WO2005035883A1 - Travel vibration suppressing device for working vehicle - Google Patents

Travel vibration suppressing device for working vehicle Download PDF

Info

Publication number
WO2005035883A1
WO2005035883A1 PCT/JP2004/014827 JP2004014827W WO2005035883A1 WO 2005035883 A1 WO2005035883 A1 WO 2005035883A1 JP 2004014827 W JP2004014827 W JP 2004014827W WO 2005035883 A1 WO2005035883 A1 WO 2005035883A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
ride
accumulator
opening area
Prior art date
Application number
PCT/JP2004/014827
Other languages
French (fr)
Japanese (ja)
Inventor
Norihide Mizoguchi
Hisashi Asada
Daisuke Kozuka
Kazunori Ikei
Shuuji Hori
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to JP2005514592A priority Critical patent/JP4456078B2/en
Priority to US10/575,000 priority patent/US7621124B2/en
Priority to DE112004001897.8T priority patent/DE112004001897B4/en
Priority to CN2004800296895A priority patent/CN1867737B/en
Publication of WO2005035883A1 publication Critical patent/WO2005035883A1/en
Priority to SE0600799A priority patent/SE532253C2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/415Wheel loaders

Definitions

  • the present invention relates to a traveling vibration suppressing device for a working vehicle, and in particular, in a working vehicle equipped with a working device, suppresses a pressure pulsation in the working device during traveling with an accumulator to reduce vibration of a vehicle body.
  • the present invention relates to a traveling vibration suppressing device.
  • a wheel loader which is an example of a work vehicle, includes a boom attached to a vehicle body so as to be able to move up and down, a work member such as a packet rotatably attached to the boom, a boom and a work member.
  • a working device such as a boom cylinder and a bucket cylinder, for actuating the brakes is attached to the vehicle body.
  • a dynamic damper for a work vehicle disclosed in Patent Document 1 is disclosed in Patent Document 1 in order to suppress pressure pulsation and to reduce vehicle body vibration in order to improve riding comfort and prevent load spillage in a work device during traveling.
  • the dynamic damper of the work vehicle is configured as follows.
  • Elevating cylinder (hereinafter referred to as boom cylinder 112) force The hydraulic oil from hydraulic pump 117 is received by control valve 119 to expand and contract, thereby raising and lowering the boom.
  • the control valve 119 is connected to a head-side oil chamber 126 of the boom cylinder 112 via a pipe 127, and is connected to a bottom-side oil chamber 128 via a pipe 129.
  • the pipe 127 and the pipe 129 are connected to a branch pipe 130 and a branch pipe 131, respectively, which branch off in the middle of the pipe.
  • the branch pipe 130 is connected to the oil tank 116 via the switching valve 133.
  • the branch pipe 131 is connected to an accumulator 162 via a switching valve 133 and a variable throttle device 161.
  • the switching valve 133 is constituted by an electromagnetic valve, and is urged by the spring to switch to the shut-off position when not energized, and to switch to the connection position when energized.
  • the variable throttle device 161 is a throttle device capable of adjusting the throttle opening in a plurality of stages, and includes a plurality of throttles 164, 165, a switching valve 166 for selecting an aperture, and a force.
  • Switching valve 166 Is constituted by an electromagnetic valve, and when not energized, is urged by a spring to switch to a position for selecting a throttle 164 having a large throttle opening. When energized, switch to the position to select the aperture 165 with a small aperture.
  • the switching valve 133 and the switching valve 166 are controlled by the controller 153.
  • a pressure sensor 149 connected to the pipe 129 detects the pressure of the bottom oil chamber 128.
  • the controller 153 excites the coil of the switching valve 133 when the pressure in the bottom oil chamber 128 detected by the pressure sensor 149 is in the range between the minimum allowable pressure of the accumulator and the maximum allowable pressure. To switch to the connection position.
  • the controller 153 selects the position of the switching valve 166 according to the pressure detected by the pressure sensor 149.
  • the set pressure is set as follows. That is, an appropriate set mass between the minimum mass of the working device to be mounted and the maximum mass of the working device including the load is assumed. For example, set the mass of 1Z2 which is the sum of the minimum mass and the maximum mass as the set mass. Assuming that the mass of the working device is the assumed constant mass, when the control valve 119 is at the neutral position, the pressure in the bottom oil chamber 128 of the boom cylinder 112 at this time is defined as the set pressure.
  • control valve 119 is set to the neutral position, and the switching switch 155 is turned on to operate the dynamic damper. This allows pitching of the vehicle body when the wheel loader travels, RU
  • the wheel loader is run with the dynamic damper operated.
  • the work equipment vibrates in response to road surface conditions, acceleration and deceleration of the vehicle, and the like, and the boom also attempts to swing vertically. Therefore, a pressure fluctuation occurs in the bottom oil chamber 128 of the boom cylinder 112 that holds the boom.
  • the pressure in the bottom oil chamber 128 is detected by the pressure sensor 149.
  • the controller 153 switches the switching valve 133 to the connection position.
  • the switching of the switching valve 166 causes the bottom oil chamber 128 and the accumulator to accumulate.
  • the connection with the radiator 162 is made via a throttle 164 having a large throttle opening.
  • the switching valve 166 is switched to have a small throttle opening with the bottom oil chamber 128 and the accumulator 162. The connection is made via the aperture 165 that has been set.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-200804
  • the switching switch 155 When the switching switch 155 is turned on during traveling of the wheel loader, the bottom oil chamber 128 of the boom cylinder 112 is connected to the accumulator 162 via the switching valve 133 and the switching valve 166. At this time, if the sum of the mass of the working device and the mass of the load is largely apart from the mass force assumed when defining the set pressure of the accumulator 162, the dynamic damper can be activated effectively. What,
  • the instantaneous flow rate flowing out of the boom cylinder 112 sharply increases.
  • it is required to provide a pressure device having a low pressure loss in the traveling vibration suppressing device.
  • the traveling vibration suppression device is required to have good response characteristics in order to reduce the impact on the working device when vibration occurs.
  • the switching valve has an opening area that can sufficiently cope with a large pressure fluctuation width in the bottom oil chamber caused by the loaded mass of the working member, or the setting of the actuator.
  • a traveling vibration suppression device for a traveling vibration suppression device.
  • the following configuration is demanded for a traveling vibration suppression device in a wheel loader or the like.
  • the accumulator absorbs pressurized oil from the bottom side oil chamber quickly with good responsiveness, and suppresses the rise of the boom.
  • a configuration capable of suppressing the descent of the boom by slowly supplying the pressure oil to the side oil chamber and suppressing the vibration of the boom in a short time.
  • the present invention has been made in view of the above-mentioned problems, and includes a directional control valve for controlling an actuator of a working device mounted on a work vehicle, and a ride control valve for connecting an accumulator and an actuator. It is an object of the present invention to provide a traveling vibration suppressing device which has a simple configuration, suppresses pressure pulsation in a responsive actuator having good responsiveness, and can reduce vibration of a vehicle body.
  • a hydraulic pump and at least one or more actuators operated by hydraulic oil discharged from the hydraulic pump are provided. Connected to one pressure chamber of at least one of the actuators
  • the ride control valve includes: The most main feature is that the directional control valve is laminated and arranged by internal piping.
  • the communication opening area of the ride control valve is controlled using a pressure sensor for detecting a load pressure of the actuator and a traveling state detection sensor for detecting a traveling state of the work vehicle.
  • a pressure sensor to detect pressure, setting conditions for communication between the accumulator and the actuator, controlling the upper limit opening area that can be opened as the communication opening area of the ride control valve, controlling the variable throttle.
  • the main features of the present invention are that the pressure of the actuator and the accumulator are made equal by using the same, and that the speed-increasing valve is laminated on the ride control valve or the directional control valve.
  • the directional control valve and the ride control valve for the actuator are stacked and arranged by internal piping.
  • the oil passage connecting both valves can be communicated with each other at the mating surface of the direction control valve and the ride control valve, and the vibration suppression device for traveling can be made compact.
  • the piping connecting the directional control valve and the actuator and the piping connecting the ride control valve and the accumulator are used.
  • the number of pipes provided for external pipes can be reduced, and the length of pipes used for external pipes can be shortened.
  • the space required for external pipes can be reduced by reducing the length of the pipes.
  • the work of installing the external piping becomes easy.
  • the pressure loss in the pipe can be reduced by the internal pipe, and the flow force can be secured to a large diameter for the instantaneous flow rate, so that the responsiveness of the ride control valve is improved.
  • an excessive impact pressure acting on the accumulator is reduced, and the durability of the accumulator is improved.
  • the ride control valve can be configured so that one spool can supply the pressurized oil to the accumulator and shut off the communication between the accumulator and the actuator. Since the traveling vibration suppressing device can be configured with a simple configuration, the number of components for constituting the traveling vibration suppressing device can be reduced, and the traveling vibration suppressing device can be configured at low cost.
  • the communication opening area of the ride control valve can be controlled based on the pressure sensor and the detection signal of Z or the running state detection sensor force. For example, when the boom mounted on the work vehicle is raised by the vibration generated during traveling of the work vehicle, control is performed to widen the communication opening area, and the pressurized oil, which has become high pressure from the bottom chamber of the actuator, is quickly released by the accumulator. Can be absorbed. Thereby, a rapid rise of the boom can be suppressed.
  • the accumulator and the actuator when the pressure in the accumulator is higher than the load pressure of the actuator, the accumulator and the actuator are connected in the same state. Instead, the accumulator and the actuator can be connected after the pressure in the accumulator is reduced to the load pressure of the actuator.
  • the value of the upper limit opening area is also controlled. can do.
  • the upper limit of the upper limit Control the value of the opening area You can do it.
  • the upper limit opening area that can be opened as the communication opening area can be reduced. This prevents an excessive impact pressure from acting on the accumulator and improves the durability of the accumulator.
  • the upper limit opening area that can be opened as the communication opening area can be increased. Therefore, the responsiveness of the accumulator to the pressure pulsation of the actuator can be improved.
  • the pressure between the actuator and the accumulator can be equalized by the variable throttle provided in the ride control valve.
  • a speed-increasing valve can be arranged adjacent to the directional control valve or the ride control valve.
  • the supply flow rate and discharge flow rate to the actuator can also be made to flow from the speed-up valves arranged in layers. Since the flow rate of the pressure oil to be supplied to and discharged from the actuator can be partially flowed by the speed increasing valve, it is possible to mount the traveling vibration suppressing device of the present invention even on a medium-sized or large-sized work vehicle. As a result, an excellent vibration suppressing effect can be achieved.
  • FIG. 1 is a schematic side view of a wheel loader using a traveling vibration suppression device according to the present invention.
  • FIG. 2 is a configuration diagram of a traveling vibration suppression device.
  • FIG. 3 is a pressure circuit of the traveling vibration suppressing device. (Example 1)
  • FIG. 4 is a circuit diagram of a ride control valve and a control unit. (Example 1)
  • FIG. 5 is a view for explaining a stroke and an opening area of the ride control valve. (Example 1)
  • FIG. 6 is a time chart of the ride control valve. (Example 1)
  • FIG. 7 is a circuit diagram of a first ride control valve and a control unit. (Example 2)
  • FIG. 8 is a diagram illustrating a stroke and an opening area of a first ride control valve. (Example 2)
  • FIG. 9 is a time chart of the first ride control valve. (Example 2)
  • FIG. 10 is a circuit diagram of a second ride control valve and a control unit. (Example 3)
  • FIG. 11 is a diagram illustrating a stroke and an opening area of a second ride control valve. (Example 3)
  • FIG. 12 is a time chart of the second ride control valve. (Example 3)
  • FIG. 13 is a circuit diagram of a third ride control valve and a control unit. (Example 4)
  • FIG. 14 is a diagram showing a hydraulic circuit of a working device. (Conventional example)
  • a traveling vibration suppression device will be described below with reference to the drawings.
  • a wheel loader will be described as an example of a work vehicle equipped with the traveling vibration suppression device, but a work vehicle on which the traveling vibration suppression device according to the present invention can be mounted is not limited to a wheel loader. Absent.
  • the traveling vibration suppressing device according to the present invention can be mounted on the work vehicle as a device for suppressing pressure pulsation. Therefore, the traveling vibration suppressing device is limited to the configuration described below. Instead, various changes are possible.
  • the wheel loader 1 includes a vehicle body 2 and a working device 3 attached to a front portion of the vehicle body 2.
  • the vehicle body 2 includes a vehicle body 7 including a front frame 5, a rear frame 6, and the like, and a cabin 8 and the like.
  • the working device 3 is interposed between a pair of left and right booms 10 pivotally supported by a pivot shaft 9 of the front frame 5 so as to be able to move up and down, and between the front frame 5 and each of the booms 10.
  • the traveling vibration suppressing device 20 is provided at a portion surrounded by a dotted line on the front frame 5 side.
  • FIG. 2 As shown in FIG. 2 as a configuration diagram of the traveling vibration suppressing device 20, a directional control valve body 30 ′ for packet (hereinafter, referred to as a packet valve body 30 ′) and a directional control valve body 29 ′ for boom (hereinafter, referred to as “packet valve body 30”).
  • the inner pipes are stacked and arranged to form one block body 25.
  • the traveling vibration suppressing device 20 will be described below using the traveling vibration suppressing device 20 in which the above-described four valve bodies are configured as one block body 25.
  • the traveling vibration suppressing device 20 in which a packet direction control valve 30 (hereinafter, referred to as a packet valve 30) and a boom speed-increasing valve 33 (hereinafter, referred to as a speed-increasing valve 33) are stacked will be described below.
  • the stacked arrangement of the packet valve 30 and the speed increasing valve 33 is not always necessary as the traveling vibration suppressing device 20.
  • At least the boom directional control valve 29 (hereinafter referred to as the boom valve 29) and the ride control valve 31 (hereinafter referred to as the ride valve 31) are stacked and arranged, and the configuration is necessary for the traveling vibration suppressing device 20. It has a simple configuration.
  • the hydraulic pump 21 supplies oil sucked from the tank 23 to the block body 25 as discharge pressure oil.
  • the packet valve 30 (see FIG. 3) in the packet valve body 30 ′ is switched by a pilot pressure (not shown), and supplies the pressure oil discharged from the hydraulic pump 21 to the bucket cylinder 15 to control the operation of the bucket cylinder 15. I do.
  • the boom in the boom valve body 29 ' The boom cylinder 29 (see FIG. 3) is switched by a pilot pressure (not shown), and controls the operation of the boom cylinder 11 by supplying the discharge pressure oil from the hydraulic pump 21 to the boom cylinder 11.
  • the ride valve 31 (see FIG. 3) in the ride valve body 31 ′ is switched by a pilot pressure (not shown) to connect and disconnect the boom cylinder 11 and the accumulator 27. This allows the accumulator 27 to suppress the pressure pulsation of the boom cylinder 11 generated by the vibration of the vehicle body 7 during running.
  • the speed increasing valve 33 (see FIG. 3) in the speed increasing valve body 33 ′ is switched by a pilot pressure (not shown) to increase the diameter of the flow path connecting the boom cylinder 11 and the accumulator 27.
  • the diameter of the flow path connecting the boom cylinder 11 and the tank 23 can be increased.
  • the pressure circuit of the traveling vibration suppression device 20 will be described with reference to FIG.
  • the traveling vibration suppression device 20 has a configuration in which a boom valve 29, a packet valve 30, a ride valve 31, and a speed-increasing valve 33 are laminated on one another.
  • the tank 23 is shown in the traveling vibration suppression device 20, but this is to make the pressure circuit easier to see by omitting the connection pipe to the tank 23. Actually, it is connected to a tank 23 provided outside via a pipe (not shown).
  • the packet valve body 30 ′ and the boom valve body 29 ′, the boom valve body 29 ′ and the ride valve body 31, and the ride valve body 31 and the speed-up valve body 33 ′ are arranged adjacent to each other. Te! The pipes in each valve body are connected to each other at the mating surface W1-W3 between the adjacent bodies.
  • the block body 25 is formed as a closed center, and is formed as a parallel valve in which the boom valve 29 and the bucket valve 30 are connected in parallel to the hydraulic pump 21 by a pump pipe 35.
  • the traveling vibration suppressing device 20 in which the oil passage is formed by the internal piping is configured.
  • the packet valve 30 is formed in the packet valve body 30 '.
  • the bottom pipe 39a connects the bottom chamber 15a of the bucket cylinder 15 to the port 30a of the packet valve 30, and the head pipe 39 connects the head chamber 15b of the bucket cylinder 15 to the boat 30b.
  • Port 30c is connected to the discharge port of hydraulic pump 21 via piping 35, and port 30d is connected to tank 23 Connected.
  • the packet valve 30 is provided at three positions: a tilt position (H) for extending the piston of the bucket cylinder 15, a dump position (L) for reducing the piston, and a neutral position (N) for maintaining the piston in the expanded and contracted state. Can be switched.
  • the pilot valve When the pilot valve is operated to switch the operation position of the packet valve 30 to the tilt position (H), the pressure oil discharged from the hydraulic pump 21 is supplied to the bucket cylinder 15 via the port 30c, the port 30a and the bottom pipe 39a.
  • the pressure oil supplied to the bottom chamber 15a and discharged from the head chamber 15b is discharged to the tank 23 via the head pipe 39b, the port 30b, and the port 30d. Thereby, the piston of the bucket cylinder 15 can be extended.
  • the pressure oil discharged from the hydraulic pump 21 is supplied to the head chamber 15b via the port 30c, the port 30b and the head piping 39b, The pressure oil in the bottom chamber 15a is discharged to the tank 23 via the bottom pipe 39a, the port 30a and the port 30d. Thereby, the piston can be reduced.
  • the packet valve 30 is at the neutral position (N)
  • the connection between the packet valve 30 and the bucket cylinder 15 is cut off, and the piston can be maintained in the expanded and contracted state.
  • a boom valve 29 is formed in the boom valve body 29 '.
  • the bottom chamber 11a of the boom cylinder 11 and the port 29a of the boom valve 29 are connected via the bottom pipe 37a, and the head chamber lib and the port 29b are connected via the head pipe 37b.
  • the port 29c is connected to the discharge port of the hydraulic pump 21 via a pipe 35, and the port 30d is connected to the tank 23.
  • pilot chambers 49a and 49b that receive pilot pressure via a pressure proportional pressure reducing valve (not shown) operated by an operation lever or the like are formed.
  • the pilot chambers 49a and 49b on one side receive the pilot pressure via a pressure proportional pressure reducing valve (not shown), and the pressure oil in the pilot chambers 49b and 49a on the other side receives a pressure proportional reducing valve (not shown). And then returned to the tank 23.
  • the boom valve 29 can be switched to four positions: a floating position (F), a lowered position (L), a neutral position (N), and a raised position (H). Switching to the four positions can be performed by a panel acting on both ends of the boom valve 29 and a pilot pressure acting on the pilot chambers 49a and 49b.
  • the pressure oil discharged from the hydraulic pump 21 is supplied to the bottom chamber 11a of the boom cylinder 11 via the port 29c, the port 29a, and the bottom pipe 37a, and the pressure oil in the head chamber l ib is supplied. Is discharged to the tank 23 through the head pipe 37b and the ports 29b and 29d. Thereby, the piston of the boom cylinder 11 is extended, and the boom 10 is raised.
  • the pressure oil discharged from the hydraulic pump 21 is supplied to the head chamber l ib via the port 29c, the port 29b and the head pipe 37b, and the pressure oil in the bottom chamber 11a is supplied to the bottom pipe 37a and the port It is discharged to tank 23 via 29a and 29d.
  • the piston of the boom cylinder 11 contracts and lowers the boom 10.
  • the port 29a, the port 29b, and the port 29d are all connected, and the bottom chamber 1la and the head chamber lib communicate with each other while being connected to the tank 23.
  • This allows the boom cylinder 11 to freely expand and contract in response to external force, and causes the boom 10 to float.
  • the ride valve body 31 ′ is formed with a ride valve 31, a proportional control valve 56 b as a ride valve control unit 56, and a charge reducing valve 66.
  • the ride valve 31 has a panel energized at one end, and a slot chamber 56a formed at the other end for receiving pilot pressure from the proportional control valve 56b.
  • the proportional control valve 56b and the pilot chamber 56a constitute a ride valve control unit 56.
  • the port 31 a of the ride valve 31 is connected to the accumulator 27 via the accumulator pipe 40.
  • the port 3 lb is connected from the bottom pipe 37a to the bottom chamber 11a via the pipe 45a and the pipe 73.
  • the port 31c is connected to the head chamber l ib from the head piping 37b via the piping 45b.
  • the port 31d is connected to the discharge port of the hydraulic pump 21 via a pipe 35 and a pressure reducing valve 66 for charging, and the port 31e is connected to the tank 23.
  • the port 31d can be connected to the accumulator 27 via the port 31a and the accumulator pipe 40 when the ride valve 31 is not operated.
  • the ride valve 31 connects the operating position (A) of the traveling vibration suppression device 20 that connects the accumulator 27 to the bottom chamber 11a of the boom cylinder 11, and connects the hydraulic pump 21 and the accumulator 27. It can be switched between two positions, that is, the inoperative position (B) of the traveling vibration suppression device 20.
  • the switching of the ride valve 31 is performed by controlling the proportional control valve 56b by a control signal from a controller 57 (not shown) (see FIG. 4).
  • the proportional control valve 56b is connected to the control pump 59.
  • the proportional control valve 56b operates upon receiving a signal from the controller 57, the pressure oil discharged from the control pump 59 is supplied as pilot pressure to the pilot chamber 56a to switch the ride valve 31.
  • the charge pressure reducing valve 66 sets the pressure of the accumulator 27 to the set pressure set by the charge pressure reducing valve 66 when the ride valve 31 is not operated.
  • the ride valve 31 When the ride valve 31 is in the non-operating position (B) and the charging pressure reducing valve 66 is operating, the pressure oil discharged from the hydraulic pump 21 can be reduced and accumulated in the accumulator 27.
  • the ride valve 31 When the ride valve 31 is in the operating position (A), the accumulator 27 is connected to the bottom chamber 11a, and the head chamber lib is connected to the tank 23 via the port 31c and the port 3le.
  • the accumulator 27 can absorb and attenuate the pressure pulsation generated in the bottom chamber 11a of the boom cylinder 11 when the wheel loader 1 travels. Further, oil can be supplied and discharged between the head chamber l ib and the tank 23.
  • the speed-up valve body 33 ' is formed with a speed-up valve 33.
  • the port 33a of the speed increasing valve 33 is connected to a bottom pipe 37a through a pipe 73 and an external oil supply pipe 61 by a boom speed increasing pipe 41.
  • the port 33b is connected to a discharge port of the hydraulic pump 21 via a pipe 35, and the port 33c is connected to the tank 23.
  • the speed increasing valve 33 switches between three positions: a lowering position (Ld) for increasing the contraction of the boom cylinder 11, a neutral position (N), and an raising position (Hu) for increasing the extension of the boom cylinder 11. Can be done. Switching to the three positions can be performed by receiving pilot pressure in pilot chambers 75a and 75b formed at both ends of the speed increasing valve 33.
  • Panels are provided in each of the pilot chambers 75a and 75b, and the speed increasing valve 33 is held at a neutral position (N).
  • the same pilot pressure acts on the pilot chamber 75a and the pilot chamber 49a of the boom valve 29 via the pipe piping 77a.
  • the same pilot pressure acts on the pilot chamber 75b and the pilot chamber 49b of the boom valve 29 via the pilot pipe 77b.
  • pilot room 75a and the pilot room 49a or the pilot room 75b and the pilot room 49b When pilot pressure acts on one pilot chamber, the other pilot chamber is connected to tank 23.
  • the speed increasing valve 33 can be switched in synchronization with the boom valve 29.
  • the speed-up valve 33 is switched to the lowered position (Ld) because the boom valve 29 is switched to the lowered position (L) or the floating position (F) by receiving the pilot pressure and receives the same pilot pressure. This is when the speed increasing valve 33 is switched to the lowered position (Ld).
  • the discharge pressure oil from the hydraulic pump 21 is supplied to the head chamber lib through the boom valve 29.
  • the pressurized oil in the bottom chamber 11a is discharged from the boom valve 29 to the tank 23 through the bottom pipes 37'a and 37a, and the speed is increased through the pipe 41 through the pipes 61 and 73 branched from the bottom pipe 37a. It is discharged from the valve 33 to the tank 23.
  • the packet valve 30, the boom valve 29, the ride valve 31, and the speed increasing valve 33 are controlled by the pilot pressure.
  • the control of each of the valves is controlled by the pilot pressure. It is also possible to control with an electromagnetic solenoid which is not limited to this. Further, the pilot chamber or the electromagnetic solenoid of each valve can be removably attached by disposing outside the respective valve block. This makes it possible to reduce the size of each valve block and improve the ease of maintenance of the pilot chamber or the electromagnetic solenoid.
  • the piping 35 is increased in speed with the mating surface Wl of the packet valve body 30 'and the boom valve body 29', the mating surface W2 of the boom valve body 29 and the ride valve body 31 ', and the ride valve body 31'. Pipes are respectively passed through the mating surfaces W3 with the valve bodies 33 '. Also, the pipe 45b is piped through the mating surface W2 of the boom valve body 29 and the ride valve body 31,! The piping 73 and the pilot piping 77b have a mating surface W2 between the boom valve body 29 and the ride valve body 31, and a mating surface W3 between the ride valve body 31 'and the booster valve body 33', respectively. Each pipe is penetrated. Oil supply piping 61 is provided by external piping
  • the pilot pipes 77a and 77b can be configured as internal pipes or external pipes.
  • the traveling vibration suppressing device 20 As a configuration of the traveling vibration suppressing device 20, the configuration in which the speed increasing valves 33 are stacked is described, but the speed increasing valve 33 is not necessarily provided. Can be added for quick operation.
  • the speed-up valve 33 can supply pressurized oil with reduced resistance even if the load capacity of the bucket increases and the diameter of the boom cylinder 11 that operates the bucket increases.
  • FIG. 4 omits the configurations of the boom valve 29 and the speed increasing valve 33 in order to explain the configuration of the ride valve 31.
  • the proportional control valve 56b connects the pilot chamber 56a of the ride valve 31 to the tank 23 and the pilot chamber 56a is connected to the pilot chamber 56a.
  • the applied pilot pressure is low.
  • the ride valve 31 is located at the inoperative position (B) of the traveling vibration suppressing device 20 by the urging force of the panel 55a.
  • the ride valve 31 supplies the discharge pressure oil of the pressure pump 21 reduced to the charge pressure set by the charge pressure reducing valve 66 to the accumulator 27 and accumulates the pressure as the pressure of the accumulator 27.
  • the control current output from the controller 57 to the proportional control valve 56b is sequentially increased from time T1.
  • the proportional control valve 56b receives the control signal from the controller 57, connects the pilot chamber 56a of the ride valve 31 to the control pump 59, and gradually increases the pilot pressure supplied to the pilot chamber 56a.
  • the opening area Sc for connecting the head chamber l ib to the tank 23 through communication between the port 31c and the port 31e may be in a fully open state where the area becomes A4 from the time T2.
  • the switching speed of the ride valve 31 can be controlled by the magnitude of the control current output from the controller 57 to the proportional control valve 56b. Therefore, the switching speed of the ride valve 31 can be freely set by controlling the magnitude of the control current.
  • the proportional control valve 56b is controlled while increasing the control current, but at time T3 before the time T4 is reached, the opening communicating the port 31a with the port 31b is opened.
  • the area Sb has a constant value of A3
  • the opening area Sc connecting the ports 31c and 31e has a constant value of A4. No further increase in the opening area is performed.
  • the control current output from the controller 57 has a constant value.
  • FIG. 5 shows the opening area Sa that connects the port 31d and the port 31a, and the opening area that connects the port 31a and the port 31b, where the horizontal axis represents the stroke amount of the spool of the ride valve 31 and the vertical axis represents the opening area.
  • FIG. 9 is a diagram showing the relationship between the opening amount Sb of the ride valve 31 and the opening amount Sc connecting the port 31c and the port 3le with the opening area Sb.
  • the opening area Sc connecting the port 31c and the port 31e to connect the head chamber l ib to the tank 23 is equal to the area Is zero (AO), which indicates that the force changes to the state of A4. That is, as described above with reference to FIG. 6, the opening area Sc in which the port 31c and the port 31e communicate with each other to connect the head chamber lib to the tank 23 has a force A at time T2, an area A4, and a fully open state. ing.
  • the opening area Sc can be sequentially increased as the stroke amount of the spool of the ride valve 31 increases from the stroke L1.
  • a predetermined stroke can be obtained for the spool of the ride valve 31, and the upper limit areas A3 and A4 that can be opened as the opening areas Sb and Sc can be reliably obtained. be able to.
  • vibration suppression of the wheel loader 1 using the traveling vibration suppression device 20 will be described.
  • a switch (not shown) that controls the proportional control valve 56b is turned off.
  • the controller 57 does not output the control current to the proportional control valve 56b, and the ride valve 31 remains at the non-operation position (B).
  • the bottom chamber 11a of the boom cylinder 11 is connected to the port 29a of the boom valve 29 and the port 33a of the speed increasing valve 33, and the head chamber l ib is connected to the port 29b of the boom valve 29.
  • the boom valve 29 is operated by the pilot pressure and the speed increasing valve 33 is operated at the same time, and the discharge pressure oil of the hydraulic pump 21 is supplied to and discharged from the boom cylinder 11 via the boom valve 29 and the speed increasing valve 33.
  • the excavation work can be performed by causing the boom cylinder 11 to expand and contract.
  • the spool of the ride valve 31 can obtain a predetermined amount of stroke by the pilot pressure output from the controlled proportional control valve 56b.
  • the opening area Sb that connects the accumulator 51 and the bottom chamber 1 la of the boom cylinder 11 in the ride valve 31 is changed from the zero (AO) state to the upper limit opening area A3.
  • the opening area Sc connecting the head chamber l ib of the boom cylinder 11 and the tank 23 increases from the state of zero (AO) to the state of the upper limit opening area A4.
  • the upper limit of the opening area is A4 directly from the state of zero (AO).
  • the wheel loader 1 is run with the ride valve 31 switched to the operating position (A). At this time, the boom valve 29 and the speed increasing valve 33 are switched to the neutral position (N). Thereby, both the connection between the boom valve 29 and the ride valve 31 and the bottom chamber 11a of the boom cylinder 11, and the connection between the boom valve 29 and the head chamber l ib can be shut off.
  • the wheel loader 1 is run with the ride valve 31 in the operating position (A).
  • the vehicle body 7 vibrates due to the ups and downs of the road surface and the acceleration and deceleration of the wheel loader 1.
  • the boom 10 supporting the working device 3 tries to rotate in the vertical direction, and the pressure in the oil in the bottom chamber 1 la of the boom cylinder 11 supporting the boom 10 is generated.
  • the bottom chamber 11a of the boom cylinder 11 communicates with the accumulator 27 from the ride valve 31 via a pipe 73 branched from the bottom pipe 37a. For this reason, a large amount of fluid can flow instantaneously with little pressure loss. Further, at this time, the head chamber lib communicates with the tank 23 from the port 31c and the port 31e of the ride valve 31 via the head pipe 37b, so that the pressure oil in the head chamber lib can be supplied and discharged. By quickly supplying and discharging pressure oil between the bottom chamber 11a of the boom cylinder 11 and the accumulator 27, pressure pulsation of the boom cylinder 11 can be suppressed promptly.
  • the running vibration suppressing device of the present invention even when the device is mounted on a medium-sized or large-sized wheel loader 1 that generates large vibration, the pressure of the boom cylinder 11 is maintained between the bottom chamber 11a of the boom cylinder 11 and the accumulator 27. Pulsation can be suppressed quickly.
  • the opening area Sb of the ride valve 31 connecting the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 is the upper limit opening area A3, and the head chamber l ib of the boom cylinder 11
  • the ride valve 31 can be used with an opening area Sb smaller than the opening area A3 without opening the opening area Sb to the upper limit opening area A3.
  • FIG. 7 is a circuit diagram of the ride valve 31A and the control unit
  • FIG. 8 is a diagram illustrating the relationship between the stroke amount and the opening area of the ride valve 31A
  • FIG. 9 is a time chart.
  • Figure 7 shows the ride valve 3 1
  • the configurations of the boom valve 29 and the speed increasing valve 33 are omitted.
  • the traveling vibration suppressing device 20A of the second embodiment is different from the traveling vibration suppressing device 20 of the first embodiment mainly in the configuration of the ride valve 31A and is partially the same as that of the first embodiment.
  • the traveling vibration suppressing device 20A has a configuration in which the ride valve 31A is switched to three positions. Further, a boom pressure sensor 81 for detecting the pressure of the bottom chamber 11a of the boom cylinder 11 and an accumulator pressure sensor for detecting the pressure of the accumulator 27 are provided. The controller 57a outputs a control signal to the proportional control valve 56b by receiving signals from both the pressure sensors 81 and 82.
  • the ride valve 31A has a connection position (C) for connecting the port 3 la and the port 3 le between the operation position (A) and the non-operation position (B) of the ride valve 31 in the first embodiment. are doing. Since the configuration at the operating position (A) and the non-operating position (B) have the same configuration as the configuration in the first embodiment, the configuration at the connection position (C) will be mainly described below.
  • connection position (C) the ride valve 31A connects the port 31a and the port 31e via a throttle formed in the ride valve 31A.
  • the pressurized oil of the accumulator 27 can be discharged to the tank 23 via the throttle.
  • a pressure equal to or greater than the maximum pressure of the sum of the pressure due to the mass of the working device 3 and the pressure due to the mass of the earth and sand loaded on the packet is accumulated. I have.
  • part of the pressure of the accumulator 27 can be released to the tank 23 using the connection position (C), and the accumulator 27 The pressure can be easily adjusted to the pressure in the bottom chamber 1 la of the boom cylinder 11.
  • the controller 57a sequentially increases and outputs a control current as shown in FIG. 9 (a) to the proportional control valve 56b from time T11 to time T13 shown in FIG. You.
  • the proportional control valve 56b receives the control signal from the controller 57a, and supplies the pilot pressure of the control pump 59 to the pilot chamber 56a of the ride valve 31A while gradually increasing the pilot pressure.
  • the controller 57a increases the control current, and sets the ride valve 31A to the connection position (C) in FIG. At this time, the spool of the ride valve 31A gradually increases the stroke amount near half the maximum stroke amount Lmax Lhal as shown in FIG. 8B. Further, as shown in FIG. 8D, the opening area Sd connecting the port 3 la and the port 3 le is increased, and the area An is set at the time T13.
  • the interval from time T13 to time T14 is a period during which the pressure of the accumulator 27 is reduced to the pressure of the bottom chamber 11a.
  • the pressure of the accumulator 27 detected by the pressure sensor 82 and the pressure of the accumulator 27 are detected by the pressure sensor 81. It is determined by the magnitude of the pressure difference from the pressure in the bottom chamber 11a.
  • the spool of the ride valve 31A gradually increases the stroke amount Lhal as shown in FIG. 8 (b) while the stroke amount Lhal is gradually increased as shown in FIG. 8 (d).
  • the opening area Sd communicating the port 31e with the port 31e is reduced, and the area is set to zero (AO) at time T15.
  • the pressure of the accumulator 27 can be made equal to the pressure of the bottom chamber 11a.
  • the same control as that after time T2 in the first embodiment is performed. For this reason, the description after time T15 is omitted with the description after time T2 in the first embodiment.
  • the switching speed of the spool of the ride valve 31A can be controlled by the magnitude of the control current output from the controller 57a to the proportional control valve 56b. By controlling the magnitude of the control current in the same manner as in the first embodiment, the switching speed of the ride valve 31A can be set freely.
  • the controller 57a causes the boom cylinder 11 generated according to the amount of sediment loaded on the working device 3 to move.
  • the pressure Pb in the bottom chamber 1 la is input as the detected pressure from the boom pressure sensor 81.
  • the accumulator pressure Pa stored in the accumulator 27 is input as the detection pressure from the accumulator pressure sensor 82.
  • the controller 57a obtains a differential pressure between the pressure Pb of the bottom chamber 11a and the accumulator pressure Pa. When the differential pressure is large, the controller 57a outputs a control current to the proportional control valve 56b to plot the spool of the ride valve 31A. 9 Set the stroke amount of the half stroke shown in (b) to Lhalf. As a result, the ride valve 31A is at the position (C), and the pressure in the accumulator 27 is reduced.
  • the controller 57a maintains the ride valve 31A at the (C) position until the pressure difference between the pressure Pb of the bottom chamber 11a and the accumulator pressure Pa falls within a predetermined allowable range.
  • the control current is output again to the proportional control valve 56b, and the spool of the ride valve 31A is moved up to the maximum stroke amount Lmax.
  • the ride valve 31A is in the operating position (A), and the accumulator 27 and the bottom of the boom cylinder 11
  • the chamber 11a is connected with an opening area A3, and the tank 23 and the head chamber lib of the boom cylinder 11 are connected with an opening area A4.
  • the operation of the suppression device has been described.
  • the opening area Sb is kept at the upper limit opening area A3, so that the pressure in the bottom chamber 11a is quickly absorbed by the accumulator 27 while the flow path resistance is small, and the bottom chamber 11a is used.
  • the upper limit area of the opening area Sb may be set to an opening area smaller than the area A3, the resistance may be slightly increased, and the pressure oil having the accumulator force may be slowly supplied to the bottom chamber 11a.
  • FIG. 10 is a circuit diagram of the ride valve 31B and the control unit
  • FIG. 11 is a diagram for explaining the relationship between the stroke and the opening area of the ride valve 31B
  • FIG. 12 is a time chart.
  • the traveling vibration suppressing device 20B differs from the first traveling vibration suppressing device 20 mainly in the configuration of the ride valve 31B, and the same components as in the first embodiment are the same. The description is omitted by attaching reference numerals.
  • FIG. 10 omits the configurations of the boom valve 29 and the speed increasing valve 33 to explain the configuration of the ride valve 31B.
  • the traveling vibration suppressing device 20B has a configuration in which the ride valve 31B is switched at three positions. Further, a boom pressure sensor 81 for detecting the pressure of the bottom chamber 11a of the boom cylinder 11 and a running state detecting sensor 84 for detecting the running state of the vehicle are provided. The controller 57b receives signals from the boom pressure sensor 81 and the traveling state detection sensor 84. And outputs a control signal to the proportional control valve 56b.
  • the ride valve 31B has a connection position (D) for connecting the port 31a and the port 31b between the operation position (A) and the non-operation position (B) of the ride valve 31 of the first embodiment. Have been. That is, at the connection position (D) of the ride valve 31B, the accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 are connected via the variable throttle 86.
  • variable throttle 86 for example, a plurality of tapered slit grooves or the like extending from the port 31a to the port 31b are provided on the spool of the ride valve 31B in the circumferential direction of the spool, and the variable throttle 86 is moved along with the movement of the spool.
  • the opening area Sa communicating the port 31a and the port 31b can be made variable.
  • Examples of the traveling state detection sensor 84 include a speed sensor, a sensor that can detect the speed stage of the transmission and the rotational speed of the engine, a sensor that can detect the speed stage of the transmission and the stroke position of the accelerator petal, In addition, sensors that can detect the running state of the vehicle, such as an acceleration detection sensor that detects acceleration and deceleration of the vehicle and a GPS (Global Positioning System) sensor that can detect the current position of the vehicle, can be used.
  • sensors that can detect the running state of the vehicle such as an acceleration detection sensor that detects acceleration and deceleration of the vehicle and a GPS (Global Positioning System) sensor that can detect the current position of the vehicle.
  • GPS Global Positioning System
  • the controller 57b lowers the pilot pressure output from the proportional control valve 56b to position the ride valve 31B at the non-operation position (B) as in the first embodiment. .
  • the hydraulic pump 21 and the accumulator 27 are connected via the charging pressure reducing valve 66 with the opening area Sa connecting the port 31d and the port 31a as the area A1.
  • controller 57b determines the pilot pressure output from proportional control valve 56b based on the respective detection information obtained from traveling state detection sensor 84 and boom pressure sensor 81. Control is performed so that a predetermined pressure is obtained. Thereby, the ride valve 31B is switched to the connection position (D), and the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are connected via the variable throttle 86.
  • the controller 57b controls the proportional control valve 56b such that, for example, when the vehicle speed is high, and when Z or the load weight is large, the opening area of the variable throttle 86 is reduced, and the throttle is controlled. Strengthen. Conversely, when the vehicle speed is low, and when the Z or the load weight is small, the aperture of the variable aperture 86 is controlled to be large so that the aperture is weakened. [0131] The operation of the ride valve 31B will be described with reference to the relationship diagram between the stroke and the opening area in Fig. 11 and the time chart in Fig. 12.
  • the controller 57b sequentially increases the control current and outputs the control current to the proportional control valve 56b from time T21 to time T24.
  • the proportional control valve 56b receives a control signal from the controller 57b and gradually increases the pilot pressure supplied to the pilot chamber 56a of the ride valve 31B.
  • the controller 57b When increasing the opening area of the variable stop 86, the controller 57b outputs a control current having a large gradient to the proportional control valve 56b as shown by a solid line (I) in FIG.
  • a control current having a small gradient is output from the time T22 to the proportional control valve 56b as shown by a two-dot chain line (II).
  • the control current from the controller 57b may be output to the proportional control valve 56b as a control current having a small gradient from time T21.
  • the control current having a small gradient from time T22 is also required. It is desirable to output from the controller 57b to the proportional control valve 56b!
  • the controller 57b continues to increase the control current, the spool of the ride valve 31B increases the stroke amount, and the stroke amount of the spool of the ride valve 31B decreases to L1. If it exceeds, the ride valve 31B switches to the connection position (D) in FIG.
  • the ride valve 31B When the stroke amount of the spool of the ride valve 31B is larger than L1, the ride valve 31B is connected to the port 31a and the port 31b as shown in Figs. 11 and 12 (d) and (e).
  • the opening area Sb and the opening areas Sc of the ports 31c and 31e are gradually increased.
  • the opening area Sc of the port 31c and the port 31e can be fully opened when the spool of the ride valve 31B exceeds the stroke amount L1.
  • the controller 57b outputs a control current corresponding to the detection signals from the boom pressure sensor 81 and the traveling state detection sensor 84 to the proportional control valve 56b, and outputs the control current from the proportional control valve 56b. Control the pilot pressure.
  • the controller 57b when increasing the aperture area of the variable throttle 86 as described above, the controller 57b outputs a control current having a large gradient to the proportional control valve 56b as shown by a solid line (I) in FIG. I do.
  • a control current having a small gradient is output to the proportional control valve 56b as shown by a two-dot chain line (II).
  • the spool of the ride valve 31B has a large control current as shown by a solid line (I) in FIG. 12 (a), and in the case shown by a solid line in FIG. 12 (b).
  • the stroke amount increases.
  • the opening area Sb of the boom cylinder 11 and the accumulator 27 can be increased to the area A3 as shown by the solid line (III).
  • the spool of the ride valve 31B has a small stroke amount as shown by the two-dot chain line in FIG. 12 (b).
  • the opening area Sb of the boom cylinder 11 and the accumulator 27 can be increased to an area An smaller than the area A3 as shown by a two-dot chain line (IV) in FIG.
  • the opening area Sc connecting the tank 23 and the head chamber lb of the boom cylinder 11 has an area A4 as shown by the dotted line (V) when the control current is large. It can be large. When the control current is small, it can be increased to an area Ar smaller than the area A4 as shown by the two-dot chain line (VI).
  • the controller 57b detects the load.
  • the control current corresponding to the pressure is output to the proportional control valve 56b, and the upper limit opening areas that can be opened as the opening areas Sb and Sc are as shown in Figs. 12 (d) and (e), respectively.
  • the opening area Awl and the opening area Arl can be changed from the state of the opening area Ar
  • the controller 57b supplies a control current corresponding to the detected pressure to the proportional control valve 56b.
  • the upper limit opening area which can be output and opened as the opening area Sb can be reduced to the area Aws as shown in FIG.
  • the upper limit opening area that can be opened as the opening area Sc can be reduced.
  • the controller 57b From time T25 to time T26, the controller 57b outputs a signal whose time T21 force is the reverse of that at the time T24, and similarly to the first embodiment, the opening area Sb between the boom cylinder 11 and the accumulator 27.
  • the opening area Sc of the boom cylinder 11 and the tank 23 is returned to zero when the stroke amount of the spool of the ride valve 31B is returned to L1, and the opening area of each is returned to zero, and the bottom chamber 11a of the accumulator 27 and the hydraulic pump 21 Can be returned to the opening area A1 when returning to the stroke stroke force LO of the spool of the ride valve 31B.
  • the controller 57b causes the boom cylinder 11 generated according to the amount of sediment loaded on the working device 3 to move.
  • the pressure Pb of the bottom chamber 1 la is input as the detection pressure from the boom pressure sensor 81. Further, the controller 57b inputs a detection signal from the traveling state detection sensor 84.
  • the controller 57b determines the opening area of the variable throttle 86 corresponding to the pressure Pb obtained and stored in advance from a test or the like, and the corresponding area.
  • the stroke amount of the ride valve 31B with respect to the spool is calculated.
  • the control current is output to the proportional control valve 56b so that the stroke of the ride valve 31B becomes the stroke amount.
  • the proportional control valve 56b supplies a pilot pressure corresponding to the signal of the controller 57b to the ride valve 31B. Thereby, for example, the spool of the ride valve 31B moves to the stroke amount Lm in FIG.
  • the ride valve 31B is at the connection position (D), and connects the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 with the opening area An of the variable throttle 86.
  • the opening area Sc connecting the tank 23 and the head chamber l ib of the boom cylinder 11 is connected by the area Ar.
  • the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are connected at the same pressure via the ride valve 31B.
  • the opening area Sc that connects the tank 23 and the head chamber l ib of the boom cylinder 11 is between time T22 and time T23 (in the two-dot chain line, until time T24).
  • the opening area Sc is sequentially increased to the area Ar with an increase in the movement amount of the spool.
  • the ride area can be run with the opening area Sb and the opening area Sc of the ride valve 31B switched to the area An and the area Ar controlled by the controller 57b.
  • the controller 57b inputs the traveling state of the wheel loader 1 by the traveling state detection sensor 84, for example, the vehicle speed information
  • the optimum opening area of the variable diaphragm 86 is determined from the relationship between the vehicle speed information and the opening area stored in the storage device in advance. Ask for Awl.
  • the controller 57b determines that it is necessary to change the opening area of the variable aperture 86 to the state of the area An and the state of the area Awl, the control signal that the opening area of the variable aperture 86 becomes the area Awl is sent to the proportional control valve 56b. Output.
  • the controller 57b determines that the vehicle speed input from the traveling state detection sensor 84 is faster than a predetermined speed
  • the controller 57b reduces the pilot pressure output from the proportional control valve 56b to reduce the stroke of the spool of the ride valve 31B. Decrease volume from Lm to Lms.
  • the opening area Sb of the variable throttle 86 connecting the accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 can be reduced to the area Aws from the state of the area An.
  • the controller 57b increases the pilot pressure output from the proportional control valve 56b to increase the stroke amount of the spool of the ride valve 31B. From Lm to Lml. With this, The opening area Sb of the variable throttle 86 connecting the motor 27 and the bottom chamber 1 la of the boom cylinder 11 can be changed to the area Awl where the state force of the area An is also increased.
  • the opening area Sb of the variable throttle 86 can be controlled to, for example, an area suitable for the vehicle speed and the loading capacity of the working device 3, so that the bottom chamber of the boom cylinder 11 can be controlled. Pressure pulsation occurring at 11a can be optimally suppressed according to the running state and the loading state.
  • the pressure pulsation generated in the bottom chamber 11a can be suppressed by the accumulator 27 via the ride valve 31B having the optimal opening area Sb.
  • the pressure in the bottom chamber 11a of the boom cylinder 11 increases as the boom 10 tries to stay at the same height position as before. At this time, the increased pressure in the bottom chamber 11a can be quickly supplied to the accumulator 27 and absorbed by the opening areas Sb and Sc in the ride valve 31B. Further, when the vehicle body 7 descends into a dent or the like, the pressure oil can be slowly supplied from the accumulator 27 to the bottom chamber 11a of the boom cylinder 11 to control the boom 10 not to be pushed up.
  • the switching speed of the spool of the ride valve 31B can be freely set by a control current output from the controller 57b to the proportional control valve 56b in accordance with signals from the pressure sensor 81 and the traveling state detection sensor 84. .
  • FIG. 13 shows a partial configuration of the traveling vibration suppressing device 20C.
  • the configuration at the connection position (D) of the ride valve 31B in the third embodiment is configured as a variable throttle valve 88 independently of the ride valve 31.
  • a first proportional control valve 90 for controlling the variable throttle valve 88 is additionally provided.
  • the other configuration has the same configuration as the configuration in the third embodiment. Therefore, the same components as those in the first embodiment to the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 13 omits the configurations of the boom valve 29 and the speed increasing valve 33 to explain the configuration of the ride valve 31!
  • the variable throttle valve 88 is disposed between the accumulator 27 and the ride valve 31, and the first proportional control It operates by receiving pilot pressure from the valve 90 into the control room 88a.
  • the connection area between the accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 is made variable by a variable throttle valve 88.
  • the variable throttle valve 88 switches between a variable throttle position (E) when receiving pilot pressure from the first proportional control valve 90 and an open position (F) when not receiving pilot pressure.
  • the variable throttle valve 88 is at the open position (F)
  • the accumulator 27 and the hydraulic pump 21 are connected via the ride valve 31 to reduce the resistance and discharge the hydraulic oil from the hydraulic pump 21 to the accumulator 27. To make it easier to supply.
  • the first proportional control valve 90 is controlled by receiving a control current from the controller 57c.
  • the first proportional control valve 90 sets the variable throttle valve 88 to a variable throttle position (E) when receiving a control current from the controller 57c, and controls the opening area of the variable throttle according to the control current value.
  • the first proportional control valve 90 does not receive the control current (when the current is zero)
  • the first proportional control valve 90 is deactivated, and the variable throttle valve 88 is set to the open position (F).
  • the opening area Sb communicating the port 31a and the port 31b is sequentially opened to the area A3. Further, the opening area Sc communicating the port 31a and the port 31e can be sequentially opened up to the area A4, or can be opened all at once to the area A4.
  • variable throttle valve 88 changes the throttle area until the maximum throttle opening at the variable throttle position (E) is reached. Can be done.
  • the controller 57c Upon receiving signals from the boom pressure sensors 81 and Z or the traveling state detection sensor 84, the controller 57c obtains a signal based on the relationship between the detection values of the two sensors stored in the storage device in advance and the opening area. (1) The control current is output to the proportional control valve 90, and the detection value detected by both sensors Change the throttle of the variable throttle valve 88 so that the optimal opening area corresponding to is obtained.
  • the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are configured such that the opening area of the throttle in the variable throttle valve 88 and the opening area Sb that connects the port 31a and the port 31b in the ride valve 31 are different from each other. Will be connected via At this time, the opening area Sc of the ride valve 31 that connects the tank 23 and the head chamber l ib of the boom cylinder 11 becomes a constant area A4, and the pressure between the tank 23 and the boom cylinder 11 is increased. The amount of oil supply and discharge has been increased to prevent the generation of vacuum.
  • the opening area for communicating the accumulator 27 with the bottom chamber 11a of the boom cylinder 11 can be controlled in two stages.
  • the controller 57c outputs a large control current to the first proportional control valve 90.
  • the opening area of the variable throttle valve 88 can be reduced to increase the throttle.
  • the controller 57c During traveling, when an operator turns on a switch (not shown), the controller 57c outputs a control signal to the proportional control valve 56b, and causes the ride valve 31 to perform a full stroke to the operating position (A). Further, the controller 57c inputs the pressure Pb of the bottom chamber 11a detected by the boom pressure sensor 81, and uses the control current for obtaining the opening area of the variable throttle valve 88 for the pressure Pb obtained and stored in advance by a test or the like. Then, a control current is output to the first proportional control valve 90.
  • the first proportional control valve 90 that has received the control current activates the predetermined throttle port pressure to the variable throttle valve 88 to make the opening area of the variable throttle a predetermined opening area.
  • the accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 are connected via a diaphragm having a predetermined opening area.
  • the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are connected to each other through the opening area Sb of the ride valve 31 and the opening area of the variable throttle valve 88 to have the same pressure.
  • the wheel loader 1 travels, and the controller 57c inputs, for example, information on the vehicle speed from the traveling state detection sensor 84.
  • the relationship between the vehicle speed information and the opening area stored in the storage device in advance, the opening area of the variable throttle obtained, and the opening area of the variable throttle set according to the detection pressure from the boom pressure sensor 81 are obtained.
  • a control current is output to the first proportional control valve 90 to change the throttle of the variable throttle valve 88 so as to have an optimum opening area.
  • the controller 57c receives information from the traveling state detection sensor 84 that the vehicle speed is high, the throttle of the variable throttle valve 88 that connects the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 is throttled to open. Make the area even smaller.
  • the controller 57c When the controller 57c receives the information that the vehicle speed is low, the controller 57c outputs a control signal for increasing the opening area of the throttle of the variable throttle valve 88 to the first proportional control valve 90.
  • the first proportional control valve 90 receives the control signal from the controller 57c, and controls the pilot pressure to be increased or decreased so as to control the opening area of the throttle in the variable throttle valve 88 from the traveling state detection sensor 84.
  • the opening area can be set according to the detection signal.
  • the pressure pulsation of the boom cylinder 11 generated by the traveling of the wheel loader 1 matches the detection signal from the boom pressure sensor 81 and / or the traveling state detection sensor 84.
  • the accumulated opening area can be absorbed by the accumulator 27 via the variable throttle valve 88 and the ride valve 31.
  • the force described in the example in which the accumulator 27 is connected to the bottom chamber 11a of the boom cylinder 11 is also applied to the configuration in which the accumulator 27 is connected to the head chamber l ib of the boom cylinder 11.
  • the traveling vibration suppressing device according to the present invention can function effectively.
  • ride valve 31 has been described using a two-position switching valve or a three-position switching valve or the like for ease of description, a servo valve that changes continuously may be used.
  • the directional control valve 24 includes a boom valve 29 and a speed increasing valve 33 on both sides with the ride valve 31 at the center.
  • the rider explains the configuration of the vehicle.
  • the ride valve 31 and the speed-increasing valve 33 can be provided on both sides with the boom valve 29 in the middle.
  • two directional control valves a boom valve 29 and a packet valve 30, are used as the directional control valves, and the boom valve 29 of the boom directional control valve is disposed on the pump side, and then the boom valve 29 is disposed adjacently.
  • the configuration in which the packet valve 30 is arranged has been described.
  • the arrangement configuration as a directional control valve is not limited to this.For example, three or more directional control valves, a packet valve 30 on the pump side, and one of the remaining directional control valves for boom A configuration in which the boom valve 29 of the valve is used may be employed.
  • the traveling vibration suppressing device can be configured by appropriately combining the first to fourth embodiments.
  • the traveling vibration suppressing device of the present invention can be used for a device in which pressure pulsation is generated by vibration during traveling of a traveling vehicle.

Abstract

A travel vibration suppressing device (20) has a directional control valve (30) for a bucket, a directional control valve (29) for a boom, a ride control valve (31), and a boom speed increasing valve (33) that are integrally layered on each other with internal piping. A bottom chamber (11a) of a boom cylinder (11) and an accumulator (27) are communicated or shut off from each other by the ride control valve (31). The boom speed increasing valve (33) is capable of feeding a discharge pressure from a hydraulic pump (21) to the bottom chamber (11a) or a head chamber (11b), and is also capable of connecting the bottom chamber (11a) or the head chamber (11b) to a tank (23).

Description

明 細 書  Specification
作業車両の走行振動抑制装置  Work vehicle running vibration suppression device
技術分野  Technical field
[0001] 本発明は、作業車両の走行振動抑制装置に係り、特に、作業装置が装着された作 業車両において、走行時の作業装置における圧力脈動をアキュムレータにより抑制 し、車体の振動低減を行う走行振動抑制装置に関する。  The present invention relates to a traveling vibration suppressing device for a working vehicle, and in particular, in a working vehicle equipped with a working device, suppresses a pressure pulsation in the working device during traveling with an accumulator to reduce vibration of a vehicle body. The present invention relates to a traveling vibration suppressing device.
背景技術  Background art
[0002] 従来、作業車両の一例であるホイールローダでは、車両本体に昇降自在に取着さ れたブームと、ブームに回動自在に取着されたパケット等の作業部材と、ブーム及び 作業部材を作動するそれぞれのブームシリンダ及びバケツトシリンダ等力 なる作業 装置が車両本体に付設されている。ブーム及び作業部材を作動させて、土砂の掘削 [0002] Conventionally, a wheel loader, which is an example of a work vehicle, includes a boom attached to a vehicle body so as to be able to move up and down, a work member such as a packet rotatably attached to the boom, a boom and a work member. A working device, such as a boom cylinder and a bucket cylinder, for actuating the brakes is attached to the vehicle body. Excavation of earth and sand by operating the boom and work members
、運搬、積み込み等を行っている。 , Transport, loading, etc.
[0003] ホイールローダにおいて、走行時の作業装置における乗り心地の改善及び荷こぼ れ防止として圧力脈動を抑制し、車体振動の低減を図るため、例えば、特許文献 1に 示す作業車両のダイナミックダンバが提案されている。図 14に示すように、作業車両 のダイナミックダンパは以下のごとくに構成されている。  [0003] In a wheel loader, for example, a dynamic damper for a work vehicle disclosed in Patent Document 1 is disclosed in Patent Document 1 in order to suppress pressure pulsation and to reduce vehicle body vibration in order to improve riding comfort and prevent load spillage in a work device during traveling. Has been proposed. As shown in Fig. 14, the dynamic damper of the work vehicle is configured as follows.
[0004] 昇降シリンダ(以下、ブームシリンダ 112という)力 油圧ポンプ 117の圧油を制御弁 119により受けて伸縮し、ブームの昇降を行っている。制御弁 119は、ブームシリンダ 112のヘッド側油室 126と配管 127を介して接続されるとともに、ボトム側油室 128と 配管 129を介して接続されている。  [0004] Elevating cylinder (hereinafter referred to as boom cylinder 112) force The hydraulic oil from hydraulic pump 117 is received by control valve 119 to expand and contract, thereby raising and lowering the boom. The control valve 119 is connected to a head-side oil chamber 126 of the boom cylinder 112 via a pipe 127, and is connected to a bottom-side oil chamber 128 via a pipe 129.
[0005] 配管 127及び配管 129は、管路途中でそれぞれ分岐した分岐配管 130及び分岐 配管 131を接続して!/、る。分岐配管 130は切換弁 133を介して油タンク 116に接続 している。分岐配管 131は、切換弁 133及び可変絞り装置 161を介してアキュムレー タ 162に接続している。切換弁 133は電磁弁により構成されており、非通電時にはス プリングにより付勢されて遮断位置に切換わり、通電時には接続位置に切換わる。  [0005] The pipe 127 and the pipe 129 are connected to a branch pipe 130 and a branch pipe 131, respectively, which branch off in the middle of the pipe. The branch pipe 130 is connected to the oil tank 116 via the switching valve 133. The branch pipe 131 is connected to an accumulator 162 via a switching valve 133 and a variable throttle device 161. The switching valve 133 is constituted by an electromagnetic valve, and is urged by the spring to switch to the shut-off position when not energized, and to switch to the connection position when energized.
[0006] 可変絞り装置 161は、絞り開度を複数段階に亘り調整可能とした絞り装置であり、 複数の絞り 164、 165と絞り選択用の切換弁 166と力も構成されている。切換弁 166 は電磁弁により構成され、非通電時にはスプリングにより付勢されて大きい絞り開度 を有した絞り 164を選択する位置に切換わる。通電時には小さい絞り開度を有した絞 り 165を選択する位置に切換わる。切換弁 133及び切換弁 166はコントローラ 153に より制御される。 [0006] The variable throttle device 161 is a throttle device capable of adjusting the throttle opening in a plurality of stages, and includes a plurality of throttles 164, 165, a switching valve 166 for selecting an aperture, and a force. Switching valve 166 Is constituted by an electromagnetic valve, and when not energized, is urged by a spring to switch to a position for selecting a throttle 164 having a large throttle opening. When energized, switch to the position to select the aperture 165 with a small aperture. The switching valve 133 and the switching valve 166 are controlled by the controller 153.
[0007] 配管 129に接続した圧力センサ 149は、ボトム側油室 128の圧力を検出する。コン トローラ 153は、圧力センサ 149により検出したボトム側油室 128の圧力が、アキュム レータの最低許容圧力以上で、且つ、最大許容圧力以下の範囲に入っているとき、 切換弁 133のコイルを励磁して接続位置に切換える。また、コントローラ 153は、圧力 センサ 149で検出した圧力が設定圧以上のとき、圧力センサ 149で検出した圧力に 応じて切換弁 166の位置を選択する。  [0007] A pressure sensor 149 connected to the pipe 129 detects the pressure of the bottom oil chamber 128. The controller 153 excites the coil of the switching valve 133 when the pressure in the bottom oil chamber 128 detected by the pressure sensor 149 is in the range between the minimum allowable pressure of the accumulator and the maximum allowable pressure. To switch to the connection position. When the pressure detected by the pressure sensor 149 is equal to or higher than the set pressure, the controller 153 selects the position of the switching valve 166 according to the pressure detected by the pressure sensor 149.
[0008] 前記設定圧は次のようにして設定されている。即ち、装着される作業装置の最小質 量と積載物を含む作業装置の最大質量との間における適当な設定質量を想定する 。例えば、最小質量と最大質量との和の 1Z2の質量を設定質量とする。作業装置の 質量が前記想定した定質量であるものとして、制御弁 119が中立位置にあるとき、こ のときにおけるブームシリンダ 112のボトム側油室 128の圧力を設定圧として定義し ている。  [0008] The set pressure is set as follows. That is, an appropriate set mass between the minimum mass of the working device to be mounted and the maximum mass of the working device including the load is assumed. For example, set the mass of 1Z2 which is the sum of the minimum mass and the maximum mass as the set mass. Assuming that the mass of the working device is the assumed constant mass, when the control valve 119 is at the neutral position, the pressure in the bottom oil chamber 128 of the boom cylinder 112 at this time is defined as the set pressure.
[0009] 上記の構成において、制御弁 119を中立位置にするとともに、切換スィッチ 155を オン操作してダイナミックダンパを作動させる。これにより、ホイールローダの走行時に おける車両本体のピッチング、
Figure imgf000004_0001
、る。
[0009] In the above configuration, the control valve 119 is set to the neutral position, and the switching switch 155 is turned on to operate the dynamic damper. This allows pitching of the vehicle body when the wheel loader travels,
Figure imgf000004_0001
RU
[0010] ダイナミックダンパを作動させた状態でホイールローダを走行させる。このとき、路面 の状況、車両の加減速等に応答して作業装置が振動し、これに伴ってブームも上下 方向に揺動しょうとする。このため、ブームを保持するブームシリンダ 112のボトム側 油室 128内において圧力変動が生ずる。  [0010] The wheel loader is run with the dynamic damper operated. At this time, the work equipment vibrates in response to road surface conditions, acceleration and deceleration of the vehicle, and the like, and the boom also attempts to swing vertically. Therefore, a pressure fluctuation occurs in the bottom oil chamber 128 of the boom cylinder 112 that holds the boom.
[0011] このときのボトム側油室 128内での圧力は、圧力センサ 149により検出される。検出 された圧力力 アキュムレータ 162の最低許容圧力以上で、かつ、最大許容圧力以 下の範囲内のときには、コントローラ 153は切換弁 133を接続位置に切換える。  At this time, the pressure in the bottom oil chamber 128 is detected by the pressure sensor 149. When the detected pressure force is equal to or higher than the minimum allowable pressure of the accumulator 162 and equal to or lower than the maximum allowable pressure, the controller 153 switches the switching valve 133 to the connection position.
[0012] 作業装置の質量が上述した設定質量よりも小で、ボトム側油室 128内の圧力が設 定圧よりも低い場合には、切換弁 166の切換えによって、ボトム側油室 128とアキュム レータ 162とが、大きい絞り開度を有した絞り 164を介しての接続となる。作業装置の 質量が設定質量以上で、ボトム側油室 128内の圧力が設定圧以上の場合には、切 換弁 166の切換えによって、ボトム側油室 128とアキュムレータ 162と力 小さい絞り 開度を有した絞り 165を介しての接続となる。 When the mass of the working device is smaller than the above-mentioned set mass and the pressure in the bottom oil chamber 128 is lower than the set pressure, the switching of the switching valve 166 causes the bottom oil chamber 128 and the accumulator to accumulate. The connection with the radiator 162 is made via a throttle 164 having a large throttle opening. When the mass of the work equipment is equal to or greater than the set mass and the pressure in the bottom oil chamber 128 is equal to or greater than the set pressure, the switching valve 166 is switched to have a small throttle opening with the bottom oil chamber 128 and the accumulator 162. The connection is made via the aperture 165 that has been set.
[0013] これにより、作業装置の質量が変化して、振動特性が変化しても、ダイナミックダン パの作動により車両本体のピッチング、バウンシング等の振動を効果的に抑制できる としている。 [0013] Accordingly, even if the mass of the working device changes and the vibration characteristics change, vibration of the vehicle body such as pitching and bouncing can be effectively suppressed by the operation of the dynamic damper.
特許文献 1:特開 2001—200804号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-200804
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] ところが、特許文献 1の作業車両のダイナミックダンバにおいては、ダイナミックダン パを選択する切換弁 133と、絞り選択用の切換弁 166との 2個の電磁弁を用いなけ ればならな力つた。し力も、切換弁 133が制御弁 119から離間した位置に別置きで配 置されているため、制御弁 119とブームシリンダ 112とを接続する配管 127、 129から それぞれ分岐した分岐配管 130、 131を必要とする。  [0014] However, in the dynamic damper of the work vehicle disclosed in Patent Document 1, the force required to use two solenoid valves, a switching valve 133 for selecting a dynamic damper and a switching valve 166 for selecting a throttle, is required. I got it. Since the switching valve 133 is separately installed at a position separated from the control valve 119, the branching pipes 130 and 131 branched from the pipes 127 and 129 connecting the control valve 119 and the boom cylinder 112 are also provided. I need.
[0015] このため、配管の本数が増加すると共に、その配管の場積が増加して配管を行うた めのスペースを確保することが困難になる。また、切換弁として 2個の電磁弁と複数の 絞りを必要とするため、部品点数が増加し、価格の上昇を招いている。  [0015] For this reason, as the number of pipes increases, the area of the pipes increases, and it becomes difficult to secure a space for the pipes. In addition, since two solenoid valves and a plurality of throttles are required as switching valves, the number of parts increases and the price rises.
[0016] ホイールローダの走行時において、切換スィッチ 155がオン操作されると、ブームシ リンダ 112のボトム側油室 128は、切換弁 133及び切換弁 166を介してアキュムレー タ 162に接続される。このとき、作業装置の質量と積載物の質量との総和が、アキュム レータ 162の設定圧を規定するときに想定した質量力 大きく隔たっている場合には 、ダイナミックダンパを有効に作動させることができな 、。  When the switching switch 155 is turned on during traveling of the wheel loader, the bottom oil chamber 128 of the boom cylinder 112 is connected to the accumulator 162 via the switching valve 133 and the switching valve 166. At this time, if the sum of the mass of the working device and the mass of the load is largely apart from the mass force assumed when defining the set pressure of the accumulator 162, the dynamic damper can be activated effectively. What,
[0017] 例えば、アキュムレータ 162の圧力がボトム側油室 128内の圧力よりも高い場合に は、高圧側であるアキュムレータ 162の圧力が低圧側のボトム側油室 128へ急激に 供給されてしまう。このため、ブームシリンダ 112が伸長し、ブームが急激に上昇する  [0017] For example, when the pressure of the accumulator 162 is higher than the pressure in the bottom oil chamber 128, the pressure of the accumulator 162 on the high pressure side is suddenly supplied to the bottom oil chamber 128 on the low pressure side. Therefore, the boom cylinder 112 extends, and the boom rises rapidly.
[0018] アキュムレータ 162の圧力がボトム側油室 128の圧力よりも低い場合には、高圧側 であるボトム側油室 128の圧力が低圧側のアキュムレータ 162へ急激に供給されて しまう。このときは、ブームシリンダ 112が急激に縮小し、ブームが急激に下降する。こ のように、オペレータにとって予期せぬブームの挙動が発生する。 When the pressure of the accumulator 162 is lower than the pressure of the bottom oil chamber 128, Is rapidly supplied to the accumulator 162 on the low pressure side. At this time, the boom cylinder 112 contracts rapidly, and the boom descends rapidly. Thus, an unexpected boom behavior occurs for the operator.
[0019] また、作業車両が走行中に石等の上に乗り上げたときには、ブームシリンダ 112か ら流れ出る瞬間流量が急激に大きくなる。このときに生じる大流量の瞬間流量を流す ため、圧力損失の低い圧力装置を走行振動抑制装置に備えておくことが要望されて いる。更に、走行振動抑制装置には、振動発生時に作業装置に対する衝撃を小さく するため、良好な応答特性が求められている。  Further, when the work vehicle rides on a stone or the like while traveling, the instantaneous flow rate flowing out of the boom cylinder 112 sharply increases. In order to flow the large instantaneous flow generated at this time, it is required to provide a pressure device having a low pressure loss in the traveling vibration suppressing device. Furthermore, the traveling vibration suppression device is required to have good response characteristics in order to reduce the impact on the working device when vibration occurs.
[0020] 更にまた、切換弁が、作業部材の積載質量により生ずるボトム側油室での大きな圧 力変動幅に対して充分に対応できる開口面積を有していること、あるいは、ァクチュ エータの設定圧を広い範囲に亘つて簡単に変更できる構成などが走行振動抑制装 置に求められている。  [0020] Furthermore, the switching valve has an opening area that can sufficiently cope with a large pressure fluctuation width in the bottom oil chamber caused by the loaded mass of the working member, or the setting of the actuator. There is a need for a device that can easily change the pressure over a wide range, etc., for a traveling vibration suppression device.
[0021] 特に、ホイールローダ等における走行振動抑制装置には、次のような構成が要望さ れている。例えば、ブームが突き上げられたときには、アキュムレータが応答性良くボ トム側油室からの圧油を迅速に吸収して、ブームの上昇を抑制する構成、また、ブー ムが下降するときには、アキュムレータ力もボトム側油室に圧油をゆっくりと供給して ブームの下降を抑制し、短時間の間にブームの振動を抑制できる構成が要望されて いる。  In particular, the following configuration is demanded for a traveling vibration suppression device in a wheel loader or the like. For example, when the boom is pushed up, the accumulator absorbs pressurized oil from the bottom side oil chamber quickly with good responsiveness, and suppresses the rise of the boom. There is a demand for a configuration capable of suppressing the descent of the boom by slowly supplying the pressure oil to the side oil chamber and suppressing the vibration of the boom in a short time.
[0022] 本発明は上記の問題点に着目してなされたもので、作業車両に装備した作業装置 のァクチユエータを制御する方向制御弁と、アキュムレータとァクチユエ一タとを接続 するライドコントロール弁とを備え、簡単な構成で、応答性良ぐァクチユエータにお ける圧力脈動を抑制し、車体の振動低減を行うことのできる走行振動抑制装置を提 供することを目的とする。  The present invention has been made in view of the above-mentioned problems, and includes a directional control valve for controlling an actuator of a working device mounted on a work vehicle, and a ride control valve for connecting an accumulator and an actuator. It is an object of the present invention to provide a traveling vibration suppressing device which has a simple configuration, suppresses pressure pulsation in a responsive actuator having good responsiveness, and can reduce vibration of a vehicle body.
課題を解決するための手段  Means for solving the problem
[0023] 上記目的を達成するために、本願発明では請求の範囲第 1項に記載したように、油 圧ポンプと、油圧ポンプから吐出された圧油によって作動する少なくとも 1以上のァク チュエータと、少なくとも 1つの前記ァクチユエータにおける一方の圧力室に接続され[0023] In order to achieve the above object, according to the present invention, as described in claim 1, a hydraulic pump and at least one or more actuators operated by hydraulic oil discharged from the hydraulic pump are provided. Connected to one pressure chamber of at least one of the actuators
、同圧力室の圧力脈動を吸収するアキュムレータと、前記油圧ポンプから前記ァクチ ユエータに供給する圧油を制御する方向制御弁と、前記アキュムレータと前記圧力 室との連通及び遮断を制御するライドコントロール弁とを備えた作業車両の走行振動 抑制装置において、前記ライドコントロール弁が、内部配管により前記方向制御弁に 積層配設されてなることを最も主要な特徴となしている。 An accumulator for absorbing pressure pulsations in the pressure chamber, and the actuator from the hydraulic pump. In a traveling vibration suppressing device for a working vehicle, comprising: a directional control valve for controlling pressure oil supplied to a eater, and a ride control valve for controlling communication and shutoff between the accumulator and the pressure chamber, the ride control valve includes: The most main feature is that the directional control valve is laminated and arranged by internal piping.
[0024] また、本願発明では、ァクチユエータの負荷圧を検出する圧力センサ、作業車両の 走行状態を検出する走行状態検出センサを用いて、ライドコントロール弁の連通開 口面積を制御すること、アキュムレータの圧力を検出する圧力センサを用いて、アキ ュムレータとァクチユエ一タとを連通させるときの条件を設定すること、ライドコントロー ル弁の連通開口面積として開口できる上限の開口面積を制御すること、可変絞りを 用いてァクチユエータと前記アキュムレータとの圧力を同一にすること、増速弁をライ ドコントロール弁又は方向制御弁に積層配設することをそれぞれ主要な特徴となして いる。  [0024] Further, according to the present invention, the communication opening area of the ride control valve is controlled using a pressure sensor for detecting a load pressure of the actuator and a traveling state detection sensor for detecting a traveling state of the work vehicle. Using a pressure sensor to detect pressure, setting conditions for communication between the accumulator and the actuator, controlling the upper limit opening area that can be opened as the communication opening area of the ride control valve, controlling the variable throttle The main features of the present invention are that the pressure of the actuator and the accumulator are made equal by using the same, and that the speed-increasing valve is laminated on the ride control valve or the directional control valve.
発明の効果  The invention's effect
[0025] 本願発明では、ァクチユエータ用の方向制御弁とライドコントロール弁とを内部配管 により積層配設している。これにより、方向制御弁とライドコントロール弁との合わせ面 において、両方の弁間を結ぶ油路を連通させることができ、走行用振動抑制装置を コンパクトに構成することができる。し力も、方向制御弁カもァクチユエータ及びアキュ ムレータ間での外部配管としては、方向制御弁とァクチユエ一タとを接続する配管及 びライドコントロール弁とアキュムレータとを接続する配管などとなる。  [0025] In the present invention, the directional control valve and the ride control valve for the actuator are stacked and arranged by internal piping. Thus, the oil passage connecting both valves can be communicated with each other at the mating surface of the direction control valve and the ride control valve, and the vibration suppression device for traveling can be made compact. As the external piping between the actuator and the accumulator, the piping connecting the directional control valve and the actuator and the piping connecting the ride control valve and the accumulator are used.
[0026] このため、外部配管を行うために配設する配管の本数を少なくでき、また外部配管 に使用する配管の長さを短くすることができる。外部配管の本数が少なぐし力も配管 の長さが短くなることで外部配管を行うために必要とするスペースを少なくできる。ま た、外部配管の取り付け作業が容易となる。  [0026] For this reason, the number of pipes provided for external pipes can be reduced, and the length of pipes used for external pipes can be shortened. As the number of external pipes is reduced, the space required for external pipes can be reduced by reducing the length of the pipes. In addition, the work of installing the external piping becomes easy.
[0027] 内部配管により配管内での圧力損失を小さくすることができ、し力も、瞬間流量を大 量に流す流路径を確保することができるので、ライドコントロール弁の応答性が向上 する。また、アキュムレータに対して過大な衝撃圧が作用することが少なくなり、アキュ ムレータとしての耐久性が向上する。  [0027] The pressure loss in the pipe can be reduced by the internal pipe, and the flow force can be secured to a large diameter for the instantaneous flow rate, so that the responsiveness of the ride control valve is improved. In addition, an excessive impact pressure acting on the accumulator is reduced, and the durability of the accumulator is improved.
[0028] このため、振動発生時における車両本体のピッチング、バウンシング等の振動を効 果的に抑制できる。また、ライドコントロール弁としては、 1つのスプールで、アキュム レータへの圧油の供給、及びアキュムレータとァクチユエータとの連通ある 、は遮断 を行うことができる構成とすることができる。簡単な構成にて走行振動抑制装置を構 成できるので、走行振動抑制装置を構成するための部品点数を減少させることがで き、しかも走行振動抑制装置を安価にて構成することができる。 [0028] For this reason, vibrations such as pitching and bouncing of the vehicle body at the time of occurrence of vibrations are effective. Can be effectively suppressed. In addition, the ride control valve can be configured so that one spool can supply the pressurized oil to the accumulator and shut off the communication between the accumulator and the actuator. Since the traveling vibration suppressing device can be configured with a simple configuration, the number of components for constituting the traveling vibration suppressing device can be reduced, and the traveling vibration suppressing device can be configured at low cost.
[0029] 本願発明では請求の範囲第 2項に記載したように、圧力センサ及び Z又は走行状 態検出センサ力 の検出信号に基づいてライドコントロール弁の連通開口面積を制 御することができる。例えば、作業車両に装備したブームが作業車両の走行時に発 生した振動により上昇させられる時には、前記連通開口面積を広くする制御を行い、 ァクチユエータのボトム室から高圧となった圧油をアキュムレータによって迅速に吸収 することができる。これにより、ブームの急激な上昇を抑制することができる。  [0029] In the present invention, as described in claim 2, the communication opening area of the ride control valve can be controlled based on the pressure sensor and the detection signal of Z or the running state detection sensor force. For example, when the boom mounted on the work vehicle is raised by the vibration generated during traveling of the work vehicle, control is performed to widen the communication opening area, and the pressurized oil, which has become high pressure from the bottom chamber of the actuator, is quickly released by the accumulator. Can be absorbed. Thereby, a rapid rise of the boom can be suppressed.
[0030] また、作業車両の走行時に発生した振動によりブームが下降させられる時には、前 記連通開口面積を狭くする制御を行い、アキュムレータ力 ァクチユエータに供給す る圧油を減圧して少なく供給することができる。これにより、ブームをゆっくりと下降さ せることができる。このように、作業車両の走行時に発生した振動によるァクチユエ一 タの圧力脈動を短時間のうちに抑制することができる。 Further, when the boom is lowered by vibration generated during traveling of the work vehicle, control is performed to reduce the communication opening area, and the pressure oil supplied to the accumulator force actuator is reduced and supplied. Can be. This allows the boom to be lowered slowly. In this manner, pressure pulsation of the actuator due to vibration generated during traveling of the work vehicle can be suppressed in a short time.
[0031] 本願発明では請求の範囲第 3項に記載したように、アキュムレータ内の圧力がァク チユエータの負荷圧よりも高圧の時には、アキュムレータとァクチユエ一タとをそのま まの状態で接続せずに、アキュムレータ内の圧力をァクチユエータの負荷圧まで一 且減圧した後にアキュムレータとァクチユエ一タとを接続させることができる。 In the present invention, as described in claim 3, when the pressure in the accumulator is higher than the load pressure of the actuator, the accumulator and the actuator are connected in the same state. Instead, the accumulator and the actuator can be connected after the pressure in the accumulator is reduced to the load pressure of the actuator.
[0032] これにより、アキュムレータとァクチユエータとの接続時に、例えば、アキュムレータ 内の圧力がアキュムレータの負荷圧よりも高圧であったために、ブームがアキュムレ 一タカ の圧力によって急に上昇してしまう事態が発生するのを防止できる。  [0032] As a result, when the accumulator is connected to the actuator, for example, the pressure in the accumulator is higher than the load pressure of the accumulator, and the boom suddenly rises due to the pressure of the accumulator. Can be prevented.
[0033] 本願発明では請求の範囲第 4項に記載したように、上限の開口面積までの間でライ ドコントロール弁の連通開口面積を制御する上において、前記上限の開口面積の値 についても制御することができる。前記上限の開口面積については、請求の範囲第 5 項及び請求の範囲第 6項において記載したように、ァクチユエータの負荷圧力に応じ て、及び Z又は作業車両の走行速度に応じて、前記上限の開口面積の値を制御す ることがでさる。 [0033] In the present invention, as described in claim 4, in controlling the communication opening area of the ride control valve up to the upper limit opening area, the value of the upper limit opening area is also controlled. can do. Regarding the opening area of the upper limit, as described in claims 5 and 6, according to the load pressure of the actuator and Z or the traveling speed of the work vehicle, the upper limit of the upper limit Control the value of the opening area You can do it.
[0034] 例えば、作業部材の積載質量によって生ずるァクチユエータの負荷圧力が高いとき や、作業車両の走行速度が速いときには、連通開口面積として開口できる上限の開 口面積を小さくすることができる。これにより、アキュムレータに過大な衝撃圧が作用 することを防止してアキュムレータの耐久性を向上させることができる。  [0034] For example, when the load pressure of the actuator caused by the loaded mass of the working member is high, or when the traveling speed of the work vehicle is high, the upper limit opening area that can be opened as the communication opening area can be reduced. This prevents an excessive impact pressure from acting on the accumulator and improves the durability of the accumulator.
[0035] 例えば、作業部材の積載質量により生ずるァクチユエータの負荷圧力が低いときや 、作業車両の走行速度が遅いときには、連通開口面積として開口できる上限の開口 面積を大きくすることができる。これにより、ァクチユエータの圧力脈動に対するアキュ ムレータの応答性を向上させることができる。  [0035] For example, when the load pressure of the actuator caused by the loaded mass of the work member is low or when the traveling speed of the work vehicle is low, the upper limit opening area that can be opened as the communication opening area can be increased. Thereby, the responsiveness of the accumulator to the pressure pulsation of the actuator can be improved.
[0036] このように、ァクチユエータの負荷圧力及び Z又は作業車両の走行状態に適合し た走行振動抑制装置を得ることができる。また、従来のごとぐアキュムレータ力もの 圧力を受けてァクチユエータが予期せぬ伸縮を行うことがなくなり、作業車両におけ る運転性が向上する。  [0036] As described above, it is possible to obtain a traveling vibration suppressing device adapted to the load pressure and Z of the actuator or the traveling state of the work vehicle. In addition, the actuator does not expand and contract unexpectedly under the pressure of the accumulator force as in the related art, and the drivability of the work vehicle is improved.
[0037] 本願発明では請求の範囲第 7項に記載したように、ライドコントロール弁に設けた可 変絞りによって、ァクチユエータとアキュムレータとの圧力を同一にすることができる。 これにより、作業部材の積載質量によって生ずるァクチユエータの負荷圧力の変動 幅が大きく変わったとしても、ァクチユエータの負荷圧力に対応した圧力となるように 、アキュムレータの圧力を広い範囲に亘つて簡単に調整することができる。  In the present invention, as described in claim 7, the pressure between the actuator and the accumulator can be equalized by the variable throttle provided in the ride control valve. Thereby, even if the fluctuation range of the load pressure of the actuator caused by the load mass of the working member greatly changes, the pressure of the accumulator can be easily adjusted over a wide range so that the pressure corresponds to the load pressure of the actuator. be able to.
[0038] 本願発明では請求の範囲第 8項に記載したように、方向制御弁又はライドコント口 ール弁に隣接して増速弁を積層配設することができる。ァクチユエータに対する供給 流量及び排出流量を積層配設した増速弁からも流すことができる。ァクチユエータに 対して給排する圧油の流量を増速弁によって一部肩代わりして流すことができるので 、中型及び大型の作業車両に対しても本願発明の走行振動抑制装置を搭載するこ とができ、優れた振動抑制効果を行わせることができる。  [0038] In the present invention, as described in claim 8, a speed-increasing valve can be arranged adjacent to the directional control valve or the ride control valve. The supply flow rate and discharge flow rate to the actuator can also be made to flow from the speed-up valves arranged in layers. Since the flow rate of the pressure oil to be supplied to and discharged from the actuator can be partially flowed by the speed increasing valve, it is possible to mount the traveling vibration suppressing device of the present invention even on a medium-sized or large-sized work vehicle. As a result, an excellent vibration suppressing effect can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]図 1は、本発明に係る走行振動抑制装置を用いたホイールローダの側面概略 図である。  FIG. 1 is a schematic side view of a wheel loader using a traveling vibration suppression device according to the present invention.
[図 2]図 2は、走行振動抑制装置の構成図である。 [図 3]図 3は、走行振動抑制装置の圧力回路である。(実施例 1) FIG. 2 is a configuration diagram of a traveling vibration suppression device. FIG. 3 is a pressure circuit of the traveling vibration suppressing device. (Example 1)
[図 4]図 4は、ライドコントロール弁と制御部の回路図である。(実施例 1)  FIG. 4 is a circuit diagram of a ride control valve and a control unit. (Example 1)
[図 5]図 5は、ライドコントロール弁のストロークと開口面積を説明する図である。 (実施 例 1)  FIG. 5 is a view for explaining a stroke and an opening area of the ride control valve. (Example 1)
[図 6]図 6は、ライドコントロール弁のタイムチャート図である。(実施例 1)  FIG. 6 is a time chart of the ride control valve. (Example 1)
[図 7]図 7は、第 1ライドコントロール弁と制御部の回路図である。(実施例 2)  FIG. 7 is a circuit diagram of a first ride control valve and a control unit. (Example 2)
[図 8]図 8は、第 1ライドコントロール弁のストロークと開口面積を説明する図である。 ( 実施例 2)  FIG. 8 is a diagram illustrating a stroke and an opening area of a first ride control valve. (Example 2)
[図 9]図 9は、第 1ライドコントロール弁のタイムチャート図である。(実施例 2)  FIG. 9 is a time chart of the first ride control valve. (Example 2)
[図 10]図 10は、第 2ライドコントロール弁と制御部の回路図である。(実施例 3) FIG. 10 is a circuit diagram of a second ride control valve and a control unit. (Example 3)
[図 11]図 11は、第 2ライドコントロール弁のストロークと開口面積を説明する図である。 (実施例 3) FIG. 11 is a diagram illustrating a stroke and an opening area of a second ride control valve. (Example 3)
[図 12]図 12は、第 2ライドコントロール弁のタイムチャート図である。 (実施例 3)  FIG. 12 is a time chart of the second ride control valve. (Example 3)
[図 13]図 13は、第 3ライドコントロール弁と制御部の回路図である。(実施例 4) FIG. 13 is a circuit diagram of a third ride control valve and a control unit. (Example 4)
[図 14]図 14は、作業装置の油圧回路を示した図である。(従来例) FIG. 14 is a diagram showing a hydraulic circuit of a working device. (Conventional example)
符号の説明 Explanation of symbols
1 ホイ一ノレロー -ダ  1 Hoi Norrero-da
2 車両 体  2 Vehicle body
3 作業装置  3 Working equipment
10 ブーム  10 boom
11 ブームシリンダ (:ブーム用ァクチユエータ)  11 Boom cylinder (: Actuator for boom)
13 バケツト  13 bucket
15 バケツトシリ  15 buckets
20、 20Aゝ 20Bゝ 20C 走行振動抑制装置  20, 20A ゝ 20B ゝ 20C Travel vibration suppression device
21 油圧ポンプ  21 Hydraulic pump
23 タンク  23 tank
25 方向制御弁  25 directional control valve
27 アキュムレー 'タ 29 ブーム用方向制御弁 (ブーム用方向制御弁) 27 Accumulation 29 Boom directional control valve (Boom directional control valve)
30 パケット用方向制御弁  30 Directional control valve for packet
31、 31A、 31B ライドコントロール弁  31, 31A, 31B ride control valve
33 ブーム増速弁  33 Boom speed increase valve
56 ライド弁用制御部  56 Ride valve control
56a 制御室  56a Control room
56b 比例制御弁  56b Proportional control valve
57、 57a, 57b、 57c コントローラ  57, 57a, 57b, 57c Controller
61 供給油用配管  61 Piping for oil supply
62 戻り用配管  62 Return piping
63 タンク用油路  63 Oil passage for tank
67 ポンプ用配管  67 Pump piping
73 配管  73 Piping
81 ブーム用圧力センサ  81 Boom pressure sensor
82 アキュムレータ用圧力センサ  82 Accumulator pressure sensor
84 走行状態検出センサ 84 Running state detection sensor
86 可変絞り  86 Variable aperture
88 可変絞り弁  88 Variable throttle valve
90 第 1比例制御弁 90 1st proportional control valve
W1— W3 合わせ面 W1— W3 mating surface
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る走行振動抑制装置の実施形態について図面を参照して以下におい て説明する。走行振動抑制装置を搭載した作業車両として、ホイールローダを例に 挙げて説明を行うが、本発明に係る走行振動抑制装置を搭載することのできる作業 車両としては、ホイールローダに限定されるものではない。作業車両の走行中に作業 装置のァクチユエータに圧力脈動が発生するものであれば、同作業車両に対して圧 力脈動を抑制する装置として本願発明に係わる走行振動抑制装置を搭載することが できる。そのため、走行振動抑制装置としては、以下で説明する構成に限定されるも のではなく多様な変更が可能である。 An embodiment of a traveling vibration suppression device according to the present invention will be described below with reference to the drawings. A wheel loader will be described as an example of a work vehicle equipped with the traveling vibration suppression device, but a work vehicle on which the traveling vibration suppression device according to the present invention can be mounted is not limited to a wheel loader. Absent. As long as pressure pulsation is generated in the actuator of the working device during traveling of the work vehicle, the traveling vibration suppressing device according to the present invention can be mounted on the work vehicle as a device for suppressing pressure pulsation. Therefore, the traveling vibration suppressing device is limited to the configuration described below. Instead, various changes are possible.
[0042] 図 1において、ホイールローダ 1は、車両本体 2と、車両本体 2の前部に取着された 作業装置 3とから構成されている。車両本体 2は、前フレーム 5と後フレーム 6等から なる車体 7と、キャビン 8等とから構成されている。  In FIG. 1, the wheel loader 1 includes a vehicle body 2 and a working device 3 attached to a front portion of the vehicle body 2. The vehicle body 2 includes a vehicle body 7 including a front frame 5, a rear frame 6, and the like, and a cabin 8 and the like.
[0043] 作業装置 3は、前フレーム 5の枢支軸 9により昇降自在に枢支された左右一対のブ ーム 10と、前フレーム 5と各ブーム 10との間に介装され、ブーム 10を昇降する左右 一対のブームシリンダ 11と、一対のブーム 10の前端部にそれぞれ回動自在に枢支 されたパケット 13と、前フレーム 5とパケット 13との間に介装され、パケット 13を回動 するバケツトシリンダ 15等とから構成されている。走行振動抑制装置 20は、前フレー ム 5側の点線で囲んだ部位に配設されている。  The working device 3 is interposed between a pair of left and right booms 10 pivotally supported by a pivot shaft 9 of the front frame 5 so as to be able to move up and down, and between the front frame 5 and each of the booms 10. A pair of boom cylinders 11 for raising and lowering the boom, a packet 13 rotatably supported by the front ends of a pair of booms 10 respectively, and a packet 13 interposed between the front frame 5 and the packet 13 to rotate the packet 13 It comprises a moving bucket cylinder 15 and the like. The traveling vibration suppressing device 20 is provided at a portion surrounded by a dotted line on the front frame 5 side.
実施例 1  Example 1
[0044] 走行振動抑制装置 20の構成図として図 2に示すように、パケット用方向制御弁ボデ ィ 30' (以下、パケット弁ボディ 30'という。)、ブーム用方向制御弁ボディ 29' (以下、 ブーム弁ボディ 29,という。)、ライドコントロール弁ボディ 31,(以下、ライド弁ボディ 3 1 'という。)及びブーム増速弁ボディ 33' (以下、増速弁ボディ 33'という。)がボディ 内の内部配管により積層配設され、一つのブロック体 25として構成されている。上述 した 4個の弁ボディが一つのブロック体 25として構成された走行振動抑制装置 20を 用いて、以下において走行振動抑制装置 20の説明を行う。  As shown in FIG. 2 as a configuration diagram of the traveling vibration suppressing device 20, a directional control valve body 30 ′ for packet (hereinafter, referred to as a packet valve body 30 ′) and a directional control valve body 29 ′ for boom (hereinafter, referred to as “packet valve body 30”). , A boom valve body 29), a ride control valve body 31, (hereinafter referred to as a ride valve body 31 ') and a boom speed increasing valve body 33' (hereinafter referred to as a speed increasing valve body 33 '). The inner pipes are stacked and arranged to form one block body 25. The traveling vibration suppressing device 20 will be described below using the traveling vibration suppressing device 20 in which the above-described four valve bodies are configured as one block body 25.
[0045] パケット用方向制御弁 30 (以下、パケット弁 30という。)及びブーム増速弁 33 (以下 、増速弁 33という。)を積層配設した走行振動抑制装置 20について以下で説明を行 うが、パケット弁 30及び増速弁 33を積層配設することは、走行振動抑制装置 20とし て必ずしも必要な構成ではない。少なくともブーム用方向制御弁 29 (以下、ブーム弁 29という。)及びライドコントロール弁 31 (以下、ライド弁 31という。)が積層配設されて V、る構成が、走行振動抑制装置 20としては必要な構成となって 、る。  The traveling vibration suppressing device 20 in which a packet direction control valve 30 (hereinafter, referred to as a packet valve 30) and a boom speed-increasing valve 33 (hereinafter, referred to as a speed-increasing valve 33) are stacked will be described below. However, the stacked arrangement of the packet valve 30 and the speed increasing valve 33 is not always necessary as the traveling vibration suppressing device 20. At least the boom directional control valve 29 (hereinafter referred to as the boom valve 29) and the ride control valve 31 (hereinafter referred to as the ride valve 31) are stacked and arranged, and the configuration is necessary for the traveling vibration suppressing device 20. It has a simple configuration.
[0046] 図 2に示すように油圧ポンプ 21は、タンク 23から吸引した油を吐出圧油としてブロッ ク体 25に送給する。パケット弁ボディ 30'内のパケット弁 30 (図 3参照)は、図示せぬ パイロット圧により切り換えられ、油圧ポンプ 21からの吐出圧油をバケツトシリンダ 15 に供給してバケツトシリンダ 15の作動制御を行う。また、ブーム弁ボディ 29'内のブー ム弁 29 (図 3参照)は、図示せぬパイロット圧により切り換えられ、油圧ポンプ 21から の吐出圧油をブームシリンダ 11に供給してブームシリンダ 11の作動制御を行う。 As shown in FIG. 2, the hydraulic pump 21 supplies oil sucked from the tank 23 to the block body 25 as discharge pressure oil. The packet valve 30 (see FIG. 3) in the packet valve body 30 ′ is switched by a pilot pressure (not shown), and supplies the pressure oil discharged from the hydraulic pump 21 to the bucket cylinder 15 to control the operation of the bucket cylinder 15. I do. Also, the boom in the boom valve body 29 ' The boom cylinder 29 (see FIG. 3) is switched by a pilot pressure (not shown), and controls the operation of the boom cylinder 11 by supplying the discharge pressure oil from the hydraulic pump 21 to the boom cylinder 11.
[0047] ライド弁ボディ 31 '内のライド弁 31 (図 3参照)は、図示せぬパイロット圧により切り換 えられ、ブームシリンダ 11とアキュムレータ 27との接続、遮断とを行う。これにより、走 行時に車体 7の振動を受けて発生するブームシリンダ 11の圧力脈動をアキュムレー タ 27により抑制することができる。  The ride valve 31 (see FIG. 3) in the ride valve body 31 ′ is switched by a pilot pressure (not shown) to connect and disconnect the boom cylinder 11 and the accumulator 27. This allows the accumulator 27 to suppress the pressure pulsation of the boom cylinder 11 generated by the vibration of the vehicle body 7 during running.
[0048] 増速弁ボディ 33 '内の増速弁 33 (図 3参照)は、図示せぬパイロット圧により切り換 えられ、ブームシリンダ 11とアキュムレータ 27とを接続する流路径を増大させることが でき、また、ブームシリンダ 11とタンク 23とを接続する流路径を増大させることができ る。  The speed increasing valve 33 (see FIG. 3) in the speed increasing valve body 33 ′ is switched by a pilot pressure (not shown) to increase the diameter of the flow path connecting the boom cylinder 11 and the accumulator 27. In addition, the diameter of the flow path connecting the boom cylinder 11 and the tank 23 can be increased.
[0049] 図 3を用いて、走行振動抑制装置 20の圧力回路を説明する。走行振動抑制装置 2 0は、ブーム弁 29、パケット弁 30、ライド弁 31及び増速弁 33がー体に積層配設され た構成となっている。尚、図 3では、タンク 23を走行振動抑制装置 20内に記載してい るが、これはタンク 23との接続配管を省略することで圧力回路を見易くするためのも のである。実際には、図示せぬ配管を介して、外部に配設したタンク 23と接続してい る。  [0049] The pressure circuit of the traveling vibration suppression device 20 will be described with reference to FIG. The traveling vibration suppression device 20 has a configuration in which a boom valve 29, a packet valve 30, a ride valve 31, and a speed-increasing valve 33 are laminated on one another. In FIG. 3, the tank 23 is shown in the traveling vibration suppression device 20, but this is to make the pressure circuit easier to see by omitting the connection pipe to the tank 23. Actually, it is connected to a tank 23 provided outside via a pipe (not shown).
[0050] パケット弁ボディ 30'とブーム弁ボディ 29 '、ブーム弁ボディ 29 'とライド弁ボディ 3 1,、及びライド弁ボディ 31,と増速弁ボディ 33 'とはそれぞれ隣接して配設されて!/ヽ る。また、各弁ボディ内の配管は、隣接するボディ同士の合わせ面 W1— W3におい て相互に接続されている。  The packet valve body 30 ′ and the boom valve body 29 ′, the boom valve body 29 ′ and the ride valve body 31, and the ride valve body 31 and the speed-up valve body 33 ′ are arranged adjacent to each other. Te! The pipes in each valve body are connected to each other at the mating surface W1-W3 between the adjacent bodies.
[0051] ブロック体 25は、クローズドセンタとして形成されるとともに、ブーム弁 29及びバケツ ト弁 30がポンプ用配管 35により油圧ポンプ 21に対して並列に接続されたパラレル弁 として形成されている。これ〖こより、内部配管により油路が形成された走行振動抑制 装置 20が構成されている。  [0051] The block body 25 is formed as a closed center, and is formed as a parallel valve in which the boom valve 29 and the bucket valve 30 are connected in parallel to the hydraulic pump 21 by a pump pipe 35. Thus, the traveling vibration suppressing device 20 in which the oil passage is formed by the internal piping is configured.
[0052] パケット弁ボディ 30'にはパケット弁 30が形成されている。ボトム配管 39aにより、バ ケットシリンダ 15のボトム室 15aとパケット弁 30のポート 30aとが接続し、ヘッド配管 39 により、バケツトシリンダ 15のヘッド室 15bとボート 30bが接続している。また、ポート 30cは油圧ポンプ 21の吐出ポートと配管 35を介して接続し、ポート 30dは、タンク 23 と接続している。 [0052] The packet valve 30 is formed in the packet valve body 30 '. The bottom pipe 39a connects the bottom chamber 15a of the bucket cylinder 15 to the port 30a of the packet valve 30, and the head pipe 39 connects the head chamber 15b of the bucket cylinder 15 to the boat 30b. Port 30c is connected to the discharge port of hydraulic pump 21 via piping 35, and port 30d is connected to tank 23 Connected.
[0053] パケット弁 30は、バケツトシリンダ 15のピストンを伸長させるチルト位置(H)、ピスト ンを縮小させるダンプ位置 (L)及びピストンの伸縮状態を維持する中立位置 (N)の 3 位置に切換えることができる。パイロット圧を作動させて、パケット弁 30の作動位置を チルト位置(H)に切換えると、油圧ポンプ 21からの吐出圧油がポート 30c、ポート 30 a及びボトム配管 39aを介してバケツトシリンダ 15のボトム室 15aに供給され、ヘッド室 15bの圧油はヘッド配管 39b、ポート 30b及びポート 30dを介してタンク 23に排出さ れる。これにより、バケツトシリンダ 15のピストンを伸長させることができる。  [0053] The packet valve 30 is provided at three positions: a tilt position (H) for extending the piston of the bucket cylinder 15, a dump position (L) for reducing the piston, and a neutral position (N) for maintaining the piston in the expanded and contracted state. Can be switched. When the pilot valve is operated to switch the operation position of the packet valve 30 to the tilt position (H), the pressure oil discharged from the hydraulic pump 21 is supplied to the bucket cylinder 15 via the port 30c, the port 30a and the bottom pipe 39a. The pressure oil supplied to the bottom chamber 15a and discharged from the head chamber 15b is discharged to the tank 23 via the head pipe 39b, the port 30b, and the port 30d. Thereby, the piston of the bucket cylinder 15 can be extended.
[0054] また、パケット弁 30の作動位置をダンプ位置 (L)に切換えると、油圧ポンプ 21から の吐出圧油がポート 30c、ポート 30b及びヘッド配管 39bを介してヘッド室 15bに供 給され、ボトム室 15aの圧油はボトム配管 39a、ポート 30a及びポート 30dを介してタ ンク 23に排出される。これにより、前記ピストンを縮小させることができる。パケット弁 3 0が中立位置 (N)にあるときは、パケット弁 30とバケツトシリンダ 15との接続が遮断さ れ、前記ピストンの伸縮状態を維持することができる。  When the operating position of the packet valve 30 is switched to the dump position (L), the pressure oil discharged from the hydraulic pump 21 is supplied to the head chamber 15b via the port 30c, the port 30b and the head piping 39b, The pressure oil in the bottom chamber 15a is discharged to the tank 23 via the bottom pipe 39a, the port 30a and the port 30d. Thereby, the piston can be reduced. When the packet valve 30 is at the neutral position (N), the connection between the packet valve 30 and the bucket cylinder 15 is cut off, and the piston can be maintained in the expanded and contracted state.
[0055] ブーム弁ボディ 29 'には、ブーム弁 29が形成されている。ボトム配管 37aを介して、 ブームシリンダ 11のボトム室 11aとブーム弁 29のポート 29aとが接続し、ヘッド配管 3 7bを介して、ヘッド室 l ibとポート 29bとが接続している。また、ポート 29cは、油圧ポ ンプ 21の吐出ポートと配管 35を介して接続し、ポート 30dは、タンク 23と接続してい る。  [0055] A boom valve 29 is formed in the boom valve body 29 '. The bottom chamber 11a of the boom cylinder 11 and the port 29a of the boom valve 29 are connected via the bottom pipe 37a, and the head chamber lib and the port 29b are connected via the head pipe 37b. The port 29c is connected to the discharge port of the hydraulic pump 21 via a pipe 35, and the port 30d is connected to the tank 23.
[0056] ブーム弁 29の両端部には、操作レバー等により操作される図示せぬ圧力比例減圧 弁を介してパイロット圧を受けるパイロット室 49a、 49bが形成されている。パイロット室 49a、 49bは、一方側のパイロット室 49a、 49bが図示せぬ圧力比例減圧弁を介して パイロット圧を受け、反対側のパイロット室 49b、 49aにおける圧油が図示せぬ圧力 比例減圧弁を経てタンク 23に戻される構成となっている。  [0056] At both ends of the boom valve 29, pilot chambers 49a and 49b that receive pilot pressure via a pressure proportional pressure reducing valve (not shown) operated by an operation lever or the like are formed. In the pilot chambers 49a and 49b, the pilot chambers 49a and 49b on one side receive the pilot pressure via a pressure proportional pressure reducing valve (not shown), and the pressure oil in the pilot chambers 49b and 49a on the other side receives a pressure proportional reducing valve (not shown). And then returned to the tank 23.
[0057] ブーム弁 29は、浮き位置 (F)、下降位置 (L)、中立位置 (N)及び上昇位置 (H)の 4位置に切換えることができる。 4位置への切換えは、ブーム弁 29の両端にそれぞれ 作用するパネ及びパイロット室 49a、 49bに作用するパイロット圧により切換えることが できる。 [0058] 上昇位置(H)では、油圧ポンプ 21からの吐出圧油がポート 29c、ポート 29a及びボ トム配管 37aを介してブームシリンダ 11のボトム室 11aに供給され、ヘッド室 l ibの圧 油はヘッド配管 37b、ポート 29b及び 29dを介してタンク 23に排出される。これにより 、ブームシリンダ 11のピストンが伸長し、ブーム 10を上昇させる。 [0057] The boom valve 29 can be switched to four positions: a floating position (F), a lowered position (L), a neutral position (N), and a raised position (H). Switching to the four positions can be performed by a panel acting on both ends of the boom valve 29 and a pilot pressure acting on the pilot chambers 49a and 49b. [0058] At the raised position (H), the pressure oil discharged from the hydraulic pump 21 is supplied to the bottom chamber 11a of the boom cylinder 11 via the port 29c, the port 29a, and the bottom pipe 37a, and the pressure oil in the head chamber l ib is supplied. Is discharged to the tank 23 through the head pipe 37b and the ports 29b and 29d. Thereby, the piston of the boom cylinder 11 is extended, and the boom 10 is raised.
[0059] 中立位置(N)では、ブーム弁 29とブームシリンダ 11との接続が遮断され、ブームシ リンダ 11におけるピストンの伸縮状態を維持することができる。  [0059] At the neutral position (N), the connection between the boom valve 29 and the boom cylinder 11 is cut off, and the piston in the boom cylinder 11 can be maintained in the expanded and contracted state.
下降位置(L)では、油圧ポンプ 21からの吐出圧油がポート 29c、ポート 29b及びへ ッド配管 37bを介してヘッド室 l ibに供給され、ボトム室 11aの圧油はボトム配管 37a 、ポート 29a及び 29dを介してタンク 23に排出される。これにより、ブームシリンダ 11 のピストンが縮小してブーム 10を下降させる。  At the lowered position (L), the pressure oil discharged from the hydraulic pump 21 is supplied to the head chamber l ib via the port 29c, the port 29b and the head pipe 37b, and the pressure oil in the bottom chamber 11a is supplied to the bottom pipe 37a and the port It is discharged to tank 23 via 29a and 29d. Thereby, the piston of the boom cylinder 11 contracts and lowers the boom 10.
[0060] 浮き位置(F)では、ポート 29a、ポート 29b及びポート 29dが全て接続し、ボトム室 1 laとヘッド室 l ibとがタンク 23に接続した状態で連通する。これにより、ブームシリン ダ 11を外力に応じて自由に伸縮させることができ、ブーム 10を浮動させる。  At the floating position (F), the port 29a, the port 29b, and the port 29d are all connected, and the bottom chamber 1la and the head chamber lib communicate with each other while being connected to the tank 23. This allows the boom cylinder 11 to freely expand and contract in response to external force, and causes the boom 10 to float.
[0061] ライド弁ボディ 31 'には、ライド弁 31、ライド弁用制御部 56としての比例制御弁 56b 、及びチャージ用減圧弁 66が形成されている。ライド弁 31は、一端にはパネが付勢 され、他端には比例制御弁 56bからのパイロット圧を受けるノ ィロット室 56aが形成さ れている。比例制御弁 56bとパイロット室 56aとにより、ライド弁用制御部 56が構成さ れている。  The ride valve body 31 ′ is formed with a ride valve 31, a proportional control valve 56 b as a ride valve control unit 56, and a charge reducing valve 66. The ride valve 31 has a panel energized at one end, and a slot chamber 56a formed at the other end for receiving pilot pressure from the proportional control valve 56b. The proportional control valve 56b and the pilot chamber 56a constitute a ride valve control unit 56.
[0062] ライド弁 31のポート 31aは、アキュムレータ用配管 40を介してアキュムレータ 27に 接続している。ポート 3 lbは、配管 45a及び配管 73を介してボトム配管 37aからボトム 室 11aと接続している。  The port 31 a of the ride valve 31 is connected to the accumulator 27 via the accumulator pipe 40. The port 3 lb is connected from the bottom pipe 37a to the bottom chamber 11a via the pipe 45a and the pipe 73.
[0063] ポート 31cは、配管 45bを介してヘッド配管 37bからヘッド室 l ibと接続している。ポ ート 31dは、油圧ポンプ 21の吐出ポートと配管 35及びチャージ用減圧弁 66を介して 接続し、ポート 31eは、タンク 23と接続している。  [0063] The port 31c is connected to the head chamber l ib from the head piping 37b via the piping 45b. The port 31d is connected to the discharge port of the hydraulic pump 21 via a pipe 35 and a pressure reducing valve 66 for charging, and the port 31e is connected to the tank 23.
[0064] ポート 31dは、ライド弁 31の非作動時において、ポート 31a及びアキュムレータ用配 管 40を介してアキュムレータ 27に接続することができる。 [0064] The port 31d can be connected to the accumulator 27 via the port 31a and the accumulator pipe 40 when the ride valve 31 is not operated.
[0065] ライド弁 31は、アキュムレータ 27とブームシリンダ 11のボトム室 11aを接続する走行 振動抑制装置 20の作動位置 (A)と、油圧ポンプ 21とアキュムレータ 27を接続する 走行振動抑制装置 20の非作動位置 (B)と、の 2位置で切り換えることができる。ライド 弁 31の切換えは、比例制御弁 56bを図示せぬコントローラ 57 (図 4参照)からの制御 信号による制御で行う。 The ride valve 31 connects the operating position (A) of the traveling vibration suppression device 20 that connects the accumulator 27 to the bottom chamber 11a of the boom cylinder 11, and connects the hydraulic pump 21 and the accumulator 27. It can be switched between two positions, that is, the inoperative position (B) of the traveling vibration suppression device 20. The switching of the ride valve 31 is performed by controlling the proportional control valve 56b by a control signal from a controller 57 (not shown) (see FIG. 4).
[0066] 比例制御弁 56bは、制御用ポンプ 59に接続されている。比例制御弁 56bがコント口 ーラ 57からの信号を受けて作動すると、制御用ポンプ 59からの吐出圧油をパイロット 圧として、パイロット室 56aに供給してライド弁 31の切換えを行う。また、チャージ用減 圧弁 66は、ライド弁 31の非作動時にアキュムレータ 27の圧力をチャージ用減圧弁 6 6で設定する設定圧にする。  The proportional control valve 56b is connected to the control pump 59. When the proportional control valve 56b operates upon receiving a signal from the controller 57, the pressure oil discharged from the control pump 59 is supplied as pilot pressure to the pilot chamber 56a to switch the ride valve 31. The charge pressure reducing valve 66 sets the pressure of the accumulator 27 to the set pressure set by the charge pressure reducing valve 66 when the ride valve 31 is not operated.
[0067] ライド弁 31が非作動位置 (B)にありチャージ用減圧弁 66の作動中には、油圧ボン プ 21からの吐出圧油を減圧してアキュムレータ 27に蓄圧しておくことができる。また、 ライド弁 31が作動位置 (A)にあるときは、アキュムレータ 27とボトム室 11aとを接続し 、ヘッド室 l ibをポート 31c、ポート 3 leを介してタンク 23に接続する。  When the ride valve 31 is in the non-operating position (B) and the charging pressure reducing valve 66 is operating, the pressure oil discharged from the hydraulic pump 21 can be reduced and accumulated in the accumulator 27. When the ride valve 31 is in the operating position (A), the accumulator 27 is connected to the bottom chamber 11a, and the head chamber lib is connected to the tank 23 via the port 31c and the port 3le.
[0068] ライド弁 31が作動位置 (A)にあるときは、ホイールローダ 1の走行時にブームシリン ダ 11のボトム室 11aに発生する圧力脈動をアキュムレータ 27により吸収'減衰するこ とができる。また、ヘッド室 l ibとタンク 23との間では油の給排を行うことができる。  When the ride valve 31 is at the operating position (A), the accumulator 27 can absorb and attenuate the pressure pulsation generated in the bottom chamber 11a of the boom cylinder 11 when the wheel loader 1 travels. Further, oil can be supplied and discharged between the head chamber l ib and the tank 23.
[0069] 増速弁ボディ 33 'には、増速弁 33が形成されている。増速弁 33のポート 33aは、 ブーム用増速配管 41により配管 73及び外部配管とした供給油用配管 61を介してボ トム配管 37aに接続している。ポート 33bは、油圧ポンプ 21の吐出ポートと配管 35を 介して接続し、ポート 33cは、タンク 23と接続している。  [0069] The speed-up valve body 33 'is formed with a speed-up valve 33. The port 33a of the speed increasing valve 33 is connected to a bottom pipe 37a through a pipe 73 and an external oil supply pipe 61 by a boom speed increasing pipe 41. The port 33b is connected to a discharge port of the hydraulic pump 21 via a pipe 35, and the port 33c is connected to the tank 23.
[0070] 増速弁 33は、ブームシリンダ 11の縮小を増速させる下げ位置 (Ld)、中立位置 (N) 及びブームシリンダ 11の伸長を増速させる上げ位置 (Hu)の 3位置に切換えることが できる。 3位置への切換えは、増速弁 33の両端に形成したパイロット室 75a、 75bに パイロット圧を受けることで行うことができる。  [0070] The speed increasing valve 33 switches between three positions: a lowering position (Ld) for increasing the contraction of the boom cylinder 11, a neutral position (N), and an raising position (Hu) for increasing the extension of the boom cylinder 11. Can be done. Switching to the three positions can be performed by receiving pilot pressure in pilot chambers 75a and 75b formed at both ends of the speed increasing valve 33.
[0071] 各ノ ィロット室 75a、 75bにはパネがそれぞれ配設されており、増速弁 33を中立位 置(N)に保持している。パイロット室 75a及びブーム弁 29のパイロット室 49aはパイ口 ット配管 77aを介して同じパイロット圧が作用する。また、パイロット室 75b及びブーム 弁 29のパイロット室 49bはパイロット配管 77bを介して同じパイロット圧が作用する。  [0071] Panels are provided in each of the pilot chambers 75a and 75b, and the speed increasing valve 33 is held at a neutral position (N). The same pilot pressure acts on the pilot chamber 75a and the pilot chamber 49a of the boom valve 29 via the pipe piping 77a. The same pilot pressure acts on the pilot chamber 75b and the pilot chamber 49b of the boom valve 29 via the pilot pipe 77b.
[0072] パイロット室 75a及びパイロット室 49a又はパイロット室 75b及びパイロット室 49bの 一方のパイロット室にノ ィロット圧が作用するときには、他方のパイロット室はタンク 23 に接続する。これにより、増速弁 33をブーム弁 29に同期させて切り換えることができ る。 [0072] The pilot room 75a and the pilot room 49a or the pilot room 75b and the pilot room 49b When pilot pressure acts on one pilot chamber, the other pilot chamber is connected to tank 23. Thus, the speed increasing valve 33 can be switched in synchronization with the boom valve 29.
[0073] 増速弁 33が下げ位置 (Ld)に切換わるのは、ブーム弁 29がパイロット圧を受けて下 げ位置 (L)又は浮き位置 (F)に切り換わり、同じパイロット圧を受けて増速弁 33が下 げ位置 (Ld)に切換わるときである。このとき、油圧ポンプ 21からの吐出圧油は、ブー ム弁 29を介してヘッド室 l ibに供給される。ボトム室 11aの圧油は、ボトム配管 37' a 、 37aを介してブーム弁 29からタンク 23に排出されるとともに、ボトム配管 37aから分 岐した配管 61、 73を介して配管 41を通り増速弁 33からタンク 23に排出される。  [0073] The speed-up valve 33 is switched to the lowered position (Ld) because the boom valve 29 is switched to the lowered position (L) or the floating position (F) by receiving the pilot pressure and receives the same pilot pressure. This is when the speed increasing valve 33 is switched to the lowered position (Ld). At this time, the discharge pressure oil from the hydraulic pump 21 is supplied to the head chamber lib through the boom valve 29. The pressurized oil in the bottom chamber 11a is discharged from the boom valve 29 to the tank 23 through the bottom pipes 37'a and 37a, and the speed is increased through the pipe 41 through the pipes 61 and 73 branched from the bottom pipe 37a. It is discharged from the valve 33 to the tank 23.
[0074] ブーム弁 29が中立位置 (N)にあり、増速弁 33も同じく中立位置 (N)にあるときは、 ポート 33bとポート 33aとの接続が遮断される。ブーム弁 29がパイロット圧を受けて上 げ位置 (H)に切り換わり、同じパイロット圧を受けて増速弁 33が上げ位置 (Hu)に切 換わると、油圧ポンプ 21からの吐出圧油は、ブーム弁 29及び増速弁 22を介してボト ム室 11aに供給される。ヘッド室 l ibの圧油は、ブーム弁 29からタンク 23に排出され る。  When the boom valve 29 is at the neutral position (N) and the speed increasing valve 33 is also at the neutral position (N), the connection between the port 33b and the port 33a is cut off. When the boom valve 29 receives the pilot pressure and switches to the raising position (H), and receives the same pilot pressure, the speed increasing valve 33 switches to the raising position (Hu), the discharge pressure oil from the hydraulic pump 21 becomes It is supplied to the bottom chamber 11a via the boom valve 29 and the speed increasing valve 22. The pressure oil in the head chamber l ib is discharged from the boom valve 29 to the tank 23.
[0075] 以上の説明において、パケット弁 30、ブーム弁 29、ライド弁 31及び増速弁 33が、 ノ ィロット圧により制御される例を説明したが、前記各弁の制御はパイロット圧により 制御されるものに限定されるものではなぐ電磁ソレノイドにより制御することもできる。 また、前記各弁のノ ィロット室又は電磁ソレノイド部は、それぞれの弁ブロックの外方 に配設することで着脱自在に取着することができる。これにより、各弁ブロックを小型 化することができ、パイロット室又は電磁ソレノイド部の整備性を向上させることができ る。  In the above description, an example has been described in which the packet valve 30, the boom valve 29, the ride valve 31, and the speed increasing valve 33 are controlled by the pilot pressure. However, the control of each of the valves is controlled by the pilot pressure. It is also possible to control with an electromagnetic solenoid which is not limited to this. Further, the pilot chamber or the electromagnetic solenoid of each valve can be removably attached by disposing outside the respective valve block. This makes it possible to reduce the size of each valve block and improve the ease of maintenance of the pilot chamber or the electromagnetic solenoid.
[0076] 配管 35は、パケット弁ボディ 30'とブーム弁ボディ 29'との合わせ面 Wl、ブーム弁 ボディ 29,とライド弁ボディ 31 'との合わせ面 W2、及びライド弁ボディ 31 'と増速弁 ボディ 33 'との合わせ面 W3をそれぞれ貫通して配管されている。また、配管 45bは、 ブーム弁ボディ 29,とライド弁ボディ 31,との合わせ面 W2を貫通して配管されて!、る 。配管 73、パイロット配管 77bは、それぞれブーム弁ボディ 29,とライド弁ボディ 31, との合わせ面 W2、及びライド弁ボディ 31 'と増速弁ボディ 33'との合わせ面 W3をそ れぞれ貫通して配管されている。供給油用配管 61は外部配管により配設されている [0076] The piping 35 is increased in speed with the mating surface Wl of the packet valve body 30 'and the boom valve body 29', the mating surface W2 of the boom valve body 29 and the ride valve body 31 ', and the ride valve body 31'. Pipes are respectively passed through the mating surfaces W3 with the valve bodies 33 '. Also, the pipe 45b is piped through the mating surface W2 of the boom valve body 29 and the ride valve body 31,! The piping 73 and the pilot piping 77b have a mating surface W2 between the boom valve body 29 and the ride valve body 31, and a mating surface W3 between the ride valve body 31 'and the booster valve body 33', respectively. Each pipe is penetrated. Oil supply piping 61 is provided by external piping
[0077] ノ ィロット配管 77a、 77bは、内部配管として構成することも外部配管として構成す ることちでさる。 [0077] The pilot pipes 77a and 77b can be configured as internal pipes or external pipes.
[0078] 走行振動抑制装置 20の構成として増速弁 33を積層配設した構成を説明したが、 増速弁 33は必ずしも設けなければならないものではなぐ作業車両が大きくなつたと きに、ブーム 5を迅速に作動させる目的で増設することができる。増速弁 33は、バケ ットの積載容量が大きくなり、これを作動するブームシリンダ 11の直径が太くなつても 、抵抗を少なくして圧油を供給することができる。  [0078] As a configuration of the traveling vibration suppressing device 20, the configuration in which the speed increasing valves 33 are stacked is described, but the speed increasing valve 33 is not necessarily provided. Can be added for quick operation. The speed-up valve 33 can supply pressurized oil with reduced resistance even if the load capacity of the bucket increases and the diameter of the boom cylinder 11 that operates the bucket increases.
[0079] 次に、走行振動抑制装置 20の作動について説明する。先ず、図 4、図 5、図 6を用 V、てライド弁 31の作動につ 、て説明し、次にホイールローダ 1につ 、て走行振動抑 制装置 20の振動抑制について説明する。  Next, the operation of the traveling vibration suppression device 20 will be described. First, the operation of the ride valve 31 will be described with reference to FIGS. 4, 5, and 6, and then the vibration suppression of the traveling vibration suppression device 20 will be described for the wheel loader 1. FIG.
[0080] 図 4はライド弁 31の構成を説明するため、ブーム弁 29及び増速弁 33の構成を省略 して示している。図 4に示すように、コントローラ 57から制御信号が出力させずライド 弁 31が非作動時において、比例制御弁 56bはライド弁 31のパイロット室 56aとタンク 23とを接続させて、パイロット室 56aに加わるパイロット圧を低圧にしている。ライド弁 31はパネ 55aの付勢力により走行振動抑制装置 20の非作動位置 (B)に位置する。  FIG. 4 omits the configurations of the boom valve 29 and the speed increasing valve 33 in order to explain the configuration of the ride valve 31. As shown in FIG. 4, when the control signal is not output from the controller 57 and the ride valve 31 is not operated, the proportional control valve 56b connects the pilot chamber 56a of the ride valve 31 to the tank 23 and the pilot chamber 56a is connected to the pilot chamber 56a. The applied pilot pressure is low. The ride valve 31 is located at the inoperative position (B) of the traveling vibration suppressing device 20 by the urging force of the panel 55a.
[0081] このとき、ライド弁 31は、チャージ用減圧弁 66で設定したチャージ圧に減圧した圧 力ポンプ 21の吐出圧油をアキュムレータ 27に供給し、アキュムレータ 27の圧力とし て蓄圧する。  At this time, the ride valve 31 supplies the discharge pressure oil of the pressure pump 21 reduced to the charge pressure set by the charge pressure reducing valve 66 to the accumulator 27 and accumulates the pressure as the pressure of the accumulator 27.
[0082] ライド弁 31の作動開始時には、図 6 (a)に示すように、コントローラ 57から比例制御 弁 56bに出力される制御電流を、時刻 T1から順次増加する。比例制御弁 56bはコン トローラ 57からの制御信号を受けて、ライド弁 31のパイロット室 56aと制御用ポンプ 5 9とを接続し、パイロット室 56aに供給するパイロット圧を漸次高圧にする。  At the start of the operation of the ride valve 31, as shown in FIG. 6A, the control current output from the controller 57 to the proportional control valve 56b is sequentially increased from time T1. The proportional control valve 56b receives the control signal from the controller 57, connects the pilot chamber 56a of the ride valve 31 to the control pump 59, and gradually increases the pilot pressure supplied to the pilot chamber 56a.
[0083] これにより、図 6 (b)に示すようにライド弁 31のスプールは、パネ 55aの付勢力に抗 してストローク量を増大させる。これにより、ライド弁 31は非作動位置 (B)から作動位 置 (A)に切換わっていく。このとき、図 6 (c)に示すように、ポート 31dとポート 31aとを 連通する開口面積 Saは、 A1の面積力 減少して時刻 T2において面積が零 (AO)の 状態となる。それ以降も面積が零 (AO)の状態が維持される。 [0083] Thereby, as shown in Fig. 6 (b), the spool of the ride valve 31 increases the stroke amount against the urging force of the panel 55a. As a result, the ride valve 31 switches from the non-operation position (B) to the operation position (A). At this time, as shown in FIG. 6 (c), the opening area Sa connecting the port 31d and the port 31a is reduced by the area force of A1 and becomes zero at time T2 (AO). State. After that, the area is kept at zero (AO).
[0084] 時刻 T2から時刻 T3までの間では、図 6 (d)に示すように、ポート 3 laとポート 3 lbと を連通する開口面積 Sbは、開口面積が零 (AO)の状態力 増加して時刻 T3におい て面積が A3の状態となる。また、このとき、図 6 (e)に示すように、ポート 31cとポート 3 leとを連通する開口面積 Scは、面積が零 (AO)の状態力 増加して時刻 T3におい て面積が A4の状態となる。  [0084] From time T2 to time T3, as shown in Fig. 6 (d), the opening area Sb that connects the port 3 la and the port 3 lb is increased when the opening area is zero (AO). Then, at time T3, the area becomes the state of A3. Also, at this time, as shown in FIG. 6 (e), the opening area Sc connecting the port 31c and the port 3le has a state force of zero (AO) and the area A4 at time T3 has an area of A4. State.
[0085] 尚、ポート 31cとポート 31eとが連通してヘッド室 l ibをタンク 23に接続する開口面 積 Scは、時刻 T2の時点から面積が A4となる全開状態とすることもできる。また、ライ ド弁 31の切換速度は、コントローラ 57から比例制御弁 56bに対して出力する制御電 流の大きさにより制御することができる。このため、制御電流の大きさを制御すること でライド弁 31の切換速度を自由に設定することができる。  [0085] The opening area Sc for connecting the head chamber l ib to the tank 23 through communication between the port 31c and the port 31e may be in a fully open state where the area becomes A4 from the time T2. The switching speed of the ride valve 31 can be controlled by the magnitude of the control current output from the controller 57 to the proportional control valve 56b. Therefore, the switching speed of the ride valve 31 can be freely set by controlling the magnitude of the control current.
[0086] 時刻 T3から時刻 T4までの間では制御電流を増加させながら比例制御弁 56bを制 御するが、時刻 T4に到達する前の時刻 T3において、ポート 31aとポート 31bとを連 通する開口面積 Sbは A3の一定値となり、またポート 31cとポート 31eとを連通する開 口面積 Scは A4の一定値となり、それ以上の開口面積の増加は行われない。時刻 T 4以降ではコントローラ 57から出力される制御電流が一定値になっている。  [0086] Between time T3 and time T4, the proportional control valve 56b is controlled while increasing the control current, but at time T3 before the time T4 is reached, the opening communicating the port 31a with the port 31b is opened. The area Sb has a constant value of A3, and the opening area Sc connecting the ports 31c and 31e has a constant value of A4. No further increase in the opening area is performed. After time T4, the control current output from the controller 57 has a constant value.
[0087] 図 5は、ライド弁 31のスプールのストローク量を横軸に開口面積を縦軸にとり、ポー ト 31dとポート 31aとを連通する開口面積 Sa、ポート 31aとポート 31bとを連通する開 口面積 Sb、及びポート 31cとポート 3 leとを連通する開口面積 Scに対するライド弁 3 1のスプールのストローク量の関係を示した図である。  FIG. 5 shows the opening area Sa that connects the port 31d and the port 31a, and the opening area that connects the port 31a and the port 31b, where the horizontal axis represents the stroke amount of the spool of the ride valve 31 and the vertical axis represents the opening area. FIG. 9 is a diagram showing the relationship between the opening amount Sb of the ride valve 31 and the opening amount Sc connecting the port 31c and the port 3le with the opening area Sb.
[0088] 図 5においては、ライド弁 31のスプールがストローク L1以上にストロークしたとき、ポ ート 31cとポート 31eとが連通してヘッド室 l ibをタンク 23に接続する開口面積 Scは 、面積が零 (AO)の状態力も面積が A4の状態に変わることを示している。即ち、図 6 の説明で上述したように、ポート 31cとポート 31eとが連通してヘッド室 l ibをタンク 23 に接続する開口面積 Scは、時刻 T2の時点力も面積が A4となり全開状態となってい る。  In FIG. 5, when the spool of the ride valve 31 strokes beyond the stroke L1, the opening area Sc connecting the port 31c and the port 31e to connect the head chamber l ib to the tank 23 is equal to the area Is zero (AO), which indicates that the force changes to the state of A4. That is, as described above with reference to FIG. 6, the opening area Sc in which the port 31c and the port 31e communicate with each other to connect the head chamber lib to the tank 23 has a force A at time T2, an area A4, and a fully open state. ing.
[0089] 図 5においても図 6 (e)に示したと同様に、ライド弁 31のスプールにおけるストローク 量がストローク L1から増加するに従って開口面積 Scを順次増加させることもできる。 [0090] これにより、ライド弁 31のスプールに対しては設定された所定量のストロークを得る ことができ、開口面積 Sb、 Scとして開口することのできる上限の面積 A3及び面積 A4 を確実に得ることができる。 In FIG. 5, similarly to FIG. 6 (e), the opening area Sc can be sequentially increased as the stroke amount of the spool of the ride valve 31 increases from the stroke L1. As a result, a predetermined stroke can be obtained for the spool of the ride valve 31, and the upper limit areas A3 and A4 that can be opened as the opening areas Sb and Sc can be reliably obtained. be able to.
[0091] ホイールローダ 1の走行が終了し、オペレータが比例制御弁 56bを制御する図示し ないスィッチを OFF操作することで、ライド弁 31は非作動位置 (B)に復帰する。この とき、開口面積 Saは零 (AO)の状態から A1の面積状態に復帰し、開口面積 Sb、 Sc はそれぞれ面積 A3及び面積 A4の状態力ゝら零 (AO)の状態に復帰する。  [0091] When the traveling of the wheel loader 1 is completed and the operator turns off a switch (not shown) for controlling the proportional control valve 56b, the ride valve 31 returns to the inoperative position (B). At this time, the opening area Sa returns from the state of zero (AO) to the area state of A1, and the opening areas Sb and Sc return to the state of zero (AO) from the state forces of the areas A3 and A4, respectively.
[0092] 次に、走行振動抑制装置 20を用いたホイールローダ 1の振動抑制について説明す る。例えば、ホイールローダ 1が掘削作業を行うときには、比例制御弁 56bを制御する 図示しないスィッチを OFF操作しておく。これにより、コントローラ 57は比例制御弁 5 6bに対して制御電流を出力せず、ライド弁 31は非作動位置 (B)に留まる。  Next, vibration suppression of the wheel loader 1 using the traveling vibration suppression device 20 will be described. For example, when the wheel loader 1 performs excavation work, a switch (not shown) that controls the proportional control valve 56b is turned off. As a result, the controller 57 does not output the control current to the proportional control valve 56b, and the ride valve 31 remains at the non-operation position (B).
[0093] このとき図 3に示すように、ブームシリンダ 11のボトム室 11aはブーム弁 29のポート 29aと増速弁 33のポート 33aとに接続し、ヘッド室 l ibはブーム弁 29のポート 29bに 接続している。この状態で、ブーム弁 29がパイロット圧により操作されると同時に増速 弁 33も操作され、油圧ポンプ 21の吐出圧油がブーム弁 29及び増速弁 33を介して ブームシリンダ 11に給排され、ブームシリンダ 11に対しての伸縮作動を行わせて掘 削作業を行うことができる。  [0093] At this time, as shown in FIG. 3, the bottom chamber 11a of the boom cylinder 11 is connected to the port 29a of the boom valve 29 and the port 33a of the speed increasing valve 33, and the head chamber l ib is connected to the port 29b of the boom valve 29. Connected to. In this state, the boom valve 29 is operated by the pilot pressure and the speed increasing valve 33 is operated at the same time, and the discharge pressure oil of the hydraulic pump 21 is supplied to and discharged from the boom cylinder 11 via the boom valve 29 and the speed increasing valve 33. The excavation work can be performed by causing the boom cylinder 11 to expand and contract.
[0094] ホイールローダ 1の走行時において、路面の起伏に応じてブームシリンダ 11の圧力 に脈動が発生するのを抑制するため、前記スィッチを ON操作する。これにより、コン トローラ 57から比例制御弁 56bに対して制御電流が出力され、ライド弁 31を作動位 置 (A)側に切換える。  [0094] When the wheel loader 1 travels, the switch is turned ON to suppress the pulsation of the pressure of the boom cylinder 11 due to the undulation of the road surface. As a result, a control current is output from the controller 57 to the proportional control valve 56b, and the ride valve 31 is switched to the operating position (A).
[0095] これにより、ライド弁 31のスプールは、制御された比例制御弁 56bが出力するパイ ロット圧によって所定量のストロークが得えられる。ライド弁 31のスプールにおけるスト ローク量に応じて、ライド弁 31におけるアキュムレータ 51とブームシリンダ 11のボトム 室 1 laとを連通する開口面積 Sbは、零 (AO)の状態から上限の開口面積 A3に増大 する。また、ブームシリンダ 11のヘッド室 l ibとタンク 23とを連通する開口面積 Scは、 図 6 (e)にお 、ては零 (AO)の状態から上限の開口面積 A4状態に増大する。図 5に お!、ては零 (AO)の状態から直接上限の開口面積 A4となって 、る。 [0096] ライド弁 31を作動位置 (A)に切り換えた状態で、ホイールローダ 1を走行させる。こ のときブーム弁 29及び増速弁 33は中立位置 (N)に切換えておく。これにより、ブー ム弁 29及びライド弁 31とブームシリンダ 11のボトム室 11aとの接続、びブーム弁 29と ヘッド室 l ibとの接続をともに遮断しておくことができる。 [0095] Thus, the spool of the ride valve 31 can obtain a predetermined amount of stroke by the pilot pressure output from the controlled proportional control valve 56b. According to the stroke amount of the spool of the ride valve 31, the opening area Sb that connects the accumulator 51 and the bottom chamber 1 la of the boom cylinder 11 in the ride valve 31 is changed from the zero (AO) state to the upper limit opening area A3. Increase. Further, in FIG. 6 (e), the opening area Sc connecting the head chamber l ib of the boom cylinder 11 and the tank 23 increases from the state of zero (AO) to the state of the upper limit opening area A4. In FIG. 5, the upper limit of the opening area is A4 directly from the state of zero (AO). [0096] The wheel loader 1 is run with the ride valve 31 switched to the operating position (A). At this time, the boom valve 29 and the speed increasing valve 33 are switched to the neutral position (N). Thereby, both the connection between the boom valve 29 and the ride valve 31 and the bottom chamber 11a of the boom cylinder 11, and the connection between the boom valve 29 and the head chamber l ib can be shut off.
[0097] ライド弁 31が作動位置 (A)にある状態でホイールローダ 1を走行させる。路面の起 伏状態、ホイールローダ 1の加速、減速により車体 7が振動する。これに伴って作業 装置 3を支持しているブーム 10が上下方向に回動しょうとして、ブーム 10を支持して V、るブームシリンダ 11のボトム室 1 laの油に圧力脈動を発生する。  [0097] The wheel loader 1 is run with the ride valve 31 in the operating position (A). The vehicle body 7 vibrates due to the ups and downs of the road surface and the acceleration and deceleration of the wheel loader 1. As a result, the boom 10 supporting the working device 3 tries to rotate in the vertical direction, and the pressure in the oil in the bottom chamber 1 la of the boom cylinder 11 supporting the boom 10 is generated.
[0098] ブームシリンダ 11のボトム室 11aは、ボトム配管 37aから分岐した配管 73を経てライ ド弁 31からアキュムレータ 27と連通する。このため、圧力損失が少ない状態で瞬間 に多量の流体を流すことができる。またこのとき、ヘッド室 l ibは、ヘッド配管 37bを介 してライド弁 31のポート 31c、ポート 31eからタンク 23に連通し、ヘッド室 l ib内の圧 油の給排を行うことができる。ブームシリンダ 11のボトム室 11aとアキュムレータ 27と の間で迅速な圧油の給排を行うことで、ブームシリンダ 11の圧力脈動を早急に抑制 することができる。  [0098] The bottom chamber 11a of the boom cylinder 11 communicates with the accumulator 27 from the ride valve 31 via a pipe 73 branched from the bottom pipe 37a. For this reason, a large amount of fluid can flow instantaneously with little pressure loss. Further, at this time, the head chamber lib communicates with the tank 23 from the port 31c and the port 31e of the ride valve 31 via the head pipe 37b, so that the pressure oil in the head chamber lib can be supplied and discharged. By quickly supplying and discharging pressure oil between the bottom chamber 11a of the boom cylinder 11 and the accumulator 27, pressure pulsation of the boom cylinder 11 can be suppressed promptly.
[0099] 本願発明の走行振動抑制装置では、大きな振動を発生する中型、大型のホイール ローダ 1に装着した場合でも、ブームシリンダ 11のボトム室 11aとアキュムレータ 27と の間において、ブームシリンダ 11の圧力脈動を迅速に抑制することができる。  [0099] In the running vibration suppressing device of the present invention, even when the device is mounted on a medium-sized or large-sized wheel loader 1 that generates large vibration, the pressure of the boom cylinder 11 is maintained between the bottom chamber 11a of the boom cylinder 11 and the accumulator 27. Pulsation can be suppressed quickly.
[0100] なお、上記説明では、アキュムレータ 27とブームシリンダ 11のボトム室 11aとを接続 するライド弁 31での開口面積 Sbが上限の開口面積 A3となっており、ブームシリンダ 11のヘッド室 l ibとタンク 23とを接続するライド弁 31での開口面積 Scが上限の開口 面積 A4となっている場合について説明を行った。しかし、ライド弁 31としては、開口 面積 Sbを上限の開口面積 A3まで開口させずに、開口面積 A3よりも小さな面積にし て使用することもできる。  In the above description, the opening area Sb of the ride valve 31 connecting the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 is the upper limit opening area A3, and the head chamber l ib of the boom cylinder 11 The case where the opening area Sc of the ride valve 31 connecting the tank and the tank 23 is the upper limit opening area A4 has been described. However, the ride valve 31 can be used with an opening area Sb smaller than the opening area A3 without opening the opening area Sb to the upper limit opening area A3.
実施例 2  Example 2
[0101] 次に、本願発明に係わる第 2実施例の走行振動抑制装置 20Aについて説明する。  Next, a traveling vibration suppressing device 20A according to a second embodiment of the present invention will be described.
図 7はライド弁 31Aと制御部の回路図を示し、図 8はライド弁 31Aのストローク量と開 口面積との関係を説明する図であり、図 9はタイムチャート図を示す。図 7はライド弁 3 1 Aの構成を説明するため、ブーム弁 29及び増速弁 33の構成を省略して示している FIG. 7 is a circuit diagram of the ride valve 31A and the control unit, FIG. 8 is a diagram illustrating the relationship between the stroke amount and the opening area of the ride valve 31A, and FIG. 9 is a time chart. Figure 7 shows the ride valve 3 1 In order to explain the configuration of A, the configurations of the boom valve 29 and the speed increasing valve 33 are omitted.
[0102] 実施例 2における走行振動抑制装置 20Aは、第 1実施例の走行振動抑制装置 20 に対して、主に、ライド弁 31Aの構成が一部異なっており、実施例 1と同一の部品に 対しては同一の符号を付すことで、その説明を省略している。 [0102] The traveling vibration suppressing device 20A of the second embodiment is different from the traveling vibration suppressing device 20 of the first embodiment mainly in the configuration of the ride valve 31A and is partially the same as that of the first embodiment. Are denoted by the same reference numerals, and description thereof is omitted.
[0103] 図 7において、走行振動抑制装置 20Aでは、ライド弁 31Aが 3位置に切換えられる 構成となっている。また、ブームシリンダ 11のボトム室 11aの圧力を検出するブーム 用圧力センサ 81と、アキュムレータ 27の圧力を検出するアキュムレータ用圧力セン サ 82が設けられている。コントローラ 57aは、両圧力センサ 81、 82からの信号を受け て比例制御弁 56bに対して制御信号を出力する。  [0103] In Fig. 7, the traveling vibration suppressing device 20A has a configuration in which the ride valve 31A is switched to three positions. Further, a boom pressure sensor 81 for detecting the pressure of the bottom chamber 11a of the boom cylinder 11 and an accumulator pressure sensor for detecting the pressure of the accumulator 27 are provided. The controller 57a outputs a control signal to the proportional control valve 56b by receiving signals from both the pressure sensors 81 and 82.
[0104] ライド弁 31Aは、実施例 1におけるライド弁 31の作動位置 (A)と非作動位置 (B)と の間に、ポート 3 laとポート 3 leを接続する接続位置 (C)を追加している。作動位置( A)と非作動位置 (B)とにおける構成は、実施例 1における構成と同様の構成を備え ているので、以下では接続位置 (C)の構成を中心に説明する。  [0104] The ride valve 31A has a connection position (C) for connecting the port 3 la and the port 3 le between the operation position (A) and the non-operation position (B) of the ride valve 31 in the first embodiment. are doing. Since the configuration at the operating position (A) and the non-operating position (B) have the same configuration as the configuration in the first embodiment, the configuration at the connection position (C) will be mainly described below.
[0105] 接続位置(C)においてライド弁 31Aは、ポート 31aとポート 31eとをライド弁 31A内 に形成した絞りを介して接続する。接続位置 (C)では、前記絞りを介してアキュムレ ータ 27の圧油をタンク 23に排出することができる。  [0105] At the connection position (C), the ride valve 31A connects the port 31a and the port 31e via a throttle formed in the ride valve 31A. At the connection position (C), the pressurized oil of the accumulator 27 can be discharged to the tank 23 via the throttle.
[0106] 実施例 2においては、アキュムレータ 27に蓄圧された圧力としては、作業装置 3の 質量による圧力と、パケットに積載する土砂の質量による圧力との和の最大圧力以上 の圧力が蓄圧されている。これにより、作業装置 3の質量が変化してブームシリンダ 1 1の圧力が変化しても、接続位置 (C)を使ってアキュムレータ 27の圧力を一部タンク 23に逃がすことができ、アキュムレータ 27の圧力を容易にブームシリンダ 11のボトム 室 1 laの圧力に適合した圧力とすることができる。  In the second embodiment, as the pressure accumulated in the accumulator 27, a pressure equal to or greater than the maximum pressure of the sum of the pressure due to the mass of the working device 3 and the pressure due to the mass of the earth and sand loaded on the packet is accumulated. I have. Thus, even if the mass of the working device 3 changes and the pressure of the boom cylinder 11 changes, part of the pressure of the accumulator 27 can be released to the tank 23 using the connection position (C), and the accumulator 27 The pressure can be easily adjusted to the pressure in the bottom chamber 1 la of the boom cylinder 11.
[0107] 次に、走行振動抑制装置 20Aの作動について説明する。先ず、図 7、図 8、図 9を 用いてライド弁 31Aの作動について説明し、次にホイールローダ 1に装備した走行振 動抑制装置 20Aによるブームシリンダ 11の圧力脈動を抑制する作用について説明 する。  Next, the operation of the traveling vibration suppression device 20A will be described. First, the operation of the ride valve 31A will be described with reference to FIGS. 7, 8, and 9, and then the operation of suppressing the pressure pulsation of the boom cylinder 11 by the traveling vibration suppression device 20A provided in the wheel loader 1 will be described. .
[0108] 図 7に示すように、実施例 1と同様に走行振動抑制装置 20Aの非作動時において は、コントローラ 57aは比例制御弁 56bを低圧にして、ライド弁 31 Aを非作動位置 (B )にする。このとき、ポート 31dとポート 31aとの開口面積 Saは面積 A1の状態で接続 し、油圧ポンプ 21の吐出圧油をチャージ用減圧弁 66で設定した圧力に減圧したの ちアキュムレータ 27に蓄圧することができる。 [0108] As shown in Fig. 7, when the traveling vibration suppression device 20A is not operating, as in the first embodiment. In other words, the controller 57a lowers the pressure of the proportional control valve 56b and sets the ride valve 31A to the non-operation position (B). At this time, the opening area Sa between the port 31d and the port 31a is connected in the state of the area A1, the discharge pressure oil of the hydraulic pump 21 is reduced to the pressure set by the charging pressure reducing valve 66, and then accumulated in the accumulator 27. Can be.
[0109] 作動時には、コントローラ 57aは、図 9に示す時刻 T11から時刻 T13までの間にお いて比例制御弁 56bに対して、図 9 (a)に示すような制御電流を順次増加して出力す る。比例制御弁 56bはコントローラ 57aからの制御信号を受けて、ライド弁 31Aのパイ ロット室 56aに対して制御用ポンプ 59のパイロット圧を漸次高圧にして供給する。  [0109] During operation, the controller 57a sequentially increases and outputs a control current as shown in FIG. 9 (a) to the proportional control valve 56b from time T11 to time T13 shown in FIG. You. The proportional control valve 56b receives the control signal from the controller 57a, and supplies the pilot pressure of the control pump 59 to the pilot chamber 56a of the ride valve 31A while gradually increasing the pilot pressure.
[0110] これにより、図 9 (b)に示すようにライド弁 31 Aのスプールは、そのストローク量を増 大させ、図 8及び図 9 (c)に示すように、ポート 31dとポート 31aとを連通する開口面積 Saを開口面積 A1の状態力も順次減少させる。  As a result, as shown in FIG. 9 (b), the spool of the ride valve 31A increases its stroke, and as shown in FIGS. 8 and 9 (c), the port 31d and the port 31a The opening force of the opening area A1 is also gradually reduced.
[0111] ライド弁 31Aのスプールのストローク量力Lhalfとなる途中のストローク量 L1になった とき、即ち図 9における時刻 T12では、ポート 31dとポート 31aとを連通する開口面積 Saは零 (AO)となる。また、時刻 T12以降においても開口面積 Saは零 (AO)の状態 が維持される。  [0111] When the stroke amount of the spool of the ride valve 31A reaches the stroke amount L1 on the way to the force Lhalf, that is, at time T12 in Fig. 9, the opening area Sa communicating the port 31d and the port 31a becomes zero (AO). Become. Further, even after time T12, the opening area Sa is maintained at zero (AO).
[0112] 時刻 T12から時刻 T13の間では、コントローラ 57aは制御電流を増加させ、ライド弁 31 Aを図 7の接続位置(C)とする。このとき、ライド弁 31 Aのスプールは、図 8 (b)に 示すようにストローク量を最大ストローク量 Lmaxの半分 Lhalほで漸次増大させる。ま た、図 8 (d)に示すように、ポート 3 laとポート 3 leとを連通する開口面積 Sdを増大さ せ、時刻 T13において面積 Anとする。  [0112] From time T12 to time T13, the controller 57a increases the control current, and sets the ride valve 31A to the connection position (C) in FIG. At this time, the spool of the ride valve 31A gradually increases the stroke amount near half the maximum stroke amount Lmax Lhal as shown in FIG. 8B. Further, as shown in FIG. 8D, the opening area Sd connecting the port 3 la and the port 3 le is increased, and the area An is set at the time T13.
[0113] 時刻 T13から時刻 T14の間隔は、アキュムレータ 27の圧力をボトム室 11aの圧力 に減圧する期間であり、同期間内は圧力センサ 82で検出したアキュムレータ 27の圧 力と圧力センサ 81で検出したボトム室 11aの圧力との差圧の大きさによって決定され る。時刻 T14から時刻 T15の間で、ライド弁 31 Aのスプールは、図 8 (b)に示すように ストローク量をストローク量 Lhal も漸次増大させながら、図 8 (d)に示すように、ポー ト 31aとポート 31eとを連通する開口面積 Sdを減少させ、時刻 T15において面積を零 (AO)とする。これにより、アキュムレータ 27の圧力をボトム室 11aの圧力と等しい圧 力にすることができる。 [0114] 時刻 T15以降は、実施例 1における時刻 T2以降と同様の制御が行われる。このた め、時刻 T15以降についての説明は、実施例 1における時刻 T2以降の説明をもって 省略する。ライド弁 31 Aのスプールの切換速度は、コントローラ 57aから比例制御弁 5 6bに出力する制御電流の大きさによって制御することができる。実施例 1の場合と同 様に制御電流の大きさを制御することで、ライド弁 31 Aの切換速度を自由に設定す ることがでさる。 [0113] The interval from time T13 to time T14 is a period during which the pressure of the accumulator 27 is reduced to the pressure of the bottom chamber 11a. During the same period, the pressure of the accumulator 27 detected by the pressure sensor 82 and the pressure of the accumulator 27 are detected by the pressure sensor 81. It is determined by the magnitude of the pressure difference from the pressure in the bottom chamber 11a. Between the time T14 and the time T15, the spool of the ride valve 31A gradually increases the stroke amount Lhal as shown in FIG. 8 (b) while the stroke amount Lhal is gradually increased as shown in FIG. 8 (d). The opening area Sd communicating the port 31e with the port 31e is reduced, and the area is set to zero (AO) at time T15. Thereby, the pressure of the accumulator 27 can be made equal to the pressure of the bottom chamber 11a. [0114] After time T15, the same control as that after time T2 in the first embodiment is performed. For this reason, the description after time T15 is omitted with the description after time T2 in the first embodiment. The switching speed of the spool of the ride valve 31A can be controlled by the magnitude of the control current output from the controller 57a to the proportional control valve 56b. By controlling the magnitude of the control current in the same manner as in the first embodiment, the switching speed of the ride valve 31A can be set freely.
[0115] ホイールローダ 1の走行が終了し、オペレータが比例制御弁 56bを制御する図示し ないスィッチを OFF操作すると、ライド弁 31 Aは非作動位置 (B)に復帰する。このとき 、開口面積 Saは零 (AO)の状態から A1の開口面積状態に復帰し、開口面積 Sb、 Sc はそれぞれ開口面積 A3及び開口面積 A4の状態力 零 (AO)の状態に復帰する。  [0115] When the traveling of the wheel loader 1 is completed and the operator turns off a switch (not shown) for controlling the proportional control valve 56b, the ride valve 31A returns to the inoperative position (B). At this time, the opening area Sa returns from the state of zero (AO) to the state of the opening area of A1, and the opening areas Sb and Sc return to the state of zero force (AO) of the opening areas A3 and A4, respectively.
[0116] 次に、走行振動抑制装置 20Aの作動についてホイールローダ 1の運搬作業を用い て説明するが、実施例 1と略同様な作動を行うことができるため、異なっている作動を 中心に説明する。  [0116] Next, the operation of the traveling vibration suppression device 20A will be described using the transport operation of the wheel loader 1, but the operation that is substantially the same as that of the first embodiment can be performed. I do.
[0117] ホイールローダ 1の走行時において、オペレータが比例制御弁 56bを制御する図示 しないスィッチを ON操作すると、コントローラ 57aは、作業装置 3が積載している土砂 量に応じて生じたブームシリンダ 11のボトム室 1 laにおける圧力 Pbをブーム用圧力 センサ 81からの検出圧力として入力する。また、アキュムレータ 27に蓄圧されている アキュムレータ圧 Paをアキュムレータ用圧力センサ 82からの検出圧力として入力す る。  [0117] When the operator turns on a switch (not shown) that controls the proportional control valve 56b while the wheel loader 1 is traveling, the controller 57a causes the boom cylinder 11 generated according to the amount of sediment loaded on the working device 3 to move. The pressure Pb in the bottom chamber 1 la is input as the detected pressure from the boom pressure sensor 81. Further, the accumulator pressure Pa stored in the accumulator 27 is input as the detection pressure from the accumulator pressure sensor 82.
[0118] コントローラ 57aは、ボトム室 11aの圧力 Pbとアキュムレータ圧 Paとの差圧を求め、 差圧が大きいときには比例制御弁 56bに対して制御電流を出力し、ライド弁 31Aのス プールを図 9 (b)に示すハーフストロークのストローク量 Lhalfにする。これにより、ライ ド弁 31 Aは(C)位置となり、アキュムレータ 27の圧力が減圧される。  [0118] The controller 57a obtains a differential pressure between the pressure Pb of the bottom chamber 11a and the accumulator pressure Pa. When the differential pressure is large, the controller 57a outputs a control current to the proportional control valve 56b to plot the spool of the ride valve 31A. 9 Set the stroke amount of the half stroke shown in (b) to Lhalf. As a result, the ride valve 31A is at the position (C), and the pressure in the accumulator 27 is reduced.
[0119] コントローラ 57aは、ボトム室 11aの圧力 Pbとアキュムレータ圧 Paの差圧が所定の 許容範囲内になるまでライド弁 31 Aを (C)位置に維持する。差圧が許容範囲内にな ると再度比例制御弁 56bに対して制御電流を出力し、ライド弁 31 Aのスプールを最 大ストローク量 Lmaxまでストロークさせる。  [0119] The controller 57a maintains the ride valve 31A at the (C) position until the pressure difference between the pressure Pb of the bottom chamber 11a and the accumulator pressure Pa falls within a predetermined allowable range. When the differential pressure falls within the allowable range, the control current is output again to the proportional control valve 56b, and the spool of the ride valve 31A is moved up to the maximum stroke amount Lmax.
[0120] ライド弁 31Aは、作動位置 (A)となり、アキュムレータ 27とブームシリンダ 11のボトム 室 11aとを開口面積 A3で接続し、タンク 23とブームシリンダ 11のヘッド室 l ibとを開 口面積 A4で接続する。 [0120] The ride valve 31A is in the operating position (A), and the accumulator 27 and the bottom of the boom cylinder 11 The chamber 11a is connected with an opening area A3, and the tank 23 and the head chamber lib of the boom cylinder 11 are connected with an opening area A4.
[0121] ライド弁 31Aを作動位置 (A)にしてホイールローダを走行させると、実施例 1と同様 に、例えばタイヤが石に乗りブーム 10が突き上げられたときに生じるブームシリンダ 1 1のボトム室 11aの圧力変動を抑制することができる。し力も、アキュムレータ 27の圧 力をボトム室 1 laの圧力とほぼ等 U、圧力にしてから、アキュムレータ 27とボトム室 11 aとを接続するので、アキュムレータ 27との接続時にブームシリンダ 11が急激に伸長 することを防止することができる。  [0121] When the wheel loader is run with the ride valve 31A in the operating position (A), the bottom chamber of the boom cylinder 11 that is generated when the boom 10 is pushed up by a boom 10 as in the case of the tire, for example, as in the first embodiment. The pressure fluctuation of 11a can be suppressed. The accumulator 27 is connected to the accumulator 27 and the bottom chamber 11a after the pressure of the accumulator 27 is almost equal to the pressure of the bottom chamber 1 la, and then the boom cylinder 11 is suddenly moved when the accumulator 27 is connected. Extension can be prevented.
[0122] なお、上記説明では、ライド弁 31Aにおける開口面積 Sbを開口することのできる上 限の開口面積 A3とし、開口面積 Scも開口することのできる上限の面積 A4とした状態 での走行振動抑制装置の作動を説明した。しかし、ボトム室 11aの圧力上昇時には 開口面積 Sbを上限の開口面積 A3のままとして使用することで、流路抵抗が少なくい 状態でボトム室 11aの圧力を迅速にアキュムレータ 27で吸収させ、ボトム室 11aの圧 力下降時には開口面積 Sbにおける上限の面積を面積 A3よりも小さな開口面積にし て、抵抗を若干大きくしてゆっくりとアキュムレータ力もの圧油をボトム室 11aに供給 するようにしても良い。  [0122] In the above description, the traveling vibration in a state where the opening area Sb of the ride valve 31A is set to the upper limit opening area A3 that can be opened, and the opening area Sc is set to the upper limit area A4 that can be opened. The operation of the suppression device has been described. However, when the pressure in the bottom chamber 11a rises, the opening area Sb is kept at the upper limit opening area A3, so that the pressure in the bottom chamber 11a is quickly absorbed by the accumulator 27 while the flow path resistance is small, and the bottom chamber 11a is used. At the time of the pressure drop of 11a, the upper limit area of the opening area Sb may be set to an opening area smaller than the area A3, the resistance may be slightly increased, and the pressure oil having the accumulator force may be slowly supplied to the bottom chamber 11a.
実施例 3  Example 3
[0123] 次に、本願発明に係わる実施例 3の走行振動抑制装置 20Bを説明する。図 10はラ イド弁 31Bと制御部の回路図を示し、図 11はライド弁 31Bのストロークと開口面積と の関係を説明する図であり、図 12はタイムチャート図を示す。なお、走行振動抑制装 置 20Bは、第 1走行振動抑制装置 20に対して、主に、ライド弁 31Bの構成が一部異 なっており、実施例 1と同一の部品に対しては同一の符号を付すことで、その説明を 省略している。図 10はライド弁 31Bの構成を説明するため、ブーム弁 29及び増速弁 33の構成を省略して示して!/、る。  [0123] Next, a traveling vibration suppressing device 20B according to a third embodiment of the present invention will be described. FIG. 10 is a circuit diagram of the ride valve 31B and the control unit, FIG. 11 is a diagram for explaining the relationship between the stroke and the opening area of the ride valve 31B, and FIG. 12 is a time chart. The traveling vibration suppressing device 20B differs from the first traveling vibration suppressing device 20 mainly in the configuration of the ride valve 31B, and the same components as in the first embodiment are the same. The description is omitted by attaching reference numerals. FIG. 10 omits the configurations of the boom valve 29 and the speed increasing valve 33 to explain the configuration of the ride valve 31B.
[0124] 図 10において、走行振動抑制装置 20Bでは、ライド弁 31Bが 3位置で切換えられ る構成となっている。また、ブームシリンダ 11のボトム室 11aの圧力を検出するブーム 用圧力センサ 81と車両の走行状態を検出する走行状態検出センサ 84が設けられて いる。コントローラ 57bは、ブーム用圧力センサ 81と走行状態検出センサ 84からの信 号を受けて比例制御弁 56bに対して制御信号を出力する。 [0124] In Fig. 10, the traveling vibration suppressing device 20B has a configuration in which the ride valve 31B is switched at three positions. Further, a boom pressure sensor 81 for detecting the pressure of the bottom chamber 11a of the boom cylinder 11 and a running state detecting sensor 84 for detecting the running state of the vehicle are provided. The controller 57b receives signals from the boom pressure sensor 81 and the traveling state detection sensor 84. And outputs a control signal to the proportional control valve 56b.
[0125] ライド弁 31Bは、実施例 1であるライド弁 31の作動位置 (A)位置と非作動位置 (B) との間にポート 31aとポート 31bとを接続する接続位置 (D)が追加されている。即ち、 ライド弁 31Bの接続位置(D)では、アキュムレータ 27とブームシリンダ 11のボトム室 1 laとを可変絞り 86を介して接続して 、る。  [0125] The ride valve 31B has a connection position (D) for connecting the port 31a and the port 31b between the operation position (A) and the non-operation position (B) of the ride valve 31 of the first embodiment. Have been. That is, at the connection position (D) of the ride valve 31B, the accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 are connected via the variable throttle 86.
[0126] 可変絞り 86としては、例えば、ライド弁 31Bのスプールにポート 31aからポート 31b に向けたテーパ形状のスリット溝等を前記スプールの円周方向に複数個設け、前記 スプールの移動に伴う前記複数個のスリット溝の開口面積変化により、ポート 31aとポ ート 31bとを連通する開口面積 Saを可変にすることができる。  As the variable throttle 86, for example, a plurality of tapered slit grooves or the like extending from the port 31a to the port 31b are provided on the spool of the ride valve 31B in the circumferential direction of the spool, and the variable throttle 86 is moved along with the movement of the spool. By changing the opening area of the plurality of slit grooves, the opening area Sa communicating the port 31a and the port 31b can be made variable.
[0127] 走行状態検出センサ 84としては、例えば、速度センサ、変速機の速度段とエンジン の回転速度とを検出できるセンサ、変速機の速度段とアクセルペタルのストローク位 置とを検出できるセンサ、また、車両の加速および減速を検出する加速度検出セン サ、車両の現在位置を検出できる GPS (全地球測位システム)センサ等の車両の走 行状態が検出できるセンサーを用いることができる。  [0127] Examples of the traveling state detection sensor 84 include a speed sensor, a sensor that can detect the speed stage of the transmission and the rotational speed of the engine, a sensor that can detect the speed stage of the transmission and the stroke position of the accelerator petal, In addition, sensors that can detect the running state of the vehicle, such as an acceleration detection sensor that detects acceleration and deceleration of the vehicle and a GPS (Global Positioning System) sensor that can detect the current position of the vehicle, can be used.
[0128] ライド弁 31Bを非作動にする時には、実施例 1と同様にコントローラ 57bは比例制御 弁 56bから出力するパイロット圧を低圧にして、ライド弁 31Bを非作動位置 (B)に位 置させる。これにより、ポート 31dとポート 31aとを連通する開口面積 Saを面積 A1とし て、チヤ一 ジ用減圧弁 66を介して油圧ポンプ 21とアキュムレータ 27とが接続される  When the ride valve 31B is deactivated, the controller 57b lowers the pilot pressure output from the proportional control valve 56b to position the ride valve 31B at the non-operation position (B) as in the first embodiment. . As a result, the hydraulic pump 21 and the accumulator 27 are connected via the charging pressure reducing valve 66 with the opening area Sa connecting the port 31d and the port 31a as the area A1.
[0129] ライド弁 31Bを作動させる時には、走行状態検出センサ 84とブーム用圧力センサ 8 1とから得たそれぞれの検出情報に基づいて、コントローラ 57bは比例制御弁 56bか ら出力されるパイロット圧が所定の圧力となるように制御する。これにより、ライド弁 31 Bは接続位置(D)に切換わり、アキュムレータ 27とブームシリンダ 11のボトム室 11aと は可変絞り 86を介して接続する。 [0129] When operating ride valve 31B, controller 57b determines the pilot pressure output from proportional control valve 56b based on the respective detection information obtained from traveling state detection sensor 84 and boom pressure sensor 81. Control is performed so that a predetermined pressure is obtained. Thereby, the ride valve 31B is switched to the connection position (D), and the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are connected via the variable throttle 86.
[0130] このとき、コントローラ 57bは比例制御弁 56bに対して、例えば、車速が速いとき、及 び Z又は積載重量が大きいときには可変絞り 86の開口面積が小さくなるように制御 して、絞りを強くする。反対に車速が遅いとき、及び Z又は積載重量が小さいときに は可変絞り 86の開口面積が大きくなるように制御して、絞りを弱くする。 [0131] ライド弁 31Bの作動について、図 11のストロークと開口面積との関係図、及び図 12 のタイムチャートを用いて説明する。 [0130] At this time, the controller 57b controls the proportional control valve 56b such that, for example, when the vehicle speed is high, and when Z or the load weight is large, the opening area of the variable throttle 86 is reduced, and the throttle is controlled. Strengthen. Conversely, when the vehicle speed is low, and when the Z or the load weight is small, the aperture of the variable aperture 86 is controlled to be large so that the aperture is weakened. [0131] The operation of the ride valve 31B will be described with reference to the relationship diagram between the stroke and the opening area in Fig. 11 and the time chart in Fig. 12.
[0132] コントローラ 57bは、図 12 (a)に示すように、時刻 T21から時刻 T24までの間、制御 電流を順次増加して比例制御弁 56bに対して出力している。比例制御弁 56bはコン トローラ 57bからの制御信号を受けて、ライド弁 31Bのパイロット室 56aに供給するパ ィロット圧を漸次高圧にする。  As shown in FIG. 12 (a), the controller 57b sequentially increases the control current and outputs the control current to the proportional control valve 56b from time T21 to time T24. The proportional control valve 56b receives a control signal from the controller 57b and gradually increases the pilot pressure supplied to the pilot chamber 56a of the ride valve 31B.
[0133] コントローラ 57bは、可変絞り 86の開口面積を大きくする場合には、図 12 (a)の実 線 (I)で示すように、勾配の大きな制御電流を比例制御弁 56bに出力する。可変絞り 86の開口面積を小さくする場合には、時刻 T22から 2点鎖線 (II)で示すように、勾配 の小さな制御電流を比例制御弁 56bに対して出力する。  When increasing the opening area of the variable stop 86, the controller 57b outputs a control current having a large gradient to the proportional control valve 56b as shown by a solid line (I) in FIG. When the opening area of the variable throttle 86 is reduced, a control current having a small gradient is output from the time T22 to the proportional control valve 56b as shown by a two-dot chain line (II).
[0134] 可変絞り 86の開口面積を小さくする場合において、コントローラ 57bからの制御電 流を時刻 T21から勾配の小さな制御電流として比例制御弁 56bに対して出力するこ ともできる。しかし、油圧ポンプ 21とアキュムレータ 27との接続を遮断するまでの時間 、即ち、ライド弁 31Bのスプールがストローク量 L1となるまでの時間を短くする上から も、時刻 T22から勾配の小さな制御電流をコントローラ 57bから比例制御弁 56bに対 して出力させることが望まし!/、。  In the case where the opening area of the variable throttle 86 is reduced, the control current from the controller 57b may be output to the proportional control valve 56b as a control current having a small gradient from time T21. However, in order to shorten the time required for disconnecting the connection between the hydraulic pump 21 and the accumulator 27, that is, the time required for the spool of the ride valve 31B to reach the stroke amount L1, the control current having a small gradient from time T22 is also required. It is desirable to output from the controller 57b to the proportional control valve 56b!
[0135] これにより、ライド弁 31Bのスプールは、図 12 (b)に示すようにそのストローク量が増 大していく。図 11に示すように、ライド弁 31Bのスプールのストローク量が L1を超える と、即ち、図 12 (c)の実線においては時刻 T22以降において、ポート 31dからポート 3 laへの開口面積 Saを面積零 (AO)にする。  [0135] As a result, the stroke of the spool of the ride valve 31B increases as shown in FIG. 12 (b). As shown in FIG. 11, when the stroke of the spool of the ride valve 31B exceeds L1, that is, in the solid line of FIG. 12 (c), the opening area Sa from the port 31d to the port 3la is changed from the time T22 to the area Sa after the time T22. Zero (AO).
[0136] 時刻 T22から時刻 T24の間では、コントローラ 57bは、引き続き制御電流を増加さ せ、ライド弁 31Bのスプールはストローク量を増大させていき、ライド弁 31Bのスプー ルのストローク量が L1を超えると、ライド弁 31Bは図 10の接続位置(D)に切換わる。  [0136] From the time T22 to the time T24, the controller 57b continues to increase the control current, the spool of the ride valve 31B increases the stroke amount, and the stroke amount of the spool of the ride valve 31B decreases to L1. If it exceeds, the ride valve 31B switches to the connection position (D) in FIG.
[0137] ライド弁 31Bのスプールのストローク量が L1よりも増加することによって、ライド弁 31 Bは、図 11及び図 12 (d)、(e)に示すように、ポート 31aとポート 31bとの開口面積 Sb 及びポート 31cとポート 31eの開口面積 Scを漸次増加させる。ポート 31cとポート 31e の開口面積 Scは、図 11に示すようにライド弁 31Bのスプールがストローク量 L1を超 えたとき、面積 A4〖こ全開させることもできる。 [0138] またこのとき、コントローラ 57bは、ブーム用圧力センサ 81および走行状態検出セン サ 84からの検出信号に応じた制御電流を比例制御弁 56bに出力し、比例制御弁 56 bから出力されるパイロット圧の圧力を制御する。例えば、コントローラ 57bは、前記の ように可変絞り 86の開口面積を大きくする場合には、図 12 (a)の実線 (I)で示すよう に、勾配の大きな制御電流を比例制御弁 56bに出力する。可変絞り 86の開口面積 を小さくする場合には、 2点鎖線 (II)で示すように、勾配の小さな制御電流を比例制 御弁 56bに出力する。 [0137] When the stroke amount of the spool of the ride valve 31B is larger than L1, the ride valve 31B is connected to the port 31a and the port 31b as shown in Figs. 11 and 12 (d) and (e). The opening area Sb and the opening areas Sc of the ports 31c and 31e are gradually increased. As shown in FIG. 11, the opening area Sc of the port 31c and the port 31e can be fully opened when the spool of the ride valve 31B exceeds the stroke amount L1. At this time, the controller 57b outputs a control current corresponding to the detection signals from the boom pressure sensor 81 and the traveling state detection sensor 84 to the proportional control valve 56b, and outputs the control current from the proportional control valve 56b. Control the pilot pressure. For example, when increasing the aperture area of the variable throttle 86 as described above, the controller 57b outputs a control current having a large gradient to the proportional control valve 56b as shown by a solid line (I) in FIG. I do. When the opening area of the variable throttle 86 is reduced, a control current having a small gradient is output to the proportional control valve 56b as shown by a two-dot chain line (II).
[0139] ライド弁 31Bのスプールは、時刻 T22から時刻 T23まで間、図 12 (a)の実線(I)に 示すように制御電流が大き 、場合には、図 12 (b)の実線で示すようにストローク量が 大きくなる。これにより、図 12 (d)に示すようにブームシリンダ 11とアキュムレータ 27 の開口面積 Sbは、実線 (III)のごとく面積 A3まで大きくすることができる。  [0139] From time T22 to time T23, the spool of the ride valve 31B has a large control current as shown by a solid line (I) in FIG. 12 (a), and in the case shown by a solid line in FIG. 12 (b). Thus, the stroke amount increases. Thereby, as shown in FIG. 12D, the opening area Sb of the boom cylinder 11 and the accumulator 27 can be increased to the area A3 as shown by the solid line (III).
[0140] 図 12 (a)の 2点鎖線 (II)で示すように制御電流が小さい場合には、ライド弁 31Bの スプールは、図 12 (b)の 2点鎖線で示すごとくストローク量が小さくなる。ブームシリン ダ 11とアキュムレータ 27の開口面積 Sbは、図 12 (d)の 2点鎖線 (IV)に示すように面 積 A3よりも小さな面積 Anまで大きくすることができる。  When the control current is small as shown by the two-dot chain line (II) in FIG. 12 (a), the spool of the ride valve 31B has a small stroke amount as shown by the two-dot chain line in FIG. 12 (b). Become. The opening area Sb of the boom cylinder 11 and the accumulator 27 can be increased to an area An smaller than the area A3 as shown by a two-dot chain line (IV) in FIG.
[0141] 同様に、図 12 (e)に示すようにタンク 23とブームシリンダ 11のヘッド室 lbとを連通 する開口面積 Scは、制御電流が大きいときには点線 (V)に示すように面積 A4まで大 きくすることができる。制御電流が小さいときには、 2点鎖線 (VI)のように面積 A4より も小さな面積 Arまで大きくすることができる。  [0141] Similarly, as shown in Fig. 12 (e), the opening area Sc connecting the tank 23 and the head chamber lb of the boom cylinder 11 has an area A4 as shown by the dotted line (V) when the control current is large. It can be large. When the control current is small, it can be increased to an area Ar smaller than the area A4 as shown by the two-dot chain line (VI).
[0142] 図 12 (b)の実線では時刻 T23を越えると、また、図 12 (b)の 2点鎖線では、時刻 T2 4を超えると、ライド弁 31Bのスプールは一定のストローク量となり、開口面積 Sb、 Sc も一定となる。開口面積 Sb、 Scとして開口することのできる上限の開口面積は、ブー ム用圧力センサ 81及び走行状態検出センサ 84からの検出信号に対応して予め記 憶されている制御電流値により、実線 (III)と 2点鎖線 (IV)との間における開口面積及 び実線 (III)と 2点鎖線 (IV)との間における開口面積力 適宜の開口面積を選択する ことができる。  [0142] In the solid line in Fig. 12 (b), after time T23, and in the two-dot chain line in Fig. 12 (b), after time T24, the spool of the ride valve 31B has a constant stroke amount, Areas Sb and Sc are also constant. The upper limit opening area that can be opened as the opening areas Sb and Sc is determined by a control current value stored in advance corresponding to detection signals from the boom pressure sensor 81 and the traveling state detection sensor 84 by a solid line ( The opening area between III) and the two-dot chain line (IV) and the opening area force between the solid line (III) and the two-dot chain line (IV) can be selected as appropriate.
[0143] また、時刻 T24から時刻 T25の間で、例えば、積載重量が途中で軽くなりブーム用 圧力センサ 81からの検出圧力が小さくなつたときなどには、コントローラ 57bから検出 圧力に対応した制御電流を比例制御弁 56bに出力して、開口面積 Sb、 Scとして開 口することのできる上限の開口面積をそれぞれ図 12 (d)、 (e)に示すように開口面積 An、開口面積 Arの状態から開口面積 Awl、開口面積 Arlに変更させることができる [0143] Also, between time T24 and time T25, for example, when the load weight is reduced halfway and the detection pressure from the boom pressure sensor 81 decreases, the controller 57b detects the load. The control current corresponding to the pressure is output to the proportional control valve 56b, and the upper limit opening areas that can be opened as the opening areas Sb and Sc are as shown in Figs. 12 (d) and (e), respectively. , The opening area Awl and the opening area Arl can be changed from the state of the opening area Ar
[0144] 逆に、例えば、積載重量が途中で重くなりブーム用圧力センサ 81からの検出圧力 が大きくなつたときなどには、コントローラ 57bから検出圧力に対応した制御電流を比 例制御弁 56bに出力して、開口面積 Sbとして開口することのできる上限の開口面積 を図 11に示すように面積 Awsに減少させることもできる。同様に開口面積 Scとして開 口することのできる上限の開口面積を減少させることもできる。 [0144] Conversely, for example, when the load becomes heavier on the way and the detected pressure from the boom pressure sensor 81 increases, the controller 57b supplies a control current corresponding to the detected pressure to the proportional control valve 56b. The upper limit opening area which can be output and opened as the opening area Sb can be reduced to the area Aws as shown in FIG. Similarly, the upper limit opening area that can be opened as the opening area Sc can be reduced.
[0145] コントローラ 57bは、時刻 T25から時刻 T26までは、時刻 T21力も時刻 T24のときと は逆の信号を出力して、実施例 1と同様に、ブームシリンダ 11とアキュムレータ 27と の開口面積 Sb及びブームシリンダ 11とタンク 23との開口面積 Scを、ライド弁 31Bの スプールのストローク量を L1に戻したときにそれぞれの開口面積を零に戻し、アキュ ムレータ 27のボトム室 11aと油圧ポンプ 21とを連通する開口面積 Saを、ライド弁 31B のスプールのストローク量力LOに戻ったとき開口面積 A1に戻すことができる。  [0145] From time T25 to time T26, the controller 57b outputs a signal whose time T21 force is the reverse of that at the time T24, and similarly to the first embodiment, the opening area Sb between the boom cylinder 11 and the accumulator 27. The opening area Sc of the boom cylinder 11 and the tank 23 is returned to zero when the stroke amount of the spool of the ride valve 31B is returned to L1, and the opening area of each is returned to zero, and the bottom chamber 11a of the accumulator 27 and the hydraulic pump 21 Can be returned to the opening area A1 when returning to the stroke stroke force LO of the spool of the ride valve 31B.
[0146] 次に、走行振動抑制装置 20Bの作動についてホイールローダ 1の運搬作業を用い て説明するが、第 1実施例と略同様な作動を行えるため、走行時における異なってい る作動について説明する。  [0146] Next, the operation of the traveling vibration suppression device 20B will be described using the transporting operation of the wheel loader 1. Since the operation can be performed in substantially the same manner as in the first embodiment, different operations during traveling will be described. .
[0147] ホイールローダ 1の走行時において、オペレータが比例制御弁 56bを制御する図示 しないスィッチを ON操作すると、コントローラ 57bは、作業装置 3が積載している土砂 量に応じて生じたブームシリンダ 11のボトム室 1 laの圧力 Pbをブーム用圧力センサ 81からの検出圧力として入力する。また、コントローラ 57bは、走行状態検出センサ 8 4からの検出信号を入力する。  [0147] When the operator turns on a switch (not shown) that controls the proportional control valve 56b during traveling of the wheel loader 1, the controller 57b causes the boom cylinder 11 generated according to the amount of sediment loaded on the working device 3 to move. The pressure Pb of the bottom chamber 1 la is input as the detection pressure from the boom pressure sensor 81. Further, the controller 57b inputs a detection signal from the traveling state detection sensor 84.
[0148] コントローラ 57bは、ブーム用圧力センサ 81で検出されたボトム室 11aの圧力 Pbに 基づいて、予め試験等より求めて記憶した圧力 Pbに対応する可変絞り 86の開口面 積と、それに対応したライド弁 31Bのスプールに対するストローク量とを求める。ライド 弁 31Bのスプールが前記ストローク量となるように、比例制御弁 56bに対して制御電 流を出力する。 [0149] 比例制御弁 56bは、コントローラ 57bの信号に応じたパイロット圧をライド弁 31Bに 供給する。これにより、例えば、ライド弁 31Bのスプールが図 11のストローク量 Lmま で移動する。ライド弁 31Bは接続位置(D)となり、アキュムレータ 27とブームシリンダ 11のボトム室 11aとを可変絞り 86の開口面積 Anで接続する。また、タンク 23とブー ムシリンダ 11のヘッド室 l ibとを連通する開口面積 Scは面積 Arで接続している。こ れにより、アキュムレータ 27とブームシリンダ 11のボトム室 11aとはライド弁 31Bを介し て等しい圧力で接続される。 [0148] Based on the pressure Pb of the bottom chamber 11a detected by the boom pressure sensor 81, the controller 57b determines the opening area of the variable throttle 86 corresponding to the pressure Pb obtained and stored in advance from a test or the like, and the corresponding area. The stroke amount of the ride valve 31B with respect to the spool is calculated. The control current is output to the proportional control valve 56b so that the stroke of the ride valve 31B becomes the stroke amount. [0149] The proportional control valve 56b supplies a pilot pressure corresponding to the signal of the controller 57b to the ride valve 31B. Thereby, for example, the spool of the ride valve 31B moves to the stroke amount Lm in FIG. The ride valve 31B is at the connection position (D), and connects the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 with the opening area An of the variable throttle 86. The opening area Sc connecting the tank 23 and the head chamber l ib of the boom cylinder 11 is connected by the area Ar. Thus, the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are connected at the same pressure via the ride valve 31B.
[0150] タンク 23とブームシリンダ 11のヘッド室 l ibとを連通する開口面積 Scとしては、図 1 2 (e)に示すように時刻 T22から時刻 T23までの間(2点鎖線では時刻 T24までの間 )、即ち、ライド弁 31Bのスプールがストローク量 L1からストローク量 Lmまで移送する 間、前記スプールの移動量の増加にともなって開口面積 Scを面積 Arまで順次増加 させることちでさる。  [0150] As shown in Fig. 12 (e), the opening area Sc that connects the tank 23 and the head chamber l ib of the boom cylinder 11 is between time T22 and time T23 (in the two-dot chain line, until time T24). In other words, during the transfer of the spool of the ride valve 31B from the stroke amount L1 to the stroke amount Lm, the opening area Sc is sequentially increased to the area Ar with an increase in the movement amount of the spool.
[0151] ライド弁 31Bにおける開口面積 Sb及び開口面積 Scを、それぞれをコントローラ 57b で制御された面積 An及び面積 Arに切り換えた状態で走行させることができる。コント ローラ 57bが、走行状態検出センサ 84によるホイールローダ 1の走行状態、例えば車 速情報を入力すると、予め記憶装置に記憶した車速情報と開口面積との関係から、 最適な可変絞り 86の開口面積 Awlを求める。コントローラ 57bが、可変絞り 86の開口 面積を面積 Anの状態力 面積 Awlの状態に変更することが必要と判断したときには 、可変絞り 86の開口面積が面積 Awlとなる制御信号を比例制御弁 56bに出力する。  [0151] The ride area can be run with the opening area Sb and the opening area Sc of the ride valve 31B switched to the area An and the area Ar controlled by the controller 57b. When the controller 57b inputs the traveling state of the wheel loader 1 by the traveling state detection sensor 84, for example, the vehicle speed information, the optimum opening area of the variable diaphragm 86 is determined from the relationship between the vehicle speed information and the opening area stored in the storage device in advance. Ask for Awl. When the controller 57b determines that it is necessary to change the opening area of the variable aperture 86 to the state of the area An and the state of the area Awl, the control signal that the opening area of the variable aperture 86 becomes the area Awl is sent to the proportional control valve 56b. Output.
[0152] 例えば、コントローラ 57bが、走行状態検出センサ 84から入力した車両速度が所定 の速度より速いと判断すると、比例制御弁 56bから出力するパイロット圧を減少させて 、ライド弁 31Bのスプールのストローク量を Lmから Lmsに減少させる。これにより、図 11に示すようにアキュムレータ 27とブームシリンダ 11のボトム室 1 laとを接続する可 変絞り 86の開口面積 Sbを面積 Anの状態から更に小さくした面積 Awsとすることがで きる。  [0152] For example, when the controller 57b determines that the vehicle speed input from the traveling state detection sensor 84 is faster than a predetermined speed, the controller 57b reduces the pilot pressure output from the proportional control valve 56b to reduce the stroke of the spool of the ride valve 31B. Decrease volume from Lm to Lms. Thereby, as shown in FIG. 11, the opening area Sb of the variable throttle 86 connecting the accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 can be reduced to the area Aws from the state of the area An.
[0153] また、走行状態検出センサ 84から入力した車両速度が所定の速度より遅いときに は、コントローラ 57bは比例制御弁 56bから出力するパイロット圧を増大させて、ライド 弁 31Bのスプールのストローク量を Lmから Lmlに増大させる。これにより、アキュムレ ータ 27とブームシリンダ 11のボトム室 1 laとを接続する可変絞り 86の開口面積 Sbを 面積 Anの状態力も大きくした面積 Awlの状態に変更できる。 [0153] When the vehicle speed input from the traveling state detection sensor 84 is lower than the predetermined speed, the controller 57b increases the pilot pressure output from the proportional control valve 56b to increase the stroke amount of the spool of the ride valve 31B. From Lm to Lml. With this, The opening area Sb of the variable throttle 86 connecting the motor 27 and the bottom chamber 1 la of the boom cylinder 11 can be changed to the area Awl where the state force of the area An is also increased.
[0154] これにより、走行振動抑制装置 20Bでは、可変絞り 86の開口面積 Sbを、例えば車 速および作業装置 3の積載量に適した面積に制御することができるので、ブームシリ ンダ 11のボトム室 11 aに発生する圧力脈動を走行状態や積載状態に応じて最適に 抑帘 Uすることができる。 [0154] With this, in the traveling vibration suppressing device 20B, the opening area Sb of the variable throttle 86 can be controlled to, for example, an area suitable for the vehicle speed and the loading capacity of the working device 3, so that the bottom chamber of the boom cylinder 11 can be controlled. Pressure pulsation occurring at 11a can be optimally suppressed according to the running state and the loading state.
[0155] ボトム室 11aに発生する圧力脈動は、開口面積 Sbを最適な面積としたライド弁 31B を介してアキュムレータ 27により抑制することができる。  [0155] The pressure pulsation generated in the bottom chamber 11a can be suppressed by the accumulator 27 via the ride valve 31B having the optimal opening area Sb.
[0156] また、例えば、車体 7が石等に乗り上げて上昇するとき、ブーム 10が今までいた高 さ位置に留まろうとしてブームシリンダ 11のボトム室 11aにおける圧力が上昇する。こ のとき、ライド弁 31Bにおける開口面積 Sb、 Scによって、ボトム室 11aにおける上昇し た圧力を迅速にアキュムレータ 27に供給して吸収することができる。また、車体 7が 窪み等に入って下降するときには、ブームシリンダ 11のボトム室 11aにアキュムレー タ 27からゆっくりと圧油を供給してブーム 10を押し上げないように制御することができ る。  [0156] Further, for example, when the vehicle body 7 climbs on a stone or the like and rises, the pressure in the bottom chamber 11a of the boom cylinder 11 increases as the boom 10 tries to stay at the same height position as before. At this time, the increased pressure in the bottom chamber 11a can be quickly supplied to the accumulator 27 and absorbed by the opening areas Sb and Sc in the ride valve 31B. Further, when the vehicle body 7 descends into a dent or the like, the pressure oil can be slowly supplied from the accumulator 27 to the bottom chamber 11a of the boom cylinder 11 to control the boom 10 not to be pushed up.
[0157] また、ライド弁 31Bのスプールにおける切換速度は、圧力センサ 81、走行状態検出 センサ 84の信号に応じてコントローラ 57bから比例制御弁 56bに出力する制御電流 により、自由に設定することができる。  [0157] The switching speed of the spool of the ride valve 31B can be freely set by a control current output from the controller 57b to the proportional control valve 56b in accordance with signals from the pressure sensor 81 and the traveling state detection sensor 84. .
実施例 4  Example 4
[0158] 次に、実施例 4における走行振動抑制装置 20Cについて説明する。図 13は走行 振動抑制装置 20Cの一部構成を示している。実施例 4では、実施例 3におけるライド 弁 31Bの接続位置 (D)における構成をライド弁 31から独立させて可変絞り弁 88とし て別構成にしている。また可変絞り弁 88を制御する第 1比例制御弁 90を追加して配 設している。他の構成は、実施例 3における構成と同様の構成を備えている。このた め、実施例 1一実施例 3と同一の部品に対しては同一の符号を付すことで、その説明 を省略している。図 13はライド弁 31の構成を説明するため、ブーム弁 29及び増速弁 33の構成を省略して示して!/、る。  Next, a traveling vibration suppressing device 20C according to the fourth embodiment will be described. FIG. 13 shows a partial configuration of the traveling vibration suppressing device 20C. In the fourth embodiment, the configuration at the connection position (D) of the ride valve 31B in the third embodiment is configured as a variable throttle valve 88 independently of the ride valve 31. Further, a first proportional control valve 90 for controlling the variable throttle valve 88 is additionally provided. The other configuration has the same configuration as the configuration in the third embodiment. Therefore, the same components as those in the first embodiment to the third embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 13 omits the configurations of the boom valve 29 and the speed increasing valve 33 to explain the configuration of the ride valve 31!
[0159] 可変絞り弁 88は、アキュムレータ 27とライド弁 31との間に配設され、第 1比例制御 弁 90からのパイロット圧を制御室 88aに受けて作動する。可変絞り弁 88により、アキ ュムレータ 27とブームシリンダ 11のボトム室 1 laとの接続面積を可変にして!/、る。可 変絞り弁 88は、第 1比例制御弁 90からのパイロット圧を受けたときの可変の絞り位置 (E)と、パイロット圧を受けないときの開放位置 (F)とに切換わる。可変絞り弁 88は、 開放位置 (F)にあるときは、ライド弁 31を経てアキュムレータ 27と油圧ポンプ 21とが 接続し、抵抗を少なくして油圧ポンプ 21からの吐出圧油をアキュムレータ 27に対して 供給しやすくしている。 [0159] The variable throttle valve 88 is disposed between the accumulator 27 and the ride valve 31, and the first proportional control It operates by receiving pilot pressure from the valve 90 into the control room 88a. The connection area between the accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 is made variable by a variable throttle valve 88. The variable throttle valve 88 switches between a variable throttle position (E) when receiving pilot pressure from the first proportional control valve 90 and an open position (F) when not receiving pilot pressure. When the variable throttle valve 88 is at the open position (F), the accumulator 27 and the hydraulic pump 21 are connected via the ride valve 31 to reduce the resistance and discharge the hydraulic oil from the hydraulic pump 21 to the accumulator 27. To make it easier to supply.
[0160] 第 1比例制御弁 90は、コントローラ 57cからの制御電流を受けて制御される。第 1比 例制御弁 90は、コントローラ 57cから制御電流を受けたときに可変絞り弁 88を可変の 絞り位置 (E)として、制御電流値に応じて可変絞りの開口面積を制御する。また、第 1 比例制御弁 90は、制御電流を受けないとき (零電流のとき)には非作動となり、可変 絞り弁 88を、開放位置 (F)にする。  [0160] The first proportional control valve 90 is controlled by receiving a control current from the controller 57c. The first proportional control valve 90 sets the variable throttle valve 88 to a variable throttle position (E) when receiving a control current from the controller 57c, and controls the opening area of the variable throttle according to the control current value. When the first proportional control valve 90 does not receive the control current (when the current is zero), the first proportional control valve 90 is deactivated, and the variable throttle valve 88 is set to the open position (F).
[0161] 走行振動抑制装置 20Cに用いるライド弁 31及び可変絞り弁 88の作動について、 図 13の回路図を用いて説明する。コントローラ 57cから比例制御弁 56bに対して制 御電流を増加させながら出力すると、実施例 1で説明したようにライド弁 31のスプー ルをストロークさせ、ポート 3 laとポート 3 Idとを連通する開口面積 Saを漸次減少させ 、面積を A1の状態力も零 (AO)とした以降は、面積が零の状態が維持される。  [0161] The operation of the ride valve 31 and the variable throttle valve 88 used in the traveling vibration suppressing device 20C will be described with reference to the circuit diagram of FIG. When the controller 57c outputs the control current to the proportional control valve 56b while increasing the control current, the spool of the ride valve 31 is stroked as described in the first embodiment, and the opening communicating the port 3 la and the port 3 Id is opened. After the area Sa is gradually decreased and the state force of the area A1 is set to zero (AO), the state where the area is zero is maintained.
[0162] 第 3コントローラ 57cから比例制御弁 56bに対する制御電流により、ライド弁 31のス プールが所定量移動すると、ポート 31aとポート 31bとを連通する開口面積 Sbを面積 A3まで順次開口させる。また、ポート 31aとポート 31eとを連通する開口面積 Scを面 積 A4まで順次開口させることも、あるいは一気に面積 A4まで全開させることもできる  [0162] When the spool of the ride valve 31 moves by a predetermined amount due to the control current from the third controller 57c to the proportional control valve 56b, the opening area Sb communicating the port 31a and the port 31b is sequentially opened to the area A3. Further, the opening area Sc communicating the port 31a and the port 31e can be sequentially opened up to the area A4, or can be opened all at once to the area A4.
[0163] 第 3コントローラ 57cから第 1比例制御弁 90に対する制御電流の大きさに応じて、可 変絞り弁 88は可変の絞り位置 (E)における最大の絞り開口となるまで絞り面積を変 更させることができる。 [0163] According to the magnitude of the control current from the third controller 57c to the first proportional control valve 90, the variable throttle valve 88 changes the throttle area until the maximum throttle opening at the variable throttle position (E) is reached. Can be done.
[0164] ブーム用圧力センサ 81及び Z又は走行状態検出センサ 84からの信号を受けてコ ントローラ 57cは、記憶装置に予め記憶している両センサの検出値と開口面積との関 係より、第 1比例制御弁 90に対して制御電流を出力し、両センサで検出した検出値 に対応した最適な開口面積となるように可変絞り弁 88の絞りを変更する。 [0164] Upon receiving signals from the boom pressure sensors 81 and Z or the traveling state detection sensor 84, the controller 57c obtains a signal based on the relationship between the detection values of the two sensors stored in the storage device in advance and the opening area. (1) The control current is output to the proportional control valve 90, and the detection value detected by both sensors Change the throttle of the variable throttle valve 88 so that the optimal opening area corresponding to is obtained.
[0165] これにより、アキュムレータ 27とブームシリンダ 11のボトム室 11aとは、可変絞り弁 8 8における絞りの開口面積と、ライド弁 31におけるポート 31aとポート 31bとを連通す る開口面積 Sbとを介して接続されることになる。またこのとき、タンク 23とブームシリン ダ 11のヘッド室 l ibとを連通するライド弁 31における開口面積 Scは、一定の面積 A 4となって、タンク 23とブームシリンダ 11との間での圧油の給排量を増して真空の発 生を防止している。 [0165] Accordingly, the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are configured such that the opening area of the throttle in the variable throttle valve 88 and the opening area Sb that connects the port 31a and the port 31b in the ride valve 31 are different from each other. Will be connected via At this time, the opening area Sc of the ride valve 31 that connects the tank 23 and the head chamber l ib of the boom cylinder 11 becomes a constant area A4, and the pressure between the tank 23 and the boom cylinder 11 is increased. The amount of oil supply and discharge has been increased to prevent the generation of vacuum.
[0166] これによつて、アキュムレータ 27とブームシリンダ 11のボトム室 11aとを連通する開 口面積は、 2段階に亘つて制御することができる。  [0166] Thereby, the opening area for communicating the accumulator 27 with the bottom chamber 11a of the boom cylinder 11 can be controlled in two stages.
[0167] コントローラ 57cは、例えば、ブーム用圧力センサ 81から検出された積載重量が大 きいとき、走行状態検出センサ 84から検出された車速が早いときには、大きな制御電 流を第 1比例制御弁 90に出力して可変絞り弁 88の開口面積を小さくして絞りを強く することができる。 [0167] For example, when the loaded weight detected by the boom pressure sensor 81 is large, or when the vehicle speed detected by the traveling state detection sensor 84 is high, the controller 57c outputs a large control current to the first proportional control valve 90. And the opening area of the variable throttle valve 88 can be reduced to increase the throttle.
[0168] 反対に積載重量が小さいとき、車速が遅いときには、小さい制御電流を第 1比例制 御弁 90に出力して可変絞り弁 88の開口面積を大きくして絞りを弱くすることができる  [0168] Conversely, when the load weight is small and the vehicle speed is low, a small control current is output to the first proportional control valve 90 to increase the opening area of the variable throttle valve 88, thereby making it possible to weaken the throttle.
[0169] 次に、走行振動抑制装置 20Cの作動についてホイールローダ 1の運搬作業を用い て説明するが、実施例 3の場合と略同様な作動を行うことができるので、ホイールロー ダ 1の走行時における実施例 3の場合とは異なる作動について説明する。 [0169] Next, the operation of the traveling vibration suppression device 20C will be described using the transporting operation of the wheel loader 1. However, since substantially the same operation as that of the third embodiment can be performed, the traveling of the wheel loader 1 can be performed. An operation different from that of the third embodiment at the time will be described.
[0170] 走行時には、オペレータが図示しないスィッチを ON操作すると、コントローラ 57cは 、比例制御弁 56bに制御信号を出力し、ライド弁 31をフルストロークさせて作動位置 (A)にする。また、コントローラ 57cは、ブーム用圧力センサ 81により検出したボトム 室 11aの圧力 Pbを入力し、予め試験等より求めて記憶した圧力 Pbに対する可変絞り 弁 88の開口面積を得るための制御電流を用いて、第 1比例制御弁 90に対して制御 電流を出力する。  [0170] During traveling, when an operator turns on a switch (not shown), the controller 57c outputs a control signal to the proportional control valve 56b, and causes the ride valve 31 to perform a full stroke to the operating position (A). Further, the controller 57c inputs the pressure Pb of the bottom chamber 11a detected by the boom pressure sensor 81, and uses the control current for obtaining the opening area of the variable throttle valve 88 for the pressure Pb obtained and stored in advance by a test or the like. Then, a control current is output to the first proportional control valve 90.
[0171] 制御電流を受けた第 1比例制御弁 90は可変絞り弁 88に対して所定圧としたパイ口 ット圧を作動させ、可変絞りの開口面積を所定の開口面積にする。アキュムレータ 27 とブームシリンダ 11のボトム室 1 laとを所定の開口面積にした絞りを介して接続する。 [0172] これにより、アキュムレータ 27とブームシリンダ 11のボトム室 11aとは、ライド弁 31に おける開口面積 Sb及び可変絞り弁 88の開口面積を介して接続されて等しい圧力に なる。 [0171] The first proportional control valve 90 that has received the control current activates the predetermined throttle port pressure to the variable throttle valve 88 to make the opening area of the variable throttle a predetermined opening area. The accumulator 27 and the bottom chamber 1 la of the boom cylinder 11 are connected via a diaphragm having a predetermined opening area. [0172] Thus, the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 are connected to each other through the opening area Sb of the ride valve 31 and the opening area of the variable throttle valve 88 to have the same pressure.
[0173] 次に、ホイールローダ 1が走行して、コントローラ 57cが走行状態検出センサ 84から 、例えば車速の情報を入力する。このとき、予め記憶装置に記憶している車速情報と 開口面積との関係力 得た可変絞りの開口面積と、ブーム用圧力センサ 81からの検 出圧力に応じて設定した可変絞りの開口面積とを比較し、両可変絞りの開口面積差 が大きなときには第 1比例制御弁 90に対して制御電流を出力して可変絞り弁 88の絞 りを最適な開口面積となるように変更する。  [0173] Next, the wheel loader 1 travels, and the controller 57c inputs, for example, information on the vehicle speed from the traveling state detection sensor 84. At this time, the relationship between the vehicle speed information and the opening area stored in the storage device in advance, the opening area of the variable throttle obtained, and the opening area of the variable throttle set according to the detection pressure from the boom pressure sensor 81 are obtained. When the difference between the opening areas of the two variable throttles is large, a control current is output to the first proportional control valve 90 to change the throttle of the variable throttle valve 88 so as to have an optimum opening area.
[0174] 例えば、コントローラ 57cが、走行状態検出センサ 84から車両速度が速いという情 報を受けると、アキュムレータ 27とブームシリンダ 11のボトム室 11aとを接続する可変 絞り弁 88の絞りを絞って開口面積を更に小さくする。  [0174] For example, when the controller 57c receives information from the traveling state detection sensor 84 that the vehicle speed is high, the throttle of the variable throttle valve 88 that connects the accumulator 27 and the bottom chamber 11a of the boom cylinder 11 is throttled to open. Make the area even smaller.
[0175] また、コントローラ 57cが、車両速度が遅いという情報を受けたときには、可変絞り弁 88の絞りの開口面積を大きくする制御信号を第 1比例制御弁 90に出力する。第 1比 例制御弁 90は、コントローラ 57cから制御信号を受けて、パイロット圧を大きぐあるい は、小さくし制御して、可変絞り弁 88における絞りの開口面積を走行状態検出センサ 84からの検出信号に応じた開口面積とすることができる。  When the controller 57c receives the information that the vehicle speed is low, the controller 57c outputs a control signal for increasing the opening area of the throttle of the variable throttle valve 88 to the first proportional control valve 90. The first proportional control valve 90 receives the control signal from the controller 57c, and controls the pilot pressure to be increased or decreased so as to control the opening area of the throttle in the variable throttle valve 88 from the traveling state detection sensor 84. The opening area can be set according to the detection signal.
[0176] これにより、走行振動抑制装置 20Cでは、ホイールローダ 1が走行して生じたブー ムシリンダ 11の圧力脈動は、ブーム用圧力センサ 81及び/又は走行状態検出セン サ 84からの検出信号に適合した開口面積として可変絞り弁 88及びライド弁 31を介し てアキュムレータ 27で吸収することができる。  [0176] As a result, in the traveling vibration suppression device 20C, the pressure pulsation of the boom cylinder 11 generated by the traveling of the wheel loader 1 matches the detection signal from the boom pressure sensor 81 and / or the traveling state detection sensor 84. The accumulated opening area can be absorbed by the accumulator 27 via the variable throttle valve 88 and the ride valve 31.
[0177] 上記各実施例において、アキュムレータ 27とブームシリンダ 11のボトム室 11aとを 接続する例で説明を行った力 アキュムレータ 27とブームシリンダ 11のヘッド室 l ib とを接続する構成としても、本願発明の走行振動抑制装置を有効に機能させることが できる。  In each of the above embodiments, the force described in the example in which the accumulator 27 is connected to the bottom chamber 11a of the boom cylinder 11 is also applied to the configuration in which the accumulator 27 is connected to the head chamber l ib of the boom cylinder 11. The traveling vibration suppressing device according to the present invention can function effectively.
[0178] また、ライド弁 31は、説明を容易化するため 2位置切換弁あるいは 3位置切換弁等 を使用して説明を行ったが、連続して変化するサーボ弁を用いることもできる。  [0178] Although ride valve 31 has been described using a two-position switching valve or a three-position switching valve or the like for ease of description, a servo valve that changes continuously may be used.
[0179] また、方向制御弁 24は、ライド弁 31を真中として両側にブーム弁 29と増速弁 33と を配設した構成を説明した力 これに囚われることなぐブーム弁 29を真中として両 側にライド弁 31と増速弁 33とを配設することもできる。 The directional control valve 24 includes a boom valve 29 and a speed increasing valve 33 on both sides with the ride valve 31 at the center. The rider explains the configuration of the vehicle. The ride valve 31 and the speed-increasing valve 33 can be provided on both sides with the boom valve 29 in the middle.
[0180] また、アキュムレータ 27とブームシリンダ 11の開口面積の変化は直線で示したが、 2次放物線等の曲線により変化させることもできる。  [0180] Further, although the change in the opening area of the accumulator 27 and the boom cylinder 11 is shown by a straight line, it can be changed by a curve such as a secondary parabola.
[0181] 上記説明において、方向制御弁としてブーム弁 29とパケット弁 30との 2個の方向制 御弁を用い、ポンプ側にブーム用方向制御弁のブーム弁 29を配設し、次に隣接した パケット弁 30を配設した構成について説明を行った。しかし、方向制御弁としての配 置構成としてはこれに囚われることなぐ例えば、方向制御弁を 3個以上とし、ポンプ 側にパケット弁 30を配設し、残りの内の 1個をブーム用方向制御弁のブーム弁 29と した構成とすることもできる。  [0181] In the above description, two directional control valves, a boom valve 29 and a packet valve 30, are used as the directional control valves, and the boom valve 29 of the boom directional control valve is disposed on the pump side, and then the boom valve 29 is disposed adjacently. The configuration in which the packet valve 30 is arranged has been described. However, the arrangement configuration as a directional control valve is not limited to this.For example, three or more directional control valves, a packet valve 30 on the pump side, and one of the remaining directional control valves for boom A configuration in which the boom valve 29 of the valve is used may be employed.
更に、走行振動抑制装置としては、第 1実施例から第 4実施例を適宜組み合わせて 構成することちできる。  Further, the traveling vibration suppressing device can be configured by appropriately combining the first to fourth embodiments.
産業上の利用可能性  Industrial applicability
[0182] 走行車両の走行中の振動によって圧力脈動が発生するものに対して、本願発明の 走行振動抑制装置を利用することができる。 [0182] The traveling vibration suppressing device of the present invention can be used for a device in which pressure pulsation is generated by vibration during traveling of a traveling vehicle.

Claims

請求の範囲 The scope of the claims
[1] 油圧ポンプ 21と、油圧ポンプ 21から吐出された圧油によって作動する少なくとも 1 以上のァクチユエータ 11と、少なくとも 1つの前記ァクチユエータ 11における一方の 圧力室に接続され、同圧力室の圧力脈動を吸収するアキュムレータ 27と、前記油圧 ポンプ 21から前記ァクチユエータ 11に供給する圧油を制御する方向制御弁 29と、 前記アキュムレータ 27と前記圧力室との連通及び遮断を制御するライドコントロール 弁 31、 31A、 31Bとを備えた作業車両の走行振動抑制装置 20において、  [1] A hydraulic pump 21, at least one or more actuators 11 operated by hydraulic oil discharged from the hydraulic pump 21, and connected to one of the pressure chambers of at least one of the actuators 11 to reduce the pressure pulsation of the pressure chambers An accumulator 27 to absorb, a directional control valve 29 for controlling pressure oil supplied from the hydraulic pump 21 to the actuator 11, a ride control valve 31, 31A for controlling communication and shutoff between the accumulator 27 and the pressure chamber, In the traveling vibration suppressing device 20 of the working vehicle equipped with 31B,
前記ライドコントロール弁 31、 31A、 31Bが、内部配管により前記方向制御弁 29に 積層配設されてなることを特徴とする作業車両の走行振動抑制装置。  A travel vibration suppressing device for a working vehicle, wherein the ride control valves 31, 31A, 31B are laminated on the direction control valve 29 by internal piping.
[2] 請求の範囲第 1項記載の走行振動抑制装置において、 [2] The traveling vibration suppression device according to claim 1,
前記ァクチユエータ 11の負荷圧を検出する第 1圧力センサ 81及び Z又は前記作 業車両の走行状態検出センサ 84が配設され、  A first pressure sensor 81 and Z for detecting the load pressure of the actuator 11 or a traveling state detection sensor 84 of the work vehicle are provided,
前記第 1圧力センサ 81及び Z又は走行状態検出センサ 84からの検出信号に基づ いて、前記ライドコントロール弁 31Bの連通開口面積が制御されてなることを特徴と する走行振動抑制装置。  A travel vibration suppressing device characterized in that a communication opening area of the ride control valve 31B is controlled based on a detection signal from the first pressure sensors 81 and Z or a travel state detection sensor 84.
[3] 請求の範囲第 2項記載の走行振動抑制装置において、 [3] The travel vibration suppressing device according to claim 2,
前記アキュムレータ 27の圧力を検出する第 2圧力センサ 82が配設され、 同第 2圧力センサ 82による前記アキュムレータ 27の検出圧力が、前記第 1圧力セ ンサ 81による前記ァクチユエータ 11の負荷圧よりも高圧のとき、前記ライドコントロー ル弁 31Aが制御されて、前記アキュムレータ 27の圧力を前記ァクチユエータ 11の負 荷圧力まで減圧し、その後、前記アキュムレータ 27と前記圧力室とを連通してなるこ とを特徴とする走行振動抑制装置。  A second pressure sensor 82 for detecting the pressure of the accumulator 27 is provided, and the pressure detected by the second pressure sensor 82 by the accumulator 27 is higher than the load pressure of the actuator 11 by the first pressure sensor 81. In this case, the ride control valve 31A is controlled to reduce the pressure of the accumulator 27 to the load pressure of the actuator 11, and thereafter, the accumulator 27 is communicated with the pressure chamber. Traveling vibration suppressing device.
[4] 請求の範囲第 1項又は第 2項記載の走行振動抑制装置において、 [4] In the travel vibration suppressing device according to claim 1 or 2,
前記ライドコントロール弁 31Bが、前記連通開口面積として開口できる上限の開口 面積を可変に構成してなることを特徴とする走行振動抑制装置。  A travel vibration suppressing device, wherein the ride control valve 31B has a variable upper limit opening area that can be opened as the communication opening area.
[5] 請求の範囲第 4項記載の走行振動抑制装置において、 [5] The travel vibration suppressing device according to claim 4,
前記ァクチユエータ 11の負荷圧力が高くなるのに応じて、及び Z又は前記作業車 両 1の走行速度が速くなるのに応じて、前記上限の開口面積を小さくする制御が行 われてなることを特徴とする走行振動抑制装置。 The control to reduce the upper limit opening area is performed as the load pressure of the actuator 11 increases and as the traveling speed of Z or the work vehicle 1 increases. A driving vibration suppressing device characterized by being formed.
[6] 請求の範囲第 4項記載の走行振動抑制装置において、  [6] The traveling vibration suppressing device according to claim 4,
前記ァクチユエータ 11の負荷圧力が低くなるのに応じて、及び Z又は前記作業車 両 1の走行速度が遅くなるのに応じて、前記上限の開口面積を大きくする制御が行 われてなることを特徴とする走行振動抑制装置。  The control to increase the upper limit opening area is performed as the load pressure of the actuator 11 decreases and as the traveling speed of the work vehicle 1 or Z decreases. Traveling vibration suppressing device.
[7] 請求の範囲第 1項又は第 2項記載の走行振動抑制装置において、 [7] The traveling vibration suppressing device according to claim 1 or 2,
前記ライドコントロール弁 31が、前記圧力室と前記アキュムレータ 27との圧力を同 一にする可変絞り 88を備えてなることを特徴とする走行振動抑制装置。  The travel vibration suppressing device, wherein the ride control valve 31 includes a variable throttle 88 that equalizes the pressures of the pressure chamber and the accumulator 27.
[8] 請求の範囲第 1項又は第 2項記載の走行振動抑制装置において、 [8] The traveling vibration suppressing device according to claim 1 or 2,
前記少なくとも 1つのァクチユエータ 11に対して、前記油圧ポンプ 21からの圧油を 供給する増速弁 33が更に配設され、  A speed increasing valve 33 for supplying pressure oil from the hydraulic pump 21 to the at least one actuator 11 is further provided,
同増速弁 33が、内部配管及び Z又は外部配管により前記ライドコントロール弁 31 、 31A、 31B又は前記方向制御弁 29に積層配設されてなることを特徴とする走行振 動抑制装置。  A travel vibration suppressor characterized in that the speed-increasing valve 33 is laminated on the ride control valves 31, 31A, 31B or the directional control valve 29 by internal piping and Z or external piping.
PCT/JP2004/014827 2003-10-10 2004-10-07 Travel vibration suppressing device for working vehicle WO2005035883A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005514592A JP4456078B2 (en) 2003-10-10 2004-10-07 Driving vibration control device for work vehicle
US10/575,000 US7621124B2 (en) 2004-10-07 2004-10-07 Travel vibration suppressing device for working vehicle
DE112004001897.8T DE112004001897B4 (en) 2003-10-10 2004-10-07 Driving vibration suppression device for a work vehicle
CN2004800296895A CN1867737B (en) 2003-10-10 2004-10-07 Travel vibration suppressing device for working vehicle
SE0600799A SE532253C2 (en) 2003-10-10 2006-04-10 Vibration damping device for work vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-351449 2003-10-10
JP2003351449 2003-10-10

Publications (1)

Publication Number Publication Date
WO2005035883A1 true WO2005035883A1 (en) 2005-04-21

Family

ID=34431077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014827 WO2005035883A1 (en) 2003-10-10 2004-10-07 Travel vibration suppressing device for working vehicle

Country Status (6)

Country Link
JP (1) JP4456078B2 (en)
KR (1) KR100820447B1 (en)
CN (1) CN1867737B (en)
DE (1) DE112004001897B4 (en)
SE (1) SE532253C2 (en)
WO (1) WO2005035883A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162387A (en) * 2005-12-15 2007-06-28 Hitachi Constr Mach Co Ltd Fluid pressure controller of working vehicle
JP2007186942A (en) * 2006-01-16 2007-07-26 Hitachi Constr Mach Co Ltd Traveling vibration suppressing device
JP2008002172A (en) * 2006-06-22 2008-01-10 Toshiba Mach Co Ltd Construction machine equipped with control valve having lift preventing function
JP2008545935A (en) * 2005-05-31 2008-12-18 キャタピラー インコーポレイテッド Hydraulic system having an IMV traveling control device
US20090158726A1 (en) * 2007-12-21 2009-06-25 Caterpillar Inc. Machine having selective ride control
EP1914353A3 (en) * 2006-10-19 2011-04-20 Hitachi Construction Machinery Co., Ltd. Construction machine
WO2011162179A1 (en) 2010-06-22 2011-12-29 日立建機株式会社 Hydraulic control device for working vehicle
JP2016068858A (en) * 2014-09-30 2016-05-09 株式会社クボタ Operating machine
WO2016176547A1 (en) * 2015-04-29 2016-11-03 Clark Equipment Company Ride control system for power machine
JP2017082576A (en) * 2015-10-26 2017-05-18 キャタピラー インコーポレイテッドCaterpillar Incorporated Hydraulic system having automatic ride control
US9828744B2 (en) 2014-09-30 2017-11-28 Kubota Corporation Working machine
JP2018062850A (en) * 2016-03-31 2018-04-19 株式会社クボタ Hydraulic system of work machine
JP2018167829A (en) * 2018-05-31 2018-11-01 株式会社クボタ Work machine
CN113775612A (en) * 2021-09-18 2021-12-10 柳州柳工挖掘机有限公司 Engineering machinery hydraulic control system and engineering machinery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362035B (en) * 2009-03-26 2015-02-25 株式会社小松制作所 Method for construction vehicle control and control device
DE102009029632A1 (en) * 2009-09-21 2011-03-24 Robert Bosch Gmbh Method and control device for determining a variable working height of a working device equipped with a pivoting element
JP5482966B2 (en) * 2011-10-05 2014-05-07 トヨタ自動車株式会社 Dynamic damper device
DE102012208307A1 (en) * 2012-05-18 2013-11-21 Robert Bosch Gmbh Damping device for wheeled loader, has hydropneumatic accumulator discharged through discharging valve according to operation of control valve when pressure at storage terminal is larger than pressure at power port
WO2014208795A1 (en) * 2013-06-28 2014-12-31 볼보 컨스트럭션 이큅먼트 에이비 Hydraulic circuit for construction machinery having floating function and method for controlling floating function
KR102035607B1 (en) * 2016-09-29 2019-10-23 히다찌 겐끼 가부시키가이샤 Hydraulic drive
WO2018164263A1 (en) * 2017-03-10 2018-09-13 住友建機株式会社 Shovel
JP6858629B2 (en) * 2017-04-27 2021-04-14 川崎重工業株式会社 Vibration control control circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274271A (en) * 1997-03-31 1998-10-13 Toyooki Kogyo Co Ltd Hydraulic damper
JP2939090B2 (en) * 1993-05-25 1999-08-25 日立建機株式会社 Vibration suppression device for hydraulic work machine
JP3115209B2 (en) * 1995-04-06 2000-12-04 新キャタピラー三菱株式会社 Vibration suppression device for vehicle construction machinery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662268B2 (en) * 1989-04-21 1994-08-17 株式会社神戸製鋼所 Displacement restraint device for mobile crane
CN2072546U (en) * 1990-07-10 1991-03-06 李建启 Hydraulic shovel slewing system with reclaiming brake energy
DE4416228A1 (en) * 1994-05-07 1995-11-09 Rexroth Mannesmann Gmbh Hydraulic system for a mobile working device, in particular for a wheel loader
DE19754828C2 (en) * 1997-12-10 1999-10-07 Mannesmann Rexroth Ag Hydraulic control arrangement for a mobile working machine, in particular for a wheel loader, for damping pitching vibrations
DE19913784A1 (en) * 1999-03-26 2000-09-28 Mannesmann Rexroth Ag Load-sensing hydraulic control arrangement for a mobile machine
DE10148962C1 (en) * 2001-10-04 2003-02-27 Hydac Technology Gmbh Hydraulic control device for digger or excavator has control block controlling switching valve in filling line and controlled valve in bypass line damping movement of hydraulic cylinders

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2939090B2 (en) * 1993-05-25 1999-08-25 日立建機株式会社 Vibration suppression device for hydraulic work machine
JP3115209B2 (en) * 1995-04-06 2000-12-04 新キャタピラー三菱株式会社 Vibration suppression device for vehicle construction machinery
JPH10274271A (en) * 1997-03-31 1998-10-13 Toyooki Kogyo Co Ltd Hydraulic damper

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545935A (en) * 2005-05-31 2008-12-18 キャタピラー インコーポレイテッド Hydraulic system having an IMV traveling control device
JP2007162387A (en) * 2005-12-15 2007-06-28 Hitachi Constr Mach Co Ltd Fluid pressure controller of working vehicle
JP4539986B2 (en) * 2005-12-15 2010-09-08 日立建機株式会社 Hydraulic control device for work vehicle
JP2007186942A (en) * 2006-01-16 2007-07-26 Hitachi Constr Mach Co Ltd Traveling vibration suppressing device
JP2008002172A (en) * 2006-06-22 2008-01-10 Toshiba Mach Co Ltd Construction machine equipped with control valve having lift preventing function
JP4732254B2 (en) * 2006-06-22 2011-07-27 東芝機械株式会社 Construction machine equipped with a control valve having an anti-lifting function
US8204655B2 (en) 2006-10-19 2012-06-19 Hitachi Construction Machinery Co., Ltd. Construction machine
EP1914353A3 (en) * 2006-10-19 2011-04-20 Hitachi Construction Machinery Co., Ltd. Construction machine
US8307641B2 (en) * 2007-12-21 2012-11-13 Caterpillar Inc. Machine having selective ride control
US20090158726A1 (en) * 2007-12-21 2009-06-25 Caterpillar Inc. Machine having selective ride control
WO2011162179A1 (en) 2010-06-22 2011-12-29 日立建機株式会社 Hydraulic control device for working vehicle
US9175456B2 (en) 2010-06-22 2015-11-03 Hitachi Construction Machinery Co., Ltd. Hydraulic control device for working vehicle
US9828744B2 (en) 2014-09-30 2017-11-28 Kubota Corporation Working machine
JP2016068858A (en) * 2014-09-30 2016-05-09 株式会社クボタ Operating machine
US10260213B2 (en) 2014-09-30 2019-04-16 Kubota Corporation Working machine
WO2016176547A1 (en) * 2015-04-29 2016-11-03 Clark Equipment Company Ride control system for power machine
US10494790B2 (en) 2015-04-29 2019-12-03 Clark Equipment Company Ride control system for power machine
JP2017082576A (en) * 2015-10-26 2017-05-18 キャタピラー インコーポレイテッドCaterpillar Incorporated Hydraulic system having automatic ride control
JP2018062850A (en) * 2016-03-31 2018-04-19 株式会社クボタ Hydraulic system of work machine
JP2018080575A (en) * 2016-03-31 2018-05-24 株式会社クボタ Hydraulic system of work machine
JP2018167829A (en) * 2018-05-31 2018-11-01 株式会社クボタ Work machine
CN113775612A (en) * 2021-09-18 2021-12-10 柳州柳工挖掘机有限公司 Engineering machinery hydraulic control system and engineering machinery

Also Published As

Publication number Publication date
CN1867737B (en) 2010-04-28
CN1867737A (en) 2006-11-22
JPWO2005035883A1 (en) 2007-11-22
KR100820447B1 (en) 2008-04-08
DE112004001897T5 (en) 2006-11-02
SE532253C2 (en) 2009-11-24
KR20060094961A (en) 2006-08-30
SE0600799L (en) 2006-05-29
JP4456078B2 (en) 2010-04-28
DE112004001897B4 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
WO2005035883A1 (en) Travel vibration suppressing device for working vehicle
US7621124B2 (en) Travel vibration suppressing device for working vehicle
EP0795690B1 (en) Hydraulic driving device
JP5388787B2 (en) Hydraulic system of work machine
EP1927762B1 (en) Working fluid cooling control system of construction machine
JP5574375B2 (en) Energy regeneration control circuit and work machine
US7597168B2 (en) Low engine speed steering performance
WO2021232455A1 (en) Driving stabilizing system, backhoe-loader and control method
JP5480564B2 (en) Fluid pressure circuit and construction machine having the same
JP5226569B2 (en) Working machine
JP2005155230A (en) Hydraulic circuit for suppressing traveling vibration of wheel type construction machine
JPWO2020067084A1 (en) Fluid circuit
JP5111435B2 (en) Traveling vehicle
WO2018061165A1 (en) Hydraulic drive device
US10808381B2 (en) Lifting mechanism suspension and lifting mechanism
JP5310393B2 (en) Hydraulic equipment for industrial vehicles
JP4972479B2 (en) Active suspension device for work vehicle
WO2019198579A1 (en) Fluid pressure circuit
US20230021137A1 (en) Working machine
JPH0732848A (en) Oil pressure control device for suspension
JP6932635B2 (en) Work vehicle
WO2023074821A1 (en) Shovel
JP7263230B2 (en) work machine
JP7263229B2 (en) work machine
US20230407596A1 (en) Systems and Methods for Hydraulic Ride Control System

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029689.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514592

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007056277

Country of ref document: US

Ref document number: 10575000

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120040018978

Country of ref document: DE

Ref document number: 06007991

Country of ref document: SE

WWE Wipo information: entry into national phase

Ref document number: 1020067007427

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 06007991

Country of ref document: SE

WWP Wipo information: published in national office

Ref document number: 1020067007427

Country of ref document: KR

122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 112004001897

Country of ref document: DE

Date of ref document: 20061102

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001897

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10575000

Country of ref document: US