathode material, and at the same time, the particle size is reduced as much as possible. They tried to avoid these difficulties by holding them small and limiting the diffusion distance.
  • Non-Patent Documents 1 and 2 Attempts have also been made to improve the positive electrode performance by improving the conductivity of the positive electrode material itself by adding or compounding or doping (for example, see Non-Patent Documents 1 and 2). ).
  • Non-Patent Document 1 Al, Ca, Ni, or Mg is introduced into a LiFePO cathode material. Thus, it is disclosed that the capacity has been improved. For example, the discharge capacity in the first cycle of a lithium metal battery using a LiFePO cathode material that does not contain these elements is 117
  • the battery using LiMg Fe PO in which a part of Fe was replaced by Mg, was used as a cathode material for about 120-125 mA.
  • Non-Patent Document 2 Mg 2+ , Al 3+ , Ti 4+ ,
  • the conductivity of the fee is increased by about 10 8 times that of undoped cathode material, at room temperature 10 1 - with a 10 / cm order of value, such having a high conductivity, metals-doped It is described that a remarkable improvement in the rate characteristics and cycle life was particularly observed in a lithium metal battery using a positive electrode material.
  • Non-Patent Document 2 at a low charge / discharge rate CZ 10, the discharge capacity slightly exceeds 140 mAhZg (the power described in the same paper as about 150 mAhZg, (Close to 140 mAhZg), but even at very high rates such as 21.5 C and 40 C, stable cycle charge and discharge were possible with reduced capacity of about 70 and about 30 mAhZg, respectively (C Zn Is the charge / discharge rate at which the entire capacity is charged or discharged at a constant current in n hours.
  • C Zn Is the charge / discharge rate at which the entire capacity is charged or discharged at a constant current in n hours In the same paper, the type and content of the dopant element in the cathode material from which the charge / discharge data was obtained are not specified).
  • Non-Patent Document 2 the reduced LiFe (II) PO and the de-oxidized F
  • Patent Document 1 JP 2001-15111 A
  • Patent Document 2 JP-A-2002-110163
  • Non-Patent Document 1 “Outcome Report on Future Research Scientific Research Promotion Project Research Project (2000) Creation and Application of New Solid Electrolyte Materials” (Japan Society for the Promotion of Science: Research Project Number JS PS-RFTF96P00102) [http: / /chem.sci.hyogo-u.ac.jp/ndse/index.html] (2000 ⁇ Updated on June 21)
  • Non-Patent Document 2 "Nature ⁇ ⁇ Materia Norezu (Nature Materials)", Vol.1, p 123-128 (October 2002)
  • Non-Patent Documents 1 and 2 have achieved satisfactory results even at present. That is, the former has a charge / discharge capacity of at most about 120 to 125 mAhZg. The adaptation of the latter to high-rate charging and discharging is remarkable, but the conductivity of the LiFePO cathode material has improved, but it has not been achieved at low rates of CZ10.
  • the charge / discharge capacity of the same cathode material was considerably lower than the theoretical capacity of 170 mAhZg (a little over 140 mAhZg), and the voltage at the end of charge / discharge in the battery capacity vs. voltage characteristics at constant current charge / discharge.
  • the rise and fall of Z are not so steep in spite of showing extremely good high-rate characteristics.
  • the voltage starts rising slowly and about 80% of the depth of charge and discharge in the CZ10, and the voltage starts to fall.However, in general, the internal resistance of the battery is small and the high rate characteristics are excellent.
  • the rise and fall of the voltage should be steep, closer to a right angle.
  • An object of the present invention is to provide a positive electrode material for a secondary battery, which contains lithium iron phosphate as a positive electrode active material, and has a large charge / discharge capacity, high rate adaptability, and good charge / discharge cycle characteristics.
  • An object of the present invention is to provide a method for producing a positive electrode material for a battery and a high-performance secondary battery incorporating the same.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the positive electrode material obtained by compounding a specific metal element with the positive electrode active material LiFePO has remarkable charge / discharge characteristics.
  • conductive carbon is deposited on the surface of the positive electrode material, whereby the effective capacity to reduce the theoretical capacity of the positive electrode system to 170 mAhZg and good charge / discharge are achieved.
  • the cycle characteristics were successfully realized.
  • the invention of the positive electrode material for a secondary battery according to the first embodiment of the present invention is based on the general formula LiFePO (where n represents a number from 0 to 1; ))
  • the metal element may be vanadium (V), chromium (Cr), copper (Cu), zinc ( A group consisting of Zn), indium (In), tin (Sn), molybdenum (Mo), and titanium (Ti).
  • the total content of the metal elements may be iron in the positive electrode active material.
  • the element ratio is 0.1 to 5 mol%.
  • the invention of the positive electrode material for a secondary battery according to the fourth aspect of the present invention is based on
  • a positive electrode active material represented by the general formula Li FePO (where n is a number of 0 to 1).
  • It is characterized by containing as a component and being synthesized so as to contain the metal element.
  • the positive electrode material for a secondary battery obtained by using the metal halide as a raw material has higher charge / discharge characteristics than a positive electrode material manufactured from another raw material.
  • the invention of a positive electrode material for a secondary battery according to a fifth aspect of the present invention is the invention according to any one of the first to fourth aspects, wherein conductive carbon is deposited on the surface of the positive electrode material. It is characterized by having a thing. By depositing conductive carbon on the surface of the positive electrode material containing the dissimilar metal element, the conductivity of the positive electrode material is further improved, and as shown in Examples described later, a LiFePO positive electrode system is used. Effective capacity close to theoretical capacity and good n 4
  • the invention of the method for producing a positive electrode material for a secondary battery according to the sixth aspect of the present invention relates to a method for preparing a positive electrode active material, a material that is a raw material of LiFePO; Tribe, tribe, 12 n 4
  • the metal element By firing a firing precursor obtained by mixing a halide of at least one metal element among the metal elements belonging to Group 13, Group 13, or Group 14, the metal element is added to the positive electrode active material. It is characterized by being compounded. When the positive electrode active material is combined with a dissimilar metal element belonging to any of the above groups, halogenation of these dissimilar metal elements is performed.
  • hydrides including their hydrates
  • the invention of the method for producing a positive electrode material for a secondary battery according to the seventh aspect of the present invention is characterized in that, in the sixth aspect, the sintering process is performed in a first step from normal temperature to 300 ° C to 450 ° C. And a second stage from normal temperature to a firing completion temperature, wherein a substance capable of generating conductive carbon by thermal decomposition is added to the raw material after the first firing, and then the second firing is performed. It is characterized by the following. According to this feature, a positive electrode material in which conductive carbon is uniformly deposited can be obtained by adding a substance capable of generating conductive carbon by thermal decomposition after the first-stage firing. By this carbon deposition, a positive electrode material exhibiting extremely excellent charge / discharge behavior can be easily obtained in combination with the effect obtained by combining different metal elements.
  • the invention of the method for producing a positive electrode material for a secondary battery according to the eighth aspect of the present invention is directed to the method according to the seventh aspect, wherein the firing in the second step is performed at 750 ° C. in an inert gas atmosphere. It is performed in the temperature range of 850 ° C. This contributes to the improvement of the charge / discharge characteristics, as will be described later in Examples.
  • the invention of the method for producing a positive electrode material for a secondary battery according to the ninth aspect of the present invention is characterized in that, in the seventh aspect or the eighth aspect, the substance capable of generating conductive carbon by the thermal decomposition is: It is a bitumen or a saccharide. Bitumens or saccharides generate conductive carbon by thermal decomposition to impart conductivity to the positive electrode material.
  • bitumens such as refined coal pitch, are inexpensive, melt during firing and spread uniformly on the surface of the raw material particles during firing, and after firing at a relatively low temperature through a pyrolysis process. It becomes a carbon deposit that exhibits high conductivity.
  • the invention of a secondary battery according to a tenth aspect of the present invention is characterized in that the first aspect also includes the positive electrode material according to any one of the fifth aspect as a constituent element. According to this feature, in the secondary battery, the same operation and effect as those of the first embodiment to the fifth embodiment can be obtained.
  • the invention of the secondary battery according to the eleventh aspect of the present invention is directed to any one of the ninth aspect and the sixth aspect. It is characterized in that one of the positive electrode materials is included in the constituent elements. According to this feature, a secondary battery having very excellent charge / discharge performance can be obtained by performing any of the actions of the fifth aspect and the seventh aspect.
  • the present invention contains Li FePO as a main component of the positive electrode active material and contains a specific dissimilar metal element.
  • the positive electrode material of the present invention is a positive electrode material exhibiting excellent and excellent charge / discharge characteristics that cannot be achieved conventionally. This positive electrode material can be easily obtained by compounding a different metal element with the positive electrode active material. Further, the positive electrode material obtained by depositing conductive carbon on the positive electrode material has very good charge / discharge characteristics.
  • the positive electrode material for a secondary battery of the present invention has a general formula Li FePO (where n is a number from 0 to 1)
  • composite cathode material these specific dissimilar metal elements are compounded (hereinafter sometimes referred to as “composite cathode material”).
  • Seed metal elements, y and z are numbers that satisfy the stoichiometric conditions), and the U or Fe is replaced by a dissimilar metal element to form a crystalline solid solution. Or as a conjugate of another compound capable of providing electrons or holes.
  • the terms "composite” and “composite” are used in a broad sense including the forms of the solid solution and the conjugate.
  • the main active material of the composite cathode material of the present invention, LiFePO has a crystal skeleton structure [crystal n 4
  • PNMA olivine type
  • PBNM PBNM
  • both can be positive electrode active materials, but the former is common.
  • It can be used as a positive electrode material for an alkali metal-based secondary battery that can be used.
  • the as-is state of these substances corresponds to the discharge state, and the electrochemical central oxidation at the interface with the electrolyte oxidizes the force center metal element Fe with the dedope of the alkali metal Li. , It becomes charged.
  • the central metal element Fe is reduced with re-doping of the alkali metal Li, and returns to the original discharged state.
  • the halogen element in the composite cathode material is contained in an amount of 0.1 mol% or more with respect to P. As will be described later, it was confirmed that the charge / discharge characteristics were superior to those of the present halogen element which is less than the current detection limit, and which is 0.01 mol% or less of P.
  • the content of the dissimilar metal element in the composite positive electrode material is more preferably 0.5 to 3 mol%, preferably 0.1 to 5 mol%, based on the iron in the positive electrode active material.
  • a precipitate of conductive carbon is provided on the surface.
  • the deposition of conductive carbon on the surface of the positive electrode material is performed by adding a substance capable of generating conductive carbon by thermal decomposition (hereinafter referred to as “conductive carbon precursor”) during the firing process as described below. Be done.
  • the positive electrode material for a secondary battery according to the present invention comprises: a material serving as a raw material of a positive electrode active material Li FePO;
  • the sintering precursor obtained by mixing the metal halide with the metal halide is sintered at a predetermined temperature for a predetermined time in a predetermined atmosphere. That is, a predetermined amount of a halide of a dissimilar metal element is added to and mixed with a substance serving as a raw material of lithium iron phosphate, followed by firing at a predetermined temperature and a predetermined time in a predetermined atmosphere to complete the reaction. it can.
  • the carbon-deposited composite cathode material in which conductive carbon is deposited on the surface of the composite cathode material with a dissimilar metal element can exhibit higher charge / discharge characteristics than in the case without carbon deposition. It becomes.
  • the production of the carbon deposition-composite cathode material is performed, for example, in the same manner as described above. After adding a metal halide to a material serving as a raw material of the pole active material and, for example, crushing and mixing to obtain a sintering precursor, once at 300 to 450 ° C, several hours (for example, about 5 hours) are required.
  • first stage firing temporary firing
  • second stage main firing
  • conductive carbon precursor for example, bitumens such as coal pitch, or sugars such as dextrin
  • a conductive precursor obtained by adding a conductive carbon precursor to a material serving as a raw material of the positive electrode active material together with a metal halide rather than adding the conductive carbon precursor to the precalcined product, and crushing and mixing the precursor is obtained.
  • By firing it is also possible to obtain a relatively high! Carbon deposition-composite electrode material exhibiting charge / discharge characteristics.
  • the former (the conductive carbon precursor is added after calcination) has higher charge / discharge characteristics. Precipitation is preferred because a composite composite material is often obtained. Therefore, in the following, the former will be mainly described, but in the latter (the conductive carbon precursor is added before pre-firing), preparation of the firing precursor and selection of firing conditions are performed in accordance with the former. It is possible.
  • the cathode active material Li FePO having a general olivine type structure
  • hydroxides such as LiOH
  • carbonates and bicarbonates such as Li CO
  • Li-containing decomposition volatile compounds that remain in the pole material are used. Also, Li PO,
  • Phosphates such as Li HPO and LiH PO and hydrogen phosphates can also be used.
  • a raw material for introducing iron for example, hydroxides, carbonates and bicarbonates, halides such as chlorides, nitrates, and others, so that only Fe remains in the intended cathode material.
  • Volatile compounds e.g., organic acid salts such as oxalates and acetates, organic complexes such as acetylacetone complexes and meta-acene complexes
  • phosphates and hydrogen phosphates Talk about things.
  • phosphoric acid for example, phosphoric anhydride P O, phosphate H PO, and
  • metallic iron which is an inexpensive and easily available primary raw material, can be used instead of the above-mentioned iron compounds.
  • Metallic iron having a particle diameter of 200 / zm or less, preferably 100 / zm or less is used.
  • a compound capable of releasing phosphate ions in a solution and a compound serving as a lithium source can be used in combination with metal iron together with water.
  • the molar ratio of phosphorus: iron: lithium in the raw material to be 1: 1: 1, it is possible to minimize the generation of impurities and the incorporation into the positive electrode material during the firing process.
  • Examples of the "compound that releases phosphate ions in a solution” that can be used in combination with metallic iron include, for example, phosphoric acid HPO, phosphorous pentoxide PO, ammonium dihydrogen phosphate NHHPO
  • diammonium hydrogen phosphate (NH 3) HPO can be used.
  • NH 3 HPO diammonium hydrogen phosphate
  • Phosphoric acid, phosphorus pentoxide, and ammonium dihydrogen phosphate are preferred as those which can be kept under relatively strong acidity at the stage of dissolving iron.
  • Commercially available reagents can be used for these, but when phosphoric acid is used as a raw material, it is preferable to accurately determine the purity by titration in advance and calculate the factor in order to ensure strict stoichiometry. .
  • Examples of the "compound serving as a lithium source” that can be used in combination with metallic iron include a compound in which only Li remains in the target positive electrode material after firing (the above-described Li-containing decomposition volatile compound). It is preferable to select a compound such as lithium hydroxide, lithium hydroxide, etc., as well as lithium carbonate, carbonate such as LiCO, and organic salts of Li etc. as Li-containing decomposition volatile compounds.
  • hydrates thereof can also be used (for example, LiOH-HO, etc.).
  • a halide of a metal element belonging to Group 4, 5, 6, 11, 12, 13 or 14 of the periodic table in this specification, “metal halide”
  • metal halide examples include chloride, bromide, iodide and the like (including those in the form of hydrates thereof).
  • metal halides particularly, molybdenum (Mo), titanium (Ti), vanadium (V), chromium (Cr), copper (Cu), zinc (Zn), indium (In) or tin (Sn)
  • Mo molybdenum
  • Ti titanium
  • V vanadium
  • Cr chromium
  • Cu copper
  • Zn zinc
  • In indium
  • Sn tin
  • salt swords are relatively inexpensive, easily available, and advantageous.
  • Molybdenum (Mo) halides include, for example, MoCl, MoCl, MoBr, Mol
  • titanium (Ti) halide examples include TiCl, TiCl, TiBr, Til,
  • V halides for example, VC1, VC1, VC1,
  • chromium (Cr) halide examples include CrCl, CrCl, CrB
  • Cu copper
  • CuBr copper
  • halide of zinc (Zn) examples include ZnCl, ZnBr, Znl, Z
  • halides of indium (In) include InCl, InCl, InCl, InBr,
  • tin (Sn) halides include, for example, SnCl, SnCl
  • the addition amount of these metal halides is set to be about 0.1 to 15 mol%, preferably about 0.5 to 3 mol%, as a different metal element with respect to the central metal Fe in the raw material of the positive electrode material.
  • a different metal element with respect to the central metal Fe in the raw material of the positive electrode material.
  • the dissimilar metal element under more preferable conditions
  • a composite cathode material can be formed.
  • these metals and oxides thereof can be compounded. It can be used as a raw material.
  • the conductive carbon precursor examples include bitumens (so-called asphalt; including pitches obtained from coal and petroleum sludge), saccharides, styrene-divinylbenzene copolymer, ABS resin, phenol resin, and other aromatic substances. And a crosslinked polymer having an aromatic group.
  • bitumens especially refined, so-called coal pitch
  • sugars are preferred.
  • refined coal pitch is very inexpensive, melts during firing, spreads uniformly on the surface of the raw material particles during firing, and undergoes a pyrolysis process to a relatively low temperature (650 ° C-800 ° C).
  • the softening temperature is in the range of 80 ° C to 350 ° C
  • the temperature at which weight loss due to thermal decomposition starts is in the range of 350 ° C
  • the power of 450 ° C is preferably used.
  • a material that generates conductive carbon by heat decomposition and baking at a temperature of at least 800 ° C is preferably used.
  • a refined coal pitch having a softening temperature in the range of 200 ° C to 300 ° C is more preferable.
  • impurities contained in the refined coal pitch do not adversely affect the positive electrode performance! Needless to say!
  • the ash content is particularly 5000 ppm or less.
  • the saccharides are decomposed in a temperature range of 250 ° C or more and less than 500 ° C, and at least partially attain a molten state at least once in a temperature rising process from 150 ° C to the temperature range.
  • saccharides that generate conductive carbon by thermal decomposition and baking at a temperature of 500 ° C. to 800 ° C. are particularly preferable.
  • the saccharides having strong specific properties are suitably coated on the surfaces of the positive electrode material particles undergoing the heating reaction by melting, and after the thermal decomposition, the conductive carbon is favorably deposited on the surfaces of the generated positive electrode material particles. This is because crystal growth is suppressed as described above.
  • the saccharide is preferably one that can generate at least 15% by weight or more, preferably 20% by weight or more of conductive carbon based on the dry weight of the saccharide before calcination by thermal decomposition. This is for facilitating quantitative management of the conductive carbon generated.
  • the saccharides having the above-mentioned properties include oligosaccharides such as dextrin, soluble starch, easily melted by heating, low cross-linking, and high cross-links such as starch (for example, starch containing 50% or more amylose). Molecular polysaccharides.
  • the calcination precursor is obtained by adding a halide of a dissimilar metal element to a material serving as a raw material of lithium iron phosphate, and using, for example, a planetary ball mill, a rocking or rotating powder mixer, or the like. Mixed for about one hour and one day in a dry state (hereinafter referred to as "dry mixing"), or an organic solvent such as alcohols, ketones, tetrahydrofuran, or a solvent or dispersion medium such as water. It is added to the raw material of the material, and becomes a calcination precursor by a method of wet mixing, for example, mixing for about one hour to one day, followed by grinding and drying (hereinafter referred to as “wet mixing”).
  • TiCl TiCl
  • VC1 Sanshidani Vanadium
  • the metal-composite lithium iron phosphate cathode material such as Mo, Ti, V, etc., obtained by sintering this material has higher performance, higher rate characteristics, and larger capacity than the cathode material without metal complexation, and has a positive electrode performance. An effect on improvement is recognized.
  • metal halides are directly added to the mixed raw material of the dried positive electrode material, and dry mixing is performed.
  • the metal-composite lithium iron phosphate cathode material obtained by calcining the calcined precursor obtained in this manner has a better rate characteristic and a large capacity approaching the theoretical capacity than the metal-composite cathode material in the case of the wet mixing described above. From the viewpoint of capacity, it is more preferable to use these.
  • trichloride chromium including hydrate
  • dichloride copper zinc chloride
  • indium chloride tetrahydrate tin dichloride
  • tin tetrachloride tin tetrachloride
  • a positive electrode precursor capable of producing a high-performance positive electrode material can be obtained even if it is misaligned by wet mixing or dry mixing.
  • the two steps of pulverization and mixing of the raw material of the positive electrode material itself and addition and mixing of the metal halide are performed, and the metal halide is mixed together at the time of charging each raw material of the positive electrode material.
  • a suitable calcination precursor can also be obtained by adding the sword and pulverizing and mixing with the raw materials.
  • the wet pulverization / mixing provides a more uniform, fine-grained, stable composition precursor.
  • a compound capable of releasing phosphate ions, water, and metallic iron are mixed in a solution to dissolve metallic iron, and then lithium carbonate and water are mixed.
  • a Li-containing decomposition volatile disulfide such as lithium oxide or a hydrate thereof
  • adding the metal halide to the resulting reaction product, and performing dry mixing or wet mixing in the same manner as described above.
  • a firing precursor is obtained.
  • a compound that releases phosphate ions in a solution, such as phosphoric acid is mixed with metallic iron and water, and the mixture is crushed and heated (reflux or the like).
  • the crushing operation is performed for the purpose of dissolving the metallic iron by applying a shearing force to the metallic iron in the solution to renew the surface, thereby improving the yield of the positive electrode material.
  • the crushing is preferably performed using an automatic crusher, a ball mill, a bead mill, or the like, and a force depending on the efficiency of the crushing device, for example, a 30 minute force, also takes about 10 hours.
  • ultrasonic irradiation is also effective to completely promote the dissolution reaction of metallic iron.
  • the heating operation promotes the reduction and dissolution reaction of metal iron, so that the yield of the positive electrode material can be improved.
  • the heating is preferably carried out by, for example, refluxing in an inert gas to avoid iron oxidation.
  • Reflux eliminates the need for mechanical pulverization, which is relatively difficult to increase, It is considered to be particularly advantageous in performing production.
  • a volatile acid such as oxalic acid / hydrochloric acid is added to increase the acid concentration, or oxygen (air may be used), hydrogen peroxide, halogen (bromine), or the like. , Chlorine, etc.) or a volatile oxidizing agent such as a hypochlorite, bleached powder, or another halogenated product. It is also effective to add nitric acid, which is a volatile acid having both oxidizing ability and acidity. Further, in the above, it is more effective to react by heating to about 50 ° C to 80 ° C.
  • the volatile acid, the oxidizing agent, and the like be applied in an amount that is equal to or less than an equivalent amount for the oxidation of iron (II) ions with metallic iron.
  • lithium hydroxide or the like as a lithium source is added to the solution in which iron is dissolved by the crushing operation or the heating operation. Even after the addition of the lithium source, it is preferable to perform further pulverization and grinding as needed. Further, even after the addition of the metal halide paste, the calcination precursor is obtained by crushing and mixing.
  • the firing is performed on the firing precursor obtained by mixing the raw material of the positive electrode material and the metal halide paste as described above.
  • the calcination can be carried out by selecting an appropriate temperature range and time in the calcination process up to 300-900 ° C as generally employed.
  • firing is preferably performed in the absence of oxygen gas in order to prevent generation of oxidized impurities and promote reduction of remaining oxidized impurities.
  • the sintering can be carried out only by a series of heating and a single subsequent temperature holding step.
  • the sintering step in the first stage in a lower temperature range is possible. (Usually in the temperature range of 300 to 450 ° C at normal temperature; sometimes referred to as “temporary firing”), and the firing process in the higher temperature range of the second stage To about 800 ° C); hereinafter, it may be referred to as “final firing”].
  • the raw material of the positive electrode material reacts by heating to an intermediate state leading to the final positive electrode material, and at this time, gas generation is often accompanied by thermal decomposition.
  • the end temperature is defined as the temperature at which most of the generated gas has been released and the reaction to the final product, the cathode material, does not proceed completely (i.e., during the second stage main firing at a higher temperature, (The temperature that leaves room for re-diffusion and homogenization of the constituent elements).
  • the constituent elements are re-diffused and homogenized, the reaction to the positive electrode material is completed, and the temperature is raised to a temperature range that can minimize crystal growth due to sintering or the like. And the temperature is maintained.
  • the first stage firing is performed, and after the conductive carbon precursor is added to the product after the first stage firing, the first stage firing is performed.
  • the performance of the obtained positive electrode material can be further improved.
  • a conductive carbon precursor particularly coal pitch or saccharide that melts by heating, it can be added to the raw material before calcining (in this case, a corresponding positive electrode performance improvement effect can be obtained). It is more preferable to add the raw material after firing (the state in which most of the generation of the raw material gas has been completed to become an intermediate product) and then perform the main firing.
  • a step of adding the conductive carbon precursor to the raw material is provided between the preliminary firing and the main firing in the firing process. This prevents substances such as coal pitch and sugars that are melted and thermally decomposed by heating from foaming due to the gas generated by the raw material power, spreads more uniformly on the surface of the positive electrode material in a molten state, and more uniformly thermally decomposes Carbon can be deposited.
  • the conductive carbon precursor that has not yet been completely thermally decomposed in the molten state is generated by the vigorously generated gas from the raw material during pre-firing. This may be because foaming may hinder uniform precipitation and may have an unfavorable effect on the composite of different metal elements.
  • the calcination can be performed while continuously supplying a predetermined amount of hydrogen or moisture (water, steam, or the like) together with an inert gas into the furnace.
  • a carbon-deposited composite cathode material having higher charge / discharge characteristics than the case where no is added is obtained.
  • Hydrogen or moisture can be added at the firing temperature until the firing is completed.
  • “adding” gaseous hydrogen or water vapor includes firing in the presence of a gas such as hydrogen (that is, in a hydrogen atmosphere or the like).
  • the conditions for firing the firing precursor (especially firing temperature and firing time) must be carefully set.
  • the firing temperature is higher and better for the completion and stabilization of the reaction of the composite cathode material, but when the conductive carbon is not deposited, if the firing temperature is too high, sintering and crystal growth will be excessive. In some cases, the charge / discharge rate characteristics may be significantly reduced. For this reason, the firing temperature should be in the range of about 600-700 ° C, preferably about 650-700 ° C.
  • the performance of the positive electrode material may be improved by adding hydrogen (including moisture that generates hydrogen by thermal decomposition).
  • the firing time is approximately several hours to about three days. However, when the firing temperature is about 650 to 700 ° C, when the firing time is about 10 hours or less, the dissimilar metal element in the obtained positive electrode material is reduced. Insufficient uniformity of solid solution, charging / discharging abnormalities occur after 10 or more cycles of charging / discharging, and performance may deteriorate rapidly, so firing time should be 1-2 days (24 hours-48 hours). Good to do. It has been confirmed that this discharge abnormality occurs, for example, when the dissimilar metal element is Mo. The internal resistance of the battery gradually increases as the number of cycles elapses, and the charge-discharge capacity vs. voltage curve becomes discontinuous during the discharge.
  • the inserted metal Li negative electrode coin battery exhibits a normal temperature charge / discharge capacity approaching a theoretical capacity (about 170 mAhZg) of charge / discharge current density of 0.5 mAZcm 2 and good charge / discharge cycle characteristics, as described in Examples below.
  • the preliminarily fired product is sufficiently pulverized and mixed between the first stage firing (temporary firing) and the second stage firing (main firing process). After this, it is also preferable to perform the second-stage main firing at the above-mentioned predetermined temperature.
  • the temperature of the main firing is also very important when conducting conductive carbon deposition, and it is preferable to set the temperature to a higher temperature (for example, 750 ° C. to 850 ° C.) as compared with the case where there is no carbon deposition.
  • a higher temperature for example, 750 ° C. to 850 ° C.
  • the sintering time of about 10 hours or less is selected because the uniformity of the dissimilar metal element distribution in the positive electrode material is rarely insufficient.
  • the sintering is preferably carried out at a temperature of about 775 to 800 ° C., because the composition may fluctuate and cause sintering.
  • the amount of conductive carbon deposited also varies depending on the crystallite size of the dissimilar metal element-composite cathode material, but is in the range of about 0.5-5% by weight based on the total weight of the cathode material and the conductive carbon. preferable.
  • the crystallite size of the positive electrode material is about 50-100 nm, it is desirable to be about 1-2% by weight, and when it is about 150-300nm, it is about 2.5-5% by weight. If the amount of precipitation is smaller than this, the effect of imparting conductivity is reduced. If the amount is too large, it becomes an obstacle to the entry and exit of Li + ions on the crystallite surface of the positive electrode material, and the charge / discharge performance tends to decrease immediately.
  • the rate of weight loss during the pyrolytic carbonization is as described above. It is preferable that the amount of the carbon precursor to be added is determined accordingly.
  • Examples of the secondary battery using the positive electrode material of the present invention obtained as described above include a metal lithium battery, a lithium ion battery, and a lithium polymer battery.
  • Lithium-ion batteries are commonly referred to as rocking chairs and power, shuttlecocks (badminton blades), etc., and Li + ions reciprocate between the negative and positive electrode active materials as they charge and discharge.
  • This is a secondary battery characterized by the following (see Fig. 1).
  • reference numeral 10 denotes a negative electrode
  • reference numeral 20 denotes an electrolyte
  • reference numeral 30 denotes a positive electrode
  • reference numeral 40 denotes an external circuit (power supply Z load)
  • reference numeral C denotes a charged state (during charging).
  • Symbol D indicates a discharged state (during discharge), respectively.
  • Li + ions are inserted into the negative electrode (carbon such as graphite is used in the current system) to form an intercalation compound (at this time, the negative electrode carbon is reduced and the positive electrode from which Li + has been removed is oxidized.
  • Li + ions are inserted inside the positive electrode to form a lithium iron compound complex (at this time, the iron of the positive electrode is reduced, and the negative electrode from which Li + has escaped is oxidized and returns to graphite, etc.) ).
  • Li + ions reciprocate in the electrolyte during charge and discharge, and simultaneously carry charge.
  • the electrolyte for example, a mixed solution of a cyclic organic solvent such as ethylene carbonate, propylene carbonate, and ⁇ -petit ratatatone and a chain organic solvent such as dimethyl carbonate and ethyl methyl carbonate is used.
  • a cyclic organic solvent such as ethylene carbonate, propylene carbonate, and ⁇ -petit ratatatone
  • a chain organic solvent such as dimethyl carbonate and ethyl methyl carbonate
  • Liquid electrolytes in which electrolyte salts such as 4 are dissolved, gel electrolytes in which these liquid electrolytes are impregnated in a polymer gel, solid polymer electrolytes in which partially cross-linked polyethylene oxide is impregnated with the electrolyte, etc. Is used.
  • a porous membrane (separator) made of polyolefin or the like is interposed between them so that the positive electrode and the negative electrode do not short-circuit in the battery.
  • a predetermined amount of a conductivity-imparting agent such as carbon black is added to each of the positive electrode material and the negative electrode material, for example, a synthetic resin such as polytetrafluoroethylene, polyvinylidene fluoride, fluorine resin, and ethylene propylene.
  • Batteries are formed by using a binder such as synthetic rubber, such as rubber, and if necessary, further adding a polar organic solvent, kneading and thinning the film, and collecting current with a metal foil or metal mesh.
  • a change in Li (0) ZLi + occurs at the negative electrode along with charging and discharging, and a battery is formed.
  • Examples of the form of the secondary battery include a coin-type lithium secondary battery in which a pellet-shaped positive electrode is incorporated in a coin-type secondary battery case and sealed, as shown in Examples described later, and a thin-film coating sheet.
  • a form such as a lithium secondary battery incorporating a positive electrode can be employed.
  • the dissimilar metal element may act as a doping reagent for the positive electrode material, improving the conductivity of both reduced LiFePO and oxidized FePO.
  • lithium iron phosphate in the reduced form and iron phosphate in the de-oxidized form are formed in a single crystallite while always coexisting in a single crystallite with a two-phase boundary.
  • the volume ratio is changed to deoxidize Li after complete charge, and to reduce Li after complete discharge.
  • a-c shows the initial, middle, and end stages of the charging process (de-Li electrode oxidation)
  • d-f shows the early, middle, and end stages of the discharging process (reduction of the Li electrode).
  • the positive electrode material particles in contact with one surface of the current collector placed on the y-axis are placed in the X direction and remain there. The three directions are in contact with the electrolyte, and an electric field is applied in the X direction.
  • electrode reduction occurs first at the corners, which are the three-phase boundaries of the current collector, cathode material, and electrolyte. Yes, as the charging progresses, it moves in the direction of the boundary surface force between the Li-filled reduced state LiFePO and the completely deoxidized FePO.
  • the Li electrode reduction reaction starts from the corner, which is the three-phase boundary between the current collector, the positive electrode material, and the electrolyte, and the boundary surface moves in the X direction as the discharge progresses. Since the electrons must travel a long distance inside LiFePO,
  • the electrode oxidation-reduction reaction and the desorption Z insertion of Li + ions are promoted, and the high rate characteristics are improved by reducing the active material utilization rate (charge / discharge capacity) and polarization.
  • the conductivity of both Li-reduced LiFePO and de-oxidized LiFePO is improved by reducing the active material utilization rate (charge / discharge capacity) and polarization.
  • the composite metal element of the present invention has an extremely large effect on this point, and the increase in polarization from the middle stage to the end stage of the charge in FIG. In order to suppress this, a very flat charge / discharge voltage is exhibited over a wide range of charge / discharge depths, and a high active material utilization rate is realized.
  • appropriate deposition of the conductive carbon of the present invention, which is used in combination with dissimilar metal elements is equivalent to bringing the current collector shown in FIG. 2 into contact with, for example, the other three sides of the positive electrode material particles.
  • the three-phase boundary portion of the current collector, the positive electrode material, and the electrolyte is increased, and it is considered that the effect of the dissimilar metal element composite layer is synergistically enhanced.
  • a 5-fold volume of ethanol was mixed, crushed and mixed for 1.5 hours using a planetary ball mill having 2 mm diameter zircon beads and a zircon pot, and then dried under reduced pressure at 50 ° C.
  • To the crushed mixture of the dried raw materials add 3 Shio-Dani Vanadium VC1 (Wako Pure Chemical Industries, Ltd.) to the mixture.
  • the positive electrode material synthesized as described above was identified by powder X-ray diffraction as LiFePO having an olivine-type crystal structure, and the diffraction peaks of other impurities were not observed (Fig.
  • X-ray diffraction results are shown in Fig. 3).
  • P phosphorus
  • a titanium metal mesh and a metal-nickel mesh were spot-welded to a stainless steel coin battery case (model number CR2032) as positive and negative electrode current collectors, respectively, so that the positive electrode and the metal lithium foil negative electrode were made of porous polyethylene. It is incorporated through a diaphragm (E-25, manufactured by Tonen-Danigaku Co., Ltd.), and 1 M LiPF dissolved in 1M LiPF is dissolved in dimethyl carbonate / ethylene carbonate.
  • the charge / discharge current density per apparent area of the positive electrode pellet was 0.5 mAZcm 2 at 25 ° C. for the coin-type secondary battery incorporating the positive electrode material obtained by the production method of the present invention.
  • L.OmAZcm 2 and 1.6mAZcm 2 3.0V- operating voltage range of 4.0V was repeated constant current charge and discharge, the maximum discharge capacity in the initial cycle (at the first cycle) is as shown in Table 1 became.
  • FIG. 4 shows a charge / discharge curve of the battery at the third cycle
  • FIG. 5 shows a discharge cycle characteristic at a charge / discharge current density of 0.5 mAZcm 2 .
  • these capacitance values are normalized by the net weight of the positive electrode active material containing dissimilar metal elements such as vanadium, except for carbon. (However, only the weight of the deposited conductive carbon is corrected. And).
  • the beam cathode material in the charge and discharge current density 0.5MAZcm 2 the initial capacity very large as MotoTadashikyoku system reaching 151MAhZg, although a slight decrease in capacity is observed, characteristic of relatively stable cycle was obtained .
  • Example 2 Was manufactured according to the same procedure as in Example 1 except that 0.0666 g was added and crushed and mixed.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • P phosphorus
  • Li: Fe: Cr: P 0..99: 1.02 : 0.0087: 1
  • the chromium-composite lithium iron phosphate cathode material produced by the addition of 3 32 ⁇ shows almost the same charge-discharge characteristics, with a charge-discharge current density of 0.5 mAZcm 2 ! /, Reaching 150-151 mAh / g Although a very large initial capacity and a slight decrease in capacity are observed for this positive electrode system, Relatively stable cycle characteristics were obtained.
  • the charge / discharge curves of these coin-type rechargeable batteries use the vanadium-composite lithium iron phosphate positive electrode material shown in Fig.
  • a LiFePO cathode material with a composite of copper (Cu) as a dissimilar metal element is prepared by the following procedure.
  • LiFePO cathode material in which Cu was combined with 1 mol% was synthesized in exactly the same procedure as in Example 1.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • P phosphorus
  • LiFePO cathode material in which lmol% of Zn was compounded was synthesized according to the same procedure as in Example 1 except that lg was added and crushed and mixed.
  • a LiFePO cathode material obtained by compounding indium (In) as a dissimilar metal element is
  • LiFePO cathode material in which lmol% of In was compounded was synthesized in exactly the same procedure as in Example 1 except that 0.0733 g of Junyaku Kogyo Co., Ltd. was added and crushed and mixed.
  • the lithium iron cathode material and a very large initial capacity as the positive electrode system to reach 152mAhZg in the charge and discharge current density 0.5MAZcm 2, the even slight decrease volume seen in a relatively stable cycle characteristics are obtained .
  • the charge-discharge curve of this battery was obtained using the vanadium-composite lithium iron phosphate cathode material with the VC1-added mash as shown in Fig. 4.
  • LiFePO cathode material in which Sn was combined with 1 mol% was synthesized in exactly the same procedure as in Example 1.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • LiFePO LiFePO
  • Example 1 Except for adding lg and crushing and mixing, a LiFePO cathode material in which Sn was combined with 1 mol% was synthesized in exactly the same procedure as in Example 1. For this positive electrode material, Example 1
  • a coin-type secondary battery was manufactured in the same manner as in Example 1, and its characteristics were evaluated. In addition, the same cathode material
  • the tin-composite lithium iron phosphate positive electrode material produced by the addition of 24 shows almost the same charge-discharge characteristics, and is very large for the present positive electrode system to reach a charge / discharge current density of 0.5 mAZcm 2 and 15 ImAhZg. Although the initial capacity and the capacity are slightly reduced, the size is relatively stable. Cle characteristics were obtained. The charge / discharge curves of these batteries were varied by adding VC1 shown in Fig. 4.
  • a LiFePO cathode material obtained by compounding molybdenum (Mo) as a dissimilar metal element is as follows:
  • LiFePO cathode material in which Mo was combined with 1 mol% was synthesized in exactly the same procedure as in Example 1.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • Li: Fe: Mo: P (1.01: 1.01) in terms of phosphorus (P) standard element molar ratio. : 0.0089: 1).
  • P phosphorus
  • the positive electrode material of the present positive electrode system which reaches 153 mAhZg at a charge / discharge current density of 0.5 mAZcm 2 , obtained a very large initial capacity and a slightly reduced capacity, but relatively stable cycle characteristics were obtained by the positive electrode material.
  • the charge / discharge curve of this battery is similar to the case of using the vanadium-composite lithium iron phosphate cathode material with VC1-added kneading as shown in Fig. 4.
  • a LiFePO cathode material in which lmol% of Ti was composited was synthesized in exactly the same procedure as in Example 1 except that the mixture was ground and mixed.
  • the charge / discharge current density reaches 151 mAhZg at a current density of 0.5 mAZcm 2.
  • the cathode system has a very large initial capacity and a relatively low cycle capacity, but relatively stable cycle characteristics.
  • the charge / discharge curve of this battery is very similar to that shown in Fig. 4 when the vanadium-composite lithium iron phosphate cathode material with VC1-added kneader was used.
  • a LiFePO cathode material containing no dissimilar metals was synthesized by the following procedure.
  • LiFePO 4 was obtained according to the same procedure as in Example 1 except that nothing was added to the pulverized mixture of the dried raw materials with respect to the lmol% vanadium composite cathode material of Example 1 described above.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • the X-ray diffraction results of this additive-free cathode material are almost the same as those in Fig. 3. Only the diffraction peak of LiFePO having an olivine type crystal structure is seen, and other impurities
  • a LiFePO cathode material with a composite of vanadium (V) as a dissimilar metal element is
  • An lmol% vanadium composite LiFePO cathode material was synthesized according to exactly the same procedure as in Example 1 except for mixing (here, the hydration number n was assumed to be 2 and the addition was performed).
  • the coin-type secondary battery incorporating the composite cathode material is the VOC O ⁇ ⁇ ⁇ of Reference Example 1.
  • a lmol% chromium composite LiFePO cathode material was synthesized in exactly the same procedure as in Example 1 except that 78 g was added and mixed.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • the X-ray diffraction results of this chromium composite cathode material only the diffraction peak of LiFePO having the same olivine type crystal structure as in Fig. 3 was found. And no other impurity diffraction peaks were observed.
  • [0140] also shows the maximum discharge capacity in the initial cycle of the coin-type secondary battery (at first cycle) in Table 2, also the discharge cycle characteristics in charge-discharge current density 0.5MAZcm 2 in FIGS. 6 and 7 .
  • a LiFePO cathode material with a composite of copper (Cu) as a dissimilar metal element is prepared by the following procedure.
  • the lmol% copper composite LiFePO cathode material was prepared according to exactly the same procedure as in Example 1.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics were evaluated.
  • the coin-type secondary battery incorporating the positive electrode material is the same as Cu (CH COO)
  • a four-electrode material was synthesized.
  • [0148] also shows the maximum discharge capacity in the initial cycle of the coin-type secondary battery (at first cycle) in Table 2, also the discharge cycle characteristics in charge-discharge current density 0.5MAZcm 2 in FIGS. 11 and 12 .
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics were evaluated.
  • the same cathode material was analyzed for elemental components by ICP emission spectroscopy.
  • the coin-type rechargeable battery incorporating the positive electrode material was prepared by adding Ti [0 (CH) CH] of Reference Example 5.
  • the composite has a larger initial discharge capacity than the titanium composite cathode material produced by the addition of 233 4, and that the cycle deterioration is clearly improved.
  • V vanadium (V) composite LiFePO cathode material with conductive carbon deposited
  • Vanadium chloride VC1 manufactured by Wako Pure Chemical Industries, Ltd. 0.0393 g (FeCO 2 ⁇
  • the conductive carbon deposition composite cathode material synthesized as described above was identified by powder X-ray diffraction as LiFePO having an olivine type crystal structure, and diffraction peaks of other impurities were obtained.
  • FIG. 15 shows the result of the X-ray diffraction.
  • a coin-type secondary battery incorporating the positive electrode material was prepared in the same procedure as in Example 1. On the other hand, at 25 ° C., the apparent area of the positive electrode pellet was determined.
  • the maximum discharge capacity in the initial cycle was as shown in Table 3. became.
  • FIG. 16 shows the charge-discharge capacity-voltage characteristics in the third cycle.
  • FIG. 17 shows the discharge cycle characteristics of this battery.
  • Example 11 Calds' Limited (Research Chemicals Ltd.)] was added, and the same procedure as in Example 11 was followed, except that 0.0396 g of Lizium-containing conductive carbon was deposited. A positive electrode material was synthesized.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • elemental analysis revealed that carbon generated by the thermal decomposition of the refined coal pitch was contained at 3.74% by weight.
  • the X-ray diffraction result of this chromium composite cathode material shows the diffraction of LiFePO, which has almost the same olivine type crystal structure as in Fig. 15.
  • Example 11 instead of VC1 used for the production of the conductive carbon deposited lmol% vanadium composite cathode material of Example 11, the dried raw material was pulverized and the mixture was mixed with CrClCl600 (purity 99.5%, Except that 0.0666 g of Kojun Pharmaceutical Co., Ltd.) was added and crushed and mixed, a conductive carbon deposition-LiFePO cathode material in which Cr was lmol% complexed was performed in exactly the same procedure as in Example 11.
  • a coin-type secondary battery was fabricated using the cathode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • elemental analysis showed that carbon produced by the thermal decomposition of the refined coal pitch contained 3.69% by weight.
  • the X-ray diffraction result of this chromium composite cathode material shows the diffraction of LiFePO, which has almost the same olivine type crystal structure as in Fig. 15.
  • the dried raw material was mixed with CuCl (purity 95%, Wako Pure Chemical Industries, Ltd.).
  • Example 11 The same procedure as in Example 11 was followed, except that 0.0336 g of Nippon Kogyo Co., Ltd. was added and crushed and mixed, to synthesize a conductive carbon deposited LiFePO cathode material in which lmol% of Cu was combined.
  • a zinc (Zn) composite LiFePO cathode material with conductive carbon deposited is synthesized by the following procedure.
  • ZnCl purity 98%, Wako Pure Chemical Industries, Ltd.
  • Example 11 Except for adding 0.0341 g of the same product as in Example 11 and mixing by crushing, a conductive carbon-precipitated LiFePO cathode material synthesized with lmol% of Zn was synthesized according to exactly the same procedure as in Example 11.
  • the dried raw material was pulverized and mixed with InCl.sub.4 ⁇ 0 (including as an anhydride).
  • Example 11 The same procedure as in Example 11 was followed, except that 0.0733 g of an equivalent 74-77% (manufactured by Wako Pure Chemical Industries, Ltd.) was added and crushed and mixed. -LiFePO cathode material was synthesized.
  • a tin (Sn) composite electrodeposited LiFePO cathode material with conductive carbon deposited was synthesized by the following procedure.
  • Example 11 (Manufactured by Toyo Co., Ltd.) was added, and the same procedure as in Example 11 was followed, except that the mixture was ground and mixed, to synthesize a conductive carbon-precipitated LiFePO cathode material in which lmol% of Sn was combined.
  • a tin (Sn) composite electrodeposited LiFePO cathode material with conductive carbon deposited was synthesized by the following procedure.
  • a conductive carbon deposited LiFePO cathode material was synthesized according to exactly the same procedure as in Example 11, with Sn being lmol% composite.
  • the maximum discharge capacity of the coin-type secondary battery in the initial cycle (around the 10th cycle) ) Is shown in Table 3, and the discharge cycle characteristics at a charge / discharge current density of 0.5 mAZcm 2 are shown in FIG.
  • the charge / discharge curve of this battery is shown in Fig. 16 as the conductive carbon deposits from the VC1-added kneader.
  • Example 11 Was prepared according to exactly the same procedure as in Example 11, except that 0.0683 g of the compound was added and crushed and mixed.
  • a coin-type secondary battery was fabricated using the cathode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • elemental analysis showed that carbon generated by the thermal decomposition of the refined coal pitch was contained 3.92% by weight.
  • X-ray diffraction results of this molybdenum composite cathode material show that LiFePO with an olivine-type crystal structure almost identical to that in Fig. 15.
  • a titanium (Ti) composite electrodeposited LiFePO cathode material having conductive carbon deposited thereon is subjected to the following procedure.
  • Conductive carbon deposition without dissimilar metals-LiFePO cathode material is synthesized by the following procedure
  • Example 11 The same procedure was followed as in Example 11 except that VC1 was not added to and mixed with the pulverized mixture of the raw materials after drying with respect to the conductive carbon precipitated lmol% vanadium composite cathode material of Example 11!
  • a conductive carbon deposition-LiFePO cathode material was synthesized.
  • a coin-type secondary battery was fabricated using the positive electrode material in the same manner as in Example 1, and the characteristics of the battery were evaluated.
  • Table 3 shows the maximum discharge capacity of the coin-type secondary battery in the initial cycle (around the 5th cycle), Figure 16 shows the charge / discharge curve in the 3rd cycle, and Figure 17 shows the charge / discharge characteristics in the cycle. It is shown together with 26.
  • Example 11 and Example 20 are compared with Comparative Example 2. And the coin-type secondary battery incorporating the dissimilar metal composite cathode material obtained by depositing conductive carbon of Example 11 and Example 20 can generally be said to have very high performance. Even when compared with the conductive carbon deposition-positive electrode material of Comparative Example 2 without adding
  • Table 4 shows the analysis values of the chlorine content in the positive electrode material for all the samples of Example 1 to Example 20. Analytical values were shown as sample element molar ratios, and P was expressed as 1 as a standard. M represents a dissimilar metal element. Chlorine analysis was measured by alkali melting Z ion chromatography. Table 4 shows the data in which the halogen element is contained in the range of 0.63 mol% to 1.45 mol% with respect to P. The charge and discharge characteristics of the positive electrode material are less than the current detection limit of halogen elements, It was confirmed to be superior to that of 0.01 mol% or less (reference examples 1 to 5 in Table 2). Regarding the upper limit of the content of the halogen element, it has been confirmed that similar characteristics can be obtained up to about twice the content of the different metal element.
  • chlorine (C1) exists as a phase separated form in the form of salt chloride such as, for example, LiCl! / Or, or at least a part thereof is added to the added foreign metal element.
  • salt chloride such as, for example, LiCl! / Or, or at least a part thereof is added to the added foreign metal element.
  • Chlorine (C1) may be present in the cathode material together with the dissimilar metal element M, or chlorine (C1) may assist in the compounding of the dissimilar metal element M into the cathode active material crystal during the baking process of the cathode material. Accordingly, it is estimated that the charge and discharge characteristics of the obtained positive electrode material were improved.
  • FePO iron phosphate in an oxidized state generated from the reduced state by a battery charging reaction, a chemical oxidation reaction, or the like.
  • FePO is also a different metal element composite cathode material and carbon deposition-different gold
  • the present invention is included in the category of the present invention as a group-element composite cathode material.
  • the positive electrode material of the present invention or the positive electrode material obtained by the method of the present invention can be used as a positive electrode material of a secondary battery, for example, in various mobile devices including mobile phones, as well as electric vehicles, vehicles, and hybrid electric vehicles. Is possible.
  • FIG. 1 is a schematic diagram for explaining a charge / discharge behavior of a secondary battery.
  • FIG. 2 is a drawing showing a two-dimensional hypothetical model around the cathode material particles.
  • FIG. 3 is a drawing showing the X-ray diffraction results of the vanadium composite cathode material obtained in Example 1.
  • FIG. 4 is a graph showing charge / discharge curves in the third cycle of the secondary batteries obtained in Example 1 and Comparative Example 1.
  • FIG. 5 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 1, Comparative Example 1, and Reference Example 1.
  • FIG. 6 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 2, Comparative Example 1, and Reference Example 2.
  • FIG. 7 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 3, Comparative Example 1 and Reference Example 3.
  • FIG. 8 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 4, Comparative Example 1 and Reference Example 3.
  • FIG. 9 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 5 and Comparative Example 1.
  • FIG. 10 is a Darraf diagram showing cycle discharge characteristics of the secondary batteries of Example 6 and Comparative Example 1.
  • FIG. 11 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 7, Comparative Example 1 and Reference Example 4.
  • FIG. 12 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 8, Comparative Example 1 and Reference Example 4.
  • FIG. 13 is a Darraf diagram showing cycle discharge characteristics of the secondary batteries of Example 9 and Comparative Example 1.
  • FIG. 14 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 10, Comparative Example 1, and Reference Example 5.
  • FIG. 15 is a drawing showing an X-ray diffraction result of the conductive carbon-deposited vanadium composite cathode material obtained in Example 11.
  • FIG. 16 is a graph showing charge / discharge curves in the third cycle of the secondary batteries obtained in Example 11 and Comparative Example 2.
  • FIG. 17 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 11 and Comparative Example 2.
  • FIG. 18 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 12 and Comparative Example 2.
  • FIG. 19 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 13 and Comparative Example 2.
  • FIG. 20 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 14 and Comparative Example 2.
  • FIG. 21 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 15 and Comparative Example 2.
  • FIG. 22 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 16 and Comparative Example 2.
  • FIG. 23 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 17 and Comparative Example 2.
  • FIG. 24 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 18 and Comparative Example 2.
  • FIG. 25 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 19 and Comparative Example 2.
  • FIG. 26 is a graph showing the cycle discharge characteristics of the secondary batteries of Example 20 and Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 正極活物質としてリン酸鉄リチウムを含み、大きな充放電容量と高レート適応性、及び良好な充放電サイクル特性を兼ね備えた正極材料、その簡便な製造方法、及びそれを組み込んだ高性能な二次電池を提供する。一般式LinFePO4(ここで、nは0~1の数を示す)で表される正極活物質を主成分として含み、かつバナジウム(V)、クロム(Cr)、銅(Cu)、亜鉛(Zn)、インジウム(In)およびスズ(Sn)よりなる群から選ばれる1種以上の異種金属元素を含有することを特徴とする、二次電池用正極材料および二次電池。この正極材料は、前記金属元素のハロゲン化物を原料として製造できる。

Description

明 細 書
二次電池用正極材料、二次電池用正極材料の製造方法、および二次電 池
技術分野
[0001] 本発明は、二次電池用正極材料、二次電池用正極材料の製造方法、および該正 極材料を有する二次電池に関する。
背景技術
[0002] 金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等に代表される二次 電池において正極材料となるリン酸鉄リチウム LiFePOは、放電あるいは充電の過
4
程で、リチウムのドープ Z脱ドープを伴う形で電極酸化還元反応が進行する。このリ ン酸鉄リチウム LiFePO
4は、元来かなり大きい理論容量(170mAhZg)と、比較的 高い起電力(対 LiZLi+負極にて約 3.4— 3.5V)を有し、しかも資源的に豊富な鉄'リ ン等からなり、安価に製造できると考えられるため、次世代の有力な正極材料候補と 期待されている。また、オリビン型結晶構造を有する同正極系は、他の多くの正極系 、例えば現行正極のコバルト酸リチウム [LiCoO ]等とは異なり、電極酸化還元の全
2
過程を通じて、 Liの充満した還元態 (放電状態)の LiFe (II) PO、及び Liの完全に脱
4
離した酸化態 (充電状態) Fe (III) POの 2相のみが常に存在する 2相平衡状態をとり
4
[即ち、例えば Li (Fe2+ Fe3+ ) POなどの中間状態は相としてはとり得ない]、そ
0.5 0.5 0.5 4
の結果、充放電電圧が常に一定に保たれるために充放電状態の管理が容易である という興味深い性質を有する。しかしながら、これらの還元態 (放電状態) LiFe (II) P O、および脱 Li酸ィ匕態(充電状態) Fe (III) POのいずれも極めて導電性が低ぐま
4 4
た同正極材料中における Li+イオンの移動も遅 、ために(この 2つの性質は、「作用」 において後述するように、互いに関連していると推定される)、従来、実際に Li等を負 極とした二次電池を組んでもその実効容量は小さぐまた一般には極めて悪いレート 特性及びサイクル特性しカゝ得られなカゝつた。
[0003] ところで、電極材料の表面導電性向上については、化学式 A M Z O N F (式中 a m z o n f
、 Aはアルカリ金属、 Mは Fe、 Mn、 V、 Ti、 Mo、 Nb、 Wその他の遷移金属、 Zは S、 Se、 P、 As、 Si、 Ge、 B、 Snその他の非金属)で表わされる複合酸ィ匕物(硫酸塩、リン 酸塩、ケィ酸塩等のォキソ酸塩を含む)の粒子表面に炭素を析出させて表面導電性 を上げることにより、これらの複合体を電池等の電極系に用いた場合、電極酸化還元 反応の過程で前記複合酸化物粒子、集電 (導電性付与)材および電解質界面一帯 の電場を均一化 ·安定ィ匕して効率を向上させるという技術が提案されている (特許文 献 1参照)。そこでは、炭素を前記複合酸化物の粒子表面に析出させる方法として、 熱分解により炭素を析出する有機物 (高分子、モノマー、低分子等)を共存させ、ある いは一酸ィ匕炭素を添加して、これらを熱分解する方法が提案されている(前記複合 酸化物の原料にこれらを共存させ、還元的条件で一度に熱反応させて、前記複合酸 化物と表面炭素の複合体を得ることもできる、とされている)。これらの手段により、特 許文献 1では、前述のような複合酸ィ匕物粒子表面の導電率向上を実現し、例えば Li FePO等の正極材料粒子表面に炭素を析出させた複合体を作成して Liポリマー電
4
池を構成した場合などにぉ 、て、大きな放電容量等の高 ヽ電極性能が得られて ヽる [0004] また、別の技術として一般式 LixFePO (ただし、 0<x≤ 1である)で表される化合
4
物の合成原料を混合し、ミリングを施し、焼成するいずれかの時点でアセチレンブラ ックなどの非晶質系炭素材料を添加するとともに、焼成雰囲気中の酸素濃度を 1012 ppm (体積)以下とする正極活物質の製造方法も提案されて!ヽる (特許文献 2参照)。
[0005] これらの技術は、いずれも LiFePOのようなリン酸塩正極材料の導電率の低さ、同
4
正極材料中における Liイオンの移動の遅さを前提とした性能向上法であって、基本 的に同正極材料表面に炭素のような導電性物質を析出または混入させると同時に、 粒径を出来るだけ小さく押さえて拡散距離を制限させることにより、これらの難点を回 避しょうとするものであつた。
[0006] 一方、 LiFePO正極材料に対し、 Liまたは Feの一部を異種金属元素で置換、乃
4
至は添加複合化、乃至はドーピングすることによって、その正極材料自体の導電率 を向上させることにより、正極性能を改良する試みもなされている(例えば、非特許文 献 1、非特許文献 2参照)。
[0007] 非特許文献 1にお ヽては、 LiFePO正極材料に Al、 Ca、 Ni、または Mgを導入す ることにより、その容量が向上したことが開示されている。例えば、これらの元素を含ま な ヽ LiFePO正極材料を用いた金属リチウム電池の第 1サイクルの放電容量が 117
4
mAhZgに過ぎず、サイクル経過と共に急速に低下したのに対し、 Mgによって Feの 一部を置換した LiMg Fe POを正極材料に用いた電池では、約 120— 125mA
0.05 0.95 4
hZg程度に容量が増加し、またサイクル経過に伴う劣化が抑制されることが報告され ている(ただし、同文献では Mgが同正極材料中で Feと置換されているという客観的 証拠は示されていない)。
[0008] また、非特許文献 2にお 、ては、 LiFePO正極材料の原料に Mg2+、 Al3+、 Ti4+
4
Zr4+、 Nb5+または W6+を含む化合物(Mgはシユウ酸塩、 Nbは金属フエノキシド、そ の他は金属アルコキシド)を添加後、焼成することにより、これらの元素がドーピングさ れた正極材料を得ている。同文献では、これらの元素が Liの一部と置換された Li
1-x
M FePOの形で存在していると推定している。上記金属イオンをドープした正極材
4
料の導電率は、未ドープ正極材料に比べ約 108倍も向上し、常温で 10— 1— 10— /c mオーダーの値となると共に、このような高い導電性を持つ、金属をドープした正極 材料を用いた金属リチウム電池においては、特にレート特性及びサイクル寿命の著し い向上が認められたと記載されている。この非特許文献 2によれば、低い充放電レー ト CZ 10にお!/ヽては 140mAhZgをやや超える放電容量(同論文中では約 150mA hZgと記述されていた力、掲載図力も見る限りは 140mAhZgに近い)を示す一方、 21.5C及び 40Cのような非常に高いレートにおいても、それぞれ約 70弱及び約 30m AhZgという低下した容量ながら、安定したサイクル充放電が可能であったという (C Znは、 n時間で全容量を定電流充電または放電する充放電レート。なお、同論文中 では前記充放電データを得た正極材料におけるドーパント元素種及び含有量につ いては明記されていない)。
[0009] 非特許文献 2では、前記正極材料の還元態 LiFe (II) POおよびその脱 Li酸化態 F
4
e (lIl) POの結晶構造中において、例えば Li+イオンのサイトに少量 (鉄に対し元素
4
比で lmol%以下)の前記多価イオンが入ることにより、還元態相中にお!/、ては Fe3+ 1S また酸化態相中にお!、ては Fe2+がそれぞれ微量生じて Fe2+ZFe3+の混合酸 化状態をとり、その結果、還元態では P型、酸化態では N型の半導性が発現するため に、前述の導電性向上力 Sもたらされたと推測している。また、前記の 2価一 6価の各多 価イオンを含む化合物を添加焼成したところ、いずれも同様に LiFePO正極材料の
4
導電性が向上したとも記載されている(ただし、 Ti、 Zr、 Nb、および Wの遷移金属元 素については、多くの安定な陽イオン価数状態をとり得るため、得られた正極材料中 における実際の各陽イオンの価数力 ドーピングのために添加した上記の各化合物 の価数と異なることもあり得ると考えられる)。
[0010] 特許文献 1 :特開 2001— 15111号公報
特許文献 2:特開 2002-110163号公報
非特許文献 1:「未来開拓学術研究推進事業研究プロジ 外成果報告書 (2000年) 新規な固体電解質材料の創製と応用」(日本学術振興会:研究プロジェクト番号 JS PS-RFTF96P00102) [http://chem.sci.hyogo-u.ac.jp/ndse/index.html] (2000^ 6月 21日更新)
非特許文献 2:「ネーチャ^ ~ ·マテリアノレズ (Nature Materials)」, Vol.1 , p 123— 1 28 (2002年 10月)
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、非特許文献 1、非特許文献 2の手法は、現時点でも必ずしも満足でき る結果を達成しているとは言いがたい。すなわち、前者の充放電容量は高々 120— 125mAhZg程度である。また後者の高レート充放電への適応は目覚しいものの、 L iFePO正極材料の導電率が向上している割には、 CZ10の低レート時においてさ
4
え、やはり同正極材料の理論容量 170mAhZgを相当下回る充放電容量 (約 140m AhZgをやや超える程度)しか得られておらず、しかも定電流充放電時の電池容量 対電圧特性における充放電末期の電圧の立上がり Z立下がりは、極めて良好な高レ ート特性を示す割にはあまり急峻ではない。即ち、非特許文献 2に記載されたデータ では、 CZ10において充放電深度の約 8割程度力も既に緩やかに電圧が立上がり Z立下がり始めるが、一般には、電池内部抵抗が小さく高レート特性の優れた電池 の場合、前記電圧の立上がり Z立下がりはより直角に近い急峻なものとなるはずであ る。これらの事柄は、添加複合化、乃至はドーピングされた異種元素の種類、及びそ の手法が十分に適切なものとなってはいない可能性を示唆すると思われる。
[0012] 本発明の課題は、正極活物質としてリン酸鉄リチウムを含み、大きな充放電容量と 高レート適応性、及び良好な充放電サイクル特性を兼ね備えた二次電池用正極材 料、二次電池用正極材料の製造方法、及びそれを組み込んだ高性能な二次電池を 提供することにある。
課題を解決するための手段
[0013] 本発明者らは、前記課題を解決するため鋭意検討を重ねた結果、正極活物質 LiF ePOに、特定の金属元素を複合化して得られる正極材料は、充放電特性が飛躍的
4
に改善されたものであることを見出した。
[0014] さらに、該特定の金属元素を複合ィ匕した正極材料において、その表面に導電性炭 素を析出させることによって、同正極系の理論容量 170mAhZgに肉薄する実効容 量と良好な充放電サイクル特性を実現することに成功した。
[0015] また、前記特定の金属元素またはこれらと類縁の金属元素(これらを「異種金属元 素」と記すことがある。)を複合ィ匕するに際し、原料の相違によって得られる正極材料 の性能に差異が生じるとの知見を得、原料の選定を行うことによって優れた電気化学 的性能を持つ正極材料が得られることを見出した。
[0016] すなわち、本発明の第 1の態様に係る二次電池用正極材料の発明は、一般式 Li F ePO (ここで、 nは 0— 1の数を示す。以下同様につき注記を省略する。)で表される
4
正極活物質を主成分として含み、かつ元素周期表において、 4族、 5族、 6族、 11族 、 12族、 13族または 14族に属する金属元素の群力も選ばれる 1種以上の金属元素 と、ハロゲン元素を含有し、該ハロゲン元素は Pに対して 0. lmol%以上含まれてい ることを特徴とする。
[0017] 本発明の第 2の態様に係る二次電池用正極材料の発明は、第 1の態様において、 前記金属元素は、バナジウム (V)、クロム(Cr)、銅(Cu)、亜鉛 (Zn)、インジウム (In) 、スズ (Sn)、モリブデン (Mo)及びチタン (Ti)よりなる群力 選ばれる 1種以上の金 属元素であることを特徴とする。
[0018] 正極活物質の主成分として Li FePOを含み、前記金属元素を含有する正極材料 n 4
は、後記実施例に示すように、従来に達成し得な力つた大きな充放電容量、高レート 適応性、及び良好な充放電サイクル特性を示す正極材料である。また、ハロゲン元 素が Pに対して 0. lmol%以上含まれていることにより、後記実施例に示すように、充 放電特性が向上している。
[0019] 本発明の第 3の態様に係る二次電池用正極材料の発明は、第 1の態様又は第 2の 態様において、前記金属元素の含有量の合計が、前記正極活物質中の鉄に対し元 素比で 0.1ないし 5mol%であることを特徴とする。前記金属元素の含有量が上記範 囲内であることより、優れた充放電性能が得られる。
[0020] 本発明の第 4の態様に係る二次電池用正極材料の発明は、元素周期表において
、 4族、 5族、 6族、 11族、 12族、 13族または 14族に属する金属元素の群から選ばれ る 1種以上の金属元素のハロゲン化物と、一般式 Li FePO (ここで、 nは 0— 1の数を n 4
示す)で表される正極活物質の原料となる物質と、を混合した後、焼成することにより
、前記一般式 Li FePO (ここで、 nは 0— 1の数を示す)で表される正極活物質を主 n 4
成分として含み、かつ前記金属元素を含有するように合成されたものであることを特 徴とする。
前記金属元素のハロゲンィ匕物を原料として得られる二次電池用正極材料は、他の 原料カゝら製造された正極材料と比べて高い充放電特性を備えたものとなる。
[0021] 本発明の第 5の態様に係る二次電池用正極材料の発明は、第 1の態様から第 4の 態様のいずれか 1つにおいて、前記正極材料の表面に、導電性炭素の析出物を有 することを特徴とする。前記異種金属元素を含有する正極材料において、その表面 に導電性炭素を析出させることによって、正極材料の導電性がさらに優れたものとな り、後記実施例に示すように、 Li FePO正極系の理論容量に近い実効容量と良好 n 4
な充放電サイクル特性が得られる。
[0022] 本発明の第 6の態様に係る二次電池用正極材料の製造方法の発明は、正極活物 質 Li FePOの原料となる物質と、元素周期表において、 4族、 5族、 6族、 11族、 12 n 4
族、 13族または 14族に属する金属元素のうち、少なくとも 1種の金属元素のハロゲン 化物と、を混合して得られる焼成前駆体を焼成することにより、前記正極活物質に前 記金属元素を複合化させることを特徴とする。前記正極活物質に前記各族の!ヽずれ かに属する異種金属元素を複合ィヒさせるにあたり、これらの異種金属元素のハロゲ ン化物(その水和物を含む)を用いることによって、他の原料力 では得ることができ ない優れた電気化学的性能を有する正極材料が得られる。
[0023] 本発明の第 7の態様に係る二次電池用正極材料の製造方法の発明は、第 6の態 様において、焼成過程は、常温から 300°Cないし 450°Cに至る第一段階と、常温か ら焼成完了温度に至る第二段階と、を含み、加熱分解により導電性炭素を生じ得る 物質を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行うことを特徴 とする。この特徴によれば、第一段階の焼成後に加熱分解により導電性炭素を生じ 得る物質を添加することによって、導電性炭素が均一に析出された正極材料が得ら れる。この炭素析出により、異種金属元素を複合化させたことによる効果と相俟って 非常に優れた充放電挙動を示す正極材料が容易に得られる。
[0024] 本発明の第 8の態様に係る二次電池用正極材料の製造方法の発明は、第 7の態 様にぉ 、て、第二段階の焼成は不活性ガス雰囲気で 750°C— 850°Cの温度範囲で 行われることを特徴とする。これにより後記実施例に示すように、充放電特性の向上 に寄与する。
[0025] 本発明の第 9の態様に係る二次電池用正極材料の製造方法の発明は、第 7の態 様又は第 8の態様において、前記加熱分解により導電性炭素を生じ得る物質が、ビ チューメン類または糖類であることを特徴とする。ビチューメン類または糖類は、加熱 分解によって導電性炭素を生じて正極材料に導電性を付与する。特に、精製された 石炭ピッチに代表されるビチューメン類は、安価で、かつ焼成中に融解して焼成中の 原料粒子の表面に均一に広がり、また熱分解過程を経て比較的低温での焼成後、 高い導電性を発現する炭素析出物となる。また、糖類の場合は、糖類に含まれる多く の水酸基が原料および生じた正極材料粒子表面に強く相互作用することにより、結 晶成長抑制作用も併せ持つため、糖類を用いることによって、優れた結晶成長抑制 効果と導電性付与効果が期待できる。
[0026] 本発明の第 10の態様に係る二次電池の発明は、第 1の態様力も第 5の態様のいず れか 1つの正極材料を構成要素に含むことを特徴とする。この特徴によれば、二次電 池において、前記第 1の態様一第 5の態様と同様の作用効果が得られる。
[0027] 本発明の第 11の態様に係る二次電池の発明は、第 6の態様力 第 9の態様のいず れか 1つの正極材料を構成要素に含むことを特徴とする。この特徴によれば、前記第 5の態様力 第 7の態様のいずれかの作用が奏されることにより、非常に優れた充放 電性能を備えた二次電池が得られる。
発明の効果
[0028] 正極活物質の主成分として Li FePOを含み、特定の異種金属元素を含有する本 n 4
発明の正極材料は、従来に達成し得なカゝつた良好な充放電特性を示す正極材料で ある。この正極材料は、正極活物質に異種金属元素を複合化することによって、容易 に得ることができる。さらに、該正極材料に導電性炭素を析出させた状態の正極材料 にお 、ては、 、つそう良好な充放電特性を有する。
発明を実施するための最良の形態
[0029] 次に、本発明の実施の形態について、(A)二次電池用正極材料、 (B)二次電池用 正極材料の製造方法、(C)二次電池、の順に詳述する。
[0030] (A)二次電池用正極材料:
本発明の二次電池用正極材料は、一般式 Li FePO (ここで、 nは 0— 1の数を示す n 4
)で表される正極活物質を主成分として含み、かつ元素周期表において、 4族、 5族、 6族、 11族、 12族、 13族または 14族に属する金属元素の群から選ばれる 1種以上 の金属元素と、ハロゲン元素を含有し、該ハロゲン元素は Pに対して 0. lmol%以上 含まれているものである。特に、金属元素として、バナジウム (V)、クロム (Cr)、銅 (C u)、亜鉛 (Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、チタン (Ti)から選ば れる金属元素を含有するものであり、正極活物質 Li FePO
n 4に、これら特定の異種金 属元素が複合化されたものである(以下、「複合化正極材料」と記すことがある)。
[0031] この複合ィ匕正極材料中において、異種金属元素がどのような状態にあるかは解明 されて!/、な!/、が、例えば(Li M ) FePOまたは Li (Fe M ) PO (ここで、 Mは異
1— y, y 4 1— z, z 4
種金属元素、 y、 zは化学量論的な条件を満たす数を意味する)のように、 Uまたは F eの一部を異種金属元素で置換した結晶系固溶体の形で入って 、る力、または電子 または正孔を供給し得るような別の化合物の接合体として存在しているものと考えら れる。なお、本発明において「複合」および「複合化」の語は、前記固溶体や接合体 の形態を含む広!、意味で用いられる。 [0032] 本発明の複合化正極材料の主な活物質である Li FePOは、結晶骨格構造 [結晶 n 4
点群 PNMA (オリビン型)、同 PBNMなどの構造をとり、いずれも正極活物質となり 得るが、前者が一般的である]が電気化学的酸ィ匕還元によってほとんど変化しないた め、繰返し充放電が可能なアルカリ金属系二次電池用の正極材料として用 、ること ができる。正極材料としては、これらの物質のそのままの状態は放電状態に相当し、 電解質との界面での電気化学的酸ィ匕によって、アルカリ金属 Liの脱ドープを伴いな 力 中心金属元素 Feが酸化され、充電状態になる。充電状態から電気化学的還元 を受けると、アルカリ金属 Liの再ドープを伴いながら中心金属元素 Feが還元され、元 の放電状態に戻る。
[0033] 複合ィ匕正極材料におけるハロゲン元素は、 Pに対して 0. lmol%以上含まれている 。ハロゲン元素の現状における検出限界未満のものや、 Pに対して 0. 01mol%以下 のものと比べて充放電特性が勝って 、ることを、後述するように確認した。
[0034] 複合化正極材料における異種金属元素の含有量は、正極活物質中の鉄に対し、 元素比で 0.1— 5mol%が好ましぐ 0.5— 3mol%がより好ましい。
[0035] 本発明の正極材料の好ましい形態においては、その表面に、導電性炭素の析出 物を有する。正極材料表面への導電性炭素の析出は、後述するように加熱分解によ り導電性炭素を生じ得る物質 (以下、「導電性炭素前駆物質」と記す)を焼成過程で 添加することにより行われる。
[0036] (B)二次電池用正極材料の製造方法:
<製造方法の概要 >
本発明の二次電池用正極材料は、正極活物質 Li FePOの原料となる物質と、前 n 4
記金属ハロゲン化物とを混合して得られた焼成前駆体に対して所定温度、所定時間 、所定雰囲気で焼成を行うことにより得られる。すなわち、リン酸鉄リチウムの原料とな る物質に、異種金属元素のハロゲン化物を所定量加えて混合し、その後、所定温度 、所定時間、所定雰囲気で焼成を行い、反応を完結することにより製造できる。
[0037] また、異種金属元素との複合化正極材料の表面に、導電性炭素を析出させた炭素 析出 複合化正極材料は、炭素析出のない場合よりもさらに高い充放電特性を示す ことが可能となる。該炭素析出-複合ィ匕正極材料の製造は、例えば、前記と同様に正 極活物質の原料となる物質に金属ハロゲンィ匕物を添加し、例えば擂潰混合等して焼 成前駆体を得た後、一旦 300— 450°Cにて数時間(例えば 5時間程度)かけて第一 段階の焼成 (仮焼成)をした後、炉より取り出し、その仮焼成物に対して、導電性炭素 前駆物質、例えば、石炭ピッチなどのビチューメン類、またはデキストリンなどの糖類 を所定量添加、擂潰 ·混合し、さらに数時間乃至 1日程度、所定雰囲気で第二段階 の焼成 (本焼成)することにより行うことができる。
[0038] また、導電性炭素前駆物質を前記仮焼成物に添加するのではなぐ金属ハロゲン 化物とともに前記正極活物質の原料となる物質に添加し、擂潰混合して得た焼成前 駆体を焼成することによつても、比較的高!ゝ充放電特性を示す炭素析出 -複合化正 極材料を得ることができる。その際、焼成を前記と同様に仮焼成、本焼成の二段階で 行い、仮焼成後に擂潰を実施することが好ましい。
[0039] 導電性炭素前駆物質の添加タイミングが相違する上記二通りの方法の中では、前 者 (導電性炭素前駆物質を仮焼成後に添加する)の方がより高 ヽ充放電特性を持つ 炭素析出 複合ィ匕正極材料が得られる場合が多いので好ましい。従って、以下では 前者を中心に説明を行うが、後者 (導電性炭素前駆物質を仮焼成前に添加する)に おいても、焼成前駆体の調製、焼成条件の選定等は前者に準じて行うことが可能で ある。
[0040] <正極活物質 Li FePOの原料 >
n 4
以下では、正極活物質 Li FePOとして一般的なオリビン型構造を有するものにつ n 4
いて説明する。このオリビン型 Li FePOの原料の中で、リチウム導入用の原料として n 4
は、例えば LiOH等の水酸ィ匕物、 Li CO等の炭酸塩や炭酸水素塩、 LiCl等の塩ィ匕
2 3
物を含むハロゲン化物、 LiNO等の硝酸塩、その他有機酸塩等の Liのみ目的の正
3
極材料中に残留するような Li含有分解揮発性化合物が用いられる。また、 Li PO、
3 4
Li HPO、 LiH PO等の燐酸塩や燐酸水素塩を用いることもできる。
2 4 2 4
[0041] また、鉄導入用の原料としては、例えば水酸化物、炭酸塩や炭酸水素塩、塩ィ匕物 等のハロゲン化物、硝酸塩、その他、 Feのみが目的の正極材料中に残留するような 分解揮発性化合物 (例えば、シユウ酸塩や酢酸塩等の有機酸塩、ァセチルアセトン 錯体類や、メタ口セン錯体等の有機錯体など)のほか、燐酸塩や燐酸水素塩を用い ることちでさる。
[0042] また、燐酸導入用の原料としては、例えば、無水燐酸 P O、燐酸 H PO、および
2 5 3 4 燐酸イオンのみ正極材料中に残留するような分解揮発性燐酸塩や燐酸水素塩 [例 えば、(NH ) HPO、 NH H PO、(NH ) PO等のアンモニゥム塩]を
4 2 4 4 2 4 4 3 4
用!/、ることができる。
[0043] これらの原料にぉ 、て、目的の正極材料中に残存した場合に好ましくな 、元素や 物質を含む場合には、これらが焼成中に分解'揮発することが必要である。また、原 料には燐酸イオン以外の不揮発性ォキソ酸塩等を用いるべきでないことは言うまでも ない。なお、これらにおいては、その水和物を用いる場合もあるが [例えば、 LiOH'H 0、Fe (PO ) · 8Η O等]、上記においては水和物としての表記は全て省略してい
2 3 4 2 2
る。
[0044] <鉄導入用の原料として、金属鉄を用いる場合 >
鉄導入用の原料として、上記のような鉄化合物ではなぐ例えば、安価で入手が容 易な 1次原料である金属鉄を用いることができる。金属鉄は、 200 /z m以下、好ましく は 100 /z m以下の粒径のものを用いる。この場合、正極材料の原料として、金属鉄に 、溶液中でリン酸イオンを遊離する化合物およびリチウム源となる化合物を水とともに 組み合わせて使用することができる。ここで、原料中のリン:鉄:リチウムのモル比を 1 : 1: 1となるように調整することにより、焼成過程での不純物の生成と正極材料への混 入を極力抑えることができる。
[0045] 金属鉄と組み合わせて使用可能な「溶液中でリン酸イオンを遊離する化合物」とし ては、例えば、リン酸 H PO、五酸化リン PO、リン酸二水素アンモ-ゥム NH H PO
3 4 5 4 2
、リン酸水素二アンモ-ゥム(NH ) HPO等を用いることができる。これらの中でも、
4 4 2 4
鉄を溶解する段階で比較的強い酸性下に保つことができるものとして、リン酸、五酸 化リン、リン酸二水素アンモ-ゥムが好ましい。これらには市販の試薬を利用できるが 、原料としてリン酸を用いる場合には、化学量論的に厳密を期するために予め滴定 により純度を正確に求め、ファクターを算出しておくことが好ましい。
[0046] また、金属鉄と組み合わせて使用可能な「リチウム源となる化合物」としては、焼成 後に Liのみ目的の正極材料中に残留するような化合物 (前記 Li含有分解揮発性ィ匕 合物)を選択することが好ましぐ例えば水酸化リチウム LiOH等の水酸ィ匕物、炭酸リ チウム Li CO等の炭酸塩のほか、 Liの有機酸塩等も Li含有分解揮発性化合物とし
2 3
て使用できる。なお、これらにおいては、その水和物を用いることも可能である(例え ば、 LiOH-H O等)。
2
[0047] <金属ハロゲン化物 >
異種金属元素の導入用原料としては、元素周期表において、 4族、 5族、 6族、 11 族、 12族、 13族または 14族に属する金属元素のハロゲン化物 (本明細書において「 金属ハロゲンィ匕物」と記すことがある。)を用いることが好ましい。金属ハロゲン化物と しては、例えば、塩化物、臭化物、ヨウ化物等が挙げられる(これらの水和物の形態 のものも含む)。
[0048] 金属ハロゲン化物の中でも、特にモリブデン(Mo)、チタン (Ti)、バナジウム (V)、 クロム(Cr)、銅(Cu)、亜鉛(Zn)、インジウム(In)またはスズ (Sn)のハロゲン化物の 添加複合ィ匕による正極性能向上効果が高い。また、金属ハロゲンィ匕物の中では塩ィ匕 物が比較的安価で入手しやすく有利である。
[0049] 正極材料の原料に添加される金属ハロゲン化物の例を以下に示す(これらの中に は水和物もあるが、水和物としての標記は省略する)。
[0050] モリブデン(Mo)のハロゲン化物としては、例えば、 MoCl、 MoCl、 MoBr、 Mol
5 3 3
、 MoF等;チタン(Ti)のハロゲン化物としては、例えば TiCl、 TiCl、 TiBr、 Til、
2 6 4 3 4 4
TiF、 TiF等;バナジウム(V)のハロゲン化物としては、例えば VC1、 VC1、 VC1、
4 3 3 4 2
VBr、 VI、 VF等;クロム(Cr)のハロゲン化物としては、例えば CrCl、 CrCl、 CrB
3 3 4 3 2 r、 CrF等;銅(Cu)のハロゲン化物としては、例えば CuCl、 CuCl、 CuBr、 CuBr
3 3 2 2
、 Cul、 CuF等;亜鉛(Zn)のハロゲン化物としては、例えば ZnCl、 ZnBr、 Znl、 Z
2 2 2 2 nF等;インジウム(In)のハロゲン化物としては、例えば InCl、 InCl、 InCl、 InBr、
2 3 2 3
InBr, Inl、 Inl、 InF等;スズ(Sn)のハロゲン化物としては、例えば、 SnCl、 SnCl
3 3 2 4
、 SnBr、 SnBr、 Snl、 Snl、 SnF、 SnF等;をそれぞれ挙げることができる。
2 4 2 4 2 4
[0051] これらの金属ハロゲン化物の添加量は、正極材料の原料中の中心金属 Feに対し 異種金属元素として約 0.1一 5mol%、好ましくは約 0.5— 3mol%となるようにする。 また、金属ハロゲンィ匕物を添加した正極材料の焼成前駆体を焼成する際に、該金属 ハロゲンィ匕物の種類に応じて、例えば炭素、水素等の還元剤、酸素等の酸化剤、お よび Zまたは塩素、ホスゲン等の第 3成分を共存させることによって、より好適な条件 で異種金属元素複合化正極材料を形成できる場合がある。また、焼成前駆体製造ま たは仮焼成の際に、例えば他の物質と混合することにより、金属ハロゲン化物を生成 するような条件の下では、これらの金属やその酸化物等を複合化の原料として使用 することも可會である。
[0052] <導電性炭素前駆物質 >
導電性炭素前駆物質としては、例えば、ビチューメン類 (いわゆるアスファルト;石炭 や石油スラッジカゝら得られるピッチ類を含む)、糖類、スチレンージビニルベンゼン共 重合体、 ABS榭脂、フエノール榭脂、その他芳香族基を有する架橋高分子などが挙 げられる。これらの中でも、ビチューメン類 (特に、精製された、いわゆる石炭ピッチ) および糖類が好ま ヽ。これらのビチューメン類や糖類は加熱分解によって導電性 炭素を生じて正極材料に導電性を付与する。特に、精製された石炭ピッチは、非常 に安価であり、かつ焼成中に融解して焼成中の原料粒子の表面に均一に広がり、ま た熱分解過程を経て比較的低温 (650°C— 800°C)での焼成後、高 ヽ導電性を発現 する炭素析出物となる。また、糖類の場合は、糖類に含まれる多くの水酸基が原料お よび生じた正極材料粒子表面に強く相互作用することにより、結晶成長抑制作用も 併せ持つため、糖類を用いることによって、より優れた結晶成長抑制効果と導電性付 与効果を得ることができるからである。
[0053] 精製石炭ピッチとしては、軟ィ匕温度が 80°Cから 350°Cの範囲内にあり、熱分解によ る減量開始温度が 350°C力 450°Cの範囲内にあり、 500°C以上 800°C以下までの 加熱分解'焼成により、導電性炭素を生成するものが好適に用いられる。正極性能を より高めるためには、軟ィ匕温度が 200°C— 300°Cの範囲内にある精製石炭ピッチが より好ましい。また、精製石炭ピッチに含有される不純物は、正極性能に悪影響を与 えることがな!、ものが良!、ことは言うまでもな!/、が、特に灰分が 5000ppm以下である ことが好ましい。
[0054] 糖類としては、 250°C以上 500°C未満の温度域において分解を起こし、かつ 150 °Cから前記温度域までの昇温過程において一度は少なくとも部分的に融液状態をと り、さらに 500°C以上 800°C以下までの加熱分解 '焼成によって導電性炭素を生成 する糖類が特に好ましい。力かる特定の性質を有する糖類は、融解により加熱反応 中の正極材料粒子の表面に好適にコートされ、加熱分解後は生じた正極材料粒子 表面に導電性炭素を良好に析出するとともに、この過程で上記したように結晶成長を 抑制するからである。また、上記糖類は加熱分解によって、該糖類の焼成前の乾燥 重量に対し、少なくとも 15重量%以上、好ましくは 20重量%以上の導電性炭素を生 じ得るものがよい。これは、生じる導電性炭素の量的な管理を容易にするためである 。以上のような性質を有する糖類としては、例えばデキストリンなどのオリゴ糖や、可 溶性でんぷん、加熱により融解しやす!、架橋の少な!、でんぷん (例えば 50%以上の アミロースを含むでんぷん)等の高分子多糖類が挙げられる。
[0055] <焼成前駆体の調製 >
焼成前駆体は、前記したように、異種金属元素のハロゲン化物を、リン酸鉄リチウム の原料となる物質に添加し、例えば、遊星ボールミル、揺動または回転式の粉体混 合機等を用いて乾燥状態で 1時間一 1日程度混合する方法 (以下、「乾式混合」と記 す)、または例えばアルコール類、ケトン類、テトラヒドロフランなどの有機溶媒、また は水等の溶媒もしくは分散媒とともに正極材料の原料に添加され、湿式で例えば 1時 間一 1日程度、混合'擂潰後、乾燥する方法 (以下、「湿式混合」と記す)によって焼成 前駆体となる。
[0056] 前記した金属ハロゲンィ匕物のうち、例えば五塩ィ匕モリブデン (MoCl )、四塩化チタ
5
ン (TiCl )、三塩ィ匕バナジウム (VC1 )等は常温においても空気中で極めて不安定で
4 3
あり、塩素、塩ィ匕水素などを放出しながら分解しやすい。また、水分やアルコール類 と容易に反応して水酸化物や金属アルコキシドを生じる。これらの不安定な金属ハロ ゲンィ匕物を正極材料の混合原料に添加し、湿式混合する場合は、その過程で水酸 化物や金属アルコキシド等を生じる反応を経ることにより、異種金属元素複合化正極 の焼成前駆体が得られる。これを焼成して得られる Mo、 Ti、 V等の金属複合化リン 酸鉄リチウム正極材料は、金属複合ィ匕を行わない同正極材料に比べれば高 、レート 特性、大きな容量を示し、正極性能向上に対する効果が認められる。しかし、乾燥し た正極材料の混合原料にこれらの金属ハロゲンィ匕物を直接添加し、乾式混合によつ て得た焼成前駆体を焼成して得られる金属複合化リン酸鉄リチウム正極材料は、前 記湿式混合の場合の金属複合化正極材料と比較すると、さらに良好なレート特性と 理論容量に迫る大きな容量を示すことから、これらを使用することがより好ましい。
[0057] 一方、前出の金属ハロゲンィヒ物のうち、例えば三塩ィヒクロム(水和物を含む)、二塩 ィ匕銅、塩化亜鉛、塩化インジウム四水和物、二塩化スズ、四塩化スズ等のように、空 気中や水中で分解'脱塩素を起すことがないものを用いる場合は、湿式混合、乾式 混合の 、ずれによっても高 、性能の正極材料を生じ得る正極前駆体が得られる。ま た、これらの安定な金属ハロゲン化物の場合、正極材料の原料自体の粉砕混合と該 金属ハロゲン化物の添加混合の 2つの工程を兼ねて、正極材料の各原料の仕込み 時に一緒に該金属ハロゲンィ匕物を添加し、前記原料と共に粉砕、混合することによつ ても好適な焼成前駆体が得られる。この際、アルコールや水等を加え、湿式にて粉 砕'混合を行うことも何ら問題なく可能である。一般に、湿式粉砕'混合によれば、い つそう均一、細粒で組成の安定した焼成前駆体が得られる。
[0058] 正極活物質の原料物質として金属鉄を用いる場合は、溶液中でリン酸イオンを遊 離する化合物と、水と、金属鉄とを混合し金属鉄を溶解した後、炭酸リチウム、水酸 ィ匕リチウムまたはその水和物などの Li含有分解揮発性ィ匕合物を添加し、生じた反応 生成物に前記金属ハロゲン化物を添加し、上記と同様に乾式混合または湿式混合 することにより、焼成前駆体が得られる。この場合、正極活物質の原料としての金属 鉄の溶解に際しては、まず、リン酸などの、溶液中でリン酸イオンを遊離する化合物と 金属鉄と水を混合し、擂潰ゃ加熱 (還流など)して鉄を反応させる。ここで擂潰操作は 、溶液中の金属鉄にせん断力を加え、表面を更新させることにより金属鉄を溶解させ る目的で行うものであり、これにより正極材料の収率を向上させ得る。擂潰は、自動擂 潰機、ボールミル、ビーズミルなどを用い、擂潰装置の効率にもよる力 例えば 30分 力も 10時間程度の時間をかけて行うことが好ましい。さらに、完全に金属鉄の溶解反 応を進行させるには、超音波照射を行うことも効果がある。また、加熱操作により、金 属鉄の還元溶解反応が促進されので、正極材料の収率を向上させ得る。加熱は、鉄 の酸ィ匕を回避するため、例えば不活性ガス中での還流などにより実施することが好ま しい。還流では、比較的大型化が困難な機械的微粉砕操作が不要になるため、大量 生産を行う上で特に有利であると考えられる。また、金属鉄を溶解させる際には、シュ ゥ酸ゃ塩酸などの揮発性の酸を添加して酸濃度を上たり、あるいは、酸素(空気でも よい)、過酸ィ匕水素、ハロゲン (臭素、塩素など)、もしくは次亜塩素酸、さらし粉など のハロゲン酸ィ匕物等の揮発性の酸化剤を共存させることができる。また、酸化能と酸 性を兼ね備えた揮発性酸である硝酸を添加することも効果がある。さらに、以上にお いて、 50°C— 80°C程度に加熱して反応させるとより効果的である。また、上記揮発 性酸、酸化剤等は金属鉄力 鉄 (II)イオンへの酸ィ匕に対し等量以下となる量で作用さ せることが好ましい。これにより、金属鉄のリン酸等の溶液への溶解反応を促進させる ことが可能となる一方で、これらの揮発性酸、酸化剤等は焼成過程で除去されるため 正極材料中には残存しな 、。
[0059] 以上のように、擂潰操作や加熱操作後により鉄を溶解させた溶液にリチウム源とし ての水酸化リチウム等を添加する。リチウム源を添加した後も、必要に応じてさらに粉 砕、擂潰を行うことが好ましい。さらに、金属ハロゲンィ匕物を添加した後においても、 擂潰'混合を行うことにより焼成前駆体が得られる。
[0060] <焼成の概要 >
正極材料の原料と金属ハロゲンィ匕物とを上記のように混合して得られた焼成前駆 体に対して、焼成を行う。焼成は、一般に採用されるような 300— 900°Cに至る焼成 過程において、適切な温度範囲及び時間を選んで実施することができる。また、焼成 は、酸化態不純物の生成防止や、残存する酸化態不純物の還元を促すため、酸素 ガス不存在下で行うことが好まし ヽ。
[0061] 本発明製造方法において、焼成は、一連の昇温およびこれに引き続く温度保持過 程の一回のみにより実施することも可能であるが、第一段階のより低温域での焼成過 程 (通例常温一 300ないし 450°Cの温度範囲;以下、「仮焼成」と記すことがある)、お よび第二段階のより高温域での焼成過程 [通例常温一焼成完了温度(500°Cないし 800°C程度);以下、「本焼成」と記すことがある]の 2段階に分けて行うことが好ましい
[0062] 仮焼成においては、正極材料の原料が加熱により最終的な正極材料に至る中間 的な状態まで反応し、その際、多くの場合は熱分解によるガス発生を伴う。仮焼成の 終了温度としては、発生ガスの大部分が放出し終わり、かつ最終生成物の正極材料 に至る反応が完全には進行しない温度 (すなわち、より高温域での第二段階の本焼 成時に正極材料中の構成元素の再拡散 ·均一化が起こる余地を残した温度)が選択 される。
[0063] 仮焼成に続く本焼成では、構成元素の再拡散 ·均一化が起こるとともに、正極材料 への反応が完了し、し力も焼結などによる結晶成長を極力防げるような温度域まで昇 温および温度保持がなされる。
[0064] また、前記した炭素析出 複合化正極材料を製造する場合は、第一段階の焼成を 行い、該第一段階の焼成後の生成物に、導電性炭素前駆物質を添加した後、第二 段階の焼成を行うことにより、得られる正極材料の性能をより向上させることができる。 導電性炭素前駆物質、特に加熱により融解する石炭ピッチや糖類を用いる場合は、 仮焼成前の原料に添加することも可能であるが(この場合でも相応の正極性能向上 効果が得られる)、仮焼成後の原料 (既に原料力 のガス発生の大半が終了し、中間 生成物となった状態)に添加し、本焼成を行うことがより好ましい。つまり、焼成過程に おける仮焼成と本焼成との間に、原料への導電性炭素前駆物質の添加工程を設け ること〖こなる。これにより、加熱により融解'熱分解する石炭ピッチや糖類等の物質が 、原料力 発生するガスにより発泡することを防ぎ、より均一に正極材料の表面に溶 融状態で広がり、より均一に熱分解炭素を析出させることができる。
[0065] これは以下の理由による。
すなわち、仮焼成において原料の分解により発生するガスの大半が放出されてしま う結果、本焼成ではガスの発生が殆ど起こらず、仮焼成後のタイミングで導電性炭素 前駆物質を添加することにより、均一な導電性炭素の析出が可能になる。このため、 得られる正極材料の表面導電性がさらに良好になり、また接触が強固に安定化され る。なお、前述のように仮焼成前の原料に導電性炭素前駆物質を添加しても、比較 的高い充放電特性の炭素析出 複合ィ匕正極材料を得ることができる。しかし、この方 法による正極材料は、前記の仮焼成後に導電性炭素前駆物質を添加して得られる 正極材料に比べると性能の点で及ばない。これは、仮焼成中に原料から旺盛に発生 するガスにより、融解状態で未だ完全には熱分解していない導電性炭素前駆物質が 発泡し、均一な析出が妨げられる場合があるほか、異種金属元素の複合化に好まし くない影響を与える可能性があるためと考えられる。
[0066] 焼成は、所定量の水素や水分 (水、水蒸気等)を継続的に炉内に不活性ガスととも に供給しながら行うことも可能であり、このようにすることによって水素や水分を添加し ない場合より高い充放電特性の炭素析出 複合ィ匕正極材料が得られる場合もある。 この場合は、例えば、焼成過程の全時間に渡って、または特に 500°C以下力も焼成 完了までの温度、好ましくは 400°C以下力も焼成完了までの温度、より好ましくは 30 0°C以下力も焼成完了までの焼成温度において、水素や水分を添加することができ る。なお、気体である水素や水蒸気を「添加する」ことには、水素等のガスの存在下( つまり、水素雰囲気下等)で焼成を行うことが含まれる。
[0067] <焼成条件 (導電性炭素の析出を行わな!/ヽ場合) >
焼成前駆体を焼成する条件 (特に焼成温度、焼成時間)は、注意して設定する必 要がある。
すなわち、複合化正極材料の反応完結 ·安定化のためには焼成温度は高 、方が 良いが、導電性炭素の析出を行わない場合は、焼成温度が高すぎると燒結 ·結晶成 長しすぎ、充放電のレート特性を著しく低下させる場合がある。このため、焼成温度 は約 600— 700°C、好ましくは約 650— 700°Cの範囲とし、例えば、 N
2、 Arなどの不 活性ガス中で焼成する。この際、前記したように水素 (加熱分解により水素を生成す る水分を含む)を添加することによって、正極材料の性能が向上することがある。
[0068] 焼成時間はおよそ数時間乃至 3日程度が目安となるが、 650— 700°C程度の焼成 温度の場合、 10時間程度以下の焼成時間では得られる正極材料中での異種金属 元素の固溶の均一性が不足し、 10数サイクルの充放電経過後に充放電異常が起こ り、急激に性能が劣化する場合があるため、焼成時間を 1一 2日(24時間一 48時間) 確保するのが良い。この放電異常は、例えば異種金属元素が Moの場合に起こるこ とが確認されており、サイクル数経過と共に次第に電池内部抵抗が増大し、さらには 放電の途中で充放電容量対電圧曲線が不連続な 2段波になるという異常な挙動で あり、その原因は明らかではないが、充放電中の Li+イオンの出入りに伴い、局在し て!ヽた異種金属元素化学種の凝集 ·相分離 Z偏祈が弓 I起されて Li+イオンの移動が 阻害されるものと現段階では推定して 、る。
[0069] 一方、異種金属元素として Moを用いた場合においても、 700°C以上の焼成温度 ではこのような異常挙動はみられなくなる。しかし、急速に正極材料の焼成'結晶成 長が進み、電池性能が低下するため、焼成時間は 10時間より短い適切な時間を選 ぶべきである。良好な条件で得られた異種金属元素複合化 LiFePO正極材料を組
4
込んだ金属 Li負極コイン電池は、後述の実施例に記すように、充放電電流密度 0.5 mAZcm2〖こて理論容量 (約 170mAhZg)に迫る常温充放電容量と良好な充放電 サイクル特性を示す。
[0070] なお、正極材料のより良好な均一性を得るために、第 1段階の焼成 (仮焼成)と第 2 段階の焼成 (本焼成過程)の間に、仮焼成物を十分に粉砕混合した後、前述の所定 温度における第 2段階の本焼成を行うことも好ましい。
[0071] <焼成条件 (導電性炭素の析出を行う場合) >
導電性炭素析出を行う場合も本焼成の温度は非常に重要であり、前述の炭素析出 のない場合に比べ、高い温度 (例えば 750°C— 850°C)とすることが好ましい。焼成 温度が高い場合は正極材料中の異種金属元素分布の均一性が不足することが少な いため、 10時間程度以下の焼成時間が選ばれる。異種金属元素と LiFePOとの複
4 合ィ匕正極材料に石炭ピッチなどのビチューメン類、またはデキストリン等の糖類由来 の導電性熱分解炭素を析出させた炭素析出 複合ィ匕正極材料を製造する場合、本 焼成温度が約 750°C以下であると、得られる正極材料のサイクル充放電にお!、て、 サイクル数経過に伴う電池内部抵抗の増大及び充放電容量対電圧曲線の 2段波化 という、炭素析出させない異種金属元素複合ィヒ正極材料の場合と同様の異常挙動 が出現し、性能劣化が進む場合がある。
[0072] しかし、不活性ガス中で、約 750°Cを超える温度、例えば 775°Cで本焼成した炭素 析出-複合ィ匕正極材料ではこのような異常挙動は見られなくなる。これは、比較的高 い本焼成温度を採用することによって異種金属元素の分布が均一化 '安定化された ためと推定される。後述の実施例で示すように、このようにして得られた異種金属元 素 Z炭素 ZLiFePO複合化正極を組込んだ金属 Li負極電池は、電流密度 0.5mA
4
Zcm2〖こて約 160mAhZgという理論容量 170mAhZgに肉薄する常温充放電容 量を示し、し力もサイクル寿命、レート特性が共に格段に改善されることが判った。
[0073] なおここで、炭素を析出させなカゝつた場合と異なり、該炭素析出 複合化正極材料 の場合は、例えば、 775°Cという高温で焼成を行っても容量減少などの性能低下は ほとんど起こらない。これは、異種金属元素の複合化及び導電性炭素析出の両方に よって材質の導電性が向上する上に、析出させた導電性炭素が障害となって焼成 · 結晶成長を抑制するために正極材料の粒径増大が起こりにくぐ Liイオンの正極材 料粒子内における移動が容易であるためと考えられる。従って、かかる焼成条件で製 造された該炭素析出 複合化正極材料は、きわめて高!ヽ性能と安定性を両立できる 。なお、およそ 850°C以上の温度で本焼成を行うと、活物質 LiFePOの分解が起こり
4
、組成の変動などをもたらす上に焼結を引起す場合があるため、 775— 800°C付近 の温度にて焼成することが好ましい。
[0074] 導電性炭素の析出量は、異種金属元素複合化正極材料の結晶子サイズによって も異なるが、同正極材料及び導電性炭素の合計重量に対し、約 0.5— 5重量%の範 囲が好ましい。特に、正極材料の結晶子サイズが 50— lOOnm程度の場合は約 1一 2重量%、 150— 300nm程度の場合は約 2.5— 5重量%程度となるようにすることが 望ましい。これより析出量が少ない場合は導電性付与の効果が低下し、また多すぎる 場合は正極材料の結晶子表面において Li+イオンの出入りの障害となりやすぐ共に 充放電性能を低下させる傾向がある。好適な量の炭素を析出させるためには、その 前駆体となる石炭ピッチなどのビチューメン類、及び Zまたはデキストリン等の糖類に ついて、前記したようにあら力じめ熱分解炭化の際の減量率を求めておき、それに従 つて該炭素前駆体の添加量を決めることが好ましい。
[0075] (C)二次電池:
以上のようにして得られる本発明の正極材料を使用した二次電池としては、例えば 、金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等を挙げることができ る。
[0076] 以下、リチウムイオン電池の場合を例に挙げ、二次電池の基本構成を説明する。リ チウムイオン電池は、俗にロッキングチェア型と力、シャトルコック (パトミントンの羽根) 型などと言われるように、充放電に伴い、負極、正極活物質の間を Li+イオンが往復 することを特徴とする二次電池である(図 1参照)。なお、図 1中、符号 10は負極を、 符号 20は電解質を、符号 30は正極を、符号 40は外部回路 (電源 Z負荷)を、符号 C は充電して 、る状態(充電時)を、符号 Dは放電して 、る状態 (放電時)を、それぞれ 示す。
[0077] 充電時には負極 (現行系は黒鉛などのカーボンが用いられる)の内部に Li+イオン が挿入されて層間化合物を形成し (この時、負極カーボンが還元され、 Li+の抜けた 正極が酸化される)、放電時には、正極の内部に Li+イオンが挿入されて鉄化合物 リチウムの複合体を形成する(この時、正極の鉄が還元され、 Li+の抜けた負極は酸 化されて黒鉛等に戻る)。 Li+イオンは充放電の間、電解質中を往復し、同時に電荷 を運ぶ。電解質としては、例えばエチレンカーボネート、プロピレンカーボネート、 γ - プチ口ラタトンなどの環状有機溶媒と、例えばジメチルカーボネート、ェチルメチルカ ーボネート等の鎖状有機溶媒との混合溶液に、例えば LiPF
6、 LiCF SO
3 3、 LiCIO
4 等の電解質塩類を溶解させた液状電解質、これらの液状電解質を高分子ゲル状物 質に含浸させたゲル電解質、部分架橋ポリエチレンォキシドに前記電解質を含浸さ せたもの等の固体ポリマー電解質等が用いられる。液状電解質を用いる場合には、 正極と負極が電池内で短絡しないようにポリオレフイン製等の多孔質隔膜 (セパレー タ)をそれらの間に挟んで絶縁させる。正極および負極は、正極材料および負極材 料にそれぞれカーボンブラック等の導電性付与剤を所定量加え、例えばポリ 4弗化 エチレンやポリ弗化ビ-リデン、フッ素榭脂等の合成樹脂、エチレンプロピレンゴムな どの合成ゴム等の結着剤および必要な場合はさらに極性有機溶媒を加えて混練、薄 膜化させたものを用い、金属箔ゃ金属網等で集電して電池が構成される。一方、負 極に金属リチウムを用いた場合、負極では Li (0) ZLi+の変化が充放電とともに起こ り、電池が形成される。
[0078] 二次電池の形態としては、例えば、後記実施例に示すように、ペレット状正極をコィ ン型二次電池ケース組み込んで封入したコイン型リチウム二次電池や、薄膜塗工シ 一ト正極を組み込んだリチウム二次電池等の形態を採用することができる。
[0079] <作用 >
異種金属元素複合ィ匕が正極材料に与える作用機構は、現段階では必ずしも明ら かではないが、異種金属元素は正極材料へのドーピング試薬として作用し、還元態 LiFePO及び酸化態 FePOの両方の導電性を向上させている可能性がある。
4 4
[0080] 次に、オリビン型リン酸鉄 (II)リチウム及び脱 Li酸化態のリン酸鉄 (III)のそれぞれの 導電性と、電極酸ィ匕還元反応および Li+イオンの移動挙動との間の関係について、 現段階でも最もありうると考えられる仮説を述べる。
[0081] 前述のように、還元態のリン酸鉄リチウム及び脱 Li酸化態のリン酸鉄は、充放電に 伴い、単一の結晶子中で境界面を隔てて常に 2相共存しながらそれぞれの体積比率 を変動させ、完全充電後は脱 Li酸化態、完全放電後は揷 Li還元態に変化する。
[0082] 今、単純化のため、図 2のような正極材料粒子周辺の二次元的なモデルを考える。
図 2中 a— cは充電過程 (脱 Li電極酸化)の初期、中期、及び末期を、 d— fは放電過 程 (挿 Li電極還元)の初期、中期、及び末期を示す。ここで y軸上に置かれた集電材 (正極材料に析出させた導電性炭素を含む導電性助剤に相当)の一面に接した正 極材料粒子が X方向に向力つて置かれ、残る 3方向は電解質に接しており、 X方向に 電界が印加されているものとする。図 2aの充電初期において、本正極系のように導 電性が低い正極材料の場合、電極還元が最初に起こるのは集電材、正極材料、及 び電解質の 3相境界である隅の部分であり、充電が進むにつれて、 Li充満状態の還 元態 LiFePOと完全に脱 Li酸ィ匕された FePOの境界面力 方向に向力つて移動し
4 4
て行くと考えられる。その際、 Li+イオンの脱離経路としては脱 Liされた FePO内部を
4 通ることは不利であり、また Liが充満した LiFePOの内部を通ることも困難であること
4
から、図示されたように両相の境界面上を移動して電解質中に出るのが最も有力で ある(ただし、 LiFePOの Li欠損サイト、または FePOの Li残存サイトを考えた場合
4 4
は、一部の Li+イオンがこれらのサイトの再配列を伴ってそれぞれの内部を通過する ことはあり得る)。一方、電子は必ず酸化状態の FePO内部を通り、集電材を経て外
4
部回路に出る。定電流充電の定常状態においては、電気的中性の要請から、境界 面上の一局所において還元が起こり、 1個の Li+イオンが境界面上を移動開始する 時、該 Li+イオンの X及び y方向速度成分は、同時に生じた電子 1個が FePO内部を
4 通過する X及び y方向速度成分と互いに逆向きで等し 、大きさを持つ(図 2中に矢印 でそれぞれの速度ベクトルを示した)。従って、 Li+イオン及び電子の局所移動速度 ベクトルを境界面の全域にお!ヽてそれぞれ積分すると、全体として Li+イオン及び電 子の移動は、互いに逆向きに X方向に沿って進行することになる。このため、もし脱 Li 酸化態 FePOの導電性が低いと、電極酸化反応および Li+イオンの移動共に抑制さ
4
れてしまう。特に、図 2b cの充電中期から末期にかけて、脱 Li酸化態 FePO中の
4 電子の移動距離が長くなるため、大きな分極が生じて充電電圧が上昇していくと考え られる。もし極端に脱 Li酸ィ匕態の FePOが絶縁性であると、充電末期 cまでは到達で
4
きず、きわめて低い活物質利用率で充電を終了させなければならなくなる。
[0083] 一方、放電過程 d— fにおいては、上記と全く逆のことが起こる。即ち、集電材、正極 材料、及び電解質の 3相境界である隅の部分から挿 Li電極還元反応が始まり、放電 が進行すると共に X方向に境界面が移動し、放電中期 e—末期 fにお 、ては挿 Li還 元態 LiFePO内部を電子が長距離移動しなければならなくなるため、やはり大きな
4
分極が生じて放電電圧が降下していく。これらは、本正極系の実際の定電流充放電 における二次電池電圧の変化をよく表して 、る。
[0084] 以上から、本正極系にお ヽては、電極酸化還元反応及び Li+イオンの脱離 Z挿入 を促進させ、活物質利用率 (充放電容量)及び分極低減による高レート特性の向上 を実現するためには、揷 Li還元態 LiFePOおよび脱 Li酸ィ匕態 FePOの両方の導電
4 4
率を上げることが極めて有効であると考えられる。
[0085] 本発明の異種金属元素の複合ィ匕はこの点に対して極めて大きな効果を奏し、図 2b 一 cの充電中期から末期、および e— fの放電中期から末期にかけての分極の増大を 抑制するため、広い充放電深度範囲にわたって非常に平坦な充放電電圧を示し、ま た高い活物質利用率が実現される。また異種金属元素の複合化に併用される、本発 明の導電性炭素の適度な析出は、図 2中の集電材を、例えば正極材料粒子の他の 3 方面においても接触させることに相当し、これにより前記集電材、正極材料、及び電 解質の 3相境界部分が増大するため、異種金属元素複合ィ匕による効果が相乗的に 高められるものと考えられる。以上により、異種金属元素の複合化と導電性炭素の析 出を併用した場合は、一層高い活物質利用率が実現され、また電池の容量対電圧 特性のグラフにおいては、理論容量に肉薄する充放電容量分の通電後に急峻な電 圧の立上がり Z立下りが現れるようになると推察される。 [0086] 以下、実施例および比較例を挙げ、本発明をさらに詳しく説明するが、本発明はこ れにより何ら制約されるものではない。なお、以下の実施例等では、本焼成時間を 1 0時間に設定した力 前述した充放電異常は起こらな力つた。
[0087] 実施例 1
異種金属元素としてバナジウム (V)を複合ィ匕させた LiFePO正極材料を、以下の
4
手順で合成した。
4.4975gの FeC O · 2Η Ο (和光純薬工業株式会社製)、 3.3015gの(ΝΗ ) HP
2 4 2 4 2
O (和光純薬工業株式会社製、特級)、及び 1.0423gの LiOH'H 0 (特級)に略 1.
4 2
5倍体積のエタノールをカ卩え、 2mm径ジルコ -ァビーズ及びジルコ-ァポットを有す る遊星ボールミルを用いて 1.5時間粉砕'混合後、減圧下 50°Cにて乾燥した。乾燥 後の原料の粉砕'混合物に 3塩ィ匕バナジウム VC1 (和光純薬工業株式会社製)を 0.
3
0393g加え(前記 FeC O · 2Η Ο中の Feに対し元素比で lmol%に相当)、メノウ製
2 4 2
自動乳鉢にて 1.5時間擂潰 '混合して焼成前駆体を得た。これをアルミナ製るつぼに 入れ、純 N
2ガスを 200mlZ分の流量で通気しながら、まず 400°Cにて 5時間仮焼成 し、一旦取出した仮焼成後試料をメノウ製乳鉢にて 15分粉砕後、さらに同雰囲気で 6 75°Cにて 10時間本焼成した (ガスは昇温開始力も焼成放冷後まで流通しつづけた)
[0088] 以上のようにして合成された正極材料は、粉末 X線回折によりオリビン型結晶構造 を有する LiFePOと同定され、その他の不純物の回折ピークは認められな力つた(図
4
3に X線回折結果を示す)。また、同正極材料に対して ICP発光分光法による元素分 析を行ったところ、その組成はリン (P)基準元素モル比にして、(Li:Fe :V: P) = (1. 01 : 0.97 : 0.0089 : 1)であった。なお、以降は、バナジウム等の添加異種金属元素 の量を表記する際、実際の含有量ではなぐ便宜上、 Feに対する仕込み元素のモル 百分率を用いることとする。
[0089] 上記の正極材料と、導電性付与剤として電気化学工業株式会社製デンカブラック( 登録商標; 50%プレス品)、結着剤として未焼成 PTFE (ポリテトラフルォロエチレン) 粉とを重量比で 70: 25: 5となるように混合'混練して、厚さ約 0.6mmのシート状に圧 延し、これを直径 1.0cmに打抜いたペレットを正極とした。 [0090] その後、ステンレス製コイン電池ケース(型番 CR2032)に金属チタン網、金属-ッ ケル網をそれぞれ正負極集電体としてスポット溶接し、前記正極と金属リチウム箔負 極を、多孔質ポリエチレン製隔膜 (東燃ィ匕学株式会社製 E— 25)を介して組入れ、電 解液として 1Mの LiPFを溶解したジメチルカーボネート/エチレンカーボネートの 1
6
/1混合電解液 (富山薬品工業株式会社製)を満たして封入し、コイン型リチウム二 次電池を作製した。正負極、隔膜、電解液等の一連の電池組立ては、アルゴン置換 されたグローブボックス内で行った。
[0091] 以上のように、本発明の製造方法によって得た正極材料を組込んだコイン型二次 電池に対し、 25°Cにおいて、正極ペレットの見かけ面積当たりの充放電電流密度 0. 5mAZcm2、 l.OmAZcm2及び 1.6mAZcm2にて、 3.0V— 4.0Vの動作電圧範囲 で定電流充放電を繰り返したところ、初期サイクルにおける最大放電容量 (第 1サイク ル時)は表 1のようになった。さらに、第 3サイクル時のこの電池の充放電曲線を図 4に 、また充放電電流密度 0.5mAZcm2〖こおける放電サイクル特性を図 5に示す。なお 、以後、これらの容量値については、炭素以外は、バナジウム等の異種金属元素を 含む正極活物質の正味重量で規格化して表記する (ただし、析出導電性炭素だけ はその重量を補正するものとする)。
[0092] 表 1、図 5より、本発明の VC1添カ卩により作製したバナジウム複合化リン酸鉄リチウ
3
ム正極材料では、充放電電流密度 0.5mAZcm2において、 151mAhZgに達する 本正極系としては非常に大きい初期容量と、若干の容量低下は見られるものの、比 較的安定したサイクルの特性が得られた。
[0093] 実施例 2
異種金属元素としてクロム(Cr)を複合化させた LiFePO正極材料を、以下の手順
4
で合成した。
前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3 燥後の原料の粉砕 '混合物に CrCl [純度 98%、リサーチ ·ケミカルズ 'リミテッド (Res
3
earch Chemicals Ltd.)製]を 0.0396g添カ卩し、擂潰混合した以外は、実施例 1と 全く同様の手順に従い、 Crを lmol%複合ィ匕させた LiFePO正極材料を合成した。
4
[0094] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li :Fe : Cr: P) = (1.03 : 1. 00 : 0.0093 : 1)であった。このクロム複合化正極材料の X線回折結果では、図 3とほ とんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが見られ、そ
4
の他の不純物回折ピークは認められなかった。
[0095] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 6に示す
[0096] 実施例 3
異種金属元素としてクロム(Cr)を複合化させた LiFePO正極材料を、以下の手順
4
で合成した。
[0097] 前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3 燥後の原料の粉砕'混合物に CrCl · 6Η 0 (純度 99.5%、和光純薬工業株式会社
3 2
製)を 0.0666g添加し、擂潰混合した以外は、実施例 1と全く同一の手順に従い、 Cr を lmol%複合ィ匕させた LiFePO正極材料を合成した。
4
[0098] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Cr: P) = (0.99 : 1. 02 : 0.0087 : 1)であった。このクロム複合化正極材料の X線回折結果においても、 図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが見ら
4
れ、その他の不純物回折ピークは認められな力つた。
[0099] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 7に示す
[0100] 表 1および図 6、図 7より、本発明の実施例 2の CrCl、及び実施例 3の CrCl · 6Η
3 3 2 οの添カ卩により作製したクロム複合化リン酸鉄リチウム正極材料はほぼ同様な充放電 特性を示し、充放電電流密度 0.5mAZcm2にお!/、て 150— 151mAh/gに達する 本正極系としては非常に大きい初期容量と、若干の容量低下は見られるものの、比 較的安定したサイクル特性が得られた。またこれらのコイン型二次電池の充放電曲 線は、図 4に示した VC1添カ卩によるバナジウム複合化リン酸鉄リチウム正極材料を使
3
用した場合と良く似た形状を有して!/ヽた (図示せず)。
[0101] 実施例 4
異種金属元素として銅 (Cu)を複合化させた LiFePO正極材料を、以下の手順で
4
合成した。
前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3
燥後の原料の粉砕'混合物に CuCl (純度 95%、和光純薬工業株式社製)を 0.033
2
6g添加し、擂潰混合した以外は、実施例 1と全く同一の手順に従い、 Cuを lmol% 複合化させた LiFePO正極材料を合成した。
4
[0102] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Cu: P) = (1.00 : 0. 96 : 0.0091 : 1)であった。この銅複合化正極材料の X線回折結果においても、図 3と ほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが見られ、
4
その他の不純物回折ピークは認められな力つた。
[0103] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 8に示す
[0104] 表 1、図 8より、本発明の CuCl添カ卩により作製した銅複合化リン酸鉄リチウム正極
2
材料によって、充放電電流密度 0.5mAZcm2において 151mAhZgに達する本正 極系としては非常に大きい初期容量と、若干の容量低下は見られるものの、比較的 安定したサイクル特性が得られた。またこの電池の充放電曲線は、図 4に示した VC1
3 添カ卩によるバナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形 状を有していた (図示せず)。
[0105] 実施例 5
異種金属元素として亜鉛 (Zn)を複合ィ匕させた LiFePO正極材料を、以下の手順
4
で合成した。 前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3 燥後の原料の粉砕'混合物に ZnCl (純度 98%、和光純薬工業株式社製)を 0.034
2
lg添加し、擂潰混合した以外は、実施例 1と全く同一の手順に従い、 Znを lmol%複 合ィ匕させた LiFePO正極材料を合成した。
4
[0106] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe :Zn: P) = (1.04 : 0. 98 : 0.0089 : 1)であった。この亜鉛複合化正極材料の X線回折結果においても、図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが見られ
4
、その他の不純物回折ピークは認められな力つた。
[0107] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 9に示す
[0108] 表 1、図 9より、本発明の ZnCl添カ卩により作製した亜鉛複合化リン酸鉄リチウム正
2
極材料によって、充放電電流密度 0.5mAZcm2において 149mAhZgに達する本 正極系としては非常に大きい初期容量と、若干の容量低下は見られるものの、比較 的安定したサイクル特性が得られた。またこの電池の充放電曲線は、図 4に示した V C1添カ卩によるバナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た
3
形状を有して!、た (図示せず)。
[0109] 実施例 6
異種金属元素としてインジウム (In)を複合ィ匕させた LiFePO正極材料を、以下の
4
手順で合成した。
前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3 燥後の原料の粉砕'混合物に InCl ·4Η 0 (無水物としての含有量 74— 77%、和光
3 2
純薬工業株式社製)を 0.0733g添加し、擂潰混合した以外は、実施例 1と全く同一 の手順に従い、 Inを lmol%複合化させた LiFePO正極材料を合成した。
4
[0110] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe :In: P) = (1.01 : 0. 98: 0.0085: 1)であった。このインジウム複合化正極材料の X線回折結果にお!、て も、図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが
4
見られ、その他の不純物回折ピークは認められなかった。
[0111] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 10に示 す。
[0112] 表 1、図 10より、本発明の InCl ·4Η Ο添カ卩により作製したインジウム複合化リン酸
3 2
鉄リチウム正極材料によって、充放電電流密度 0.5mAZcm2において 152mAhZg に達する本正極系としては非常に大きい初期容量と、若干の容量低下は見られるも のの、比較的安定したサイクル特性が得られた。またこの電池の充放電曲線は、図 4 に示した VC1添カ卩によるバナジウム複合化リン酸鉄リチウム正極材料を使用した場
3
合と良く似た形状を有して!/、た (図示せず)。
[0113] 実施例 7
異種金属元素としてスズ (Sn)を複合ィ匕させた LiFePO正極材料を、以下の手順
4
で合成した。
前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3 燥後の原料の粉砕'混合物に SnCl (純度 99.9%、和光純薬工業株式社製)を 0.04
2
74g添加し、擂潰混合した以外は、実施例 1と全く同一の手順に従い、 Snを lmol% 複合化させた LiFePO正極材料を合成した。
4
[0114] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Sn: P) = (0.97 : 0. 99 : 0.0091 : 1)であった。このスズ複合化正極材料の X線回折結果においても、図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが見られ
4
、その他の不純物回折ピークは認められな力つた。
[0115] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 11に示 す。
[0116] 表 1、図 11より、本発明の SnCl添カ卩により作製したスズ複合化リン酸鉄リチウム正
2
極材料によって、充放電電流密度 0.5mAZcm2において 151mAhZgに達する本 正極系としては非常に大きい初期容量と、若干の容量低下は見られるものの、比較 的安定したサイクル特性が得られた。またこの電池の充放電曲線は、図 4に示した V C1添カ卩によるバナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た
3
形状を有して!、た (図示せず)。
[0117] 実施例 8
異種金属元素としてスズ (Sn)を複合ィ匕させた LiFePO正極材料を、以下の手順
4
で合成した。
前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3 燥後の原料の粉砕'混合物に SnCl (純度 97%、和光純薬工業株式社製)を 0.065
4
lg添加し、擂潰混合した以外は、実施例 1と全く同一の手順に従い、 Snを lmol%複 合ィ匕させた LiFePO正極材料を合成した。この正極材料に対して、実施例 1
4
と同一の手法によりコイン型二次電池を作製し、その特性を評価した。また、同正極 材
に対して ICP発光分光法による元素分析を行ったところ、その組成はリン (P)基準元 素モル比にして、 (Li:Fe : Sn: P) = (1.03 : 1.01 : 0.0089: 1 )であった。
[0118] このスズ複合ィ匕正極材料の X線回折結果においても、図 3とほとんど同一のオリビ ン型結晶構造を有する LiFePOの回折ピークのみが見られ、その他の不純物回折
4
ピークは認められな力つた。
[0119] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 12に示 す。
[0120] 表 1および図 11、図 12より、本発明の実施例 7の SnCl、及び実施例 8の SnCl添
2 4 加により作製したスズ複合化リン酸鉄リチウム正極材はほぼ同様な充放電特性を示し 、充放電電流密度 0.5mAZcm2にお!/、て 15 ImAhZgに達する本正極系としては 非常に大きい初期容量と、若干の容量低下は見られるものの、比較的安定したサイ クル特性が得られた。またこれらの電池の充放電曲線は、図 4に示した VC1添加によ
3 るバナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有し ていた(図示せず)。
[0121] 実施例 9
異種金属元素としてモリブデン (Mo)を複合ィ匕させた LiFePO正極材料を、以下
4
の手順で合成した。
前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3 燥後の原料の粉砕'混合物に MoCl (和光純薬工業株式社製)を 0.0683g添加し、
5
擂潰混合した以外は、実施例 1と全く同一の手順に従い、 Moを lmol%複合化させ た LiFePO正極材料を合成した。
4
[0122] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li: Fe: Mo: P) = (1.01: 1 .01 : 0.0089 : 1)であった。このモリブデン複合化正極材料の X線回折結果において も、図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが
4
見られ、その他の不純物回折ピークは認められなかった。
[0123] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 13に示 す。
[0124] 表 1、図 13より、本発明の MoCl添カ卩により作製したモリブデン複合化リン酸鉄リチ
5
ゥム正極材料によって、充放電電流密度 0.5mAZcm2において 153mAhZgに達 する本正極系としては非常に大きい初期容量と、若干の容量低下は見られるものの 、比較的安定したサイクル特性が得られた。また、この電池の充放電曲線は、図 4に 示した VC1添カ卩によるバナジウム複合化リン酸鉄リチウム正極材料を使用した場合と
3
良く似た形状を有して!、た (図示せず)。
[0125] 実施例 10
異種金属元素としてチタン (Ti)を複合ィ匕させた LiFePO正極材料を、以下の手順
4
で合成した。 前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に用いた VC1に代え、乾
3
燥後の原料の粉砕'混合物に TiCl (和光純薬工業株式社製)を 0.0474g添加し、
4
擂潰混合した以外は、実施例 1と全く同一の手順に従い、 Tiを lmol%複合化させた LiFePO正極材料を合成した。
4
[0126] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe :Ti: P) = (1.00 : 0. 97 : 0.0087 : 1)であった。このチタン複合化正極材料の X線回折結果においても、 図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが見ら
4
れ、その他の不純物回折ピークは認められな力つた。
[0127] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 14に示 す。
[0128] 表 1、図 14より、本発明の TiCl添カ卩により作製したチタン複合化リン酸鉄リチウム
4
正極材料によって、充放電電流密度 0.5mAZcm2において 151mAhZgに達する 本正極系としては非常に大きい初期容量と、若干の容量低下は見られるものの、比 較的安定したサイクル特性が得られた。またこの電池の充放電曲線は、図 4に示した VC1添カ卩によるバナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似
3
た形状を有して!/ヽた(図示せず)。
[0129] 比較例 1
異種金属を含まない LiFePO正極材料を、以下の手順で合成した。
4
前記実施例 1の lmol%バナジウム複合ィ匕正極材料に対し、乾燥後の原料の粉砕' 混合物に何も添加混合しない以外は、実施例 1と全く同一の手順に従い、 LiFePO
4 正極材料を合成した。
[0130] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : P) = (1.00 : 0.98 : 1)であった。この無添加正極材料の X線回折結果においても、図 3とほとんど同一の オリビン型結晶構造を有する LiFePOの回折ピークのみが見られ、その他の不純物
4
回折ピークは認められな力 た。
[0131] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 1に、第 3サイクル時の充放電曲線を図 4に、また充放電電流密度 0.5mA/cm2 における放電サイクル特性を図 5—図 14に併せて示す。
[0132] 表 1、及び図 4一図 14を比較すると実施例 1一実施例 10の各異種金属元素複合 化正極材料を組込んだコイン型二次電池は、本比較例 1の無添加正極材料に比べ て小さな電位降下と大きな初期放電容量を有し、またサイクル劣化が明らかに改善さ れていることがわ力る。
[0133] [表 1]
Figure imgf000035_0001
参考例 1
異種金属元素としてバナジウム (V)を複合化させた LiFePO正極材料を、以下の
4
手順で合成した。
前記実施例 1の lmol%バナジウム複合ィ匕正極材料製造に対し、 VC1に代えて和 光純薬工業株式社製シユウ酸バナジル ·η水和物 VOC O ·ηΗ Οを 0.0328g添カロ
2 4 2
混合した以外は、実施例 1と全く同一の手順に従って、 lmol%バナジウム複合ィ匕 Li FePO正極材料を合成した(ここでは、水和数 nを 2と仮定して添カ卩した)。
4
[0135] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製して、 その特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を 行ったところ、その組成はリン (P)基準元素モル比にして、(Li:Fe :V: P) = (1.03 : 0 .98 : 0.0092 : 1)であった。このバナジウム複合化正極材料の X線回折結果におい ても、図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみ
4
が見られ、その他の不純物回折ピークは認められな力つた。
[0136] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 2に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 5に併せ て示す。
[0137] 表 1と表 2、及び図 5を比較すると、実施例 1の VC1添カ卩により作製したバナジウム
3
複合ィ匕正極材料を組込んだコイン型二次電池は、本参考例 1の VOC O ·ηΗ Ο
2 4 2 添 加により作製したバナジウム複合化正極材料に比べて大きな初期放電容量を有し、 またサイクル劣化が明らかに改善されていることがわかる。
[0138] 参考例 2
異種金属元素としてクロム(Cr)を複合化させた LiFePO正極材料を、以下の手順
4
で合成した。
前記実施例 2及び実施例 3の lmol%クロム複合化正極材料製造に対し、 CrCl及
3 び CrCl · 6Η Οに代えて和光純薬工業株式社製酢酸クロム Cr (CH COO) を 0.02
3 2 3 3
78g添加混合した以外は、実施例 1と全く同一の手順に従って、 lmol%クロム複合 化 LiFePO正極材料を合成した。
4
[0139] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Cr: P) = (0.99 : 0. 97 : 0.0094 : 1)であった。このクロム複合化正極材料の X線回折結果においても、 図 3とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピークのみが見ら れ、その他の不純物回折ピークは認められな力つた。
[0140] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 2に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 6および 図 7に併せて示す。
[0141] 表 1と表 2、図 6および図 7を比較すると、実施例 2の CrCl、及び実施例 3の CrCl ·
3 3
6H O添カ卩により作製したクロム複合ィ匕正極材料を組込んだコイン型二次電池は、本
2
参考例 2の Cr (CH COO) 添カ卩により作製したクロム複合ィ匕正極材料に比べて大き
3 3
な初期放電容量を示し、またサイクル劣化が明らかに改善されていることがわかる。
[0142] 参考例 3
異種金属元素として銅 (Cu)を複合化させた LiFePO正極材料を、以下の手順で
4
合成した。
前記実施例 4の lmol%銅複合化正極材料製造に対し、 CuClに代えて和光純薬
2
工業株式社製酢酸銅'一水和物 Cu(CH COO) ·Η Οを 0.0499g添加混合した以
3 2 2
外は、実施例 1と全く同一の手順に従って、 lmol%銅複合ィ匕 LiFePO正極材料を
4
合成した。この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を 作製して、その特性を評価した。また、同正極材料に対して ICP発光分光法による元 素分析を行ったところ、その組成はリン (P)基準元素モル比にして、 (Li:Fe : Cu: P) = (1.03 : 0.98 : 0.0093 : 1)であった。
[0143] この銅複合ィ匕正極材料の X線回折結果においても、図 3とほとんど同一のオリビン 型結晶構造を有する LiFePOの回折ピークのみが見られ、その他の不純物回折ピ
4
ークは認められなかった。
[0144] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 2に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 8に併せ て示す。
[0145] 表 1と表 2、及び図 8を比較すると、実施例 4の CuCl添カ卩により作製した銅複合ィ匕
2
正極材料を組込んだコイン型二次電池は、本参考例 3の Cu (CH COO) ·Η Ο添
3 2 2 加により作製した銅複合ィ匕正極材料に比べて大きな初期放電容量を示し、またサイ クル劣化が明らかに改善されていることがわかる。 [0146] 参考例 4
異種金属元素としてスズ (Sn)を複合ィ匕させた LiFePO正極材料を、以下の手順
4
で合成した。
前記実施例 7及び実施例 8の lmol%Sn複合化正極材料製造に対し、 SnClまた
2 は SnClに代えて和光純薬工業株式社製シユウ酸スズ SnC Oを 0.0517g添加混
4 2 4
合した以外は、実施例 1と全く同一の手順に従って、 lmol%Sn複合化 LiFePO正
4 極材料を合成した。この正極材料に対して、実施例 1と同一の手法によりコイン型二 次電池を作製し、その特性を評価した。また、同正極材料に対して ICP発光分光法 による元素分析を行ったところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Sn: P) = (0.97 : 0.98 : 0.0096 : 1)であった。
[0147] このスズ複合ィ匕正極材料の X線回折結果においても、図 3とほとんど同一のオリビ ン型結晶構造を有する LiFePOの回折ピークのみが見られ、その他の不純物回折
4
ピークは認められな力つた。
[0148] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 2に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 11及び 図 12に併せて示す。
[0149] 表 1と表 2、及び図 11及び図 12を比較すると、実施例 7の SnCl、及び実施例 8の
2
SnCl添カ卩により作製した Sn複合ィ匕正極材料を組込んだコイン型二次電池は、本参
4
考例 4の SnC O添カ卩により作製したスズ複合ィ匕正極材料に比べて大きな初期放電
2 4
容量を示し、またサイクル劣化が明らかに改善されていることがわかる。
[0150] 参考例 5
異種金属元素としてチタン (Ti)を複合ィ匕させた LiFePO正極材料を、以下の手順
4
で合成した。
前記実施例 10の lmol%Ti複合ィ匕正極材料に対し、 TiClに代えて和光純薬工業
4
株式社製チタンブトキシドモノマー Ti[0(CH ) CH ]を 0.085 lg添加混合した以外
2 3 3 4
は、実施例 1と全く同一の手順に従って、 lmol%Ti複合化 LiFePO正極材料を合
4
成した。この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作 製し、その特性を評価した。また、同正極材料に対して ICP発光分光法による元素分 析を行ったところ、その組成はリン (P)基準元素モル比にして、(Li:Fe :Ti: P) = (1. 02 : 1.03 : 0.0090: 1)であった。
[0151] この Ti複合ィ匕正極材料の X線回折結果においても、図 3とほとんど同一のオリビン 型結晶構造を有する LiFePOの回折ピークのみが見られ、その他の不純物回折ピ
4
ークは認められなかった。
[0152] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 1サイクル時)を 表 2に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 14に併 せて示す。
[0153] 表 1と表 2、及び図 14を比較すると、実施例 10の TiCl添カ卩により作製したチタン複
4
合ィ匕正極材料を組込んだコイン型二次電池は、本参考例 5の Ti[0(CH ) CH ]添
2 3 3 4 加により作製したチタン複合ィ匕正極材料に比べて大きな初期放電容量を示し、また サイクル劣化が明らかに改善されて 、ることがわ力る。
[0154] [表 2]
Figure imgf000039_0001
[0155] 以下では、導電性炭素を析出させた異種金属元素複合化正極材料につ!ヽて実施 例に基づき説明する。
[0156] 実施例 11
導電性炭素を析出させたバナジウム (V)複合ィ匕 LiFePO正極材料を、以下の手
4
順で合成した。 4.4975gの FeC O - 2H O (和光純薬工業株式会社製)、 3.3015gの(NH ) HP
2 4 2 4 2
O (和光純薬工業株式会社製、特級) 1.0423gの LiOH'H 0 (特級)、および 3塩
4 2
化バナジウム VC1 (和光純薬工業株式会社製) 0.0393g (前記 FeC O · 2Η Ο中の
3 2 4 2
Feに対し元素比で lmol%に相当)から焼成前駆体を得て、これを純 N中で仮焼成
2
して仮焼成後試料を得た。取出した仮焼成後の原料 1.9000gに 0.0975gの軟ィ匕温 度 250°C精製石炭ピッチ (アドケムコ社製 MCP-250)を加え、メノウ乳鉢にて粉砕後 、さらに同雰囲気で 775°Cにて 10時間本焼成した (ガスは昇温開始力も焼成放冷後 まで流通しつづけた)。
[0157] 以上のようにして合成された導電性炭素析出 複合ィ匕正極材料は、粉末 X線回折 によりオリビン型結晶構造を有する LiFePOと同定され、その他の不純物の回折ピ
4
ークは特に認められな力つた。この X線回折結果を図 15に示す。また、元素分析から 精製石炭ピッチの熱分解により生じた炭素が 3.86重量%含有されていることが判つ たものの、 X線回折からは黒鉛結晶の回折ピークが認められな力つたことから、非晶 質炭素との複合体を形成していると推定された。さら〖こ、同正極材料に対して ICP発 光分光法による元素分析を行ったところ、その組成はリン (P)基準元素モル比にして 、(Li :Fe :V: P) = (1.02 : 1.03 : 0.0088 : 1)であった。
[0158] 上記の正極材料を用い、実施例 1と同一の手順により、前記正極材料を組込んだコ イン型二次電池を作製し、これに対し、 25°Cにおいて、正極ペレットの見かけ面積当 たりの充放電電流密度 0.5mAZcm2にて、 3.0V— 4.0Vの動作電圧範囲で定電流 充放電を繰り返したところ、初期サイクルにおける最大放電容量 (第 10サイクル付近 )は表 3のようになった。また、第 3サイクル時における充放電容量対電圧の特性を図 16に示す。さらに、この電池の放電サイクル特性を図 17に示す。
[0159] 表 3、図 16、及び図 17に示したように、本発明の VC1添カ卩により作製した導電性炭
3
素析出 バナジウム複合化リン酸鉄リチウム正極材料によって、充放電電流密度 0.5 mAZcm2において、本正極系理論容量 170mAhZgに肉薄する極めて大きな容量 値 162mAhZgを達成し、また極めて安定したサイクル特性が得られた。図 16、図 1 7から明らかなように、充放電のほとんど全域にわたって電圧は極めて平坦であり、そ れぞれの最末期において急峻な立上がり Z立下りが起るという、電池正極として理想 的な電圧プロファイルが見て取れる。なお、図 16、図 17でわ力るように、サイクル充 放電開始からおよそ第 10サイクルにかけては、放電容量がやや増加している。これ は、導電性炭素を析出させた正極材料に特有の現象である。
[0160] 実施例 12
導電性炭素を析出させたクロム (Cr)複合化 LiFePO正極材料を、以下の手順で
4
合成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に CrCl [純度 98%、リサーチ'ケミ
3 3
カルズ 'リミテッド(Research Chemicals Ltd.)製]を 0.0396g添加し、擂潰混合し た以外は、実施例 11と全く同一の手順に従い、 Crを lmol%複合化させた導電性炭 素析出- LiFePO正極材料を合成した。
4
[0161] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Cr: P) =(1.03 : 1. 02 : 0.0090 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた 炭素が 3.74重量%含有されていることが判った。このクロム複合化正極材料の X線 回折結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの回折
4 ピークのみが見られ、その他の不純物回折ピークは認められな力つた。
[0162] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 18に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0163] 実施例 13
導電性炭素を析出させたクロム (Cr)複合化 LiFePO正極材料を、以下の手順で
4
合成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕 '混合物に CrCl · 6Η 0 (純度 99.5%、和 光純薬工業株式会社製)を 0.0666g添加し、擂潰混合した以外は、実施例 11と全く 同一の手順に従い、 Crを lmol%複合ィ匕させた導電性炭素析出- LiFePO正極材
4 料を合成した。
[0164] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Cr: P) =(1.01 : 0. 97 : 0.0088 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた 炭素が 3.69重量%含有されていることが判った。このクロム複合化正極材料の X線 回折結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの回折
4 ピークのみが見られ、その他の不純物回折ピークは認められな力つた。
[0165] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 19に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0166] 実施例 14
導電性炭素を析出させた銅 (Cu)複合化 LiFePO正極材料を、以下の手順で合
4
成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に CuCl (純度 95%、和光純薬ェ
3 2
業株式会社製)を 0.0336g添加し、擂潰混合した以外は、実施例 11と全く同一の手 順に従い、 Cuを lmol%複合ィ匕させた導電性炭素析出 LiFePO正極材料を合成
4
した。
[0167] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe : Cu: P) =(1.00 : 0. 97 : 0.0091 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた 炭素が 3.69重量%含有されていることが判った。この銅複合化正極材料の X線回折 結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピー
4 クのみが見られ、その他の不純物回折ピークは認められな力つた。
[0168] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 20に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0169] 実施例 15
導電性炭素を析出させた亜鉛 (Zn)複合化 LiFePO正極材料を、以下の手順で合
4
成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に ZnCl (純度 98%、和光純薬ェ
3 2
業株式会社製)を 0.0341g添加し、擂潰混合した以外は、実施例 11と全く同一の手 順に従い、 Znを lmol%複合ィ匕させた導電性炭素析出 LiFePO正極材料を合成
4
した。
[0170] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li :Fe :Zn: P) =(1.04 : 1. 01 : 0.0087 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた 炭素が 3.58重量%含有されていることが判った。
[0171] この亜鉛複合ィ匕正極材料の X線回折結果では、図 15とほとんど同一のオリビン型 結晶構造を有する LiFePOの回折ピークのみが見られ、その他の不純物回折ピー
4
クは認められなかった。
[0172] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 21に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。 [0173] 実施例 16
導電性炭素を析出させたインジウム (In)複合化 LiFePO正極材料を、以下の手順
4
で合成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に InCl ·4Η 0 (無水物としての含
3 3 2
有量 74— 77%、和光純薬工業株式会社製)を 0.0733g添加し、擂潰混合した以外 は、実施例 11と全く同様の手順に従い、 Inを lmol%複合化させた導電性炭素析出 -LiFePO正極材料を合成した。
4
[0174] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。同正極材料に対して ICP発光分光法による元素分析を行ったと ころ、その組成はリン(P)基準元素モル比にして、(Li:Fe :In: P) =(1.02 : 0.99 : 0. 0089 : 1)であった。また、元素分析力も精製石炭ピッチの熱分解により生じた炭素が 3.81重量%含有されていることが判った。このインジウム複合化正極材料の X線回 折結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピ
4 ークのみが見られ、その他の不純物回折ピークは認められな力つた。
[0175] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 22に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0176] 実施例 17
導電性炭素を析出させたスズ (Sn)複合ィ匕 LiFePO正極材料を、以下の手順で合
4
成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に SnCl (純度 99.9%、和光純薬ェ
3 2
業株式会社製)を 0.0474g添加し、擂潰混合した以外は、実施例 11と全く同一の手 順に従い、 Snを lmol%複合ィ匕させた導電性炭素析出 LiFePO正極材料を合成
4
した。 [0177] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li :Fe : Sn: P) =(1.05 : 1. 01 : 0.0089 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた 炭素が 3.63重量%含有されていることが判った。このスズ複合化正極材料の X線回 折結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピ
4 ークのみが見られ、その他の不純物回折ピークは認められな力つた。
[0178] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 23に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0179] 実施例 18
導電性炭素を析出させたスズ (Sn)複合ィ匕 LiFePO正極材料を、以下の手順で合
4
成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に SnCl (純度 97%、和光純薬ェ
3 4
業株式会社製)を 0.0651g添加し、擂潰混合した以外は、実施例 11と全く同一の手 順に従い、 Snを lmol%複合ィ匕させた導電性炭素析出 LiFePO正極材料を合成
4
した。
[0180] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li :Fe : Sn: P) =(1.04 : 1. 01 : 0.0093 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた 炭素が 3.59重量%含有されていることが判った。この Sn複合化正極材料の X線回 折結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピ
4 ークのみが見られ、その他の不純物回折ピークは認められな力つた。
[0181] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 24に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0182] 実施例 19
導電性炭素を析出させたモリブデン (Mo)複合化 LiFePO正極材料を、以下の手
4
順で合成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に MoCl (和光純薬工業株式会社
3 5
製)を 0.0683g添加し、擂潰混合した以外は、実施例 11と全く同一の手順に従い、 Moを lmol%複合ィ匕させた導電性炭素析出- LiFePO正極材料を合成した。
4
[0183] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li: Fe: Mo : P) =(1.03 : 1. 08 : 0.0089 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた 炭素が 3.92重量%含有されていることが判った。このモリブデン複合化正極材料の X線回折結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの
4 回折ピークのみが見られ、その他の不純物回折ピークは認められな力つた。
[0184] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 25に 示す。また、この電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0185] 実施例 20
導電性炭素を析出させたチタン (Ti)複合ィ匕 LiFePO正極材料を、以下の手順で
4
合成した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料製造に用 いた VC1に代え、乾燥後の原料の粉砕'混合物に TiCl (和光純薬工業株式会社製 )を 0.0474g添加し、擂潰混合した以外は、実施例 11と全く同一の手順に従い、 Ti を lmol%複合化させた導電性炭素析出- LiFePO正極材料を合成した。
4
[0186] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li:Fe :Ti: P) =(1.04 : 1.0 4 : 0.0088 : 1)であった。また、元素分析から精製石炭ピッチの熱分解により生じた炭 素が 3.82重量%含有されていることが判った。このチタン複合ィ匕正極材料の X線回 折結果では、図 15とほとんど同一のオリビン型結晶構造を有する LiFePOの回折ピ
4 ークのみが見られ、その他の不純物回折ピークは認められな力つた。
[0187] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 10サイクル付近 )を表 3に、また充放電電流密度 0.5mAZcm2における放電サイクル特性を図 26に 示す。またこの電池の充放電曲線は、図 16に示した VC1添カ卩による導電性炭素析
3
出 バナジウム複合化リン酸鉄リチウム正極材料を使用した場合と良く似た形状を有 していた(図示せず)。
[0188] 比較例 2
異種金属を含まない導電性炭素析出- LiFePO正極材料を、以下の手順で合成
4
した。
前記実施例 11の導電性炭素析出 lmol%バナジウム複合ィ匕正極材料に対し、乾 燥後の原料の粉砕'混合物に VC1を添加混合しな 、以外は全く同一の手順に従!ヽ
3
、導電性炭素析出- LiFePO正極材料を合成した。
4
[0189] この正極材料に対して、実施例 1と同一の手法によりコイン型二次電池を作製し、そ の特性を評価した。また、同正極材料に対して ICP発光分光法による元素分析を行 つたところ、その組成はリン (P)基準元素モル比にして、(Li :Fe : P) = ( 1.03 : 1.04 : 1)であった。また、この正極材料中の炭素の含有量は 3.67wt%であった。
[0190] また、コイン型二次電池の初期サイクルにおける最大放電容量 (第 5サイクル付近) を表 3に、第 3サイクルにおける充放電曲線を図 16に、またサイクル充放電特性を図 17—図 26に併せて示す。
[0191] 表 3及び図 16—図 26において、実施例 11一実施例 20と本比較例 2とを比較する と、実施例 11一実施例 20の導電性炭素を析出させた異種金属複合ィ匕正極材料を 組込んだコイン型二次電池は、一般には非常に高性能であると言い得る、異種金属 元素を添加しな 、本比較例 2の導電性炭素析出一正極材料と比較しても、非常に小 さい電位降下、 LiFePO
4の理論容量 170mAhZgに迫るいっそう大きな初期放電容 量、及び優れたサイクル特性を示していることがわかる。これは、導電性炭素析出に より、正極酸ィヒ還元反応が開始する活物質 ·電解質 ·集電体の 3相界面が飛躍的に 増加することによる活物質利用率の向上に起因し、さらに金属複合ィ匕正極の材質自 体の導電性向上により、相乗的に特性が改善された結果であると推定される。
[0192] [表 3]
Figure imgf000048_0001
*炭素析出のみ
[0193] 表 4に、実施例 1から実施例 20の全ての試料に対して正極材料中の塩素含有量の 分析値を示した。分析値は試料元素モル比で示し、 Pを基準の 1として表した。 Mは 異種金属元素を示す。塩素分析はアルカリ溶融 Zイオンクロマトグラフ法で測定した 。この表 4には、ハロゲン元素が Pに対して、 0. 63mol%— 1. 45mol%の範囲で含 まれるデータが示されている力 本発明者らは、 0. lmol%以上含まれている正極材 料の充放電特性がハロゲン元素の現状における検出限界未満のものや、 Pに対して 0. 01mol%以下のもの(表 2の参考例 1一 5のもの)と比べて勝っていることを確認し た。尚、ハロゲン元素の含有量の上限については、前記異種金属元素の含有量の 2 倍程度までは同様の特性が得られることを確認している。
[0194] ここで、塩素(C1)は、例えば LiClのような塩ィ匕物の形で相分離して存在して!/、るか 、または少なくともその一部が、添加された異種金属元素 Mと共に LiFePOの結晶
4 中に単一相として取り込まれて 、る(復塩を形成して 、る)と考えられる。塩素(C1)が 異種金属元素 Mと共に正極材中に混在することによるか、または正極材の焼成過程 で異種金属元素 Mの正極活物質結晶中への複合化を塩素 (C1)が補助することによ り、得られた正極材の充放電特性が向上したものと推定される。
[0195] [表 4]
Figure imgf000049_0001
[0196] 以上、本発明を種々の実施形態に関して述べたが、本発明は上記実施形態に制 約されるものではなぐ特許請求の範囲に記載された発明の範囲内で、他の実施形 態についても適用可能である。
[0197] 例えば異種金属元素を複合化させた還元態のリン酸鉄リチウム正極材料 LiFePO
4
、及び導電性炭素を析出させ、かつ異種金属元素を複合化させた同還元態正極材 料以外に、該還元態から電池充電反応または化学的酸化反応等により生じる酸ィ匕 態のリン酸鉄 [FePO ]も、異種金属元素複合化正極材料、及び炭素析出 -異種金
4
属元素複合化正極材料として本発明の範疇に含まれる。
産業上の利用可能性
[0198] 本発明の正極材料または本発明方法により得られる正極材料は、二次電池の正極 材料として、例えば携帯電話を含む各種携帯機器のほか、電気自動車、ノ、イブリツド 電気自動車などへの利用が可能である。
図面の簡単な説明
[0199] [図 1]図 1は、二次電池の充放電挙動の説明に供する模式図。
[図 2]図 2は、正極材料粒子周辺の二次元的な仮説モデルを示す図面。
[図 3]図 3は、実施例 1で得たバナジウム複合化正極材料の X線回折結果を示す図面
[図 4]図 4は、実施例 1および比較例 1で得た二次電池の第 3サイクルにおける充放 電曲線を示すグラフ図面。
[図 5]図 5は、実施例 1、比較例 1および参考例 1の二次電池のサイクル放電特性を示 すグラフ図面。
[図 6]図 6は、実施例 2、比較例 1および参考例 2の二次電池のサイクル放電特性を示 すグラフ図面。
[図 7]図 7は、実施例 3、比較例 1および参考例 3の二次電池のサイクル放電特性を示 すグラフ図面。
[図 8]図 8は、実施例 4、比較例 1および参考例 3の二次電池のサイクル放電特性を示 すグラフ図面。
[図 9]図 9は、実施例 5および比較例 1の二次電池のサイクル放電特性を示すグラフ 図面。 [図 10]図 10は、実施例 6および比較例 1の二次電池のサイクル放電特性を示すダラ フ図面。
[図 11]図 11は、実施例 7、比較例 1および参考例 4の二次電池のサイクル放電特性 を示すグラフ図面。
[図 12]図 12は、実施例 8、比較例 1および参考例 4の二次電池のサイクル放電特性 を示すグラフ図面。
[図 13]図 13は、実施例 9および比較例 1の二次電池のサイクル放電特性を示すダラ フ図面。
[図 14]図 14は、実施例 10、比較例 1および参考例 5の二次電池のサイクル放電特性 を示すグラフ図面。
[図 15]図 15は、実施例 11で得た導電性炭素析出 バナジウム複合ィ匕正極材料の X 線回折結果を示す図面。
[図 16]図 16は、実施例 11および比較例 2で得た二次電池の第 3サイクルにおける充 放電曲線を示すグラフ図面。
[図 17]図 17は、実施例 11および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 18]図 18は、実施例 12および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 19]図 19は、実施例 13および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 20]図 20は、実施例 14および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 21]図 21は、実施例 15および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 22]図 22は、実施例 16および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 23]図 23は、実施例 17および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。 [図 24]図 24は、実施例 18および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 25]図 25は、実施例 19および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。
[図 26]図 26は、実施例 20および比較例 2の二次電池のサイクル放電特性を示すグ ラフ図面。

Claims

請求の範囲
[1] 一般式 Li FePO (ここで、 nは 0— 1の数を示す)で表される正極活物質を主成分と n 4
して含み、かつ元素周期表において、 4族、 5族、 6族、 11族、 12族、 13族または 14 族に属する金属元素の群力 選ばれる 1種以上の金属元素と、ハロゲン元素を含有 し、該ハロゲン元素は Pに対して 0. lmol%以上含まれていることを特徴とする、二次 電池用正極材料。
[2] 請求項 1にお 、て、前記金属元素は、バナジウム (V)、クロム(Cr)、銅(Cu)、亜鉛
(Zn)、インジウム (In)、スズ (Sn)、モリブデン(Mo)及びチタン (Ti)よりなる群力 選 ばれる 1種以上の金属元素であることを特徴とする、二次電池用正極材料。
[3] 請求項 1又は 2において、前記金属元素の含有量の合計が、前記正極活物質中の 鉄に対し元素比で 0.1ないし 5mol%であることを特徴とする、二次電池用正極材料。
[4] 元素周期表において、 4族、 5族、 6族、 11族、 12族、 13族または 14族に属する金 属元素の群から選ばれる 1種以上の金属元素のハロゲン化物と、一般式 Li FePO ( n 4 ここで、 nは 0— 1の数を示す)で表される正極活物質の原料となる物質と、を混合した 後、焼成することにより、前記一般式 Li FePO (ここで、 nは 0— 1の数を示す)で表さ n 4
れる正極活物質を主成分として含み、かつ前記金属元素を含有するように合成され たものであることを特徴とする、二次電池用正極材料。
[5] 請求項 1から請求項 4のいずれ力 1項において、前記正極材料の表面に、導電性 炭素の析出物を有することを特徴とする、二次電池用正極材料。
[6] 正極活物質 Li FePO (ここで、 nは 0— 1の数を示す)の原料となる物質と、元素周 n 4
期表において、 4族、 5族、 6族、 11族、 12族、 13族または 14族に属する金属元素 のうち、少なくとも 1種の金属元素のハロゲンィ匕物と、を混合して得られる焼成前駆体 を焼成することにより、前記正極活物質に前記金属元素を複合化させることを特徴と する、二次電池用正極材料の製造方法。
[7] 請求項 6において、焼成過程は、常温から 300°Cないし 450°Cに至る第一段階と、 常温から焼成完了温度に至る第二段階と、を含み、
加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加し た後、第二段階の焼成を行うことを特徴とする、二次電池用正極材料の製造方法。
[8] 請求項 7において、第二段階の焼成は不活性ガス雰囲気で 750°C— 850°Cの温 度範囲で行われることを特徴とする、二次電池用正極材料の製造方法。
[9] 請求項 7又は 8において、前記加熱分解により導電性炭素を生じ得る物質が、ビチ ユーメン類または糖類であることを特徴とする、二次電池用正極材料の製造方法。
[10] 請求項 1から請求項 5のいずれ力 1項に記載された正極材料を構成要素に含むこと を特徴とする、二次電池。
[11] 請求項 6から請求項 9のいずれ力 1項に記載された製造方法により得られる正極材 料を構成要素に含むことを特徴とする、二次電池。
PCT/JP2004/015836 2003-10-27 2004-10-26 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池 WO2005041327A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/577,279 US8119285B2 (en) 2003-10-27 2004-10-26 Cathode material for secondary battery, method for producing cathode material for secondary battery and secondary battery
CA2543851A CA2543851C (en) 2003-10-27 2004-10-26 Cathode material for secondary battery and method for producing the material for secondary battery
JP2005515001A JP4656653B2 (ja) 2003-10-27 2004-10-26 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
EP04792957.5A EP1689011B1 (en) 2003-10-27 2004-10-26 Positive electrode material for secondary battery, and method for producing positive electrode material for secondary battery
KR1020067008069A KR101156828B1 (ko) 2003-10-27 2004-10-26 2차 전지용 양극재료, 2차 전지용 양극재료의 제조방법 및2차 전지
HK07100905.7A HK1095431A1 (en) 2003-10-27 2007-01-25 Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-365790 2003-10-27
JP2003365790 2003-10-27

Publications (1)

Publication Number Publication Date
WO2005041327A1 true WO2005041327A1 (ja) 2005-05-06

Family

ID=34510194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015836 WO2005041327A1 (ja) 2003-10-27 2004-10-26 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池

Country Status (8)

Country Link
US (1) US8119285B2 (ja)
EP (1) EP1689011B1 (ja)
JP (1) JP4656653B2 (ja)
KR (1) KR101156828B1 (ja)
CN (1) CN100573981C (ja)
CA (1) CA2543851C (ja)
HK (1) HK1095431A1 (ja)
WO (1) WO2005041327A1 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322550A (ja) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JP2007042618A (ja) * 2005-06-30 2007-02-15 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 電極活物質及びその製造方法ならびに非水電解質二次電池
JP2008034306A (ja) * 2006-07-31 2008-02-14 Furukawa Battery Co Ltd:The リチウム二次電池正極活物質の製造方法
JP2008210701A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質の製造方法
JP2008258030A (ja) * 2007-04-05 2008-10-23 Denso Corp 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池の製造方法
WO2009096335A1 (ja) * 2008-01-28 2009-08-06 Sumitomo Chemical Company, Limited 正極活物質およびナトリウム二次電池、ならびにオリビン型リン酸塩の製造方法
JP2009245762A (ja) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd 電極材料に用いる粒子の炭素コーティング方法および二次電池
JP2010067374A (ja) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd 二次電池用正極活物質とその製造方法及びそれを用いた二次電池
WO2011030786A1 (ja) 2009-09-09 2011-03-17 戸田工業株式会社 リン酸第二鉄含水物粒子粉末及びその製造法、オリビン型リン酸鉄リチウム粒子粉末及びその製造法、並びに非水電解質二次電池
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
US8057936B2 (en) 2005-08-08 2011-11-15 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
JP2012018891A (ja) * 2010-07-09 2012-01-26 Sharp Corp 正極活物質、正極及び非水二次電池
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
CN102509804A (zh) * 2011-11-11 2012-06-20 东莞市迈科科技有限公司 一种锂离子电池Li3V2(PO4)3/C复合材料的制备方法
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
JP2013032257A (ja) * 2011-06-28 2013-02-14 Nichia Corp オリビン型リチウム遷移金属酸化物及びその製造方法
US8541136B2 (en) 2008-01-17 2013-09-24 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries
KR20140021446A (ko) * 2012-08-10 2014-02-20 삼성정밀화학 주식회사 리튬 금속인산화물의 제조방법
JP2014203589A (ja) * 2013-04-02 2014-10-27 旭化成株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JPWO2013073561A1 (ja) * 2011-11-15 2015-04-02 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
US9174846B2 (en) 2009-09-18 2015-11-03 A123 Systems Llc Ferric phosphate and methods of preparation thereof
US9178215B2 (en) 2009-08-25 2015-11-03 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
WO2016143171A1 (ja) * 2015-03-09 2016-09-15 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
WO2016151891A1 (ja) * 2015-03-26 2016-09-29 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016184570A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016184568A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016186932A (ja) * 2015-03-27 2016-10-27 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
JP2018518014A (ja) * 2015-04-20 2018-07-05 アンテオ テクノロジーズ プロプライエタリー リミテッドAnteo Technologies Pty Ltd 組成物
US10964950B2 (en) 2015-03-26 2021-03-30 Taiheiyo Cement Corporation Secondary battery positive-electrode active material and method for producing same
US11646405B2 (en) 2015-03-09 2023-05-09 Taiheiyo Cement Corporation Positive electrode active substance for secondary cell and method for producing same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI319920B (en) * 2006-07-06 2010-01-21 The preparation and application of the lifepo4/li3v2(po4)3 composite cathode materials for lithium ion batteries
WO2008105490A1 (ja) * 2007-02-28 2008-09-04 Santoku Corporation オリビン型構造を有する化合物、非水電解質二次電池用正極、非水電解質二次電池
JP4959648B2 (ja) * 2008-08-04 2012-06-27 株式会社日立製作所 非水電解質二次電池
JP5376894B2 (ja) 2008-10-20 2013-12-25 古河電池株式会社 オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
CA2740141C (en) * 2008-10-22 2015-06-02 Lg Chem, Ltd. Cathode composite material with improved electrode efficiency and energy density characteristics
BRPI0919658B1 (pt) * 2008-10-22 2020-10-06 Lg Chem, Ltd Material ativo de cátodo, mistura de cátodo, cátodo para baterias secundárias e bateria secundária de lítio
CN101527354B (zh) * 2009-04-01 2010-05-12 湖南升华科技有限公司 一种磷酸亚铁锂正极复合材料的制备方法
KR101748406B1 (ko) * 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법
JP5636772B2 (ja) * 2010-07-02 2014-12-10 日亜化学工業株式会社 オリビン型リチウム遷移金属複合酸化物及びその製造方法
DE102010032206A1 (de) * 2010-07-26 2012-04-05 Süd-Chemie AG Gasphasenbeschichtetes Lithium-Übergangsmetallphosphat und Verfahren zu dessen Herstellung
CN102013491B (zh) * 2010-11-08 2015-07-08 江苏力天新能源科技有限公司 一种动力电池及其制备方法
CN102424376A (zh) * 2011-09-09 2012-04-25 湖州创亚动力电池材料有限公司 一种锂离子动力电池倍率型负极材料的制造方法及制品
US9099735B2 (en) 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
US9034516B2 (en) * 2012-07-28 2015-05-19 Wildcat Discovery Technologies, Inc. Materials prepared by metal extraction
CN103094552B (zh) * 2012-10-12 2016-08-03 合肥国轩高科动力能源有限公司 一种5V锂离子电池正极材料LiNi0.5-x Mn1.5MxO4的表面包覆方法
KR20150097729A (ko) * 2012-12-21 2015-08-26 다우 글로벌 테크놀로지스 엘엘씨 물/공용매 혼합물을 사용하는 리튬 전이 금속 올리빈의 제조 방법
WO2014144179A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
EP2973804B1 (en) * 2013-03-15 2018-06-13 Wildcat Discovery Technologies, Inc. High energy materials for a battery
WO2014144046A1 (en) * 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy cathode material
US9153818B2 (en) 2013-03-15 2015-10-06 Wildcat Discovery Technologies, Inc. Lithium sulfide cathode material with transition metal coating
CN104124433B (zh) * 2014-07-14 2016-06-15 中国科学院青海盐湖研究所 一种Mg0.5+y(Co0.5yV0.5yTi1-y)2(PO4)3镁电池正极材料及其制备方法
US11038361B2 (en) * 2015-03-16 2021-06-15 Lenovo (Singapore) Pte. Ltd. Battery with cathode materials for charging at different rates
US10903483B2 (en) 2015-08-27 2021-01-26 Wildcat Discovery Technologies, Inc High energy materials for a battery and methods for making and use
JP6304198B2 (ja) * 2015-11-04 2018-04-04 トヨタ自動車株式会社 非水電解液二次電池および非水電解液二次電池の製造方法
MY196230A (en) * 2016-03-29 2023-03-24 Anteo Tech Pty Ltd Conductive Composites
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500665A (ja) * 1996-09-23 2001-01-16 バレンス テクノロヂー、インコーポレイテッド リチウムをインターカレーションするリチウム含有リン酸塩、及びリチウム二次電池における正極または負極物質としてのその使用
JP2001110414A (ja) * 1999-10-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池正極活物質およびリチウム二次電池
EP1094532A1 (en) 1999-04-06 2001-04-25 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
EP1195838A2 (en) 2000-10-06 2002-04-10 Sony Corporation Non-aqueous electrolyte cell
WO2002044084A2 (en) * 2000-11-28 2002-06-06 Valence Technology, Inc. Methods of making lithium metal compounds useful as cathode active materials
JP2002198050A (ja) * 2000-12-27 2002-07-12 Denso Corp 正極活物質および非水電解質二次電池
JP2002540569A (ja) * 1999-03-23 2002-11-26 ヴェイランス・テクノロジー・インコーポレーテッド リチウム含有リン酸塩活性材料
JP2003034534A (ja) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物およびその製造方法
WO2003038930A2 (en) 2001-10-26 2003-05-08 Valence Technology, Inc. Alkali/transition metal halo-and hydroxy-modified phosphates and related electrode active materials
JP2003187799A (ja) * 2001-12-21 2003-07-04 Sanyo Electric Co Ltd 非水電解質電池
JP2003229126A (ja) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk 非水電解質二次電池用電極活物質、それを含む電極及び電池
US20030190527A1 (en) 2002-04-03 2003-10-09 James Pugh Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2004063386A (ja) * 2002-07-31 2004-02-26 Mitsui Eng & Shipbuild Co Ltd 2次電池正極材料の製造方法、および2次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2270771A1 (fr) * 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
JP3873717B2 (ja) * 2001-11-09 2007-01-24 ソニー株式会社 正極材料およびそれを用いた電池
US7002112B2 (en) * 2002-02-04 2006-02-21 Ricoh Company, Ltd. Heating apparatus for increasing temperature in short period of time with minimum overshoot
CN1401559A (zh) 2002-10-18 2003-03-12 北大先行科技产业有限公司 磷酸亚铁锂的制备方法及采用该材料的锂离子电池
KR101237686B1 (ko) * 2003-01-31 2013-02-26 자이단호우진 치큐칸쿄 산교기쥬츠 켄큐키코 2차 전지용 양극 재료, 이것의 제조방법, 및 2차 전지

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500665A (ja) * 1996-09-23 2001-01-16 バレンス テクノロヂー、インコーポレイテッド リチウムをインターカレーションするリチウム含有リン酸塩、及びリチウム二次電池における正極または負極物質としてのその使用
JP2002540569A (ja) * 1999-03-23 2002-11-26 ヴェイランス・テクノロジー・インコーポレーテッド リチウム含有リン酸塩活性材料
EP1094532A1 (en) 1999-04-06 2001-04-25 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP2001110414A (ja) * 1999-10-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池正極活物質およびリチウム二次電池
EP1195838A2 (en) 2000-10-06 2002-04-10 Sony Corporation Non-aqueous electrolyte cell
WO2002044084A2 (en) * 2000-11-28 2002-06-06 Valence Technology, Inc. Methods of making lithium metal compounds useful as cathode active materials
JP2002198050A (ja) * 2000-12-27 2002-07-12 Denso Corp 正極活物質および非水電解質二次電池
JP2003034534A (ja) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物およびその製造方法
WO2003038930A2 (en) 2001-10-26 2003-05-08 Valence Technology, Inc. Alkali/transition metal halo-and hydroxy-modified phosphates and related electrode active materials
JP2003187799A (ja) * 2001-12-21 2003-07-04 Sanyo Electric Co Ltd 非水電解質電池
JP2003229126A (ja) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk 非水電解質二次電池用電極活物質、それを含む電極及び電池
US20030190527A1 (en) 2002-04-03 2003-10-09 James Pugh Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2004063386A (ja) * 2002-07-31 2004-02-26 Mitsui Eng & Shipbuild Co Ltd 2次電池正極材料の製造方法、および2次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1689011A4 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322550A (ja) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JP4610925B2 (ja) * 2004-05-11 2011-01-12 日本電信電話株式会社 非水電解質二次電池
JP2007042618A (ja) * 2005-06-30 2007-02-15 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 電極活物質及びその製造方法ならびに非水電解質二次電池
US8057936B2 (en) 2005-08-08 2011-11-15 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8617430B2 (en) 2005-08-08 2013-12-31 A123 Systems Llc Amorphous and partially amorphous nanoscale ion storage materials
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
JP2008034306A (ja) * 2006-07-31 2008-02-14 Furukawa Battery Co Ltd:The リチウム二次電池正極活物質の製造方法
JP2008210701A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質の製造方法
JP2008258030A (ja) * 2007-04-05 2008-10-23 Denso Corp 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池の製造方法
US8541136B2 (en) 2008-01-17 2013-09-24 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries
CN101971393B (zh) * 2008-01-28 2014-04-23 住友化学株式会社 正极活性物质及钠二次电池、以及橄榄石型磷酸盐的制造方法
US8795894B2 (en) 2008-01-28 2014-08-05 Sumitomo Chemical Company, Limited Positive electrode active material, sodium secondary battery, and production method of olivine-type phosphate
WO2009096335A1 (ja) * 2008-01-28 2009-08-06 Sumitomo Chemical Company, Limited 正極活物質およびナトリウム二次電池、ならびにオリビン型リン酸塩の製造方法
JP2009206085A (ja) * 2008-01-28 2009-09-10 Sumitomo Chemical Co Ltd 正極活物質およびナトリウム二次電池、ならびにオリビン型リン酸塩の製造方法
JP2009245762A (ja) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd 電極材料に用いる粒子の炭素コーティング方法および二次電池
JP2010067374A (ja) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd 二次電池用正極活物質とその製造方法及びそれを用いた二次電池
US9178215B2 (en) 2009-08-25 2015-11-03 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
WO2011030786A1 (ja) 2009-09-09 2011-03-17 戸田工業株式会社 リン酸第二鉄含水物粒子粉末及びその製造法、オリビン型リン酸鉄リチウム粒子粉末及びその製造法、並びに非水電解質二次電池
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
US11652207B2 (en) 2009-09-18 2023-05-16 A123 Systems Llc High power electrode materials
US9174846B2 (en) 2009-09-18 2015-11-03 A123 Systems Llc Ferric phosphate and methods of preparation thereof
US10522833B2 (en) 2009-09-18 2019-12-31 A123 Systems, LLC High power electrode materials
US9954228B2 (en) 2009-09-18 2018-04-24 A123 Systems, LLC High power electrode materials
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
JP2012018891A (ja) * 2010-07-09 2012-01-26 Sharp Corp 正極活物質、正極及び非水二次電池
JP2013032257A (ja) * 2011-06-28 2013-02-14 Nichia Corp オリビン型リチウム遷移金属酸化物及びその製造方法
CN102509804A (zh) * 2011-11-11 2012-06-20 东莞市迈科科技有限公司 一种锂离子电池Li3V2(PO4)3/C复合材料的制备方法
JPWO2013073561A1 (ja) * 2011-11-15 2015-04-02 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
US10873073B2 (en) 2011-11-15 2020-12-22 Denka Company Limited Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
KR20140021446A (ko) * 2012-08-10 2014-02-20 삼성정밀화학 주식회사 리튬 금속인산화물의 제조방법
KR101973052B1 (ko) * 2012-08-10 2019-04-26 삼성에스디아이 주식회사 리튬 금속인산화물의 제조방법
US10752504B2 (en) 2012-08-10 2020-08-25 Samsung Sdi Co., Ltd. Method for preparing lithium metal phosphor oxide
JP2014203589A (ja) * 2013-04-02 2014-10-27 旭化成株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2016143171A1 (ja) * 2015-03-09 2016-09-15 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
US11646405B2 (en) 2015-03-09 2023-05-09 Taiheiyo Cement Corporation Positive electrode active substance for secondary cell and method for producing same
JP2016184568A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016184570A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
WO2016151891A1 (ja) * 2015-03-26 2016-09-29 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
US10964950B2 (en) 2015-03-26 2021-03-30 Taiheiyo Cement Corporation Secondary battery positive-electrode active material and method for producing same
JP2016186932A (ja) * 2015-03-27 2016-10-27 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2018518014A (ja) * 2015-04-20 2018-07-05 アンテオ テクノロジーズ プロプライエタリー リミテッドAnteo Technologies Pty Ltd 組成物

Also Published As

Publication number Publication date
JPWO2005041327A1 (ja) 2007-04-26
US8119285B2 (en) 2012-02-21
KR20060132576A (ko) 2006-12-21
KR101156828B1 (ko) 2012-06-18
CA2543851C (en) 2014-05-06
EP1689011B1 (en) 2016-06-22
CA2543851A1 (en) 2005-05-06
EP1689011A4 (en) 2009-08-05
EP1689011A1 (en) 2006-08-09
CN100573981C (zh) 2009-12-23
US20080131777A1 (en) 2008-06-05
CN1883067A (zh) 2006-12-20
HK1095431A1 (en) 2007-05-04
JP4656653B2 (ja) 2011-03-23

Similar Documents

Publication Publication Date Title
WO2005041327A1 (ja) 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
JP5438724B2 (ja) 二次電池用正極材料、その製造方法、および二次電池
JP4448976B2 (ja) 2次電池用正極材料の製造方法、および2次電池
JP5268134B2 (ja) 正極活物質の製造方法およびそれを用いた非水電解質電池
JP4297406B2 (ja) 2次電池正極材料の製造方法、および2次電池
KR102182358B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JPWO2003012899A1 (ja) 2次電池正極材料の製造方法、および2次電池
JP6176510B2 (ja) シリコン材料及び二次電池の負極
JP2004303496A (ja) 2次電池用正極材料の製造方法、および2次電池
EP2630685B1 (en) Process for the preparation of high voltage nano composite cathode (4.9v) for lithium ion batteries
KR101232839B1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 이를 사용한 리튬 이차 전지용 양극 활물질의 제조 방법, 및 상기 제조된 리튬 이차 전지용 양극 활물질을 포함하는 리튬 이차 전지
EP4190744A1 (en) Anode active material for secondary battery and method of preparing the same
KR20150115532A (ko) 복합양극활물질전구체, 양극활물질, 이를 채용한 양극과 리튬전지 및 전구체 제조방법
JP3625630B2 (ja) コバルト酸化物正極材料の製造方法、及びその方法により製造したコバルト酸化物正極材料を用いる電池
KR20220040933A (ko) 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
JP6176511B2 (ja) シリコン材料及び二次電池の負極
KR102314085B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP2017095326A (ja) M含有シリコン材料(MはSn、Pb、Sb、Bi、In、Zn又はAuから選択される少なくとも一元素)およびその製造方法
KR20240000081A (ko) 리튬 이차전지용 음극 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031725.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515001

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067008069

Country of ref document: KR

Ref document number: 2543851

Country of ref document: CA

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004792957

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792957

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067008069

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10577279

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10577279

Country of ref document: US