WO2005040144A1 - Novel compounds - Google Patents

Novel compounds Download PDF

Info

Publication number
WO2005040144A1
WO2005040144A1 PCT/EP2004/011619 EP2004011619W WO2005040144A1 WO 2005040144 A1 WO2005040144 A1 WO 2005040144A1 EP 2004011619 W EP2004011619 W EP 2004011619W WO 2005040144 A1 WO2005040144 A1 WO 2005040144A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
compound
aryl
heteroaryl
heterocyclyl
Prior art date
Application number
PCT/EP2004/011619
Other languages
French (fr)
Inventor
Gordon Bruton
Anthony Huxley
Barry Sidney Orlek
Kishore Kalidas Rana
Original Assignee
Glaxo Group Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Limited filed Critical Glaxo Group Limited
Priority to JP2006534702A priority Critical patent/JP4824567B2/en
Priority to US10/576,492 priority patent/US7846922B2/en
Priority to EP04765973A priority patent/EP1675838A1/en
Publication of WO2005040144A1 publication Critical patent/WO2005040144A1/en
Priority to US12/912,026 priority patent/US8492375B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D243/00Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms
    • C07D243/06Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4
    • C07D243/08Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4 not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to novel diazepanyl derivatives having pharmacological activity, processes for their preparation, to compositions containing them and to their use in the treatment of neurological and psychiatric disorders.
  • WO 03/00480 Novo Nordisk A/S and Boehringer Ingleheim International GMBH describes a series of substituted piperazines and diazepanes as H3 antagonists.
  • WO 02/08221 Neurogen Corporation describes a series of substituted piperazines and diazepanes as capsaicin receptor antagonists which are claimed to be useful in the treatment of neuropathic pain.
  • WO 98/37077 and WO 99/42107 both describe a series of substituted heterocyclic derivatives which are claimed to act as calcitonin mimics to enhance bone formation.
  • H3 receptor is predominantly expressed in the mammalian central nervous system (CNS), with minimal expression in peripheral tissues except on some sympathetic nerves (Leurs et al., (1998), Trends Pharmacol. Sci. 19, 177-183).
  • Activation of H3 receptors by selective agonists or histamine results in the inhibition of neurotransmitter release from a variety of different nerve populations, including histaminergic and cholinergic neurons (Schlicker er a/., (1994), Fundam. Clin. Pharmacol. 8, 128-137).
  • H3 antagonists can facilitate neurotransmitter release in brain areas such as the cerebral cortex and hippocampus, relevant to cognition (Onodera et.
  • H3 antagonists e.g. thioperamide, clobenpropit, ciproxifan and GT-2331
  • rodent models including the five choice task, object recognition, elevated plus maze, acquisition of novel task and passive avoidance (Giovanni et al., (1999), Behav. Brain Res. 104, 147-155).
  • the present invention provides, in a first aspect, a compound of formula (I) or a pharmaceutically acceptable salt thereof:
  • R 1 represents branched C 3-6 alkyl, C 3-5 cycloalkyl or -C 1-4 alkylC 3-4 cycloalkyl
  • R 2 represents halogen, C 1-6 alkyl, C ⁇ -6 alkoxy, cyano, amino or trifluoromethyl
  • n represents 0, 1 or 2;
  • R 3 represents -X-aryl, -X-heteroaryl, -X-heterocyclyl, -X-aryl-aryl, -X-aryl-heteroaryl, -X-aryl-heterocyclyl, -X-heteroaryl-aryl, -X-heteroaryl-heteroaryl, -X-heteroaryl-heterocyclyl, -X-heterocyclyl-aryl, -X-heterocyclyl-heteroaryl or -X-heterocyclyl-heterocyclyl; such that when R 3 represents -X-piperidinyl, -X-piperidinyl-aryl, -X-pipehdinyl-heteroaryl or -X-piperidinyl-heterocyclyl said piperidinyl group is attached to X via a nitrogen atom; wherein R 3 is attached to the pheny
  • halogen hydroxy, cyano, nitro, oxo, haloC ⁇ alkyl, haloCv 6 alkoxy, C 1-6 alkyl, C 1-6 alkoxy, arylC 1-6 alkoxy, C 1-6 alkylthio, C 1-6 alkoxyC ⁇ .
  • 'C 1-6 alkyl' refers to a linear or branched saturated hydrocarbon group containing from 1 to 6 carbon atoms.
  • examples of such groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert butyl, n-pentyl, isopentyl, neopentyl or hexyl and the like.
  • 'C 1-6 alkoxy' refers to an -O-C 1-6 alkyl group wherein C 1-6 alkyl is as defined herein. Examples of such groups include methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy and the like.
  • 'C 3 -8 cycloalkyl' refers to a saturated monocyclic hydrocarbon ring of 3 to 8 carbon atoms. Examples of such groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl and the like.
  • 'halogen' refers to a fluorine, chlorine, bromine or iodine atom.
  • 'haloC 1-6 alkyl' refers to a C 1-6 alkyl group as defined herein wherein at least one hydrogen atom is replaced with halogen.
  • examples of such groups include fluoroethyl, thfluoromethyl or trifluoroethyl and the like.
  • 'halo C 1-6 alkoxy' refers to a C 1-6 alkoxy group as herein defined wherein at least one hydrogen atom is replaced with halogen. Examples of such groups include difluoromethoxy or trifluoromethoxy and the like.
  • 'aryl' refers to a C 6-12 monocyclic or bicyclic hydrocarbon ring wherein at least one ring is aromatic. Examples of such groups include phenyl, naphthyl or tetrahydronaphthalenyl and the like.
  • 'aryloxy' refers to an -O-aryl group wherein aryl is as defined herein. Examples of such groups include phenoxy and the like.
  • heteroaryl' refers to a 5-6 membered monocyclic aromatic or a fused 8-10 membered bicyclic aromatic ring containing 1 to 4 heteroatoms selected from oxygen, nitrogen and sulphur.
  • monocyclic aromatic rings include thienyl, furyl, furazanyl, pyrrolyl, triazolyl, tetrazolyl, imidazolyl, oxazolyl, thiazolyl, oxadiazolyl, isothiazolyl, isoxazolyl, thiadiazolyl, pyranyl, pyrazolyl, pyrimidyl, pyridazinyl, pyrazinyl, pyridyl, triazinyl, tetrazinyl and the like.
  • fused aromatic rings include quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, pteridinyl, cinnolinyl, phthalazinyl, naphthyridinyl, indolyl, isoindolyl, azaindolyl, indolizinyl, indazolyl, purinyl, pyrrolopyridinyl, furopyridinyl, benzofuranyl, isobenzofuranyl, benzothienyl, benzoimidazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzoisothiazolyl, benzoxadiazolyl, benzothiadiazolyl and the like.
  • heterocyclyl refers to a 4-7 membered monocyclic ring or a fused 8-12 membered bicyclic ring which may be saturated or partially unsaturated containing 1 to 4 heteroatoms selected from oxygen, nitrogen or sulphur.
  • Examples of such monocyclic rings include pyrrolidinyl, azetidinyl, pyrazolidinyl, oxazolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, dioxolanyl, dioxanyl, oxathiolanyl, oxathianyl, dithianyl, dihydrofuranyl, tetrahydrofuranyl, dihydropyranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydropyhmidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, diazepanyl, azepanyl and the like.
  • bicyclic rings examples include indolinyl, isoindolinyl, benzopyranyl, quinuclidinyl, 2,3,4,5- tetrahydro-1H-3-benzazepine, tetrahydroisoquinolinyl and the like.
  • R 1 represents branched C 3-6 alkyl (e.g. isopropyl) or C 3 . 5 cycloalkyl (e.g. cyclopropyl or cyclobutyl), more preferably cyclobutyl.
  • n represents 0.
  • R 3 represents -X-aryl (e.g. -phenyl, -CO-phenyl, -O-phenyl, -OCH 2 -phenyl or -CH 2 O-phenyl) optionally substituted by one or more halogen (e.g. fluorine), cyano, -COC 1-6 alkyl (e.g.
  • -COMe or -CONR 15 R 16 (e.g. -CONH 2 ) groups
  • -X-heteroaryl e.g. -tetrazolyl, -pyrazolyl, -pyrrolyl, -oxazolyl, -isoxazolyl, - oxadiazolyl, -pyridyl, -OCH 2 -pyridyl, -NHCO-pyridyl, -pyrimidinyl, -N(Me)-pyrimidinyl, - pyridazinyl or -OCH 2 -pyrazinyl) optionally substituted by one or more haloC ⁇ -6 alkyl (e.g.
  • R 3 represents -X-aryl (e.g. -phenyl or -CO-phenyl) optionally substituted by one or more halogen (e.g. fluorine), cyano or -COC 1-6 alkyl (e.g. -COMe) groups; -X-heteroaryl (e.g. -oxazolyl, -isoxazolyl, -oxadiazolyl, -pyridyl, -pyrimidinyl or - pyridazinyl) optionally substituted by one or more halod. 6 alkyl (e.g. -CF 3 ), cyano, C 1-6 alkyl (e.g.
  • -CONR 15 R 16 e.g. -CONHMe
  • -X-heteroaryl-aryl e.g. -thiazolyl-phenyl
  • halogen e.g. fluorine
  • -X-heterocyclyl e.g. -morpholinyl
  • R 3 represents -X-aryl (e.g. -phenyl) optionally substituted by one or more cyano or -COC 1-6 alkyl (e.g. -COMe) groups; or -X-heteroaryl (e.g. -pyridyl) optionally substituted by one or more haloC ⁇ alkyl (e.g. -CF 3 ) or cyano groups.
  • -X-aryl e.g. -phenyl
  • -X-heteroaryl e.g. -pyridyl
  • haloC ⁇ alkyl e.g. -CF 3
  • R 3 represents -pyridyl optionally substituted by one or more halod.6 alkyl (e.g. -CF 3 ) or cyano groups.
  • R 3 is attached to the phenyl group of formula (I) at the 4 position.
  • X represents a bond, CO, O, NR 4 , NR 4 CO, CH 2 0 or OCH 2 more preferably a bond.
  • R 4 represents hydrogen or methyl.
  • R 3 is attached to the phenyl group of formula (I) at the 4 position.
  • Preferred compounds according to the invention include examples E1-E58 as shown below, or a pharmaceutically acceptable salt thereof.
  • Compounds of formula (I) may form acid addition salts with acids, such as conventional pharmaceutically acceptable acids, for example maleic, hydrochloric, hydrobromic, phosphoric, acetic, fumaric, salicylic, sulphate, citric, lactic, mandelic, tartaric and methanesulphonic. Salts, solvates and hydrates of histamine H3 receptor antagonists or inverse agonists therefore form an aspect of the invention.
  • acids such as conventional pharmaceutically acceptable acids, for example maleic, hydrochloric, hydrobromic, phosphoric, acetic, fumaric, salicylic, sulphate, citric, lactic, mandelic, tartaric and methanesulphonic.
  • acids such as conventional pharmaceutically acceptable acids, for example maleic, hydrochloric, hydrobromic, phosphoric, acetic, fumaric, salicylic, sulphate, citric, lactic, mandelic, tartaric and methanesulphonic.
  • Certain compounds of formula (I) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses all geometric and optical isomers of these compounds and the mixtures thereof including racemates. Tautomers also form an aspect of the invention.
  • the present invention also provides a process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof, which process comprises:
  • R 1a is as defined above for R 1 or is a group convertible to R 1 ;
  • Process (a) typically comprises activation of the compound of formula (II) wherein L 1 represents OH with a coupling reagent such as 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride (EDC) in the presence of 1-hydroxybenzotriazole (HOBT) in a suitable solvent such as dichloromethane followed by reaction with the compound of formula (III).
  • a coupling reagent such as 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride (EDC) in the presence of 1-hydroxybenzotriazole (HOBT) in a suitable solvent such as dichloromethane
  • Process (a) may also involve halogenation of the compound of formula (II) wherein L 1 represents OH with a suitable halogenating agent (e.g. thionyl chloride or oxalyl chloride) followed by reaction with the compound of formula (III) in the presence of a suitable base such as triethylamine or a solid supported base such as diethylaminomethylpolystyrene in a suitable solvent such as dichloromethane.
  • a suitable halogenating agent e.g. thionyl chloride or oxalyl chloride
  • Process (b) typically comprises the use of a catalyst such as tetrakis(triphenylphosphine)palladium(0) in a solvent such as acetonitrile with a base e.g. sodium carbonate.
  • a catalyst such as tetrakis(triphenylphosphine)palladium(0)
  • a solvent such as acetonitrile with a base e.g. sodium carbonate.
  • Suitable amine protecting groups include sulphonyl (e.g. tosyl), acyl (e.g. acetyl, 2',2',2'-trichloroethoxycarbonyl, benzyloxycarbonyl or t-butoxycarbonyl) and arylalkyl (e.g. benzyl), which may be removed by hydrolysis (e.g. using an acid such as hydrochloric acid) or reductively (e.g.
  • Suitable amine protecting groups include trifluoroacetyl (-COCF 3 ) which may be removed by base catalysed hydrolysis or a solid phase resin bound benzyl group, such as a Merrifield resin bound 2,6-dimethoxybenzyl group (Ellman linker), which may be removed by acid catalysed hydrolysis, for example with trifluoroacetic acid.
  • Process (d) may be performed using conventional interconversion procedures such as epimerisation, oxidation, reduction, alkylation, nucleophilic or electrophilic aromatic substitution, ester hydrolysis or amide bond formation.
  • This process typically comprises activation of the compound of formula (V) with a coupling reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) in the presence of 1-hydroxybenzotriazole (HOBT) in a suitable solvent such as DMF.
  • a coupling reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) in the presence of 1-hydroxybenzotriazole (HOBT) in a suitable solvent such as DMF.
  • Alzheimer's disease dementia (including Lewy body dementia and vascular dementia), age-related memory dysfunction, mild cognitive impairment, cognitive deficit, epilepsy, neuropathic pain, inflammatory pain, migraine, Parkinson's disease, multiple sclerosis, stroke and sleep disorders (including narcolepsy and sleep deficits associated with Parkinson's disease); psychiatric disorders including schizophrenia (particularly cognitive deficit of schizophrenia), attention deficit hypereactivity disorder, depression, anxiety and addiction; and other diseases including obesity and gastro-intestinal disorders.
  • dementia including Lewy body dementia and vascular dementia
  • age-related memory dysfunction mild cognitive impairment
  • cognitive deficit epilepsy
  • neuropathic pain inflammatory pain
  • migraine migraine
  • Parkinson's disease multiple sclerosis
  • stroke and sleep disorders including narcolepsy and sleep deficits associated with Parkinson's disease
  • psychiatric disorders including schizophrenia (particularly cognitive deficit of schizophrenia), attention deficit hypereactivity disorder, depression, anxiety and addiction; and other diseases including obesity and gastro-intestinal disorders.
  • compounds of formula (I) believed to be of potential use in the treatment of Alzheimer's disease and cognitive deficit of schizophrenia will advantageously be CNS penetrant, e.g. have the potential to cross the blood-brain barrier.
  • compounds of formula (I) are expected to be selective for the histamine H3 receptor over other histamine receptor subtypes, such as the histamine H1 receptor.
  • compounds of the invention may be at least 10 fold selective for H3 over H1 , such as at least 100 fold selective.
  • the invention also provides a compound of formula (I) or a pharmaceutically acceptable salt thereof, for use as a therapeutic substance in the treatment or prophylaxis of the above disorders, in particular cognitive impairments in diseases such as Alzheimer's disease and related neurodegenerative disorders.
  • the invention further provides a method of treatment or prophylaxis of the above disorders, in mammals including humans, which comprises administering to the sufferer a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for use in the treatment of the above disorders.
  • the compounds of formula (I) are usually formulated in a standard pharmaceutical composition.
  • Such compositions can be prepared using standard procedures.
  • the present invention further provides a pharmaceutical composition for use in the treatment of the above disorders which comprises the compound of formula (I) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
  • the present invention further provides a pharmaceutical composition which comprises the compound of formula (I) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
  • Compounds of formula (I) may be used in combination with other therapeutic agents, for example medicaments claimed to be useful as either disease modifying or symptomatic treatments of Alzheimer's disease.
  • Suitable examples of such other therapeutic agents may be agents known to modify cholinergic transmission such as 5-HT 6 antagonists, M1 muscarinic agonists, M2 muscarinic antagonists or acetylcholinesterase inhibitors.
  • the compounds When the compounds are used in combination with other therapeutic agents, the compounds may be administered either sequentially or simultaneously by any convenient route.
  • the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable derivative thereof together with a further therapeutic agent or agents.
  • compositions comprising a combination as defined above together with a pharmaceutically acceptable carrier or excipient comprise a further aspect of the invention.
  • the individual components of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations.
  • a pharmaceutical composition of the invention which may be prepared by admixture, suitably at ambient temperature and atmospheric pressure, is usually adapted for oral, parenteral or rectal administration and, as such, may be in the form of tablets, capsules, oral liquid preparations, powders, granules, lozenges, reconstitutable powders, injectable or infusible solutions or suspensions or suppositories. Orally administrable compositions are generally preferred.
  • Tablets and capsules for oral administration may be in unit dose form, and may contain conventional excipients, such as binding agents, fillers, tabletting lubricants, disintegrants and acceptable wetting agents.
  • the tablets may be coated according to methods well known in normal pharmaceutical practice.
  • Oral liquid preparations may be in the form of, for example, aqueous or oily suspension, solutions, emulsions, syrups or elixirs, or may be in the form of a dry product for reconstitution with water or other suitable vehicle before use.
  • Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), preservatives, and, if desired, conventional flavourings or colorants.
  • fluid unit dosage forms are prepared utilising a compound of the invention or pharmaceutically acceptable salt thereof and a sterile vehicle.
  • the compound depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle.
  • the compound can be dissolved for injection and filter sterilised before filling into a suitable vial or ampoule and sealing.
  • adjuvants such as a local anaesthetic, preservatives and buffering agents are dissolved in the vehicle.
  • the composition can be frozen after filling into the vial and the water removed under vacuum.
  • Parenteral suspensions are prepared in substantially the same manner, except that the compound is suspended in the vehicle instead of being dissolved, and sterilisation cannot be accomplished by filtration.
  • the compound can be sterilised by exposure to ethylene oxide before suspension in a sterile vehicle.
  • a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
  • the composition may contain from 0.1 % to 99% by weight, preferably from 10 to 60% by weight, of the active material, depending on the method of administration.
  • the dose of the compound used in the treatment of the aforementioned disorders will vary in the usual way with the seriousness of the disorders, the weight of the sufferer, and other similar factors.
  • suitable unit doses may be 0.05 to 1000 mg, more suitably 1.0 to 200 mg, and such unit doses may be administered more than once a day, for example two or three a day. Such therapy may extend for a number of weeks or months.
  • hydrochloride salt compounds may be converted into the corresponding free base compounds by treatment with saturated aqueous potassium carbonate solution followed by extraction into a suitable solvent such as diethyl ether or DCM.
  • the tile compound (D12) was prepared in a similar manner to Description 7 from 1- (isopropyl)-hexahydro-l H-1 ,4-diazepine (free base of D2) and 4-(4,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2-yl)benzoic acid and isolated as a brown oil.
  • Trifluoromethanesulfonic acid (6.6ml) was added to a flask containing iodobenzene diacetate (12.2g) and MeCN (200ml) at rt. After 25min. a solution of 4'- bromoacetophenone (5g) in MeCN (50ml) was added and the resultant mixture heated at reflux for 6h. The reaction was allowed to cool to rt before the solvent was evaporated and the residue partitioned between saturated aqueous Na 2 C0 3 (150ml) and EtOAc (150ml). The organic phase was washed with saturated brine (150ml), dried (MgS0 4 ) and evaporated to give an orange solid. The crude product was purified by column chromatography (silica gel, 50% EtOAc in hexane) to give the title compound (D15) as a pale yellow solid (3.5g). LCMS electrospray (+ve) 239 (MH + ).
  • Step 2 3-(4-Bromophenyl)-5-methyl-1 ,2,4-oxadiazole
  • step 1 The product from D16, step 1 was suspended in acetic anhydride and heated to 100°C for 4h, then 120°C for 3h. After cooling the reaction mixture was evaporated to give a brown solid. This was partitioned between saturated aqueous NaHC0 3 and EtOAc. The organic phase was washed with saturated aqueous NaCI, dried (Na 2 S0 4 ) and evaporated to give a yellow solid. The crude product was purified by column chromatography (silica gel, 10-100% gradient of EtOAc in hexane) to give the title compound (D16) as a white solid (6.2g). LCMS electrospray (+ve) 240 (MH + ).
  • Step 1 4-Bromo-N-(2,2-dimethoxyethyl)-benzamide
  • Step 2 2-(4-Bromophenyl)-oxazole
  • the product of D17, step 1 was suspended in Eaton's reagent (200ml), the reaction mixture was purged with argon and heated to 240°C for 9h. The reaction mixture was then allowed to cool and stirred for 65h at rt. The crude mixture was poured over ice (1 L) and stirred for 1 h. The aqueous mixture was extracted into EtOAc (2 ⁇ 250ml), dried (MgS0 4 ) and evaporated to give a grey powder. This crude solid was dissolved in THF (300ml) and EtOH (300ml), and Hunig's base (21.1 ml) was added.
  • Examples 3 - 6 were prepared from 1-(cyclobutyl)-hexahydro-1H-1 ,4-diazepine dihydrochloride (D4) and the appropriate carboxylic acid, using the procedure described in Example 1 and displayed " ⁇ NMR and mass spectral data that were consistent with structure.
  • the reaction mixture was heated at 140°C for 5min in an Emrys Optimiser microwave reactor.
  • the crude reaction mixture was then diluted with MeOH (10ml) and the solution was poured directly onto an SCX column (10g) and washed first with MeOH (60ml) and then eluted with 2M ammonia in MeOH solution (60ml).
  • the ammonia/methanol fractions were concentrated and further purified on a Waters mass directed preparative HPLC. The required fractions were concentrated and the residual gum was redissolved in MeOH (1 ml) and treated with ethereal HCI (1 ml, 1 N).
  • the title compound (E12) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4- ⁇ [4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl ⁇ hexahydro- 1 H-1 ,4-diazepine (D7) (0.15g) and 6-chloronicotinonitrile (0.054g).
  • the crude reaction mixture was purified by flash chromatography [silica gel, step gradient 0-15% MeOH (containing 10% 0.88 ammonia solution) in DCM].
  • the free base compound was converted into the HCI salt in dry DCM (2ml) with ethereal HCI (1ml, 1 N).
  • the title compound (E13) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4- ⁇ [4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl ⁇ hexahydro- 1 H-1 ,4-diazepine (D7) (0.22g) and 5-bromo- ⁇ /-methyl-2-pyridinecarboxamide (D11 ) (0.11g).
  • the crude mixture after SCX work-up was purified on a Waters mass directed preparative HPLC. Pure fractions were concentrated, redissolved in dry DCM (2ml) and treated with 1 N ethereal HCI.
  • the title compound (E16) was prepared in a similar manner to Example 11 from 1 - (isopropyl)-4- ⁇ [4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl ⁇ hexahydro-1 H-1 ,4-diazepine (D12) (0.15g) and 5-bromo- ⁇ /-methyl-2-pyridine carboxamide (D11 ) (0.086g). After SCX work-up the product was purified using flash chromatography [silica gel, step gradient 0-15% MeOH (containing 10% 0.88 ammonia solution) in DCM].
  • Examples 17-21 were prepared in a similar manner to Example 11 from 1-(isopropyl)-4- ⁇ [4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl ⁇ hexahydro-1 H-1 ,4- diazepine (D12) and the appropriate heteroaryl bromide or chloride. All compounds displayed 1 H NMR and mass spectral data that were consistent with structure.
  • the title compound (E22) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4- ⁇ [4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl ⁇ hexahydro- 1 H-1 ,4-diazepine (D7) and 3-chloro-6-(trifluoromethyl)pyridazine (Goodman, Stanforth and Tarbit, Tetrahedron, 1999, 55, 15067).
  • the crude product after work-up was by purified by flash chromatography [silica gel, gradient 0-100% EtOAc-MeOH) and the free base was converted into the title hydrochloride salt (E22).
  • the title compound (E23) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4- ⁇ [4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl ⁇ hexahydro- 1 H-1 ,4-diazepine (D7) and 5-bromo-2-trifluoromethylpyrimidine (D13).
  • the crude product after work-up was by purified by flash chromatography [silica gel, gradient 0-100% EtOAc-MeOH] and the free base was converted into the title hydrochloride salt (E23).
  • Examples 24-28 were prepared in a similar manner to Example 15 from either 1-
  • Examples 29-43 were prepared from either 1-(cyclobutyl)hexahydro-1 H-1 ,4-diazepine dihydrochloride (D4) (0.1g) or 1-(isopropyl)hexahydro-1 H-1 ,4-diazepine dihydrochloride (D2) (0.1 g) in a 1 :1 mixture of DCM/DMF (5ml). To this solution diethylaminomethyl- polystyrene (3.2mmole/g) (0.4g, 3eq) was added and stirred at rt for 10min, followed by the addition of N-cyclohexylcarbodiimide-N-methylpolystyrene (200-400 mesh,
  • Examples 44-51 were prepared in a similar manner to Examples 29-43 from 1- (cyclobutyl)hexahydro-l H-1 ,4-diazepine dihydrochloride (D4) and the appropriate benzoic acid.
  • Examples 52-55 were prepared in a similar manner to Example 11 from 1-cyclobutyl-4- ⁇ [4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl ⁇ hexahydro-1 H-1 ,4- diazepine (D7) and the appropriate aryl bromides (e.g. D14-D16 for E53-E55, respectively), except that THF/H 2 0 was used as solvent and potassium carbonate as base, and the reaction was heated at 80-85°C for 1 h. Compounds showed H NMR and mass spectra that were consistent with structure.
  • Step 1 1,1-Dimethylethyl 4- ⁇ [4-(1,3-oxazol-2-yl)phenyl]carbonyl ⁇ hexahydro-1 H-1 ,4- diazepine carboxylate
  • a microwave vial was charged with 2-(4-bromophenyl)-oxazole (D17) (0.224g), molybdenum hexacarbonyl (0.111g), trans-Di- ⁇ -acetatobis[2-(di-o- tolylphosphino)benzyl]palladium(ll) (0.04g), ( ⁇ )-2,2'-bis(diphenylphosphino)-1 ,1 '- binaphthyl (0.08g) and purged with argon.
  • Diglyme (4ml), toluene (2ml) and 4M aqueous potassium carbonate (0.74ml) were added, and the reaction mixture was degassed by argon saturation.
  • tert-Butyl-hexahydro-1 H-1 ,4-diazepine carboxylate (0.22g) was added and the reaction vial was heated at 150°C for 20min in the microwave reactor. The reaction mixture was filtered, dried (Na 2 S0 4 ) and evaporated. Chromatography of the crude product (silica gel, eluting with EtOAc /hexanes, 50-100%) afforded the subtitle compound (0.141g).
  • Step 2 4- ⁇ [4-(1 ,3-Oxazol-2-yl)phenyl]carbonyl ⁇ hexahydro-1 H-1 ,4-diazepine
  • DCM dimethyl methacrylate
  • TFA 0.5ml
  • aqueous potassium carbonate 5ml
  • the aqueous phase extracted into DCM (3x10ml).
  • the combined organics were washed with brine (20ml), dried (MgS0 4 ) and evaporated to give the subtitle compound as a yellow oil (0.064g).
  • Step 3 1 -Cyclobutyl-4- ⁇ [4-(1 ,3-oxazol-2-yl)phenyl]carbonyl ⁇ hexahydro-1 H-1 ,4- diazepine hydrochloride
  • Cyclobutanone (0.04ml) was added to a solution of the product of E56 Step 2 (0.064g) and triethylamine (0.12ml) in DCM (2.5ml). After 5min sodium triacetoxyborohydride (0.111g) was added and the reaction mixture was stirred for 16h. Saturated aqueous sodium hydrogen carbonate (5ml) was added and the aqueous phase extracted into DCM (10ml). The organic phase was filtered through a PhaseSep ® cartridge and evaporated.
  • a membrane preparation containing histamine H3 receptors may be prepared in accordance with the following procedures:
  • DNA encoding the human histamine H3 gene was cloned into a holding vector, pCDNA3.1 TOPO (InVitrogen) and its cDNA was isolated from this vector by restriction digestion of plasmid DNA with the enzymes BamH1 and Not-1 and ligated into the inducible expression vector pGene (InVitrogen) digested with the same enzymes.
  • the GeneSwitchTM system (a system where in transgene expression is switched off in the absence of an inducer and switched on in the presence of an inducer) was performed as described in US Patent nos:
  • Ligated DNA was transformed into competent DH5 ⁇ E. coli host bacterial cells and plated onto Luria Broth (LB) agar containing ZeocinTM (an antibiotic which allows the selection of cells expressing the sh ble gene which is present on pGene and pSwitch) at 50 ⁇ g ml "1 . Colonies containing the re-ligated plasmid were identified by restriction analysis. DNA for transfection into mammalian cells was prepared from 250ml cultures of the host bacterium containing the pGeneH3 plasmid and isolated using a DNA preparation kit (Qiagen Midi-Prep) as per manufacturers guidelines (Qiagen).
  • CHO K1 cells previously transfected with the pSwitch regulatory plasmid (InVitrogen) were seeded at 2x10e6 cells per T75 flask in Complete Medium, containing Hams F12 (GIBCOBRL, Life Technologies) medium supplemented with 10% v/v dialysed foetal bovine serum, L-glutamine, and hygromycin (100 ⁇ g ml "1 ), 24 hours prior to use. Plasmid DNA was transfected into the cells using Lipofectamine plus according to the manufacturers guidelines (InVitrogen). 48 hours post transfection cells were placed into complete medium supplemented with 500 ⁇ g ml "1 ZeocinTM.
  • Positively stained cells were sorted as single cells into 96-well plates, containing Complete Medium containing 500 ⁇ g ml "1 ZeocinTM and allowed to expand before reanalysis for receptor expression via antibody and ligand binding studies.
  • the cell pellet is resuspended in 10 volumes of buffer A2 containing 50mM N-2- hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) (pH 7.40) supplemented with 10e-4M leupeptin (acetyl-leucyl-leucyl-arginal; Sigma L2884), 25 ⁇ g/ml bacitracin (Sigma B0125), 1 mM ethylenediamine tetra-acetic acid (EDTA), 1 mM phenylmethylsulfonyl fluoride (PMSF) and 2x10e-6M pepstain A (Sigma).
  • HEPES N-2- hydroxyethylpiperazine-N'-2-ethanesulfonic acid
  • the cells are then homogenised by 2 x 15 second bursts in a 1 litre glass Waring blender, followed by centrifugation at 500g for 20 minutes. The supernatant is then spun at 48,000g for 30 minutes. The pellet is resuspended in 4 volumes of buffer A2 by vortexing for 5 seconds, followed by homogenisation in a Dounce homogeniser (10-15 strokes). At this point the preparation is aliquoted into polypropylene tubes and stored at -70°C.
  • test compound or 10 ⁇ l of iodophenpropit (a known histamine H3 antagonist) at a final concentration of 10mM) diluted to the required concentration in 10% DMSO;
  • test compound or 10 ⁇ l of guanosine 5'- triphosphate (GTP) (Sigma) as non-specific binding control
  • concentration in assay buffer 20mM
  • Wells are then washed with Tyrodes buffer using a EMBLA cell washer system, leaving 40 ⁇ l buffer in each well, and then treated with 10 ⁇ l of test compound in Tyrodes buffer. Each plate is incubated for 30min to allow equilibration of the test compound with the receptor. Each well is then treated with 10 ⁇ l of histamine solution in Tyrodes buffer.
  • Functional antagonism is indicated by a suppression of histamine induced increase in fluorescence, as measured by the FLIPR system (Molecular Devices). By means of concentration effect curves, functional potencies are determined using standard pharmacological mathematical analysis.
  • Examples E1-E58 were tested in the histamine H3 functional antagonist assay and exhibited pK b values > 8.0. More particularly, the compounds of Examples 1-9, 11-14, 16, 22-28, 30-42, 44, 47, 52-56 and 58 exhibited pK b values > 9.0. Most particularly, the compounds of Examples 1 , 2, 11 , 12 and 58 exhibited pK values > 9.5.
  • the compounds of Examples E1-42, 44, 46-48 and 51-55 were tested in the histamine H1 functional antagonist assay and exhibited antagonism ⁇ 7.0 pK b . More particularly, the compounds of Examples E1-25, 27-42, 44, 46-48 and 51-55 exhibited antagonism ⁇ 6.0 pK b .

Abstract

The present invention relates to novel diazepanyl derivatives of formula (I) having pharmacological activity, processes for their preparation, to compositions containing them and to their use in the treatment of neurological and psychiatric disorders.

Description

1-BENZOYL SUBSTITUTED DIAZEPINE DERIVATIVES AS SELECTIVE HISTAMINE H3 RECEPTOR AGONISTS
The present invention relates to novel diazepanyl derivatives having pharmacological activity, processes for their preparation, to compositions containing them and to their use in the treatment of neurological and psychiatric disorders.
WO 03/00480 (Novo Nordisk A/S and Boehringer Ingleheim International GMBH) describes a series of substituted piperazines and diazepanes as H3 antagonists. WO 02/08221 (Neurogen Corporation) describes a series of substituted piperazines and diazepanes as capsaicin receptor antagonists which are claimed to be useful in the treatment of neuropathic pain. WO 98/37077 and WO 99/42107 (Zymogenetics Inc) both describe a series of substituted heterocyclic derivatives which are claimed to act as calcitonin mimics to enhance bone formation.
The histamine H3 receptor is predominantly expressed in the mammalian central nervous system (CNS), with minimal expression in peripheral tissues except on some sympathetic nerves (Leurs et al., (1998), Trends Pharmacol. Sci. 19, 177-183). Activation of H3 receptors by selective agonists or histamine results in the inhibition of neurotransmitter release from a variety of different nerve populations, including histaminergic and cholinergic neurons (Schlicker er a/., (1994), Fundam. Clin. Pharmacol. 8, 128-137). Additionally, in vitro and in vivo studies have shown that H3 antagonists can facilitate neurotransmitter release in brain areas such as the cerebral cortex and hippocampus, relevant to cognition (Onodera et. al., (1998), In: The Histamine H3 receptor, ed Leurs and Timmerman, pp255-267, Elsevier Science B.V.). Moreover, a number of reports in the literature have demonstrated the cognitive enhancing properties of H3 antagonists (e.g. thioperamide, clobenpropit, ciproxifan and GT-2331 ) in rodent models including the five choice task, object recognition, elevated plus maze, acquisition of novel task and passive avoidance (Giovanni et al., (1999), Behav. Brain Res. 104, 147-155). These data suggest that novel H3 antagonists and/or inverse agonists such as the current series could be useful for the treatment of cognitive impairments in neurological diseases such as Alzheimer's disease and related neurodegenerative disorders.
The present invention provides, in a first aspect, a compound of formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000002_0001
wherein: R1 represents branched C3-6 alkyl, C3-5 cycloalkyl or -C1-4 alkylC3-4 cycloalkyl; R2 represents halogen, C1-6 alkyl, Cι-6 alkoxy, cyano, amino or trifluoromethyl; n represents 0, 1 or 2;
R3 represents -X-aryl, -X-heteroaryl, -X-heterocyclyl, -X-aryl-aryl, -X-aryl-heteroaryl, -X- aryl-heterocyclyl, -X-heteroaryl-aryl, -X-heteroaryl-heteroaryl, -X-heteroaryl-heterocyclyl, -X-heterocyclyl-aryl, -X-heterocyclyl-heteroaryl or -X-heterocyclyl-heterocyclyl; such that when R3 represents -X-piperidinyl, -X-piperidinyl-aryl, -X-pipehdinyl-heteroaryl or -X-piperidinyl-heterocyclyl said piperidinyl group is attached to X via a nitrogen atom; wherein R3 is attached to the phenyl group of formula (I) at the 3 or 4 position; X represents a bond, O, CO, SO2, CH20, OCH2, NR4, NR4CO or C1-6 alkyl; R4 represents hydrogen or Cι-6 alkyl; wherein said aryl, heteroaryl or heterocyclyl groups of R3 may be optionally substituted by one or more (e.g. 1 , 2 or 3) halogen, hydroxy, cyano, nitro, oxo, haloC^ alkyl, haloCv 6 alkoxy, C1-6 alkyl, C1-6 alkoxy, arylC1-6 alkoxy, C1-6 alkylthio, C1-6 alkoxyCι.6 alkyl, C3-7 cycloalkylC1-6 alkoxy, C3-7 cycloalkylcarbonyl, -COC^e alkyl, d-6 alkoxycarbonyl, arylC1-6 alkyl, heteroarylCve alkyl, heterocyclylC β alkyl, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylsulfonyloxy, Cι-6 alkylsulfonylCι-6 alkyl, arylsulfonyl, arylsulfonyloxy, arylsulfonylC1-6 alkyl, aryloxy, -CO-aryl, -CO-heterocyclyl, -CO-heteroaryl, Cι-6 alkylsulfonamidoC1-6 alkyl, C1-6 alkylamidoC β alkyl, arylsulfonamido, arylaminosulfonyl, arylsulfonamidoC1-6 alkyl, arylcarboxamidoCι-6 alkyl, aroylC1-6 alkyl, arylC1-6 alkanoyl, or a group NR15R16, -
NR 5CO-aryl, -NR15CO-heterocyclyl, -NR15CO-heteroaryl, -CONR15R16 , -NR15COR16, - NR15SO2R16or -SO2NR15R16 groups, wherein R15 and R16 independently represent hydrogen or Cι-6 alkyl; or solvates thereof.
In one particular aspect of the present invention, there is provided a compound of formula (I) as defined above wherein X represents a bond, O, CO, SO2, CH2O, OCH2 or Ci.6 alkyl.
The term 'C1-6 alkyl' as used herein as a group or a part of the group refers to a linear or branched saturated hydrocarbon group containing from 1 to 6 carbon atoms. Examples of such groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert butyl, n-pentyl, isopentyl, neopentyl or hexyl and the like.
The term 'C1-6 alkoxy' as used herein refers to an -O-C1-6 alkyl group wherein C1-6 alkyl is as defined herein. Examples of such groups include methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy and the like.
The term 'C3-8 cycloalkyl' as used herein refers to a saturated monocyclic hydrocarbon ring of 3 to 8 carbon atoms. Examples of such groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl and the like. The term 'halogen' as used herein refers to a fluorine, chlorine, bromine or iodine atom.
The term 'haloC1-6 alkyl' as used herein refers to a C1-6 alkyl group as defined herein wherein at least one hydrogen atom is replaced with halogen. Examples of such groups include fluoroethyl, thfluoromethyl or trifluoroethyl and the like.
The term 'halo C1-6 alkoxy' as used herein refers to a C1-6 alkoxy group as herein defined wherein at least one hydrogen atom is replaced with halogen. Examples of such groups include difluoromethoxy or trifluoromethoxy and the like.
The term 'aryl' as used herein refers to a C6-12 monocyclic or bicyclic hydrocarbon ring wherein at least one ring is aromatic. Examples of such groups include phenyl, naphthyl or tetrahydronaphthalenyl and the like.
The term 'aryloxy' as used herein refers to an -O-aryl group wherein aryl is as defined herein. Examples of such groups include phenoxy and the like.
The term 'heteroaryl' as used herein refers to a 5-6 membered monocyclic aromatic or a fused 8-10 membered bicyclic aromatic ring containing 1 to 4 heteroatoms selected from oxygen, nitrogen and sulphur. Examples of such monocyclic aromatic rings include thienyl, furyl, furazanyl, pyrrolyl, triazolyl, tetrazolyl, imidazolyl, oxazolyl, thiazolyl, oxadiazolyl, isothiazolyl, isoxazolyl, thiadiazolyl, pyranyl, pyrazolyl, pyrimidyl, pyridazinyl, pyrazinyl, pyridyl, triazinyl, tetrazinyl and the like. Examples of such fused aromatic rings include quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, pteridinyl, cinnolinyl, phthalazinyl, naphthyridinyl, indolyl, isoindolyl, azaindolyl, indolizinyl, indazolyl, purinyl, pyrrolopyridinyl, furopyridinyl, benzofuranyl, isobenzofuranyl, benzothienyl, benzoimidazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzoisothiazolyl, benzoxadiazolyl, benzothiadiazolyl and the like.
The term 'heterocyclyl' refers to a 4-7 membered monocyclic ring or a fused 8-12 membered bicyclic ring which may be saturated or partially unsaturated containing 1 to 4 heteroatoms selected from oxygen, nitrogen or sulphur. Examples of such monocyclic rings include pyrrolidinyl, azetidinyl, pyrazolidinyl, oxazolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, dioxolanyl, dioxanyl, oxathiolanyl, oxathianyl, dithianyl, dihydrofuranyl, tetrahydrofuranyl, dihydropyranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydropyhmidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, diazepanyl, azepanyl and the like. Examples of such bicyclic rings include indolinyl, isoindolinyl, benzopyranyl, quinuclidinyl, 2,3,4,5- tetrahydro-1H-3-benzazepine, tetrahydroisoquinolinyl and the like.
Preferably, R1 represents branched C3-6 alkyl (e.g. isopropyl) or C3.5 cycloalkyl (e.g. cyclopropyl or cyclobutyl), more preferably cyclobutyl. Preferably, n represents 0. Preferably, R3 represents -X-aryl (e.g. -phenyl, -CO-phenyl, -O-phenyl, -OCH2-phenyl or -CH2O-phenyl) optionally substituted by one or more halogen (e.g. fluorine), cyano, -COC1-6 alkyl (e.g. - COMe) or -CONR15R16 (e.g. -CONH2) groups; -X-heteroaryl (e.g. -tetrazolyl, -pyrazolyl, -pyrrolyl, -oxazolyl, -isoxazolyl, - oxadiazolyl, -pyridyl, -OCH2-pyridyl, -NHCO-pyridyl, -pyrimidinyl, -N(Me)-pyrimidinyl, - pyridazinyl or -OCH2-pyrazinyl) optionally substituted by one or more haloCι-6 alkyl (e.g. -CF3), cyano, oxo, C1-6 alkyl (e.g. methyl or ethyl) or -CONR 5R16 (e.g. -CONHMe or - CON(Me)2) groups; -X-heteroaryl-aryl (e.g. -thiazolyl-phenyl) optionally substituted by one or more halogen (e.g. fluorine) atoms; -X-aryl-heteroaryl (e.g. -phenyl-oxazolyl or -phenyl-oxadiazolyl) optionally substituted by one or more Cι-6 alkyl (e.g. methyl) groups; or -X-heterocyclyl (e.g. -thiomorpholinyl, -morpholinyl, -pyrrolidinyl or -O-tetrahydro-
2H-pyran-4-yl) optionally substituted by one or more oxo groups.
More preferably, R3 represents -X-aryl (e.g. -phenyl or -CO-phenyl) optionally substituted by one or more halogen (e.g. fluorine), cyano or -COC1-6 alkyl (e.g. -COMe) groups; -X-heteroaryl (e.g. -oxazolyl, -isoxazolyl, -oxadiazolyl, -pyridyl, -pyrimidinyl or - pyridazinyl) optionally substituted by one or more halod.6 alkyl (e.g. -CF3), cyano, C1-6 alkyl (e.g. methyl) or -CONR15R16 (e.g. -CONHMe) groups; -X-heteroaryl-aryl (e.g. -thiazolyl-phenyl) optionally substituted by one or more halogen (e.g. fluorine) atoms; or -X-heterocyclyl (e.g. -morpholinyl).
Most preferably, R3 represents -X-aryl (e.g. -phenyl) optionally substituted by one or more cyano or -COC1-6 alkyl (e.g. -COMe) groups; or -X-heteroaryl (e.g. -pyridyl) optionally substituted by one or more haloC^ alkyl (e.g. -CF3) or cyano groups.
Especially preferably, R3 represents -pyridyl optionally substituted by one or more halod.6 alkyl (e.g. -CF3) or cyano groups.
Preferably, R3 is attached to the phenyl group of formula (I) at the 4 position.
Preferably, X represents a bond, CO, O, NR4, NR4CO, CH20 or OCH2 more preferably a bond.
Preferably, R4 represents hydrogen or methyl. Preferably, R3 is attached to the phenyl group of formula (I) at the 4 position.
Preferred compounds according to the invention include examples E1-E58 as shown below, or a pharmaceutically acceptable salt thereof.
Compounds of formula (I) may form acid addition salts with acids, such as conventional pharmaceutically acceptable acids, for example maleic, hydrochloric, hydrobromic, phosphoric, acetic, fumaric, salicylic, sulphate, citric, lactic, mandelic, tartaric and methanesulphonic. Salts, solvates and hydrates of histamine H3 receptor antagonists or inverse agonists therefore form an aspect of the invention.
Certain compounds of formula (I) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses all geometric and optical isomers of these compounds and the mixtures thereof including racemates. Tautomers also form an aspect of the invention.
The present invention also provides a process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof, which process comprises:
(a) reacting a compound of formula (II)
Figure imgf000006_0001
(II) wherein R2, n and R3 are as defined above and L1 represents OH or a suitable leaving group, such as a halogen atom (e.g. chlorine), with a compound of formula (III)
Figure imgf000006_0002
(III) wherein R1a is as defined above for R1 or is a group convertible to R1; or
(b) reacting a compound of formula (IV)
Figure imgf000006_0003
(IV) with a compound of formula R3-L2, wherein R1a, R2, R3 and n are as defined above, L2 represents a suitable leaving group such as a halogen atom and Z represents a boronic acid ester group attached at the 3 or 4 position of the phenyl ring, such as a pinacol ester e.g. a group of formula Za:
Figure imgf000007_0001
Za; or
(c) deprotecting a compound of formula (I) which is protected; and optionally thereafter
(d) interconversion to other compounds of formula (I).
Process (a) typically comprises activation of the compound of formula (II) wherein L1 represents OH with a coupling reagent such as 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride (EDC) in the presence of 1-hydroxybenzotriazole (HOBT) in a suitable solvent such as dichloromethane followed by reaction with the compound of formula (III).
Process (a) may also involve halogenation of the compound of formula (II) wherein L1 represents OH with a suitable halogenating agent (e.g. thionyl chloride or oxalyl chloride) followed by reaction with the compound of formula (III) in the presence of a suitable base such as triethylamine or a solid supported base such as diethylaminomethylpolystyrene in a suitable solvent such as dichloromethane.
Process (b) typically comprises the use of a catalyst such as tetrakis(triphenylphosphine)palladium(0) in a solvent such as acetonitrile with a base e.g. sodium carbonate.
In process (c), examples of protecting groups and the means for their removal can be found in T. W. Greene 'Protective Groups in Organic Synthesis' (J. Wiley and Sons, 1991 ). Suitable amine protecting groups include sulphonyl (e.g. tosyl), acyl (e.g. acetyl, 2',2',2'-trichloroethoxycarbonyl, benzyloxycarbonyl or t-butoxycarbonyl) and arylalkyl (e.g. benzyl), which may be removed by hydrolysis (e.g. using an acid such as hydrochloric acid) or reductively (e.g. hydrogenolysis of a benzyl group or reductive removal of a 2',2',2'-trichloroethoxycarbonyl group using zinc in acetic acid) as appropriate. Other suitable amine protecting groups include trifluoroacetyl (-COCF3) which may be removed by base catalysed hydrolysis or a solid phase resin bound benzyl group, such as a Merrifield resin bound 2,6-dimethoxybenzyl group (Ellman linker), which may be removed by acid catalysed hydrolysis, for example with trifluoroacetic acid.
Process (d) may be performed using conventional interconversion procedures such as epimerisation, oxidation, reduction, alkylation, nucleophilic or electrophilic aromatic substitution, ester hydrolysis or amide bond formation.
Compounds of formula (II) and (III) are either known in the literature or can be prepared by analogous methods.
Compounds of formula (IV) may be prepared by reacting a compound of formula (V)
Figure imgf000008_0001
wherein R2, n and Z are as defined above, with a compound of formula (III) as defined above. This process typically comprises activation of the compound of formula (V) with a coupling reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) in the presence of 1-hydroxybenzotriazole (HOBT) in a suitable solvent such as DMF.
Compounds of formula (V) are either known in the literature or can be prepared by analogous methods.
Compounds of formula (I) and their pharmaceutically acceptable salts have affinity for and are antagonists and/or inverse agonists of the histamine H3 receptor and are believed to be of potential use in the treatment of neurological diseases including
Alzheimer's disease, dementia (including Lewy body dementia and vascular dementia), age-related memory dysfunction, mild cognitive impairment, cognitive deficit, epilepsy, neuropathic pain, inflammatory pain, migraine, Parkinson's disease, multiple sclerosis, stroke and sleep disorders (including narcolepsy and sleep deficits associated with Parkinson's disease); psychiatric disorders including schizophrenia (particularly cognitive deficit of schizophrenia), attention deficit hypereactivity disorder, depression, anxiety and addiction; and other diseases including obesity and gastro-intestinal disorders.
It will be appreciated that certain compounds of formula (I) believed to be of potential use in the treatment of Alzheimer's disease and cognitive deficit of schizophrenia will advantageously be CNS penetrant, e.g. have the potential to cross the blood-brain barrier. It will also be appreciated that compounds of formula (I) are expected to be selective for the histamine H3 receptor over other histamine receptor subtypes, such as the histamine H1 receptor. Generally, compounds of the invention may be at least 10 fold selective for H3 over H1 , such as at least 100 fold selective.
Thus the invention also provides a compound of formula (I) or a pharmaceutically acceptable salt thereof, for use as a therapeutic substance in the treatment or prophylaxis of the above disorders, in particular cognitive impairments in diseases such as Alzheimer's disease and related neurodegenerative disorders.
The invention further provides a method of treatment or prophylaxis of the above disorders, in mammals including humans, which comprises administering to the sufferer a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
In another aspect, the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for use in the treatment of the above disorders.
When used in therapy, the compounds of formula (I) are usually formulated in a standard pharmaceutical composition. Such compositions can be prepared using standard procedures.
Thus, the present invention further provides a pharmaceutical composition for use in the treatment of the above disorders which comprises the compound of formula (I) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
The present invention further provides a pharmaceutical composition which comprises the compound of formula (I) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
Compounds of formula (I) may be used in combination with other therapeutic agents, for example medicaments claimed to be useful as either disease modifying or symptomatic treatments of Alzheimer's disease. Suitable examples of such other therapeutic agents may be agents known to modify cholinergic transmission such as 5-HT6 antagonists, M1 muscarinic agonists, M2 muscarinic antagonists or acetylcholinesterase inhibitors. When the compounds are used in combination with other therapeutic agents, the compounds may be administered either sequentially or simultaneously by any convenient route. The invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable derivative thereof together with a further therapeutic agent or agents.
The combinations referred to above may conveniently be presented for use in the form of a pharmaceutical formulation and thus pharmaceutical formulations comprising a combination as defined above together with a pharmaceutically acceptable carrier or excipient comprise a further aspect of the invention. The individual components of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations.
When a compound of formula (I) or a pharmaceutically acceptable derivative thereof is used in combination with a second therapeutic agent active against the same disease state the dose of each compound may differ from that when the compound is used alone. Appropriate doses will be readily appreciated by those skilled in the art.
A pharmaceutical composition of the invention, which may be prepared by admixture, suitably at ambient temperature and atmospheric pressure, is usually adapted for oral, parenteral or rectal administration and, as such, may be in the form of tablets, capsules, oral liquid preparations, powders, granules, lozenges, reconstitutable powders, injectable or infusible solutions or suspensions or suppositories. Orally administrable compositions are generally preferred.
Tablets and capsules for oral administration may be in unit dose form, and may contain conventional excipients, such as binding agents, fillers, tabletting lubricants, disintegrants and acceptable wetting agents. The tablets may be coated according to methods well known in normal pharmaceutical practice.
Oral liquid preparations may be in the form of, for example, aqueous or oily suspension, solutions, emulsions, syrups or elixirs, or may be in the form of a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), preservatives, and, if desired, conventional flavourings or colorants.
For parenteral administration, fluid unit dosage forms are prepared utilising a compound of the invention or pharmaceutically acceptable salt thereof and a sterile vehicle. The compound, depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions, the compound can be dissolved for injection and filter sterilised before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, preservatives and buffering agents are dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. Parenteral suspensions are prepared in substantially the same manner, except that the compound is suspended in the vehicle instead of being dissolved, and sterilisation cannot be accomplished by filtration. The compound can be sterilised by exposure to ethylene oxide before suspension in a sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
The composition may contain from 0.1 % to 99% by weight, preferably from 10 to 60% by weight, of the active material, depending on the method of administration. The dose of the compound used in the treatment of the aforementioned disorders will vary in the usual way with the seriousness of the disorders, the weight of the sufferer, and other similar factors. However, as a general guide suitable unit doses may be 0.05 to 1000 mg, more suitably 1.0 to 200 mg, and such unit doses may be administered more than once a day, for example two or three a day. Such therapy may extend for a number of weeks or months.
The following Descriptions and Examples illustrate the preparation of compounds of the invention.
It will be appreciated that hydrochloride salt compounds may be converted into the corresponding free base compounds by treatment with saturated aqueous potassium carbonate solution followed by extraction into a suitable solvent such as diethyl ether or DCM.
Description 1 (Method A)
1 -terf-Butyl-4-(isopropyl)-hexahydro-1 H-λ ,4-diazepine-1 -carboxylate (D1 ) tetι-Butyl-hexahydro-1r-/-1 ,4-diazepine-1 -carboxylate (10. Og) was dissolved in DCM (200ml). Acetone (7.33ml) was added and the reaction was left to stir for 5min. Sodium triacetoxyborohydride (21.0g) was then added and the reaction was stirred at rt for 16h. The reaction mixture was washed with saturated potassium carbonate solution (2 x
200ml). The organic layer was dried (magnesium sulphate) and evaporated to give the title compound (D1 ) as a clear oil (11.0g).
Description 1 (Method B) 1 -ferf-Butyl-4-(isopropyl)-hexahydro-1 H-1 ,4-diazepine-1 -carboxylate (D1 ) tert-Butyl-hexahydro-1 r-/-1 ,4-diazepine-1 -carboxylate (25.06g) was dissolved in acetonitrile (250ml). Anhydrous potassium carbonate (34.5g) and 2-iodopropane (63g, 37ml) were added and the mixture was heated at reflux for 18h. The cooled mixture was filtered and the solids were washed with acetonitrile. The combined filtrates were evaporated and the residual oil was dissolved in diethyl ether, washed with water, sodium thiosulphate solution and brine, dried (Na2S04) and evaporated to give the title compound (D1 ) as a light brown oil (29.8g). Description 2
1-(lsopropyl)-hexahydro-1H-1,4-diazepine dihydrochloride (D2)
1-tert-Butyl-4-(isopropyl)-hexahydro-1 H-1 ,4-diazepine-1 -carboxylate (D1 ) (11.0g) was dissolved in methanol (200ml) and 4N HCI in dioxan (100ml) was added. The reaction was stirred at rt for 2h and then evaporated to give the title compound (D2) as a white solid (9.6g). 1H NMR δ (CDCI3): 11.35 (1 H, s), 10.22 (1 H, s), 9.72 (1 H, s), 4.15-3.52 (9H, m), 2.83-2.40 (2H, m), 1.47 (6H, d, J=6.24 Hz).
Description 3
1 -terf-Butyl-4-(cyclobutyl)-hexahydro-1 H-1 ,4-diazepine-1 -carboxylate (D3) terf-Butyl-hexahydro-1 H-1 ,4-diazepine-1 -carboxylate (10.0g) was dissolved in DCM (300ml). Cyclobutanone (7.5ml) was added and the reaction was left to stir for 5 min. Sodium triacetoxyborohydride (21.1g) was then added and the reaction was stirred at rt for 16h. The reaction mixture was washed with saturated potassium carbonate solution (2 x 200ml). The organic layer was dried (magnesium sulphate) and evaporated to give the title compound (D3) as a clear oil (11.3g).
Description 4 1 -(Cyclobutyl) hexahydro-1 H-1 ,4-diazepine dihydrochloride (D4)
1-terf-Butyl-4-(cyclobutyl)-hexahydro-1 H-1 ,4-diazepine-1 -carboxylate (D3) (11.3g) was dissolved in methanol (200ml) and 4N HCI in dioxan (100ml) was added. The reaction was stirred at rt for 3h and then co-evaporated from toluene (3 x 50ml) to give the title compound (D4) as a white solid (9.8g). 1H NMR δ (DMSO-d6): 11.95 (1 H, s), 9.55 (1 H, s), 9.64 (1 H, s), 3.78-3.08 (9H, m), 2.51-2.07 (6H, m), 1.80-1.51 (2H, m).
Description 5
Ethyl 4-(tetrahydro-2H-pyran-4-yloxy)benzoate (D5)
An ice-cold solution of ethyl 4-hydroxybenzoate (0.82g), 4-hydroxy-tetrahydro-2H-pyran (0.5g) and triphenylphosphine in THF (50ml) was treated dropwise with diisopropyl azodicarboxylate (1.69ml). After 15min the cooling bath was removed and the reaction stood overnight at rt. The mixture was evaporated, redissolved in toluene and successively washed with 2N sodium hydroxide (2x20ml), water (2x20ml) and brine (20ml). After drying (magnesium sulfate) the solution was loaded directly on to a silica flash column (step gradient 10-30% EtOAc in light petroleum 40-60) to give the title compound (D5) (0.75g). 1H NMR δ (CDCI3): 7.98 (2H, d, J=8.5Hz), 6.91 (2H, d, J=8.5Hz), 4.60 (1 H, m), 4.35 (2H, q, J=9.8Hz), 3.98 (2H, m), 3.57 (2H, m), 2.05 (2H, m), 1.80 (2H, m), 1.38 (3H, t, J=9.8Hz).
Description 6
4-(Tetrahydro-2H-pyran-4-yloxy)benzoic acid (D6) A solution of ethyl 4-(tetrahydro-2H-pyran-4-yloxy)benzoate (D5) (0.73g) in EtOH (10ml) was treated with 1 M NaOH (5.84ml) and the mixture stirred at 60°C for 5h. The solution was cooled to rt and the EtOH was evaporated. The aqueous was washed with DCM (2x10ml) and acidified. The solid was filtered off, washed with water and dried to give the title compound (D6) (0.55g). MS electrospray (-ion) 221 (M-H). 1H NMR δ (DMSO- d6): 7.87 (2H, d, J=8.5Hz), 7.05 (2H, d, J=8.5Hz), 4.69 (1 H, m), 3.85 (2H, m), 3.50 (2H, m), 1.98 (2H, m), 1.59 (2H, m).
Description 7 1-Cyclobutyl-4-{[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)phenyl]carbonyl}hexahydro-1 H-1 ,4-diazepine (D7)
4-(4,4,5,5-Tetramethyl-1 ,3,2-dioxaborolan-2-yl)benzoic acid (1.24g) in dry DMF (30ml) was treated with EDC (1.48g) and HOBT (0.67g). The reaction mixture was stirred at rt for 5min, followed by the addition of 1-(cyclobutyl)hexahydro-1 H-1 ,4-diazepine dihydrochloride (D4) (1.13g) and triethylamine (2.7ml). The mixture was stirred at rt overnight. The reaction mixture was then poured into water (250ml) and extracted with EtOAc (2x35ml). The combined organic layers were washed with saturated aqueous sodium hydrogen carbonate (2x30ml) followed by water (5x30ml). After drying (magnesium sulphate) the solution was evaporated to give the title compound (D7) as an oil (0.84g).MS electrospray (+ve ion) 385 (MH+).
Description 8
Methyl 4-(6-cyano-3-pyridinyl)benzoate (D8)
4-Methoxycarbonylphenyl boronic acid (0.5g) and 5-bromo-2-pyridinecarbonitrile (0.5g) in a mixture of THF (5ml) and water (5ml) were treated with tetrakis(triphenyl phosphine)palladium(O) (0.32g) and potassium carbonate (1g). A further amount of THF (5ml) was added and the reaction was heated at 80°C for 1h. After cooling the reaction mixture was diluted with EtOAc (30ml) and washed with saturated aqueous sodium hydrogen carbonate solution. The organic layer was dried (magnesium sulfate) and concentrated to give a crude residue that was purified by column chromatography (silica- gel, gradient 0-100% EtOAc in hexane) to give the title compound (D8) as a white solid (0.5g). LCMS electrospray (+ve) 239 (MH+).
Description 9 4-(6-Cyano-3-pyridinyl)benzoic acid (D9)
Methyl 4-(6-cyano-3-pyridinyl)benzoate (D8) (0.5g) in dioxane (30ml) was treated with 1.1 eq aqueous LiOH solution (2.3ml, 1 N) and stirred at rt for 2 days. Solvent was removed by evaporation to give a white solid which was dissolved in water (10ml) and acidified with 2N HCI to give a white solid which was filtered and dried to give the title compound (D9) (0.35g). LCMS electrospray (+ve) 224 (MH+).
Description 10 5-Bromo-2-pyridinecarboxylic acid (D10)
4-Bromobenzonitrile (4.45g) was heated at reflux in concentrated hydrochloric acid (60ml) for 3h. After cooling, white crystals were filtered off and dried in a vacuum oven to give the title compound (D10) (3.46g). LCMS electrospray (+ve) 203 (MH+).
Description 11
5-Bromo-/V-methyl-2-pyridinecarboxamide (D11 )
5-Bromo-2-pyridinecarboxylic acid (D10) (1g) was dissolved in dry DMF (50ml) and treated with methylamine hydrochloride (0.42g), EDC (1.2g), HOBT (0.56g) and Et3N (2.4ml). The reaction was stirred at rt overnight then poured into water (200ml) and extracted with DCM (50ml). The organic extract was washed with brine (5x50ml), dried (magnesium sulfate) and evaporated to give the title compound (D11 ) as a yellow crystalline solid (0.45g). LCMS electrospray (+ve) 349 (MH+).
Description 12
1-(lsopropyl)-4-{[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)phenyl]carbonyl}hexahydro-1 H-1 ,4-diazepine (D12)
The tile compound (D12) was prepared in a similar manner to Description 7 from 1- (isopropyl)-hexahydro-l H-1 ,4-diazepine (free base of D2) and 4-(4,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2-yl)benzoic acid and isolated as a brown oil. LCMS electrospray (+ve) 373 (MH+).
Description 13 5-Bromo-2-trifluoromethylpyrimidine (D13) A mixture of potassium fluoride (1.77g) and cuprous iodide (5.79g) was stirred and heated together using a heat gun under vacuum (~1 mm) for 20min. After cooling, dimethyl formamide (20ml) and N-methyl pyrrolidinone (20ml) were added followed by (trifluoromethyl)trimethylsilane (4.1ml) and 5-bromo-2-iodopyrimidine (6.5g). The mixture was stirred at rt for 5h and then the brown solution was poured into 6N ammonia solution. The product was extracted into ethyl acetate and the extracts were washed with sodium bicarbonate solution and brine and then dried (Na2S04) and evaporated. Chromatography on silica gel (elution with 20-50% dichloromethane in pentane) gave the title compound (D13) as a white solid (2.4g). 1 H NMR (CDCI3): 8.97 (2H, s).
Description 14
4-(4-Bromophenyl)-2-methyl-oxazole (D14)
4-Bromophenacyl bromide (21.3g) and acetamide (11.3g) were heated together at 130°C under argon. After 2.5h the reaction mixture was allowed to cool, and partitioned between water (150ml) and Et20 (150ml). The organic phase was washed with aqueous NaOH (0.5N), aqueous HCI (0.5M) and saturated aqueous NaCI solution (100ml of each), dried (MgS04) and evaporated to give a brown solid which was recrystallised from hexanes to give the title compound (D14) as an orange solid (4.1g). LCMS electrospray (+ve) 239 (MH+).
Description 15 5-(4-Bromophenyl)-2-methyl-oxazole (D15)
Trifluoromethanesulfonic acid (6.6ml) was added to a flask containing iodobenzene diacetate (12.2g) and MeCN (200ml) at rt. After 25min. a solution of 4'- bromoacetophenone (5g) in MeCN (50ml) was added and the resultant mixture heated at reflux for 6h. The reaction was allowed to cool to rt before the solvent was evaporated and the residue partitioned between saturated aqueous Na2C03 (150ml) and EtOAc (150ml). The organic phase was washed with saturated brine (150ml), dried (MgS04) and evaporated to give an orange solid. The crude product was purified by column chromatography (silica gel, 50% EtOAc in hexane) to give the title compound (D15) as a pale yellow solid (3.5g). LCMS electrospray (+ve) 239 (MH+).
Description 16
3-(4-Bromophenyl)-5-methyl-1 ,2,4-oxadiazole (D16)
Step 1 : 4-Bromo-N-hydroxy-benzenecarboximidamide
4-Bromophenylcarbonitrile (10.2g), hydroxylamine hydrochloride (7.8g) and Et3N (11.3g) were dissolved in EtOH (250ml) and the reaction mixture was heated at reflux for 3h, after which it was evaporated to form a white precipitate of the desired amidoxime, which was filtered off and washed with water (25ml). The filtrate was extracted into EtOAc (2χ25ml), and the combined organic extracts were dried (Na2S04) and evaporated to give a second crop of the subtitle compound (combined yield = 11.1g). LCMS electrospray (+ve) 216 (MH+).
Step 2: 3-(4-Bromophenyl)-5-methyl-1 ,2,4-oxadiazole
The product from D16, step 1 was suspended in acetic anhydride and heated to 100°C for 4h, then 120°C for 3h. After cooling the reaction mixture was evaporated to give a brown solid. This was partitioned between saturated aqueous NaHC03 and EtOAc. The organic phase was washed with saturated aqueous NaCI, dried (Na2S04) and evaporated to give a yellow solid. The crude product was purified by column chromatography (silica gel, 10-100% gradient of EtOAc in hexane) to give the title compound (D16) as a white solid (6.2g). LCMS electrospray (+ve) 240 (MH+).
Description 17
2-(4-Bromophenyl)-oxazole (D17)
Step 1 : 4-Bromo-N-(2,2-dimethoxyethyl)-benzamide
Potassium carbonate (8.0g) was added to a solution of 2,2-dimethoxyethylamine in water (90ml) and acetone (40ml) at rt. The reaction mixture was cooled in an ice-water bath and 4-bromobenzoyl chloride (16.4g) dissolved in acetone (70ml) was added drop- wise over 90min. The stirred reaction mixture was allowed to warm to rt. After a further 2h the reaction mixture was extracted into EtOAc (3χ75ml), the combined organics were washed with saturated aqueous sodium hydrogen carbonate , dried (MgS04) and evaporated to give the amide as an off white solid (18.5g). LCMS electrospray (+ve) 289 (MH+).
Step 2: 2-(4-Bromophenyl)-oxazole The product of D17, step 1 was suspended in Eaton's reagent (200ml), the reaction mixture was purged with argon and heated to 240°C for 9h. The reaction mixture was then allowed to cool and stirred for 65h at rt. The crude mixture was poured over ice (1 L) and stirred for 1 h. The aqueous mixture was extracted into EtOAc (2χ250ml), dried (MgS04) and evaporated to give a grey powder. This crude solid was dissolved in THF (300ml) and EtOH (300ml), and Hunig's base (21.1 ml) was added. MP-carbonate resin (40.1g) and PS-thiophenol resin (69.7g) were suspended in the reaction mixture, which was stirred for 24h. The suspension was filtered and the solid phase resins washed with 1 :1 THFΕtOH (3χ600ml), and the combined organics evaporated to give the title compound (D17) as a white solid (9.0g). LCMS electrospray (+ve) 225 (MH+).
Description 18
4-(3-Methyl-1,2,4-oxadiazol-5-yl)benzoic acid (D18)
Methyl 4-(3-methyl-1 ,2,4-oxadiazol-5-yl)benzoate (J.R. Young and R.J. DeVita,
Tetrahedron Lett., 1998, 39, 3931 ) was dissolved in a mixture of dioxan (110ml), water (70ml) and isopropanol (30ml), and lithium hydroxide (1.38g) was added. The mixture was stirred at room temperature for ca 5h and then the mixture was acidified to ca pH 4 by addition of Amberlyst 15 H+ resin. The resin was removed by filtration and the filtrate was concentrated in vacuo. The solid white precipitate which was obtained was collected by filtration, washed with water on the filter and dried in vacuo at 40°C for 48h to give the title compound (D18) (4.23g).
Example 1
4'-[(4-Cyclobutylhexahydro-1 H-1 ,4-diazepin-1 -yl)carbonyl]-4-biphenylcarbonitrile hydrochloride (E1)
Figure imgf000016_0001
1-(Cyclobutyl)-hexahydro-1 H-1 ,4-diazepine dihydrochloride (D4) (0.15g) was stirred with diethylaminomethyl polystyrene (1.0g), HOBT (0.045g), 4'-cyano-4-biphenylcarboxylic acid (0.16g) in DCM (5ml). EDC (0.16g) was then added and the reaction was stirred at rt for 16h. The polymer supported base was filtered off and the filtrate was diluted with DCM (10ml) and washed with saturated sodium hydrogen carbonate (2 x 15ml). The organic layer was then loaded directly onto a silica column eluting with 0-10% MeOH (containing 10% 0.880 ammonia solution)/DCM. The isolated free base product was dissolved in DCM (5ml) and treated with excess 1 N HCI/diethyl ether solution (1ml) and stirred for 10min. The mixture was evaporated (co-evaporated with acetone 2 x 10ml), triturated with acetone, then dried at 50°C under high vacuum for 16h to yield the title compound (E1 ) as a pale solid (0.119g). MS electrospray (+ion) 360 (MH+).1 H NMR δ (DMSO-d6): 10.60 (1 H, s), 7.97 (4H, m), 7.86 (2H, d, J=8.4Hz), 7.60 (2H, d, J= 7.6Hz), 4.18 (1 H, m), 3.89-3.37 (6H, m), 3.10 (2H, m), 2.40-1.59 (8H, m).
Example 2
1 -{4'-[(4-Cyclobutylhexahydro-1 H-1 ,4-diazepin-1 -yl)carbonyl]-4- biphenylyljethanone hydrochloride (E2)
Figure imgf000017_0001
1-(Cyclobutyl)-hexahydro-1 H-1 ,4-diazepine dihydrochloride (D4) (0.15g) was stirred with diethylaminomethyl polystyrene (1.0g), HOBT (0.045g) and 4'-acetyl-4- biphenylcarboxylic acid (0.13g) in DCM (5ml). EDC (0.16g) was then added and the reaction stirred at rt for 16h. The polymer supported base was filtered off and the filtrate was diluted with DCM (10ml) and washed with saturated sodium hydrogen carbonate (2 x 15ml). The organic layer was loaded directly onto a silica column eluting with 0-10% MeOH (containing 10% 0.880 ammonia solution)/DCM. The isolated free base product was dissolved in DCM (5ml) and treated with excess 1 N HCI/diethyl ether solution (1ml) and stirred for 10min. The mixture was evaporated (co-evaporated with acetone 2 x 10ml), triturated with acetone, then dried at 50°C under high vacuum for 16h to yield the title compound (E2) as a pale solid (0.055g). MS electrospray (+ion) 377 (MH+). H NMR δ (DMSO-d6): 10.57 (1 H, s), 9.07 (2H, d, J=6.4Hz), 7.88 (4H, m), 7.60 (2H, d, J= 7.6Hz), 4.15 (1 H, m), 3.82-3.33 (6H, m), 3.02 (2H, m), 2.62 (3H, s), 2.41-1.62 (8H, m).
Examples 3-6 (E3-E6)
Examples 3 - 6 were prepared from 1-(cyclobutyl)-hexahydro-1H-1 ,4-diazepine dihydrochloride (D4) and the appropriate carboxylic acid, using the procedure described in Example 1 and displayed "Η NMR and mass spectral data that were consistent with structure.
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000018_0003
Example 7
1-Cyclobutyl-4-{[4-tetrazol-1-yl)phenyl]carbonyl}hexahydro-1 H-1 ,4-diazepine hydrochloride (E7)
Figure imgf000018_0001
1-(Cyclobutyl)-hexahydro-1H-1 ,4-diazepine dihydrochloride (D4) (0.15g) was stirred with diethylaminomethyl polystyrene (1.0g), HOBT (0.045g) and 4-(tetrazol-1-yl)-benzoic acid (0.14g) in DCM (5ml). EDC (0.165g) was then added and the reaction was stirred at rt for 16h. The polymer supported base was filtered off and the filtrate was diluted with DCM (10ml) and washed with saturated sodium hydrogen carbonate (2 x 15ml). The organic layer was then loaded directly onto a silica column eluting with 0-10% MeOH (containing 10% 0.880 ammonia solution)/DCM. The isolated free base product was dissolved in DCM (5ml) and treated with excess 1 N HCI/diethyl ether solution (1ml) and stirred for 10min. The mixture was evaporated (co-evaporated with acetone 2 x 10ml), triturated with acetone, then dried at 50°C under high vacuum for 16h to yield the title compound (E7) as a pale solid (0.096g). MS electrospray (+ion) 327 (MH+).1 H NMR δ (DMSO-d6): 11.1 1 (1 H, s), 10.18 (1 H, s), 8.02 (2H, d, J=8.4Hz), 7.76 (2H, d, J=8.0Hz), 4.17 (1 H, m), 3.81-3.27 (6H, m), 3.11 (2H, m), 2.47-1.95 (6H, m), 1.80-1.59 (2H, m).
Example 8
1 -Cyclobutyl-4-({4-[4-(4-fluorophenyl)-1 ,3-thiazol-2-yl]phenyl}carbonyl) hexahydro-
1 H-1 ,4-diazepine hydrochloride (E8)
Figure imgf000018_0002
The title compound (E8) was prepared from 1-(cyclobutyl)-hexahydro-1 H-1 ,4-diazepine dihydrochloride (D4) and 4-[4-(4-fluorophenyl)-1 ,3-thiazol-2-yl]benzoic acid using the procedure described in Example 7. MS APCI 436 (MH+).
Example 9
1 -Cyclobutyl-4-{[4-(1 ,1 -dioxido-4-thiomorpholinyl)phenyl]carbonyl} hexahydro-1 H-1 ,4-diazepine hydrochloride (E9)
Figure imgf000019_0001
1-(Cyclobutyl)-hexahydro-1H-1 ,4-diazepine dihydrochloride (D4) (0.15g) was stirred with diethylaminomethyl polystyrene (1.0g), HOBT (0.045g), 4-(1 ,1-dioxido-4- thiomorpholinyl)benzoic acid (0.186g) in DCM (5ml). EDC (0.165g) was then added and the reaction was stirred at rt for 16h. The polymer supported base was filtered off and the filtrate was diluted with DCM (10ml) and washed with saturated sodium hydrogen carbonate (2 x 15ml). The organic layer was then loaded directly onto a silica column and eluted with 0-10% MeOH (containing 10% 0.880 ammonia solution)/DCM. The isolated free base product was dissolved in DCM (5ml) and treated with excess 1 N HCI/diethyl ether solution (1 ml) and stirred for 10min. The mixture was evaporated (co- evaporated with acetone 2 x 10ml), triturated with acetone, then dried at 50°C under high vacuum for 16h to yield the title compound (E9) as a pale solid (0.086g). MS electrospray (+ion) 392 (MH+).1 H NMR δ (DMSO-d6): 10.5 (1 H, s), 7.37 (2H, d, J=8.4Hz), 7.07 (2H, d, J=8.8Hz), 4.18-3.24 (10H, m), 3.11 (4H, m), 3.10-2.85 (2H, m), 2.45-1.98 (7H, m), 1.80-2.54 (2H, m).
Example 10
1-(lsopropyl)-4-{[4-(tetrahydro-2H-pyran-4-yloxy)phenyl] carbonyl}hexahydro-1 H-1 ,4-diazepine hydrochloride (E10)
A stirred suspension of 4-(tetrahydro-2H-pyran-4-yloxy)benzoic acid (D6) (222mg) in DCM (5ml) at rt was treated with oxalyl chloride (0.28ml) and 10% DMF in DCM (1 drop). After 1 h the solution was evaporated and then re-evaporated from DCM (2x5ml). The acid chloride was redissolved in DCM (10ml) and treated with 1-(isopropyl)-hexahydro- 1H-1 ,4-diazepine dihydrochloride (D2) (178mg) and diethylaminomethyl polystyrene (3.2mmol/g, 938mg). After stirring overnight the mixture was loaded directly on to a silica gel flash column [step gradient 6-10% MeOH (containing 10% 0.880 ammonia solution) in DCM]. Fractions containing the required product were evaporated, then redissolved in DCM and treated with excess 4M HCI in dioxan. Crystallisation from acetone afforded the title compound (E10) (225mg). MS electrospray (+ion) 347 (MH+). 1H NMR δ (DMSO-d6): 10.45 (1 H, m), 7.41 (2H, d, J=8.5Hz), 7.02 (2H, d, J=8.5Hz), 4.63 (2H, m), 4.02 (1 H, m), 3.02-3.93 (13H, m), 2.32 (1 H, m), 1.96 (2H, m), 1.61 (2H, m), 1.27 (6H, d, J=6.5Hz).
Example 11
1-Cyclobutyl-4-({4-[6-(trifluoromethyl)-3-pyridinyl]phenyl}carbonyl)hexahydro-1H- 1 ,4-diazepine hydrochloride (E11)
Figure imgf000020_0001
A mixture of 1-cyclobutyl-4-{[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2- yl)phenyl]carbonyl}hexahydro-1 H-1 ,4-diazepine (D7) (0.28g) and 5-bromo-2- (trifluoromethyl)pyridine (F. Cottet and M. Schlosser, Eur. J. Org. Chem., 2002, 327) in dry and degassed acetonitrile (3.5ml) was treated with tetrakis(triphenyl phosphine)palladium(O) (0.050g), and 2M aqueous Na2C03 solution (0.6ml). The reaction mixture was heated at 140°C for 5min in an Emrys Optimiser microwave reactor. The crude reaction mixture was then diluted with MeOH (10ml) and the solution was poured directly onto an SCX column (10g) and washed first with MeOH (60ml) and then eluted with 2M ammonia in MeOH solution (60ml). The ammonia/methanol fractions were concentrated and further purified on a Waters mass directed preparative HPLC. The required fractions were concentrated and the residual gum was redissolved in MeOH (1 ml) and treated with ethereal HCI (1 ml, 1 N). After evaporation of solvent the residue was triturated with diethyl ether to give the title hydrochloride salt (E11 ) as a white solid (0.088g). 1H NMR δ (methanol-d4): 1.76-1.89 (2H, m), 2.18-2.38 (6H, m), 3.09-3.18 (2H, rm), 3.47-3.9 (6H, m), 4.31-4.35 (1 H, m), 7.64 (2H, d, J=8Hz), 7.88 (1 H, d, J=8Hz), 7.92 (2H, d, J=8Hz), 8.33 (1 H, d, J=8Hz), 9.02 (1 H, s). LCMS electrospray (+ve) 404 (MH+).
Example 12
6-{4-[(4-Cyclobutylhexahydro-1 H-1 ,4-diazepin-1 -yl)carbonyl]phenyl}-3- cyanopyridine
Figure imgf000020_0002
The title compound (E12) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4-{[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl}hexahydro- 1 H-1 ,4-diazepine (D7) (0.15g) and 6-chloronicotinonitrile (0.054g). The crude reaction mixture was purified by flash chromatography [silica gel, step gradient 0-15% MeOH (containing 10% 0.88 ammonia solution) in DCM]. The free base compound was converted into the HCI salt in dry DCM (2ml) with ethereal HCI (1ml, 1 N). Evaporation of solvent afforded the title compound (E12) as a white solid (0.046g). 1H NMR δ (methanol-d4): 1.78-1.90 (2H, m), 2.1-2.4 (6H, m), 3.03-3.2 (2H, m), 3.5-3.9 (6H, m), 4.28-4.35 (1 H, m), 7.65 (2H, d, J=8Hz), 8.13 (1 H, d, J=8Hz), 8.23-8.26 (3H, m), 8.99 (1 H,d, J=2.4Hz). LCMS electrospray (+ve) 361 (MH+).
Example 13 5-{4-[(4-Cyclobutylhexahydro-1 H-1 ,4-diazepin-1 -yl)carbonyl]phenyl}-Λ/-methyl-2- pyridinecarboxamide h
Figure imgf000021_0001
The title compound (E13) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4-{[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl}hexahydro- 1 H-1 ,4-diazepine (D7) (0.22g) and 5-bromo-Λ/-methyl-2-pyridinecarboxamide (D11 ) (0.11g). The crude mixture after SCX work-up was purified on a Waters mass directed preparative HPLC. Pure fractions were concentrated, redissolved in dry DCM (2ml) and treated with 1 N ethereal HCI. After evaporation of solvents the title compound (E13) was obtained as a white solid (0.062g). 1H NMR δ (methanol-d4): 1.77-2.00 (2H, m), 2.15- 2.45 (6H, m), 3.0 (3H, s), 3.07-3.25 (2H, m), 3.45-3.85 (6H, m), 4.28-4.39 (1 H, m), 7.67- 7.69 (2H, d, J=8Hz), 7.90-7.88 (2H, d, J=8Hz), 8.25 (1 H, d, J=8Hz), 8.42 (1 H, d, J=8Hz), 8.99 (1 H, d, J=1.2Hz). LCMS electrospray (+ve) 393 (MH+).
Example 14
5-{4-[(4-Cyclobutylhexahydro-1 H-1 ,4-diazepin-1 -yl)carbonyl]phenyl}-2- cyanopyridine hydrochloride (E14)
Figure imgf000021_0002
The title compound (E14) was prepared in a similar manner to Example 11 from 5- bromo-2-cyanopyridine (0.043g) and 1-cyclobutyl-4-{[4-(4,4,5,5-tetramethyl-1 ,3,2- dioxaborolan-2-yl)phenyl]carbonyl}hexahydro-1H-1 ,4-diazepine (D7) ( 0.1g). 1H NMR δ (methanol-d4): 1.8-1.9 (2H, m), 2.18-2.38 (6H, m), 3.05-3.20 (2H, m), 3.48-3.90 (6H, m), 4.28-4.38 (1 H, m), 7.64 (2H, d, J=8.4Hz), 7.83 (2H, d, J=8.4Hz), 7.92 (1 H, d, J=8Hz), 8.24 (1 H, dd, J=8Hz), 9.04 (1 H, d, J=1.6Hz). LCMS electrospray (+ve) 361 (MH+).
Example 15
5-(4-{[4-(1 -lsopropyl)hexahydro-1 H-1 ,4-diazepin-1 -yl]carbonyl}phenyl)-2- cyanopyridine hydrochloride (E15)
Figure imgf000021_0003
4-(6-Cyano-3-pyridinyl)benzoic acid (D9) (0.35g) was dissolved in dry DMF and treated with EDC (0.51 g) and a catalytic quantity of HOAT. The reaction mixture was stirred at rt for 5min, followed by the addition of 1-(isopropyl)-hexahydro-1 H-1 ,4-diazepine dihydrochloride (D2) (0.28g) and N,N-diisopropylethylamine (1 ml), and allowed to stir at rt overnight. After evaporation of solvent the residue was partitioned between DCM (15ml) and water (15ml). The DCM layer was dried (magnesium sulfate) and concentrated to leave a crude residue which was purified by flash chromatography [silica gel, step gradient 0-15% MeOH (containing 10% 0.88 ammonia solution) in DCM]. Pure fractions were combined and concentrated to give the free base which was converted into the HCI salt in DCM (2ml) with 1 N ethereal HCI (1 ml). Evaporation of the solvents afforded the title compound (E15) (8mg). 1H NMR δ (methanol-d4): 1.4 (6H, d, J=6.4Hz), 2.16 (2H, bs), 3.47-4.2 (8H, m), 4.2-4.4 (1 H, m), 7.68 (2H, d, J=8Hz), 7.85 (2H, d, J=8Hz), 7.98 (1 H, d, J=8Hz), 8.29 (1 H, dd, J=8Hz), 9.04 (1 H, d, J=1.6Hz). LCMS electrospray (+ve) 349 (MH+).
Example 16 tø-Methyl-5-(4-{[4-(1 -isopropyl)hexahydro-1 H-1 ,4-diazepin-1 -yl]carbonyl}phenyl)-2- pyridinecarboxamide hydrochloride (E16)
Figure imgf000022_0001
The title compound (E16) was prepared in a similar manner to Example 11 from 1 - (isopropyl)-4-{[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl} hexahydro-1 H-1 ,4-diazepine (D12) (0.15g) and 5-bromo-Λ/-methyl-2-pyridine carboxamide (D11 ) (0.086g). After SCX work-up the product was purified using flash chromatography [silica gel, step gradient 0-15% MeOH (containing 10% 0.88 ammonia solution) in DCM]. The free base product was dissolved in dry DCM (2ml) and treated with 1 N ethereal HCI (1ml). Evaporation of solvents afforded the title compound (E16) as a white solid (0.1g). 1 H NMR δ (DMSO-d6): 1.25-1.30 (6H, m), 1.99-2.2 (1 H, m), 2.27- 2.45 (1 H, m), 2.84-2.85 (3H, d, J=4.8Hz), 3.2-4.18 (9H, m), 7.65 (2H, d, J=8Hz), 7.90 (2H, d, J=8Hz), 8.12 (1H, d, J=8Hz), 8.32 (1 H, dd, J=8Hz), 8.82 (1H, q, J=4.8Hz), 8.98 (1 H, d, J=1.6Hz). LCMS electrospray (+ve) 381 (MH+).
Examples 17-21 (E17-E21) Examples 17-21 were prepared in a similar manner to Example 11 from 1-(isopropyl)-4- {[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl}hexahydro-1 H-1 ,4- diazepine (D12) and the appropriate heteroaryl bromide or chloride. All compounds displayed 1 H NMR and mass spectral data that were consistent with structure.
Figure imgf000022_0002
Figure imgf000022_0003
Figure imgf000023_0003
Example 22
1-Cyclobutyl-4-({4-[6-(trifluoromethyl)-3-pyridazinyl]phenyl}carbonyl)hexahydro- 1 H-1 ,4-diazepine hydrochloride (E22)
Figure imgf000023_0001
The title compound (E22) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4-{[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl}hexahydro- 1 H-1 ,4-diazepine (D7) and 3-chloro-6-(trifluoromethyl)pyridazine (Goodman, Stanforth and Tarbit, Tetrahedron, 1999, 55, 15067). The crude product after work-up was by purified by flash chromatography [silica gel, gradient 0-100% EtOAc-MeOH) and the free base was converted into the title hydrochloride salt (E22). 1H NMR δ (methanol-d4): 1.8- 1.95 (2H, m), 2.15-2.48 (6H, m), 3.07-3.25 (2H, m), 3.48-3.95 (6H, m), 4.3-4.5 (1 H, m), 7.72 (2H, d, J=8Hz), 8.21 (1 H, d, J=8Hz), 8.32 (2H, d, J=8Hz), 8.45 (1 H, d, J=8Hz).
Example 23
1-Cyclobutyl-4-({4-[2-(trifluoromethyl)-5-pyrimidinyl]phenyl}carbonyl)hexahydro- 1 H-1 ,4-diazepine hydrochloride (E23)
Figure imgf000023_0002
The title compound (E23) was prepared in a similar manner to Example 11 from 1- cyclobutyl-4-{[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl}hexahydro- 1 H-1 ,4-diazepine (D7) and 5-bromo-2-trifluoromethylpyrimidine (D13). The crude product after work-up was by purified by flash chromatography [silica gel, gradient 0-100% EtOAc-MeOH] and the free base was converted into the title hydrochloride salt (E23). 1H NMR δ (DMSO-d6): 1.6-1.75 (2H, m), 2.0-2.4 (6H, m), 2.97-3.05 (2H, m), 3.35-3.70 (6H, m), 4.14-4.19 (1 H, m), 7.67 (2H, d, J= 8Hz), 8.0 (2H, d, J=8Hz), 9.45 (2H, s),10.8-11.0 (1H, bs). LCMS electrospray (+ve) 405 (MH+). Example 24-28 (E24-E28)
Examples 24-28 were prepared in a similar manner to Example 15 from either 1-
(cyclobutyl)hexahydro-l H-1 ,4-diazepine dihydrochloride (D4) or 1-(isopropyl)hexahydro-
1 H-1 ,4-diazepine dihydrochloride (D2) and the appropriate benzoic acid. The free base products were converted into the hloride salts with ethereal HCI.
Figure imgf000024_0001
Figure imgf000024_0002
Example 29-43 (E29-E43)
Examples 29-43 were prepared from either 1-(cyclobutyl)hexahydro-1 H-1 ,4-diazepine dihydrochloride (D4) (0.1g) or 1-(isopropyl)hexahydro-1 H-1 ,4-diazepine dihydrochloride (D2) (0.1 g) in a 1 :1 mixture of DCM/DMF (5ml). To this solution diethylaminomethyl- polystyrene (3.2mmole/g) (0.4g, 3eq) was added and stirred at rt for 10min, followed by the addition of N-cyclohexylcarbodiimide-N-methylpolystyrene (200-400 mesh,
2.3mmole/g) (0.2g), catalytic HOBT and lequivalent of the appropriate benzoic acid. The reaction mixture was shaken at rt for 48h. Tris-(2-aminoethyl) aminomethyl polystyrene (PS-Trisamine) (0.050g) was added and the reaction mixture was shaken at rt for further 4h. The resins were filtered off and the filtrate was evaporated to dryness. The crude residue was purified by flash chromatography [silica gel, step gradient 0-15% MeOH (containing 10% 0.88 ammonia solution) in DCM]. The free base compounds were converted into the HCI salts in dry DCM (2ml) with ethereal HCI (1ml, 1N). Compounds showed 1H NMR and mass spectra that were consistent with structure.
Figure imgf000025_0001
Examples 44-51 (E44-E51)
Examples 44-51 were prepared in a similar manner to Examples 29-43 from 1- (cyclobutyl)hexahydro-l H-1 ,4-diazepine dihydrochloride (D4) and the appropriate benzoic acid.
Figure imgf000026_0001
Figure imgf000026_0003
Examples 52-55 (E52-E55)
Examples 52-55 were prepared in a similar manner to Example 11 from 1-cyclobutyl-4- {[4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl]carbonyl}hexahydro-1 H-1 ,4- diazepine (D7) and the appropriate aryl bromides (e.g. D14-D16 for E53-E55, respectively), except that THF/H20 was used as solvent and potassium carbonate as base, and the reaction was heated at 80-85°C for 1 h. Compounds showed H NMR and mass spectra that were consistent with structure.
Figure imgf000026_0002
Figure imgf000026_0004
Figure imgf000027_0002
Example 56
1 -Cyclobutyl-4-{[4-(1 ,3-oxazol-2-yl)phenyl]carbonyl}hexahydro-1 H-1 ,4-diazepine hydrochloride (E56)
Figure imgf000027_0001
Step 1 : 1,1-Dimethylethyl 4-{[4-(1,3-oxazol-2-yl)phenyl]carbonyl}hexahydro-1 H-1 ,4- diazepine carboxylate
A microwave vial was charged with 2-(4-bromophenyl)-oxazole (D17) (0.224g), molybdenum hexacarbonyl (0.111g), trans-Di-μ-acetatobis[2-(di-o- tolylphosphino)benzyl]palladium(ll) (0.04g), (±)-2,2'-bis(diphenylphosphino)-1 ,1 '- binaphthyl (0.08g) and purged with argon. Diglyme (4ml), toluene (2ml) and 4M aqueous potassium carbonate (0.74ml) were added, and the reaction mixture was degassed by argon saturation. tert-Butyl-hexahydro-1 H-1 ,4-diazepine carboxylate (0.22g) was added and the reaction vial was heated at 150°C for 20min in the microwave reactor. The reaction mixture was filtered, dried (Na2S04) and evaporated. Chromatography of the crude product (silica gel, eluting with EtOAc /hexanes, 50-100%) afforded the subtitle compound (0.141g). Step 2: 4-{[4-(1 ,3-Oxazol-2-yl)phenyl]carbonyl}hexahydro-1 H-1 ,4-diazepine The product from E56, Step 1 was dissolved in DCM (5ml) and TFA (0.5ml) was added. After 7h saturated aqueous potassium carbonate (5ml) was added and the aqueous phase extracted into DCM (3x10ml). The combined organics were washed with brine (20ml), dried (MgS04) and evaporated to give the subtitle compound as a yellow oil (0.064g). Step 3: 1 -Cyclobutyl-4-{[4-(1 ,3-oxazol-2-yl)phenyl]carbonyl}hexahydro-1 H-1 ,4- diazepine hydrochloride
Cyclobutanone (0.04ml) was added to a solution of the product of E56 Step 2 (0.064g) and triethylamine (0.12ml) in DCM (2.5ml). After 5min sodium triacetoxyborohydride (0.111g) was added and the reaction mixture was stirred for 16h. Saturated aqueous sodium hydrogen carbonate (5ml) was added and the aqueous phase extracted into DCM (10ml). The organic phase was filtered through a PhaseSep® cartridge and evaporated. Chromatography of the crude mixture [silica gel, eluting with 2N NH3 in MeOH/DCM, 0-15%] afforded the required amine free base, which was dissolved in DCM (2ml) and treated with HCI (1 ml, 1 M in diethyl ether). The precipitate was filtered and dried to give the title compound (E56) (0.07g). MS electrospray (+ion) 326 (MH+).
Example 57 1 -(1 -Methylethyl)-4-{[4-(3-methyl-1 ,2,4-oxadiazol-5-yl)phenyl]carbonyl}hexahydro- 1 H-1 ,4-diazepine hydrochloride
Figure imgf000028_0001
4-(3-Methyl-1 ,2,4-oxadiazol-5-yl)benzoic acid (D18) (0.415g), 1-(isopropyl)hexahydro- 1 H-1 ,4-diazepine (free base of D2) (0.294g), EDC (0.425g) and HOBT (0.282g) were dissolved in DMF (10ml) and stirred under argon. Hunig's base (1.43 ml) was added and the reaction mixture stirred for 15h. The solvent was evaporated and the yellow residue partitioned between DCM (10ml) and saturated sodium hydrogen carbonate (10ml). The aqueous phase was extracted into DCM (2* 10ml), dried (MgS04) and evaporated to give the crude amide as a brown solid. Chromatography of the crude mixture [silica gel, eluting with MeOH/DCM, 0-20%] afforded the desired amine free base, which was dissolved in DCM (2ml) and treated with HCI (1ml, 1 M in diethyl ether). The precipitate was filtered and dried to give the title compound (E57) (0.07g). MS electrospray (+ion) 329 (MH+). 1 H NMR δ (CDCI3, free base): 8.16 (2H, d, J=8.4Hz), 7.56 (2H, d, J=8.4Hz), 3.79-3.77 (2H, m), 3.44-3.40 (2H, m), 2.93 (1 H, app pent, J=6.8Hz), 2.82 (1 H, app tr, J=5.2Hz), 2.70 (1 H, app tr, J=5.8Hz), 2.65-2.59 (2H, m), 2.48 (3H, s), 1.96-1.90 (1 H, m), 1.77-1.71 (1 H, m), 1.04 (3H, d, J=6.4Hz) and 0.99 (3H, d, J=6.4Hz).
Example 58
1 -Cyclobutyl-4-{[4-(3-methyl-1 ,2,4-oxadiazol-5-yl)phenyl]carbonyl}hexahydro-1 H- 1 ,4-diazepine hydrochloride (E58)
Figure imgf000028_0002
4-(3-Methyl-1 ,2,4-oxadiazol-5-yl)benzoic acid (D18) (0.365g), 1-(cyclobutyl)hexahydro- 1 H-1 ,4-diazepine (free base compound from D4) (0.28g), EDC (0.374g) and HOBT (0.248g) were dissolved in DMF (10ml) and stirred under argon. Hunig's base (1.26 ml) was added and the reaction mixture stirred for 15h. The solvent was evaporated and the yellow residue partitioned between DCM (10ml) and saturated sodium hydrogen carbonate (10ml). The aqueous phase was extracted into DCM (2* 10ml), dried (MgSO4) and evaporated to give the crude amide as a brown solid. Chromatography of the crude mixture [silica gel, eluting with MeOH/DCM, 0-20%] afforded the desired amine free base, which was dissolved in DCM (2ml) and treated with HCI (1 ml, 1 M in diethyl ether). The precipitate was filtered and dried to give the title compound (E58) (0.07g). MS electrospray (+ion) 341 (MH+). 1 H NMR δ (CDCI3, free base): 8.16 (2H, d, J=8.4Hz), 7.55 (2H, d, J=8.4Hz), 3.81-3.78 (2H, m). 3.48-3.42 (2H, m), 2.97-2.85 (1 H, m), 2.65-2.63 (1 H, m), 2.54-2.42 (3H, m), 2.50 (3H, s), 2.11-1.95 (3H, m), 1.90-1.75 (3H, m) and 1.71- 1.58 (2H, m).
Abbreviations
Boc tert-butoxycarbonyl
EtOAc ethyl acetate h hour min minutes
DCM dichloromethane
MeOH methanol rt room temperature
DMF dimethylformamide
TFA trifluoroacetic acid
HOBT 1 -hydroxybenzotriazole
EDC 1 -(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.
Biological Data A membrane preparation containing histamine H3 receptors may be prepared in accordance with the following procedures:
(i) Generation of histamine H3 cell line
DNA encoding the human histamine H3 gene (Huvar, A. et al. (1999) Mol. Pharmacol. 55(6), 1 101-1107) was cloned into a holding vector, pCDNA3.1 TOPO (InVitrogen) and its cDNA was isolated from this vector by restriction digestion of plasmid DNA with the enzymes BamH1 and Not-1 and ligated into the inducible expression vector pGene (InVitrogen) digested with the same enzymes. The GeneSwitch™ system (a system where in transgene expression is switched off in the absence of an inducer and switched on in the presence of an inducer) was performed as described in US Patent nos:
5,364,791 ; 5,874,534; and 5,935,934. Ligated DNA was transformed into competent DH5α E. coli host bacterial cells and plated onto Luria Broth (LB) agar containing Zeocin™ (an antibiotic which allows the selection of cells expressing the sh ble gene which is present on pGene and pSwitch) at 50μg ml"1. Colonies containing the re-ligated plasmid were identified by restriction analysis. DNA for transfection into mammalian cells was prepared from 250ml cultures of the host bacterium containing the pGeneH3 plasmid and isolated using a DNA preparation kit (Qiagen Midi-Prep) as per manufacturers guidelines (Qiagen).
CHO K1 cells previously transfected with the pSwitch regulatory plasmid (InVitrogen) were seeded at 2x10e6 cells per T75 flask in Complete Medium, containing Hams F12 (GIBCOBRL, Life Technologies) medium supplemented with 10% v/v dialysed foetal bovine serum, L-glutamine, and hygromycin (100μg ml"1), 24 hours prior to use. Plasmid DNA was transfected into the cells using Lipofectamine plus according to the manufacturers guidelines (InVitrogen). 48 hours post transfection cells were placed into complete medium supplemented with 500μg ml"1 Zeocin™. 10-14 days post selection 10nM Mifepristone (InVitrogen), was added to the culture medium to induce the expression of the receptor. 18 hours post induction cells were detached from the flask using ethylenediamine tetra-acetic acid (EDTA; 1 :5000; InVitrogen), following several washes with phosphate buffered saline pH 7.4 and resuspended in Sorting Medium containing Minimum Essential Medium (MEM), without phenol red, and supplemented with Earles salts and 3% Foetal Clone II (Hyclone). Approximately 1x 10e7 cells were examined for receptor expression by staining with a rabbit polyclonal antibody, 4a, raised against the N-terminal domain of the histamine H3 receptor, incubated on ice for 60 minutes, followed by two washes in sorting medium. Receptor bound antibody was detected by incubation of the cells for 60 minutes on ice with a goat anti rabbit antibody, conjugated with Alexa 488 fluorescence marker (Molecular Probes). Following two further washes with Sorting Medium, cells were filtered through a 50μm Filcon™ (BD Biosciences) and then analysed on a FACS Vantage SE Flow Cytometer fitted with an Automatic Cell Deposition Unit. Control cells were non-induced cells treated in a similar manner. Positively stained cells were sorted as single cells into 96-well plates, containing Complete Medium containing 500μg ml"1 Zeocin™ and allowed to expand before reanalysis for receptor expression via antibody and ligand binding studies. One clone, 3H3, was selected for membrane preparation.
(ii) Membrane preparation from cultured cells
All steps of the protocol are carried out at 4°C and with pre-cooled reagents. The cell pellet is resuspended in 10 volumes of buffer A2 containing 50mM N-2- hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) (pH 7.40) supplemented with 10e-4M leupeptin (acetyl-leucyl-leucyl-arginal; Sigma L2884), 25μg/ml bacitracin (Sigma B0125), 1 mM ethylenediamine tetra-acetic acid (EDTA), 1 mM phenylmethylsulfonyl fluoride (PMSF) and 2x10e-6M pepstain A (Sigma). The cells are then homogenised by 2 x 15 second bursts in a 1 litre glass Waring blender, followed by centrifugation at 500g for 20 minutes. The supernatant is then spun at 48,000g for 30 minutes. The pellet is resuspended in 4 volumes of buffer A2 by vortexing for 5 seconds, followed by homogenisation in a Dounce homogeniser (10-15 strokes). At this point the preparation is aliquoted into polypropylene tubes and stored at -70°C.
(iii) Generation of histamine H1 cell line The human H1 receptor was cloned using known procedures described in the literature [Biochem. Biophys. Res. Commun. 1994, 201 (2), 894]. Chinese hamster ovary cells stably expressing the human H1 receptor were generated according to known procedures described in the literature [Br. J. Pharmacol. 1996, 117(6), 1071].
Compounds of the invention may be tested for in vitro biological activity in accordance with the following assays:
(I) Histamine H3 binding assay
For each compound being assayed, in a white walled clear bottom 96 well plate, is added:-
(a) 10μl of test compound (or 10μl of iodophenpropit (a known histamine H3 antagonist) at a final concentration of 10mM) diluted to the required concentration in 10% DMSO;
(b) 10μl 125l 4-[3-(4-iodophenylmethoxy)propyl]-1 H-imidazolium (iodoproxyfan) (Amersham; 1.85MBq/μl or 50μCi/ml; Specific Activity ~2000Ci/mmol) diluted to 200pM in assay buffer (50mM Tris(hydroxymethyl)aminomethane buffer (TRIS) pH 7.4, 0.5mM ethylenediamine tetra-acetic acid (EDTA)) to give 20pM final concentration; and
(c) 80μl bead/membrane mix prepared by suspending Scintillation Proximity Assay (SPA) bead type WGA-PVT at 100mg/ml in assay buffer followed by mixing with membrane (prepared in accordance with the methodology described above) and diluting in assay buffer to give a final volume of 80μl which contains 7.5μg protein and 0.25mg bead per well - mixture was pre-mixed at room temperature for 60 minutes on a roller. The plate is shaken for 5 minutes and then allowed to stand at room temperature for 3-4 hours prior to reading in a Wallac Microbeta counter on a 1 minute normalised tritium count protocol. Data was analysed using a 4-parameter logistic equation.
(II) Histamine H3 functional antagonist assay
For each compound being assayed, in a white walled clear bottom 96 well plate, is added:- (a) 10μl of test compound (or 10μl of guanosine 5'- triphosphate (GTP) (Sigma) as non-specific binding control) diluted to required concentration in assay buffer (20mM N-
2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) + 100mM NaCI + 10mM
MgCI2, pH7.4 NaOH);
(b) 60μl bead/membrane/GDP mix prepared by suspending wheat germ agglutinin- polyvinyltoluene (WGA-PVT) scintillation proximity assay (SPA) beads at 100mg/ml in assay buffer followed by mixing with membrane (prepared in accordance with the methodology described above) and diluting in assay buffer to give a final volume of 60μl which contains 10μg protein and 0.5mg bead per well - mixture is pre-mixed at 4°C for 30 minutes on a roller and just prior to addition to the plate, 10μM final concentration of guanosine 5' diphosphate (GDP) (Sigma; diluted in assay buffer) is added; The plate is incubated at room temperature to equilibrate antagonist with receptor/beads by shaking for 30 minutes followed by addition of:
(c) 10μl histamine (Tocris) at a final concentration of 0.3μM; and
(d) 20μl guanosine 5' [γ35-S] thiotriphosphate, triethylamine salt (Amersham; radioactivity concentration = 37kBq/μl or 1 mCi/ml; Specific Activity 1160Ci/mmol) diluted to 1.9nM in assay buffer to give 0.38nM final. The plate is then incubated on a shaker at room temperature for 30 minutes followed by centrifugation for 5 minutes at 1500 rpm. The plate is read between 3 and 6 hours after completion of centrifuge run in a Wallac Microbeta counter on a 1 minute normalised tritium count protocol. Data is analysed using a 4-parameter logistic equation. Basal activity used as minimum i.e. histamine not added to well.
(III) Histamine H1 functional antagonist assay
Compounds are assayed in a black walled clear bottom 384-well plate with cells seeded at 10000 cells/well. Tyrodes buffer is used throughout (NaCI 145 mM, KCI 2.5 mM, HEPES 10mM, glucose 10ιmM, MgCI2 1.2 mM, CaCI21.5 mM, probenecid 2.5 mM, pH adjusted to 7.40 with NaOH 1.0 M). Each well is treated with 10 μl of a solution of FLU04AM (10 μM in Tyrodes buffer at pH 7.40) and plates are then incubated for 60 minutes at 37°C. Wells are then washed with Tyrodes buffer using a EMBLA cell washer system, leaving 40μl buffer in each well, and then treated with 10μl of test compound in Tyrodes buffer. Each plate is incubated for 30min to allow equilibration of the test compound with the receptor. Each well is then treated with 10μl of histamine solution in Tyrodes buffer.
Functional antagonism is indicated by a suppression of histamine induced increase in fluorescence, as measured by the FLIPR system (Molecular Devices). By means of concentration effect curves, functional potencies are determined using standard pharmacological mathematical analysis.
Results
The compounds of Examples E1-E58 were tested in the histamine H3 functional antagonist assay and exhibited pKb values > 8.0. More particularly, the compounds of Examples 1-9, 11-14, 16, 22-28, 30-42, 44, 47, 52-56 and 58 exhibited pKb values > 9.0. Most particularly, the compounds of Examples 1 , 2, 11 , 12 and 58 exhibited pK values > 9.5.
The compounds of Examples E1-42, 44, 46-48 and 51-55 were tested in the histamine H1 functional antagonist assay and exhibited antagonism < 7.0 pKb. More particularly, the compounds of Examples E1-25, 27-42, 44, 46-48 and 51-55 exhibited antagonism < 6.0 pKb.

Claims

CLAIMS:
A compound of formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000033_0001
(I) wherein:
R1 represents branched C3.6 alkyl, C3-5 cycloalkyl or -C1-4 alkylC3-4 cycloalkyl; R2 represents halogen, d.6 alkyl, C1.6 alkoxy, cyano, amino or trifluoromethyl; n represents 0, 1 or 2; R3 represents -X-aryl, -X-heteroaryl, -X-heterocyclyl, -X-aryl-aryl, -X-aryl-heteroaryl, -X- aryl-heterocyclyl, -X-heteroaryl-aryl, -X-heteroaryl-heteroaryl, -X-heteroaryl-heterocyclyl, -X-heterocyclyl-aryl, -X-heterocyclyl-heteroaryl or -X-heterocyclyl-heterocyclyl; such that when R3 represents -X-piperidinyl, -X-piperidinyl-aryl, -X-piperidinyl-heteroaryl or -X-piperidinyl-heterocyclyl said piperidinyl group is attached to X via a nitrogen atom; wherein R3 is attached to the phenyl group of formula (I) at the 3 or 4 position; X represents a bond, O, CO, S02, CH20, OCH2, NR4, NR4CO or C1-6 alkyl; R4 represents hydrogen or C1-6 alkyl; wherein said aryl, heteroaryl or heterocyclyl groups of R3 may be optionally substituted by one or more (e.g. 1 , 2 or 3) halogen, hydroxy, cyano, nitro, oxo, haloC1-6 alkyl, halod. 6 alkoxy, Ci.6 alkyl, C1-6 alkoxy, arylC1-6 alkoxy, C1-6 alkylthio, C1-6 alkoxyC1-6 alkyl, C3.7 cycloalkylC1-6 alkoxy, C3-7 cycloalkylcarbonyl, -COC1-6 alkyl, d.6 alkoxycarbonyl, arylC1-6 alkyl, heteroarylC1-6 alkyl, heterocyclylC1-6 alkyl, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, Cι-6 alkylsulfonyloxy, d-6 alkylsulfonylC1-6 alkyl, arylsulfonyl, arylsulfonyloxy, arylsulfonyld.6 alkyl, aryloxy, -CO-aryl, -CO-heterocyclyl, -CO-heteroaryl, C1-6 alkylsulfonamidoC1-6 alkyl, Cι-6 alkylamidoC1-6 alkyl, arylsulfonamido, arylaminosulfonyl, arylsulfonamidod.6 alkyl, arylcarboxamidoCι.6 alkyl, aroylC1-6 alkyl, arylC1-6 alkanoyl, or a group NR15R16, - NR15CO-aryl, -NR15CO-heterocyclyl, -NR15CO-heteroaryl, -CONR 5R16 , -NR15COR16, - NR15S02R16 or -S02NR15R16 groups, wherein R15 and R16 independently represent hydrogen or
Figure imgf000033_0002
alkyl; or solvates thereof.
2. A compound according to claim 1 which is a compound of formula E1-E58 or a pharmaceutically acceptable salt thereof.
3. A pharmaceutical composition which comprises the compound of formula (I) as defined in claim 1 or claim 2 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or excipient.
4. A compound as defined in claim 1 or claim 2 for use in therapy.
5. A compound as defined in claim 1 or claim 2 for use in the treatment of neurological diseases.
6. Use of a compound as defined in claim 1 or claim 2 in the manufacture of a medicament for the treatment of neurological diseases.
7. A method of treatment of neurological diseases which comprises administering to a host in need thereof an effective amount of a compound of formula (I) as defined in claim 1 or claim 2 or a pharmaceutically acceptable salt thereof.
8. A pharmaceutical composition for use in the treatment of neurological diseases which comprises the compound of formula (I) as defined in claim 1 or claim 2 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
PCT/EP2004/011619 2003-10-15 2004-10-14 Novel compounds WO2005040144A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006534702A JP4824567B2 (en) 2003-10-15 2004-10-14 New compounds
US10/576,492 US7846922B2 (en) 2003-10-15 2004-10-14 1-benzoyl substituted diazepine derivatives as selective histamine H3 receptor agonists
EP04765973A EP1675838A1 (en) 2003-10-15 2004-10-14 1-benzoyl substituted diazepine derivatives as selective histamine h3 receptor agonists
US12/912,026 US8492375B2 (en) 2003-10-15 2010-10-26 1-benzoyl substituted diazepine derivatives as selective histamine H3 receptor agonists

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0324159.3A GB0324159D0 (en) 2003-10-15 2003-10-15 Novel compounds
GB0324159.3 2003-10-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/576,492 A-371-Of-International US7846922B2 (en) 2003-10-15 2004-10-14 1-benzoyl substituted diazepine derivatives as selective histamine H3 receptor agonists
US12/912,026 Continuation US8492375B2 (en) 2003-10-15 2010-10-26 1-benzoyl substituted diazepine derivatives as selective histamine H3 receptor agonists

Publications (1)

Publication Number Publication Date
WO2005040144A1 true WO2005040144A1 (en) 2005-05-06

Family

ID=29559346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011619 WO2005040144A1 (en) 2003-10-15 2004-10-14 Novel compounds

Country Status (5)

Country Link
US (2) US7846922B2 (en)
EP (1) EP1675838A1 (en)
JP (1) JP4824567B2 (en)
GB (1) GB0324159D0 (en)
WO (1) WO2005040144A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007044085A2 (en) * 2005-05-19 2007-04-19 Xenon Pharmaceuticals Inc. Heteroaryl compounds and their uses as therapeutic agents
WO2007043400A1 (en) * 2005-10-07 2007-04-19 Kissei Pharmaceutical Co., Ltd. Nitrogenated aromatic heterocyclic compound and pharmaceutical composition comprising the same
WO2007143422A2 (en) * 2006-05-30 2007-12-13 Janssen Pharmaceutica N.V. Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
WO2008002816A1 (en) * 2006-06-29 2008-01-03 Janssen Pharmaceutica N.V. Substituted benzamide modulators of the histamine h3 receptor
WO2008029084A1 (en) * 2006-09-06 2008-03-13 Syngenta Limited Herbicidal compounds and compositions
US7414047B2 (en) 2002-10-23 2008-08-19 Janssen Pharmaceutica N.V. Piperazinyl and diazapanyl benzamides and benzthioamides
US7479493B2 (en) 2006-06-29 2009-01-20 Janssen Pharmaceutica N.V. Substituted benzyl amine compounds
WO2009030716A1 (en) * 2007-09-06 2009-03-12 Glaxo Group Limited Piperazine derivative having affinity for the histamine h3 receptor
WO2009067401A1 (en) 2007-11-20 2009-05-28 Janssen Pharmaceutica N.V. Cycloalkyloxy-and hetξrocycloalky- loxypyridine compounds as modulators of the histamine h3 receptor
WO2009067406A1 (en) * 2007-11-20 2009-05-28 Janssen Pharmaceutica N.V. Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
WO2009143153A1 (en) * 2008-05-23 2009-11-26 Janssen Pharmaceutica Nv Substituted pyrrolidine amides as modulators of the histamine h3 receptor
WO2010018231A2 (en) * 2008-08-15 2010-02-18 Glaxo Group Limited Salt of, and processes for the preparation of, 1-isopropyl-4-{[4-(tetrahydro-2h-pyran- 4-yloxy)phenyl]carbonyl}hexahydro-1h-1,4-diazepine
WO2010023170A1 (en) * 2008-08-29 2010-03-04 Glaxo Group Limited Dosage form comprising 1-isopropyl-4-{[4-(tetrahydro-2H-pyran- 4-yloxy)phenyl]carbonyl}hexahydro-1H-1,4-diazepine or a salt thereof
EP2162136A1 (en) * 2007-06-03 2010-03-17 Vanderbilt University Benzamide mglur5 positive allosteric modulators and methods of making and using same
US7687499B2 (en) 2005-09-16 2010-03-30 Janssen Pharmaceutica Nv Cyclopropyl amines as modulators of the histamine H3 receptor
JP2010513295A (en) * 2006-12-14 2010-04-30 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Process for the preparation of piperazinyl and diazepanylbenzamide derivatives
US7767666B2 (en) 2006-06-29 2010-08-03 Janssen Pharmaceutica Nv Butyl and butynyl benzyl amine compounds
WO2010093425A1 (en) * 2009-02-11 2010-08-19 Sepracor Inc. Histamine h3 inverse agonists and antagonists and methods of use thereof
US7947718B2 (en) 2004-03-31 2011-05-24 Janssen Pharmaceutica Nv Isoxazole compounds as histamine H3 modulators
CN102149683A (en) * 2009-05-25 2011-08-10 中南大学 1-(substituted benzyl)-5-trifluoromethyl-2-(1H) pyridone compounds and their salts, their preparation methods and use thereof
US8242145B2 (en) 2008-02-14 2012-08-14 Panmira Pharmaceuticals, Llc Cyclic diaryl ether compounds as antagonists of prostaglandin D2 receptors
US8314107B2 (en) 2008-04-23 2012-11-20 Rigel Pharmaceuticals, Inc. Carboxamide compounds and methods for using the same
US8383654B2 (en) 2008-11-17 2013-02-26 Panmira Pharmaceuticals, Llc Heterocyclic antagonists of prostaglandin D2 receptors
US8426449B2 (en) 2008-04-02 2013-04-23 Panmira Pharmaceuticals, Llc Aminoalkylphenyl antagonists of prostaglandin D2 receptors
US8435999B2 (en) 2007-08-13 2013-05-07 Monsanto Technology Llc Compositions and methods for controlling nematodes
US8492375B2 (en) 2003-10-15 2013-07-23 Glaxo Group Limited 1-benzoyl substituted diazepine derivatives as selective histamine H3 receptor agonists
WO2013151982A1 (en) 2012-04-03 2013-10-10 Arena Pharmaceuticals, Inc. Methods and compounds useful in treating pruritus, and methods for identifying such compounds
US8853392B2 (en) 2007-06-03 2014-10-07 Vanderbilt University Benzamide mGluR5 positive allosteric modulators and methods of making and using same
US8921399B2 (en) 2007-08-27 2014-12-30 Dart Neuroscience (Cayman) Ltd. Therapeutic isoxazole compounds
US9023882B2 (en) 2007-04-11 2015-05-05 Kissei Pharmaceutical Co., Ltd. 5-membered nitrogen containing heterocyclic derivatives and pharmaceutical compositions comprising the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647377A1 (en) 2012-04-06 2013-10-09 Sanofi Use of an h3 receptor antagonist for the treatment of alzheimer's disease
JO3407B1 (en) 2012-05-31 2019-10-20 Eisai R&D Man Co Ltd Tetrahydropyrazolopyrimidine Compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012190A2 (en) * 2000-08-08 2002-02-14 Ortho Mcneil Pharmaceutical, Inc. Non-imidazole aryloxypiperidines as h3 receptor ligands
WO2003024917A1 (en) * 2001-09-07 2003-03-27 Henkel Kommanditgesellschaft Auf Aktien Bridged p-phenylenediamines
WO2003066604A2 (en) * 2002-02-05 2003-08-14 Novo Nordisk A/S Novel aryl- and heteroarylpiperazines
WO2004035556A1 (en) * 2002-10-16 2004-04-29 Glaxo Group Limited Substituted piperazines, (1,4) diaszepines, and 2,5-diazabicyclo (2.2.1) heptanes as histamine h1 and/or h3 antagonists or histamine h3 reverse antagonists

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6179998A (en) 1997-02-24 1998-09-09 Zymogenetics Inc. Calcitonin mimetics
US6268367B1 (en) 1998-02-23 2001-07-31 Zymogenetics, Inc. Piperazine derivatives for treating bone deficit conditions
NZ523526A (en) 2000-07-20 2004-10-29 Neurogen Corp Diaryl piperazines as capsaicin receptor ligands
DE60234453D1 (en) 2001-07-02 2009-12-31 High Point Pharmaceuticals Llc SUBSTITUTED PIPERAZINE AND DIAZEPANDERIVATES FOR USE AS HISTAMINE H3 RECEPTOR MODULATORS
AU2002337142B2 (en) * 2001-09-19 2007-10-11 Aventis Pharma S.A. Indolizines as kinase protein inhibitors
AU2003274053A1 (en) 2002-10-22 2004-05-13 Glaxo Group Limited Aryloxyalkylamine derivates as h3 receptor ligands
BRPI0315644B8 (en) * 2002-10-23 2021-05-25 Janssen Pharmaceutica Nv piperazinil and diazapanil compounds benzamides and benzothioamides, their compositions and respective uses
US7449464B2 (en) * 2003-03-12 2008-11-11 Kudos Pharmaceuticals Limited Phthalazinone derivatives
EA009469B1 (en) 2003-03-12 2007-12-28 Кудос Фармасеутикалс Лимитед Phthalazinone derivatives
CA2523431A1 (en) 2003-04-23 2004-11-25 Glaxo Group Limited Piperazine derivatives and their use for the treatment of neurological and psychiatric diseases
GB0324159D0 (en) 2003-10-15 2003-11-19 Glaxo Group Ltd Novel compounds
PT1802307E (en) 2004-10-15 2008-06-06 Glaxo Group Ltd Pyrrolidine derivatives as histamine receptors ligands
RS52569B (en) 2005-10-31 2013-04-30 Janssen Pharmaceutica N.V. Processes for the preparation of cyclopropyl-amide derivatives
EA201001799A1 (en) 2005-10-31 2011-06-30 Янссен Фармацевтика Н.В. NEW WAYS TO OBTAIN PIPERASINYL AND DIAZEPANILNY DERIVATIVES OF BENZAMIDE
CA2880932A1 (en) 2006-12-14 2008-06-26 Janssen Pharmaceutica N.V. Process for the preparation of piperazinyl and diazepanyl benzamide derivatives
JP4691669B2 (en) 2007-08-22 2011-06-01 アストラゼネカ・アクチエボラーグ Cyclopropylamide derivative
AR068370A1 (en) 2007-09-06 2009-11-11 Glaxo Group Ltd 1- (1-METHYTILE) -4 - {[4- (TETRAHIDRO-2H-PIRAN-4-ILOXI) PHENYL] CARBONIL} PIPERAZINE AND ITS HYDROCLORIDE SALT, PHARMACEUTICAL COMPOSITIONS CONTAINING IT, ITS USE IN THE TREATMENT OR PROPHYLAXIS OF NEUROLOGICAL DISEASES AND PROCESS FOR PREPARATION.
UA103468C2 (en) 2007-11-20 2013-10-25 Янссен Фармацевтика Н.В. Cycloalkyloxy-and heterocycloalkyloxypyridine compounds as modulators of the histamine h3 receptor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012190A2 (en) * 2000-08-08 2002-02-14 Ortho Mcneil Pharmaceutical, Inc. Non-imidazole aryloxypiperidines as h3 receptor ligands
WO2003024917A1 (en) * 2001-09-07 2003-03-27 Henkel Kommanditgesellschaft Auf Aktien Bridged p-phenylenediamines
WO2003066604A2 (en) * 2002-02-05 2003-08-14 Novo Nordisk A/S Novel aryl- and heteroarylpiperazines
WO2004035556A1 (en) * 2002-10-16 2004-04-29 Glaxo Group Limited Substituted piperazines, (1,4) diaszepines, and 2,5-diazabicyclo (2.2.1) heptanes as histamine h1 and/or h3 antagonists or histamine h3 reverse antagonists

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414047B2 (en) 2002-10-23 2008-08-19 Janssen Pharmaceutica N.V. Piperazinyl and diazapanyl benzamides and benzthioamides
US8492375B2 (en) 2003-10-15 2013-07-23 Glaxo Group Limited 1-benzoyl substituted diazepine derivatives as selective histamine H3 receptor agonists
US7947718B2 (en) 2004-03-31 2011-05-24 Janssen Pharmaceutica Nv Isoxazole compounds as histamine H3 modulators
WO2007044085A3 (en) * 2005-05-19 2007-06-28 Xenon Pharmaceuticals Inc Heteroaryl compounds and their uses as therapeutic agents
WO2007044085A2 (en) * 2005-05-19 2007-04-19 Xenon Pharmaceuticals Inc. Heteroaryl compounds and their uses as therapeutic agents
US7687499B2 (en) 2005-09-16 2010-03-30 Janssen Pharmaceutica Nv Cyclopropyl amines as modulators of the histamine H3 receptor
US8026242B2 (en) 2005-09-16 2011-09-27 Carruthers Nicholas I Cyclopropyl amines as modulators of the histamine H3 receptor
US7910582B2 (en) 2005-09-16 2011-03-22 Janssen Pharmaceutica Nv Cyclopropyl amines as modulators of the histamine H3 receptor
JPWO2007043400A1 (en) * 2005-10-07 2009-04-16 キッセイ薬品工業株式会社 Nitrogen-containing aromatic heterocyclic compound and pharmaceutical composition containing the same
JP5222561B2 (en) * 2005-10-07 2013-06-26 キッセイ薬品工業株式会社 Nitrogen-containing aromatic heterocyclic compound and pharmaceutical composition containing the same
WO2007043400A1 (en) * 2005-10-07 2007-04-19 Kissei Pharmaceutical Co., Ltd. Nitrogenated aromatic heterocyclic compound and pharmaceutical composition comprising the same
US8940731B2 (en) 2006-05-30 2015-01-27 Janssen Pharmaceutica Nv Substituted pyridyl amide compounds as modulators of the histamine H3 receptor
EA015555B1 (en) * 2006-05-30 2011-08-30 Янссен Фармацевтика Н.В. Substituted pyridyl amide compounds as modulators of the histamine hreceptor
US7777031B2 (en) 2006-05-30 2010-08-17 Janssen Pharmaceutica Nv Substituted pyridyl amide compounds as modulators of the histamine H3 receptor
NO341679B1 (en) * 2006-05-30 2017-12-18 Janssen Pharmaceutica Nv Substituted pyridylamide compounds, preparation of such and pharmaceutical compositions containing them, and use as modulators of the histamine H3 receptor
TWI393715B (en) * 2006-05-30 2013-04-21 Janssen Pharmaceutica Nv Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
US8637520B2 (en) 2006-05-30 2014-01-28 Janssen Pharmaceutica Nv Substituted pyridyl amide compounds as modulators of the histamine H3 receptor
WO2007143422A3 (en) * 2006-05-30 2008-02-07 Janssen Pharmaceutica Nv Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
US9321729B2 (en) 2006-05-30 2016-04-26 Janssen Pharmaceutica Nv Substituted pyridyl amide compounds as modulators of the histamine H3 receptor
KR101372941B1 (en) 2006-05-30 2014-03-14 얀센 파마슈티카 엔.브이. Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
WO2007143422A2 (en) * 2006-05-30 2007-12-13 Janssen Pharmaceutica N.V. Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
AU2007256931B2 (en) * 2006-05-30 2013-01-24 Janssen Pharmaceutica N.V. Substituted pyridyl amide compounds as modulators of the histamine H3 receptor
JP2009538928A (en) * 2006-05-30 2009-11-12 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Substituted pyridylamide compounds as modulators of histamine H3 receptors
US7479493B2 (en) 2006-06-29 2009-01-20 Janssen Pharmaceutica N.V. Substituted benzyl amine compounds
WO2008002816A1 (en) * 2006-06-29 2008-01-03 Janssen Pharmaceutica N.V. Substituted benzamide modulators of the histamine h3 receptor
US7767666B2 (en) 2006-06-29 2010-08-03 Janssen Pharmaceutica Nv Butyl and butynyl benzyl amine compounds
WO2008029084A1 (en) * 2006-09-06 2008-03-13 Syngenta Limited Herbicidal compounds and compositions
US8680273B2 (en) 2006-12-14 2014-03-25 Janssen Pharmaceutica Nv Process for the preparation of piperazinyl and diazepanyl benzamide derivatives
JP2010513295A (en) * 2006-12-14 2010-04-30 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Process for the preparation of piperazinyl and diazepanylbenzamide derivatives
US9023882B2 (en) 2007-04-11 2015-05-05 Kissei Pharmaceutical Co., Ltd. 5-membered nitrogen containing heterocyclic derivatives and pharmaceutical compositions comprising the same
EP2162136A4 (en) * 2007-06-03 2012-02-15 Univ Vanderbilt Benzamide mglur5 positive allosteric modulators and methods of making and using same
US8853392B2 (en) 2007-06-03 2014-10-07 Vanderbilt University Benzamide mGluR5 positive allosteric modulators and methods of making and using same
EP2162136A1 (en) * 2007-06-03 2010-03-17 Vanderbilt University Benzamide mglur5 positive allosteric modulators and methods of making and using same
US9420788B2 (en) 2007-08-13 2016-08-23 Monsanto Technology Llc Compositions and methods for controlling nematodes
US9125410B2 (en) 2007-08-13 2015-09-08 Monsanto Technology Llc Compositions and methods for controlling nematodes
US10827753B2 (en) 2007-08-13 2020-11-10 Monsanto Technology Llc Compositions and methods for controlling nematodes
US9642364B2 (en) 2007-08-13 2017-05-09 Monsanto Technology Llc Compositions and methods for controlling nematodes
US10112930B2 (en) 2007-08-13 2018-10-30 Monsanto Technology Llc Compositions and methods for controlling nematodes
US8435999B2 (en) 2007-08-13 2013-05-07 Monsanto Technology Llc Compositions and methods for controlling nematodes
US10375958B2 (en) 2007-08-13 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling nematodes
US8921399B2 (en) 2007-08-27 2014-12-30 Dart Neuroscience (Cayman) Ltd. Therapeutic isoxazole compounds
US9650349B2 (en) 2007-08-27 2017-05-16 Dart Neuroscience (Cayman) Ltd. Therapeutic isoxazole compounds
US9029397B2 (en) 2007-08-27 2015-05-12 Dart Neuroscience (Cayman) Ltd. Therapeutic isoxazole compounds
US10053467B2 (en) 2007-08-27 2018-08-21 Dart Neuroscience (Cayman) Ltd. Therapeutic isoxazole compounds
AU2008294708B2 (en) * 2007-09-06 2012-03-15 Glaxo Group Limited Piperazine derivative having affinity for the histamine H3 receptor
JP2010538041A (en) * 2007-09-06 2010-12-09 グラクソ グループ リミテッド Piperazine derivatives having affinity for histamine H3 receptor
US8288389B2 (en) 2007-09-06 2012-10-16 Glaxo Group Limited Piperazine derivative having affinity for the histamine H3 receptor
WO2009030716A1 (en) * 2007-09-06 2009-03-12 Glaxo Group Limited Piperazine derivative having affinity for the histamine h3 receptor
US8883776B2 (en) 2007-11-20 2014-11-11 Janssen Pharmaceutica N.V. Cycloalkyloxy- and heterocycloalkyloxypyridine compounds as modulators of the histamine H3 receptor
CN105712977A (en) * 2007-11-20 2016-06-29 詹森药业有限公司 Cycloalkyloxy- and heterocycloalkyloxypyridine compounds as modulators of the histamine h3 receptor
WO2009067406A1 (en) * 2007-11-20 2009-05-28 Janssen Pharmaceutica N.V. Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
WO2009067401A1 (en) 2007-11-20 2009-05-28 Janssen Pharmaceutica N.V. Cycloalkyloxy-and hetξrocycloalky- loxypyridine compounds as modulators of the histamine h3 receptor
CN105712977B (en) * 2007-11-20 2021-06-29 詹森药业有限公司 As histamine H3Cycloalkyloxypyridine compounds and heterocycloalkyloxy-pyridine compounds of receptor modulators
TWI491604B (en) * 2007-11-20 2015-07-11 Janssen Pharmaceutica Nv Cycloalkyloxy-and heterocycloalkyloxypyridine compounds as modulators of the histamine h3 receptor
US8242145B2 (en) 2008-02-14 2012-08-14 Panmira Pharmaceuticals, Llc Cyclic diaryl ether compounds as antagonists of prostaglandin D2 receptors
US8426449B2 (en) 2008-04-02 2013-04-23 Panmira Pharmaceuticals, Llc Aminoalkylphenyl antagonists of prostaglandin D2 receptors
US9255085B2 (en) 2008-04-23 2016-02-09 Rigel Pharmaceuticals, Inc. Carboxamide compounds and methods for using the same
US8314107B2 (en) 2008-04-23 2012-11-20 Rigel Pharmaceuticals, Inc. Carboxamide compounds and methods for using the same
US9062052B2 (en) 2008-04-23 2015-06-23 Rigel Pharmaceuticals, Inc. Carboxamide compounds and methods for using the same
US8871770B2 (en) 2008-04-23 2014-10-28 Rigel Pharmaceuticals Inc. Carboxamide compounds and methods for using the same
US9353111B2 (en) 2008-04-23 2016-05-31 Rigel Pharmaceuticals, Inc. Carboxamide compounds and methods for using the same
WO2009143153A1 (en) * 2008-05-23 2009-11-26 Janssen Pharmaceutica Nv Substituted pyrrolidine amides as modulators of the histamine h3 receptor
US8236792B2 (en) 2008-05-23 2012-08-07 Janssen Pharmaceutica Nv Substituted pyrrolidine amides as modulators of the histamine H3 receptor
WO2010018231A2 (en) * 2008-08-15 2010-02-18 Glaxo Group Limited Salt of, and processes for the preparation of, 1-isopropyl-4-{[4-(tetrahydro-2h-pyran- 4-yloxy)phenyl]carbonyl}hexahydro-1h-1,4-diazepine
WO2010018231A3 (en) * 2008-08-15 2010-04-08 Glaxo Group Limited Salt of, and processes for the preparation of, 1-isopropyl-4-{[4-(tetrahydro-2h-pyran- 4-yloxy)phenyl]carbonyl}hexahydro-1h-1,4-diazepine
WO2010023170A1 (en) * 2008-08-29 2010-03-04 Glaxo Group Limited Dosage form comprising 1-isopropyl-4-{[4-(tetrahydro-2H-pyran- 4-yloxy)phenyl]carbonyl}hexahydro-1H-1,4-diazepine or a salt thereof
US20110189280A1 (en) * 2008-08-29 2011-08-04 Allan James Clarke Dosage form comprising 1-isopropyl-4-hexahydro-1h-1,4-diazepine or a salt thereof
US8383654B2 (en) 2008-11-17 2013-02-26 Panmira Pharmaceuticals, Llc Heterocyclic antagonists of prostaglandin D2 receptors
US8404670B2 (en) 2009-02-11 2013-03-26 Sunovion Pharmaceuticals Inc. Histamine H3 inverse agonists and antagonists and methods of use thereof
WO2010093425A1 (en) * 2009-02-11 2010-08-19 Sepracor Inc. Histamine h3 inverse agonists and antagonists and methods of use thereof
US8063032B2 (en) 2009-02-11 2011-11-22 Sunovion Pharmaceuticals Inc. Histamine H3 inverse agonists and antagonists and methods of use thereof
CN102388043A (en) * 2009-02-11 2012-03-21 桑诺维恩药品公司 Histamine h3 inverse agonists and antagonists and methods of use thereof
CN102149683A (en) * 2009-05-25 2011-08-10 中南大学 1-(substituted benzyl)-5-trifluoromethyl-2-(1H) pyridone compounds and their salts, their preparation methods and use thereof
WO2013151982A1 (en) 2012-04-03 2013-10-10 Arena Pharmaceuticals, Inc. Methods and compounds useful in treating pruritus, and methods for identifying such compounds

Also Published As

Publication number Publication date
US7846922B2 (en) 2010-12-07
JP2007508346A (en) 2007-04-05
US20080045505A1 (en) 2008-02-21
US8492375B2 (en) 2013-07-23
US20110039833A1 (en) 2011-02-17
EP1675838A1 (en) 2006-07-05
GB0324159D0 (en) 2003-11-19
JP4824567B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
US8492375B2 (en) 1-benzoyl substituted diazepine derivatives as selective histamine H3 receptor agonists
EP1802307B1 (en) Pyrrolidine derivatives as histamine receptors ligands
AU2004238447B2 (en) Piperazine derivatives and their use for the treatment of neurological and psychiatric diseases
RU2423353C1 (en) New benzazepin derivatives
US7638631B2 (en) Methylene dipiperidine derivatives
EP1713778A1 (en) Benzazepine derivatives as histamine h3 antagonists
US20070208005A1 (en) Tetrahydrobenzazepines as antagonists and/or reverse agonists of the histamine h3 receptor
EP1756094A1 (en) 3-cycloalkylbenzazepines as histamine h3 antagonists
WO2004035556A1 (en) Substituted piperazines, (1,4) diaszepines, and 2,5-diazabicyclo (2.2.1) heptanes as histamine h1 and/or h3 antagonists or histamine h3 reverse antagonists
US7888347B2 (en) Pyrazolo [3,4-D]azepine derivatives as histamine H3 antagonists
EP1730114A1 (en) Benzazepine derivatives for the treatment of neurological and psychiatric disorders
WO2006061193A1 (en) Indenyl derivatives and use thereof for the treatment of neurological disorders
US20080009479A1 (en) Tetrahydrobenzazepines as Histamine H3 Receptor Ligands
WO2005014571A1 (en) Substituted piperidines as histamine h3 receptor ligands
WO2004035544A1 (en) Benzo[d]azepine derivatives for the treatment of neurological and psychiatric disorders
WO2004056821A2 (en) Quinolizidine derivatives

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006534702

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004765973

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004765973

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10576492

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10576492

Country of ref document: US