WO2005036710A1 - Power supply monitor and power converter comprising it - Google Patents

Power supply monitor and power converter comprising it Download PDF

Info

Publication number
WO2005036710A1
WO2005036710A1 PCT/JP2003/012903 JP0312903W WO2005036710A1 WO 2005036710 A1 WO2005036710 A1 WO 2005036710A1 JP 0312903 W JP0312903 W JP 0312903W WO 2005036710 A1 WO2005036710 A1 WO 2005036710A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power supply
power
output
control unit
Prior art date
Application number
PCT/JP2003/012903
Other languages
French (fr)
Japanese (ja)
Inventor
Kensaku Matsuda
Tarou Andou
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2003/012903 priority Critical patent/WO2005036710A1/en
Priority to TW092129120A priority patent/TW200514328A/en
Publication of WO2005036710A1 publication Critical patent/WO2005036710A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/24Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
    • H02H3/253Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage for multiphase applications, e.g. phase interruption

Definitions

  • the present invention relates to a power supply monitoring device that detects a state (normal, open phase, power failure) of a three-phase AC power supply in a power conversion device.
  • FIG. 6 is a schematic diagram illustrating the above-described technique.
  • Fig. 7 shows the current waveforms at points 1 to 3 shown in Fig. 6, and Fig. 6 shows the waveforms when there is no capacitive element.
  • Fig. 8 shows the waveforms in Fig. 6.
  • Fig. 6 is a waveform diagram showing a current waveform at each point from point (1) to point (3), and Fig. 6 shows a case where there is a capacitive element.
  • full-wave rectification of a three-phase AC power supply is performed, and then the output waveform from the differentiating circuit is detected to detect a phase loss.
  • FIG. 9 is a schematic diagram for explaining the above-described technology
  • FIG. 10 is a current waveform at points ⁇ ⁇ ⁇ ⁇ to 1 shown in FIG. 9, and FIG. 9 shows a case where there is no capacitive element.
  • FIG. 11 is a waveform diagram showing current waveforms at points 1 to 4 shown in FIG. 9, and
  • FIG. 9 is a waveform diagram showing a case where there is a capacitive element.
  • the waveform connected to each phase of the three-phase AC power supply 1 and obtained from the full-wave rectifier circuit consisting of the diode bridge 4 is passed through a differentiating circuit consisting of a capacitor 17 and a resistor 18, Power supply open phase and power failure are detected by detecting the output of comparator 19, which compares the output of this differentiator with the level of threshold VREF.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply monitoring device capable of accurately detecting a normal, open, or blackout state of a three-phase AC power supply in a power conversion device.
  • the purpose is.
  • a resistor and a capacitor provided to set a predetermined current value between each phase of the three-phase AC power supply and each of the three-phase diode bridges, and a three-phase diode are provided.
  • a detection unit that generates different detection signals at the time of phase loss and at the time of power failure.
  • the three-phase AC power supply has a capacitive element between its lines.
  • a resistor and a capacitor provided to set a predetermined current value between each phase of the single-phase AC power supply and the single-phase diode bridge; and a single-phase diode bridge. And a detector that generates different detection signals based on the output current during normal operation, phase loss, and power failure.
  • the single-phase AC power supply has a capacitive element between its lines.
  • a control unit is provided for inputting a detection result from the detection unit and displaying the result on the display unit.
  • the power conversion unit includes an input side connected to a three-phase AC power supply and an output side connected to a load, and a control unit that receives a detection result from the detection unit and controls the power conversion unit.
  • 'It also includes a power conversion unit whose input side is connected to a single-phase AC power supply and whose output side is connected to a load, and a control unit that receives a detection result from the detection unit and controls the power conversion unit.
  • control unit controls to stop the output of the power conversion unit when the detection result of the open phase is input from the detection unit.
  • control unit changes the operation pattern of the power conversion unit when the detection result of the open phase is input from the detection unit.
  • control unit when the control unit receives a power failure detection result from the detection unit, the control unit controls the power conversion unit to stop the load by using regenerative energy from the load.
  • FIG. 1 is a circuit diagram of a power monitoring device connected to a three-phase AC power supply according to the first embodiment. It is a road block diagram.
  • FIG. 2 is a current waveform diagram of each part when there is no capacitive element according to the first embodiment.
  • FIG. 3 is a current waveform diagram of each part when the capacitive element according to the first embodiment is provided. '
  • FIG. 4 is a circuit configuration diagram of a power supply monitoring device and a power conversion device connected to a three-phase AC power supply according to the second embodiment.
  • FIG. 5 is a circuit configuration diagram of a power supply monitoring device and a power conversion device connected to a single-phase AC power supply according to the third embodiment. '
  • Fig. 6 is a circuit configuration diagram of the power supply monitoring device connected to the three-phase AC power supply according to Beakkei Technology 1.
  • FIG. 7 is a current waveform diagram of each part when there is no capacitive element according to the background art 1.
  • FIG. 8 is a current waveform diagram of each part when there is a capacitive element according to the background art 1.
  • FIG. 9 is a circuit configuration diagram of a power supply monitoring device connected to a three-phase AC power supply according to Background Art 2.
  • FIG. 10 is a current waveform diagram of each part when there is no capacitive element according to the background art 2.
  • FIG. 11 is a current waveform diagram of each part when the capacitive element according to the background art 2 is provided.
  • a three-phase AC power supply 1 having an R phase, an S phase, and a T phase is connected to three phases via resistors 2a, 2b, 2c and capacitors 3a, 3b, 3c, respectively.
  • the output of the three-phase diode bridge 4 is connected to the light emitting diode of the photobra 5 and turns on the transistor of the photobra 5.
  • a resistor 6 is provided on the collector side of the photocabra 5 in the transient range. Filter capacitors 7a, 7b, and 7c for EMC are inserted between the three-phase AC power supply 1 lines. ⁇ '
  • the power supply state is monitored by detecting the output current of the three-phase diode bridge 4 with the photocoupler 5, but in addition to directly detecting the output current, a resistor is inserted and the voltage across the resistor is inserted.
  • a similar result can be obtained by detecting the power loss or by connecting the photocabler 5 and detecting the on / off state of the force reduction bra 5.
  • a description will be given of a case where a photocoupler output is used.
  • a constant resistor 2a and a capacitor 3a which are constants calculated from an arbitrary voltage value for driving the photocoupler 5 from the R phase of the three-phase AC power supply 1 and an arbitrary current value flowing through the photocoupler 5, are connected in series.
  • the resistor 2b and the capacitor 3b are connected in series
  • the resistor 2c and the capacitor 3c are connected in series, and the output of each is a three-phase diode bridge.
  • the output of the three-phase diode bridge 4 is The diode side is inserted in series, and the collector side of the transistor of the photo force bra 5 is pulled up by the resistor 6.
  • the output of the photocoupler 5 is L 0 W when a current flows through the light emitting diode of the photo coupler 5, and becomes HIGH when no current flows.
  • the driving voltage of the photo bra 5 is 300 V and the operating current of the photo bra 5 is 1 mA
  • the resistors 2 a, 2 b, 2 c and the capacitors 3 a, 3 b, 3 c obtains the following relational expression.
  • the output of the three-phase diode bridge 4 has a waveform obtained by full-wave rectification of the three-phase AC, and the light-emitting diode of the photocoupler 5 has a full-wave rectification of the three-phase AC. Electric current flows.
  • the threshold values of the resistors 2a, 2b, 2c and the capacitors 3a, 3b, 3c are determined so that the photocabler 5 is turned on, the output of the photocabler 5 becomes L0W.
  • the output of the three-phase diode bridge 4 has a waveform obtained by performing full-wave rectification of the single-phase AC, and the light-emitting diode of the photocoupler 5 receives the single-phase AC. Full-wave rectified current flows. At this time, the photocabler 5 repeats on / off according to the threshold value, and its output becomes a pulse waveform that repeats L0W / HIGH.
  • filter capacitors 7a, 7b, 7c, etc. are inserted between the three-phase AC power supply 1 lines.
  • the filter capacitors 7a, 7b, and 7c maintain the voltage depending on the phase, but the capacitors 3a, By cutting the DC component by 3b and 3c, the output of the photo force bra 5 can obtain the result as described above.
  • Example 2
  • FIG. 4 shows a power converter (inverter) equipped with the power supply monitoring device of the first embodiment.
  • the inverter device 15 is a device for rotating the motor at an arbitrary frequency by once converting an AC power supply into a DC voltage and converting the DC voltage into an arbitrary AC voltage.
  • the power supply monitoring device of the first embodiment is provided, and its output is input to a control unit (microcomputer) 8 built in the inverter device 15.
  • the control unit (microcomputer) 8 is connected to the buzzer 13, the display 14, and the gate of the inverter 11.
  • the control unit (microcomputer) 8 recognizes the power out of phase, for example, the overcurrent protection level of the inverter 15 is reduced. Therefore, the current flowing through the inverter unit 15 is reduced to a level that does not damage the converter unit 9, or the switching frequency of the inverter unit 11 is reduced to suppress heat generation, etc. To enable continuous operation. Also, in order to avoid failure of the load (here, motor 1 2) and system failure due to the uncontrolled state of the inverter device 15 in the event of a power outage, regenerative energy from the load must be used.
  • control unit (microcomputer) 8 It is provided with a circuit that can supply power to the control unit (microcomputer) 8 and the inverter 15 and a switching circuit that automatically switches to an operation mode that uses this regenerative energy.
  • the control unit (microcomputer) 8 that has detected the power outage switches the switching circuit by regenerative energy from the load to supply power to the inverter 15 and turns on the inverter 15. Perform operation control to stop the load without stopping without control. Thus, the load can be safely stopped.
  • Example 3 Example 3.
  • FIG. 5 is a conceptual diagram showing a typical circuit configuration of Embodiment 3 of the present invention.
  • a single-phase AC power supply 21 is connected to the input side of a single-phase diode bridge 24 via resistors 22a and 22b and capacitors 23a and 23b, respectively. I have.
  • the output of the single-phase diode bridge 24 leads to the light-emitting diode of the photocoupler 25, Turn on this evening.
  • a resistor 26 is provided on the collector side of the transistor of the photo force bra 5.
  • a filter capacitor 27 for EMC is inserted between the lines of the single-phase AC power supply 21.
  • the power supply state is monitored by detecting the output current of the single-phase diode bridge 24 with the photocoupler 25.
  • a resistor is inserted to Similar results can be obtained by detecting the voltage across the resistor or by connecting the photocoupler 25 and detecting the on / off of the photocoupler 25.
  • a description will be given of a case in which a photocabler output is used.
  • a constant resistance 2 2a and a capacitor calculated from an arbitrary voltage value that drives the photo-force brass 25 from one line of the single-phase AC power supply 21 and an arbitrary current value that flows through the photo-cabs 25 2a is connected in series, and similarly, from the other line, a resistor 22b and a capacitor 23b are connected in series, and each output is input to a single-phase diode bridge 24. Is done.
  • the light emitting diode side of the photocoupler 2'5 is inserted in series at the output of the single-phase diode bridge 24, and a resistor 2 is connected to the collector side of the transistor of the photocoupler 25. Pulled up at 6.
  • the output of the photo bra 25 becomes L 0 W when a current flows through the light emitting diode of the photo bra 25, and becomes H IG H when no current flows.
  • the setting method is the same as in the case of the three-phase AC power supply of the first embodiment, and a detailed description thereof will be omitted.
  • the output of the single-phase diode bridge 24 has a waveform obtained by full-wave rectification of the single-phase AC, and the light-emitting diode of the photo bra 25 has a three-phase output.
  • a current that is a full-wave rectified AC flows.
  • the thresholds of the resistors 22a and 22b and the capacitors 23a and 23b are determined so that the photocab 25 is turned on, the output of the photobra 25 becomes LOW.
  • Single-phase AC power supply 2 If single-phase AC power supply 2 1 loses or loses power, single-phase diode bridge 2 4 is zero. In this case, no current flows through the light emitting diode of the photocoupler 24, so that the output becomes HIG.H.
  • the power supply is monitored by detecting the output (LOW * HIGH) corresponding to the state of the single-phase AC power supply 21 (normal / open / blackout).
  • a signal from the power supply monitoring device outputs an open phase / power failure indicating that the power supply is abnormal.
  • the buzzer sounds from the control unit (microcomputer) 28.
  • a signal is output to 3 3 and the display 3 4 to prompt the user to detect abnormalities in phase loss / power failure by hearing and sight.
  • the regenerative energy is controlled from the load.
  • (Micon) 28 and Inverter A circuit that can be used to supply power to the equipment, and this regenerative energy is used. And a switching circuit for automatically switching to an operation mode.
  • the control and wholesaler (microcomputer) 28 that has detected the phase loss / power failure state switches the switching circuit based on the regenerative energy from the load to supply power to the impeller unit. Operation control is performed to stop the load without stopping the equipment overnight. As a result, the load can be safely stopped. '' Industrial applicability

Abstract

A power supply monitor comprising resistors (2a, 2b, 2c) and capacitors (3a, 3b, 3c) for setting a specified current level between each phase (phase R, phase S, phase T) of a three-phase AC power supply (1) and a three-phase diode bridge (4), and a detecting section (5) generating different detection signals for normal state, open-phase state and power interruption state based on the output current from the three-phase AC power supply (1) so that normal state, open-phase state and power interruption state of the three-phase AC power supply (1) can be detected.

Description

明 細 書 電源監視装置および電源監視装置を備えた電力変換装置 技術分野 , ' この発明は電力変換装置において三相交流電源の状態 (正常、 欠相、 停電) を検出する電源監視装置に関する。 背景技術  TECHNICAL FIELD The present invention relates to a power supply monitoring device that detects a state (normal, open phase, power failure) of a three-phase AC power supply in a power conversion device. Background art
' 背景技術 1 ' 従来よ り三相交流電源の欠相を検出する技術が存在する。  '' Background technology 1 '' There is a technology for detecting the open phase of a three-phase AC power supply.
その一つとして、 ダイ オー ドプリ ッ ジの入力側を三相交流電源の各相' と抵抗を介して接続し、 ダイオー ドプリ ッジの出力側をフォ 卜力 ブラ と 接続した構成がある。 このような構成において、 任意の電流がフォ ト力 ブラの発光ダイ オー ドに流れる とフォ トカブラの ト ラ ンジスタがオンす る。 ト ラ ンジスタ出力を検出する こ とによ り三相交流電源の欠相や停電 を検出する。  As one of them, there is a configuration in which an input side of a diode bridge is connected to each phase of a three-phase AC power supply via a resistor, and an output side of the diode bridge is connected to a photo power blur. In such a configuration, when an arbitrary current flows through the light emitting diode of the photobra, the transistor of the photocabra is turned on. Open-phase or power failure of three-phase AC power supply is detected by detecting transistor output.
上述した技術を第 6 図、 第 7 図、 第 8 図を参照して詳細に説明する。 第 6 図は上述した技術を説明する概略図である。 第 7 図は第 6 図に示 す①点か ら③点における各点の電流波形であって、 第 6 図に容量性素子 がない場合を示す波形図、 第 8 図は第 6 図に示す①点から③点における 各点の電流波形であって、 第 6 図に容量性素子がある場合を示す波形図 である。  The above-described technique will be described in detail with reference to FIGS. 6, 7, and 8. FIG. FIG. 6 is a schematic diagram illustrating the above-described technique. Fig. 7 shows the current waveforms at points 1 to 3 shown in Fig. 6, and Fig. 6 shows the waveforms when there is no capacitive element. Fig. 8 shows the waveforms in Fig. 6. Fig. 6 is a waveform diagram showing a current waveform at each point from point (1) to point (3), and Fig. 6 shows a case where there is a capacitive element.
第 6 図において、 三相交流電源 1 が正常な時はダイオー ドプリ ッ ジ 4 の出力は三相交流電源の全波整流を した電流 (第 7 図の②) がフ ォ ト力 ブラ 5 に流れる。 この電流が流れた時、 フォ ト力ブラ 5 の発光ダイォー ドが発光し、 フォ トカ ブラ 5 の ト ランジスタがオンするよ う に抵抗値 2 a、 2 b、 2 c を決定しておく 。 三相交流電源 1 が正常時は常にフォ ト 力ブラ 5の発光ダイオー ドが発光するので、 フォ トカブラ 5の ト ラ ンジ ス夕がオンし、 フォ ト力ブラ 5の ト ランジスタの出力 (第 7図の③) は L OWレベルとなる。 In FIG. 6, when the three-phase AC power supply 1 is normal, the output of the diode bridge 4 is a full-wave rectified current (② in FIG. 7) of the three-phase AC power supply, and flows through the photo power blur 5. . When this current flows, the light emitting diode of photo bra 5 The resistance values 2a, 2b, and 2c are determined so that the transistor emits light and the transistor of the photocoupler 5 is turned on. When the three-phase AC power supply 1 is normal, the light emitting diode of the photo power bra 5 always emits light, so that the transistor of the photo power bra 5 turns on, and the output of the transistor of the photo power bra 5 (7th (3) in the figure is the LOW level.
第 6 図に示すよう に、 三相交流電源 1 の一相が電源欠相する (第 7図 の A点) と、 ダイオー ドブリ ッジ 4の出力は単相交流電源の全波整流を した電流がフォ トカブラ 5 の発光ダイォー ドに流れるため、 抵抗 2 a、 2 b、 2 cで決定した任意の電流値以下ではフォ トカブラ 5の発光ダイ オー ドの発光がなく な り、 ト ランジスタがオフする。 また任意の電流値 を超える とフ ォ トカブラ 5 の ト ランジスタがオンする。 従って電源欠相 時はフォ トカブラ 5の ト ラ ンジスタ出力はパルス出力となる。  As shown in Fig. 6, when one phase of the three-phase AC power supply 1 loses power (point A in Fig. 7), the output of the diode bridge 4 becomes the current obtained by full-wave rectification of the single-phase AC power supply. 5 flows into the light emitting diode of the photocabrabler 5, so that the light emitting diode of the photocabuller 5 stops emitting light below an arbitrary current value determined by the resistors 2a, 2b, and 2c, and the transistor turns off. . When the current exceeds an arbitrary value, the transistor of the photocabler 5 is turned on. Therefore, when the power supply is out of phase, the transistor output of the photocoupler 5 becomes a pulse output.
さ らに電源停電時 (第 7 図の B点) はフォ ト力ブラ 5 の発光ダイ ォ一 ドに電流が流れないため、 フ ォ トカブラ 5 の ト ラ ンジスタがオフ し出力 は H I G Hレベルとなる。  In addition, at the time of power failure (point B in Fig. 7), no current flows through the light emitting diode of the photo power bra 5, so that the transistor of the photo power 5 turns off and the output goes high. .
このよう にして、 L OWレベル出力、 パルス出力または H I G Hレべ ル出力を検出する こ とによ り三相交流電源の電源欠相や停電を検出する こ とができる。  In this way, by detecting the low level output, the pulse output, or the high level output, it is possible to detect a power loss or power failure of the three-phase AC power supply.
上述した背景技術は日本特許公開公報である特開昭 5 0 - 8 4 8 5 3 号、 特開昭 5 4 — 1 4 9 8 4 9号、 特開昭 5 7 — 2 2 3 8 3号に開示さ れている。  The above-mentioned background art is disclosed in Japanese Patent Laid-Open Publication Nos. Sho 50-84853, Sho 54-149498, Sho 57-22383. Is disclosed in
• 背景技術 2  • Background technology 2
別の背景技術と して、 三相交流電源を全波整流し、 その後微分回路か らの出力波形を検出し欠相を検出する。  As another background technology, full-wave rectification of a three-phase AC power supply is performed, and then the output waveform from the differentiating circuit is detected to detect a phase loss.
上述した技術を第 9 図、 第 1 0図、 第 1 1 図を参照して詳細に説明す る。 第 9 図は上述した技術を説明する概略図、 第 1 0 図は第 9図に示す① 点から④点における各点の電流波形であって、 第 9 図に容量性素子がな い場合を示す波形図、 第 1 1 図は第 9図に示す①点か ら④点における各 点の電流波形であって、 第 9 図に容量性素子がある場合を示す波形図で ある。 The above-described technique will be described in detail with reference to FIGS. 9, 10, and 11. FIG. FIG. 9 is a schematic diagram for explaining the above-described technology, and FIG. 10 is a current waveform at points に お け る to ① shown in FIG. 9, and FIG. 9 shows a case where there is no capacitive element. FIG. 11 is a waveform diagram showing current waveforms at points ① to ④ shown in FIG. 9, and FIG. 9 is a waveform diagram showing a case where there is a capacitive element.
第 9 図において、 三相交流電源 1 の各相に接続され、 ダイオー ドプリ ッジ 4からなる全波整流回路から得られた波形を、 コ ンデンサ 1 7及び 抵抗 1 8からなる微分回路を介し、 この微分回路の.出力 と閾値 V R E F のレベルを比較する比較器 1 9の出力を検出する こ とによ り電源欠相お よび停電を検出する。 ,  In FIG. 9, the waveform connected to each phase of the three-phase AC power supply 1 and obtained from the full-wave rectifier circuit consisting of the diode bridge 4 is passed through a differentiating circuit consisting of a capacitor 17 and a resistor 18, Power supply open phase and power failure are detected by detecting the output of comparator 19, which compares the output of this differentiator with the level of threshold VREF. ,
第 9 図において、 三相交流電源 1 が正常な時はダイォ一 ドブリ ッ ジ 4 の出力は三相交流電源の全波整流を した波形とな り 、 その波形が微分回 路を介する こ とによ り直流分がカ ツ 卜 され、 微分回路の出力は三相交流 電源の全波整流回路の交流部分のみとなる (第 1 0 図の②)。 微分回路 出力が比較器 1 9 (p—端に入力され他端の V R E Fと比較され、 比較器 1 9の出力が決ま り、 三相交流電源 1 が正常な場合は、 微分回路出力が V R E Fよ り低いレベルに設定されてお り、 比較器 1 9 の出力は H I G Hとなる (第 1 0 図の③)。  In FIG. 9, when the three-phase AC power supply 1 is normal, the output of the diode bridge 4 has a waveform obtained by performing full-wave rectification of the three-phase AC power supply, and the waveform passes through the differential circuit. Therefore, the DC component is cut, and the output of the differentiating circuit is only the AC part of the full-wave rectifier circuit of the three-phase AC power supply (② in Fig. 10). The output of the differentiator is compared to the comparator 19 (p-end and VREF at the other end) .The output of the comparator 19 is determined.If the three-phase AC power supply 1 is normal, the output of the differentiator is VREF. The output level of comparator 19 is high (③ in Fig. 10).
第 9 図に示すよ う に、 三相交流電源 1 の一相が電源欠相する (第 1 0 図の A点) と、 ダイ オー ドブリ ッジ 4の出力は単相交流電源の全波整流 をした波形となり 、 この場合微分回路を介しても直流分が存在しないた め、 微分回路出力は単相交流電源の全波整流した波形となる (第 1 0 図 の②)。 この波形と V R E Fのレベルによ り 比較器 1 9 の出力が L OW /H I G Hを繰り返すパルス波形となる (第 1 0 図の④)。  As shown in Fig. 9, when one phase of the three-phase AC power supply 1 loses power (point A in Fig. 10), the output of the diode bridge 4 becomes full-wave rectified by the single-phase AC power supply. In this case, since there is no DC component through the differentiating circuit, the output of the differentiating circuit becomes a full-wave rectified waveform of the single-phase AC power supply (② in FIG. 10). Based on this waveform and the level of VREF, the output of the comparator 19 becomes a pulse waveform that repeats LOW / HIGH ((1) in Figure 10).
さ ら に停電時 (第 9 図の. B点) はダイオー ドブリ ッジ 4の出力がゼロ のため微分回路の出力もゼロ とな り 、 比較器 1 9 のの出力は H I GHと なる (第 1 0 図の④)。 In the event of a power failure (point B in Fig. 9), the output of diode bridge 4 is zero, so the output of the differentiation circuit is also zero. The output of comparator 19 is HIGH and GH. ((In Fig. 10).
上述した背景技術は日本特許公開公報である特開平 1 0 — 1 0 8 3 5 1号に開示されている。  The background art described above is disclosed in Japanese Patent Laid-Open Publication No. H10-108531, which is a Japanese Patent Publication.
しかしながら、 最近では E M C (Electro-Magnetic Compat ibi 1 i ty)対 5 策と して電源側にコ ンデンサ等が使用される こ とが多く なつている。 上 記背景技術 1 において、 第 6 図のよ う に三相交流電源の線間に進相コ ン デンサ等の容量性素子 7 a、, 7 b、 7 cが接続される と、 第 8図に示す よ う に電源欠相や停電時の電源位相における電圧変化に対して容量性素 ' 子に蓄積された電荷が影響を与え、 フォ 卜力ブラ 5の発光ダイ オー ドの0 発光が止まず電源欠相や停電を検出する こ とが困難となる という課題が めった。 .  However, recently, capacitors and the like are often used on the power supply side as a measure against EMC (Electro-Magnetic Compatibility). In the background art 1 described above, when capacitive elements 7a, 7b, 7c such as phase-advancing capacitors are connected between the lines of the three-phase AC power supply as shown in Fig. 6, As shown in the figure, the electric charge accumulated in the capacitive element affects the voltage change in the power supply phase at the time of power failure or power outage, and the light emission diode of the photobra 5 stops emitting light. First, there was the problem that it would be difficult to detect power phase loss or power failure. .
また、 背景技術 2では背景技術 1 と同様に三相交流電源 1 の線間に進 相コ ンデンサ等の容量性素子が接続される と電圧を保ってしまい、 第 1 1 図に示すよ う に電源正常時おいても電源欠相時においても停電時にお5 いても比較器 1 9 の出力は L OWとなり、 電源欠相を検出する こ とが困 難となるという課題があっ た。 また、 背景技術 2は欠相のみを検出する ' 手段であり 、 三相交流電源 E常時と停電時を判別する こ とが出来ないと いう課題があった。 0 発明の開示  Also, in Background Art 2, as in Background Art 1, if a capacitive element such as a lead capacitor is connected between the lines of the three-phase AC power supply 1, the voltage is maintained, and as shown in Fig. 11, The output of the comparator 19 becomes low regardless of whether the power supply is normal, the power supply is out of phase, or the power is out, and there is a problem that it is difficult to detect the power supply open phase. In addition, the background art 2 is a means for detecting only an open phase, and there is a problem that it is not possible to distinguish between the three-phase AC power supply E and a power failure. 0 Disclosure of the Invention
本発明は上記のよ うな問題を解決するためになされたもので、 電力変 換装置において三相交流電源の正常、 欠相、 停電の状態を正確に検出可 能な電源監視装置を提供する こ とを 目的と している。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply monitoring device capable of accurately detecting a normal, open, or blackout state of a three-phase AC power supply in a power conversion device. The purpose is.
この目的を達成するために、 三相交流電源の各相と三相ダイオー ドブ5 リ ッジとの間をそれぞれ所定の電流値に設定するよう設けられた抵抗及 びコ ンデンサと、 三相ダイオー ドプリ ッジの出力電流に基づいて正常時, 欠相時及び停電時で異なる検出信号を発生する検出部とを備える。 In order to achieve this object, a resistor and a capacitor provided to set a predetermined current value between each phase of the three-phase AC power supply and each of the three-phase diode bridges, and a three-phase diode are provided. Under normal conditions based on the output current of the drain, A detection unit that generates different detection signals at the time of phase loss and at the time of power failure.
• また、 三相交流電源はその線間に容量性素子を有する。 • Also, the three-phase AC power supply has a capacitive element between its lines.
また、 単相交流電源の各相と単相ダイ ォー ドブリ ッ ジとの間をそれぞ れ所定の電流値に設定するよう設けられた抵抗及びコ ンデンサと、 単相 ダイ ォー ドブリ ッジの出力電流に基づいて正常時、 欠相時及び停電時で 異なる検出信号を発生する検出部とを備える。  A resistor and a capacitor provided to set a predetermined current value between each phase of the single-phase AC power supply and the single-phase diode bridge; and a single-phase diode bridge. And a detector that generates different detection signals based on the output current during normal operation, phase loss, and power failure.
また、 単相交流電源はその線間に容量性素子を有する。  The single-phase AC power supply has a capacitive element between its lines.
また、 検出部からの検出結果を入力し、 表示部に表示させる制御部を 備える。  Also, a control unit is provided for inputting a detection result from the detection unit and displaying the result on the display unit.
また、 入力側が三相交流電源に接続され、 出力側が負荷に接続された 電力変換部と、 検出部か らの検出結果を入力 し、 電力変換部を制御する 制御部とを備える。 ' また、 入力側が単相交流電源に接続され、 出力側が負荷に接続された 電力変換部と、 .検出部か らの検出結果を入力 し、 電力変換部を制御する 制御部とを備える。  The power conversion unit includes an input side connected to a three-phase AC power supply and an output side connected to a load, and a control unit that receives a detection result from the detection unit and controls the power conversion unit. 'It also includes a power conversion unit whose input side is connected to a single-phase AC power supply and whose output side is connected to a load, and a control unit that receives a detection result from the detection unit and controls the power conversion unit.
また、 制御部は、 検出部から欠相の検出結果を入力した場合、 電力変 換部を出力停止するよう制御する。  Further, the control unit controls to stop the output of the power conversion unit when the detection result of the open phase is input from the detection unit.
また、 制御部は、 検出部か ら欠相の検出結果を入力した場合、 電力変 換部の運転パターンを変更する。  Further, the control unit changes the operation pattern of the power conversion unit when the detection result of the open phase is input from the detection unit.
また、 制御部は、 検出部から停電の検出結果を入力 した場合、 負荷か らの回生エネルギーを使って、 負荷を停止させるよう電力変換部を制御 する。 図面の簡単な説明  In addition, when the control unit receives a power failure detection result from the detection unit, the control unit controls the power conversion unit to stop the load by using regenerative energy from the load. Brief Description of Drawings
第 1 図は実施例 1 による三相交流電源に接続された電源監視装置の回 路構成図である。 FIG. 1 is a circuit diagram of a power monitoring device connected to a three-phase AC power supply according to the first embodiment. It is a road block diagram.
第 2 図は実施例 1 による容量性素子が無い場合の各部電流波形図であ る。  FIG. 2 is a current waveform diagram of each part when there is no capacitive element according to the first embodiment.
第 3 図は実施例 1 による容量性素子が有る場合の各部電流波形図であ る。 '  FIG. 3 is a current waveform diagram of each part when the capacitive element according to the first embodiment is provided. '
第 4 図は実施例 2 による三相交流電源に接続された電源監視装置及び 電力変換装置の回路構成図である。  FIG. 4 is a circuit configuration diagram of a power supply monitoring device and a power conversion device connected to a three-phase AC power supply according to the second embodiment.
第 5 図は実施例 3 による単相交流電源に接続された電源監視装置及び ' 電力変換装置の回路構成図である ,。 '  FIG. 5 is a circuit configuration diagram of a power supply monitoring device and a power conversion device connected to a single-phase AC power supply according to the third embodiment. '
第 6 図は嘴景技術 1 による三相交流電源に接続された電源監視装置の 回路構成図である。  Fig. 6 is a circuit configuration diagram of the power supply monitoring device connected to the three-phase AC power supply according to Beakkei Technology 1.
' 第 7 図は背景技術 1 による容量性素子が無い場合の各部電流波形図で ある。  'Fig. 7 is a current waveform diagram of each part when there is no capacitive element according to the background art 1.
第 8 図は背景技術 1 による容量性素子が有る場合の各部電流波形図で ある。 ,  FIG. 8 is a current waveform diagram of each part when there is a capacitive element according to the background art 1. ,
第 9 図は背景技術 2 による三相交流電源に接続された電源監視装置の 回路構成図である。  FIG. 9 is a circuit configuration diagram of a power supply monitoring device connected to a three-phase AC power supply according to Background Art 2.
第 1 0 図は背景技術 2 による容量性素子が無い場合の各部電流波形図 である。  FIG. 10 is a current waveform diagram of each part when there is no capacitive element according to the background art 2.
第 1 1 図は背景技術 2 による容量性素子が有る場合の各部電流波形図 である。 発明を実施するための最良の形態  FIG. 11 is a current waveform diagram of each part when the capacitive element according to the background art 2 is provided. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を添付図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
実施例 1 .  Example 1
本発明の実施例 1 を第 1 図、 第 2 図、 第 3 図を参照に説明する。 第 1 図は本発明の実施例 1 の代表的な回路構成を示す概念図、 第 2 図は第 1 図に示す①点か ら③点における各点の電流波形であって、 容量性素子を 有しない場合の各部電流波形を示'す波形図、 第 3 図は第 1 図に示す①点 から③点における各点の電流波形であって、 例えばノイ ズ除去の 目的で 接続したフィ ル夕コ ンデンサを容量性素子と して三相交流電源の線間に 有する場合の各部電流波形を示す波形図である。 Embodiment 1 of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG. First FIG. 2 is a conceptual diagram showing a typical circuit configuration of Embodiment 1 of the present invention. FIG. 2 is a current waveform at each of points 1 to 3 shown in FIG. 1 and has no capacitive element. Fig. 3 shows the current waveform at each point from point 1 to point 3 shown in Fig. 1. For example, filter capacitors connected for the purpose of noise removal are shown in Fig. 3. FIG. 6 is a waveform diagram showing current waveforms at various parts when the capacitor is provided as a capacitive element between lines of a three-phase AC power supply.
第 1 図において、 R相、 S 相、 T相を有する三相交流電源 1 は、 それ ぞれ抵抗 2 a 、 2 b 、 2 c およびコ ンデンサ 3 a 、 3 b 、 3 c を介して 三相ダイオー ドプリ ッ ジ 4 の入力側に接続されている。 三相ダイ オー ド ブリ ッジ 4 の出力はフォ ト力 ブラ 5 の発光ダイオー ドへとつながり 、 フ オ ト力ブラ 5 の ト ラ ンジスタ をオンする。 フォ トカブラ 5 の ト ラ ンジス 夕のコ レクタ側には抵抗 6 が設けられている。 三相交流電源 1 の線間に は E M C を目的と したフィ ルタコ ンデンサ 7 a 、 7 b 、 7 c が挿入され ている。 ·'  In FIG. 1, a three-phase AC power supply 1 having an R phase, an S phase, and a T phase is connected to three phases via resistors 2a, 2b, 2c and capacitors 3a, 3b, 3c, respectively. Connected to input side of diode pledge 4. The output of the three-phase diode bridge 4 is connected to the light emitting diode of the photobra 5 and turns on the transistor of the photobra 5. A resistor 6 is provided on the collector side of the photocabra 5 in the transient range. Filter capacitors 7a, 7b, and 7c for EMC are inserted between the three-phase AC power supply 1 lines. · '
本発明は三相ダイオー ドブリ ッジ 4 の出力電流をフォ トカブラ 5 によ り検出する こ とで電源状態を監視するが、 出力電流を直接検出する他に 抵抗を挿入してその抵抗の両端電圧を検出すこ とによ り、 または、 フォ トカブラ 5 を接続し フ ォ小力 ブラ 5 のオン/オフ を検出する こ と によつ ても同様な結果を得る こ とができる。 本発明の実施例 1 ではフォ トカプ ラ出力を使用 した場合で説明を進める。  According to the present invention, the power supply state is monitored by detecting the output current of the three-phase diode bridge 4 with the photocoupler 5, but in addition to directly detecting the output current, a resistor is inserted and the voltage across the resistor is inserted. A similar result can be obtained by detecting the power loss or by connecting the photocabler 5 and detecting the on / off state of the force reduction bra 5. In the first embodiment of the present invention, a description will be given of a case where a photocoupler output is used.
三相交流電源 1 の R相よ り フォ トカブラ 5 を駆動させる任意の電圧値 とフォ トカブラ 5 に流す任意電流値から計算された定数の抵抗 2 a とコ ンデンサ 3 a とが直列に接続され、 同様に S相からは抵抗 2 b とコンデ ンサ 3 b とが直列に接続され、 T相か らは抵抗 2 c とコ ンデンサ 3 c と が直列に接続され、 それぞれの出力が三.相ダイオー ドブリ ッジ 4 に入力 される。 三相ダイ オー ドプリ ッジ 4 の出力にはフォ トカ ブラ 5 の発光ダ ィ オー ド側が直列に挿入されてお り 、 フォ ト力ブラ 5 の ト ランジスタの コ レクタ側には抵抗 6でプルアッ プされている。 フォ トカプラ 5 の出力 は、 フォ ト力ブラ 5 の発光ダイオー ドに電流が流れる と L 0 Wを、 電流 が流れない場合は H I G Hとなる。 例えば、 フォ ト力ブラ 5 の駆動電圧 を 3 0 0 V、 フォ ト力ブラ 5 の動作電流を 1 mAとする と、 抵抗 2 a、 2 b、 2 c並びにコ ンデンサ 3 a、 3 b、 3 c は下式の関係式を得る。 A constant resistor 2a and a capacitor 3a, which are constants calculated from an arbitrary voltage value for driving the photocoupler 5 from the R phase of the three-phase AC power supply 1 and an arbitrary current value flowing through the photocoupler 5, are connected in series. Similarly, from the S phase, the resistor 2b and the capacitor 3b are connected in series, and from the T phase, the resistor 2c and the capacitor 3c are connected in series, and the output of each is a three-phase diode bridge. Entered into cartridge 4. The output of the three-phase diode bridge 4 is The diode side is inserted in series, and the collector side of the transistor of the photo force bra 5 is pulled up by the resistor 6. The output of the photocoupler 5 is L 0 W when a current flows through the light emitting diode of the photo coupler 5, and becomes HIGH when no current flows. For example, assuming that the driving voltage of the photo bra 5 is 300 V and the operating current of the photo bra 5 is 1 mA, the resistors 2 a, 2 b, 2 c and the capacitors 3 a, 3 b, 3 c obtains the following relational expression.
ΙηιΑ (式 1 )ΙηιΑ (Equation 1)
Z c : コ ンデンサのイ ンピーダンス  Z c: Capacitor impedance
例えば、 コ ンデンサ 3 a、 3 1)、 3 (: の容量(3を(: = 0. 0 3 3 u F とすれば、 抵抗 2 a、 2 b、 2 c の抵抗値 Rは R = 1 5 3. 4 k Q とな る。  For example, if the capacitance of the capacitors 3a, 3 1), 3 (: (3 is (: = 0.033 uF), the resistance R of the resistors 2a, 2b, 2c is R = 1 53.4 kQ.
三相交流電源 1が正常な場合、 三相ダイオー ドプリ ッ ジ 4の出力は三 相交流を全波整流した波形とな り、 フォ トカブラ 5の発光ダイオー ドに は三相交流を全波整流した電流が流れる。 この時フォ トカブラ 5がオン するよう に抵抗 2 a、 2 b、 2 c並びにコ ンデンサ 3 a、 3 b、 3 c の 閾値を決めておけば、 フォ トカブラ 5の出力は L 0 Wとなる。  When the three-phase AC power supply 1 is normal, the output of the three-phase diode bridge 4 has a waveform obtained by full-wave rectification of the three-phase AC, and the light-emitting diode of the photocoupler 5 has a full-wave rectification of the three-phase AC. Electric current flows. At this time, if the threshold values of the resistors 2a, 2b, 2c and the capacitors 3a, 3b, 3c are determined so that the photocabler 5 is turned on, the output of the photocabler 5 becomes L0W.
三相交流電源 1が欠相状態の場合、 三相ダイォ一 ドブリ ッジ 4の出力 は単相交流を全波整流した波形とな り フォ トカブラ 5の発光ダイ オー ド. には単相交流を全波整流した電流が流れる。 この時フォ トカブラ 5は閾 値に従いオン/オフを繰返し、 その出力は L 0 Wノ H I G Hを繰返すパ ルス波形となる。  When the three-phase AC power supply 1 is in the open-phase state, the output of the three-phase diode bridge 4 has a waveform obtained by performing full-wave rectification of the single-phase AC, and the light-emitting diode of the photocoupler 5 receives the single-phase AC. Full-wave rectified current flows. At this time, the photocabler 5 repeats on / off according to the threshold value, and its output becomes a pulse waveform that repeats L0W / HIGH.
' 三相交流電源 1が停電した場合、 三相ダイオー ドブリ ッジ 4の出力は ゼロであ り 、 この場合フ ォ トカブラ 5 の発光ダイオー ドには電流が流れ ないため、 その出力は H I G Hとなる。  '' When the three-phase AC power supply 1 loses power, the output of the three-phase diode bridge 4 is zero.In this case, no current flows through the light emitting diode of the photocoupler 5, so the output goes high. .
以上の様に、 三相交流電源 1 の状態 (正常 · 欠相 , 停電) に対応した 出力 ( L OW ' L OW/H I G H ' H I G H) を検出する こ と によ り 電 源の監視を行う。 As described above, the state of three-phase AC power supply 1 (normal / open phase, power outage) was supported. Monitors the power supply by detecting the output (LOW'LOW / HIGH'HIGH).
近年の E M C規制に.よ り 、 三相交流電源 1 の線間にフィ ルタコ ンデン サ 7 a、 7 b、 7 c等を挿入する場合は多く ある。 しかし本発明では第 3図に示す様に欠相や停電した場合、 その位相によ ,り フィ ルタコ ンデン サ 7 a、 7 b、 7 c が電圧を保ってしま う が、 コ ンデンサ 3 a、 3 b、 3 c によ り直流分をカ ツ 卜する こ とによ り 、 フォ ト力ブラ 5の出力は上 記説明通り の結果を得る こ とができる。 実施例 2 .  Due to recent EMC regulations, there are many cases where filter capacitors 7a, 7b, 7c, etc. are inserted between the three-phase AC power supply 1 lines. However, in the present invention, when an open phase or a power failure occurs as shown in FIG. 3, the filter capacitors 7a, 7b, and 7c maintain the voltage depending on the phase, but the capacitors 3a, By cutting the DC component by 3b and 3c, the output of the photo force bra 5 can obtain the result as described above. Example 2.
本発明の実施例 2 を第 4 図を参照に説明する。 第 4 図は、 実施例 1 の 電源監視装置を備えた電力変換装置 (イ ンバー夕装置) である。  Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 shows a power converter (inverter) equipped with the power supply monitoring device of the first embodiment.
三相交流電源 1 を入力電源と し、 三相交流電源 1がコ ンバータ部 9 に 入力される と、 その出力は直流に変換され、 主回路コ ンデンサ 1 0 に蓄 え られる。 主回路コ ンデンサ 1 0 に蓄え られた直流電圧をイ ンパー夕部 1 1 によ り任意の周波数に変換する こ とによ りイ ンバ一夕装置 1 5 に接 続されるモータ 1 2 を任意の周波数で回転させる。 イ ンバータ装置 1 5 とは、 交流電源を一度直流電圧 変換し直流電圧を任意の交流電圧に変 換する こ とによ り モータを任意の周波数で回転'させる装置である。  When the three-phase AC power supply 1 is used as an input power supply and the three-phase AC power supply 1 is input to the converter section 9, the output is converted to DC and stored in the main circuit capacitor 10. The DC voltage stored in the main circuit capacitor 10 is converted to an arbitrary frequency by the inverter 11 so that the motor 12 connected to the inverter 1 Rotate at the frequency of The inverter device 15 is a device for rotating the motor at an arbitrary frequency by once converting an AC power supply into a DC voltage and converting the DC voltage into an arbitrary AC voltage.
実施例 1 の電.源監視装置を備え、 その出力がイ ンバ一タ装置 1 5 に内 蔵される制御部 (マイ コ ン) 8 に入力される。 制御部 (マイ コ ン) 8か らはブザー 1 3 と表示器 1 4、 イ ンバー夕部 1 1 のゲー ト に接続されて いる。  The power supply monitoring device of the first embodiment is provided, and its output is input to a control unit (microcomputer) 8 built in the inverter device 15. The control unit (microcomputer) 8 is connected to the buzzer 13, the display 14, and the gate of the inverter 11.
イ ンパー夕装置などの電力変換装置を欠相状態で使用 し続ける と、 特 定相に電流が集中する こ とによ り'コ ンバータ部 9 の発熱が高く な り 、 破 損の恐れがある。 従って、 電源監視装置か らの信号が電源異常状態であ る欠相や停電が出力され、 制御部 (マイ コ ン) 8 が電源異常を認識する と、 制御部 (マイ コ ン) 8 か らブザー 1 3 と表示器 1 4 に信号が出力さ れ、 使用者に聴覚と視覚で停電と欠相を区別して異常を促す。 If a power converter such as an inverter is continuously used in the open phase state, current will concentrate on a specific phase, causing the converter section 9 to generate more heat and possibly causing damage. . Therefore, the signal from the power monitoring If the control unit (microcomputer) 8 recognizes a power failure, a signal is output from the control unit (microcomputer) 8 to the buzzer 13 and the display unit 14. It prompts the user to distinguish between a power failure and an open phase by hearing and vision, and to prompt an abnormality.
また、 電源欠相状態においても運転を続ける必要がある場合、 制御部 (マイ コ ン) 8 が電源欠相を認識する と、 例えばイ ンバー夕装置 1 5 の 過電流保護レベルを下げる こ とによ り、 イ ンバー夕装置 1 5 に流れる電 流をコ ンバータ部 9 を破損させないレベルまで'下げた り 、 イ ンパ一夕部 1 1 のスィ ツチング周波数を下げ発熱を抑える等、 運転パターンの変更 を行い、 継続運転を可能とする。 . また、 停電状態に陥った場合のイ ンバ一夕装置 1 5 の無制御状態によ る負荷 (こ こではモータ 1 2 ) の故障やシステムの不具合を回避するた め、 負荷か ら回生エネルギーを制御部 (マイ コン) 8 及びイ ンバー夕装 置 1 5 の電源と して供給できる回路と、 この回生エネルギーを利用する 運転モー ドに自動的に切替えるスィ ツチング回路とを備える。 停電状態 を検出した制御部 (マイ コ ン) 8 は、 負荷か らの回生エネルギーによ り スイ ッチング回路を切替えてイ ンバー夕装置 1 5 に電源を供給し、 イ ン バー夕装置 1 5 を無制御で停止させず、 負荷を停止させる運転制御を行 なう。 これによ り 、 負荷を安全に停止させる こ とができる。 実施例 3 .  In addition, when it is necessary to continue the operation even when the power is out of phase, when the control unit (microcomputer) 8 recognizes the power out of phase, for example, the overcurrent protection level of the inverter 15 is reduced. Therefore, the current flowing through the inverter unit 15 is reduced to a level that does not damage the converter unit 9, or the switching frequency of the inverter unit 11 is reduced to suppress heat generation, etc. To enable continuous operation. Also, in order to avoid failure of the load (here, motor 1 2) and system failure due to the uncontrolled state of the inverter device 15 in the event of a power outage, regenerative energy from the load must be used. It is provided with a circuit that can supply power to the control unit (microcomputer) 8 and the inverter 15 and a switching circuit that automatically switches to an operation mode that uses this regenerative energy. The control unit (microcomputer) 8 that has detected the power outage switches the switching circuit by regenerative energy from the load to supply power to the inverter 15 and turns on the inverter 15. Perform operation control to stop the load without stopping without control. Thus, the load can be safely stopped. Example 3.
本発明の実施例 3 を第 5 図を参照に説明する。 第 5 図は本発明の実施 例 3 の代表的.な回路構成を示す概念図である。  Third Embodiment A third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a conceptual diagram showing a typical circuit configuration of Embodiment 3 of the present invention.
第 5 図において、 単相交流電源 2 1 は、 それぞれ抵抗 2 2 a 、 2 2 b およびコ ンデンサ 2 3 a 、 2 3 b を介して単相ダイオー ドブリ ッ ジ 2 4 の入力側に接続されている。 単相ダイオー ドプリ ッ ジ 2 4 の出力はフォ トカブラ 2 5 の発光ダイオー ドへとつながり 、 フォ ト力ブラ 5 の ト ラ ン ジス夕をオンする。 フ ォ ト力ブラ 5 の ト ラ ンジスタのコ レクタ側には抵 抗 2 6 が設けられている。 単相交流電源 2 1 の線間には E M C を 目的と したフィ ルタコ ンデンサ 2 7 が揷入されている。 In FIG. 5, a single-phase AC power supply 21 is connected to the input side of a single-phase diode bridge 24 via resistors 22a and 22b and capacitors 23a and 23b, respectively. I have. The output of the single-phase diode bridge 24 leads to the light-emitting diode of the photocoupler 25, Turn on this evening. A resistor 26 is provided on the collector side of the transistor of the photo force bra 5. A filter capacitor 27 for EMC is inserted between the lines of the single-phase AC power supply 21.
本発明は単相ダイオー ドプリ ッジ 2 4 の出力電流をフ ォ トカプラ 2 5 によ り検出する こ とで電源状態を監視するが、 出力電流を直接検出する 他に、 抵抗を挿入してその抵抗の両端電圧を検出すこ とによ り 、 または フォ トカプラ 2 5 を接続しフォ トカプラ 2 5 のオン/オフを検出する こ とによっても同様な結果を得る こ とができる。 本発明の実施例 3 ではフ ォ トカブラ出力を使用 した場合で説明を進める。  In the present invention, the power supply state is monitored by detecting the output current of the single-phase diode bridge 24 with the photocoupler 25.In addition to directly detecting the output current, a resistor is inserted to Similar results can be obtained by detecting the voltage across the resistor or by connecting the photocoupler 25 and detecting the on / off of the photocoupler 25. In the third embodiment of the present invention, a description will be given of a case in which a photocabler output is used.
単相交流電源 2 1 の一方の線よ り フォ ト力ブラ 2 5 を駆動させる任意 の電圧値とフォ トカブラ 2 5 に流す任意電流値か ら計算された定数の抵 抗 2 2 a とコ ンデンサ 2 3 a とが直列に接続され、 '同様に他方の線か ら は抵抗 2 2 b とコ ンデンサ 2 3 b とが直列に接続され、 それぞれの出力 が単相ダイオー ドプリ ッ ジ 2 4 に入力される。 単相ダ,ィ オー ドブリ ッ ジ 2 4 の出力にはフォ トカプラ 2 ' 5 の発光ダイ オー ド側が直列に挿入され てお り、 フォ トカプラ 2 5 の ト ラ ンジスタのコ レクタ側には抵抗 2 6で プルアップされている。 フォ ト力ブラ 2 5 の出力は、 フ ォ ト力ブラ 2 5 の発光ダイォー ドに電流が流れる と L 0 Wを、 電流が流れない.場合は H I G Hとなる。 この設定の仕方は実施例 1 の三相交流電源の場合と同様 なので、 その詳細な説明を省略する。  A constant resistance 2 2a and a capacitor calculated from an arbitrary voltage value that drives the photo-force brass 25 from one line of the single-phase AC power supply 21 and an arbitrary current value that flows through the photo-cabs 25 2a is connected in series, and similarly, from the other line, a resistor 22b and a capacitor 23b are connected in series, and each output is input to a single-phase diode bridge 24. Is done. The light emitting diode side of the photocoupler 2'5 is inserted in series at the output of the single-phase diode bridge 24, and a resistor 2 is connected to the collector side of the transistor of the photocoupler 25. Pulled up at 6. The output of the photo bra 25 becomes L 0 W when a current flows through the light emitting diode of the photo bra 25, and becomes H IG H when no current flows. The setting method is the same as in the case of the three-phase AC power supply of the first embodiment, and a detailed description thereof will be omitted.
単相交流電源 2 1 が正常な場合、 単相ダイオー ドブリ ッジ 2 4 の出力 は単相交流を全波整流した波形とな り、 フォ ト力ブラ 2 5 の発光ダイォ 一ドには三相交流を全波整流した電流が流れる。 この時フォ トカブラ 2 5 がオンするよ う に抵抗 2 2 a、 2 2 b並びにコ ンデンサ 2 3 a、. 2 3 b の閾値を決めておけば、 フォ ト力ブラ 2 5 の出力は L O Wとなる。 単相交流電源 2 1 が欠相/停電した場合、 単相ダイオー ドブリ ッジ 2 4 の出力はゼロであ り 、 この場合フォ トカブラ 2 4 の発光ダイオー ドに は電流が流れないため、 その出力は H I G .Hとなる。 When the single-phase AC power supply 21 is normal, the output of the single-phase diode bridge 24 has a waveform obtained by full-wave rectification of the single-phase AC, and the light-emitting diode of the photo bra 25 has a three-phase output. A current that is a full-wave rectified AC flows. At this time, if the thresholds of the resistors 22a and 22b and the capacitors 23a and 23b are determined so that the photocab 25 is turned on, the output of the photobra 25 becomes LOW. Become. Single-phase AC power supply 2 If single-phase AC power supply 2 1 loses or loses power, single-phase diode bridge 2 4 is zero. In this case, no current flows through the light emitting diode of the photocoupler 24, so that the output becomes HIG.H.
以上の様に、 単相交流電源 2 1 の状態 (正常 · 欠相/停電) に対応し た出力 ( L O W * H I G H ) を検出する こ とによ り電源の監視を行う。  As described above, the power supply is monitored by detecting the output (LOW * HIGH) corresponding to the state of the single-phase AC power supply 21 (normal / open / blackout).
¾年の E M C規制によ り 、 単相交流電源 2 1 の線間にフィ ルタ コ ンデ ンサ 2 7 等を挿入する場合は多く ある。 しかし本発明では欠相/停電し た場合、 その位相によ り フィ ルタコ ンデンサ 2 7 が電圧を保ってしま う が、 コ ンデンサ 2 3 a 、 2 3 b によ り直流分をカ ツ 卜する こ とによ り 、 フ ォ ト力ブラ 2 5 の出力は上記説明通り の結果を得る こ とができる。 ' 単相交流電源 2- 1 を入力電源と し、 単相交流電源 2 1 がコ ンバータ部 2 9 に入力される と、 その出力は直流に変換され、 主回路コ ンデンサ 3 O fc蓄え られる。 主回路コ ンデンサ 3 0 に蓄え られた直流電圧をイ ンパ —夕部 3 1 によ り任意の周波数に変換する こ とによ り イ ンバー夕装置に 接続されるモータ 3 2 を任意の周波数で回転させる。  Due to the EMC regulations of ¾, filter capacitors 27 etc. are often inserted between the single-phase AC power supply 21 wires. However, in the present invention, when a phase loss / power failure occurs, the filter capacitor 27 maintains the voltage due to the phase, but the DC component is cut by the capacitors 23a and 23b. Thus, the output of the photobra 25 can obtain the result as described above. 'When the single-phase AC power supply 2-1 is used as the input power and the single-phase AC power supply 21 is input to the converter section 29, the output is converted to DC and stored in the main circuit capacitor 3Ofc. The DC voltage stored in the main circuit capacitor 30 is converted to an arbitrary frequency by the impulse unit 31 so that the motor 32 connected to the inverter unit is operated at an arbitrary frequency. Rotate.
実施例 3 の電源監視装置を備え、 その出力がイ ンバ一夕装置に内蔵さ れる制御部 (マイ コ ン) 2 8 に入力される。 制御部 (マイ コ ン) · 2 8 か らはブザー 3 3 と表示器 3 4、 イ ンバー夕部 3 1 のゲー ト に接続されて レ る。  The power supply monitoring device of the third embodiment is provided, and its output is input to a control unit (microcomputer) 28 incorporated in the inverter device. Control unit (microcomputer) · 28 connected to the buzzer 33, the display 34, and the gate of the inverter 31.
電源監視装置からの信号が電源異常状態である欠相/停電が出力され. 制御'部 (マイ コ ン) 2 8 が電源異常を認識する と、 制御部 (マイ コ ン) 2 8 か ら ブザー 3 3 と表示器 3 4 に信号が出力され、 使用者に聴覚と視 覚で欠相/停電の異常を促す。  A signal from the power supply monitoring device outputs an open phase / power failure indicating that the power supply is abnormal. When the control unit (microcomputer) 28 recognizes a power failure, the buzzer sounds from the control unit (microcomputer) 28. A signal is output to 3 3 and the display 3 4 to prompt the user to detect abnormalities in phase loss / power failure by hearing and sight.
また、 欠相/停電状態に陥った場合のィ ンバ一夕装置の無制御状態に よる負荷 (こ こではモータ 3 2 ) の故障やシステムの不具合を回避する ため、 負荷か ら回生エネルギーを制御部 (マイ コ ン) 2 8 及びイ ンバー 夕装置の電源と して供給できる回路と、 この回生エネルギーを利用する 運転モー ド に自動的に切替えるスィ ツチング回路とを備える。 欠相 /停 電状態を検出した制 ί卸部 (マイ コ ン) 2 8 は、 負荷か らの回生エネルギ 一によ りスィ ツチング回路を切替えてィ ンパ一夕装置に電源を供給し、 ィ ンバ一夕装置を無制御で停止させず、 負荷を停止させる運転制御を行 なう。 これによ り 、. 負荷を安全に停止させる こ とができる。 ' 産業上の利用可能性 In addition, in order to avoid the failure of the load (here, motor 32) and system failure due to the uncontrolled state of the inverter overnight when the phase loss / power failure occurs, the regenerative energy is controlled from the load. (Micon) 28 and Inverter A circuit that can be used to supply power to the equipment, and this regenerative energy is used. And a switching circuit for automatically switching to an operation mode. The control and wholesaler (microcomputer) 28 that has detected the phase loss / power failure state switches the switching circuit based on the regenerative energy from the load to supply power to the impeller unit. Operation control is performed to stop the load without stopping the equipment overnight. As a result, the load can be safely stopped. '' Industrial applicability
この発明はイ ンバ一夕装置などの電力変換装置だけでなく 、 三相交流 電源の正常、 欠相、 停電を検出したい用途の装置に幅広く適用可能であ る。 また、 三相交流電源の線間に電源変換装置と独立して容量性素子を 接続可能な回路、 特に容量性素子を後付けできるような回路においては 容量性素子の有無に関わ らず本発明の電力変換装置が三相交流電源の正 常、 欠相、 停電を検出可能である。  INDUSTRIAL APPLICABILITY The present invention is widely applicable not only to power converters such as inverters and the like, but also to devices that are used for detecting normal, open-phase, and power failures of a three-phase AC power supply. Further, in a circuit in which a capacitive element can be connected independently of the power conversion device between the lines of the three-phase AC power supply, particularly in a circuit in which the capacitive element can be retrofitted, the present invention is applied regardless of the presence or absence of the capacitive element. The power converter can detect normal, open-phase, and power outages of the three-phase AC power supply.

Claims

請 求 の 範 囲 ' The scope of the claims '
1 . 三相交流電源 ( 1 ) の各相 (R相、 S相、 T相) と三相ダイオー ドブ リ ッジ ( 4 ) との間をそれぞれ所定の電流値に設定するよう設けられた 抵抗 ( 2 a、 2 b、 2 c ) 及びコ ンデンサ ( 3 a、 3 b、 3 c ) と、 前 記三相ダイ オー ドブリ ッ ジ ( 1 ) の出力電流に基づいて正常時、 欠相時 及び停電時で異なる検出信号を発生する検出部 ( 5 ) とを備えたこ とを 特徴とする電源監視装置。 1. A resistor provided to set a predetermined current value between each phase (R phase, S phase, T phase) of the three-phase AC power supply (1) and the three-phase diode bridge (4). (2a, 2b, 2c) and capacitors (3a, 3b, 3c) and the output current of the three-phase diode bridge (1) described above. A power supply monitoring device comprising: a detection unit ( 5 ) that generates a different detection signal when a power failure occurs.
2 . 請求項 1 において、 三相交流電源 ( 1 ) はその線間に容量性素子, ( 7 a、 7 b、 7 c ) を有する こ とを特徴とする電源監視装置。 ' 2. The power supply monitoring device according to claim 1, wherein the three-phase AC power supply (1) has a capacitive element (7a, 7b, 7c) between its lines. '
3 · 単相交流電源 ( 2 1 ) の各相と単相ダイ オー ドブリ ッ ジ ( 2 4 ) と の間をそれぞれ所定の電流値に設定するよう設けられた抵抗 ( 2 2 a、 2 2 b ) 及びコ ンデンサ ( 2 3 a、 2 3 b ) と、 前記単相ダイオー ドブ リ ッジ ( 2 1 ) の出力電流に基づいて正常時、 欠相/停電時で異なる検 出信号を発生する検出部 ( 2 5 ) とを備えた こ とを特徴とする電源監視 3 · A resistor (22a, 22b) provided to set a predetermined current value between each phase of the single-phase AC power supply (21) and the single-phase diode bridge (24). ) And the capacitors (23a, 23b) and the output current of the single-phase diode bridge (21) to generate different detection signals in normal operation, open phase / power failure. Power supply monitoring characterized by having a section (25)
4. 請求項 3 において、 単相交流電源 ( 2 1 ) はその線間に容量性素子 ( 2 7 a ) を有する こ とを特徴とする電源監視装置。 4. The power supply monitoring device according to claim 3, wherein the single-phase AC power supply (21) has a capacitive element (27a) between its lines.
5 . 請求項 1 乃至 4の何れかに記載の電源監視装置であ って、 検出部 ( 5、 2 5 ) か らの検出結果を入力 し、 表示部 ( 1 3、 1 4 ) に表示さ せる制御部 ( 8、 2 8 ) を備えたこ とを特徴とする電源監視装置。 5. The power supply monitoring device according to any one of claims 1 to 4, wherein a detection result from the detection unit (5, 25) is input and displayed on a display unit (13, 14). A power supply monitoring device comprising a control unit (8, 28) for controlling the power supply.
6. 請求項 1 又は 2記載の電源監視装置を備えた電力変換装置であって 入力側が三相交流電源 ( 1 ) に接続され、 出力側が負荷 ( 1 2 ) に接続 された電力変換部 ( 9、 1 0、 1 1 ) と、 検出部 ( 5 ) からの検出結果 を入力し、 電力変換部 ( 1 1 ) を制御する制御部 ( 8 ) とを備えたこ と を特徴とする電力変換装置。 6. A power converter comprising the power supply monitoring device according to claim 1 or 2, wherein the input side is connected to a three-phase AC power supply (1), and the output side is connected to a load (12). , 10, 11) and a control unit (8) that receives a detection result from the detection unit (5) and controls the power conversion unit (11).
7. .請求項 6 において、 制御部 ( 8 ) は、 検出部 ( 5 ) か ら欠相の検出 結果を入力した場合、 電力変換部 ( 1 1 ) を出力停止するよ う制御する こ とを特徴とする電力変換装置。 7. In claim 6, the control section (8) controls the power conversion section (11) to stop outputting when the detection result of the open phase is input from the detection section (5). Characteristic power converter.
8. 請求項 6 において、 制御部 ( 8 ) は、 検出部 ( 5 ) か ら欠相の検出 結果を入力した場合、 電力変換部 ( 1 1 ) の運転パターンを変更する こ とを特徴とする電力変換装置。 8. The control unit (8) according to claim 6, wherein the control unit (8) changes the operation pattern of the power conversion unit (11) when the detection result of the open phase is input from the detection unit (5). Power converter.
9 . 請求項 6 において、 制御部 ( 8 ) は、 検出部 ( 5 ) から停電の検出 結果を入力した場合、 負荷 ( 1 2 ) か らの回生エネルギーを使って、 前 記負荷 ( 1 2 ) を停止させるよう前記電力変換部 ( 1 1 ) を制御する こ とを特徴とする電力変換装置。 9. In claim 6, when the detection result of the power failure is input from the detection unit (5), the control unit (8) uses the regenerative energy from the load (12) to generate the load (12). A power conversion device for controlling the power conversion unit (11) to stop the power conversion.
1 0. 請求項 3又は 4記載の電源監視装置を備えた電力変換装置であつ て、 入力側が単相交流電源 ( 2 1 ) に接続され、 出力側が負荷 ( 3 2 ) に接続された電力変換部 ( 2 9、 3 0、 3 1 ) と、 検出部 ( 2 5 ) か ら の検出結果を入力 し、 電力変換部 ( 3 1 ) を制御する制御部 ( 2 8 ) と を備えたこ とを特徴とする電力変換装置。 10. A power converter provided with the power supply monitoring device according to claim 3 or 4, wherein the input side is connected to a single-phase AC power supply (21), and the output side is connected to a load (32). (29), (30), (31) and a control unit (28) that receives the detection result from the detection unit (25) and controls the power conversion unit (31). Characteristic power converter.
1 1 . 請求項 1 0 において、 制御部 ( 2 8 ) は、 検出部 ( 2 5 ) から欠 相の検出結果を入力した場合、 電力変換部 ( 3 1 ) を出力停止するよう 制御する こ とを特徴とする電力変換装置。 . 11. In claim 10, the control unit (28) is omitted from the detection unit (25). A power converter characterized by controlling the power converter (31) to stop outputting when a phase detection result is input. .
1 2. 請求項 1 0 において、 制御部 ( 2 8 ) は、 検出部 ( 2 5 ) か ら停 電の検出結果を入力 した場合、 負荷 ( 3.2 ) か らの回生エネルギーを使 つて、 前記負荷 ( 3 2 ) を停止させるよう前記電力変換部 ( 3 1 ) を制 御する こ とを特徴とする電力変換装置。 12. The control unit (28) according to claim 10, wherein the control unit (28) uses the regenerative energy from the load (3.2) when the detection result of the power failure is input from the detection unit (25). A power converter characterized by controlling the power converter (31) so as to stop (32).
PCT/JP2003/012903 2003-10-08 2003-10-08 Power supply monitor and power converter comprising it WO2005036710A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/012903 WO2005036710A1 (en) 2003-10-08 2003-10-08 Power supply monitor and power converter comprising it
TW092129120A TW200514328A (en) 2003-10-08 2003-10-21 Power source monitoring device and power inverter with the power source monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012903 WO2005036710A1 (en) 2003-10-08 2003-10-08 Power supply monitor and power converter comprising it

Publications (1)

Publication Number Publication Date
WO2005036710A1 true WO2005036710A1 (en) 2005-04-21

Family

ID=34430845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012903 WO2005036710A1 (en) 2003-10-08 2003-10-08 Power supply monitor and power converter comprising it

Country Status (2)

Country Link
TW (1) TW200514328A (en)
WO (1) WO2005036710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220291264A1 (en) * 2021-03-11 2022-09-15 Delta Electronics, Inc. Phase-loss detection apparatus of three-phase ac power source and method of detecting phase loss

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999087A (en) * 1975-08-15 1976-12-21 Westinghouse Electric Corporation Missing phase detection circuit for use with three-phase power sources

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999087A (en) * 1975-08-15 1976-12-21 Westinghouse Electric Corporation Missing phase detection circuit for use with three-phase power sources

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220291264A1 (en) * 2021-03-11 2022-09-15 Delta Electronics, Inc. Phase-loss detection apparatus of three-phase ac power source and method of detecting phase loss
US11567112B2 (en) * 2021-03-11 2023-01-31 Delta Electronics, Inc. Phase-loss detection apparatus of three-phase AC power source and method of detecting phase loss

Also Published As

Publication number Publication date
TW200514328A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
JP6703154B2 (en) Converter device and alternator drive device
EP2605394B1 (en) Power-supply control apparatus and heat pump apparatus having the power-supply control apparatus
AU2009230596B2 (en) Power conversion apparatus
JP4634942B2 (en) Electric vehicle control device
CN103166566B (en) Three-phase motor driving control device
EP2309280A1 (en) Ground fault sensing device
JP2007240450A (en) Deterioration detection circuit for smoothing capacitor, and electronic equipment provided therewith
CN111665400A (en) Phase loss detection device, compressor comprising same and phase loss detection method
WO2020163081A1 (en) Dc monitoring system for variable frequency drives
JPH1014097A (en) Capacitor capacitance determining device for power converter
JP3904547B2 (en) Uninterruptible power system
JP2008253008A (en) Power converter and method for deciding incorrect connection of power supply
JP2006352965A (en) Driving unit for motor and driving unit for elevator using its device
WO2005036710A1 (en) Power supply monitor and power converter comprising it
JP2010142066A (en) Robot
JP5282064B2 (en) Motor drive circuit and motor control device with failure detection function for inrush current suppression circuit
KR101623284B1 (en) Elevator control device
WO2021014803A1 (en) Power regeneration converter and processing method thereof
JP2001218474A (en) Method and apparatus for detecting ground fault of inverter
KR100504857B1 (en) Inverter driving apparatus of multi airconditioner
WO2021038829A1 (en) Power converting device and sign diagnostic method used in same
JP5452259B2 (en) Power regeneration converter
JP2004056893A (en) Fault detection method for power converter
KR100321244B1 (en) Harmonic Suppression Device of Air Conditioner and Its Suppression Method
CN214795020U (en) Phase-loss detection circuit and electronic equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE GB JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP