WO2005036661A1 - 熱電変換材料接続用導電性ペースト - Google Patents

熱電変換材料接続用導電性ペースト Download PDF

Info

Publication number
WO2005036661A1
WO2005036661A1 PCT/JP2004/014680 JP2004014680W WO2005036661A1 WO 2005036661 A1 WO2005036661 A1 WO 2005036661A1 JP 2004014680 W JP2004014680 W JP 2004014680W WO 2005036661 A1 WO2005036661 A1 WO 2005036661A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoelectric conversion
conversion material
elements selected
general formula
Prior art date
Application number
PCT/JP2004/014680
Other languages
English (en)
French (fr)
Inventor
Ryoji Funahashi
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US10/574,844 priority Critical patent/US7732704B2/en
Priority to JP2005514574A priority patent/JP4797148B2/ja
Priority to EP04773613A priority patent/EP1672709B1/en
Priority to DE602004027152T priority patent/DE602004027152D1/de
Publication of WO2005036661A1 publication Critical patent/WO2005036661A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • C01G53/68Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2 containing rare earth, e.g. La1.62 Sr0.38NiO4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a conductive paste for connecting a thermoelectric conversion material, a thermoelectric conversion element obtained by using the paste, and a thermoelectric power generation module.
  • thermoelectric conversion which directly converts heat energy to electric energy, is considered to be an effective means.
  • Thermoelectric conversion utilizes the Seebeck effect, and is an energy conversion method that generates a potential difference by applying a temperature difference between both ends of a thermoelectric conversion material to generate power.
  • thermoelectric generation In such power generation, thermoelectric generation, and thermoelectric power generation using thermoelectric conversion, one end of the thermoelectric conversion material is placed in a high-temperature section generated by waste heat, the other end is placed in the atmosphere, and external ends are placed on both ends. Electricity can be obtained simply by connecting a resistor, and there is no need for any moving devices such as motors and tarpins required for general power generation. Therefore, the cost is low, there is no emission of gas due to combustion, etc., and power generation can be performed continuously until the thermoelectric conversion material deteriorates. In addition, since thermoelectric generation can generate power at a high output density, the generator (module) itself can be reduced in size and weight, and can be used as a mobile power source for mobile phones and notebook computers.
  • thermoelectric power generation is expected to play a part in solving one of Enesolegi's concerns that may be of concern in the future.
  • a thermoelectric conversion module composed of thermoelectric conversion materials that have high conversion efficiency and excellent heat resistance and chemical durability is required.
  • thermoelectric conversion materials that have high conversion efficiency and excellent heat resistance and chemical durability.
  • thermoelectric conversion elements that connect a pair of P-type thermoelectric conversion materials and n-type thermoelectric conversion materials, or thermoelectric elements that integrate thermoelectric conversion elements A power generation module or generator is required.
  • thermoelectric conversion elements and thermoelectric power generation modules are behind the development of thermoelectric conversion materials themselves.
  • thermoelectric generation using high-temperature waste heat of 673 K (400 ° C) or higher gold, silver, etc. are generated by joining a thermoelectric conversion material using solder, since oxidation and melting occur.
  • Noble metal pastes such as platinum are used as joining materials.
  • an oxide is used as a substrate material, thermoelectric conversion material, or the like, the use of a noble metal paste agent causes a large difference in the coefficient of thermal expansion from the noble metal in the paste. As a result, the internal resistance of the module increases and the mechanical strength decreases. Also, since the metal and the oxide are in contact with each other at the junction, there is a problem that the interface resistance is large.
  • the present invention has been made in view of the above-mentioned state of the art, and its main purpose is to connect a thermoelectric conversion material made of an oxide with low resistance, and to repeatedly generate electricity at a high temperature.
  • Another object of the present invention is to provide a connection material for a thermoelectric conversion material and a thermoelectric conversion element obtained by using the connection material, in which the performance of the thermoelectric generation module hardly deteriorates even when the connection is made.
  • thermoelectric conversion element when a conductive paste containing a noble metal powder and a specific composite oxide is used as a connection material for a thermoelectric conversion material, the junction of the thermoelectric conversion element must have appropriate conductivity and be heated to a high temperature. It has been found that even when power generation is repeated, peeling of the connection portion is unlikely to occur, and good thermoelectric conversion performance can be maintained for a long period of time. Thus, the present invention has been completed.
  • the present invention provides the following conductive base for connecting a thermoelectric conversion material, a thermoelectric conversion element, a thermoelectric power generation module, and a thermoelectric power generation method.
  • (b) General formula: B if P b gM CO Ok (where M 1 is selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, AUY and lanthanides the is one or more elements, M 2 is, Ti, V, Cr, Mn , Fe, Ni, Cu, Mo, W, one selected from the group consisting of Nb and Ta, or two or more on 1.8 ⁇ f ⁇ 2.2; 0 ⁇ g ⁇ 0.4; 1.8 ⁇ h ⁇ 2.2;
  • L n is one or more elements selected from lanthanides
  • R 1 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi
  • R 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni> Cu, Mo, W, Nb and Ta, and 0.5 ⁇ m ⁇ l.2; 0 ⁇ n ⁇ 0.5; 0.5 ⁇ p ⁇ 1.2; 0 ⁇ q ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.
  • thermoelectric conversion material A conductive paste for connecting a thermoelectric conversion material, comprising:
  • thermoelectric conversion material according to the above item 1 which contains 0.5 to 20 parts by weight of the oxide powder described in the item (i) based on 100 parts by weight of the conductive metal powder described in the item (ii). Conductive paste for connection.
  • thermoelectric conversion material for connection of a thermoelectric conversion material according to item 1, further comprising a glass component and a resin component.
  • M 1 is, Na, K, Li, Ti, V, cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, and one or more elements selected from the group consisting of Y and lanthanides
  • M 2 is, Ti, V, One or more elements selected from the group consisting of Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta, 1.8 ⁇ f ⁇ 2.2; 0 ⁇ g 0.4; 1.8 ⁇ h ⁇ 2.2; 1.6 ⁇ i ⁇ 2.2; 0 ⁇ j ⁇ 0.5; 8 ⁇ k ⁇ 10.
  • At least one oxide powder selected from the group consisting of:
  • At least one conductive metal powder selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals;
  • a conductive paste for connecting a P-type thermoelectric conversion material comprising:
  • the oxide powder has the general formula: C a a AC o 4 O e (where A 1 is Na, K :, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb , Sr, Ba, Al, Bi, Y and lanthanoida, one or more elements selected from the group consisting of: 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 8 ⁇ .
  • thermoelectric conversion according to item 4 wherein the oxide powder according to item (i) is contained in an amount of 0.5 to 20 parts by weight based on 100 parts by weight of the conductive metal powder described in item (ii). Conductive paste for material connection.
  • thermoelectric conversion material for connecting a p-type thermoelectric conversion material according to the above item 4, further comprising a glass component and a resin component.
  • Ln is one or more elements selected from lanthanides
  • R 1 is one or more elements selected from the group consisting of Na, K :, Sr, Ca and Bi Yes
  • R 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta, and 0.5 ⁇ m ⁇ l. 2; 0 ⁇ n ⁇ 0.5; 0.5 ⁇ p ⁇ 1.2; 0 ⁇ q ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.
  • Ln is one or more elements selected from lanthanoids
  • R 3 is, Na, K
  • R 4 is a group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta
  • At least one oxide powder selected from the group consisting of composite oxides represented by
  • At least one conductive metal powder selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals;
  • a conductive paste for connecting an n-type thermoelectric conversion material comprising:
  • the oxide powder has the general formula: L amRinN i 0 r (where R 1 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; .... 5 ⁇ m ⁇ l 2; 0 ⁇ n ⁇ 0. 5; 2. 7 ⁇ r ⁇ 3 a 3) a composite oxide represented by the general formula: (L a s R 3 t ) 2 N I_ ⁇ w (where, R 3 is, Na, K, Sr, and one or more elements selected from the group consisting of Ca and Bi, 0. 5 ⁇ s ⁇ l 2;. 0 ⁇ t ⁇ 0. 5; 3. 6 ⁇ w ⁇ 4.4.
  • the paste for connecting an n-type thermoelectric conversion material according to the above item 8 which is at least one selected from the group consisting of composite oxides represented by:
  • the conductive paste for connecting an n-type thermoelectric conversion material according to item 8 further comprising a glass component and a resin component.
  • thermoelectric conversion element in which one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are connected to a conductive substrate using a conductive paste, respectively.
  • the P-type thermoelectric conversion material has the general formula: CaaAibCOeASdOe (where A 1 is
  • a 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta, and 2.2 ⁇ a ⁇ 3.6 0 ⁇ b ⁇ 0.8; 2 ⁇ c ⁇ 4.5; 0 ⁇ d ⁇ 2; 8 ⁇ e ⁇ 10.
  • Composite oxide represented by or the general formula: B i f P 0 iM 2 jO k (where M 1 is Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y and run is one or more elements selected from the group consisting of a type M 2 are selected Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, from the group consisting of Nb and Ta Or two or more elements, 1.8 ⁇ f ⁇ 2.2; 0 ⁇ g ⁇ 0.2 4 1.8 ⁇ h ⁇ 2.2 2. 1.6 ⁇ i ⁇ 2.2; 0 ⁇ j ⁇ 0 5; 8 ⁇ k ⁇ 10.) D, which consists of a complex oxide represented by
  • the n-type thermoelectric conversion material has the general formula: L nmR (Where L n is one or more elements selected from lanthanoids, and R 1 is one or more elements selected from the group consisting of Na, K :, Sr, Ca and Bi R 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta, and 0.5 ⁇ m ⁇ l.2; 0 ⁇ n ⁇ 0.5; 0.5 ⁇ p ⁇ 1.2; 0 ⁇ q ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.
  • the conductive paste used to connect the P-type thermoelectric conversion material and the n-type thermoelectric conversion material to the conductive substrate is the conductive paste described in item 1 above. Is a paste of nature,
  • thermoelectric conversion element characterized by the above-mentioned.
  • thermoelectric conversion element in which one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are connected to a conductive substrate using a conductive paste, respectively.
  • the P-type thermoelectric conversion material has the general formula: C (Where A 1 is selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanide A 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta.
  • thermoelectric conversion material made of a composite oxide represented by the general formula: L During i p R 2 Q O r (wherein, Ln is one or more elements selected from the run-evening Neu de, R 1 is, Na, K :, Sr, from the group consisting of Ca and Bi R 2 is one or more selected from the group consisting of Ti, V, Cr> Mn, Fe, Ni, Cu, Mo, W, Nb and Ta 0.5 ⁇ m ⁇ l.
  • the conductive paste used to connect the P-type thermoelectric conversion material to the conductive substrate is: (i) General formula: C a aA! BC OcASdOe (where A 1 is Na, K, Li, ⁇ , V, Cr, ⁇ , Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and one or more elements selected from the group consisting of lanthanides; A 2 is Ti, V , Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta are one or more elements selected from the group consisting of: 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0 ...
  • LnmRinN i p R 2 Q O r wherein, L n is one or two or selected from Rantanoido R 1 is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi, and R 2 is Ti, V,, Mn, Fe , Ni, Cu, Mo, W, Nb and Ta are one or more elements selected from the group consisting of 0.5 ⁇ m ⁇ 1.2; 0 ⁇ n ⁇ 0.5; 0.5 ⁇ p ⁇ 1.2; 0 ⁇ q ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.)
  • At least one oxide powder selected from the group consisting of composite oxides represented by the following formula: and (ii) gold, silver, platinum, and an alloy containing at least one of these metals
  • thermoelectric conversion element characterized by the above-mentioned.
  • thermoelectric conversion element in which one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are connected to a conductive substrate using a conductive paste, respectively.
  • thermoelectric conversion material has the general formula: C a a in AC o 4 O e (wherein, A 1 is, Na, K, Li, Ti , V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, One or more elements selected from the group consisting of Sr, Ba, Al, Bi, Y and lanthanoids; 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 8 ⁇ e ⁇ 1 0) composite oxides represented by, or the general formula:.
  • the n-type thermoelectric conversion material has the general formula: L i 0 (wherein, R 1 is one or more elements selected from the group consisting of Na, K :, Sr, Ca, and Bi; 0.5 ⁇ m ⁇ 1.2; 0 ⁇ n ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.) Or a general formula: (L a s R 3 t ) 2 N i O w (where R 3 is , Na, K, Sr, Ca and Bi are one or more elements selected from the group consisting of: 0.5 ⁇ s ⁇ l. 2; 0 ⁇ t ⁇ 0.5; 3.6 ⁇ w ⁇ 4.4.) It consists of a composite oxide represented by
  • the conductive paste used to connect the P-type thermoelectric conversion material to the conductive substrate is: (i) General formula: C a 3 ⁇ ⁇ 3 0 4 ⁇ e (where A 1 is Na, K, Li , Ti, V, Cr, Mn, It is one or more elements selected from the group consisting of Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanides; 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 8 ⁇ e ⁇ 10.
  • the conductive paste used to connect the n-type thermoelectric conversion material to the conductive substrate is a conductive paste used to connect the n-type thermoelectric conversion material to the conductive substrate.
  • L i O r (wherein, R 1 is, Na, K :, Sr, is one or more elements selected from the group consisting of Ca and Bi, 0. 5 ⁇ m ⁇ l 2;. 0 ⁇ n ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.) and a general formula: (L a s R 3 t ) 2 N i O w (where R 3 Is one or more elements selected from the group consisting of Na, K, Sr, Ca and Bi; 0.5 ⁇ s ⁇ l.2; 0 ⁇ t ⁇ 0.5; 3.6 ⁇ w ⁇ 4.4.) At least one oxide powder selected from the group consisting of the composite oxides represented by), and) gold, silver, platinum, and at least one of these metals A conductive paste containing at least one kind of conductive metal powder selected from the group consisting of alloys.
  • thermoelectric conversion element characterized by the above-mentioned.
  • thermoelectric conversion elements described in 1 and 2 above, connect the unbonded end of the p-type thermoelectric conversion material of the thermoelectric conversion element to the unbonded end of the n-type thermoelectric conversion material of another thermoelectric conversion element.
  • a thermoelectric power generation module in which a plurality of thermoelectric conversion elements are connected in series by a method of connecting them on a board.
  • thermoelectric generation module according to the above item 15 is arranged in a high-temperature section, and the other end is arranged in a low-temperature section.
  • thermoelectric conversion elements described in 13 above, connect the unbonded end of the p-type thermoelectric conversion material of the thermoelectric conversion element to the unbonded end of the n-type thermoelectric conversion material of another thermoelectric conversion element.
  • thermoelectric generation module according to the above item 17 is arranged in a high-temperature part and the other end is arranged in a low-temperature part.
  • thermoelectric conversion material connection paste of the present invention will be described in detail.
  • the conductive paste for connecting a thermoelectric conversion material of the present invention includes at least one conductive metal powder selected from the group consisting of gold, silver, platinum, and an alloy containing at least one of these metals; It contains an oxide powder as an essential component.
  • conductive metal powder selected from the group consisting of gold, silver, platinum, and an alloy containing at least one of these metals; It contains an oxide powder as an essential component.
  • noble metals such as gold, silver, and platinum, alloys containing at least one of these noble metals, and the like can be used.
  • an alloy for example, an alloy containing about 30% by weight or more, preferably about 70% by weight or more of a noble metal such as gold, silver, or platinum can be used. Further, an alloy containing two or more noble metal components may be used.
  • the conductive metal powders can be used alone or in combination of two or more.
  • the particle size of the conductive metal powder is not particularly limited, but usually, it is preferable that about 80% or more of the metal powder has a particle size in the range of about 0.1 to 30 im.
  • oxide powder at least one oxide powder selected from the group consisting of the composite oxides described in (a) to (d) below is used.
  • the conductive metal powder is used.
  • these oxide powders have good conductivity and can provide good conductivity to a connection portion.
  • examples of the lanthanoid element include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and the like.
  • examples of preferred composite oxides include the following composite oxides.
  • Alpha 1 is, Na, K, Li, Ti ⁇ V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr , Ba, Al, Bi, Y and one or more elements selected from the group consisting of lanthanoids; 2.2 ⁇ a ⁇ 3.6; 0 ⁇ b ⁇ 0.8; 8 ⁇ e ⁇ 10
  • Composite oxide represented by 2 Q 0 r, and the general formula: (Ln s R 3 t) 2 N i u R 4 v O w composite oxides table, the one of single crystal or polycrystal But it's fine.
  • the method for producing these composite oxides is not particularly limited, as long as it can produce a single crystal or a polycrystal having the above-described composition.
  • a single crystal production method such as a flux method, a zone melt method, a pulling method, a glass anneal method via a glass precursor, a solid state reaction method, a powder production method such as a sol-gel method, a sputtering ring method, and a laser abrasion method.
  • a composite oxide having a crystal structure having the above composition may be produced by a known method such as a thin film production method such as a chemical vapor deposition method or a chemical vapor deposition method.
  • the above-described composite oxide can be produced, for example, by mixing and firing the raw materials so as to have the same element component ratio as the target composite oxide.
  • the firing temperature and the firing time are not particularly limited as long as the desired composite oxide is formed. For example, in the temperature range of about 700 to 120 ° C., the firing temperature and It may be fired for about 40 hours.
  • a carbonate, an organic compound, or the like is used as the raw material, it is preferable to calcine the raw material before firing to decompose the raw material, and then to fire to form the target composite oxide.
  • a carbonate is used as a raw material, it may be calcined at about 700 to 900 for about 10 hours and then calcined under the above conditions.
  • the firing means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted.
  • the firing atmosphere is usually an oxidizing atmosphere such as an oxygen stream or air, but if the raw material contains a sufficient amount of oxygen, for example, the firing can be performed in an inert atmosphere. .
  • the amount of oxygen in the produced composite oxide can be controlled by the oxygen partial pressure during firing, the firing temperature, the firing time, and the like. The higher the oxygen partial pressure, the higher the oxygen ratio in the above general formula .
  • the raw material powder be fired as a pressed compact in order to efficiently advance the solid-phase reaction. In this case, the obtained compact may be pulverized into a powder having a required particle size.
  • the melting condition at this time may be any condition as long as the raw material can be uniformly melted.However, in order to prevent contamination from the melting vessel and evaporation of the raw material components, for example, when using alumina rutupo, It is preferable to heat to about 1200 to 140 to melt. There is no particular limitation on the heating time, and heating may be performed until the raw material is uniformly melted. The heating time may be generally about 30 minutes to 1 hour.
  • the heating means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be employed.
  • the atmosphere at the time of melting may be an oxygen-containing atmosphere such as in air or an oxygen stream of about 300 ml / 1 or less, but if the raw material contains a sufficient amount of oxygen, an inert atmosphere is used. May be melted.
  • the quenching condition is not particularly limited, but at least the surface portion of the solidified product is formed. What is necessary is just to quench rapidly on the condition that a part becomes a glassy amorphous layer.
  • the melt may be poured on a metal plate and rapidly cooled by means of compression from above.
  • the cooling rate may be about 500 ° C./sec or more, preferably 10 3 / sec or more.
  • the solidified material formed by rapid cooling is heat-treated in an oxygen-containing atmosphere, whereby the composite oxide grows as a fibrous single crystal from the surface of the solidified material.
  • the heat treatment temperature may be about 880 to 930 ° C., and heating may be performed in an oxygen-containing atmosphere such as air or an oxygen stream. In the case of heating in an oxygen stream, for example, heating may be performed in an oxygen stream having a flow rate of about 300 m 1 Z or less, but may be higher.
  • the heat treatment time is not particularly limited and may be determined according to the intended degree of growth of the single crystal, but usually, the heating time may be about 60 to 1000 hours.
  • the mixing ratio of the raw materials can be determined according to the desired composition of the composite oxide. Specifically, when a fibrous composite oxide single crystal is formed from the amorphous layer portion on the surface of the solidified product, the composition of the melt in the amorphous portion is defined as a liquid phase composition. Since an oxide single crystal having an equilibrium solid phase composition grows, the composition of the starting material can be determined by the relationship between the composition of the melt phase and the composition of the solid phase (single crystal) that are in equilibrium with each other.
  • the size of the composite oxide single crystal obtained by such a method can vary depending on the type of raw material, composition ratio, heat treatment conditions, etc., for example, a length of about 10 to 1000, a width of about 20 to 200 m, and a thickness of about 20 to 200 m. It has a fibrous shape of about 1 to 5 m.
  • the oxygen content of the obtained substance can be controlled by the oxygen flow rate during firing, and the higher the flow rate, the higher the oxygen content
  • changes in the oxygen content do not significantly affect the electrical properties of the composite oxide.
  • the raw material is not particularly limited as long as it can form an oxide by firing, and a simple metal, an oxide, various compounds (such as carbonates), and the like can be used.
  • C a source calcium oxide (CaO), calcium chloride (C aC 1 2), calcium carbonate (CAC0 3), calcium nitrate (Ca (N0 3) 2) , hydroxide of calcium (Ca (OH) 2), dimethoxy calcium (Ca ( ⁇ _CH 3) 2), diethoxy calcium (Ca (OC 2 H 5) 2), dipropoxy calcium (Ca (OC 3 H r) 2) using the alkoxide compounds such as Can be.
  • Co source The oxidizing cobalt (Co_ ⁇ , Co 2 0 3, C o 3 0 4), chloride Koparuto (C o C 1 2), carbonate Koba Belt (Co C0 3), cobalt nitrate (Co (N0 3) 2) , cobalt hydroxide (Co (OH) 2), di-propoxy cobalt (Co (OC 3 H 7) 2) using the alkoxide compounds such as Can be.
  • elemental elements, oxides, chlorides, carbonates, nitrates, hydroxides, alkoxide compounds and the like can be used.
  • a compound containing two or more constituent elements of the composite oxide may be used.
  • the particle size of the powder is not particularly limited, but usually, about 80% or more of the oxide powder preferably has a particle diameter of about 50 m or less, and preferably about 1 to 10 m. Is more preferred.
  • thermoelectric conversion material connection of the present invention The conductive paste for thermoelectric conversion material connection of the present invention
  • At least one oxide powder selected from the group consisting of
  • At least one conductive metal powder selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals
  • the conductive paste can usually contain a glass component, a resin component, and the like in addition to the oxide powder and the conductive metal powder described above.
  • thermoelectric power generation when the paste is applied to the connection part and heated, It is a component that mainly exhibits binding power.
  • a component capable of melting and exhibiting a bonding force when joined by heating, and a component capable of maintaining a sufficient bonding force without being melted may be used for thermoelectric power generation. .
  • Such a glass component may be appropriately selected from glass components blended in a known conductive paste.
  • a glass component for example, bismuth borosilicate glass, lead borosilicate glass, or the like can be used.
  • the resin component imparts appropriate dispersibility, thixotropy, viscosity characteristics, and the like to the paste.
  • the resin component for example, ethylcellulose, hydroxyethylcellulose, methylcellulose, nitrocellulose, an ethylcellulose derivative, an acrylic resin, a petalal resin, an alkyd phenol resin, an epoxy resin, a wood material and the like can be used. .
  • the mixing ratio of each of these components is not particularly limited, and may be appropriately determined according to the desired conductivity, coefficient of thermal expansion, bonding force, viscosity characteristics, and the like.
  • the content of the oxide powder is preferably about 0.5 to 20 parts by weight, more preferably about 1 to 15 parts by weight, based on 100 parts by weight of the conductive metal powder. .
  • the content of the glass component may be, for example, about 0.5 to 10 parts by weight, and preferably about 1 to 7 parts by weight, based on 100 parts by weight of the conductive metal powder. It is also possible to use outside the range.
  • the content of the resin component is not particularly limited either, and may be appropriately determined within a range in which appropriate workability and adhesiveness can be exhibited.
  • the amount can be about 0.5 to 20 parts by weight, preferably about 1 to 10 parts by weight, more preferably about 1 to 5 parts by weight based on 100 parts by weight of the conductive metal powder. Is more preferable.
  • other oxide powders may be added to the conductive paste of the present invention. The type and amount of the oxide powder may be determined as appropriate within a range that does not adversely affect the above-described effects.
  • an n-type thermoelectric conversion material powder can be added to the p-type thermoelectric conversion material connection conductive paste.
  • the conductive paste of the present invention may contain additives such as a solvent, a plasticizer, a lubricant, an antioxidant, and a viscosity modifier, which are blended in the known conductive paste.
  • a solvent for example, terpineol, butyl carbyl] -yl acetate and the like can be used, and they may be appropriately mixed and used.
  • the contents of these components may be appropriately determined according to the required properties.
  • the solvent can be used in an amount of about 3 to 30 parts by weight, preferably about 5 to 20 parts by weight, based on 100 parts by weight of the conductive metal powder.
  • thermoelectric conversion material for connecting any of a P-type thermoelectric conversion material and an n-type thermoelectric conversion material to a conductive substrate.
  • thermoelectric conversion material connection paste described above to impart appropriate conductivity to the junction of the thermoelectric conversion material, and when power generation at high temperatures is repeated, Also, the peeling of the connection portion is less likely to occur, and good thermoelectric conversion performance can be maintained for a long time.
  • the oxide powder when a P-type thermoelectric conversion material is connected to a conductive substrate, the oxide powder is represented by the general formula: C a a AC oc A 2 d O e (where AA 2 , a, b, c, d and e composite oxide represented by the same) above, and the general formula: B i f PbgMihCo iM in 2 JO k (wherein, M 1 M 2, fg, h, i, j and k are the same) It is preferable to use at least one oxide powder selected from the group consisting of composite oxides represented by These composite oxides have properties as a p-type thermoelectric conversion material.
  • thermoelectric conversion material By using a paste containing the composite oxide to connect the P-type thermoelectric conversion material, Good conductivity can be imparted to the connection portion without impairing the thermoelectric characteristics of the thermoelectric conversion material, and the coefficient of thermal expansion of the connection portion can be approximated to the coefficient of thermal expansion of the thermoelectric conversion material.
  • the oxide powder is represented by the general formula: R 2 , m, n, p, Q and r are the same as above. And a general formula: (Ln s R 3 t ) 2 Niu R 4 v O w (where L n, R 3 , R 4 , s, t, u and v are It is preferable to use at least one composite oxide powder selected from the group consisting of composite oxides represented by the following formula: These composite oxides have characteristics as an n-type thermoelectric conversion material.
  • a paste containing the composite oxide for connection of the n-type thermoelectric conversion material the thermoelectric properties of the n-type thermoelectric conversion material can be improved. Without disturbing the connection Good conductivity can be imparted to the portion, and the coefficient of thermal expansion of the connection portion can be approximated to the coefficient of thermal expansion of the thermoelectric conversion material.
  • thermoelectric conversion element of the present invention one end of a P-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material are respectively connected to a conductive substrate.
  • a conductive paste for connecting the P-type thermoelectric conversion material to the conductive substrate and a conductive paste for connecting the n-type thermoelectric conversion material to the conductive substrate are represented by (i) (a).
  • a composite oxide represented by O cASdOe (where A 1 , A 2 , a, b, c, d, and e are the same as above),
  • At least one oxide powder selected from the group consisting of
  • At least one conductive metal powder selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals
  • pastes having the same composition may be used, or pastes having different compositions may be used.
  • pastes having the same composition are used, the operation of applying the paste becomes easy, and the thermoelectric conversion element can be manufactured efficiently.
  • a general formula having characteristics as a P-type thermoelectric conversion material C A composite oxide represented by O cAZdOe (where A 1 , A 2 , a, b, c, d, and e are the same as above), and —general formula: B i (Wherein, M 1 M 2 , f, g, h, i, j, and k are the same as above), a paste containing at least one oxide powder selected from the group consisting of composite oxides represented by N-type thermoelectric conversion material to conductive substrate
  • thermoelectric conversion material considering the production efficiency and the performance of the target thermoelectric conversion material, etc., whether to use the same paste for connecting the p-type thermoelectric conversion material and the connection for the n-type thermoelectric conversion material or to use different pastes It may be determined appropriately.
  • thermoelectric conversion material is not particularly limited, but among the oxide powder to be mixed with the conductive paste for connecting the thermoelectric conversion material of the present invention, a general formula: C a (Where A 1 is selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoids A 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta. Yes, 2.
  • thermoelectric conversion material composed of a composite oxide represented by the following formula:
  • thermoelectric conversion material is produced by the same production method as the composite oxide compounded in the above-mentioned conductive paste, for example, a flux method, a zone melt method, a pulling method, a glass annealing method via a glass precursor.
  • a flux method for example, a flux method, a zone melt method, a pulling method, a glass annealing method via a glass precursor.
  • Single crystal It can be produced by various methods such as a production method, a solid phase reaction method, a powder production method such as a sol-gel method, a sputtering method, a laser abrasion method, a thin film production method such as a chemical 'vapor' deposition method, and the like.
  • part of Ca in Ca 2 CoO 3 is replaced by A 1
  • part of Co in this layer and part of Co in the Co 0 2 layer are replaced by A 2 .
  • some Bi is replaced by a part of Pb or M 1, a part of Co is substituted by M 2.
  • these oxides When a temperature difference is applied to both ends of these oxides, the potential generated by the Seebeck effect is lower on the high temperature side than on the low temperature side, and exhibits properties as a p-type thermoelectric conversion material.
  • These oxides have, for example, a Seebeck coefficient of about 100 V / K or more at a temperature of 100 K (absolute temperature) or more, and an electrical resistivity of about 1 ⁇ cm or less. At the same time, the Seebeck coefficient increases and the electrical resistivity tends to decrease.
  • a preferred composite oxide represented by the general formula: C a 3 ⁇ 0 o 4 ⁇ e (wherein, A 1 is, Na, K, Li, Ti , V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and lanthanoids, and one or more elements selected from the group consisting of: . a ⁇ 3. 6; 0 ⁇ b ⁇ 0.
  • n-type thermoelectric conversion material it is not particularly limited, among the oxide powder mixed into the thermoelectric varying ⁇ charge connection conductive paste of the present invention, the general formula: LnmR N i p R 2 q O r (where L n is one or more elements selected from lanthanides, and R 1 is one or more elements selected from the group consisting of Na, K :, Sr, Ca and Bi R 2 is Ti, V, CJ :, Mn, Fe, Ni, Cu, Mo, W, Nb or Ta One or more elements selected from the group consisting of: 0.5 m ⁇ l.2; 0 ⁇ n ⁇ 0.5; 0.5 ⁇ 1.2; 0 ⁇ q ⁇ 0. 5; 2.7 ⁇ r ⁇ 3.3.
  • thermoelectric conversion material composed of a composite oxide represented by the following formula:
  • thermoelectric conversion materials may be any of a polycrystalline sintered body and a single crystal body, and may be formed in a thin film shape.
  • thermoelectric conversion material is produced by the same production method as the composite oxide compounded in the conductive paste described above, for example, a flux method, a zone melt method, a pulling method, a glass annealing method via a glass precursor, and the like.
  • Manufacturing by various methods such as single crystal manufacturing method, solid state reaction method, powder manufacturing method such as sol-gel method, sputtering method, laser abrasion method, thin film manufacturing method such as chemical vapor deposition method, etc. Can be.
  • the former has a crystal structure of perovskite type, the latter are generally those having a crystal structure called a lamellar base Robusukai Bok, generally former AB0 3 structure, the latter A 2 also referred to as B0 4 structure.
  • part of Ln is substituted by R 1 or R 3
  • part of Ni is substituted by R 2 or R 4 .
  • These composite oxides have a negative Seebeck coefficient, that is, when a temperature difference is applied to both ends, the potential generated by the Seebeck effect is higher on the high temperature side than on the low temperature side. Shows properties as a conversion material.
  • These composite oxides have, for example, a Seebeck coefficient of about -1 to -30 ⁇ / ⁇ at a temperature of 100 K or more, and show low electric resistivity. For example, at a temperature of 100 K or more, the material can have an electrical resistivity of about 10 OmQcm or less.
  • L . i O r (wherein, R 1 is, Na, K, Sr, and one or more elements selected from the group consisting of Ca and Bi, 0. 5 ⁇ m ⁇ l 2; 0 ⁇ n ⁇ 0.5; 2.7 ⁇ r ⁇ 3.3.
  • Composite oxide represented by) the general formula: (a type L a s R 3 t) 2 N i 0 W ( wherein, R 3 is where Barre selected from the group consisting of Na, K, Sr, Ca and Bi Or two or more elements, 0.5 ⁇ s ⁇ l.2; 0 ⁇ t ⁇ 0.5; 3.6 ⁇ w ⁇ 4.4.) be able to.
  • the shape and size of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material to be used are not particularly limited, and the necessary thermoelectric conversion is performed according to the size and shape of the target thermoelectric power module. What is necessary is just to determine suitably so that performance may be exhibited.
  • it is used as a rectangular parallelepiped material with a width and thickness of about 1 to 10 mm and a length of about 1 to 20 mm, and a cylindrical material with a diameter of about 1 to 10 mm and a length of about 1 to 20 mm. be able to.
  • thermoelectric conversion material is obtained, for example, by molding an oxide powder obtained by the same method as the above-described method of manufacturing the oxide powder for connecting a thermoelectric conversion material, heating the resultant into a sintered body, According to the above, it can be obtained by cutting out and shaping into a predetermined shape using a diamond cutter or the like.
  • the sintering method is not particularly limited, as long as a dense sintered body can be obtained.
  • a hot press sintering method, a partial melting method, or the like can be employed.
  • the sintering atmosphere is not particularly limited, and may be an oxidizing atmosphere such as the air or a vacuum atmosphere.
  • the sintering temperature is not particularly limited either, but may be, for example, about 800 to 950.
  • a substrate in which an insulating ceramic is provided with a metal coating, a conductive ceramic substrate, or the like can be used.
  • the conductive ceramic a material that does not deteriorate even in air at a temperature of about 107 K (absolute temperature) and can maintain a low electric resistance for a long period of time is preferable.
  • an n-type thermoelectric conversion material LaNi0 3 etc. it is possible to use an oxide-sintered body with a low electrical resistivity.
  • the insulating ceramic it is preferable to use a material that is not oxidized even in air at a high temperature of about 1073 K.
  • a substrate made of an oxide ceramic such as alumina can be used.
  • the metal coating formed on the insulating ceramics any metal coating that does not oxidize in high-temperature air and has low electric resistance may be used.
  • a coating of a noble metal such as silver, gold, or platinum may be formed by an evaporation method or the like.
  • the length, width, thickness, and the like of the conductive substrate may be appropriately set according to the size of the module, electric resistance, and the like.
  • the coefficient of thermal expansion of the conductive substrate is preferably close to the coefficient of thermal expansion of the thermoelectric conversion material.
  • Figure 1 is a diagram schematically illustrating an example of a thermoelectric conversion element obtained by connecting one end of a P-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material to a conductive substrate using a conductive paste. It is.
  • Each of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material may be connected to the conductive substrate using a conductive paste for connecting the thermoelectric conversion material having the same composition, or the p-type thermoelectric conversion material and the conductive paste may be used.
  • the above-mentioned conductive paste for connecting the p-type thermoelectric conversion material is used for connection with the conductive substrate, and the above-mentioned conductive paste for connecting n-type thermoelectric conversion material is used for connecting the n-type thermoelectric conversion material to the conductive substrate. May be used.
  • the specific composition of these conductive pastes may be selected according to the mechanical strength, contact resistance, and the like of the connection part required for the thermoelectric conversion element or the thermoelectric power generation module.
  • the composition and amount of the oxide powder to be mixed in the conductive paste are determined by the type of the thermoelectric conversion material and the conductive substrate used. May be appropriately determined according to the conditions.
  • a plurality of oxide powders may be added in consideration of the mechanical characteristics, electric characteristics, and the like of the connection portion.
  • connection method may be the same as in the case where a conventional noble metal paste is used. Specifically, a conductive paste for connecting a thermoelectric conversion material is applied to a connection portion between the thermoelectric conversion material and the conductive substrate, and then dried and heated to solidify the conductive paste. P-type and n-type thermoelectric conversion materials can be connected.
  • the amount of the paste applied is not particularly limited, and may be appropriately determined according to the specific composition of the paste so that the thermoelectric conversion material can be connected with sufficient strength.
  • the joints should be formed so that the thickness of the paste before solidification is about 10 xm to 500 zzm and the thickness of the paste layer after solidification is about 1 tm to 200 im. Apply evenly You just have to put on the cloth.
  • the heating conditions are not particularly limited, but usually, after heating at about 80 to 200 ° C for about 5 minutes to 1 hour to evaporate the organic solvent, about 500 to 900 ° C. Heat for about 5 minutes to 1 hour to fix the glass component.
  • the conductive paste may be solidified while applying pressure in order to bring the substrate and the thermoelectric conversion material into close contact.
  • thermoelectric generation module of the present invention uses a plurality of the thermoelectric conversion elements described above, and connects the unbonded end of the P-type thermoelectric conversion material of one thermoelectric conversion element to the n-type thermoelectric conversion material of another thermoelectric conversion element.
  • a plurality of thermoelectric conversion elements are connected in series by a method of connecting to an unjoined end.
  • thermoelectric conversion material and the end of the n-type thermoelectric conversion material of another thermoelectric conversion element are bonded to each other by bonding the unbonded end of the thermoelectric conversion element to the substrate using a bonding agent. May be connected on the substrate.
  • FIG. 2 shows a schematic diagram of a thermoelectric conversion module having a structure in which a plurality of thermoelectric conversion elements are connected on a substrate using a bonding agent.
  • thermoelectric conversion module shown in Fig. 2 uses a plurality of thermoelectric conversion elements so that the unbonded end of the p-type thermoelectric conversion material of the thermoelectric conversion element and the unbonded end of the n-type thermoelectric conversion material are in contact with the substrate. On the substrate so that the p-type thermoelectric conversion material of the thermoelectric conversion element and the n-type thermoelectric conversion material of another thermoelectric conversion element are connected in series. It was done.
  • the substrate is used mainly for the purpose of improving the heat uniformity and the mechanical strength, and maintaining the electrical insulation.
  • the material of the substrate is not particularly limited, it is chemically stable at a high temperature of about 675 K or more without melting, breakage, etc., and does not react with thermoelectric conversion materials, bonding agents, etc. It is preferable to use an insulating material having high thermal conductivity.
  • the temperature of the high-temperature portion of the device can be made close to the temperature of the high-temperature heat source, and the generated voltage value can be increased.
  • the thermoelectric conversion material used in the present invention is an oxide, it is preferable to use an oxide ceramic such as alumina as the substrate material in consideration of the coefficient of thermal expansion and the like.
  • thermoelectric conversion element When the thermoelectric conversion element is bonded to the substrate, it is preferable to use a bonding agent that can be connected with low resistance.
  • a noble metal paste such as silver, gold, or platinum, solder, or the like can be preferably used.
  • a paste may be used in which a conductive oxide powder is added to a noble metal paste to make the coefficient of thermal expansion approximate to that of a thermoelectric conversion material. When such a paste is used, peeling of the connection portion can be prevented even when power generation at a high temperature is repeated.
  • the oxide powder it is also possible to use the oxide powder to be mixed with the conductive paste for connecting the P-type thermoelectric conversion material or the conductive paste for connecting the n-type thermoelectric conversion material.
  • thermoelectric conversion elements used for one module is not limited, and can be arbitrarily selected depending on required power.
  • FIG. 2 shows a schematic structure of a module using 84 thermoelectric conversion elements. The output of the module is approximately the same as the output of one thermoelectric conversion element multiplied by the number of thermoelectric conversion elements used.
  • thermoelectric conversion module of the present invention can generate a voltage by locating one end of the module at the high temperature section and the other end of the module at the low temperature section.
  • the substrate surface may be arranged in the high-temperature section, and the other end may be arranged in the low-temperature section.
  • the thermoelectric conversion module of the present invention is not limited to such an installation method, and one end may be arranged on the high-temperature side and the other end may be arranged on the low-temperature side.
  • the high temperature part and the low temperature part may be reversed.
  • thermoelectric conversion material As described above, by connecting the thermoelectric conversion material to the conductive substrate using the conductive paste of the present invention, a proper conductivity is imparted to the connection portion of the thermoelectric conversion element, and the coefficient of thermal expansion of the connection portion is reduced.
  • the coefficient of thermal expansion of the thermoelectric conversion material can be approximated. As a result, even when power generation at a high temperature is repeated, it is possible to prevent peeling of the connection portion and maintain good thermoelectric conversion performance.
  • thermoelectric conversion element having high thermoelectric conversion efficiency and excellent performance constituted by a thermoelectric conversion material excellent in thermal stability, chemical durability and the like.
  • thermoelectric power generation modules using such thermoelectric conversion elements have excellent thermal durability, and do not break even when the high-temperature portion is rapidly cooled from about 100 K to room temperature.
  • the power generation characteristics are not easily deteriorated.
  • the thermoelectric conversion module of the present invention is not only compact and has a high output density, but also has a high resistance to thermal shock. Therefore, the thermoelectric conversion module can be used in factories, waste incinerators, thermal power plants, nuclear power plants, It can be used for thermoelectric power generation using heat of at least 473 K from the heat source. Furthermore, it can also be used as a power source for automobiles that undergo rapid temperature changes.
  • heat can be generated from thermal energy of about 473 K or less, low-temperature heat of about 293 to 473 K such as solar heat, hot water, and body temperature can be used as the heat source. Therefore, by installing an appropriate heat source, it can be used as a power source that does not require charging for mobile devices such as mobile phones and notebook computers.
  • FIG. 1 schematically shows an example of a thermoelectric conversion element obtained by bonding a thermoelectric conversion material to a conductive material using a conductive paste
  • Fig. 2 shows multiple thermoelectric conversion elements connected on a substrate.
  • FIG. 3 is a schematic view of a thermoelectric power generation module having a structure
  • FIG. 3 is a diagram schematically illustrating the thermoelectric conversion element obtained in Example 1
  • FIG. 4 is a view of a substrate (high-temperature part) of the thermoelectric conversion element of Example 1 and Comparative Example 1.
  • FIG. 5 is a graph showing the relationship between the temperature and the open-circuit voltage Vo, FIG.
  • FIG. 5 is a graph showing the relationship between the temperature of the substrate (high-temperature portion) of the thermoelectric conversion elements of Example 1 and the comparative example and the internal resistance Ro
  • FIG. 7 is a graph showing the relationship between the maximum output of the thermoelectric conversion elements of Example 1 and the comparative example and the temperature of the high-temperature part (substrate).
  • FIG. 7 is a thermoelectric generation module obtained by using the thermoelectric conversion elements obtained in Example 1.
  • Fig. 5 is a graph showing the power generation characteristics.
  • This powder is press-formed into a disc having a diameter of 20 mm and a thickness of 2 to 10 mm.
  • a gold sheet is laid on an alumina port, and the formed body is placed on the gold sheet.
  • Medium 300ml / ) For 20 hours.
  • the obtained sintered body was ground using an agate mortar and a pestle.
  • the obtained powder was formed into a 30 mm square, 5 mm thick square plate under pressure, and subjected to hot press sintering in air at 1123 K (850 ° C.) for 20 hours under uniaxial pressure of lOMPa.
  • the resulting hot press sintered body was cut out into a rectangular parallelepiped having a surface perpendicular to the pressing surface of 4 mm square and a length along the pressing surface of 5 mm, and was molded to obtain a P-type thermoelectric conversion material.
  • thermoelectric conversion materials Manufacture of n-type thermoelectric conversion materials
  • the precipitate was heated and fired in air at 1073 K (800 ° C.) for 10 hours to thermally decompose nitrate. Next, the fired product was mixed with an agate mortar and pestle.
  • the obtained powder is press-formed into a disc having a diameter of 2 cm and a thickness of about 2 to 10 mm. Then, a platinum sheet is laid on an aluminum port, and the formed body is placed thereon. It was baked for 20 hours in a stream (300 ml / min). The obtained sintered body was ground using an agate mortar and pestle. This powder was pressed again to the above-mentioned size, baked under the same conditions, and the obtained sintered body was ground using an agate mortar and pestle.
  • the obtained powder was press-formed into a 30 mm square, 5 mm thick square plate, and subjected to hot press sintering in 1173K (900 ° C) air for 20 hours under uniaxial pressing of lOMPa.
  • the obtained hot press sintered body was cut out into a rectangular parallelepiped having a surface perpendicular to the pressing surface of 4 mm square and a length along the pressing surface of 5 mm, and was molded to obtain an n-type thermoelectric conversion material.
  • the powder obtained by powder milling was further subjected to pole milling using an agate pot and a pole for 10 minutes. went. Observation of the obtained oxide powder with a scanning electron microscope revealed that 80% or more of the particles were in the range of particle diameter of 1 to 1 O ⁇ m.
  • a conductive paste for bonding a P-type thermoelectric conversion material was obtained.
  • the silver paste used was silver powder (particle size: about 0.1 to 5 zm) 85% by weight, bismuth borosilicate glass 1% by weight, ethyl cellulose 5% by weight, terbineol 4% by weight, and butyl carbitol acetate
  • the amount of the oxide powder was 6.25 parts by weight based on 100 parts by weight of the silver powder in the silver paste.
  • thermoelectric conversion material production the powder obtained by baking at 1273K (1000 ° C) for 20 hours and pulverizing twice was repeated for another 10 minutes using an agate pot and a pole. Crushed. Observation of the obtained oxide powder with a scanning electron microscope revealed that more than 80% of the particles were in the particle size range of 1 to 10.
  • This oxide powder was added to a commercially available silver paste to obtain a conductive paste for connecting an n-type thermoelectric conversion material.
  • the type of silver paste used and the amount of oxide powder added are the same as those of the conductive paste for connecting a p-type thermoelectric conversion material.
  • thermoelectric conversion material and n-type thermoelectric conversion material were connected to a conductive substrate to manufacture a thermoelectric conversion element using a pair of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material.
  • a substrate having a 5 mm ⁇ 8 mm, 1 mm thick alumina plate coated uniformly with a silver paste on a 5 mm ⁇ 8 mm surface and dried to form a conductive film of a silver paste was used.
  • the conductive paste for connecting the P-type thermoelectric conversion material and the conductive paste for connecting the n-type thermoelectric conversion material described above are applied to the 4 mm X 4 mm surfaces of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material, respectively.
  • the surface coated with the conductive paste of each thermoelectric conversion material was placed in contact with the silver paste-coated surface of the alumina substrate, heated at 373K (100) for about 10 to 30 minutes, and then heated to 1073K (800
  • the conductive paste was dried and solidified by heating in air for 15 minutes.
  • the coating amount of the paste was such that the thickness before solidification was about 50. In this case, the thickness of the paste layer after solidification was about 20 / zm.
  • thermoelectric conversion element an insulating ceramic paste containing alumina as a main component is applied to the connection portion and dried to obtain a thermoelectric conversion element.
  • FIG. 3 shows a schematic diagram of the obtained thermoelectric conversion element.
  • the substrate is heated to 328 to 1123K (55 to 850 ° C) using an electric furnace, and the opposite end is cooled by a cooler to 303 to 773K (30 to 500K). (° C), the open circuit voltage Vo and the electric resistance Ro were measured.
  • the open-circuit voltage is the voltage generated between the low-temperature parts of the p-type thermoelectric conversion material and the n-type conversion material when a temperature difference is applied without applying external resistance (load) to the thermoelectric element.
  • thermoelectric conversion element obtained in the same manner as in Example 1, the open-circuit voltage Vo and the electric resistance Ro were measured in the same manner. This is a comparative example.
  • FIG. 4 is a graph showing the relationship between the temperature of the substrate (high-temperature portion) and the open circuit voltage Vo.
  • the open-circuit voltage tends to increase as the temperature of the high-temperature portion increases. This is because the temperature difference between the low-temperature part and the high-temperature part can be increased by increasing the temperature in the high-temperature part, and the absolute value of the Seebeck coefficient tends to increase as the temperature rises. It seems to be due to. A similar tendency was observed in all examples described later.
  • the open circuit voltage was 100 mV in Example 1, whereas the comparative example had a low value of 70 mV.
  • the bonding interface was separated due to the difference in the coefficient of thermal expansion between the silver and the thermoelectric conversion material due to the connection of the thermoelectric conversion material using the silver paste. This is considered to be due to the fact that the specific oxide powder was blended into the conductive paste, so that the coefficient of thermal expansion of the connection portion and the thermoelectric conversion element were close to each other, and peeling was unlikely to occur.
  • Fig. 5 is a graph showing the relationship between the temperature of the substrate (high-temperature part) and the internal resistance Ro.
  • the internal resistance of the device of Example 1 was lower than the internal resistance of the device of Comparative Example. This is because in the device of Example 1, in addition to the prevention of peeling of the thermoelectric conversion material, and the inclusion of a specific oxide powder in the conductive paste, the interface between the connection portion and the thermoelectric conversion material was reduced. This is probably due to the decrease in resistance.
  • Fig. 6 is a graph showing the relationship between the maximum output calculated using the open-circuit voltage Vo and the internal voltage Ro, and the temperature of the high-temperature section (substrate section). It can be seen that the device of Example 1 can obtain a higher output than the device of Comparative Example.
  • FIG. 7 is a graph showing power generation characteristics of a thermoelectric power generation module obtained by using 10 sets of the thermoelectric conversion elements obtained in Example 1. Although the output estimated from the results in Fig. 6 could not be obtained, it was demonstrated that the operation of a small-sized motor was possible by using this module to generate thermoelectric power.
  • the oxide powder, p-type thermoelectric conversion material and n-type thermoelectric conversion material to be mixed in the conductive paste for connecting the P-type thermoelectric conversion material and the conductive paste for connecting the n-type thermoelectric conversion material are shown in Tables 1 to 7 below.
  • a thermoelectric conversion element was manufactured and the thermoelectric conversion performance was measured in the same manner as in Example 1 except that the material was used.
  • the amount of the oxide powder added to the conductive paste is shown as parts by weight based on 100 parts by weight of the silver powder.
  • each table shows the open circuit voltage at 973K in the high temperature part and 500 ⁇ in the low temperature part, and the internal resistance value at 973 ⁇ .
  • the open-circuit voltage and the internal resistance both had values superior to those obtained when a thermoelectric conversion material having the same composition was bonded with a silver paste.
  • ⁇ 8 is o W0jicF3 ⁇ 4 61
  • P-type material Powder for p-type material (parts by weight) Open-circuit voltage Electrode resistance type Material / powder for n-type material (parts by weight) (mV) ( ⁇ )
  • the oxide powders shown in Table 8 below were used as the oxide powder to be mixed into the ⁇ -type thermoelectric conversion material connection conductive paste and the ⁇ -type thermoelectric conversion material connection conductive paste.
  • the paste was added to a paste (trade name: Au-4460, manufactured by Shoei Chemical Co., Ltd.) to prepare a conductive base.
  • the amount of oxide powder added to 100 parts by weight of gold in each paste is also shown in each table.
  • the materials shown in Table 8 were also used as the P-type thermoelectric conversion material and the n-type thermoelectric conversion material.
  • the gold paste used was 85% by weight of gold powder (particle size: about 0.1 to 5 im), 1% by weight of bismuth borosilicate glass, 5% by weight of ethyl cellulose, 4% by weight of terbineol and 4% by weight of butyl carbitol acetate
  • the amount of the oxide powder was 6.25 parts by weight with respect to 100 parts by weight of the silver powder in the gold paste.
  • thermoelectric conversion element was produced in the same manner as in Example 1 except that the above-mentioned conductive paste and thermoelectric conversion material were used, and the thermoelectric conversion performance was measured in the same manner as in Example 1.
  • Table 8 shows the open-circuit voltage and the internal resistance at 973K: 973K for the high-temperature part and 500K for the low-temperature part. In all of the examples, both the open-circuit voltage and the internal resistance were superior to those obtained when a thermoelectric conversion material having the same composition was bonded with a gold paste. Table 8
  • Example P- type material P- type material powder (parts by weight)
  • the oxide powders shown in Table 9 below were used as the oxide powders to be mixed into the conductive paste for connecting the ⁇ -type thermoelectric conversion material and the conductive paste for connecting the ⁇ -type thermoelectric conversion material.
  • Paste (trade name: D-4001, manufactured by Shoei Chemical Co., Ltd.) A strike was prepared.
  • Table 9 also shows the amount of the oxide powder added to 100 parts by weight of platinum in each paste.
  • the materials shown in Table 9 were also used as the p-type and n-type thermoelectric conversion materials.
  • the platinum paste used was 85% by weight of platinum powder (particle size: about 0.1 to 5 / m), 1% by weight of bismuth borosilicate glass, 5% by weight of ethyl cellulose, 4% by weight of terbineol and 4% by weight of butyl It was composed of 5% by weight of carbitol acetate, and the amount of the oxide powder was 6.25 parts by weight with respect to 100 parts by weight of the silver powder in the platinum paste.
  • thermoelectric conversion element was manufactured in the same manner as in Example 1 except that the above-mentioned conductive paste and the thermoelectric conversion material were used, and the thermoelectric conversion performance was measured in the same manner as in Example 1.
  • Table 9 shows the open-circuit voltage at 973K in the high temperature section and 500 ⁇ in the low temperature section, and the internal resistance at 973 97. In all of the examples, both the open-circuit voltage and the internal resistance were superior to those obtained when the thermoelectric conversion materials having the same composition were bonded with platinum paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、特定の酸化物粉末と、金、銀、白金及びこれらの金属の少なくとも一種を含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末とを含有することを特徴とする熱電変換材料接続用導電性ペースを提供するものである。本発明の導電性ペーストを用いて熱電変換材料を導電性基板に接続することにより、熱電変換素子の接続部分に適度な導電性を付与した上で、接続部分の熱膨張率を熱電変換材料の熱膨張率に近づけることができ、高温での発電を繰り返した場合にも、接続部分の剥離を防止して、良好な熱電変換性能を維持することが可能となる。

Description

明 細 書
熱電変換材料接続用導電性ペースト
技術分野
本発明は、 熱電変換材料接続用導電性ペースト、 該ペーストを用いて得られる 熱電変換素子、 及び熱電発電モジュールに関する。
背景技術
我が国では、一次供給エネルギーからの有効なエネルギーの得率は 3 0 %程度であ り、 約 7 0 %ものエネルギーを熱として大気中に廃棄している。 また、 工場、 ごみ焼 却場などにおいて燃焼により生ずる熱も、他のエネルギーに変換されることなく大気 中に廃棄されている。 このように、我々人鎮は非常に多くの熱エネルギーを無駄に廃 棄しており、化石エネルギーの燃焼等の行為から僅かなエネルギーしか獲得していな い。
エネルギーの得率を向上させるためには、 大気中に廃棄されている熱エネルギーを 利用することが効果的である。そのためには熱エネルギーを直接電気エネルギーに変 換する熱電変換は有効な手段と考えられる。 熱電変換とはゼ一ベック効果を利用した ものであり、 熱電変換材料の両端に温度差をつけることで電位差を生じさせ、 発電を 行うエネルギー変換法である。
このような熱電変換を利用する発電、 g卩ち、 熱電発電では、 熱電変換材料の一 端を廃熱により生じた高温部に配置し、 もう一端を大気中に配置して、 両端に外 部抵抗を接続するだけで電気が得られ、 一般の発電に必要なモーターやターピン 等の可動装置は全く必要ない。 このためコストも安く、 燃焼等によるガスの排出 も無く、 熱電変換材料が劣化するまで継繞的に発電を行うことができる。 また熱 電発電は高出力密度での発電が可能であるため、 発電器 (モジュール) そのもの が小型、 軽量化でき携帯電話やノート型パソコン等の移動用電源としても用いる ことが可能である。
この様に、熱電発電は今後心配されるエネソレギ一問題の解決の一端を担うと期待さ れている。 熱電発電を実現するためには、 高い変換効率を有し、 耐熱性、 化学的耐久 性等に優れた熱電変換材料により構成される熱電変換モジユールが必要となる。 これまでに窩温 '空気中で優れた熱電性能を示す物質として、 C a 3 C o 49等の C o 0 2系層状酸化物が報告されており、 熱電変換材料についての開発は、 進行しつ つある (R. Funahashiら、 Jpn. J. Appl. Phys. 39, LI 127 (2000)参照) 。
この様な熱電変換材料を用いて効率の良い熱電発電を実現するためには、一対の P 型熱電変換材料と n型熱電変換材料を接続した熱電変換素子や、熱電変換素子を集積 化した熱電発電モジュール、 すなわち発電器が必要となる。 しかしながら、 熱電変換 素子ゃ熱電発電モジュールの開発は、熱電変換材料自体の開発に比べて遅れているの が現状である。
特に、 熱電発電モジュールを実用化するためには、 熱電変換材料を低抵抗で接続す る技術の開発が重要となる。 6 7 3 K ( 4 0 0 °C) 以上の高温廃熱を利用した熱電発 電の場合には、 半田を用いて熱電変換材料を接合すると、 酸化、 溶融等を生じるため に、 金、 銀、 白金などの貴金属ペースト剤が接合材料として用いられている。 しかし ながら、 基板材料、 熱電変換材料等として酸化物を用いる場合には、 貴金属ペースト 剤を用いると、 ペースト中の貴金属との熱膨張率差が大きく、 このため高温での発電 を繰り返すと、接合部分が剥離してモジュールの内部抵抗の上昇と機械強度の低下を 招く結果となる。 また接合部分は、 金属と酸化物とが接触しているため、 界面抵抗も 大きいという問題がある。
発明の開示
本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、 酸化物からなる熱電変換材料を低抵抗で接続することができ、 しかも、 高温での発電 を繰り返した場合にも熱電発電モジユールの性能低下がほとんど生じることのない、 熱電変換材料用の接続用材料、及び該接続用材料を用いて得られる熱電変換素子を提 供することである。
本発明者は、 上記した目的を達成すべく鋭意研究を重ねてきた。 その結果、 貴金属 粉末と特定の複合酸化物とを配合した導電性ペーストを熱電変換材料の接続用材料 とする場合には、 熱電変換素子の接合部に適度な導電性を付与した上で、 高温での発 電を繰り返した場合にも、 接続部分の剥離が生じにくく、 良好な熱電変換性能を長期 間維持することが可能となることを見出し、 ここに本発明を完成するに至つた。
即ち、 本発明は、 下記の熱電変換材料接続用導電性べ一スト、 熱電変換素子、 熱電 発電モジュール及び熱電発電方法を提供するものである。 W
1. ( i ) 下記 (a) 〜 (d) に記載された複合酸化物からなる群から選ばれた 少なくとも一種の酸化物粉末:
(a) —般式: C a
Figure imgf000005_0001
O cASdOe (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノィド からなる群から選ばれた一種又は二種以上の元素であり、 A 2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以 上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤ 0. 8 ; 2≤c≤4. 5 ; 0≤ d≤2 ; 8 e≤ 1 0である。 ) で表される複合酸化物、
(b) —般式: B i f P b gM C O
Figure imgf000005_0002
Ok (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 AU Yおよびランタノ ィドからなる群から選ばれた一種又は二種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以 上の元素であり、 1. 8≤ f ≤ 2. 2 ; 0≤g≤ 0. 4 ; 1. 8≤h≤2. 2 ;
1. 6≤ i≤ 2. 2 ; 0≤ j ≤ 0. 5 ; 8≤k≤ 1 0である。 ) で表される複合 酸化物、
(c ) 一般式: L
Figure imgf000005_0003
(式中、 L nはランタノィドから 選ばれた一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからな る群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni> Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤m≤ l . 2 ; 0≤n≤ 0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤q≤ 0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 及び
(d) 一般式: (L n s R3 t) 2N i UR4 V0W (式中、 L nはランタノィ ドから選ばれた一種又は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Bi からなる群から選ばれた一種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W> Nb及び Taからなる群から選ばれた一種又は二種以 上の元素であり、 0. 5≤ s≤ l . 2 ; 0≤ t≤ 0. 5 ; 0. 5≤ u≤ 1. 2 ; 0≤v≤ 0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物、 並びに
(ii) 金、 銀、 白金、 及ぴこれらの金属の少なくとも一種を含む合金からなる 群から選ばれた少なくとも一種の導電性金属粉末、
を含有することを特徴とする熱電変換材料接続用導電性ペースト。
2. (ii) 項に記載の導電性金属粉末 1 00重量部に対して、 (i) 項に記載の酸 化物粉末を 0. 5〜 20重量部含有する上記項 1に記載の熱電変換材料接続用導 電性ペースト。
3. 更に、 ガラス成分及び樹脂成分を含有する上記項 1に記載の熱電変換材料 接続用導電性ペース卜。
4. ( i) 一般式: C aaAibC OcASdOe (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノイドから なる群から選ばれた一種又は二種以上の元素であり、 A 2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元 素であり、 2. 2≤a≤ 3. 6 ; 0≤b≤0. 8 ; 2≤c≤4. 5 ; 0≤d≤2 ; 8≤e≤ 1 0である。 ) で表される複合酸化物、 及び一般式: B i f P bgM1 h C o j M 2 j O k (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドからなる群から選ばれた一種又は二 種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb 及び Taからなる群から選ばれた一種又は二種以上の元素であり、 1. 8≤ f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤2. 2 ; 1. 6≤ i≤ 2. 2 ; 0≤ j≤ 0. 5 ; 8≤k≤ 1 0である。 ) で表される複合酸化物からなる群から選ばれた少なく とも一種の酸化物粉末、 並びに
(ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一種を含む合金からなる 群から選ばれた少なくとも一種の導電性金属粉末、
を含有することを特徴とする P型熱電変換材料接続用導電性ペースト。
5. 酸化物粉末が、 一般式: C a aA C o4Oe (式中、 A1は、 Na、 K:、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y およびランタノィドカ、 らなる群から選ばれた一種又は二種以上の元素であり、 2. 2≤a≤3. 6 ; 0≤ b≤0. 8 ; 8≤e≤ l 0である。 ) で表される複合酸化物、 及び一般式: B i f P bgM\C o2Ok (式中、 M1は、 S r, C a及び B aからなる群から選ばれ た一種又は二種以上の元素であり、 1. 8≤ f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤ ≤2. 2 ; 8≤k≤ 10である。 ) で表される複合酸化物からなる群から 選ばれた少なくとも一種である上記項 4に記載の p型熱電変換材料接続用ペース
6. (ii) 項に記載の導電性金属粉末 100重量部に対して、 (i) 項に記載の酸 化物粉末を 0. 5〜 20重量部含有する上記項 4に記載の p型熱電変換材料接続 用導電性ペースト。
7. 更に、 ガラス成分及び樹脂成分を含有する上記項 4に記載の p型熱電変換 材料接続用導電性ペース卜。
8. ( i ) 一般式:
Figure imgf000007_0001
(式中、 Lnはランタノィドから選 ばれた一種又は二種以上の元素であり、 R1は、 Na、 K:、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤m≤l. 2 ; 0≤n≤ 0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤q≤0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 及び一般式: (Ln sR3 t) 2N i uR4 vOw (式中、 Lnはランタノイドから選ばれた一種又は二種 以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種 又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb 及び Taからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤s≤ 1. 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v≤0. 5 ; 3. 6≤w≤ 4. 4である。 ) で表される複合酸化物からなる群から選ばれた少なくとも一種 の酸化物粉末、 並びに
(ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一種を含む合金からなる 群から選ばれた少なくとも一種の導電性金属粉末、
を含有することを特徴とする n型熱電変換材料接続用導電性ペースト。
9. 酸化物粉末が、 一般式: L amRinN i 0r (式中、 R1は、 Na、 K、 Sr、 Ca 及び Biからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤l. 2 ; 0≤n≤ 0. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、 及び 一般式: (L asR3 t) 2N i〇w (式中、 R3は、 Na、 K、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 0. 5≤s≤l. 2 ; 0≤ t≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなる群から選ばれ た少なくとも一種である上記項 8に記載の n型熱電変換材料接続用ペースト。
1 0. (ii) 項に記載の導電性金属粉末 1 0 0重量部に対して、 (i) 項に記載の 酸化物粉末を 0. 5〜2 0重量部含有する上記項 8に記載の n型熱電変換材料接 続用導電性ペースト。
1 1. 更に、 ガラス成分及び樹脂成分を含有する上記項 8に記載の n型熱電変 換材料接続用導電性ペースト。
1 2. p型熱電変換材料の一端と n型熱電変換材料の一端を、 それぞれ導電性べ —ストを用いて導電性基板に接続してなる熱電変換素子であって、
P型熱電変換材料が、 一般式: CaaAibCOeASdOe (式中、 A1は、
Na、 :、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよび ランタノィドからなる群から選ばれた一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種 又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 0≤b≤ 0. 8 ; 2≤c≤4. 5 ; 0≤d≤ 2 ; 8≤ e≤ 1 0である。 ) で表される複合酸化物、 又は一般式: B i f P
Figure imgf000008_0001
0 iM2jOk (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびラン夕ノィドからなる群から選ばれ た一種又は二種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素であり、 1. 8 ≤ f ≤ 2. 2 ; 0≤g≤ 0. 4 1. 8≤h≤ 2. 2 1. 6≤ i≤ 2. 2 ; 0 ≤ j ≤ 0. 5 ; 8≤k≤ 1 0である。 ) で表される複合酸化物からなるものであ D、
n型熱電変換材料が、 一般式: L nmR
Figure imgf000008_0002
(式中、 L nはラ ンタノイドから選ばれた一種又は二種以上の元素であり、 R1は、 Na、 K:、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又 は二種以上の元素であり、 0. 5≤m≤ l . 2 ; 0≤n≤ 0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤q≤0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 又は一般式: (L n sR3 t) 2N i uR4 vOw (式中、 L nはランタノイドから選 ばれた一種又は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 R4は、 Ή、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤ s≤l . 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなるものであり、 P型熱電変換材料及び n型熱電変換材料を導電性基板に接続するために用い る導電性ペース卜が、 上記項 1に記載された導電性ペーストである、
ことを特徴とする熱電変換素子。
1 3. p型熱電変換材料の一端と n型熱電変換材料の一端を、 それぞれ導電性 ペーストを用いて導電性基板に接続してなる熱電変換素子であって、
P型熱電変換材料が、 一般式: C
Figure imgf000009_0001
(式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよび ランタノィドからなる群から選ばれた一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種 又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤ 0. 8 ; 2≤c≤4. 5 ; 0≤d≤2 ; 8≤e≤ l 0である。 ) で表される複合酸化物、 又は一般式: B i f P h gM C O ;M2 j〇k (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドからなる群から選ばれ た一種又は二種以上の元素であり、 M2は、 Ή、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素であり、 1. 8 ≤ f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤2. 2 ; 1. 6≤ i≤ 2. 2 ; 0 ≤ j≤ 0. 5 ; 8≤k≤ 1 0である。 ) で表される複合酸化物からなるものであ n型熱電変換材料が、 一般式: L
Figure imgf000009_0002
i pR2 QOr (式中、 Lnはラ ン夕ノイ ドから選ばれた一種又は二種以上の元素であり、 R1は、 Na、 K:、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr> Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又 は二種以上の元素であり、 0. 5≤m≤ l. 2 ; 0≤n≤0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤q≤0. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、 又は一般式: (L n sR3 t) 2N i UR4 VW (式中、 L nはランタノイドから選 ばれた一種又は二種以上の元素であり、 R3は、 Na、 K:、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 R4は、 Ti、 V、 、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤ s≤ l . 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v≤ 0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなるものであり、
P型熱電変換材料を導電性基板に接続するために用いる導電性ペーストが、 ( i ) 一般式: C a aA!bC OcASdOe (式中、 A1は、 Na、 K、 Li、 Ή、 V、 Cr、 Μη、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y およびランタノィドからな る群から選ばれた一種又は二種以上の元素であり、 A 2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 2. 2≤ a≤ 3. 6 ; 0≤b≤ 0. 8 ; 2≤ c≤4. 5 ; 0≤d≤ 2 ; 8 ≤ e≤ l 0である。 ) で表される複合酸化物、 及び一般式: B i f P bgM C o i M 2 j 0 k (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドからなる群から選ばれた一種又は二種以 上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Ta力、 らなる群から選ばれた一種又は二種以上の元素であり、 1. 8≤ f ≤ 2. 2 ; 0 ≤g≤ 0. 4 ; 1. 8≤h≤ 2. 2 ; 1. 6≤ i≤ 2. 2 ; 0≤ j ≤ 0. 5 ; 8 ≤k≤ 1 0である。 ) で表される複合酸化物からなる群から選ばれた少なくとも —種の酸化物粉末、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくとも 一種を含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を含 有する導電性ペース卜であり、
n型熱電変換材料を導電性基板に接続するために用いる導電性ペーストが、 ( i ) 一般式: LnmRinN i pR2 QOr (式中、 L nはランタノィドから選ばれ た一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及ぴ Biからなる群か ら選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤ 1. 2 ; 0≤n≤ 0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤q≤ 0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 及び一般式: (L n。R3 t) 2N i uR4 vOw (式中、 L nはランタノイ ドから選ばれた一種又は二種以上 の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は 二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb 及 ぴ Taからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤ S≤ 1. 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなる群から選ばれた少なくとも一種の酸 化物粉末、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一種を含 む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を含有する導 電性ペーストである
ことを特徴とする熱電変換素子。
14. p型熱電変換材料の一端と n型熱電変換材料の一端を、 それぞれ導電性 ペーストを用いて導電性基板に接続してなる熱電変換素子であって、
P型熱電変換材料が、 一般式: C a aA C o4Oe (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノ イドからなる群から選ばれた一種又は二種以上の元素であり、 2. 2≤a≤ 3. 6 ; 0≤b≤0. 8 ; 8≤e≤ 1 0である。 ) で表される複合酸化物、 又は一般式 : B i f P bgM C o2Ok (式中、 M1は、 S r, C a及び B aからなる群から 選ばれた一種又は二種以上の元素であり、 1. 8 f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤2. 2 ; 8≤k≤ 1 0である。 ) で表される複合酸化物からなる ものであり、
n型熱電変換材料が、 一般式: L
Figure imgf000011_0001
i 0 (式中、 R1は、 Na、 K:、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m ≤ 1. 2 ; 0≤n≤ 0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化 物、 又は一般式: (L a sR3 t) 2N i Ow (式中、 R3は、 Na、 K、 Sr、 Ca及び Bi からなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤s≤ l . 2 ; 0 ≤ t≤ 0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなるもの であり、
P型熱電変換材料を導電性基板に接続するために用いる導電性ペース卜が、 ( i ) 一般式: C a 3Α^〇 04e (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y およびランタノィドからなる群から選ば れた一種又は二種以上の元素であり、 2. 2≤a≤3. 6 ; 0≤b≤0. 8 ; 8≤ e≤ 1 0である。 ) で表される複合酸化物、 及び一般式: B i f P bgM C ^ Ok (式中、 M1は、 S r, C a及び B aからなる群から選ばれた一種又は二種以 上の元素であり、 1. 8≤ ί≤2. 2 ; 0≤ g≤ 0. 4 ; 1. 8≤h≤2. 2 ; 8 k≤ 1 0である。 ) で表される複合酸化物からなる群から選ばれた少なくと も一種の酸化物粉末、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくと も一種を含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を 含有する導電性ペーストであり、
n型熱電変換材料を導電性基板に接続するために用いる導電性ペース卜が、
( i ) 一般式: L
Figure imgf000012_0001
i Or (式中、 R1は、 Na、 K:、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤ l . 2 ; 0≤n≤ 0. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、 及び一般式: (L a s R3 t) 2N i Ow (式中、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一 種又は二種以上の元素であり、 0. 5≤s≤ l . 2 ; 0≤ t≤ 0. 5 ; 3. 6≤w ≤4. 4である。 ) で表される複合酸化物からなる群から選ばれた少なくとも一 種の酸化物粉末、 並びに ) 金、 銀、 白金、 及びこれらの金属の少なくとも一 種を含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を含有 する導電性ペーストである、
ことを特徴とする熱電変換素子。
1 5. 上記項 1 2記載された熱電変換素子を複数個用い、 熱電変換素子の p型 熱電変換材料の未接合の端部を他の熱電変換素子の n型熱電変換材料の未接合の 端部に基板上で接続する方法で、 複数の熱電変換素子を直列に接続してなる熱電 発電モジュール。
1 6. 上記項 1 5に記載の熱電発電モジュールの一端を高温部に配置し、 他端 を低温部に配置することを特徴とする熱電発電方法。
1 7. 上記項 1 3に記載された熱電変換素子を複数個用い、 熱電変換素子の p 型熱電変換材料の未接合の端部を他の熱電変換素子の n型熱電変換材料の未接合 の端部に基板上で接続する方法で、 複数の熱電変換素子を直列に接続してなる熱 電発電モジュール。
1 8. 上記項 1 7に記載の熱電発電モジュールの一端を高温部に配置し、 他端 を低温部に配置することを特徴とする熱電発電方法。 以下、 本発明の熱電変換材料接続用ペーストについて詳細に説明する。
熱電変換材料接続用導電性ペースト
本発明の熱電変換材料接続用導電性べ一ストは、 金、 銀、 白金、 及びこれらの金 属の少なくとも一種を含む合金からなる群から選ばれた少なくとも一種の導電性 金属粉末と、 特定の酸化物粉末を必須の成分として含有するものである。 以下、 各成分について説明する。
( i ) 導電性金属粉末:
導電性金属粉末としては、 金、 銀、 白金等の貴金属、 これらの貴金属の少なく とも一種を含む合金などを用いることができる。 この様な合金としては、例えば、 金、 銀、 白金等の貴金属を 30重量%程度以上、 好ましくは 70重量%程度以上含む 合金を用いることができる。また、二種類以上の貴金属成分を含む合金を用いても良 い。
これらの導電性金属粉末は、 一種単独又は二種以上混合して用いることができ る。 該導電性金属粉末の粒径については、 特に限定的ではないが、 通常、 80% 程度以上の個数の金属粉末が、 粒径 0. 1〜30 im程度の範囲内にあることが 好ましい。
(ii) 酸化物粉末
酸化物粉末としては、 下記 (a) 〜 (d) に記載された複合酸化物からなる群 から選ばれた少なくとも一種の酸化物粉末を用いる。
(a) —般式: C a aA C o cA2 dOe (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 AL Bi、 Yおよびランタノイドからな る群から選ばれた一種又は二種以上の元素であり、 A 2は、 Ti、 V、 &、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 2. 2≤ a≤ 3. 6 ; 0≤ b≤ 0. 8 ; 2≤ c≤4. 5 ; 0≤d≤2 ; 8 ≤ e≤ 1 0である。 ) で表される複合酸化物、 (b) —般式: B i f P bgM\C o iM2』 0k (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドから なる群から選ばれた一種又は二種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元 素であり、 1. 8≤ f 2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤ 2. 2 ; 1. 6 ≤ i≤ 2. 2 ; 0≤ j ≤ 0. 5 ; 8≤k≤ 1 0である。 ) で表される複合酸化物 からなる群から選ばれた少なくとも一種の複合酸化物、
(c) 一般式:
Figure imgf000014_0001
i pRSqOr (式中、 Lnはラン夕ノィドから選ば れた一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群 から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及ぴ Taからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤ 1 - 2 ; 0≤n≤ 0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤q≤0. 5 ; 2. 7≤r≤3. 3である。 ) で表される複合酸化物、
(d) 一般式: (LnsR3 t) 2N i uR4 vOw (式中、 Lnはランタノィドか ら選ばれた一種又は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biから なる群から選ばれた一種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元 素であり、 0. 5≤ s≤ l. 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v ≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなる群から 選ばれた少なくとも一種の複合酸化物。
これらの酸化物粉末と、 金、 銀、 白金、 及びこれらの金属の少なくとも一種を 含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末とを組み合わ せて用いることにより、 導電性金属粉末を単独で用いる場合と比較して、 接続部 分の熱膨張率を熱電変換材料の熱膨張率に近似させることができる。 その結果、 高温での発電を繰り返した場合であっても、 接続部の剥離を防止することができる。 また、 これらの酸化物粉末は、 導電性が良好であり、 接続部分に良好な導電性を付与 できる。
尚、 上記各一般式において、 ランタノイド元素としては、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy, Ho、 Er、 Tm、 Lu等を例示できる。 上記した複合酸化物の内で、好ましい複合酸化物の一例として、下記の複合酸化物 を挙げることができる。
(a') —般式: 〇&3Α 〇04ε (式中、 Α1は、 Na、 K、 Li、 Tiゝ V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノイドからなる群から 選ばれた一種又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤0. 8 ; 8≤e≤10である。 ) で表される複合酸化物、
(b,) 一般式: B i f P bgM\C o2Ok (式中、 M1は、 S r, C a及び B a からなる群から選ばれた一種又は二種以上の元素であり、 1. 8≤ ί≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤2. 2 ; 8≤k≤ 10である。 ) で表される複合 酸化物、
(c,) 一般式: L
Figure imgf000015_0001
i Or (式中、 R1は、 Na、 K、 Sr、 Ca及び Biから なる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤l. 2 ; 0≤n ≤0. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、
(d') 一般式: (L a sR3 t) 2N i Ow (式中、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤ s≤ l . 2 ; 0≤ t≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物。
上記した一般式: C
Figure imgf000015_0002
O eASdOeで表される複合酸化物、 一般式: B
1
Figure imgf000015_0003
i PR
2 Q0rで表される複合酸化物、 及び一般式: (LnsR3 t) 2N i uR4 vOwで表 される複合酸化物は、 単結晶体或いは多結晶体の何れでも良い。
これらの複合酸化物の製造方法については、 特に限定はなく、 上記した組成を有す る単結晶体又は多結晶体を製造できる方法であればよい。
例えば、 フラックス法、 ゾーンメルト法、 引き上げ法、 ガラス前駆体を経由するガ ラスァニール法等の単結晶製造法、 固相反応法、 ゾルゲル法等の粉末製造法、 スパッ 夕リング法、 レーザーアブレ一シヨン法、 ケミカル ·ベ一パー ·デポジション法等の 薄膜製造法等の公知の方法によって上記組成を有する結晶構造の複合酸化物を製造 すればよい。
これらの方法の内で、 固相反応法による複合酸化物の製造方法について、 より詳細 に説明する。 上記した複合酸化物は、 例えば、 目的とする複合酸化物の元素成分比率と同様 の元素成分比率となるように原料物質を混合し、 焼成することによって製造する ことができる。
焼成温度及び焼成時間については、 目的とする複合酸化物が形成される条件と すれば良く、 特に限定されないが、 例えば、 7 0 0〜1 2 0 0 °C程度の温度範囲 において、 1 0〜4 0時間程度焼成すれば良い。 尚、 原料物質として炭酸塩や有 機化合物等を用いる場合には、 焼成する前に予め仮焼きして原料物質を分解させ た後、 焼成して目的の複合酸化物を形成することが好ましい。 例えば、 原料物質 として炭酸塩を用いる場合には、 7 0 0〜9 0 0 程度で 1 0時間程度仮焼きし た後、 上記した条件で焼成すれば良い。焼成手段は特に限定されず、電気加熱炉、 ガス加熱炉等任意の手段を採用できる。 焼成雰囲気は、 通常、 酸素気流中、 空気 中等の酸化性雰囲気中とすればよいが、原料物質が十分量の酸素を含む場合には、 例えば、 不活性雰囲気中で焼成することも可能である。 生成する複合酸化物中の 酸素量は、焼成時の酸素分圧、焼成温度、焼成時間等により制御することができ、 酸素分圧が高い程、 上記一般式における酸素比率を高くすることができる。 固相 反応法で目的とする複合酸化物を作製するには、 固相反応を効率よく進行させる ために、 原料粉末を加圧成形体として焼成することが好ましい。 この場合、 得ら れた成形体を粉碎して必要な粒径の粉体とすればよい。
また、 ガラス前駆体を経由するガラスァニール法について説明すると、 まず、 原料 物質を溶融し、急冷して固化させる。 この際の溶融条件は、 原料物質を均一に溶融で きる条件であれば良いが、 溶融容器からの汚染や原料成分の蒸発を防止するために は、 例えば、 アルミナ製ルツポを用いる場合には、 1 2 0 0〜1 4 0 0 程度に加熱 して溶融することが好ましい。加熱時間については特に限定はなく、原料物質が均一 に溶融するまで加熱すればよく、通常、 3 0分〜 1時間程度の加熱時間とすれば良い。 加熱手段については、 特に限定されず、 電気加熱炉、 ガス加熱炉等の任意の手段を採 用することができる。溶融の際の雰囲気は、例えば空気中や 3 0 0 m l / 1程度以下 の酸素気流中等の酸素含有雰囲気とすればよいが、原料物質が十分量の酸素を含む場 合には、 不活性雰囲気で溶融しても良い。
急冷条件については特に限定的ではないが、形成される固化物の少なくとも表面部 分がガラス状の非晶質層となる条件で急冷すればよい。例えば、 溶融物を金属板上に 流し出し、 上方から圧縮する等の手段により急冷すればよい。 冷却速度は、 通常、 5 00°C/秒程度以上とすればよく、 103で/秒以上とすることが好ましい。
次いで、急冷により形成された固化物を酸素含有雰囲気中で熱処理することによつ て、 該固化物の表面から上記複合酸化物が繊維状の単結晶として成長する。
熱処理温度は、 880〜930°C程度とすればよく、 空気中や酸素気流中等の酸素 含有雰囲気中で加熱すればよい。 酸素気流中で加熱する場合には、 例えば、 300m 1 Z分程度以下の流量の酸素気流中で加熱すればよいが、これを上回る流量であって も良い。 熱処理時間については、 特に限定はなく、 目的とする単結晶の成長の程度に 応じて決めればよいが、 通常、 60〜1000時間程度の加熱時間とすればよい。 原料物質の混合割合は、 目的とする複合酸化物の組成に応じて決めることができ る。 具体的には、 上記固化物の表面の非晶質層部分から繊維状の複合酸化物単結晶が 形成される際に、 該非晶質部分の溶融物の組成を液相組成として、 これと相平衡にあ る固相の組成の酸化物単結晶が成長するので、 互いに平衡状態にある融液相と固相 (単結晶) の組成の関係によって、 出発原料の組成を決めることができる。
この様な方法で得られる複合酸化物単結晶の大きさは、 原料物質の種類、 組成比、 熱処理条件等により変わり得るが、 例えば、 長さ 10〜1000 程度、 幅 20〜 200 m程度、 厚さ 1〜5 m程度の繊維状の形状を有するものとなる。
上記したガラス前駆体を経由するガラスァニール法及び固相反応法の何れの方法 においても、焼成時の酸素流量により得られる物質の含有酸素量を制御することがで き、 流量が多いほど含有酸素量も多くなるが、 含有酸素量の変化は、 複合酸化物の電 気的特性に大きな影響を及ばさない。原料物質は焼成により酸化物を形成し得るもの であれば特に限定されず、 金属単体、 酸化物、 各種化合物 (炭酸塩等) 等を使用でき る。 例えば、 C a源としては、 酸化カルシウム (CaO) 、 塩化カルシウム (C aC 12) 、 炭酸カルシウム (CaC03) 、 硝酸カルシウム (Ca (N03) 2) 、 水酸 化カルシウム (Ca (OH) 2) 、 ジメトキシカルシウム (Ca (〇CH3) 2) 、 ジ エトキシカルシウム (Ca (OC2H5) 2) 、 ジプロポキシカルシウム (Ca (OC 3Hr) 2) 等のアルコキシド化合物等を用いることができる。 Co源としては酸化コ バルト (Co〇、 Co203、 C o 304) 、 塩化コパルト (C o C 12) 、 炭酸コバ ルト (Co C03) 、 硝酸コバルト (Co (N03) 2) 、 水酸化コバルト (Co (O H) 2) 、 ジプロポキシコバルト (Co (OC3H7) 2) 等のアルコキシド化合物等 を用いることができる。 その他の元素についても同様に元素単体、 酸化物、 塩化 物、 炭酸塩、 硝酸塩、 水酸化物、 アルコキシド化合物等を用いることができる。 また、 上記複合酸化物の構成元素を二種以上含む化合物を使用してもよい。
上記した一般式: C aaA C ocA2 dOeで表される複合酸化物、 一般式: B i f P
Figure imgf000018_0001
i PR で表される複合酸化物、 及び一般式: (LnsR3 t) 2N i uR4 vOwで表 される複合酸化物からなる群から選ばれた少なくとも一種の酸化物粉末の粒径に ついては、 特に限定的ではないが、 通常、 8 0 %程度以上の個数の酸化物粉末が、 粒径 50 m程度以下であることが好ましく、 1〜 1 0 m程度であることがよ り好ましい。
iiii)導電性ペースト組成:
本発明の熱電変換材料接続用導電性ペース卜は、
( i ) (a) —般式: C &3Α 。ο。Α Οε (式中、 A 1、 A 2、 a、 b、 c、 d及び eは上記に同じ) で表される複合酸化物、
(b) —般式: B i f P bgM hC o iM2jOk (式中、 Μ Μ2、 ί、 g、 h、 i、 j及び kは上記に同じ) で表される複合酸化物、
(c) 一般式: L nmRinN i pR2 QOr (式中、 L n、 R R2、 m、 n、 P、 Q及び rは上記に同じである。 ) で表される複合酸化物、 及び
(d) —般式: (LnsR3 t) 2N i uR4 vOw (式中、 L n、 R3、 R4、 s、 t、 u、 v及び wは上記に同じである。 ) で表される複合酸化物
からなる群から選ばれた少なくとも一種の酸化物粉末、 並びに
(ii) 金、 銀、 白金、 及ぴこれらの金属の少なくとも一種を含む合金からなる群か ら選ばれた少なくとも一種の導電性金属粉末
を含有するものである。
該導電性ペーストは、 通常、 上記した酸化物粉末及び導電性金属粉末の他に、 更に、 ガラス成分、 樹脂成分などを含有することができる。
これらの内で、 ガラス成分は、 該ぺ一ストを接続部に塗布し加熱した場合に、 主として結合力を発揮する成分である。 ガラス成分としては、 加熱して接合する 際に溶融して結合力を発揮することができ、 熱電発電に用いる場合には、 溶融す ること無く、 十分な結合力を維持できる成分を用いればよい。
この様なガラス成分としては、 公知の導電性ペース卜に配合されているガラス 成分から適宜選択して用いればよい。 例えば、 ホウケィ酸ビスマスガラス、 ホウ ケィ酸鉛ガラス等を用いることができる。
樹脂成分は、 ペーストに、 適度な分散性、 チクソ性、 粘度特性などを付与する ものである。 樹脂成分としては、 例えば、 ェチルセルロース、 ヒドロキシェチル セルロース、 メチルセルロース、 ニトロセルロース、 ェチルセルロース誘導体、 アクリル系樹脂、 プチラール樹脂、 アルキドフエノール樹脂、 エポキシ樹脂、 木 材口ジンなどを用いることができる。
これらの各成分の配合割合については特に限定的ではなく、目的とする導電性、 熱膨張率、 結合力、 粘度特性などに応じて適宜決めればよい。
例えば、 酸化物粉末の含有量は、 導電性金属粉末 1 0 0重量部に対して 0 . 5 〜2 0重量部程度とすることが好ましく、 1〜1 5重量部程度とすることがより 好ましい。
ガラス成分の含有量は、 例えば、 導電性金属粉末 1 0 0重量部に対して 0 . 5 〜1 0重量部程度とすればよく、 1〜7重量部程度とすることが好ましいが、 こ の範囲外で用いることも可能である。
樹脂成分の含有量についても、 特に限定されるものではなく、 適度な作業性や 粘着性を発現できる範囲内において適宜決めればよい。 例えば、 導電性金属粉末 1 0 0重量部に対して、 0 . 5〜2 0重量部程度とすることができ、 1〜 1 0重 量部程度とすることが好ましく、 1 ~ 5重量部程度とすることがより好ましい。 本発明の導電性ペーストには、 必要に応じて、 その他の酸化物粉末を添加して も良い。 酸化物粉末の種類、 添加量などについては、 上記した作用効果に悪影響 の無い範囲において適宜決めればよい。 例えば、 p型熱電変換材料接続用導電性 ペーストに n型熱電変換材料の粉末を添加することも可能である。
更に、 本発明の導電性ペーストには、 公知の導電性ペーストに配合されている 溶剤、 可塑剤、 潤滑剤、 酸化防止剤、 粘度調整剤等の添加剤を加えることもでき る。 溶剤としては、 例えば、 テルピネオール、 プチルカルビ] ^一ルアセテート等 を用いることができ、 適宜混合して用いてもよい。 これらの成分の含有量につい ては、 必要とされる特性に応じて適宜決めればよい。 例えば、 溶剤については、 導電性金属粉末 100重量部に対して 3〜 30重量部程度とすることができ、 5 〜20重量部程度とすることが好ましい。
上記した熱電変換材料接続用導電性ペーストは、 P型熱電変換材料及び n型熱 電変換材料のいずれの熱電変換材料を導電性基板に接続する場合にも使用するこ とができる。 上記熱電変換材料接続用ペーストを用いて導電性基板に熱電変換材 料を接続することによって、熱電変換材料の接合部に適度な導電性を付与した上で、 高温での発電を繰り返した場合にも、接続部分の剥離が生じにくくなり、良好な熱電 変換性能を長期間維持することができる。
特に、 P型熱電変換材料を導電性基板に接続する場合には、酸化物粉末として、 一般式: C a aA C o c A2 dOe (式中、 A A2、 a、 b、 c、 d及び eは 上記に同じ) で表される複合酸化物、 及び一般式: B i f PbgMihCo iM2jO k (式中、 M1 M2、 f g、 h、 i、 j及び kは上記に同じ) で表される複合 酸化物からなる群から選ばれた少なくとも一種の酸化物粉末を用いることが好ま しい。 これらの複合酸化物は、 p型熱電変換材料としての特性を有するものであ り、 該複合酸化物を含むペーストを P型熱電変換材料の接続に用いることによつ て、 P型熱電変換材料の熱電特性を阻害することなく、 接続部分に良好な導電性 を付与でき、 しかも接続部の熱膨張係数を熱電変換材料の熱膨張率に近似させる ことができる。
また、 n型熱電変換材料を導電性基板に接続する場合には、酸化物粉末として、 一般式:
Figure imgf000020_0001
R2、 m、 n、 p、 Q及び rは上記に同じである。 ) で表される複合酸化物、 及び一般式: (LnsR3 t) 2 N i uR4 vOw (式中、 L n、 R3、 R4、 s、 t、 u及び vは上記に同じである。 ) で表される複合酸化物からなる群から選ばれた少なくとも一種の複合酸化物粉末 を用いることが好ましい。 これらの複合酸化物は、 n型熱電変換材料としての特 性を有するものであり、 該複合酸化物を含むペーストを n型熱電変換材料の接続 に用いることによって、 n型熱電変換材料の熱電特性を阻害することなく、 接続 部分に良好な導電性を付与でき、 しかも接続部の熱膨張係数を熱電変換材料の熱 膨張率に近似させることができる。
熱電変換素子
本発明の熱電変換素子は、 P型熱電変換材料の一端と n型熱電変換材料の一端 を、 それぞれ、 導電性基板に接続したものである。
この場合、 P型熱電変換材料を導電性基板に接続するための導電性ペースト、 及び n型熱電変換材料を導電性基板に接続するための導電性ペーストとして ( i ) (a) —般式:
Figure imgf000021_0001
O cASdOe (式中、 A1, A2、 a、 b、 c、 d、 及び eは上記に同じ) で表される複合酸化物、
(b) —般式: B i fPbgM CO
Figure imgf000021_0002
(式中、 M1 M2、 f 、 g、 h、 i、 j及び kは上記に同じ) で表される複合酸化物、
(c) 一般式: L
Figure imgf000021_0003
i pR2 qOr (式中、 Ln、 R1, R2、 m、 n、 p、 Q及び rは上記に同じである。 ) で表される複合酸化物、 及び
(d) 一般式: (LnsR3 t) 2N i uR4 vw (式中、 Ln、 R3、 R4、 s、 t、 u及び vは上記に同じである。 ) で表される複合酸化物
からなる群から選ばれた少なくとも一種の酸化物粉末、 並びに
(ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一種を含む合金からなる群か ら選ばれた少なくとも一種の導電性金属粉末
を含有する導電性べ一ストを用いる。
p型熱電変換材料接続用ペースト及び n型熱電変換材料接続用ペーストとして は、 同一組成のペーストを用いてもよく、 或いは、 異なる組成のペーストを用い ても良い。 特に、 同一組成のペーストを用いる場合には、 ペーストの塗布操作が 容易となり、 熱電変換素子を効率良く製造することができる。
また、 P型熱電変換材料を導電性基板に接続するためのペーストとして、 P型 熱電変換材料としての特性を有する一般式: C
Figure imgf000021_0004
O cAZdOe (式中、 A1, A2、 a、 b、 c、 d、 及び eは上記に同じ) で表される複合酸化物、 及び —般式: B i
Figure imgf000021_0005
(式中、 M1 M2、 f、 g、 h、 i、 j 及び kは上記に同じ) で表される複合酸化物からなる群から選ばれた少なくとも 一種の酸化物粉末を含有するペーストを用い、 n型熱電変換材料を導電性基板に 接続するためのペーストとして、 n型熱電変換材料としての特性を有する一般式 : LnMR1 NN i PR2 qOr (式中、 L n、 R R2、 m、 n、 p、 Q及び rは上 記に同じである。 ) で表される複合酸化物、 及ぴ一般式: (L nsR3 t) 2N i u R4 vOw (式中、 Ln、 R3、 R4、 s、 t、 u及び vは上記に同じである。 ) で 表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物粉末を含有 するペーストを用いる場合には、 p型熱電変換材料と n型熱電変換材料のそれぞ れの熱電変換性能に対する接続部分の悪影響を低減して、 より高性能の熱電変換 素子を得ることができる。
従って、 製造効率、 目的とする熱電変換材料の性能などを考慮して、 p型熱電 変換材料の接続と n型熱電変換材料の接続に同一のペーストを用いるか、或いは、 異なるペーストを用いるかを適宜決めればよい。
本発明の熱電変換素子では、 p型熱電変換材料としては、 特に限定的ではない が、 本発明の熱電変換材料接続用導電性ペーストに配合する酸化物粉末の内で、 一般式: C a
Figure imgf000022_0001
(式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y およびランタノイドからなる群 から選ばれた一種又は二種以上の元素であり、 A 2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤ 0. 8 ; 2≤ c≤ 4. 5 ; 0≤d≤ 2 ; 8≤ e≤ 10である。 ) で表される複合酸化物、 又は一般式: B i f P bgM C o ίΜ2』 Ok (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドからなる群から選ばれた一種又は二種以上の元素 であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群 から選ばれた一種又は二種以上の元素であり、 1. 8≤ f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤ 2. 2 1. 6≤ 1≤ 2. 2 ; 0≤ j≤ 0. 5 ; 8≤k≤ 10 である。)で表される複合酸化物からなる熱電変換材料を用いることが好ましい。 これらの熱電変換材料は、 多結晶焼結体及び単結晶体のいずれであってもよく、 薄膜状に形成されたものであっても良い。 この様な熱電変換材料は、 前述した導 電性ぺ一スト中に配合される複合酸化物と同様の製造方法、例えば、 フラックス法、 ゾーンメル卜法、 引き上げ法、 ガラス前駆体を経由するガラスァニール法等の単結晶 製造法、 固相反応法、 ゾルゲル法等の粉末製造法、 スパッタリング法、 レーザーアブ レーシヨン法、 ケミカル 'ベーパー 'デポジション法等の薄膜製造法等の各種の方法 によって製造することができる。
これらの複合酸化物は、 Ca、 Co及び 0により構成される Ca2CoO 3という組成比、 又は Bi、 M1及び 0により構成される Bi 04という組成比の岩塩型構造を有す る層と、六つの 0がーつの Coに八面体配位し、その八面体がお互いに辺を共有す るように二次元的に配列した Co 02層が交互に積層した構造を有するものであ り、 前者の場合、 Ca2CoO 3の Caの一部が A1で置換され、 さらにこの層の Coの 一部及び Co 02層の Coの一部が A2によって置換されており、 後者では Biの一部が Pb又は M1の一部で置換され、 Coの一部が M2によって置換されている。
これらの酸化物の両端に温度差を与えると、 ゼ一ベック効果により生じる電位は、 高温側の方が低温側に比べて低くなり、 p型熱電変換材料としての特性を示す。 これ らの酸化物は、 例えば、 1 0 0 K (絶対温度) 以上の温度で 1 0 0 V/K程度以上 のゼーベック係数と、 1 ΟπιΩ cm程度以下の電気抵抗率を有し、 温度の上昇ととも にゼ一べック係数が増加し、電気抵抗率が減少する傾向を示すものとすることができ る。
上記した 型熱電変換材料として用いる複合酸化物の内で、 好ましい複合酸化 物の一例として、 一般式: C a 3Α 0 o4e (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y およびランタノイドからな る群から選ばれた一種又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤ 0. 8 ; 8≤e≤ 1 0である。 ) で表される複合酸化物、 一般式: B i f P bgM \C o2Ok (式中、 M1は、 S r, C a及び B aからなる群から選ばれた一種又 は二種以上の元素であり、 1. 8≤ f ≤ 2. 2 ; 0≤ g≤ 0. 4 ; 1. 8≤h≤ 2. 2 ; 8≤k≤ 1 0である。 ) で表される複合酸化物等を挙げることができる。 また、 n型熱電変換材料についても、 特に限定的ではないが、 本発明の熱電変 換材料接続用導電性ペーストに配合する酸化物粉末の内で、 一般式: LnmR N i pR2 qOr (式中、 L nはランタノィドから選ばれた一種又は二種以上の元素 であり、 R1は、 Na、 K:、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以 上の元素であり、 R 2は、 Ti、 V、 CJ:、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taか らなる群から選ばれた一種又は二種以上の元素であり、 0. 5 m≤ l . 2 ; 0 ≤n≤ 0. 5 ; 0. 5≤ρ≤ 1. 2 ; 0≤q≤ 0. 5 ; 2. 7≤ r≤ 3. 3であ る。 ) で表される複合酸化物、 又は一般式: (Ln s R3 t) 2N i uR4 vOw (式 中、 L nはランタノイドから選ばれた一種又は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ば れた一種又は二種以上の元素であり、 0. 5≤ s≤ l . 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v≤ 0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複 合酸化物からなる熱電変換材料を用いることが好ましい。 これらの熱電変換材料 は、 多結晶焼結体及び単結晶体のいずれであってもよく、 薄膜状に形成されたも のであっても良い。 この様な熱電変換材料は、 前述した導電性ペースト中に配合 される複合酸化物と同様の製造方法、 例えば、 フラックス法、 ゾーンメルト法、 引き 上げ法、 ガラス前駆体を経由するガラスァニール法等の単結晶製造法、 固相反応法、 ゾルゲル法等の粉末製造法、 スパッタリング法、 レーザ一アブレーシヨン法、 ケミカ ル ·ベ一パー ·デポジション法等の薄膜製造法等の各種の方法によって製造すること ができる。
これらの複合酸化物の内で、 前者は、 ベロブスカイト型の結晶構造を有し、 後者は 一般に層状べロブスカイ卜と呼ばれる結晶構造を有するものであり、 一般に前者が AB03構造、後者が A2B04構造とも呼ばれる。 どちらの複合酸化物も Lnの一部が R 1又は R3で置換され、 N iの一部が R2又は R4で置換されている。
これらの複合酸化物は、負のゼ一ベック係数、即ち、両端に温度差を与えた場合に、 ゼ一ベック効果により生じる電位は、高温側の方が低温側に比べて高くなる n型熱電 変換材料としての特性を示す。 これらの複合酸化物は、 例えば 100K以上の温度で- 1 〜- 30μν/Κ程度のゼ一ベック係数を有し、 且つ低い電気抵抗率を示す。 例えば、 100K 以上の温度において、 lOmQcm程度以下の電気抵抗率を有するものとすることができ る。
上記した n型熱電変換材料として用いる複合酸化物の内で、 好ましい複合酸化 物の一例として、 一般式: L
Figure imgf000024_0001
i Or (式中、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤ l . 2 ; 0≤n≤ 0. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、 一般式: (L a sR3 t) 2N i 0W (式中、 R3は、 Na、 K、 Sr、 Ca及び Biからなる群から選 ばれた一種又は二種以上の元素であり、 0. 5≤ s≤ l . 2 ; 0≤ t≤ 0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物等を挙げることができる。
使用する p型熱電変換材料及び n型熱電変換材料の形状、 大きさ等については、特 に限定されるものではなく、 目的とする熱電発電モジュールの大きさ、 形状等に応じ て、 必要な熱電性能を発揮できるように適宜決めればよい。 例えば、 幅と厚さが 1〜 1 0mm程度、 長さが 1 ~2 0 mm程度の直方体状の材料、 直径 1 ~ 1 0mm程度、 長さ 1〜2 0mm程度の円柱状の材料などとして用いることができる。
この様な熱電変換材料は、 例えば、 上記した熱電変換材料接続用酸化物粉末の製 造方法と同様の方法で得られた酸化物粉末を成形し、 加熱して焼結体とした後、 必要に応じて、 ダイヤモンドカッター等を用いて所定の形状に切り出して成形す ることによって得ることができる。
焼結方法としては、 特に限定はなく、 緻密な焼結体が得られる方法であればよ い。 例えば、 ホットプレス焼結法、 部分溶融法等を採用できる。 焼結雰囲気は、 特に限定されず、 大気中などの酸化雰囲気、 真空雰囲気などで良い。 焼結温度に ついても特に限定的ではないが、 例えば、 8 0 0〜9 5 0で程度とすればよい。
型熱電変換材料と n型熱電変換材料を接続するために用いる導電性基板とし ては、 絶縁性セラミックスに金属被覆を設けた基板、 導電性セラミックス基板な どを用いることができる。
導電性セラミックスとしては、 1 0 7 3 K (絶対温度) 程度の高温の空気中にお いても劣化せず、 長期間に亘って低い電気抵抗を維持できる材質のものが好ましい。 例えば、 n型熱電変換材料である LaNi03等、 低い電気抵抗率を有する酸化物焼結体 を用いることができる。
絶縁性セラミックスとしても、 1 0 7 3 K程度の高温の空気中においても酸化され ない材料を用いることが好ましい。例えば、 アルミナなどの酸化物セラミックスから なる基板を用いることができる。 絶縁性セラミックス上に形成する金属被覆として は、高温の空気中で酸化されることがなく、低い電気抵抗を有するものであればよい。 例えば、 銀、 金、 白金などの貴金属の被覆を蒸着法などによって形成すればよい。 導電性基板の長さ、 幅、 厚さなどは、 モジュールの大きさ、 電気抵抗等に合わせて 適宜設定すればよい。熱電変換素子あるいは熱電発電モジュールが被る熱履歴を考慮 すると、 導電性基板の熱膨張率は、 熱電変換材料の熱膨張率に近いことが好ましい。 また、 熱電変換素子の高温部に熱源からの熱を効率よく伝え、 更に、 低温部から熱を 効率よく放散するためには、 熱伝導度が大きい材質の基板を選択するか、基板を薄く することが望ましい。
図 1は、導電性ペーストを用いて P型熱電変換材料の一端と n型熱電変換材料の一 端をそれぞれ導電性基板に接続して得られた熱電変換素子の一例を模式的に示す図 面である。
p型熱電変換材料及び n型熱電変換材料のそれぞれと導電性基板との接続には、同 一組成の熱電変換材料接続用導電性ペーストを用いてもよく、或いは、 p型熱電変換 材料と導電性基板との接続には上記した p型熱電変化材料接続用導電性ペース卜を 用い、 n型熱電変換材料と導電性基板との接続には上記した n型熱電変換材料接続用 導電性ペーストを用いてもよい。 これらの導電性べ一ストの具体的な組成について は、 熱電変換素子、 或いは熱電発電モジュールに要求される接続部の機械強度、 接触 抵抗等に応じて選べばよい。 また、 熱電変換材料及び導電性基板の熱膨張率は組成に よって異なるため、 導電性ペースト中に配合する酸化物粉末の組成、 添加量等は、 使 用する熱電変換材料及び導電性基板の種類に応じて適宜決めればよい。 また、 接続部 の機械的特性、電気特性などを考慮して、複数の酸化物粉末を添加しても良い。特に、 熱電変換材料と導電性べ一スト中の酸化物粉体の反応を考慮すると、接続対象とする 熱電変換材料と同一の構成元素からなる酸化物粉体を用いることが好ましい。
接続方法は、 従来の貴金属ペーストを用いる場合と同様でよい。 具体的には、 熱電変換材料と導電性基板との接続部に熱電変換材料接続用導電性ペーストを塗 布した後、 乾燥し、 加熱して導電性ペーストを固化させることによって、 導電性 基板に P型熱電変換材料と n型熱電変換材料を接続することができる。
ペーストの塗布量については特に限定はなく、 ペース卜の具体的な配合組成等 に応じて、 十分な強度で熱電変換材料を接続できるように適宜決めれば良い。 例 えば、 固化前のペーストの厚さが 1 0 x m〜 5 0 0 zz m程度で、 固化させた後の ペースト層の厚さが 1 t m〜2 0 0 i m程度となるように、 接合部分に均一に塗 布すればよい。
加熱条件についても特に限定的ではないが、 通常、 8 0〜 2 0 0 °C程度で 5分 〜1時間程度加熱して有機溶剤を蒸発させた後、 5 0 0〜9 0 0 °C程度で 5分〜 1時間程度加熱して、 ガラス成分を固着させればよい。 接続時には、 基板と熱電 変換材料とを密着させるために、 加圧しながら導電性ペーストを固化させても良 い。
熱電発電モジュール
本発明の熱電発電モジュールは、 上記した熱電変換素子を複数個用い、 一つの 熱電変換素子の P型熱電変換材料の未接合の端部を、 他の熱電変換素子の n型熱 電変換材料の未接合の端部に接続する方法で複数の熱電変換素子を直列に接続し たものである。
通常は、 接合剤を用いて熱電変換素子の未接合の端部を基板上に接着する方法 によって、 p型熱電変換材料の端部と他の熱電変換素子の n型熱電変換材料の端 部とを基板上において接続すればよい。
一例として、 図 2に、 接合剤を用いて基板上において複数の熱電変換素子を接 続した構造の熱電変換モジュールの概略図を示す。
図 2の熱電変換モジュールは、 熱電変換素子の p型熱電変換材料の未接合の端 部と n型熱電変換材料の未接合の端部が基板に接するように、 複数の熱電変換素 子を基板上に配置し、 熱電変換素子の p型熱電変換材料と他の熱電変換素子の n 型熱電変換材料が直列に接続されるように、 該基板上に複数の熱電変換材素子を 接着して得られたものである。
基板は、主として、均熱性や機械強度の向上、電気的絶縁性の保持等の目的で用い られるものである。基板の材質は特に限定されないが、 6 7 5 K程度以上の高温にお いて、溶融、破損等を生じることが無く、化学的に安定であり、 しかも熱電変換材料、 接合剤等と反応しない、熱伝導性の高い絶縁材料を用いることが好ましい。熱伝導性 が高い基板を用いることによって、素子の高温部分の温度を高温熱源の温度に近づけ ることができ、 発生電圧値を高くすることが可能となる。 また、 本発明で用いる熱電. 変換材料が酸化物であることから、 熱膨張率などを考慮すると、 基板材料としては、 アルミナ等の酸化物セラミックスを用いることが好ましい。 熱電変換素子を基板に接着する場合には、低抵抗で接続可能な接合剤を用いること が好ましい。 例えば、 銀、 金、 白金等の貴金属ペースト、 はんだ等を好適に用いるこ とができる。 また、 貴金属ペーストに導電性の酸化物粉末を添加して、 熱膨張係数を 熱電変換材料に近似させたペーストを用いても良い。この様なペーストを用いる場合 には、高温での発電を繰り返した場合であっても、 接続部の剥離を防止することがで きる。酸化物粉末としては、 上記した P型熱電変換材料接続用導電性べ一スト又は n型熱電変換材料接続用導電性ペーストに配合する酸化物粉末を用いることも可 能である。
一つのモジュールに用いる熱電変換素子の数は限定されず、必要とする電力により 任意に選択することができる。 図 2は、 8 4個の熱電変換素子を用いたモジュールの 概略の構造を示すものである。 モジュールの出力は、 一つの熱電変換素子の出力に熱 電変換素子の使用数を乗じたものとほぼ等しい値となる。
本発明の熱電変換モジュールは、 その一端を高温部に位置させ、 他端を低温部に 位置させることによって電圧を発生することができる。 例えば、 図 2のモジュ一 ルでは、 基板面を高温部に配置し、 他端を低温部に配置すればよい。 尚、 本発明 の熱電変換モジュールは、 この様な設置方法に限定されず、 いずれか一端を高温 側に配置し、 他端を低温部側に配置すればよく、 例えば、 図 2のモジュールにつ いては、 高温部側と低温部側を反対にして設置しても良い。
以上の通り、 本発明の導電性ペーストを用いて熱電変換材料を導電性基板に接続 することにより、 熱電変換素子の接続部分に適度な導電性を付与した上で、 接続部分 の熱膨張率を熱電変換材料の熱膨張率に近づけることができる。 その結果、 高温での 発電を繰り返した場合にも、接続部分の剥離を防止して、 良好な熱電変換性能を維持 することができる。
従って、 本発明によれば、 高い熱電変換効率を有し且つ熱的安定性、 化学的耐久性 等に優れた熱電変換材料により構成される、優れた性能を有する熱電変換素子を得る ことができる。
また、 この様な熱電変換素子を用いた熱電発電モジュールは、 熱耐久性に優れたも のであり、 高温部を 1 0 0 0 K程度の高温から室温まで急冷しても、 破損することが なく、 発電特性も劣化し難いものである。 この様に、 本発明の熱電変換モジュールは、 小型で高い出力密度を有するばかりで はなく、 熱衝搫にも強いことから、 工場、 ゴミ焼却炉、 火力,原子力発電所、 マイク ロタ一ビンなどから出る 4 7 3 K以上の髙温熱を熱源とする熱電発電に利用するこ とができる。 更に、 温度変化が激しい自動車の電源としての応用も可能である。 また、 4 7 3 K程度以下の熱エネルギーからも発電が可能であることから、 太 陽熱、 熱湯、 体温等 2 9 3〜4 7 3 K程度の低温熱を熱源とすることもできる。 よつ て、 適当な熱源を装着することにより、 携帯電話やノートパソコンなど移動機器 用の充電が不要な電源としても利用することができる。
図面の簡単な説明
図 1は導電性ペーストを用いて熱電変換材料を導電性材料に接着して得られた熱 変換素子の一例を模式的に示す図面、 図 2は複数の熱電変換素子を基板上に接続し た構造の熱電発電モジュールの概略図、図 3は実施例 1で得た熱電変換素子を模式 的に示す図面、 図 4は実施例 1及び比較例 1の熱電変換素子の基板部 (高温部) の温 度と開放電圧 Voとの関係を示すグラフ、 図 5は実施例 1及び比較例の熱電変換素子 の基板部 (高温部) の温度と内部抵抗 Roとの関係を示すグラフ、 図 6は実施例 1及 び比較例の熱電変換素子の最大出力と高温部(基板部)の温度との関係を示すグラフ、 図 7は実施例 1で得た熱電変換素子を用いて得られた熱電発電モジュールの発電特 性を示すグラフである。
発明を実施するための最良の形態
以下、 実施例を挙げて本発明を更に詳細に説明する。
実施例 1
P型熱電変換材料の製造
組成式: <¾2.7Βΰ).3 θ409.2で表される p型熱電変換材料を下記の方法で作製した。 まず、炭酸カルシウム (CaC03)、酸化ビスマス (Bi203)及び酸化コバルト (Co304) を Ca:Bi:Co (元素比) =2.7:0.3:4 となるように秤量し、 十分に混合した。 得られた混 合物をアルミナるつぼに入れ、 1073K (800で) 、 空気中で 10時間焼成し、 得られた 焼成物をめのう乳鉢と乳棒を用いて十分に混合した。
この粉体を直径 20mm、 厚さ 2〜: 10mm程度の円盤状に加圧成形し、 アルミナポ一 トに金シートを敷きその上に該成形体をのせて、 1153K (880°C)、酸素気流中(300ml/ 分) で 20時間焼成した。 次いで、 得られた焼結体を、 めのう乳鉢と乳棒を用い粉碎 した。
得られた粉体を 30mm角、厚さ 5mmの角板状に加圧成形し、 lOMPaの一軸加圧下、 1123K (850°C) 、 空気中で 20時間ホットプレス焼結を行った。 得られたホットプレ ス焼結体を加圧面に垂直な面が 4mm角、加圧面に沿った長さが 5mmの直方体となる ように切り出し、 成形して P型熱電変換材料を得た。
n型熱電変換材料の製造
組成式: La^Bi^NiO^で表される n型熱電変換材料を下記の方法で作製した。 まず、 硝酸ランタン (La (N03) 3 * 6H20) 、 硝酸ビスマス (Bi(N03)3 · 5 0) 及 び硝酸ニッケル (Ni(N03)2 · 6H20) を La:Bi:Ni (元素比) =0.9:0.1:1.0となるよう抨量 し、 アルミナるつぼ中で蒸留水に完全に溶解させて混合した。 次いで、 マグネテイツ クス夕一ラ一を用いて撹拌しながら、 蒸留水を蒸発させて乾固した。
析出物を 1073K (800°C)の空気中で 10時間加熱し焼成して、硝酸塩を熱分解した。 次いで、 焼成物をめのう乳鉢と乳棒で混合した。
得られた粉体を直径 2cm、 厚さ 2~10mm程度の円盤状に加圧成形した後、 アルミ ナポートに白金シートを敷き、 その上に該成形体をのせて 1273K (1000で) 、 酸素気 流中 (300ml/分) で 20時間焼成した。 得られた焼結体を、 めのう乳鉢と乳棒を用い て粉砕した。 この粉末を再度上記の大きさに加圧成形し、 同条件で焼成して、 得られ た焼結体をめのう乳鉢と乳棒を用いて粉砕した。
得られた粉体を 30mm角、厚さ 5mmの角板状に加圧成型し、 lOMPaの一軸加圧下、 1173K (900°C) の空気中で 20時間ホットプレス焼結を行った。 得られたホットプレ ス焼結体を加圧面に垂直な面が 4mm角、加圧面に沿つた長さが 5mmの直方体となる ように切り出し、 成形して n型熱電変換材料を得た。
P型熱電変換材料接続用導電性ペーストの調製
上記した P型熱電変換材料の製造工程において、 1153K (880°C) で 20時間焼成し た後、 粉枠して得た粉体について、 更に、 めのうポットとポールを用いてポールミル 粉碎を 10分間行った。 得られた酸化物粉末を走査式電子顕微鏡で観察したところ、 8 0 %以上の個数の粒子が粒径 1〜1 O ^ mの範囲内にあった。
この酸化物粉末を市販の銀ペースト (商標名: H— 4215 昭栄化学社製) に添加 して P型熱電変換材料接合用導電性ペーストを得た。 使用した銀ペース卜は、 銀 粉末 (粒径 0 . l〜5 z m程度) 8 5重量%、 ホウケィ酸ビスマスガラス 1重量 %、 ェチルセルロース 5重量%、 テルビネオール 4重量%及びプチルカルビトー ルアセテート 5重量%からなるものであり、 酸化物粉末の添加量は、 銀ペースト 中の銀粉末 1 0 0重量部に対して 6 . 2 5重量部であった。
n型熱電変換材料接合用導電性ペース卜の調製
上記した n型熱電変換材料の製造において、 1273K (1000°C) で 20 時間焼成し、 粉砕することを二回繰り返して得た粉体について、めのうポットとポールを用いて更 に 1 0分間ポールミル粉砕した。得られた酸化物粉末を走査式電子顕微鏡で観察した ところ、 8 0 %以上の個数の粒子が粒径 1〜1 0 の範囲内にあった。
この酸化物粉末を市販の銀ペーストに添加して n型熱電変換材料接続用導電性 ペーストを得た。 使用した銀ペーストの種類、 酸化物粉末の添加量は、 p型熱電 変換材料接続用導電性ペース卜と同様である。
熱電変換素子の作製
上記した p型熱電変換材料と n型熱電変換材料を導電性基板に接続して、一対の p 型熱電変換材料と n型熱電変換材料による熱電変換素子を製造した。
導電性基板としては、 5mm X 8mm、 厚さ 1mmのアルミナ板の 5mm x 8mmの面に 銀ペーストを均一に塗り、 乾燥させて、 銀べ一ストによる導電性皮膜を形成した基板 を用いた。
p型熱電変換材料と n型熱電変換材料の 4 mm X 4 mmの面に、それぞれ上記した P型熱電変換材料接続用導電性ペーストと n型熱電変換材料接続用導電性ペースト を塗布し、 上記アルミナ基板の銀ペースト被覆面上に、 各熱電変換材料の導電性べ一 ストを塗布した面が接するように配置して、 373K (lOO ) で 10〜30分程度加熱し た後、 1073K (800で) の空気中で 15分間加熱して、 導電性べ一スト剤を乾燥、 固化 させた。
ぺ一ストの塗布量は固化前の厚さが約 5 0 となるようにした。 この場合、 固化 後のペースト層の厚さは約 2 0 /z mとなった。
次いで、基板と各熱電変換材料の接続部分を捕強するために、 アルミナを主成分と する絶縁性のセラミックスペーストを該接続部分に塗布し、乾燥させて熱電変換素子 を作製した。 図 3に得られた熱電変換素子の概略図を示す。
5式験結果
上記した方法で得られた熱電変換素子について、 電気炉を用いて基板部を 328〜 1123K (55〜850°C) に加熱し、 反対端を冷却器で冷却して 303〜773K (30〜500°C) の温度差を生じさせた場合について、 開放電圧 Voと電気抵抗 Roを測定した。 ここ で開放電圧とは熱電素子に外部抵抗 (負荷) をかけず、 温度差をつけたときの p型熱 電変換材料と n型変換材料の低温部間に生ずる電圧である。
また、 P型熱電変換材料接続用導電性ペーストと n型熱電変換材料接続用導電性べ 一ストとして、 それぞれ、 酸化物粉末を配合することなく、 市販の銀ペーストをその まま用い、 それ以外は実施例 1と同様にして得た熱電変換素子についても、 同様にし て開放電圧 Voと電気抵抗 Roを測定した。 これを比較例とする。
図 4は、 基板部 (高温部) の温度と、 開放電圧 Voとの関係を示すグラフである。 高温部の温度の上昇と共に開放電圧が高くなる傾向が認められる。これは高温部の温 度上昇により低温部との温度差を大きくすることができ、 更に、 使用した熱電変換材 料が、温度の上昇と共にゼ一ベック係数の絶対値が増加する傾向があることによるも のと思われる。 後述する全ての実施例においても同様の傾向が認められた。
尚、 高温部が 1073Kで低温部との温度差を 490Kつけた場合に、 実施例 1では開放 電圧が lOOmVであったのに対して、 比較例では、 70mV という低い値であった。 こ れは、 比較例では、 銀ペーストを用いて熱電変換材料を接続したことにより、 銀と熱 電変換材料との熱膨張率の相違によって接着界面が剥離したのに対して、実施例 1で は、 導電性ペースト中に特定の酸化物粉末を配合したことによって、 接続部分と熱電 変換素子の熱膨張率が近い値となり、剥離が生じ難くなつたことによるものと思われ る。
図 5は、 基板部 (高温部) の温度と、 内部抵抗 Roとの関係を示すグラフである。 全測定温度域において、 実施例 1の素子の内部抵抗が、 比較例の素子の内部抵抗より 低い値であった。 これは、 実施例 1の素子では、 熱電変換材料の剥離が防止されたこ とに加えて、 導電性ペースト中に特定の酸化物粉末が含まれることによって、 接続部 分と熱電変換材料との界面の抵抗が低減したことによるものと思われる。
また、 一般に、 電源に外部抵抗を接続して出力を取り出す場合には、 電源の内部抵 杭と同じ外部抵抗の時に最高出力が得られる。 その際、 外部抵抗に流れる電流 Io は Vo/2Roであり、 取り出せる出力 Pmax( = Imax2Ro)は Vo2/4Roとなる。 図 6は、 開放 電圧 Voと内部電圧 Roを用いて算出した最大出力と、 高温部 (基板部) の温度との 関係を示すグラフである。 実施例 1の素子では、 比較例の素子と比べて高い出力が得 られることが判る。
図 7は、実施例 1で得た熱電変換素子を 1 0組用いて得られた熱電発電モジュール について、 発電特性を示すグラフである。 図 6の結果から見積もった出力は得られな かったものの、 このモジュールを用いて熱電発電を行うことにより、 小型モ一夕一の 作動が可能であることが実証できた。
実施例 2〜 9 4
P型熱電変換材料接続用導電性ペース卜と n型熱電変換材料接続用導電性ペース 卜に配合する酸化物粉末、 p型熱電変換材料及び n型熱電変換材料として、 下記表 1 〜 7に示す材料を用いる以外は、 実施例 1と同様にして、 熱電変換素子を作製し、 熱 電変換性能を測定した。各表中には、導電性ペーストにおける酸化物粉末の添加量を、 銀粉末 1 0 0重量部に対する重量部として示す。
また、 各表には、 高温部が 973K、 低温部が 500Κにおける開放電圧と 973Κでの内 部抵抗値を示す。 全ての実施例において、 開放電圧、 内部抵抗ともに、 同じ組成を有 する熱電変換材料を銀ペーストで接着したときよりも優れた値であった。
(ο'か' ¾ '0 ia6'°B% ΓεΟίΝΓΟϊ96ΒΊ/
Figure imgf000034_0001
(^·9)ΓεΟΪΝΓ0ί96 ΓεΟΪΝΓΟί960ΕΊ/
6Z Z6 (ςΖ'9) Γ6Ο"ο3ε'ΗΑ¾3 m π
(θτ) Γ¾ΪΝΓΟίΗ6'°ΒΊ/ ΓεΟΪΝΓ0ίΗ6'°ΒΊ/ οε
ZZ 86 (O'Z)
Figure imgf000034_0002
£'6Ot7°Dc°UISiYB0 £1
(53·9)ΓεΟΪΝΓ0ί9ΰ'°ΕΊ/ ΓεΟΪΝΓ0ΪΗ6'°ΒΊ/
Figure imgf000034_0003
(0'Ζ)ΓεΟίΝΐοί3δ'°ΒΊ/ OiNroF96 /
P6 (0 ) wo W ED m 6o¾Q£.¾y ¾ τχ
(^'9)ΓεΟΪΝΓ0ίΗ6θΕΊ/ ΓεΟΪΝΓ0ί96ΒΊ/
Figure imgf000034_0004
εΟΪΝΓΙ«Ί/
z 96 (θ'Ζ) "O^ ^D 6
(SZ'9)6OINn/ OZ
ZZ 86 (ςζ'9) m 8
(θ'Ζ)ΓεΟϊΜΓ0ί96θΒΊ/ oiNroie6'°eq/
sz 06 (0·が60 人 m し
( 9)6' !Js 0 ΒΊ/ 6 ί s^
0£ 06 m 9 SI
(0 iNro¾°ei/
ζΖ 56 (ο·か'8 o 0)^:)
0! °^/
£Z 86 (ςζ'9) ^OW^N^D 谫 t
(SZ'9)nOMro]Q.&0n./ χεΟΪΝΓΟί96θΒΊ/ 01
OZ OOT ( ' ^ m 0TO,'o3£0iHr¾ ε
(0·が 0^/
ZZ 86 m
(5Ζ·9)ΓεΟΪΝΓ0ί96'°ΒΊ/ ΓεΟΪΝΓ0ί96 /
IZ OOX m ι
01疆重) »隱顯《/ 廳 V
(m m ョ¾删 ( 軎虞)雜隨麵 dd
4 ^-vM¾
T 拏 9H0/ 00∑:df/X3d T999C0/S00Z OAV (sz )0MV^i ΓεΟΪΝΓ0ί96ΒΊ '
88 (szv)
Figure imgf000035_0001
m t,'6Ot'cOt70BN 0n'iTZZB3 0£
(O'Z) ΓεΟΐΝΓ0ΪΗ60ιΓ[/
Figure imgf000035_0002
(SZV) ΓεΟΪΝΓ0ί96'°ΒΊ/ ΓεΟΪΝΙ'0ί96'°¾Ί/
LZ Z6 (gZ ) 0 W W0pjN ED m
Figure imgf000035_0003
SZ
(θ'Ζ)ΓεΟΪΝΓΟΪΗ6θΒΊ/ ΐ'εΟΪΝΓ0ί9<5ΕΊ/
Z£ 68 (O'Z)
Figure imgf000035_0004
m £¾ぴ ゲ°¾1*'0 LZ
ΙεΟίΝΓ0ί96 / l£ 68 (ςι) o W^ m 9Z
( 9) zoml6'°^i
SZ £6 m SZ
(9Τ)ΓεΟΪΝΓ0ί96'°ΒΊ/ ΓεΟΪΝΙ'0ί96'°ΒΊ/
LZ Z6 m Z
(0*Ζ)ΓεΟΪΝι'°ΪΗ6'°δΊ/ ΓεΟΪΝχοί9ΰθΒΊ/
£Z 86 (O'Z) 60 WW ^) £Z οε 58
Figure imgf000035_0005
m S'6〇1¾ 9¾
ZZ
(0Ί) εΟί ; 38( [/ ΓεΟΪΝΓθΕ38θΕΊ/ οε ん 8 (0·が m IZ
(e 9)0iNz¾S8'°Bl/ reOiNr0j[S8'0El
ΡΖ L6 m oz
(Ο ) ΓεΟΪΝΓΟί96θΒ1/ ΓεΟΪΝΓ0ί96θΒΊ/ ξΖ Z6 61
(ξΖ'9) ΓεΟΪΝΓΟί96θΒΊ/ ΓεΟϊΝΓΟί96'°ΒΊ/ sz 06 { Z9)V6 (Oi^'3L"L'R' SI
(θ )εΟΪΝΓΟΪΗ6'°ΒΊ/ ΓεΟϊΝΓΟϊ96θΒΊ/
6Ζ 88 (0·か ·„ ) t''6QtO^)£Oojji¾'- LI
(^·9)τ'εΟΪΝΓΟίΗ6 ΓεΟΪΝΓ0ίΗ'°ΒΊ/
16 (ςζ·9)5'6ο"ο3εS601'0Dro^a3 91
(OT) mm)雜隱應 ν
m ョ難 ( 喜班) 酣麵 d 難 d mmm
4 一 舊 m^ (5Ζ·9) ΐ εΟΪΝΓΟϊ96ΒΊ/ ΓεΟϊΝΙ0ί96'θΒΊ/
OP ん 8 ( ·9)οϊΟ¾Ό ¾[
(9Z9) ΓεΟΪΝΐΌϊ9ΒΊ/ ΓεΟϊΝΓΟϊ96'°ιη[/
Z 08 (S2'9)60¾¾a¾ g 6ozoo¾a¾a
ΟΪΝ^Ι/ οε
9£ Z6 (SZ'9) ^O^D^D^d Ϊ9 谫 Μ0Ζの r oqdsi!a
( ·9) ΟϊΝ^Ι/
S£ P6
(S -9)rEOiNl'°ia6'°Bl/ ΓεΟΪΝΓΟϊ96'°ΒΊ/
9£ Z6 (ςζ'9) Γδο¾ο8ζ¾ If
(SZ'9)iTOiNroB3£'°Bl/ ΟίΝΓ0 0
8£ 06 Of
to) ^ΟΪΝ^ /
5£ 86 (^·9)9·60ζο3¾·οςί8·ΐΐ9 n 9 0qjs 6£
( 9) "0ΪΝΓ°ΒΝί ΒΊ/ οζ ££ ん 6 (^'9)88¾28'¾ 清 8£
ΓεΟΪΝΐΌί96'°ΒΊ/ ΓεΟΪΝΓΟί96 /
S£ 86 fe 9)ssO¾)8 szTia n LZ
( 9) x'eOiNrouS6'°Bl OiNroPS60El/
Z£ 001 to) r60¾¾S¾ If r60¾D¾S¾ 9ε ςι
(O ) ιεΟίΝΓ0ί 6'°ΒΊ/ ΓεΟΪΝΓΟίΗ6θΒΊ/
9Z 06 (0'2) ^O^D^W A^D ¾ t''6Ot'oD,'0BMt'0cL .z^BD
(^•9)rEOiNvoi 6'°Bl/ ΓεΟϊΝΓΟί96'°ΒΊ/
Z£ 68 OW0^'0 ' ε
(ς·Τ)Γ£ΟΪΝΓ0ί96'°ΕΊ ΓεΟΐΝΓ0ί96ΒΊ/ οχ 6Z 88 (οτ) £6o^oy^°ouz^D ¾ εε
9)ι'£ΟΜ0ί36'°ΒΊ/ ι'εΟϊΝΓ0ί96'°ΒΊ/
LZ 06
fe'X) ΓεΟΪΝΓ°ΐ96θΒΊ/ ΓεΟΪΝΓ0ί96(¾Ί/
9Z Z6 (0"Z) ^O^D^lsfPO^O g| ϊ£
麵軍) 瞻難 u/
01疆霍) ¥湖 難 d
雞 ft 0請 Zdf/ェ:) d 1999C0/S00Z OAV (Ζ) 。 !Ν 0 ¾6 (¾1)/ 0 0 iafi°BT),
68 ^O^OO^S^O 09 。 0 Ϊ36 )/
LZ Ζ6 (ςζ·9) "o £¾ εορ コ
fe) ΟίΝ 0 Μδ·°ΒΊレ riOiNz(roia6°Bl)/ τε 06
(ςζ·9) rtO?N(roia6 )/ OM '0 fa6'°Bi)/ οε Ζ6 60 W L5 。 El,
Figure imgf000037_0001
( ·9) OW¾l/ ΟΜζ¾Ί/ χε 16 (SZ-9) "o1^ W¾
(か'4 ΌίΝや'0 ia6(¾T)/ O!N
6Ζ Ζ6
( 9)Ο („ / 6
06
9 ίΝや0^0 ΒΊ)/
££ £6 (か ·8ぴ 0CW
( ·9)Ο!Ν 0 BJS ET)/
Figure imgf000037_0002
Ζ£ Ζ6 ( '9 '80 £'°^
¾ΪΝζ(Γ0ί96'°ΒΊ) / *ΌϊΝζ(Γ0ίΗ6θΕΤ) /
Ζ£ 86 01 f£B
(か1 Ό 0 ί 0 ET)/
Figure imgf000037_0003
( 9) ΟίΝや.0 ISM/ 0iNや oeqレ
し 86 ( 9) ^(^。コ^ て
(SZ9) ΓεΟΪΝΓ0ί96'°ΒΊ/ ΓεΟΪΝΓ0ϊ96'°εΊ/
8ε 06
(SZ9) ΓεΟΪΝΓ0ί96'°ΒΊ/ ΓεΟΪΝΓ0ί96'°ΒΊ/
6ε 06 ( 9)ζ·60 ·ε¾Η r6oZo3¾az'0 <i8'lia 9
( 重) 糊剛涵 V 爆藤 V
麵重)雜隱難 d 還面 d 画 ¥ 拏 t'T0/1-00Zdf/X3d T999C0/S00Z ΟΛ\ (ςΖ9) ΓίΌϊΝΣ(Γ0ί36 )/ Ι'"θϊΝζ(Ι'0ίΗδ'°ΒΊ)/
Ζ6
Figure imgf000038_0001
SL
(5Ί) Γ¾ΪΝζ(Γ°ΐΗ6'°ΒΊ) ΟίΝや0 ¾6·°ΒΊ)/
Figure imgf000038_0002
( ·9)*ΌΜ 0 ia60^/ ΟίΝや'01 °^1)/ οε
06 (9) "O^D^N^^ ^D m が CQ«)B 03;3て εん
feZ-9)rfOiN(roie60BT)/ OMや0 ί3δΌΒΤ)/
οε 06 (W9) 6 OWOB m ぴ0コ コ ZL
fe 0!N 0^/ rtOiNz(I'0Fa6'°BT)/
6Ζ Τ6 (が„ 0人 BO m ε¾が。コ 人 εて IL
fe) O!Nや °B1)Z rtOINz(roia6'°ei)/
9Ζ 16 fe) £.„ 8? m 0L
( 9)
Figure imgf000038_0003
OiNz(roB38'°PT)/
Ζ£ Ζ6 (ςΖ9) Γ60* 39 £ε3 SI 0 9. 69
(ς·ΐ)6'ΕΟ!Νや °BT)/ ΟΪΝΖ(Γ0Β38'°ΒΤ)/ oz
0£ % (が ¾ の εΒコ m 89
·9)ΟίΝや0 ΟϊΝΖ( 0¾8'°Β鸱Ί)/
82 86 '9)8 8.0ュ Sz m ん 9
(Ζ θίΝ '0 ia6.°ET), rt,oiNC'0ia6'°B ) /
LZ Ζ6 (2)*¾0" 3¾"¾3 m 99 ςι
Figure imgf000038_0004
0 ί36'°ΒΤ) /
Ρ£ ん 8 m 59
fe) ΟίΜ '0 ί8Δ.°ΒΤ)/ ΟίΜζ(Οί86·°^Τ) /
ん 8 fe)t''6OfO3£0OHi¾ m ¾0¾3£'0。 t9
( 9)ひ OM '0 ¾δ.°ετ)/ ιΟΪΝζ(Ι0ί96'°ετ)/ ox χε 06 to) «oW¾a¾ £9
(Ζ)Γ1ΌίΝや' Qra60^), I'tOiNz(l'°ia6 )/
6Ζ Ζ6 fe)r60,,ODroP9i¾ m zo 3£"0pびて Z9
( 9) ΓίΌϊΝζ(Γ0ίΗ6(¾Τ)/ 。 0 ia60^!)/
οε 88 ( 9) "o 0n3"B;3 m 19
麵慕) 瞻濯 u/
ョ 棚 觀軍) 酣濯 d
4 ^r- w*
9 拏
9t"l0/f00Z«If/I3d t999?0/≤00Z O ·9) ΟίΝ" / ΟίΜ^/
5 88 (ςζ'9) ν6οζ°3ζτ^3ν'0(ά 8tia .6 OW 81 06
(SZ'9) Οί :¾Ί/ ΟίΝ^Ί/
16 (^•9)6'8o¾z'°qd8I!a 68
( 9) 。 10 ί8δ )ノ οε 68 88
( ·9)ん' !N 0 ΌΓΟ ),
£P Z6 ん 8
( 9) 9 εΟίΝ ΟΜや' °3S'°B1),
Figure imgf000039_0001
8Tig 9.6o¾W.0qd8.iia 98
to)s iN 0 0 ΕΊ)Ζ Ο!Νや W°ET)/
OP V6 58
( 9) Γ<ΌϊΝζ(Γ0ί96'°ΒΤ)/ Γ*ΌϊΝζ(ΓΟί96 )/
ZP S6 to)S8o 8' z¾ セ 8
' 9)δ·εΟ C ff°ei), OiNz(I0¾6°eT)/ οζ
Li 16 ( 9) 1'60¾0¾¾ r60¾3¾S¾ £8
fe)rtO!Nz(roia6(¾T)/ τ¾ΐΝζ(Γ0ίΗ6'°ετ)/
6Z 88 (z) '6ο qAz' Z8
-9 .0!36'°^, Γ¾ΐΝζ(ΓΟί96'°ΕΊ)/
οε ん 8 (S Z'9) 18 91
( ) O!N °ί8Μ/ ΙΊΌϊΝζ(ΓΟί96'°ΒΤ)/
08
(9) ΟίΝ .0 ί36'°ΒΤ)/ O!Nや0 ¾6·°ΒΤ)/
οε ん 8 が o W0jicF¾ 61
( ) θίΝや.0 fa60^)/ θίΝ 01360^1)/ 01
SZ 68 6ot>0コ¾Jsj£OpQ B。 SL
( 9 0 („ / l'W(roia6(¾T)
LZ 68
Figure imgf000039_0002
LL
fe) θίΝ '0 ia6 )/ Γ¾ΪΝΣ(ΐ'0ί96'°ΕΤ)/
Figure imgf000039_0003
( K ) (疆軍) 腦 u/ 濯 V 暴 mm 難棚 (3疆重) «酣濯 dd um
9 拏
0891"秦 OOZdf/IDd T999f0/£00Z OAV 表 7
熱電変換材料 導電性ペースト
P型材料 p型材料用粉末(重量部) 開放電圧 電逢抗 型材料 /n型材料用粉末 (重量部) (mV) (τηΩ)
91 Bi2Ba2Co209 Bi2Ba2Co209 (6.25) 85 40
Figure imgf000040_0001
92 Bi 2Ba2Co2O10 BiZ2Ba2Co2O10 (6.25) 88 43 /(Lao.9Bio.i)2NiO 4.1
Figure imgf000040_0002
(6.25)
93 Bii.8Pb0.2Ba2Co2O9.2 Bi1.8Pbo.2Ba2Co209.2 (6.25) 90 47
Figure imgf000040_0003
/(La0.9Bio.i)2Ni04.1 (6.25)
94 Bii.8Pbo. Ba2.2Co2Ow Bi1.8 Pb0.4BaZ2Co2O9.5 (6.25) 90 50
Figure imgf000040_0004
実施例 9 5〜 1 0 6
ρ型熱電変換材料接続用導電性ペーストと η型熱電変換材料接続用導電性ペース トに配合する酸化物粉末として、 下記表 8に示す酸化物粉末を用い、 これらの酸化物 粉末を市販の金ペースト (商標名: Au-4460、 昭栄化学社製) に添加して導電性べ一 ストを調製した。各ペーストにおける金 1 0 0重量部に対する酸化物粉末の添加量も 各表に示す。 P型熱電変換材料及び n型熱電変換材料としても表 8に示す材料を用い た。
使用した金ペーストは、 金粉末 (粒径 0 . l〜 5 i m程度) 8 5重量%、 ホウ ケィ酸ビスマスガラス 1重量%、 ェチルセルロース 5重量%、 テルビネオール 4 重量%及びプチルカルビトールァセテ一ト 5重量%からなるものであり、 酸化物 粉末の添加量は、 金ペースト中の銀粉末 1 0 0重量部に対して 6 . 2 5重量部で あった。
上記した導電性ペーストと熱電変換材料を用いること以外は、実施例 1と同様にし て熱電変換素子を作製し、 実施例 1と同様にして熱電変換性能を測定した。
表 8には、 高温部が 973K:、 低温部が 500Kにおける開放電圧と 973Kでの内部抵抗 を示す。 全ての実施例において、 開放電圧、 内部抵抗ともに、 同じ組成を有する熱電 変換材料を金ペーストで接着した場合よりも優れた値となった。 表 8
熱電変換材料 導電性ペースト
実施例 P型材料 p型材料用粉末(重量部) 開放電圧 電気餓 番号 型材料 金属 /n型材料用粉末 (重量部) ( V)
95 し a2.7Bio.3Co409.2 金 Ca2jBio.3Co409.2 (6.25) 100 29
/Lao.9Bio.iNi03.i Ί3ο.9Βίο.ιΝί03.ι(6.25)
96 し a2jBia3C04092 金 Ca2.7Bio3Co409.2 (2.0) 97 30
/Lao.9Bio.iNi03.i /La0.9Bio.iNi03.1(2.0)
97 Ca2/7Nao.3Co4085 金 Ca„Nao.3Co4Oa5 (6.25) 98 29
Figure imgf000041_0001
98 Bi2Sr2Co209.i 金 BiaSrzCozOs.! (6.25) 90 36
/Lao.9Sro.iNi03.i /Lao.9Bio.iNi03 (6.25)
99 ΒΪ2.2ώΓι.8θθ2θ85 金 Bi 2Sri.8Co2085 (6.25) 92 35
/Lao. Bio.iNiOs.! /LaosBioiNiOa.! (6.25)
100 Bii.8P o.2Sri.8Co208 金 Bi1.8Pbo.2Sr1.sCo208 (6.25) 92 34 Lao.5Nao.5NiOZ7 /Lao.5Nao.5Ni02.7 (6.25)
101 Ca2.7Bio.3Co409.2 金 Ca17Bio.3Co409.2 (6.25) 98 32
Figure imgf000041_0002
/(La0.9Bio.i)2Ni04.i (6.25)
102 Ca2_7Bi03Co4O9.2 金 Ca2.7Bio.3Co409.2 (2) 97 34
Figure imgf000041_0003
103 Ca2 Nao.3Co408j 金 CaZ7Nao.3Co408.5 (6.25) 89 35
/ (LaojNaoj)2Ni03.8 Z(Lao.5Nao.5)2Ni03.8 (6.25)
104 金 Bi2Sr2Co209.i (6.25) 87 42
/ (Lao.9Sro.i)2Ni03.9 /(La0.9Srai)2NiO3.9 (6.25)
105 Bi2.2Sri,8C<¾0&5 金 BiZ2Sri.8Co208^ (6.25) 86 40
Figure imgf000041_0004
106 Bii.8Pb0.2SrL8Co2O8 金 88 39
/ (La0.5Naos)2NiO3.8 /(Lao.5Na0.5)2Ni03.8 (6.25) 実施例 1 0 7 ~ 1 2 1
Ρ型熱電変換材料接続用導電性ペーストと η型熱電変換材料接続用導電性ペース 卜に配合する酸化物粉末として、 下記表 9に示す酸化物粉末を用い、 これらの酸化物 粉末を市販の白金ペースト (商標名: D-4001、 昭栄化学社製) に添加して導電性べ一 ストを調製した。各べ一ストにおける白金 1 0 0重量部に対する酸化物粉末の添加量 も表 9に示す。 また、 p型熱電変換材料及び n型熱電変換材料としても表 9に示す材 料を用いた。
使用した白金べ一ストは、 白金粉末 (粒径 0 . l ~ 5 / m程度) 8 5重量%、 ホウケィ酸ビスマスガラス 1重量%、 ェチルセルロース 5重量%、 テルビネオ一 ル 4重量%及びプチルカルビトールァセテ一ト 5重量%からなるものであり、 酸 化物粉末の添加量は、 白金ペースト中の銀粉末 1 0 0重量部に対して 6 . 2 5重 量部であった。
上記した導電性べ一ストと熱電変換材料を用いること以外は、実施例 1と同様にし て熱電変換素子を作製し、 実施例 1と同様にして熱電変換性能を測定した。
表 9には、 高温部が 973K、 低温部が 500Κにおける開放電圧と 973Κでの内部抵抗 を示す。 全ての実施例において、 開放電圧、 内部抵抗ともに、 同じ組成を有する熱電 変換材料を白金ペース卜で接着したときよりも優れた値となった。
089/0さ/ oz13d 999ios
Figure imgf000043_0001
寸 o o
to
\) (3¾ ¾ΊΒ一.
m ()§oi¾。リ。oリΒ s s s。
\ (3)ia ss

Claims

請求の範囲
1. ( i ) 下記 (a) 〜 (d) に記載された複合酸化物からなる群から選ばれた 少なくとも一種の酸化物粉末:
( a) —般式: C a aAi bC O
Figure imgf000044_0001
(式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノィド からなる群から選ばれた一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及ぴ Taからなる群から選ばれた一種又は二種以 上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤ b≤ 0. 8 ; 2≤ c≤ 4. 5 ; 0≤ d≤ 2 ; 8≤ e≤ 1 0である。 ) で表される複合酸化物、
(b) 一般式: B i f P b gM C o i M^' O k (式中、 M1は、 Na、 K、
Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノ ィドからなる群から選ばれた一種又は二種以上の元素であり、 M2は、 Ti、 V、 、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以 上の元素であり、 1. 8≤ f ≤ 2. 2 ; 0≤ g≤ 0. 4 ; 1. 8≤h≤ 2. 2 ; 1. 6≤ i ≤ 2. 2 ; 0≤ j ≤ 0. 5 ; 8≤ k≤ 1 0である。 ) で表される複合 酸化物、 '
( c ) 一般式: L nmR
Figure imgf000044_0002
f (式中、 L nはランタノィドから 選ばれた一種又は二種以上の元素であり、 R 1は、 Na、 K、 Sr、 Ca及び Biからな る群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤m≤ l . 2 ; 0≤n≤ 0. 5 ; 0. 5≤ p≤ 1. 2 ; 0≤ q≤ 0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 及び
(d) 一般式: (L n s R3 t) 2N i UR4 V0W (式中、 L nはランタノィ ドから選ばれた一種又は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Bi からなる群から選ばれた一種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以 上の元素であり、 0. 5≤ s ≤ l . 2 ; 0≤ t≤ 0. 5 ; 0. 5≤ u≤ 1. 2 ; 0≤ v≤ 0. 5 ; 3. 6≤w≤ 4. 4である。 ) で表される複合酸化物、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一種を含む合金からなる 群から選ばれた少なくとも一種の導電性金属粉末、
を含有することを特徴とする熱電変換材料接続用導電性ペースト。
2. (ii) 項に記載の導電性金属粉末 1 0 0重量部に対して、 ω 項に記載の酸 化物粉末を 0. 5〜 20重量部贪有する請求項 1に記載の熱電変換材料接続用導 電性ペース卜。
3. 更に、 ガラス成分及び樹脂成分を含有する請求項 1に記載の熱電変換材料 接続用導電性ペースト。
4. ( i ) 一般式: C a aA C o c A2 de (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノィドから なる群から選ばれた一種又は二種以上の元素であり、 A 2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元 素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤0. 8 ; 2≤c≤4. 5 ; 0≤d≤2 ; 8≤e≤ 10である。 ) で表される複合酸化物、 及ぴ一般式: B i f P bgM1 h C o; M 2 j O k (式中、 M1は、 Na、 K、 Li、 Ή、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドからなる群から選ばれた一種又は二 種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb 及び Taからなる群から選ばれた一種又は二種以上の元素であり、 1. 8≤ f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤2. 2 ; 1. 6≤ i≤2. 2 ; 0≤ j≤ 0. 5 ; 8≤k≤ 1 0である。 ) で表される複合酸化物からなる群から選ばれた少なく とも一種の酸化物粉末、 並びに
(ii) 金、 銀、 白金、 及ぴこれらの金属の少なくとも一種を含む合金からなる 群から選ばれた少なくとも一種の導電性金属粉末、
を含有することを特徴とする P型熱電変換材料接続用導電性ペースト。
5. 酸化物粉末が、 一般式: C a
Figure imgf000045_0001
O 4Oe (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノィドか らなる群から選ばれた一種又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤ b≤0. 8 ; 8≤e≤ 1 0である。 ) で表される複合酸化物、 及び一般式: B i f P
Figure imgf000045_0002
(式中、 M1は、 S r, C a及び B aからなる群から選ばれ た一種又は二種以上の元素であり、 1. 8≤ f ≤2. 2 ; 0≤g≤0. 4 ; 1.
8≤h≤2. 2 ; 8≤k≤ 1 0である。 ) で表される複合酸化物からなる群から 選ばれた少なくとも一種である請求項 4に記載の p型熱電変換材料接続用ペース 卜。
6. (ii) 項に記載の導電性金属粉末 1 00重量部に対して、 (i) 項に記載の酸 化物粉末を 0. 5〜20重量部含有する請求項 4に記載の p型熱電変換材料接続 用導電性べ一スト。
7. 更に、 ガラス成分及び樹脂成分を含有する請求項 4に記載の p型熱電変換 材料接続用導電性ペース卜。
8. ( i ) 一般式: L
Figure imgf000046_0001
i pR2 QOr (式中、 L nはランタノイドから選 ばれた一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤m^ l . 2 ; 0≤n≤0. 5 ; 0. 5≤p≤ l. 2 ; 0≤Q≤Q. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、 及び一般式: (Ln sR3 t) 2N i uR4 vOw (式中、 Lnはランタノイドから選ばれた一種又は二種 以上の元素であり、 R3は、 Na、 K:、 Sr、 Ca及び Biからなる群から選ばれた一種 又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo, W、 Nb 及び Taからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤ S≤ 1. 2 ; 0≤ t≤0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v≤0. 5 ; 3. 6≤w≤ 4. 4である。 ) で表される複合酸化物からなる群から選ばれた少なくとも一種 の酸化物粉末、 並びに
(ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一種を含む合金からなる 群から選ばれた少なくとも一種の導電性金属粉末、
を含有することを特徴とする n型熱電変換材料接続用導電性ペースト。
9. 酸化物粉末が、 一般式: L amRinN i Or (式中、 R1は、 Na、 K:、 Sr、 Ca 及び Biからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m^ l . 2 ; 0≤n≤0. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、 及び 一般式: (L a sR3 t) 2N i Ow (式中、 R3は、 Na、 K:、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 0. 5≤ s≤ l. 2; 0≤ t≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなる群から選ばれ た少なくとも一種である請求項 8に記載の n型熱電変換材料接続用ペースト。
1 0. (ϋ) 項に記載の導電性金属粉末 1 00重量部に対して、 (i) 項に記載の 酸化物粉末を 0. 5〜 20重量部含有する請求項 8に記載の η型熱電変換材料接 続用導電性ペースト。
1 1. 更に、 ガラス成分及び樹脂成分を含有する請求項 8に記載の η型熱電変 換材料接続用導電性ペースト。
1 2. ρ型熱電変換材料の一端と η型熱電変換材料の一端を、 それぞれ導電性べ —ストを用いて導電性基板に接続してなる熱電変換素子であって、
Ρ型熱電変換材料が、 一般式: C
Figure imgf000047_0001
OeASdOe (式中、 A 1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよび ランタノィドからなる群から選ばれた一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種 又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤0. 8 ; 2≤c≤4. 5 ; 0≤d≤2 ; 8≤e≤ 1 0である。 ) で表される複合酸化物、 又は一般式: B i f P b gM C 0 ;M2 j Ok (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびラン夕ノィドからなる群から選ばれ た一種又は二種以上の元素であり、 M2は、 Ή、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素であり、 1. 8 ≤ f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤2. 2 ; 1. 6≤ i≤ 2. 2 ; 0 ≤ j≤ 0. 5 ; 8≤k≤ l 0である。 ) で表される複合酸化物からなるものであ り、
n型熱電変換材料が、 一般式: L
Figure imgf000047_0002
i pR2 QOr (式中、 L nはラ ンタノイドから選ばれた一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又 は二種以上の元素であり、 0. 5≤m≤ l. 2 ; 0≤n≤0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤Q≤0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 又は一般式: (LnsR3 t) 2N i UR4 V0W (式中、 Lnはランタノイドから選 ばれた一種又は二種以上の元素であり、 R3は、 Na、 K Sr、 Ca及ぴ Biからなる 群から選ばれた一種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤s≤l. 2 ; 0≤ t≤0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤ γ≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなるものであり、
P型熱電変換材料及び n型熱電変換材料を導電性基板に接続するために用い る導電性ペース卜が、 請求項 1に記載された導電性ペーストである、
ことを特徴とする熱電変換素子。
13. p型熱電変換材料の一端と n型熱電変換材料の一端を、 それぞれ導電性 ペーストを用いて導電性基板に接続してなる熱電変換素子であって、
P型熱電変換材料が、 一般式: C aaA C 0 t;A2 de (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよぴ ランタノィドからなる群から選ばれた一種又は二種以上の元素であり、 A2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種 又は二種以上の元素であり、 2. 2≤ a≤ 3. 6 ; 0≤b≤0. 8 ; 2≤c≤4. 5 ; 0≤d≤2 ; 8≤e≤10である。 ) で表される複合酸化物、 又は一般式: B i f P b gM C 0 iM2 j Ok (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドからなる群から選ばれ た一種又は二種以上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素であり、 1. 8 ≤ΐ≤2. 2 ; 0≤g≤0. 4 ) 1. 8≤h≤2. 2 ; 1. 6≤ i≤ 2. 2 ; 0 ≤ί≤0. 5 ; 8≤k≤ 10である。 ) で表される複合酸化物からなるものであ り、
n型熱電変換材料が、 一般式: L rimR inN i pR2 QOr (式中、 Lnはラ ンタノイドから選ばれた一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又 は二種以上の元素であり、 0. 5≤m≤l. 2 ; 0≤n≤0. 5 ; 0. 5≤p≤
1. 2 ; 0≤q≤0. 5 ; 2. 7≤r≤3. 3である。 ) で表される複合酸化物、 又は一般式: (LnsR3 t) 2N i uR4 vw (式中、 Lnはランタノイドから選 ばれた一種又は二種以上の元素であり、 R3は、 Na、 K、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe> Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 0. 5≤s≤ l. 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤v≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなるものであり、 P型熱電変換材料を導電性基板に接続するために用いる導電性ペース卜が、 ( i ) 一般式: C a
Figure imgf000049_0001
0 cA2 dOe (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 AL Bi、 Y およびランタノイドからな る群から選ばれた一種又は二種以上の元素であり、 A 2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素で あり、 2. 2≤ a≤ 3. 6 ; 0≤b≤0. 8 ; 2≤c≤4. 5 ; 0≤d≤2 ; 8 ≤e≤ 10である。 ) で表される複合酸化物、 及び一般式: B i f P
Figure imgf000049_0002
0 iM2 j-Ok (式中、 M1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Ca、 Sr、 Ba、 Al、 Yおよびランタノイドからなる群から選ばれた一種又は二種以 上の元素であり、 M2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taか らなる群から選ばれた一種又は二種以上の元素であり、 1. 8≤ f ≤2. 2 ; 0 ≤ g≤ 0. 4 ; 1. 8≤h≤2. 2 ; 1. 6≤ i≤ 2. 2 ; 0≤ j≤ 0. 5 ; 8 ≤k≤10である。 ) で表される複合酸化物からなる群から選ばれた少なくとも 一種の酸化物粉末、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくとも 一種を含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を含 有する導電性ペース卜であり、
n型熱電変換材料を導電性基板に接続するために用いる導電性ペーストが、 ( i ) 一般式:
Figure imgf000049_0003
(式中、 L nはラン夕ノィドから選ばれ た一種又は二種以上の元素であり、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群か ら選ばれた一種又は二種以上の元素であり、 R2は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb及び Taからなる群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤ 1. 2 ; 0≤n≤0. 5 ; 0. 5≤p≤ 1. 2 ; 0≤q≤0. 5 ;
2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 及び一般式: (LnsR3 t) 2N i UR4 V0W (式中、 L nはランタノイドから選ばれた一種又は二種以上 の元素であり、 3は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は 二種以上の元素であり、 R4は、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Mo、 W、 Nb 及 び Taからなる群から選ばれた一種又は二種以上の元素であり、 0. 5 s≤ l . 2 ; 0≤ t≤ 0. 5 ; 0. 5≤u≤ 1. 2 ; 0≤ V≤ 0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなる群から選ばれた少なくとも一種の酸 化物粉末、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一種を含 む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を含有する導 電性ペーストである
ことを特徴とする熱電変換素子。
14. p型熱電変換材料の一端と n型熱電変換材料の一端を、 それぞれ導電性 ペーストを用いて導電性基板に接続してなる熱電変換素子であって、
P型熱電変換材料が、 一般式: C aaA Co4Oe (式中、 A1は、 Na、 K:、 Li> Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Yおよびランタノ イドからなる群から選ばれた一種又は二種以上の元素であり、 2. 2≤a≤3. 6 ; 0≤b≤0. 8 ; 8≤e≤ 10である。 ) で表される複合酸化物、 又は一般式 : B i f P b
Figure imgf000050_0001
o2Ok (式中、 M1は、 S r, C a及ぴ B aからなる群から 選ばれた一種又は二種以上の元素であり、 1. 8≤f ≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤ 2. 2 ; 8≤k≤ 10である。 ) で表される複合酸化物からなる ものであり、
n型熱電変換材料が、 一般式: L amR N i〇r (式中、 R1は、 Na、 K、 Sr、 Ca及び Biからなる群から選ばれた一種又は二種以上の元素であり、 0.5≤m≤ 1. 2 ; 0≤n≤ 0. 5 ; 2. 7≤ r≤ 3. 3である。 ) で表される複合酸化物、 又は 一般式: (L asR3 t) 2N i〇w (式中、 R3は、 Na、 K、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 0. 5≤s≤l. 2 ; 0≤ t≤0. 5 ; 3. 6≤w≤4. 4である。 ) で表される複合酸化物からなるものであり、 型熱電変換材料を導電性基板に接続するために用いる導電性ペーストが、 ( i ) 一般式: C a
Figure imgf000050_0002
0 0。 (式中、 A1は、 Na、 K、 Li、 Ti、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 Pb、 Sr、 Ba、 Al、 Bi、 Y およびラン夕ノィドからなる群から選ば れた一種又は二種以上の元素であり、 2. 2≤a≤3. 6 ; 0≤b≤0. 8 ; 8≤ e≤ 10である。 ) で表される複合酸化物、 及び一般式: B i f
Figure imgf000051_0001
o2 Ok (式中、 M1は、 S r; C a及び B aからなる群から選ばれた一種又は二種以 上の元素であり、 1. 8≤ f≤2. 2 ; 0≤g≤0. 4 ; 1. 8≤h≤ 2. 2 ; 8≤k≤10である。 ) で表される複合酸化物からなる群から選ばれた少なくと も一種の酸化物粉末、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくと も一種を含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を 含有する導電性ペーストであり、
n型熱電変換材料を導電性基板に接続するために用いる導電性ペース卜が、
( i ) 一般式: L amR N i Or (式中、 R1は、 Na、 K、 Sr、 Ca及び Biからなる 群から選ばれた一種又は二種以上の元素であり、 0. 5≤m≤l. 2 ; 0≤n≤0. 5 ; 2. 7≤ r≤3. 3である。 ) で表される複合酸化物、 及び一般式: (L as R3 t) 2N i Ow (式中、 R3は、 Na、 K:、 Sr、 Ca及び Biからなる群から選ばれた一 種又は二種以上の元素であり、 0. 5≤s≤l. 2 ; 0≤ t≤ 0. 5 ; 3. 6≤w ≤4. 4である。 ) で表される複合酸化物からなる群から選ばれた少なくとも一 種の酸化物粉末、 並びに (ii) 金、 銀、 白金、 及びこれらの金属の少なくとも一 種を含む合金からなる群から選ばれた少なくとも一種の導電性金属粉末、 を含有 する導電性ペーストである、
ことを特徴とする熱電変換素子。
15. 請求項 12記載された熱電変換素子を複数個用い、 熱電変換素子の p型 熱電変換材料の未接合の端部を他の熱電変換素子の n型熱電変換材料の未接合の 端部に基板上で接続する方法で、 複数の熱電変換素子を直列に接続してなる熱電 発電モジュール。
16. 請求項 15に記載の熱電発電モジュールの一端を高温部に配置し、 他端 を低温部に配置することを特徴とする熱電発電方法。
17. 請求項 13に記載された熱電変換素子を複数個用い、 熱電変換素子の p 型熱電変換材料の未接合の端部を他の熱電変換素子の n型熱電変換材料の未接合 の端部に基板上で接続する方法で、 複数の熱電変換素子を直列に接続してなる熱 電発電モジュール。
18. 請求項 17に記載の熱電発電モジュールの一端を高温部に配置し、 他端 を低温部に配置することを特徴とする熱電発電方法。
PCT/JP2004/014680 2003-10-08 2004-09-29 熱電変換材料接続用導電性ペースト WO2005036661A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/574,844 US7732704B2 (en) 2003-10-08 2004-09-29 Conductive paste for connecting thermoelectric conversion material
JP2005514574A JP4797148B2 (ja) 2003-10-08 2004-09-29 熱電変換材料接続用導電性ペースト
EP04773613A EP1672709B1 (en) 2003-10-08 2004-09-29 Conductive paste for connecting thermoelectric conversion material
DE602004027152T DE602004027152D1 (de) 2003-10-08 2004-09-29 Ischen umwandlungsmaterials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-348913 2003-10-08
JP2003348913 2003-10-08

Publications (1)

Publication Number Publication Date
WO2005036661A1 true WO2005036661A1 (ja) 2005-04-21

Family

ID=34430987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014680 WO2005036661A1 (ja) 2003-10-08 2004-09-29 熱電変換材料接続用導電性ペースト

Country Status (5)

Country Link
US (1) US7732704B2 (ja)
EP (1) EP1672709B1 (ja)
JP (1) JP4797148B2 (ja)
DE (1) DE602004027152D1 (ja)
WO (1) WO2005036661A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531050A (ja) * 2007-02-28 2010-09-16 コーニング インコーポレイテッド ガラス−セラミック熱電モジュール
JP2013063906A (ja) * 2005-07-07 2013-04-11 Yokohama National Univ 配向制御したCo酸化物多結晶体の製法
JP2013143243A (ja) * 2012-01-10 2013-07-22 Noritake Co Ltd 導電性接合材とこれを用いたセラミック電子材料の接合方法およびセラミック電子デバイス
JP2014146583A (ja) * 2013-01-30 2014-08-14 Noritake Co Ltd ペースト組成物と太陽電池
JP2014195080A (ja) * 2008-01-23 2014-10-09 Furukawa Co Ltd 熱電変換材料および熱電変換モジュール
JPWO2015174462A1 (ja) * 2014-05-16 2017-05-25 国立研究開発法人産業技術総合研究所 熱電変換素子及び熱電変換モジュール
JP2019067987A (ja) * 2017-10-04 2019-04-25 直江津電子工業株式会社 熱電変換素子及びその製造方法並びに熱電変換モジュール
WO2021153550A1 (ja) 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 熱電変換モジュール

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093864A1 (ja) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial Science And Technology 熱電変換素子及び熱電変換モジュール
JP4912991B2 (ja) * 2007-09-07 2012-04-11 住友化学株式会社 熱電変換素子の製造方法
US8058724B2 (en) * 2007-11-30 2011-11-15 Ati Technologies Ulc Holistic thermal management system for a semiconductor chip
US20100095995A1 (en) * 2008-10-17 2010-04-22 Ishikawa Prefectural Government Thermoelectric conversion elements, thermoelectric conversion modules and a production method of the thermoelectric conversion modules
US20110017254A1 (en) * 2009-07-27 2011-01-27 Basf Se Thermoelectric modules with improved contact connection
US20110174350A1 (en) * 2010-01-19 2011-07-21 Alexander Gurevich Thermoelectric generator
JP5781824B2 (ja) * 2010-08-12 2015-09-24 キヤノン株式会社 熱膨張抑制部材および対熱膨張性部材
JP5795187B2 (ja) 2010-08-12 2015-10-14 キヤノン株式会社 対熱膨張性樹脂および対熱膨張性金属
US9203010B2 (en) * 2012-02-08 2015-12-01 King Abdullah University Of Science And Technology Apparatuses and systems for embedded thermoelectric generators
KR20140050390A (ko) * 2012-10-19 2014-04-29 삼성전자주식회사 열전모듈, 이를 구비한 열전장치, 및 열전모듈의 제조방법
EP2975659B1 (en) * 2014-07-17 2019-10-16 TDK Electronics AG Thermoelectric generator comprising a thermoelectric element
JP6750404B2 (ja) * 2015-09-18 2020-09-02 三菱マテリアル株式会社 熱電変換モジュール及び熱電変換装置並びに熱電変換モジュールの製造方法
WO2017059256A1 (en) * 2015-10-02 2017-04-06 Alphabet Energy, Inc. Mechanical advantage in low temperature bond to a substrate in a thermoelectric package
US10991867B2 (en) 2016-05-24 2021-04-27 University Of Utah Research Foundation High-performance terbium-based thermoelectric materials
WO2024112275A1 (en) * 2022-11-26 2024-05-30 Gebze Teknik Universitesi Textured film and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168172A (ja) * 1997-08-11 1999-03-09 Ngk Insulators Ltd シリコン−ゲルマニウム系材料の接合方法および熱電変換モジュールの製造方法ならびに熱電変換モジュール
JPH11233833A (ja) * 1998-02-12 1999-08-27 Mitsui Mining & Smelting Co Ltd 熱電変換モジュール
JP2003197982A (ja) * 2001-12-26 2003-07-11 Komatsu Electronics Inc 金スズ接合ペルチェ素子熱電変換モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859250A (en) * 1985-10-04 1989-08-22 Buist Richard J Thermoelectric pillow and blanket
JPS63172478A (ja) * 1987-01-12 1988-07-16 Nissan Fuero Denshi:Kk 熱電発電素子の製造方法
US5352299A (en) * 1987-06-26 1994-10-04 Sharp Kabushiki Kaisha Thermoelectric material
US5422190A (en) * 1993-01-22 1995-06-06 Ferro Corporation Via fill paste and method of using the same containing specific amounts of silver, gold and refractory oxides
JP3443641B2 (ja) * 2000-02-10 2003-09-08 独立行政法人産業技術総合研究所 高いゼーベック係数と高い電気伝導度を有する複合酸化物
JP3472813B2 (ja) 2000-07-18 2003-12-02 独立行政法人産業技術総合研究所 高いゼーベック係数と高い電気伝導度を有する複合酸化物
JP4719861B2 (ja) 2001-01-31 2011-07-06 独立行政法人産業技術総合研究所 熱電素子および熱電発電モジュール
JP2002280619A (ja) 2001-03-19 2002-09-27 Hokushin Ind Inc 熱電変換材料及び熱電変換素子
JP3968418B2 (ja) * 2002-03-22 2007-08-29 独立行政法人産業技術総合研究所 n型熱電特性を有する複合酸化物
JP3896480B2 (ja) * 2002-04-16 2007-03-22 独立行政法人産業技術総合研究所 複合酸化物焼結体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168172A (ja) * 1997-08-11 1999-03-09 Ngk Insulators Ltd シリコン−ゲルマニウム系材料の接合方法および熱電変換モジュールの製造方法ならびに熱電変換モジュール
JPH11233833A (ja) * 1998-02-12 1999-08-27 Mitsui Mining & Smelting Co Ltd 熱電変換モジュール
JP2003197982A (ja) * 2001-12-26 2003-07-11 Komatsu Electronics Inc 金スズ接合ペルチェ素子熱電変換モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1672709A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063906A (ja) * 2005-07-07 2013-04-11 Yokohama National Univ 配向制御したCo酸化物多結晶体の製法
JP2010531050A (ja) * 2007-02-28 2010-09-16 コーニング インコーポレイテッド ガラス−セラミック熱電モジュール
JP2014195080A (ja) * 2008-01-23 2014-10-09 Furukawa Co Ltd 熱電変換材料および熱電変換モジュール
US10508324B2 (en) 2008-01-23 2019-12-17 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
JP2013143243A (ja) * 2012-01-10 2013-07-22 Noritake Co Ltd 導電性接合材とこれを用いたセラミック電子材料の接合方法およびセラミック電子デバイス
JP2014146583A (ja) * 2013-01-30 2014-08-14 Noritake Co Ltd ペースト組成物と太陽電池
JPWO2015174462A1 (ja) * 2014-05-16 2017-05-25 国立研究開発法人産業技術総合研究所 熱電変換素子及び熱電変換モジュール
JP2019067987A (ja) * 2017-10-04 2019-04-25 直江津電子工業株式会社 熱電変換素子及びその製造方法並びに熱電変換モジュール
WO2021153550A1 (ja) 2020-01-31 2021-08-05 国立研究開発法人産業技術総合研究所 熱電変換モジュール

Also Published As

Publication number Publication date
DE602004027152D1 (de) 2010-06-24
JPWO2005036661A1 (ja) 2006-12-28
EP1672709B1 (en) 2010-05-12
EP1672709A4 (en) 2008-01-16
EP1672709A1 (en) 2006-06-21
US20070125412A1 (en) 2007-06-07
US7732704B2 (en) 2010-06-08
JP4797148B2 (ja) 2011-10-19

Similar Documents

Publication Publication Date Title
WO2005036661A1 (ja) 熱電変換材料接続用導電性ペースト
JP4446064B2 (ja) 熱電変換素子及び熱電変換モジュール
JP4670017B2 (ja) 熱電変換素子及び熱電変換モジュール
WO2021153550A1 (ja) 熱電変換モジュール
JP5252474B2 (ja) n型熱電特性を有する酸化物複合体
JP3472813B2 (ja) 高いゼーベック係数と高い電気伝導度を有する複合酸化物
JP3727945B2 (ja) 熱電変換材料及びその製法
JP2013197265A (ja) 熱電変換モジュール
JPWO2007083576A1 (ja) 熱電変換材料とこれを用いた熱電変換素子ならびにこの素子を備える電子機器および冷却装置
JP3896479B2 (ja) 複合酸化物焼結体の製造方法
JP3089301B1 (ja) 熱電変換材料及び複合酸化物焼結体の製造方法
JP2000012915A (ja) 熱電変換材料
JP4257419B2 (ja) n型熱電変換特性を有する複合酸化物
WO2008038519A1 (fr) Élément de conversion thermoélectrique, module de conversion thermoélectrique et procédé de production d&#39;élément de conversion thermoélectrique
JP2003008086A (ja) 複合酸化物及びそれを用いた熱電変換素子
JP4239010B2 (ja) p型熱電変換特性を有する複合酸化物
JP2008041871A (ja) 熱電材料、熱電素子及び熱電材料の作製方法
JP2007149996A (ja) デラフォッサイト構造を持つ層状酸化物熱電材料
JP2010228927A (ja) コバルト−マンガン系複合酸化物
JP4595071B2 (ja) 熱電変換素子、熱電変換モジュール及び熱電変換方法
JP4193940B2 (ja) 優れた熱電変換性能を有する複合酸化物
JP4124420B2 (ja) パラジウム酸化物からなる熱電変換材料とその製造方法
JP2006027970A (ja) 複合酸化物焼結体の製造方法
JP2006032624A (ja) ロジウム酸化物からなる熱電変換材料
JP2002111077A (ja) 酸化物熱電変換材料およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514574

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004773613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007125412

Country of ref document: US

Ref document number: 10574844

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004773613

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10574844

Country of ref document: US