WO2005039455A1 - Intervertebral disc replacement prosthesis - Google Patents

Intervertebral disc replacement prosthesis Download PDF

Info

Publication number
WO2005039455A1
WO2005039455A1 PCT/US2003/030175 US0330175W WO2005039455A1 WO 2005039455 A1 WO2005039455 A1 WO 2005039455A1 US 0330175 W US0330175 W US 0330175W WO 2005039455 A1 WO2005039455 A1 WO 2005039455A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc
intervertebral disc
implantable intervertebral
replacement prosthesis
disc replacement
Prior art date
Application number
PCT/US2003/030175
Other languages
French (fr)
Inventor
Jeffrey Gordon
Original Assignee
Vanderbilt University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanderbilt University filed Critical Vanderbilt University
Priority to PCT/US2003/030175 priority Critical patent/WO2005039455A1/en
Priority to AU2003272683A priority patent/AU2003272683A1/en
Publication of WO2005039455A1 publication Critical patent/WO2005039455A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30113Rounded shapes, e.g. with rounded corners circular
    • A61F2002/30115Rounded shapes, e.g. with rounded corners circular circular-O-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30125Rounded shapes, e.g. with rounded corners elliptical or oval
    • A61F2002/30126Rounded shapes, e.g. with rounded corners elliptical or oval oval-O-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30133Rounded shapes, e.g. with rounded corners kidney-shaped or bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/3023Three-dimensional shapes cylindrical wedge-shaped cylinders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30451Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30492Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking pin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30495Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30565Special structural features of bone or joint prostheses not otherwise provided for having spring elements
    • A61F2002/30566Helical springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30594Special structural features of bone or joint prostheses not otherwise provided for slotted, e.g. radial or meridian slot ending in a polar aperture, non-polar slots, horizontal or arcuate slots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • A61F2002/30827Plurality of grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • A61F2002/443Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0008Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0015Kidney-shaped, e.g. bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00856Coating or prosthesis-covering structure made of compounds based on metal nitrides
    • A61F2310/0088Coating made of titanium nitride

Definitions

  • This invention relates, generally, to the field of intervertebral disc replacement prosthesis.
  • Degenerative disc disease is a common condition of the intervertebral disc (IVD) of the spine characterized by disc height collapse with or without disc herniation, osteophyte formation, foramenal stenosis, facet hypertrophy, synovial cyst, and other symptoms. Any or a combination of these findings can lead to pain or neurological deficit. Many of the symptoms of degenerative disc disease may be alleviated by decompression of the neural structures and immobilization of the involved spinal segments. Immobilization is typically achieved in the long term by removal of the disc and placement of bone graft. Temporary immobilization to encourage incorporation of the bone graft can be achieved with placement of rigid hardware such as screws and rods.
  • Implantation entails insertion of several separate pieces that must be properly aligned during surgery. The surgery is often performed with a minimal incision offering limited access to the insertion site. Perfect alignment after insertion could be difficult.
  • Other prostheses have been suggested (for example, see Unites States Patents 6,136,031 to Middleton, 5,320,644 to Baumgartner, 5,827,328 to Buttermann and 5,676,702 to Ratron, all of which are incorporated herein by reference) which have their own inherent stiffness, but do not take into account that axial loads placed on the spine during activity are generally much larger than bending loads.
  • An object of the present invention is to provide an intervertebral disc prosthesis that assists in alleviating the symptoms of degenerative disc disease without sacrificing normal spinal biomechanics, and therefore not compromising the health of adjacent discs.
  • Another object of the present invention is to provide an intervertebral disc prosthesis that performs effectively and efficiently within a patient's spine over a long period of time.
  • another object of the present invention is a prosthesis that is easily implanted and mimics both the motion and the stiffness of a normal disc.
  • Embodiments of this invention include a prosthesis that is comprised of a flexible element enclosing supports, or bearing surfaces that resemble a ball-and- socket joint.
  • a preferred embodiment of the present invention is an implantable intervertebral disc replacement prosthesis that comprises a deformable flexure with an axial cavity, the axial cavity extending along the axis of the flexure and a slit defined in the perimeter surface of the flexure to provide flexibility to the disc member, the slit having a slit thickness.
  • This embodiment further comprises a lower disc support housed in the axial cavity and an upper disc support housed in the axial cavity; with the lower and upper disk supports communicating with one another to provide support to the disc.
  • the upper or lower disc support means may be incorporated into the flexure in the form of a concave axial cavity or a convex protuberance.
  • Figure 1 is a posterior view of a preferred embodiment of the present invention.
  • Figure 2 is a lateral, cross-sectional view of a preferred embodiment taken along line A-A of Figure 1.
  • Figure 3 is an exploded view of the preferred embodiment depicted in Figures 1 & 2.
  • Figure 4 is a diagram demonstrating the method of finding the instantaneous axis of rotation of a vertebra in motion relative to a fixed point.
  • Figure 5 is a lateral cross-sectional view of a normal spinal motion segment.
  • Figure 6 is a lateral cross-sectional view of a spinal motion segment showing placement of an embodiment of the invention in the disc space.
  • Figure 7 is a lateral view of an alternative embodiment of the present invention with slits or cuts that terminate in perimeter openings
  • Figure 8 is an isometric view of the alternative embodiment shown in Figure 7.
  • Figure 9 is an isometric view of an alternative embodiment of the present invention with an oval shape
  • Figure 10 is a cross-sectional view of an alternative embodiment of the present invention with a fixed axis.
  • Figure 11 is a cross-sectional view of an alternative embodiment of the present invention with a shifted axis.
  • Figure 12 is a cross-sectional view of an alternative embodiment of the present invention with an angulated flexure.
  • Figure 13 is a cross-sectional view of an alternative embodiment of the present invention with a lower seat.
  • Figure 14 is a cross-sectional view of an alternative embodiment of the present invention where the flexure incorporates an upper disc support means.
  • Figure 15 is a cross-sectional view of an alternative embodiment of the present invention with a wire spring.
  • Figure 16 is a cross-sectional view of an alternative embodiment of the present invention where the flexure incorporates a lower disc support means.
  • the disc replacement prosthesis of the present invention is an implantable intervertebral disc replacement prosthesis 50 containing a flexure 100 which has an axis 103.
  • the flexure 100 is formed from a solid piece of material in which a blind hole is bored defining an axial cavity 105 which extends along the axis 103.
  • a helical slit 101 is cut in the perimeter surface, with the axis of the helix approximately coincident with axis 103 of disc member 50, so that the perimeter surface resembles a helical coil or spring.
  • the disc replacement of the present embodiment further comprises a lower disc support 102 housed in the axial cavity 105, and an upper disc support 104 housed in the axial cavity 105, with the lower and upper disc supports communicating with one another to provide support to the disc.
  • the lower and upper disc supports also act as bearing elements, and may communicate in a ball-and-socket type arrangement. These elements (i.e. the lower and upper disc supports) communicate to act as a transferor of axial compression loads.
  • Lower disc support 102 may or may not be rigidly attached to flexure 100.
  • Upper disc support 104 may be rigidly attached to the flexure 100 by press-fit, retaining ring, pins, welds or some other means, and also forms the upper surface of the disc member All embodiments of the present invention are to be made from a surgically implantable biocompatible material.
  • the preferred material for the flexure 100 should possess high fatigue strength such as titanium, titanium alloy, or stainless steel.
  • the material for the upper and lower disc supports 104 and 102 should possess excellent wear resistance and compressive strength. Ceramics, titanium, titanium alloy, stainless steel, cobalt chrome, composites, or polymers should preferably be used for these elements. Alternatively, a biocompatible material with a wear reducing coating could be used.
  • a titanium nitride coating may be used on the supports or the flexure. Attachment of the disc member 50 to the adjacent vertebrae should involve both immediate and long-term fixation. Immediate fixation can be achieved with a mechanical bone attachment means.
  • the upper and/or lower surfaces may include mechanical elements such as teeth 108.
  • the entire superior and inferior surfaces, including teeth 108 can be coated with a bone ingrowth inducing osteoconductive substance such as sintered beads or sintered wires or an osteoinductive coating such as hydroxyapatite for long-term fixation. Osteoinductive and osteoconductive coatings have been used extensively in joint replacement for many years and have been proven to be effective.
  • the flexure 100 allows the disc member 50 to react to bending loads by flexing.
  • the geometry of helical slit 101 can determine the stiffness of flexure 100 and therefore the stiffness of disc member 50. For example, to produce a more flexible implant the thickness of helical slit 101 can be increased so that less material of flexure 100 remains. Also the number of coils will determine the stiffness of the flexure. The spring action of flexure 100 will allow rotation and will have an inherent torsional stiffness that is also determined by the geometry of helical slit 101. The range of motion of disc member 50 is determined by the point at which flexure 100 bottoms out (the point at which a bending load causes adjacent coils to come into contact).
  • the range of motion is determined by the space between the coils, which is equivalent to the thickness of helical slit 101 multiplied by the number of coils. Therefore helical slit 101 can be tailored to match the mechanical and kinematical characteristics of a normal disc at any level in the spine.
  • the instantaneous axis of rotation (IAR) is a parameter that characterizes how one body rotates with respect to another body (or a fixed point) in planar motion. Normal spinal motion can be characterized as planar (2D) for pure flexion-extension.
  • Figure 4 demonstrates the general method of determining the IAR of the motion of a body from two positions. Translation vectors Ai, A 2 and Bi, B 2 are drawn from points before the motion to corresponding points after the motion.
  • the intersection of the perpendicular bisectors of these translation vectors is the IAR of the motion.
  • the preferred embodiment of the present invention incorporates a mobile IAR.
  • the ball-and-socket arrangement of the preferred embodiment of Figures 1, 2, & 3 may comprise a lower disc support 102 having a convex surface, and an upper disc support 104 having a surface suitable for receiving and communicating with the convex surface of lower disc support 102.
  • the convex surface of lower disc support 102 may vary. For instance, it may range from a partial hemisphere to a full hemisphere or it may be an elongated element with a rounded or partially rounded end.
  • FIG. 5 is a cross-sectional view of a motion segment including a superior vertebra 200, IVD 204 and an inferior vertebra 202.
  • the IAR for adjacent vertebrae in the normal lumbar spine has been shown to be located on or near the superior endplate of the inferior vertebra 202 of a motion segment, as shown.
  • Figure 6 shows the same cross-section of the spine as Figure 5, but with placement of disc member 50.
  • FIGS. 7 and 8 show an alternative embodiment where approximately horizontal perimeter slits 152 have been cut into flexure 150 instead of a helical-type slit.
  • the slit is substantially at a right angle to the axis of the disc member. The orientation of the slits is such that at least one slit is opened and at least one slit is closed under the action of bending loads imposed at any plane through the axis of the disc member.
  • each slit terminates in a hole or a perimeter opening 154, with a diameter that is larger than the thickness of the slit to reduce stress concentration.
  • the perimeter opening is circular- shaped.
  • the depth, thickness and number of the perimeter slits 152 as well as the size of perimeter opening 154 determine the stiffness of the disc member.
  • the thickness and number of perimeter slits 152 determine the range of motion of the prosthesis.
  • Disc 50 can be made into a variety of shapes, as long as the spirit of the invention is not adversely affected.
  • the disc prosthesis of the present invention may have a surface (such as, for example, the upper surface or the lower surface) that is flat, convex in shape or is otherwise shaped to fit the cavity of a vertebral endplate.
  • disc member 50 may be of a variety of shapes: for example circular, kidney-shaped, or oval-shaped.
  • Figure 9 shows an alternative embodiment of a disc 51 of the invention in which flexure 160 is oval shaped. Teeth 168 and upper disc support 164 are similar to those described above. Multiple alternative embodiments are also shown.
  • FIG. 10 A cross sectional view of an alternative embodiment of a disc 52 of the invention is shown in Figure 10 that has a fixed IAR at the center of the radius of hemispherical lower disc support 205.
  • the flexure 100 and the upper disc support 104 are also shown.
  • Figure 11 shows a cross sectional view of an alternative embodiment of a disc 54 of the invention in which the IAR has been shifted down and left, demonstrating that the IAR can be tailored to match the IAR of a healthy disc simply by altering the radius of curvature and the center of the radius of curvature of partial hemispherical lower disc support 305.
  • Upper disc support 304 has been made to communicate with partial hemispherical disc support 305.
  • the flexure 100 is also shown.
  • Figure 12 shows angulated disc member 56 with angulated flexure 400 and augmented lower disc support 405 and augmented upper disc support 404. The angle
  • FIG. 13 shows a disc 58 of the present invention with the addition of a lower seat member 510 communicated with the axial cavity of flexure 100.
  • lower seat member 510 could also be made of ceramic so that all elements experiencing sliding contact would gain the advantage of low wear ceramic on ceramic contact.
  • the upper disc support 104 is also shown.
  • FIG. 14 Another alternative embodiment of the disc 60 of the present invention is pictured in Figure 14.
  • a concave recess is created in flexure 600 which is meant to communicate with a flanged lower disc support 605.
  • Flexure 600 may be rigidly attached to flange 610 of flanged lower disc support 605 by weld, pins, retaining ring or some other means.
  • a spring element 700 is a conventional helical spring made by forming a wire into a helix.
  • Flanged upper disc support 704 and flanged lower disc support 705 are made to communicate with each other and to communicate with spring 700.
  • Spring 700 may be rigidly attached to either or both flanged upper disc support 704 or flanged lower disc support 705.
  • Flexure 800 incorporates a protuberance 805 which serves as a lower disc support.
  • Upper disc support 104 is made to communicate with protuberance 805. Therefore, the lower disc support is incorporated into flexure 800.
  • the disc prosthesis of the present invention may be inserted into the spine using standard medical procedures. For example, see Benzel, Spine Surgery: Techniques, Complication Avoidance, and Management, 1999, the contents of which are incorporated herein by reference. Particularly see Benzel, at Section 11, pages 142-192.
  • the prosthesis when inserting the disc prostheses of the present invention, the prosthesis may be inserted so that the lower disc support is superior to (from a top view) to the upper disc support.
  • the disc prosthesis of the present invention mat be used such that, when looking at the spine, the upper disc support as described herein is on the bottom and the lower disc support is on top.

Abstract

An intervertebral disc prosthesis (50) that comprises a deformable flexure (100) with an axial cavity (105), the axial cavity (105) extending along the axis of the flexure (100); a slit (101) defined in the perimeter surface of the flexure (100) to provide flexibility to the disc member, the slit (101) having a slit thickness. The slit (101) may be in the form of a coil to impart a spring-like appearance and function. The intervertebral disc prosthesis (50) further comprises a lower disc support (102) housed in the axial cavity and an upper disc support (104) housed in the axial cavity; with the lower and upper disk supports (102, 104) communicating with one another to provide support to the disc. The lower or upper disc support (102, 104) may alternatively be incorporated into the flexure.

Description

INTERVERTEBRAL DISC REPLACEMENT PROSTHESIS
FIELD OF THE INVENTION This invention relates, generally, to the field of intervertebral disc replacement prosthesis.
BACKGROUND OF THE INVENTION AND DESCRIPTION OF RELATED ART
Degenerative disc disease is a common condition of the intervertebral disc (IVD) of the spine characterized by disc height collapse with or without disc herniation, osteophyte formation, foramenal stenosis, facet hypertrophy, synovial cyst, and other symptoms. Any or a combination of these findings can lead to pain or neurological deficit. Many of the symptoms of degenerative disc disease may be alleviated by decompression of the neural structures and immobilization of the involved spinal segments. Immobilization is typically achieved in the long term by removal of the disc and placement of bone graft. Temporary immobilization to encourage incorporation of the bone graft can be achieved with placement of rigid hardware such as screws and rods. While immobilization and a successful fusion may relieve the pain associated with nerve impingement, the long-term consequences of eliminating the motion of the IVD show a tendency toward increased risk of failure of the adjacent discs. The lack of motion at the fusion site places increased biomechanical demands on the adjacent discs causing them to degenerate prematurely. Replacement prostheses have been suggested for degenerative disc disease to allow motion at the operative disc level. However these devices are devoid of stiffness and stability and rely on the remaining spinal elements, such as the ligaments, muscles and remaining IVD tissue, namely the annulus fibrosis, for stability. For example, United States Patent Numbers 5,556,431 to Buttner-Janz, 5,507,846 to Bullivant and 5,888,226 to Chaim, all of which are incorporated herein by reference, describe prostheses that comprise ball and socket type joints. These inventions rely on stretching the annulus fibrosis to put the prosthesis into compression to gain stiffness. But there is risk of altering the spine's biomechanics by increasing the disc height past the normal range and risk of damage to the annulus fibrosis. If the disc space is not stretched enough an unstable spinal segment could result, possibly leading to pain and further injury. Furthermore, all of these prior art disc replacement prostheses consist of several parts that are not connected. Implantation entails insertion of several separate pieces that must be properly aligned during surgery. The surgery is often performed with a minimal incision offering limited access to the insertion site. Perfect alignment after insertion could be difficult. Other prostheses have been suggested (for example, see Unites States Patents 6,136,031 to Middleton, 5,320,644 to Baumgartner, 5,827,328 to Buttermann and 5,676,702 to Ratron, all of which are incorporated herein by reference) which have their own inherent stiffness, but do not take into account that axial loads placed on the spine during activity are generally much larger than bending loads. Therefore, these prostheses would either bottom out under axial loads and offer no response to bending loads, or be stiff enough to support the axial loads and thereby too stiff to flex under bending loads. What is needed is an intervertebral disc prosthesis that assists in alleviating the symptoms of degenerative disc disease without sacrificing normal spinal mechanics.
SUMMARY OF THE INVENTION An object of the present invention is to provide an intervertebral disc prosthesis that assists in alleviating the symptoms of degenerative disc disease without sacrificing normal spinal biomechanics, and therefore not compromising the health of adjacent discs. Another object of the present invention is to provide an intervertebral disc prosthesis that performs effectively and efficiently within a patient's spine over a long period of time. Furthermore, another object of the present invention is a prosthesis that is easily implanted and mimics both the motion and the stiffness of a normal disc. Embodiments of this invention include a prosthesis that is comprised of a flexible element enclosing supports, or bearing surfaces that resemble a ball-and- socket joint. In all embodiments, alignment of the bearing surfaces may be achieved during manufacture, not during surgery. Therefore, implantation involves placement of a single unit. The implant has the ability to mimic the motion of a normal healthy disc and also to approximate the stiffness of the disc material that it is replacing. These embodiments may be sized to accommodate a range of disc space geometries for the cervical, thoracic or lumbar spine. A preferred embodiment of the present invention is an implantable intervertebral disc replacement prosthesis that comprises a deformable flexure with an axial cavity, the axial cavity extending along the axis of the flexure and a slit defined in the perimeter surface of the flexure to provide flexibility to the disc member, the slit having a slit thickness. This embodiment further comprises a lower disc support housed in the axial cavity and an upper disc support housed in the axial cavity; with the lower and upper disk supports communicating with one another to provide support to the disc. Alternatively, either the upper or lower disc support means may be incorporated into the flexure in the form of a concave axial cavity or a convex protuberance.
These and other embodiments will be apparent from the disclosure and claims.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a posterior view of a preferred embodiment of the present invention. Figure 2 is a lateral, cross-sectional view of a preferred embodiment taken along line A-A of Figure 1. Figure 3 is an exploded view of the preferred embodiment depicted in Figures 1 & 2. Figure 4 is a diagram demonstrating the method of finding the instantaneous axis of rotation of a vertebra in motion relative to a fixed point. Figure 5 is a lateral cross-sectional view of a normal spinal motion segment. Figure 6 is a lateral cross-sectional view of a spinal motion segment showing placement of an embodiment of the invention in the disc space. Figure 7 is a lateral view of an alternative embodiment of the present invention with slits or cuts that terminate in perimeter openings Figure 8 is an isometric view of the alternative embodiment shown in Figure 7. Figure 9 is an isometric view of an alternative embodiment of the present invention with an oval shape Figure 10 is a cross-sectional view of an alternative embodiment of the present invention with a fixed axis. Figure 11 is a cross-sectional view of an alternative embodiment of the present invention with a shifted axis. Figure 12 is a cross-sectional view of an alternative embodiment of the present invention with an angulated flexure. Figure 13 is a cross-sectional view of an alternative embodiment of the present invention with a lower seat. Figure 14 is a cross-sectional view of an alternative embodiment of the present invention where the flexure incorporates an upper disc support means. Figure 15 is a cross-sectional view of an alternative embodiment of the present invention with a wire spring. Figure 16 is a cross-sectional view of an alternative embodiment of the present invention where the flexure incorporates a lower disc support means.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A preferred embodiment of the invention is shown in Figures 1, 2 & 3. The disc replacement prosthesis of the present invention is an implantable intervertebral disc replacement prosthesis 50 containing a flexure 100 which has an axis 103. The flexure 100 is formed from a solid piece of material in which a blind hole is bored defining an axial cavity 105 which extends along the axis 103. In this embodiment, a helical slit 101 is cut in the perimeter surface, with the axis of the helix approximately coincident with axis 103 of disc member 50, so that the perimeter surface resembles a helical coil or spring. The disc replacement of the present embodiment further comprises a lower disc support 102 housed in the axial cavity 105, and an upper disc support 104 housed in the axial cavity 105, with the lower and upper disc supports communicating with one another to provide support to the disc. The lower and upper disc supports also act as bearing elements, and may communicate in a ball-and-socket type arrangement. These elements (i.e. the lower and upper disc supports) communicate to act as a transferor of axial compression loads. Lower disc support 102 may or may not be rigidly attached to flexure 100. Upper disc support 104 may be rigidly attached to the flexure 100 by press-fit, retaining ring, pins, welds or some other means, and also forms the upper surface of the disc member All embodiments of the present invention are to be made from a surgically implantable biocompatible material. The preferred material for the flexure 100 should possess high fatigue strength such as titanium, titanium alloy, or stainless steel. The material for the upper and lower disc supports 104 and 102 should possess excellent wear resistance and compressive strength. Ceramics, titanium, titanium alloy, stainless steel, cobalt chrome, composites, or polymers should preferably be used for these elements. Alternatively, a biocompatible material with a wear reducing coating could be used. For example, a titanium nitride coating may be used on the supports or the flexure. Attachment of the disc member 50 to the adjacent vertebrae should involve both immediate and long-term fixation. Immediate fixation can be achieved with a mechanical bone attachment means. For example, the upper and/or lower surfaces may include mechanical elements such as teeth 108. Also, The entire superior and inferior surfaces, including teeth 108 can be coated with a bone ingrowth inducing osteoconductive substance such as sintered beads or sintered wires or an osteoinductive coating such as hydroxyapatite for long-term fixation. Osteoinductive and osteoconductive coatings have been used extensively in joint replacement for many years and have been proven to be effective. The flexure 100 allows the disc member 50 to react to bending loads by flexing. The geometry of helical slit 101 can determine the stiffness of flexure 100 and therefore the stiffness of disc member 50. For example, to produce a more flexible implant the thickness of helical slit 101 can be increased so that less material of flexure 100 remains. Also the number of coils will determine the stiffness of the flexure. The spring action of flexure 100 will allow rotation and will have an inherent torsional stiffness that is also determined by the geometry of helical slit 101. The range of motion of disc member 50 is determined by the point at which flexure 100 bottoms out (the point at which a bending load causes adjacent coils to come into contact). The range of motion is determined by the space between the coils, which is equivalent to the thickness of helical slit 101 multiplied by the number of coils. Therefore helical slit 101 can be tailored to match the mechanical and kinematical characteristics of a normal disc at any level in the spine. The instantaneous axis of rotation (IAR) is a parameter that characterizes how one body rotates with respect to another body (or a fixed point) in planar motion. Normal spinal motion can be characterized as planar (2D) for pure flexion-extension. Figure 4 demonstrates the general method of determining the IAR of the motion of a body from two positions. Translation vectors Ai, A2 and Bi, B2 are drawn from points before the motion to corresponding points after the motion. The intersection of the perpendicular bisectors of these translation vectors is the IAR of the motion. The preferred embodiment of the present invention incorporates a mobile IAR. The ball-and-socket arrangement of the preferred embodiment of Figures 1, 2, & 3 may comprise a lower disc support 102 having a convex surface, and an upper disc support 104 having a surface suitable for receiving and communicating with the convex surface of lower disc support 102. The convex surface of lower disc support 102 may vary. For instance, it may range from a partial hemisphere to a full hemisphere or it may be an elongated element with a rounded or partially rounded end. Motion at the interface between lower disc support 102 (as seen in Figure 2) and upper disc support 104 has an IAR at the center of the radius of the bearing surface of lower disc support 102. However, this embodiment also allows translation between lower disc support 102 and flexure 100. The combination of rotation and translation allows a range of possible IAR's. Figure 5 is a cross-sectional view of a motion segment including a superior vertebra 200, IVD 204 and an inferior vertebra 202. The IAR for adjacent vertebrae in the normal lumbar spine has been shown to be located on or near the superior endplate of the inferior vertebra 202 of a motion segment, as shown. Figure 6 shows the same cross-section of the spine as Figure 5, but with placement of disc member 50. In order to prevent unnatural loading of the facet joints 206, the correct IAR must be maintained. The mobile IAR described above may allow correct IAR of motion between superior vertebra 200 and inferior vertebra 202 after implantation of disc element 50. Figures 7 and 8 show an alternative embodiment where approximately horizontal perimeter slits 152 have been cut into flexure 150 instead of a helical-type slit. Preferably, the slit is substantially at a right angle to the axis of the disc member. The orientation of the slits is such that at least one slit is opened and at least one slit is closed under the action of bending loads imposed at any plane through the axis of the disc member. In the embodiment depicted in the drawings, each slit terminates in a hole or a perimeter opening 154, with a diameter that is larger than the thickness of the slit to reduce stress concentration. Preferably, the perimeter opening is circular- shaped. The depth, thickness and number of the perimeter slits 152 as well as the size of perimeter opening 154 determine the stiffness of the disc member. The thickness and number of perimeter slits 152 determine the range of motion of the prosthesis. Disc 50 can be made into a variety of shapes, as long as the spirit of the invention is not adversely affected. That is, the disc prosthesis of the present invention may have a surface (such as, for example, the upper surface or the lower surface) that is flat, convex in shape or is otherwise shaped to fit the cavity of a vertebral endplate. Furthermore, from a top (superior-to-inferior) view, disc member 50 may be of a variety of shapes: for example circular, kidney-shaped, or oval-shaped. Figure 9 shows an alternative embodiment of a disc 51 of the invention in which flexure 160 is oval shaped. Teeth 168 and upper disc support 164 are similar to those described above. Multiple alternative embodiments are also shown. A cross sectional view of an alternative embodiment of a disc 52 of the invention is shown in Figure 10 that has a fixed IAR at the center of the radius of hemispherical lower disc support 205. The flexure 100 and the upper disc support 104 are also shown. Figure 11 shows a cross sectional view of an alternative embodiment of a disc 54 of the invention in which the IAR has been shifted down and left, demonstrating that the IAR can be tailored to match the IAR of a healthy disc simply by altering the radius of curvature and the center of the radius of curvature of partial hemispherical lower disc support 305. Upper disc support 304 has been made to communicate with partial hemispherical disc support 305. The flexure 100 is also shown. Figure 12 shows angulated disc member 56 with angulated flexure 400 and augmented lower disc support 405 and augmented upper disc support 404. The angle
θ incorporated into angulated disc member 56 is meant to maintain the natural lordosis of the lumbar or cervical spine or the natural kyphosis of the thoracic spine. This angle could be matched to any lordosis or kyphosis of a disc level being replaced. Figure 13 shows a disc 58 of the present invention with the addition of a lower seat member 510 communicated with the axial cavity of flexure 100. In the case that a metal material is used for flexure 100 and a harder ceramic material is used for shortened lower disc support 505, lower seat member 510 could also be made of ceramic so that all elements experiencing sliding contact would gain the advantage of low wear ceramic on ceramic contact. The upper disc support 104 is also shown. Another alternative embodiment of the disc 60 of the present invention is pictured in Figure 14. A concave recess is created in flexure 600 which is meant to communicate with a flanged lower disc support 605. In this way, the upper disc support is incorporated into flexure 600. Flexure 600 may be rigidly attached to flange 610 of flanged lower disc support 605 by weld, pins, retaining ring or some other means. Another alternative embodiment of the disc 60 is pictured in Figure 15. A spring element 700 is a conventional helical spring made by forming a wire into a helix. Flanged upper disc support 704 and flanged lower disc support 705 are made to communicate with each other and to communicate with spring 700. Spring 700 may be rigidly attached to either or both flanged upper disc support 704 or flanged lower disc support 705. Another alternative embodiment if the disc 64 of the present invention is pictured in Figure 16. Flexure 800 incorporates a protuberance 805 which serves as a lower disc support. Upper disc support 104 is made to communicate with protuberance 805. Therefore, the lower disc support is incorporated into flexure 800. The disc prosthesis of the present invention may be inserted into the spine using standard medical procedures. For example, see Benzel, Spine Surgery: Techniques, Complication Avoidance, and Management, 1999, the contents of which are incorporated herein by reference. Particularly see Benzel, at Section 11, pages 142-192. Additionally, when inserting the disc prostheses of the present invention, the prosthesis may be inserted so that the lower disc support is superior to (from a top view) to the upper disc support. In other words, the disc prosthesis of the present invention mat be used such that, when looking at the spine, the upper disc support as described herein is on the bottom and the lower disc support is on top. All cited patents and publications referred to in this application are herein expressly incorporated herein by reference. This invention thus being described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one of ordinary skill in the art are intended to be included within the scope of the following claims.

Claims

I claim:
1. An implantable intervertebral disc replacement prosthesis, comprising: an upper surface and a lower surface; a deformable flexure with a perimeter surface and an axial cavity, the axial cavity extending along the axis of the flexure; a slit defined in the perimeter surface of the flexure to provide flexibility to the flexure, the slit having a slit thickness; a lower disc support housed in the axial cavity; and an upper disc support housed in the axial cavity; wherein the lower and upper disk supports communicating with one another to provide support to the disc.
2. The implantable intervertebral disc replacement prosthesis of claim 1, wherein the disc permits flexion-extension, axial rotation and lateral bending for a wearer of the disc by deformation of the disc.
3. The implantable intervertebral disc replacement prosthesis of claim 1 , whereby the lower and upper disc supports communicate to act as a transferor of axial compression load.
4. The implantable intervertebral disc replacement of claim 1, wherein the slit is helical to the axis of the disc.
5. The implantable intervertebral disc replacement prosthesis of claim 1, wherein the slit is transverse to the axis of the disc.
6. The implantable intervertebral disc replacement of claim 5, wherein the slit has a first end and a second end, with each end terminating in a perimeter opening larger than the slit thickness.
7. The implantable intervertebral disc replacement of claim 6, wherein the perimeter opening is circular-shaped.
8. The implantable intervertebral disc replacement of claim 1 , wherein the disc comprises in the range of two to five slits, including said first mentioned slit.
9. The implantable intervertebral disc of claim 1 , wherein the lower and the upper disc supports communicate in a ball-and-socket-type arrangement.
10. The implantable intervertebral disc replacement prosthesis of claim 1, wherein the lower disc support has a convex surface, and the upper disc support has a surface suitable for receiving and communicating with the convex surface of the lower disc support.
11. The implantable intervertebral disc replacement prosthesis of claim 1, wherein the lower disc support has a concave surface, and the upper disc support has a surface suitable for receiving and communicating with the concave surface of the lower disc support.
12. The implantable intervertebral disc replacement prosthesis of claim 1 , wherein the disc is shaped to fit a cavity between two vertebrae.
13. The implantable intervertebral disc replacement prosthesis of claim 1 , wherein at least one of the upper surface or the lower surface is convex.
14. The implantable intervertebral disc replacement prosthesis of claim 1 , wherein at least one of the upper surface or the lower surface is substantially flat.
15. The implantable intervertebral disc replacement prosthesis of claim 1 , wherein the disc is kidney-shaped.
16. The implantable intervertebral disc replacement prosthesis of claim 1, wherein the disc is made from surgically implantable ceramic, metal, composite, or polymer materials.
17. The implantable intervertebral disc replacement prosthesis of claim 1, wherein said upper and lower disc supports have a coating that comprises a titanium nitride material.
18. The implantable intervertebral disc replacement prosthesis of claim 1 , wherein the prosthesis further comprises a bone fixation promotion surface on at least one of the upper surface and the lower surface.
19. The implantable intervertebral disc replacement prosthesis of claim 18, wherein at least one of the upper surface or the lower surface comprises teeth.
20. The implantable intervertebral disc replacement prosthesis of claim 18, wherein the bone fixation promotion surface comprises an osteoconductive or an osteoinductive material.
21. The implantable intervertebral disc replacement prosthesis of claim 20, wherein the coating is hydroxyapatite.
22. An implantable intervertebral disc replacement prosthesis, comprising: an upper surface and a lower surface; a deformable flexure with a perimeter surface that defines an axial cavity, the axial cavity extending along the axis of the flexure; a slit defined in the perimeter surface of the flexure to provide flexibility to the flexure, the slit having a slit thickness; and a lower disc support housed in the axial cavity; wherein the lower disc support is received by and communicates with the axial cavity of the flexure to provide support to the disc.
23. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the disc permits flexion-extension, axial rotation and lateral bending for a wearer of the prosthesis by deformation of the disc.
24. The implantable intervertebral disc replacement prosthesis of claim 22, whereby the lower disc support and the axial cavity of the flexure communicate to act as a transferor of axial compression load.
25. The implantable intervertebral disc replacement of claim 22, wherein the slit is helical to the axis of the disc.
26. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the slit is transverse to the axis of the disc.
27. The implantable intervertebral disc replacement of claim 26, wherein the slit has a first end and a second end, with each end terminating in a perimeter opening larger than the slit thickness.
28. The implantable intervertebral disc replacement of claim 27, wherein the perimeter opening is circular-shaped.
29. The implantable intervertebral disc replacement of claim 22, wherein the disc member comprises in the range of two to five slits, including said first mentioned slit.
30. The implantable intervertebral disc of claim 22, wherein the lower disc support and the axial cavity of the flexure communicate in a ball-and-socket-type arrangement.
31. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the lower disc support has a convex surface, and the axial cavity of the flexure has a surface suitable for receiving and communicating with the convex surface of the lower disc support.
32. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the lower disc support has a concave surface, and the axial cavity of the flexure has a protuberance suitable for receiving and communicating with the concave surface of the lower disc support.
33. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the prosthesis is shaped to fit a cavity between two vertebrae.
34. The implantable intervertebral disc replacement prosthesis of claim 22, wherein at least one of the upper surface or the lower surface is convex.
35. The implantable intervertebral disc replacement prosthesis of claim 22, wherein at least one of the upper surface or the lower surface is substantially flat.
36. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the prosthesis is kidney-shaped.
37. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the prosthesis is made from a surgically implantable ceramic, metal, composite, or polymer.
38. The implantable intervertebral disc replacement prosthesis of claim 22, wherein at least one of said axial cavity or lower disc support has a coating that comprises a titanium nitride material.
39. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the prosthesis further comprises a bone fixation promotion surface on at least one of the upper surface and the lower surface.
40. The implantable intervertebral disc replacement prosthesis of claim 39, wherein at least one of the upper surface or the lower surface comprises teeth.
41. The implantable intervertebral disc replacement prosthesis of claim 40, wherein the bone fixation promotion surface comprises an osteoconductive or an osteoinductive material.
42. The implantable intervertebral disc replacement prosthesis of claim 41 , wherein the coating is hydroxyapatite.
43. The implantable intervertebral disc replacement prosthesis of claim 22, wherein the lower disc support substantially fills the axial cavity.
44. An implantable intervertebral disc replacement prosthesis, comprising: a deformable helical spring member that defines an axial cavity, the axial cavity extending along the axis of the spring member; a lower disc support housed in the axial cavity; and an upper disc support housed in the axial cavity; wherein the lower and upper disc supports communicate with each other to provide support to the disc
PCT/US2003/030175 2003-09-23 2003-09-23 Intervertebral disc replacement prosthesis WO2005039455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US2003/030175 WO2005039455A1 (en) 2003-09-23 2003-09-23 Intervertebral disc replacement prosthesis
AU2003272683A AU2003272683A1 (en) 2003-09-23 2003-09-23 Intervertebral disc replacement prosthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/030175 WO2005039455A1 (en) 2003-09-23 2003-09-23 Intervertebral disc replacement prosthesis

Publications (1)

Publication Number Publication Date
WO2005039455A1 true WO2005039455A1 (en) 2005-05-06

Family

ID=34519488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/030175 WO2005039455A1 (en) 2003-09-23 2003-09-23 Intervertebral disc replacement prosthesis

Country Status (2)

Country Link
AU (1) AU2003272683A1 (en)
WO (1) WO2005039455A1 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106912A1 (en) 2007-03-07 2008-09-12 Ulrich Gmbh & Co. Kg Intervertebral implant having an elastic component
US7905919B2 (en) 2006-11-07 2011-03-15 Biomedflex Llc Prosthetic joint
US7914580B2 (en) 2006-11-07 2011-03-29 Biomedflex Llc Prosthetic ball-and-socket joint
US7927374B2 (en) 2004-06-30 2011-04-19 Synergy Disc Replacement, Inc. Artificial spinal disc
US8029574B2 (en) 2006-11-07 2011-10-04 Biomedflex Llc Prosthetic knee joint
US8038716B2 (en) 2004-06-30 2011-10-18 Synergy Disc Replacement, Inc Artificial spinal disc
US8070823B2 (en) 2006-11-07 2011-12-06 Biomedflex Llc Prosthetic ball-and-socket joint
US8137404B2 (en) 2006-03-28 2012-03-20 Depuy Spine, Inc. Artificial disc replacement using posterior approach
US8282641B2 (en) 2006-03-28 2012-10-09 Depuy Spine, Inc. Methods and instrumentation for disc replacement
US8298287B2 (en) 2007-06-26 2012-10-30 Depuy Spine, Inc. Intervertebral motion disc with helical shock absorber
US8308812B2 (en) 2006-11-07 2012-11-13 Biomedflex, Llc Prosthetic joint assembly and joint member therefor
US8454699B2 (en) 2004-06-30 2013-06-04 Synergy Disc Replacement, Inc Systems and methods for vertebral disc replacement
US8512413B2 (en) 2006-11-07 2013-08-20 Biomedflex, Llc Prosthetic knee joint
US8715352B2 (en) 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
US9005306B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Medical Implants With Compliant Wear-Resistant Surfaces
US9005307B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Prosthetic ball-and-socket joint
US9237958B2 (en) 2004-06-30 2016-01-19 Synergy Disc Replacement Inc. Joint prostheses
US9566157B2 (en) 2006-11-07 2017-02-14 Biomedflex, Llc Three-member prosthetic joint
US9724207B2 (en) 2003-02-14 2017-08-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9949769B2 (en) 2004-03-06 2018-04-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US10433974B2 (en) 2003-06-30 2019-10-08 DePuy Synthes Products, Inc. Intervertebral implant with conformable endplate
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734148A1 (en) * 1995-05-15 1996-11-22 Biomat Spinal intervertebral disc replacement prosthesis
EP0985384A1 (en) * 1998-09-10 2000-03-15 Buechel-Pappas Trust Method for improving strenght of prosthetic component
US6296664B1 (en) * 1998-06-17 2001-10-02 Surgical Dynamics, Inc. Artificial intervertebral disc
US6579321B1 (en) * 1999-05-17 2003-06-17 Vanderbilt University Intervertebral disc replacement prosthesis
US6582468B1 (en) * 1998-12-11 2003-06-24 Spryker Spine Intervertebral disc prosthesis with compressible body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734148A1 (en) * 1995-05-15 1996-11-22 Biomat Spinal intervertebral disc replacement prosthesis
US6296664B1 (en) * 1998-06-17 2001-10-02 Surgical Dynamics, Inc. Artificial intervertebral disc
EP0985384A1 (en) * 1998-09-10 2000-03-15 Buechel-Pappas Trust Method for improving strenght of prosthetic component
US6582468B1 (en) * 1998-12-11 2003-06-24 Spryker Spine Intervertebral disc prosthesis with compressible body
US6579321B1 (en) * 1999-05-17 2003-06-17 Vanderbilt University Intervertebral disc replacement prosthesis

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9814589B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11432938B2 (en) 2003-02-14 2022-09-06 DePuy Synthes Products, Inc. In-situ intervertebral fusion device and method
US9808351B2 (en) 2003-02-14 2017-11-07 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10639164B2 (en) 2003-02-14 2020-05-05 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10405986B2 (en) 2003-02-14 2019-09-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11096794B2 (en) 2003-02-14 2021-08-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10376372B2 (en) 2003-02-14 2019-08-13 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10786361B2 (en) 2003-02-14 2020-09-29 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10085843B2 (en) 2003-02-14 2018-10-02 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10433971B2 (en) 2003-02-14 2019-10-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9925060B2 (en) 2003-02-14 2018-03-27 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9814590B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9724207B2 (en) 2003-02-14 2017-08-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10492918B2 (en) 2003-02-14 2019-12-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11207187B2 (en) 2003-02-14 2021-12-28 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10583013B2 (en) 2003-02-14 2020-03-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9801729B2 (en) 2003-02-14 2017-10-31 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10575959B2 (en) 2003-02-14 2020-03-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10555817B2 (en) 2003-02-14 2020-02-11 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9788963B2 (en) 2003-02-14 2017-10-17 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10420651B2 (en) 2003-02-14 2019-09-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11612493B2 (en) 2003-06-30 2023-03-28 DePuy Synthes Products, Inc. Intervertebral implant with conformable endplate
US10433974B2 (en) 2003-06-30 2019-10-08 DePuy Synthes Products, Inc. Intervertebral implant with conformable endplate
US10512489B2 (en) 2004-03-06 2019-12-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US10433881B2 (en) 2004-03-06 2019-10-08 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9949769B2 (en) 2004-03-06 2018-04-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US8894709B2 (en) 2004-06-30 2014-11-25 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US8172904B2 (en) 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US9125754B2 (en) 2004-06-30 2015-09-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US8852193B2 (en) 2004-06-30 2014-10-07 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US8454699B2 (en) 2004-06-30 2013-06-04 Synergy Disc Replacement, Inc Systems and methods for vertebral disc replacement
US7927374B2 (en) 2004-06-30 2011-04-19 Synergy Disc Replacement, Inc. Artificial spinal disc
US8231677B2 (en) 2004-06-30 2012-07-31 Synergy Disc Replacement, Inc. Artificial spinal disc
US9237958B2 (en) 2004-06-30 2016-01-19 Synergy Disc Replacement Inc. Joint prostheses
US8038716B2 (en) 2004-06-30 2011-10-18 Synergy Disc Replacement, Inc Artificial spinal disc
US10786362B2 (en) 2004-06-30 2020-09-29 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US10064739B2 (en) 2004-06-30 2018-09-04 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US8100974B2 (en) 2004-06-30 2012-01-24 Synergy Disc Replacement, Inc. Artificial spinal disc
US8137404B2 (en) 2006-03-28 2012-03-20 Depuy Spine, Inc. Artificial disc replacement using posterior approach
US8282641B2 (en) 2006-03-28 2012-10-09 Depuy Spine, Inc. Methods and instrumentation for disc replacement
US9107754B2 (en) 2006-11-07 2015-08-18 Biomedflex, Llc Prosthetic joint assembly and prosthetic joint member
US8070823B2 (en) 2006-11-07 2011-12-06 Biomedflex Llc Prosthetic ball-and-socket joint
US7905919B2 (en) 2006-11-07 2011-03-15 Biomedflex Llc Prosthetic joint
US7914580B2 (en) 2006-11-07 2011-03-29 Biomedflex Llc Prosthetic ball-and-socket joint
US9005307B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Prosthetic ball-and-socket joint
US9005306B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Medical Implants With Compliant Wear-Resistant Surfaces
US8029574B2 (en) 2006-11-07 2011-10-04 Biomedflex Llc Prosthetic knee joint
US8512413B2 (en) 2006-11-07 2013-08-20 Biomedflex, Llc Prosthetic knee joint
US8308812B2 (en) 2006-11-07 2012-11-13 Biomedflex, Llc Prosthetic joint assembly and joint member therefor
US9566157B2 (en) 2006-11-07 2017-02-14 Biomedflex, Llc Three-member prosthetic joint
US11660206B2 (en) 2006-12-07 2023-05-30 DePuy Synthes Products, Inc. Intervertebral implant
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11497618B2 (en) 2006-12-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11642229B2 (en) 2006-12-07 2023-05-09 DePuy Synthes Products, Inc. Intervertebral implant
US11432942B2 (en) 2006-12-07 2022-09-06 DePuy Synthes Products, Inc. Intervertebral implant
US11712345B2 (en) 2006-12-07 2023-08-01 DePuy Synthes Products, Inc. Intervertebral implant
US8715352B2 (en) 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
RU2443400C2 (en) * 2007-03-07 2012-02-27 Ульрих Гмбх Унд Ко. Кг Intervertebral disk implant with elastic structural elements
JP2010519985A (en) * 2007-03-07 2010-06-10 ウルリッヒ ゲーエムベーハー・アンド・カンパニー カーゲー Intervertebral implant with elastic part
US9034039B2 (en) 2007-03-07 2015-05-19 Ulrich Gmbh & Co.Kg Intervertebral implant with elastic part
WO2008106912A1 (en) 2007-03-07 2008-09-12 Ulrich Gmbh & Co. Kg Intervertebral implant having an elastic component
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US8298287B2 (en) 2007-06-26 2012-10-30 Depuy Spine, Inc. Intervertebral motion disc with helical shock absorber
US11622868B2 (en) 2007-06-26 2023-04-11 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US11617655B2 (en) 2008-04-05 2023-04-04 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11712342B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11701234B2 (en) 2008-04-05 2023-07-18 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11707359B2 (en) 2008-04-05 2023-07-25 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11712341B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
US11872139B2 (en) 2010-06-24 2024-01-16 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US11850164B2 (en) 2013-03-07 2023-12-26 DePuy Synthes Products, Inc. Intervertebral implant
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11806245B2 (en) 2020-03-06 2023-11-07 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Also Published As

Publication number Publication date
AU2003272683A1 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US6964686B2 (en) Intervertebral disc replacement prosthesis
WO2005039455A1 (en) Intervertebral disc replacement prosthesis
US7331994B2 (en) Intervertebral disc replacement prosthesis
US20050234553A1 (en) Intervertebral disc replacement prothesis
US6579321B1 (en) Intervertebral disc replacement prosthesis
US8734518B2 (en) Artificial intervertebral disc
EP2376029B1 (en) Full-metal dampening intervertebral implant
US6802863B2 (en) Keeled prosthetic nucleus
US9125755B2 (en) Transforaminal prosthetic spinal disc replacement
US8992574B2 (en) Crossbar spinal prosthesis having a modular design and related Implantation methods
US8435301B2 (en) Artificial intervertebral disc implant
US9220603B2 (en) Limited motion prosthetic intervertebral disc
US20070123990A1 (en) Dynamic interbody device
US20090088853A1 (en) Orthopedic device assembly with elements coupled by a retaining structure
EP3027147B1 (en) Artificial disc devices and related methods of use
US20090138088A1 (en) Mobile spinal fusion implant
US8075620B1 (en) Doughnut-like spinal implant
AU2022228368A1 (en) Stablenec standalone interbody
EP1366733A2 (en) Spinal prosthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP