WO2005035023A1 - A device for carrying out a peritoneal dialysis treatment - Google Patents

A device for carrying out a peritoneal dialysis treatment Download PDF

Info

Publication number
WO2005035023A1
WO2005035023A1 PCT/SE2004/001467 SE2004001467W WO2005035023A1 WO 2005035023 A1 WO2005035023 A1 WO 2005035023A1 SE 2004001467 W SE2004001467 W SE 2004001467W WO 2005035023 A1 WO2005035023 A1 WO 2005035023A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
dialysis fluid
fill
abdominal cavity
period
Prior art date
Application number
PCT/SE2004/001467
Other languages
French (fr)
Inventor
Olof Jansson
Pascal Bernard
Pierre-Yves Durand
Sture Hobro
Eva Persson
Bengt-Olov Thell
Original Assignee
Gambro Lundia Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0302698A external-priority patent/SE0302698L/en
Application filed by Gambro Lundia Ab filed Critical Gambro Lundia Ab
Priority to US10/575,461 priority Critical patent/US8500676B2/en
Priority to JP2006535305A priority patent/JP4658062B2/en
Priority to PL04775545T priority patent/PL1691863T3/en
Priority to AU2004279280A priority patent/AU2004279280B2/en
Priority to KR1020067007022A priority patent/KR101112117B1/en
Priority to DE602004011981T priority patent/DE602004011981T2/en
Priority to EP04775545A priority patent/EP1691863B1/en
Priority to CN2004800285049A priority patent/CN1859936B/en
Priority to CA2536421A priority patent/CA2536421C/en
Publication of WO2005035023A1 publication Critical patent/WO2005035023A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1613Profiling or modelling of patient or predicted treatment evolution or outcome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • A61M1/281Instillation other than by gravity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • A61M1/282Operational modes

Definitions

  • the present invention generally refers to a tidal peritoneal dialysis treatment. More specifically, the present invention is concerned with automated tidal peritoneal dialysis.
  • the present invention refers to a device for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period, a dwell period and drain period. Furthermore, the present invention refers to a method for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period, a dwell period and drain period.
  • peritoneal dialysis has proven to be a robust method which may be performed by the dialysis patient at his home.
  • dialysis fluid is passed to the abdominal cavity of the patient where it is allowed to reside for a predetermined time period to allow a removal of toxic substances and excess water from the patient/body. After the expiry of the predetermined time period, the dialysis fluid is removed from the peritoneal cavity and is replaced by fresh dialysis fluid. This is repeated for a number of cycles.
  • There are a number of different techniques with different schemes for filling and emptying the peritoneal cavity Common for the different techniques is that a volume on the order' of litres for the average patient is replaced during each cycle and that there is a plurality of cycles .
  • APD Automatic Peritoneal Dialysis
  • APD-method is CCPD (Continuous Cycling Peritoneal Dialysis) , wherein 4 - 8 exchanges of dialysis fluid are performed during night and wherein the abdominal cavity is filled with dialysis fluid during the day.
  • CCPD Continuous Cycling Peritoneal Dialysis
  • Each draining is a complete draining, i.e. the abdominal cavity is substantially empty before each new filling of dialysis fluid.
  • APD-method is NIPD (Nightly Intermittent Peritoneal Dialysis) , wherein 5 - 10 exchanges of dialysis fluid are performed during night and wherein the abdominal cavity is empty during the day. Each draining is a complete draining, i.e. the abdominal cavity is substantially empty before each new filling of dialysis fluid.
  • NIPD Nearly Intermittent Peritoneal Dialysis
  • a further APD-method is TPD (Tidal Peritoneal Dialysis), wherein 5 - 12 exchanges of dialysis fluid are performed during night and wherein the abdominal cavity is empty or filled with dialysis fluid during the day. An initial fill volume is instilled but only a part of this fill volume, e.g. 50-80%, is drained and replaced with each cycle.
  • Each APD-cycle looks in principle as disclosed in the attached Fig 1.
  • Each cycle thus consists of a fill period F, a dwell period Dw, and a drain period Dr.
  • the fill period F during which the dialysis fluid is supplied to the abdominal cavity with a fill volume VF, is characterised by a relatively high flow rate of the dialysis fluid.
  • the dwell period Dw during which the abdominal cavity is filled with dialysis fluid, is characterised by a slow increase in the fluid volume in the abdominal cavity. This increase is a result of the ultrafiltration, i.e. the osmotic net transport of fluid from the blood of the patient to the abdominal cavity.
  • the drain period Dr during which the spent dialysis fluid is drained out from the abdominal cavity, exhibits two phases, a first high flow phase characterised by a relatively high flow rate of dialysis fluid, and a second low flow phase characterised by a relatively slow flow rate of dialysis fluid.
  • the two phases are clearly distinguished from each other at a breakpoint B.
  • the flow rate is typically between 250 and 300 ml/min depending on the pressure, the type of machine, etc.
  • the second low flow phase which could last for about 10 - 15 min, the flow rate is typically less than 50 ml/min.
  • a further problem with the second low flow phase is that the patient can suffer from abdominal pain during this phase.
  • the flow rate is low or zero no dynamic pressure drop will be present over the catheter and the drain line. Because of this, a suction pressure will be transmitted to the abdominal cavity, which means the catheter can be sucked against the walls of the abdominal cavity causing said pain.
  • US-A- ⁇ , 558, 343 discloses a device and method aiming at an optimisation of exchange of dialysis fluid.
  • the device is provided with a system enabling dialysis fluid exchange parameters to be varied over time so as to maintain an optimum quality of dialysis fluid, while optimising the exchange volumes so as to minimise the total consumption of dialysis liquid.
  • This is achieved by varying the frequency of the exchange cycles, e.g. the exchange cycles, the volume changed, the total volume of dialysis fluid, the pause period between cycles, the flow rate during an exchange can be low at the start of the treatment and increase over time during treatment.
  • the variation of the treatment is established on the basis of optimisation taking account on parameters specific to the patient under consideration (filtration curve) .
  • An optimal fill volume is a condition for allowing a comfortable diaphragm position and breathing for the patient.
  • Brandes et al in American Journal of Kidney Diseases, Vol. 25, No 4 1995 on page 603-610 discloses findings in connection with "Optimization of Dialysate Flow and Mass Transfer During Automated Peritoneal Dialysis". More specifically, Brandes et al discloses that analysis of drain flow rate versus time revealed an initial segment of high outflow (350+/-89mL/min) followed by an abrupt transition (hereafter referred to as breakpoint) to a segment characterised by slow drainage (36+/-21mL/min) . The first segment of drain only took 5.6+/-2.3 minutes (42% of the total drain time) ; in that time 83%+/- 10% of the dialysis fluid was drained.
  • Kumano et al in Peritoneal Dialysis International Vol. 14, pp. 52-55 discloses a study where it was found that a rapid drainage for the first 5-7 minutes followed by a very slow drainage. More than 80% of the drainage was achieved within the former period. Kumano et al conclude that 10 minutes is a sufficient drainage period for most CAPD patients with 2-L dialysis fluid volume. Kumano et al suggests that the drain pattern is determined for each individual patient in order to recommend an individualised drainage time.
  • WO99/02206 discloses a cycler for performing filling of dialysis fluid to the abdominal cavity of the patient and draining of the spent dialysis fluid from the patient during a PD-treat ent .
  • the cycler includes a closed chamber which may be subjected to an overpressure for the filling, and an under pressure for the draining.
  • the object of the present invention is to provide a method and a device for carrying out an improved tidal peritoneal dialysis treatment.
  • a further object is to provide a tidal peritoneal dialysis treatment that optimises the use of dialysis fluid.
  • a still further object is to provide a tidal peritoneal dialysis treatment that optimises the use of the time spent on the treatment .
  • a still further object is to provide a tidal peritoneal dialysis treatment that may be performed without any need to consider the position of the patient to be treated.
  • the device initially defined which includes: a processor; a cycler connected to the processor and adapted to fill the abdominal cavity of the patient with dialysis fluid, and to drain the abdominal cavity; and a sensor connected to the processor and adapted to sense during the draining a variable related to the draining of the dialysis fluid from the abdominal cavity; wherein the processor is adapted to initiate interruption of the draining, at least for most of the cycles of the treatment, when the variable reaches a breakpoint at which the variable is radically changed, thereby leaving a residual volume of dialysis fluid in the abdominal cavity.
  • the draining period may be significantly shortened in relation to a standard APD-treatment where the abdominal cavity is completely emptied.
  • the part of the total cycle time during which an active dialysis treatment is performed will be correspondingly increased.
  • the filling of dialysis fluid in the next cycle may thus be started immediately when the breakpoint has been reached, which means that no time will be spent which merely involves an inefficient draining of a relatively small quantity of dialysis fluid.
  • the whole night during which the patient is sleeping may thus be used for an efficient dialysis treatment.
  • the abdominal pain that can occur during the low flow phase of the draining period may be avoided, which of course increases the comfort for the patient.
  • the device includes means for determining a first parameter concerning a desired target volume of the dialysis fluid to be contained in an abdominal cavity of the patient after each fill period of the treatment.
  • the first parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment.
  • the first parameter may, during the treatment, be maintained at the determined value or adjusted as explained below.
  • the device includes means for determining a second parameter concerning a total volume of a dialysis fluid to be used during the remaining part of the treatment .
  • the second parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment.
  • the second parameter may, during the treatment, be maintained at the determined value or adjusted as explained below.
  • the device includes means for determining a third parameter concerning a total length of time of the remaining part of the treatment.
  • the third parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment.
  • the third parameter may, during the treatment, be maintained at the determined value or adjusted as explained below.
  • the device includes means for determining a fourth parameter concerning a residual volume of dialysis fluid in the abdominal cavity after the drain period.
  • the fourth parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment.
  • the fourth parameter may, during the treatment, be maintained at the determined value or adjusted as explained below.
  • the processor is adapted to calculate for the next one of said cycles by means of the parameters a fill volume of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period.
  • the cycler may then be adapted to fill the abdominal cavity of the patient with the calculated fill volume of the dialysis fluid until the target volume is reached, and to drain the abdominal cavity after the calculated fill/dwell time.
  • the device also permits adjustment of the fill/dwell time for obtaining more or fewer cycles in order to optimise the consumption of fluid and time .
  • the processor is adapted to set the dwell period to a constant time value for substantially all cycles of the treatment.
  • Some patients e.g. the so-called “high transporters” may have a more effective peritoneum than the typical patient to be treated. This means that the dialysis fluid is relatively quickly consumed. If the dwell period is set too long, toxic substances and water may then start to flow back through the peritoneum to the patient.
  • the processor may thus be adapted to limit the dwell time to a maximum value. Such a limitation could reduce the total length of time of the treatment.
  • the device includes means for determining an initial, fifth parameter concerning an expected ultrafiltration volume, wherein the processor is adapted to considered the fifth parameter in the calculation of the fill volume of the dialysis fluid.
  • An expected ultrafiltration volume may be determined in advance in a relatively secure manner by means of the ultrafiltration volume of the previous treatment or treatments of the patient, the composition of the dialysis fluid etc. When considering also the ultrafiltration volume the fill volume for the next cycle may be calculated in a more exact manner.
  • the processor is adapted to calculate also a number of said cycles to be performed during the remaining part of the treatment .
  • the processor is adapted to make a relatively small adjustment of the target volume determined by the first means for the cycles following after the first cycle.
  • a small adjustment may, for instance, be from -20 to + 10% of the initial target volume, or more specifically +/-10% of the initial target volume.
  • the processor may also be adapted, when calculating the fill volume for at least the last cycle of the treatment, to reduce significantly the fill volume, i.e. to be significantly less than the fill volume of the preceding cycles, e.g. 20-80% of a preceding cycle.
  • the last cycle may also be divided into two cycles with a corresponding reduction of the dwell time of these cycles.
  • said variable includes the flow rate of the dialysis fluid during the drain period.
  • the breakpoint may thus in a convenient manner be sensed as an abrupt drop in the flow rate.
  • the flow rate may for instance be sensed by sensing the weight of the drained dialysis fluid. This weight may be continuously sensed by a scale mounted in the cycler for performing the filling and the draining.
  • said variable includes a pressure in the abdominal cavity of the patient during the drain period.
  • a pressure value may be obtained by a continuous sensing of the intraperitoneal pressure, IPP.
  • the senor is adapted to sense a drain volume of the drained dialysis fluid after the drain period and wherein the processor is adapted to calculate the residual volume by means of the drain volume, the expected ultrafiltration volume and the fill volume, and to determine a trend of the residual volume after at least two cycles.
  • the trend is reflecting the correctness of the initially determined fifth parameter concerning the expected ultrafiltration volume. Should the said initially determined expected ultrafiltration volume have been set incorrectly, it will be shown in the said residual volume trend.
  • the said residual volume trend may therefore be used as a safety measure to avoid overfilling of the patient.
  • the processor may be adapted to adjust the expected ultrafiltration volume if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined first limit value.
  • the cycler is adapted to drain, during a following cycle, the abdominal cavity completely so that the residual volume is substantially zero if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined second limit value
  • the processor is adapted to calculate the a new expected ultrafiltration volume based on the drain volume after the complete draining. Consequently, the safety measure mentioned above may involve a total drain in order to return to a safe state. In the said safe state it is also possible to get an exact measure of the ultrafiltration for the, to this point, completed cycles. From the said residual volume trend it is also possible to recalculate the said initially set ultrafiltration parameter to get a better value.
  • the said residual volume is varying some from one cycle to the next, implying that the said recalculated ultrafiltration parameter can only be an estimate.
  • the senor is adapted to detect an initial value of said variable at the beginning of the drain period and a critical value of said variable, wherein the breakpoint is reached when the variable reaches the critical value.
  • a critical flow rate may be 30-85% of the initial flow rate, e.g. 85%, 80%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the initial flow rate.
  • the object is achieved by the device initially defined, which includes the features of the independent claim 18.
  • the object is also achieved by the method initially defined, which includes for substantially all cycles the steps of: filling the abdominal cavity of the patient with a fill volume of dialysis fluid; draining the abdominal cavity; sensing during the draining a variable related to the draining of the dialysis fluid leaving the abdominal cavity; interrupting the draining when, at least for most of the cycles of the treatment, the variable reaches a breakpoint at which the variable is radically changed; and leaving a residual volume' of dialysis fluid in the abdominal cavity.
  • the object is achieved by the method initially defined, which includes for substantially all cycles the steps defined in the independent claim 38.
  • Fig 1 shows a diagram of a PD-cycle.
  • Fig 2 shows schematically a view of a device for carrying out a tidal peritoneal dialysis treatment.
  • Fig 3 shows schematically a diagram over a treatment according to the invention.
  • Fig 2 discloses a peritoneal treatment system including a device for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles. Such a cycle is disclosed in Fig 1 and includes a fill period F, a dwell period Dw and drain period Dr.
  • the device includes a cycler 1 for performing filling of dialysis fluid to the abdominal cavity of the patient and draining of the spent dialysis fluid from the patient.
  • the cycler 1 includes a closed chamber 2 and a pump device 3 adapted to subject the interior of the chamber 2 to an overpressure for the filling or to a sub-pressure for the draining.
  • the chamber 2 is adapted to house a heater bag 4 arranged to receive the dialysis fluid from a number of fluid bags 5.
  • the dialysis fluid is supplied from the heater bag 4 to a patient, illustrated by the box 6.
  • the chamber 2 is also adapted to house a drain bag 7 arranged to receive the spent dialysis fluid form the patient 6.
  • the spent dialysis fluid is discharge from the drain bag 7 to a drain
  • the device includes a first conduit 10 for connecting the fluid bags 5 with the heater bag 4.
  • the first conduit 10 is openable by means of a first heater fill valve 11.
  • a second conduit 12 is provided for connecting an additional fluid bag 13 with the heater bag 4.
  • the second conduit 12 is openable by means of a second heater valve 14.
  • a third conduit 16 is provided for connecting the heater bag 4 to the patient 6.
  • the third conduit 16 is openable by means of a patient fill valve 17.
  • a fourth conduit 18 is provided for connecting the patient 6 to the drain bag 7.
  • the fourth conduit 18 is openable by means of a patient drain valve valve 19.
  • a fifth conduit 20 is provided for connecting the drain bag 7 to the drain 8.
  • the fifth conduit 20 is openable by means of a system drain valve 22.
  • a bypass conduit 23 is provided between the third conduit 16 and the fourth conduit 18.
  • the bypass conduit 23 is openable by means of a bypass valve 24.
  • the device also includes a control unit 30 including a processor 31, an input device 32 and suitable memory 33.
  • the processor 31 is connected • to the pump device 3 and the valves 11, 14, 17, 19, 22 and 24 for controlling the treatment.
  • the processor may also be connected to an output device 34, such as a screen, a communication device etc. to enable supervision of the treatment.
  • the control unit 30 is connected to a sensor 37 for sensing the volume of the fluid in the heater bag 4 and the drain bag 7.
  • the sensor 37 includes a scale provided in the pressure chamber 2 for sensing the weight, and thus the volume, of the fluid in the heater bag 4 and the drain bag 7.
  • the input device 32 may include a card reader arranged to receive a patient card 35 including memory means 36 for storing patient data and different parameters for the performance of the treatment.
  • the patient card 35 may be programmed with appropriate data and parameters by the physician being responsible for the patient 6.
  • the parameters contained in the memory means 36 may according to a first embodiment be the following: A first parameter, concerning a desired target volume VT of the dialysis fluid to be contained in the abdominal cavity of the patient 6 after each fill period F of the treatment. A second parameter, concerning a total volume of a dialysis fluid to be used during the treatment. A third parameter, concerning a total length of time of the treatment.
  • the input device 32 may, for instance, include a keyboard or a touch screen through which the actual patient data and parameters as described above may be inputted to the device.
  • the patient drain valve 19 is open in order to ensure the discharge of any fluid in the abdominal cavity of the patient 6 to the drain bag 7, whereas the valves 11, 14, 17, 22 and 24 are closed.
  • dialysis fluid is supplied in a first cycle from one of the fluid bags 5 to the heater bag 4 via the first conduit 10 by opening the valve 11 and generating a low pressure in the pressure chamber 2 by means of the pump device 3.
  • the processor 31 is adapted to calculate for this cycle, by means of the parameters defined above, a fill volume VF of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period. 3.
  • the processor 31 is adapted to calculate also the total number of cycles to be performed during the treatment.
  • the calculated fill volume VF is thus supplied to the heater bag 4 and heated to a suitable temperature corresponding to the body temperature of the patient 6.
  • the volume in the heater bag 4 is sensed by means of the scale 37, and the filling of the heater bag 4 is continued until the target volume VT has been reached.
  • This fill volume VF of the dialysis fluid is then supplied to the patient 6 by opening the patient fill valve 17 and generating a high pressure in the chamber 2 by means of the pump device 3.
  • the valves 14, 11, 17, 22 and 24 are closed during this filling.
  • the system drain valve 22 may be open to ensure discharge of the fluid in the drain bag 7.
  • the draining of the spent dialysis fluid is initiated by opening the valve 19 and keeping the valves 11, 14, 17, 22 and 24 closed.
  • the scale 37 senses continuously the increasing weight of the spent dialysis fluid supplied to the drain bag 7 from the abdominal cavity of the patient 6.
  • the processor 31 initiates the interruption of the draining by sending a closing signal the patient drain valve 19.
  • the dialysis fluid remaining in the abdominal cavity of the patient 6 is the residual volume VR.
  • the processor 31 is preferably adapted to interrupt the draining immediately after the breakpoint has been detected.
  • the processor 31 is adapted to adjust the parameters considering the fill/dwell time and the fill volume, the drain time from start of the drain period Dr to the breakpoint BP, and the drain volume of the preceding cycle. More specifically, with regard to the first parameter the processor 31 is adapted to make a relatively small adjustment of the target volume for the remaining cycles. Such a small adjustment of the target volume may, for instance, be from -20 to + 10% of the initial target volume, or more specifically +/-10% of the initial target volume. With regard to the second parameter, the total fill volume may be adjusted by +/-5%. The processor 31 may thus determine a new total fill volume for the remaining part of the treatment.
  • the total length of time may be adjusted by +/- 5% or by +/- 10 min (which ever is the highest) .
  • processor 31 is adapted to calculate, based on the adjusted parameters, the drain time and the actual drain volume, a new fill volume VF and a new fill/dwell time for the next cycle.
  • the next cycle is then performed in a manner corresponding to the preceding cycle.
  • the steps as defined above are repeated for the remaining cycles of the treatment.
  • An example of a full treatment is schematically disclosed in Fig 3. As appears the target volume, the fill volume and the fill/dwell time may vary from cycle to cycle.
  • the residual volume will vary, but the resulting residual volume will be relatively small in comparison with the residual volume of a standard tidal peritoneal treatment.
  • the processor 31 may also be adapted, when calculating the fill volume for at least the last cycle of the treatment, to reduce significantly the fill volume, i.e. a reduction greater than 20% of the fill volume of the preceding cycles, e.g. about 30%, 40%, 50% or 60% of the preceding cycles.
  • the last cycle may also be divided into two or more cycles with a corresponding reduction of the dwell time of these cycles.
  • the sensor 37 in the form of the scale is adapted to sense continuously the weight of the fluid delivered to the heater bag 4 and the drain bag 7.
  • the weight change of the drained dialysis fluid is a variable that reflects the flow rate of the dialysis fluid from the patient 6 during the drain period Dr.
  • This flow rate may also be appreciated by other means, for instance a flow meter arranged on the fourth conduit 18.
  • a further alternative would be to sense a variable concerning a pressure in the abdominal cavity of the patient during the drain period, the so called intraperitoneal pressure IPP.
  • the corresponding sensor is adapted to detect an initial value of the variable at the beginning of the drain period Dr. The variable is continuously sensed until a critical value has been reached.
  • the critical value is characterised by an abrupt change of the variable, wherein this abrupt change .corresponds to the breakpoint.
  • the breakpoint may be reached at a radical drop in the flow rate or in the intraperitonel pressure.
  • a critical flow rate may be 30-85% of the initial flow rate, e.g. 85%, 80%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the initial flow rate.
  • the fifth parameter concerning the expected ultrafiltration volume is important to know in order to be able to prevent overfill of the patient 6. Overfill, i.e. a too large volume in the abdominal cavity, may cause pain or give medical drawbacks to the patient 6.
  • An exact value of the ultrafiltration may be determined after the treatment (by letting the last drain be a complete drain) , when the total fill volume and the total drain volume are known.
  • the sensor 37 senses the drain volume of the drained dialysis fluid after the drain period Dr of each cycle.
  • the processor is also adapted to calculate the residual volume by means of this drain volume, the expected ultrafiltration volume and the fill volume.
  • the processor is adapted to determine a trend of the residual volume after at least two cycles.
  • the processor may also adjust the expected ultrafiltration volume if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined first limit value.
  • the cycler may be adapted to drain, during a following cycle, the abdominal cavity completely so that the residual volume is substantially zero.
  • the processor may then be adapted to calculate a new expected ultrafiltration volume based on the drain volume after the complete draining.
  • the residual volume preferably is substantially zero before the first cycle of the treatment is started.
  • the abdominal cavity may be filled with dialysis fluid before the treatment starts, wherein the first measure would be to drain out the abdominal fluid.
  • the residual volume is preferably substantially zero after the last cycle of the treatment.
  • the abdominal cavity may then be filled with dialysis fluid after the breakpoint treatment.
  • the processor 31 could be designed to divide the last cycle into two cycles as explained above. The dwell time of the last cycles may then be shortened, which means that the treatment may be terminated within the calculated total time of the treatment.
  • the processor 31 could be designed to initiate interruption of the draining of the cycle before the last cycle when a certain quantity, e.g. 50%, of the fluid in the abdominal cavity has been drained even if the breakpoint has not yet been reached in order to be able to utilise the whole length of time of the treatment.

Abstract

The invention concerns a device and a method for a peritoneal dialysis treatment in several cycles. A cycler (1) controlled by a processor (31) fills the abdominal cavity with dialysis fluid, and drains the abdominal cavity. A sensor (37) senses a variable related to the draining of the dialysis fluid. The draining is interrupted when the variable reaches a breakpoint at which the variable is radically changed, thereby leaving the residual volume.

Description

A device for carrying out a peritoneal dialysis treatment
TECHNICAL FIELD
The present invention generally refers to a tidal peritoneal dialysis treatment. More specifically, the present invention is concerned with automated tidal peritoneal dialysis.
In particular, the present invention refers to a device for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period, a dwell period and drain period. Furthermore, the present invention refers to a method for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period, a dwell period and drain period.
THE BACKGROUND OF THE INVENTION
Many persons suffer from different kidney diseases, which make them dependent on dialysis treatment. Among the different methods for dialysis, peritoneal dialysis, PD, has proven to be a robust method which may be performed by the dialysis patient at his home. During PD, dialysis fluid is passed to the abdominal cavity of the patient where it is allowed to reside for a predetermined time period to allow a removal of toxic substances and excess water from the patient/body. After the expiry of the predetermined time period, the dialysis fluid is removed from the peritoneal cavity and is replaced by fresh dialysis fluid. This is repeated for a number of cycles. There are a number of different techniques with different schemes for filling and emptying the peritoneal cavity. Common for the different techniques is that a volume on the order' of litres for the average patient is replaced during each cycle and that there is a plurality of cycles .
PD performed with the aid of a cycler is called APD (Automated Peritoneal Dialysis) , wherein the cycler performs the successive filling of dialysis fluid and draining of dialysis fluid.
One APD-method is CCPD (Continuous Cycling Peritoneal Dialysis) , wherein 4 - 8 exchanges of dialysis fluid are performed during night and wherein the abdominal cavity is filled with dialysis fluid during the day. Each draining is a complete draining, i.e. the abdominal cavity is substantially empty before each new filling of dialysis fluid.
Another APD-method is NIPD (Nightly Intermittent Peritoneal Dialysis) , wherein 5 - 10 exchanges of dialysis fluid are performed during night and wherein the abdominal cavity is empty during the day. Each draining is a complete draining, i.e. the abdominal cavity is substantially empty before each new filling of dialysis fluid.
A further APD-method is TPD (Tidal Peritoneal Dialysis), wherein 5 - 12 exchanges of dialysis fluid are performed during night and wherein the abdominal cavity is empty or filled with dialysis fluid during the day. An initial fill volume is instilled but only a part of this fill volume, e.g. 50-80%, is drained and replaced with each cycle.
Each APD-cycle looks in principle as disclosed in the attached Fig 1. Each cycle thus consists of a fill period F, a dwell period Dw, and a drain period Dr. The fill period F, during which the dialysis fluid is supplied to the abdominal cavity with a fill volume VF, is characterised by a relatively high flow rate of the dialysis fluid. The dwell period Dw, during which the abdominal cavity is filled with dialysis fluid, is characterised by a slow increase in the fluid volume in the abdominal cavity. This increase is a result of the ultrafiltration, i.e. the osmotic net transport of fluid from the blood of the patient to the abdominal cavity. The drain period Dr, during which the spent dialysis fluid is drained out from the abdominal cavity, exhibits two phases, a first high flow phase characterised by a relatively high flow rate of dialysis fluid, and a second low flow phase characterised by a relatively slow flow rate of dialysis fluid. The two phases are clearly distinguished from each other at a breakpoint B.
During the first high flow phase, which could last for about 5 - 7 min, the flow rate is typically between 250 and 300 ml/min depending on the pressure, the type of machine, etc. During the second low flow phase, which could last for about 10 - 15 min, the flow rate is typically less than 50 ml/min. This means that a relatively large portion of the dialysis fluid in the abdominal cavity has been drained out during a relatively short part of the total time of the drain period Dr. Furthermore, no significant dialysis takes place when there is only a relatively small volume of spent dialysis fluid in the abdominal cavity, i.e. during the second low flow phase. Consequently, the second low flow phase constitutes a waste of time of the total time of the PD- treatment .
A further problem with the second low flow phase is that the patient can suffer from abdominal pain during this phase. When the flow rate is low or zero no dynamic pressure drop will be present over the catheter and the drain line. Because of this, a suction pressure will be transmitted to the abdominal cavity, which means the catheter can be sucked against the walls of the abdominal cavity causing said pain.
PRIOR ART
US-A-β, 558, 343 discloses a device and method aiming at an optimisation of exchange of dialysis fluid. The device is provided with a system enabling dialysis fluid exchange parameters to be varied over time so as to maintain an optimum quality of dialysis fluid, while optimising the exchange volumes so as to minimise the total consumption of dialysis liquid. This is achieved by varying the frequency of the exchange cycles, e.g. the exchange cycles, the volume changed, the total volume of dialysis fluid, the pause period between cycles, the flow rate during an exchange can be low at the start of the treatment and increase over time during treatment. The variation of the treatment is established on the basis of optimisation taking account on parameters specific to the patient under consideration (filtration curve) . The parameters are determined before the actual treatment is started and are not changed during the treatment as such. In order to be able to make this determination data specific to the patient under consideration are needed. An optimal fill volume is a condition for allowing a comfortable diaphragm position and breathing for the patient.
Brandes et al in American Journal of Kidney Diseases, Vol. 25, No 4 1995 on page 603-610 discloses findings in connection with "Optimization of Dialysate Flow and Mass Transfer During Automated Peritoneal Dialysis". More specifically, Brandes et al discloses that analysis of drain flow rate versus time revealed an initial segment of high outflow (350+/-89mL/min) followed by an abrupt transition (hereafter referred to as breakpoint) to a segment characterised by slow drainage (36+/-21mL/min) . The first segment of drain only took 5.6+/-2.3 minutes (42% of the total drain time) ; in that time 83%+/- 10% of the dialysis fluid was drained. It was concluded that, automated peritoneal dialysis treatment, including intermittent peritoneal dialysis which may be done in the upright position, should be done in the supine rather than upright position to optimise a mass transfer area coefficient (KoA) and shortening drain time to include only the initial segment of high outflow to improve the efficiency and convenience of therapy.
Kumano et al in Peritoneal Dialysis International Vol. 14, pp. 52-55 discloses a study where it was found that a rapid drainage for the first 5-7 minutes followed by a very slow drainage. More than 80% of the drainage was achieved within the former period. Kumano et al conclude that 10 minutes is a sufficient drainage period for most CAPD patients with 2-L dialysis fluid volume. Kumano et al suggests that the drain pattern is determined for each individual patient in order to recommend an individualised drainage time.
Durand, Pierre-Yves, in Peritoneal Dialysis Today, Vol. 140, pp. 272-277 in the article APD Schedules and Clinical Results briefly describes a future optimised tidal peritoneal dialysis treatment based on an automatic detection of the breakpoint.
WO99/02206 discloses a cycler for performing filling of dialysis fluid to the abdominal cavity of the patient and draining of the spent dialysis fluid from the patient during a PD-treat ent . The cycler includes a closed chamber which may be subjected to an overpressure for the filling, and an under pressure for the draining. SUMMARY OF THE INVENTION
The object of the present invention is to provide a method and a device for carrying out an improved tidal peritoneal dialysis treatment.
A further object is to provide a tidal peritoneal dialysis treatment that optimises the use of dialysis fluid.
A still further object is to provide a tidal peritoneal dialysis treatment that optimises the use of the time spent on the treatment .
A still further object is to provide a tidal peritoneal dialysis treatment that may be performed without any need to consider the position of the patient to be treated.
The object is achieved by the device initially defined, which includes: a processor; a cycler connected to the processor and adapted to fill the abdominal cavity of the patient with dialysis fluid, and to drain the abdominal cavity; and a sensor connected to the processor and adapted to sense during the draining a variable related to the draining of the dialysis fluid from the abdominal cavity; wherein the processor is adapted to initiate interruption of the draining, at least for most of the cycles of the treatment, when the variable reaches a breakpoint at which the variable is radically changed, thereby leaving a residual volume of dialysis fluid in the abdominal cavity.
By permitting interruption of the draining at the breakpoint, the draining period may be significantly shortened in relation to a standard APD-treatment where the abdominal cavity is completely emptied. The part of the total cycle time during which an active dialysis treatment is performed will be correspondingly increased. The filling of dialysis fluid in the next cycle may thus be started immediately when the breakpoint has been reached, which means that no time will be spent which merely involves an inefficient draining of a relatively small quantity of dialysis fluid. The whole night during which the patient is sleeping may thus be used for an efficient dialysis treatment. Moreover, the abdominal pain that can occur during the low flow phase of the draining period may be avoided, which of course increases the comfort for the patient.
According to an embodiment of the invention, the device includes means for determining a first parameter concerning a desired target volume of the dialysis fluid to be contained in an abdominal cavity of the patient after each fill period of the treatment. The first parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment. The first parameter may, during the treatment, be maintained at the determined value or adjusted as explained below.
According to a further embodiment of the invention, the device includes means for determining a second parameter concerning a total volume of a dialysis fluid to be used during the remaining part of the treatment . The second parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment. The second parameter may, during the treatment, be maintained at the determined value or adjusted as explained below. According to a further embodiment of the invention, the device includes means for determining a third parameter concerning a total length of time of the remaining part of the treatment. The third parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment. The third parameter may, during the treatment, be maintained at the determined value or adjusted as explained below.
According to a further embodiment of the invention, the device includes means for determining a fourth parameter concerning a residual volume of dialysis fluid in the abdominal cavity after the drain period. The fourth parameter may, at least for the initial cycle or cycles, be determined in advance by a physician or any other suitable person, or by means of the result from a preceding treatment. The fourth parameter may, during the treatment, be maintained at the determined value or adjusted as explained below.
According to a further embodiment of the invention, the processor is adapted to calculate for the next one of said cycles by means of the parameters a fill volume of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period. The cycler may then be adapted to fill the abdominal cavity of the patient with the calculated fill volume of the dialysis fluid until the target volume is reached, and to drain the abdominal cavity after the calculated fill/dwell time. The device also permits adjustment of the fill/dwell time for obtaining more or fewer cycles in order to optimise the consumption of fluid and time .
According to a further embodiment of the invention, the processor is adapted to set the dwell period to a constant time value for substantially all cycles of the treatment. Some patients, e.g. the so-called "high transporters", may have a more effective peritoneum than the typical patient to be treated. This means that the dialysis fluid is relatively quickly consumed. If the dwell period is set too long, toxic substances and water may then start to flow back through the peritoneum to the patient. For such patients, the processor may thus be adapted to limit the dwell time to a maximum value. Such a limitation could reduce the total length of time of the treatment.
According to a further embodiment of the invention, the device includes means for determining an initial, fifth parameter concerning an expected ultrafiltration volume, wherein the processor is adapted to considered the fifth parameter in the calculation of the fill volume of the dialysis fluid. An expected ultrafiltration volume may be determined in advance in a relatively secure manner by means of the ultrafiltration volume of the previous treatment or treatments of the patient, the composition of the dialysis fluid etc. When considering also the ultrafiltration volume the fill volume for the next cycle may be calculated in a more exact manner.
According to a further embodiment of the invention, the processor is adapted to calculate also a number of said cycles to be performed during the remaining part of the treatment .
According to a further embodiment of the invention, the processor is adapted to make a relatively small adjustment of the target volume determined by the first means for the cycles following after the first cycle. Such a small adjustment may, for instance, be from -20 to + 10% of the initial target volume, or more specifically +/-10% of the initial target volume. The processor may also be adapted, when calculating the fill volume for at least the last cycle of the treatment, to reduce significantly the fill volume, i.e. to be significantly less than the fill volume of the preceding cycles, e.g. 20-80% of a preceding cycle. The last cycle may also be divided into two cycles with a corresponding reduction of the dwell time of these cycles.
According to a further embodiment of the invention, said variable includes the flow rate of the dialysis fluid during the drain period. The breakpoint may thus in a convenient manner be sensed as an abrupt drop in the flow rate. The flow rate may for instance be sensed by sensing the weight of the drained dialysis fluid. This weight may be continuously sensed by a scale mounted in the cycler for performing the filling and the draining.
According to another embodiment of the invention, said variable includes a pressure in the abdominal cavity of the patient during the drain period. Such a pressure value may be obtained by a continuous sensing of the intraperitoneal pressure, IPP.
According to a further embodiment of the invention, the sensor is adapted to sense a drain volume of the drained dialysis fluid after the drain period and wherein the processor is adapted to calculate the residual volume by means of the drain volume, the expected ultrafiltration volume and the fill volume, and to determine a trend of the residual volume after at least two cycles. The trend is reflecting the correctness of the initially determined fifth parameter concerning the expected ultrafiltration volume. Should the said initially determined expected ultrafiltration volume have been set incorrectly, it will be shown in the said residual volume trend. The said residual volume trend may therefore be used as a safety measure to avoid overfilling of the patient. Furthermore, the processor may be adapted to adjust the expected ultrafiltration volume if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined first limit value.
According to a further embodiment of the invention, the cycler is adapted to drain, during a following cycle, the abdominal cavity completely so that the residual volume is substantially zero if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined second limit value, and wherein the processor is adapted to calculate the a new expected ultrafiltration volume based on the drain volume after the complete draining. Consequently, the safety measure mentioned above may involve a total drain in order to return to a safe state. In the said safe state it is also possible to get an exact measure of the ultrafiltration for the, to this point, completed cycles. From the said residual volume trend it is also possible to recalculate the said initially set ultrafiltration parameter to get a better value. The said residual volume is varying some from one cycle to the next, implying that the said recalculated ultrafiltration parameter can only be an estimate.
According to a further embodiment of the invention, the sensor is adapted to detect an initial value of said variable at the beginning of the drain period and a critical value of said variable, wherein the breakpoint is reached when the variable reaches the critical value. A critical flow rate may be 30-85% of the initial flow rate, e.g. 85%, 80%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the initial flow rate.
Moreover, the object is achieved by the device initially defined, which includes the features of the independent claim 18. The object is also achieved by the method initially defined, which includes for substantially all cycles the steps of: filling the abdominal cavity of the patient with a fill volume of dialysis fluid; draining the abdominal cavity; sensing during the draining a variable related to the draining of the dialysis fluid leaving the abdominal cavity; interrupting the draining when, at least for most of the cycles of the treatment, the variable reaches a breakpoint at which the variable is radically changed; and leaving a residual volume' of dialysis fluid in the abdominal cavity.
Advantageous further developments of the method are defined in the dependent claims 20 to 37.
Moreover, the object is achieved by the method initially defined, which includes for substantially all cycles the steps defined in the independent claim 38.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is now to be explained more closely by means of various embodiments thereof and with reference to the drawings attached hereto. Fig 1 shows a diagram of a PD-cycle.
Fig 2 shows schematically a view of a device for carrying out a tidal peritoneal dialysis treatment. Fig 3 shows schematically a diagram over a treatment according to the invention.
DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION
Fig 2 discloses a peritoneal treatment system including a device for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles. Such a cycle is disclosed in Fig 1 and includes a fill period F, a dwell period Dw and drain period Dr.
The device includes a cycler 1 for performing filling of dialysis fluid to the abdominal cavity of the patient and draining of the spent dialysis fluid from the patient. The cycler 1 includes a closed chamber 2 and a pump device 3 adapted to subject the interior of the chamber 2 to an overpressure for the filling or to a sub-pressure for the draining. The chamber 2 is adapted to house a heater bag 4 arranged to receive the dialysis fluid from a number of fluid bags 5. The dialysis fluid is supplied from the heater bag 4 to a patient, illustrated by the box 6. The chamber 2 is also adapted to house a drain bag 7 arranged to receive the spent dialysis fluid form the patient 6. The spent dialysis fluid is discharge from the drain bag 7 to a drain
The device includes a first conduit 10 for connecting the fluid bags 5 with the heater bag 4. The first conduit 10 is openable by means of a first heater fill valve 11. A second conduit 12 is provided for connecting an additional fluid bag 13 with the heater bag 4. The second conduit 12 is openable by means of a second heater valve 14. A third conduit 16 is provided for connecting the heater bag 4 to the patient 6. The third conduit 16 is openable by means of a patient fill valve 17. A fourth conduit 18 is provided for connecting the patient 6 to the drain bag 7. The fourth conduit 18 is openable by means of a patient drain valve valve 19. A fifth conduit 20 is provided for connecting the drain bag 7 to the drain 8. The fifth conduit 20 is openable by means of a system drain valve 22. A bypass conduit 23 is provided between the third conduit 16 and the fourth conduit 18. The bypass conduit 23 is openable by means of a bypass valve 24. The device also includes a control unit 30 including a processor 31, an input device 32 and suitable memory 33. The processor 31 is connected to the pump device 3 and the valves 11, 14, 17, 19, 22 and 24 for controlling the treatment. The processor may also be connected to an output device 34, such as a screen, a communication device etc. to enable supervision of the treatment. Furthermore, the control unit 30 is connected to a sensor 37 for sensing the volume of the fluid in the heater bag 4 and the drain bag 7. In the embodiment disclosed the sensor 37 includes a scale provided in the pressure chamber 2 for sensing the weight, and thus the volume, of the fluid in the heater bag 4 and the drain bag 7.
The input device 32 may include a card reader arranged to receive a patient card 35 including memory means 36 for storing patient data and different parameters for the performance of the treatment. The patient card 35 may be programmed with appropriate data and parameters by the physician being responsible for the patient 6. The parameters contained in the memory means 36 may according to a first embodiment be the following: A first parameter, concerning a desired target volume VT of the dialysis fluid to be contained in the abdominal cavity of the patient 6 after each fill period F of the treatment. A second parameter, concerning a total volume of a dialysis fluid to be used during the treatment. A third parameter, concerning a total length of time of the treatment.
A fourth parameter, concerning a residual volume VR of dialysis fluid in the abdominal cavity after the drain period.
A fifth parameter, concerning an expected ultrafiltration volume VU. Alternatively, the input device 32 may, for instance, include a keyboard or a touch screen through which the actual patient data and parameters as described above may be inputted to the device.
Before start in the treatment proper, the patient drain valve 19 is open in order to ensure the discharge of any fluid in the abdominal cavity of the patient 6 to the drain bag 7, whereas the valves 11, 14, 17, 22 and 24 are closed. During a peritoneal treatment according to this invention, dialysis fluid is supplied in a first cycle from one of the fluid bags 5 to the heater bag 4 via the first conduit 10 by opening the valve 11 and generating a low pressure in the pressure chamber 2 by means of the pump device 3. The processor 31 is adapted to calculate for this cycle, by means of the parameters defined above, a fill volume VF of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period. 3. The processor 31 is adapted to calculate also the total number of cycles to be performed during the treatment.
The calculated fill volume VF is thus supplied to the heater bag 4 and heated to a suitable temperature corresponding to the body temperature of the patient 6. The volume in the heater bag 4 is sensed by means of the scale 37, and the filling of the heater bag 4 is continued until the target volume VT has been reached. This fill volume VF of the dialysis fluid is then supplied to the patient 6 by opening the patient fill valve 17 and generating a high pressure in the chamber 2 by means of the pump device 3. The valves 14, 11, 17, 22 and 24 are closed during this filling.
During the dwell period Dr of the first cycle the heater bag
4 may be filled with new dialysis liquid from the fluid bags 5, by opening the valve 11 and keeping the valves 14, 17,
19, 22 and 24 closed. After the new filling of the heater bag 4, the system drain valve 22 may be open to ensure discharge of the fluid in the drain bag 7. After the calculated fill/dwell time the draining of the spent dialysis fluid is initiated by opening the valve 19 and keeping the valves 11, 14, 17, 22 and 24 closed.
During the draining period Dr, the scale 37 senses continuously the increasing weight of the spent dialysis fluid supplied to the drain bag 7 from the abdominal cavity of the patient 6. When the decreasing weight change reaches a breakpoint BP at which the weight is radically changed. The processor 31 initiates the interruption of the draining by sending a closing signal the patient drain valve 19. The dialysis fluid remaining in the abdominal cavity of the patient 6 is the residual volume VR. The processor 31 is preferably adapted to interrupt the draining immediately after the breakpoint has been detected.
After the interruption of the draining the filling period F of the next cycle may be initiated immediately. However, after the first cycle, the processor 31 is adapted to adjust the parameters considering the fill/dwell time and the fill volume, the drain time from start of the drain period Dr to the breakpoint BP, and the drain volume of the preceding cycle. More specifically, with regard to the first parameter the processor 31 is adapted to make a relatively small adjustment of the target volume for the remaining cycles. Such a small adjustment of the target volume may, for instance, be from -20 to + 10% of the initial target volume, or more specifically +/-10% of the initial target volume. With regard to the second parameter, the total fill volume may be adjusted by +/-5%. The processor 31 may thus determine a new total fill volume for the remaining part of the treatment. With regard to the third parameter, the total length of time may be adjusted by +/- 5% or by +/- 10 min (which ever is the highest) . Furthermore, processor 31 is adapted to calculate, based on the adjusted parameters, the drain time and the actual drain volume, a new fill volume VF and a new fill/dwell time for the next cycle. The next cycle is then performed in a manner corresponding to the preceding cycle. After the next cycle, the steps as defined above are repeated for the remaining cycles of the treatment. An example of a full treatment is schematically disclosed in Fig 3. As appears the target volume, the fill volume and the fill/dwell time may vary from cycle to cycle. The residual volume will vary, but the resulting residual volume will be relatively small in comparison with the residual volume of a standard tidal peritoneal treatment.
The processor 31 may also be adapted, when calculating the fill volume for at least the last cycle of the treatment, to reduce significantly the fill volume, i.e. a reduction greater than 20% of the fill volume of the preceding cycles, e.g. about 30%, 40%, 50% or 60% of the preceding cycles. The last cycle may also be divided into two or more cycles with a corresponding reduction of the dwell time of these cycles.
The sensor 37 in the form of the scale is adapted to sense continuously the weight of the fluid delivered to the heater bag 4 and the drain bag 7. The weight change of the drained dialysis fluid is a variable that reflects the flow rate of the dialysis fluid from the patient 6 during the drain period Dr. This flow rate may also be appreciated by other means, for instance a flow meter arranged on the fourth conduit 18. A further alternative would be to sense a variable concerning a pressure in the abdominal cavity of the patient during the drain period, the so called intraperitoneal pressure IPP. However, independent on which variable is selected for the performance of the invention, the corresponding sensor is adapted to detect an initial value of the variable at the beginning of the drain period Dr. The variable is continuously sensed until a critical value has been reached. The critical value is characterised by an abrupt change of the variable, wherein this abrupt change .corresponds to the breakpoint. For instance, the breakpoint may be reached at a radical drop in the flow rate or in the intraperitonel pressure. A critical flow rate may be 30-85% of the initial flow rate, e.g. 85%, 80%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the initial flow rate.
The fifth parameter concerning the expected ultrafiltration volume is important to know in order to be able to prevent overfill of the patient 6. Overfill, i.e. a too large volume in the abdominal cavity, may cause pain or give medical drawbacks to the patient 6. An exact value of the ultrafiltration may be determined after the treatment (by letting the last drain be a complete drain) , when the total fill volume and the total drain volume are known.
However, it may also be interesting to follow the residual volume over at least two cycles in order to determine the trend of said residual volume. In principle, this trend may be roughly .determined by following only two cycles. Of course a better trend is achieved if the residual volume is followed over more than two cycles. The sensor 37 senses the drain volume of the drained dialysis fluid after the drain period Dr of each cycle. The processor is also adapted to calculate the residual volume by means of this drain volume, the expected ultrafiltration volume and the fill volume. Moreover, the processor is adapted to determine a trend of the residual volume after at least two cycles. The processor may also adjust the expected ultrafiltration volume if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined first limit value. Moreover, if the trend exhibits an increasing or decreasing value of the residual volume and if said value also exceeds a predetermined second limit value, the cycler may be adapted to drain, during a following cycle, the abdominal cavity completely so that the residual volume is substantially zero. The processor may then be adapted to calculate a new expected ultrafiltration volume based on the drain volume after the complete draining.
It is to be noted that the residual volume preferably is substantially zero before the first cycle of the treatment is started. However, the abdominal cavity may be filled with dialysis fluid before the treatment starts, wherein the first measure would be to drain out the abdominal fluid. Furthermore, the residual volume is preferably substantially zero after the last cycle of the treatment. However, the abdominal cavity may then be filled with dialysis fluid after the breakpoint treatment.
In some cases, there appears a significant variation of the residual volume of dialysis fluid in the abdominal cavity, especially at the end of the treatment. It is desirable not to have any fresh dialysis fluid left after the treatment has been terminated. If, when calculating the fill volume and the dwell time of the last cycle, the remaining volume of fresh dialysis fluid not used in the last cycle is regarded as a considerable amount, the processor 31 could be designed to divide the last cycle into two cycles as explained above. The dwell time of the last cycles may then be shortened, which means that the treatment may be terminated within the calculated total time of the treatment. If, on the other hand, the draining during the treatment regularly results in a relatively moderate draining, for instance 50% of the target volume in the abdominal cavity, and if the draining before the last cycle results in a significantly higher draining of the abdominal cavity, the processor 31 could be designed to initiate interruption of the draining of the cycle before the last cycle when a certain quantity, e.g. 50%, of the fluid in the abdominal cavity has been drained even if the breakpoint has not yet been reached in order to be able to utilise the whole length of time of the treatment.
The present invention is not limited to the embodiments disclosed, but may be varied and modified within the scope of the following claims.

Claims

Claims
1. A device for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period (F), a dwell period (Dw) and drain period (Dr) , the device including: a processor (31) ; a cycler (1) connected to the processor and adapted to fill the abdominal cavity of the patient with dialysis fluid, and to drain the abdominal cavity; and a sensor (37) connected to the processor and adapted to sense during the draining a variable related to the draining of the dialysis fluid from the abdominal cavity; wherein the processor (31) is adapted to initiate interruption of the draining, at least for most of the cycles of the treatment, when the variable reaches a breakpoint at which the variable is radically changed, thereby leaving a residual volume of dialysis fluid in the abdominal cavity.
2. A device according to claim 1, including means (31,32,35,36) for determining a first parameter concerning a desired target volume of the dialysis fluid to be contained in an abdominal cavity of the patient after each fill period of the treatment.
3. A device according to any one of claims 1 and 2, including means (31,32,35,36) for determining a second parameter concerning a total volume of a dialysis fluid to be used during the remaining part of the treatment.
4. A device according to any one of the preceding claims, including means (31,32,35,36) for determining a third parameter concerning a total length of time of the remaining part of the treatment.
5. A device according to any one of the preceding claims, including means (31,32,35,36) for determining a fourth parameter concerning a residual volume of dialysis fluid in the abdominal cavity after the drain period.
6. A device according to claims 2 - 5, wherein the processor (31) is adapted to calculate for the next one of said cycles by means of the parameters a fill volume (VF) of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period.
7. A device according to claim 6, wherein the cycler (1) is adapted to fill the abdominal cavity of the patient with the calculated fill volume of the dialysis fluid until the target volume is reached, and to drain the abdominal cavity after the calculated fill/dwell time.
8. A device according to any one of claims 6 and 7, wherein the processor is adapted to set the dwell period to a constant time value for substantially all cycles of the treatment at least for certain patients to be treated.
9. A device according to any one of claims 5 - 8, including means (31,32,35,36) for determining an initial, fifth parameter concerning an expected ultrafiltration volume, wherein the processor (31) is adapted to considered the fifth parameter in the calculation of the fill volume (VF) of the dialysis fluid.
10. A device according to any one of claims 6 to 9, wherein the processor (31) is adapted to calculate also a number of said cycles to be performed during the remaining part of the treatment .
11. A device according to any one of claims 6 to 10, wherein processor (31) is adapted to make a relatively small adjustment of the target volume determined by the first means for the cycles following after the first cycle.
12. A device according to any one of the preceding claims, wherein said variable includes the flow rate of the dialysis fluid during the drain period.
13. A device according to any one of the preceding claims, wherein said variable includes a pressure in the abdominal cavity of the patient during the drain period.
14. A device according to at least claim 9, wherein the sensor (37) is adapted to sense a drain volume of the drained dialysis fluid after the drain period and wherein the processor (31) is adapted to calculate the residual volume by means of the drain volume, the expected ultrafiltration volume and the fill volume, and to determine a trend of the residual volume after at least two cycles.
15. A device according to claim 14, wherein the processor (31) is adapted to adjust the expected ultrafiltration volume if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined first limit value.
16. A device according to any one of claims 14 and 15, wherein the cycler (1) is adapted to drain, during a following cycle, the abdominal cavity completely so that the residual volume is substantially zero if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined second limit value, and wherein the processor (31) is adapted to calculate a new expected ultrafiltration volume based on the drain volume after the complete draining.
17. A device according to any one of the preceding claims, wherein the sensor (37) is adapted to detect an initial value of said variable at the beginning of the drain period and a critical value of said variable, wherein the breakpoint is reached when the variable reaches the critical value .
18. A device for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period (F) , a dwell period (Dw) and drain period (Dr) , the device including: means (31,32,35,36) for determining a first parameter concerning a desired target volume of the dialysis fluid to be contained in an abdominal cavity of the patient after each fill period of the treatment; means (31,32,35,36) for determining a second parameter concerning a total volume of a dialysis fluid to be used during the remaining part of the treatment; means (31,32,35,36) for determining a third parameter concerning a total length of time of the remaining part of the treatment; means (31,32,35,36) for determining a fourth parameter concerning a residual volume of dialysis fluid in the abdominal cavity after the drain period; a processor (31) adapted to calculate for the next one of said cycles by means of the parameters a fill volume (VF) of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period; a cycler (1) connected to the processor and adapted to fill the abdominal cavity of the patient with the calculated fill volume of the dialysis fluid until the target volume is reached, and to drain the abdominal cavity after the calculated fill/dwell time; and a sensor (37) connected to the processor and adapted to sense during the draining a variable related to the draining of the dialysis fluid from the abdominal cavity; wherein the processor (31) is adapted to initiate interruption of the draining when the variable reaches a breakpoint at which the variable is radically changed, thereby leaving a residual volume of dialysis fluid in the abdominal cavity.
19. A method for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period, a dwell period and drain period, the method including^ for substantially all cycles, the steps of: filling the abdominal cavity of the patient with a fill volume of dialysis fluid; draining the abdominal cavity; sensing during the draining a variable related to the draining of the dialysis fluid leaving the abdominal cavity; interrupting the draining when, at least for most of the cycles of the treatment, the variable reaches a breakpoint at which the variable is radically changed; and leaving a residual volume of dialysis fluid in the abdominal cavity.
20. A method according to claim 19, including the further step of: determining a first parameter concerning a desired target volume of the dialysis fluid to be contained in an abdominal cavity of the patient after each fill period of the treatment .
21. A method according to any one of claims 19 and 20, including the further step of: determining a second parameter concerning a total volume of a dialysis fluid to be used during a remaining part of the treatment.
22. A method according to any one of claims 19 to 21, including the further step of: determining a third parameter concerning a total length of time of the remaining part of the treatment .
23. A method according to any one of claims 19 to 22, including the further step of: determining a fourth parameter concerning a residual volume of dialysis fluid in the abdominal cavity after the drain period.
24. A method according to claims 19 to 23, including the further step of: calculating for the next one of said cycles by means of the parameters a fill volume of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period.
25. A method according to claim 24, wherein the filling step includes filling the abdominal cavity of the patient with the calculated fill volume of the dialysis fluid until the target volume is reached, and wherein the draining step includes draining the abdominal cavity after the calculated fill/dwell time.
26. A method according to any one of claims 24 and 25, wherein the calculating step permits the dwell period to be set to a constant time value for substantially all cycles of the treatment at least for certain patients to be treated.
27. A method according to any one of claims 24 to 26, including the further step of: determining as an initial measure a fifth parameter concerning an expected ultrafiltration volume, wherein the fifth parameter is also considered in the step of calculating the fill volume of the dialysis fluid.
28. A method according to any one of claims 24 to 27, wherein the calculating step also includes calculating of a number of said cycles to be performed during the remaining part of the treatment.
29. A method according to any one of claims 24 to 28, wherein the step of determining the first parameter includes a relatively small adjustment of the target volume for the cycles following after the first cycle.
30. A method according to any one of claims 19 to 29, wherein said variable includes the flow rate of the dialysis fluid during the drain period.
31. A method according to any one of claims 19 to 30, wherein said variable includes a pressure in the abdominal cavity of the patient during the drain period.
32. A method according to claim 27 and possibly any one of claims 28 to 31, including the further steps of: sensing - Ά a drain volume of the drained dialysis fluid after the drain period; calculating the residual volume by means of the drain volume, the expected ultrafiltration volume and the fill volume; and determining a trend of the residual volume after at least two cycles.
33. A method according to claim 32, including the further step of: adjusting the expected ultrafiltration volume if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined first limit value.
34. A method according to any one of claims 32 and 33, including the further step of: draining, during a following cycle, the abdominal cavity completely so that the residual volume is substantially zero if the trend exhibits an increasing or decreasing value of the residual volume and if said value exceeds a predetermined second limit value, and calculating a new expected ultrafiltration volume based on the drain volume after the complete draining.
35. A method according to any one of claims 19 to 34, wherein the sensing step includes detecting an initial value of said variable at the beginning of the draining step and a critical value of said variable, wherein the breakpoint is reached when the variable reaches the critical value.
36. A method according to any one of claims 19 to 35, wherein the residual volume is substantially zero before the first cycle of the treatment.
37. A method according to any one of claims 19 to 36, wherein the residual volume is substantially zero after the last cycle of the treatment.
38. A method for carrying out a tidal peritoneal dialysis treatment of a patient in a plurality of cycles, each cycle including a fill period, a dwell period and drain period, the method including for substantially all cycles steps of: a) determining a first parameter concerning a desired target volume of the dialysis fluid to be contained in an abdominal cavity of the patient after each fill period of the treatment; b) determining a second parameter concerning a total volume of a dialysis fluid to be used during a remaining part of the treatment; c) determining a third parameter concerning a total length of time of the remaining part of the treatment; d) determining a fourth parameter concerning a residual volume of dialysis fluid in the abdominal cavity after the drain period; e) calculating for the next one of said cycles by means of the parameters a fill volume of the dialysis fluid and a fill/dwell time including the time of the fill period and the dwell period; f) filling the abdominal cavity of the patient with the calculated fill volume of the dialysis fluid until the target volume is reached; g) draining the abdominal cavity after the calculated fill/dwell time; h) sensing during the draining a variable related to the draining of the dialysis fluid leaving the abdominal cavity; i) interrupting the draining when the variable reaches a breakpoint at which the variable is radically changed; and j) leaving a residual volume of dialysis fluid in the abdominal cavity.
PCT/SE2004/001467 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment WO2005035023A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/575,461 US8500676B2 (en) 2003-10-13 2004-10-13 Device for carrying out a peritoneal dialysis treatment
JP2006535305A JP4658062B2 (en) 2003-10-13 2004-10-13 Device for peritoneal dialysis treatment
PL04775545T PL1691863T3 (en) 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment
AU2004279280A AU2004279280B2 (en) 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment
KR1020067007022A KR101112117B1 (en) 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment
DE602004011981T DE602004011981T2 (en) 2003-10-13 2004-10-13 DEVICE FOR CARRYING OUT PERITONEAL DIALYSIS TREATMENT
EP04775545A EP1691863B1 (en) 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment
CN2004800285049A CN1859936B (en) 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment
CA2536421A CA2536421C (en) 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE0302698A SE0302698L (en) 2003-10-13 2003-10-13 Device for performing a peritoneal dialysis treatment
SE0302698-6 2003-10-13
US52333403P 2003-11-20 2003-11-20
US60/523,334 2003-11-20

Publications (1)

Publication Number Publication Date
WO2005035023A1 true WO2005035023A1 (en) 2005-04-21

Family

ID=34437067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2004/001467 WO2005035023A1 (en) 2003-10-13 2004-10-13 A device for carrying out a peritoneal dialysis treatment

Country Status (10)

Country Link
EP (1) EP1691863B1 (en)
JP (1) JP4658062B2 (en)
KR (1) KR101112117B1 (en)
AT (1) ATE386557T1 (en)
AU (1) AU2004279280B2 (en)
CA (1) CA2536421C (en)
DE (1) DE602004011981T2 (en)
ES (1) ES2298818T3 (en)
PL (1) PL1691863T3 (en)
WO (1) WO2005035023A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091217A1 (en) * 2006-02-08 2007-08-16 Debiotech S.A. Peritoneal dialysis system
EP1938849A2 (en) * 2006-12-29 2008-07-02 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis therapy validation
WO2010000446A1 (en) 2008-07-04 2010-01-07 Fresenius Medical Care Deutschland Gmbh Device for peritoneal dialysis
WO2010006147A1 (en) * 2008-07-09 2010-01-14 Baxter International Inc. Peritoneal equilibration test and dialysis system using same
WO2010006140A3 (en) * 2008-07-09 2010-06-17 Baxter International Inc. Dialysis system having trending and alert generation
WO2010088360A1 (en) * 2009-01-29 2010-08-05 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
WO2010088357A1 (en) * 2009-01-29 2010-08-05 Baxter International Inc. Method for optimizing tidal therapies employing ultrafiltrate trending
WO2010096659A1 (en) * 2009-02-20 2010-08-26 Baxter International Inc. Simulation of patient drain phase in peritoneal dialysis
WO2012174652A1 (en) * 2011-06-24 2012-12-27 Lo Richard W C Multi-container systems and uses thereof
DE102011105916A1 (en) 2011-06-29 2013-01-03 Fresenius Medical Care Deutschland Gmbh dialysis machine
EP2623139A1 (en) * 2012-02-01 2013-08-07 Vincenzo La Milia Peritoneal dialysis system
US20140088493A1 (en) * 2009-12-24 2014-03-27 Vr Medical Technology, Llc Automated peritoneal dialysis cycler and methods of use
US8926550B2 (en) 2006-08-31 2015-01-06 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
US8926551B2 (en) 2009-07-07 2015-01-06 Baxter Healthcare Inc. Peritoneal dialysis therapy with large dialysis solution volumes
US8936720B2 (en) 2010-09-17 2015-01-20 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
US9381290B2 (en) 2009-05-20 2016-07-05 Baxter International Inc. System and method for pairing a dialysis machine with peripheral devices
US9579443B2 (en) 2013-01-10 2017-02-28 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis systems and related devices and methods
WO2017158392A1 (en) * 2016-03-14 2017-09-21 Hepa Wash Gmbh Systems or apparatuses and methods for performing dialysis
WO2020014937A1 (en) * 2018-07-20 2020-01-23 Fresenius Medical Care R&D (Shanghai) Co., Ltd. Centrally controlled multi-patient dialysis treatment system and its use
US10828411B2 (en) 2014-09-05 2020-11-10 Fresenius Medical Care Deutschland Gmbh Apparatus for carrying out a tidal peritoneal dialysis treatment
US11344656B2 (en) 2017-05-22 2022-05-31 Advitos Gmbh Methods and systems for removing carbon dioxide
US11583620B2 (en) 2015-11-20 2023-02-21 Advitos Gmbh Method for extracorporeal lung support
WO2023198540A1 (en) * 2022-04-14 2023-10-19 Gambro Lundia Ab Determination of intraperitoneal volume during peritoneal dialysis
US11833282B2 (en) 2015-11-20 2023-12-05 Advitos Gmbh Method for extracorporeal carbon dioxide removal

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011828A1 (en) * 2008-02-29 2009-09-10 Fresenius Medical Care Deutschland Gmbh Method and device for heating solutions, preferably dialysis solutions
US11278653B2 (en) * 2009-01-29 2022-03-22 Baxter International Inc. Method and apparatus for trending automated peritoneal dialysis treatments
US9399091B2 (en) 2009-09-30 2016-07-26 Medtronic, Inc. System and method to regulate ultrafiltration
US8951219B2 (en) 2011-04-29 2015-02-10 Medtronic, Inc. Fluid volume monitoring for patients with renal disease
JP6001660B2 (en) 2011-08-02 2016-10-05 メドトロニック,インコーポレイテッド Hemodialysis system having a flow path with controlled follow-up volume
EP2744537B1 (en) 2011-08-16 2018-01-24 Medtronic, Inc. Modular hemodialysis system
US10905816B2 (en) 2012-12-10 2021-02-02 Medtronic, Inc. Sodium management system for hemodialysis
US10010663B2 (en) 2013-02-01 2018-07-03 Medtronic, Inc. Fluid circuit for delivery of renal replacement therapies
US10543052B2 (en) 2013-02-01 2020-01-28 Medtronic, Inc. Portable dialysis cabinet
US9623164B2 (en) 2013-02-01 2017-04-18 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US9827361B2 (en) 2013-02-02 2017-11-28 Medtronic, Inc. pH buffer measurement system for hemodialysis systems
DE102013016204A1 (en) 2013-09-28 2015-04-02 Fresenius Medical Care Deutschland Gmbh Sensor technology for the detection of phases and / or phase transitions in peritoneal dialysis treatments
WO2015066731A2 (en) 2013-11-04 2015-05-07 Medtronic, Inc. Method and device to manage fluid volumes in the body
US10098993B2 (en) 2014-12-10 2018-10-16 Medtronic, Inc. Sensing and storage system for fluid balance
US9713665B2 (en) 2014-12-10 2017-07-25 Medtronic, Inc. Degassing system for dialysis
US10874787B2 (en) 2014-12-10 2020-12-29 Medtronic, Inc. Degassing system for dialysis
US9895479B2 (en) 2014-12-10 2018-02-20 Medtronic, Inc. Water management system for use in dialysis
JP2018519887A (en) * 2015-06-03 2018-07-26 デビオテック ソシエテ アノニム Peritoneal dialysis treatment system and method of operation
US10994064B2 (en) 2016-08-10 2021-05-04 Medtronic, Inc. Peritoneal dialysate flow path sensing
US10874790B2 (en) 2016-08-10 2020-12-29 Medtronic, Inc. Peritoneal dialysis intracycle osmotic agent adjustment
US11013843B2 (en) 2016-09-09 2021-05-25 Medtronic, Inc. Peritoneal dialysis fluid testing system
DE102017110577A1 (en) * 2017-05-16 2018-11-22 Fresenius Medical Care Deutschland Gmbh peritoneal dialysis
DE102017110607A1 (en) * 2017-05-16 2018-11-22 Fresenius Medical Care Deutschland Gmbh peritoneal dialysis
US11278654B2 (en) 2017-12-07 2022-03-22 Medtronic, Inc. Pneumatic manifold for a dialysis system
US11033667B2 (en) 2018-02-02 2021-06-15 Medtronic, Inc. Sorbent manifold for a dialysis system
US11110215B2 (en) 2018-02-23 2021-09-07 Medtronic, Inc. Degasser and vent manifolds for dialysis
US11806457B2 (en) 2018-11-16 2023-11-07 Mozarc Medical Us Llc Peritoneal dialysis adequacy meaurements
US11806456B2 (en) 2018-12-10 2023-11-07 Mozarc Medical Us Llc Precision peritoneal dialysis therapy based on dialysis adequacy measurements
US11850344B2 (en) 2021-08-11 2023-12-26 Mozarc Medical Us Llc Gas bubble sensor
US11944733B2 (en) 2021-11-18 2024-04-02 Mozarc Medical Us Llc Sodium and bicarbonate control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730183A (en) * 1969-06-28 1973-05-01 Whitely Lang & Neill Ltd Peritoneal dialysis apparatus
EP0498382A1 (en) * 1991-02-08 1992-08-12 Alan M. Peabody Continuous peritoneal dialysis system
US5141493A (en) * 1990-01-26 1992-08-25 Sarcos Group Peritoneal dialysis system
WO1995027520A2 (en) * 1994-04-06 1995-10-19 Baxter International, Inc. Method and apparatus for a tidal oscillating pulse peritoneal dialysis
US5722947A (en) * 1994-02-03 1998-03-03 Gambro Ab Apparatus for carrying out peritoneal dialyses
US6293921B1 (en) * 1998-07-06 2001-09-25 Jms Company, Ltd. Automatic exchanger for peritoneal dialysis
US6558343B1 (en) * 1998-04-02 2003-05-06 Debiotech S.A. Device for peritoneal dialysis and method for using said device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558343A (en) 1966-08-18 1971-01-26 Texas Instruments Inc Dispersion strengthened titanium carbide and method for making same
SE512266C2 (en) * 1997-07-09 2000-02-21 Gambro Med Tech Ab Method and Device for Integrity Testing of a Hose Kit Intended for Use in a Peritoneal Dialysis Cycler
SE9903331D0 (en) * 1999-09-16 1999-09-16 Gambro Lundia Ab Method and apparatus for sterilizing a heat sensitive fluid
JP3828080B2 (en) * 2003-01-16 2006-09-27 テルモ株式会社 Peritoneal dialysis machine
US7497840B2 (en) * 2003-07-31 2009-03-03 Debiotech S.A. System for performing fluid administration

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730183A (en) * 1969-06-28 1973-05-01 Whitely Lang & Neill Ltd Peritoneal dialysis apparatus
US5141493A (en) * 1990-01-26 1992-08-25 Sarcos Group Peritoneal dialysis system
EP0498382A1 (en) * 1991-02-08 1992-08-12 Alan M. Peabody Continuous peritoneal dialysis system
US5722947A (en) * 1994-02-03 1998-03-03 Gambro Ab Apparatus for carrying out peritoneal dialyses
WO1995027520A2 (en) * 1994-04-06 1995-10-19 Baxter International, Inc. Method and apparatus for a tidal oscillating pulse peritoneal dialysis
US6558343B1 (en) * 1998-04-02 2003-05-06 Debiotech S.A. Device for peritoneal dialysis and method for using said device
US6293921B1 (en) * 1998-07-06 2001-09-25 Jms Company, Ltd. Automatic exchanger for peritoneal dialysis

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9471754B2 (en) 2006-02-08 2016-10-18 Debiotech S.A. Peritoneal dialysis system
WO2007091217A1 (en) * 2006-02-08 2007-08-16 Debiotech S.A. Peritoneal dialysis system
US8926550B2 (en) 2006-08-31 2015-01-06 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
EP1938849A2 (en) * 2006-12-29 2008-07-02 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis therapy validation
EP1938849A3 (en) * 2006-12-29 2009-11-18 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis therapy validation
CN102099066A (en) * 2008-07-04 2011-06-15 弗雷森纽斯医疗护理德国有限责任公司 Device for peritoneal dialysis
WO2010000446A1 (en) 2008-07-04 2010-01-07 Fresenius Medical Care Deutschland Gmbh Device for peritoneal dialysis
US8992461B2 (en) 2008-07-04 2015-03-31 Fresenius Medical Care Deutschland Gmbh Apparatus for peritoneal dialysis
WO2010006147A1 (en) * 2008-07-09 2010-01-14 Baxter International Inc. Peritoneal equilibration test and dialysis system using same
US10265455B2 (en) 2008-07-09 2019-04-23 Baxter International Inc. Dialysis system including wireless sensor data
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US10016554B2 (en) 2008-07-09 2018-07-10 Baxter International Inc. Dialysis system including wireless patient data
US10272190B2 (en) 2008-07-09 2019-04-30 Baxter International Inc. Renal therapy system including a blood pressure monitor
US8313642B2 (en) 2008-07-09 2012-11-20 Baxter International Inc. Dialysis system including wireless patient data and trending and alert generation
US10307524B2 (en) 2008-07-09 2019-06-04 Baxter International Inc. Dialysis method and system including wireless patient data
US9147045B2 (en) 2008-07-09 2015-09-29 Baxter International Inc. Peritoneal equilibration test and dialysis system using same
WO2010006140A3 (en) * 2008-07-09 2010-06-17 Baxter International Inc. Dialysis system having trending and alert generation
US8871095B2 (en) 2008-07-09 2014-10-28 Baxter International Inc. Dialysis method including wireless patient data
US8182673B2 (en) 2009-01-29 2012-05-22 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
US9943632B2 (en) 2009-01-29 2018-04-17 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
US10702645B2 (en) 2009-01-29 2020-07-07 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
WO2010088360A1 (en) * 2009-01-29 2010-08-05 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
WO2010088357A1 (en) * 2009-01-29 2010-08-05 Baxter International Inc. Method for optimizing tidal therapies employing ultrafiltrate trending
EP2484390A3 (en) * 2009-01-29 2013-01-09 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
US8142649B2 (en) 2009-01-29 2012-03-27 Baxter International Inc. Method for optimizing tidal therapies employing ultrafiltrate trending
US9433719B2 (en) 2009-01-29 2016-09-06 Baxter International Inc. Method for optimizing tidal therapies employing ultrafiltrate trending
EP3034111A1 (en) * 2009-01-29 2016-06-22 Baxter International Inc. Peritoneal dialysis system
US9132222B2 (en) 2009-01-29 2015-09-15 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
WO2010096659A1 (en) * 2009-02-20 2010-08-26 Baxter International Inc. Simulation of patient drain phase in peritoneal dialysis
US8521482B2 (en) 2009-02-20 2013-08-27 Baxter International Inc. Simulation of patient drain phase in peritoneal dialysis
US9381290B2 (en) 2009-05-20 2016-07-05 Baxter International Inc. System and method for pairing a dialysis machine with peripheral devices
US10314958B2 (en) 2009-05-20 2019-06-11 Baxter International Inc. System and method for pairing a dialysis machine with peripheral devices
US11027053B2 (en) 2009-05-20 2021-06-08 Baxter International Inc. Method for pairing a dialysis machine with peripheral devices
US8926551B2 (en) 2009-07-07 2015-01-06 Baxter Healthcare Inc. Peritoneal dialysis therapy with large dialysis solution volumes
US20140088493A1 (en) * 2009-12-24 2014-03-27 Vr Medical Technology, Llc Automated peritoneal dialysis cycler and methods of use
EP2759311A1 (en) * 2009-12-24 2014-07-30 VR Medical Technology Co., Ltd. Automated peritoneal dialysis cycler and methods of use
US8936720B2 (en) 2010-09-17 2015-01-20 Baxter International Inc. Drain and fill logic for automated peritoneal dialysis
WO2012174652A1 (en) * 2011-06-24 2012-12-27 Lo Richard W C Multi-container systems and uses thereof
US10159776B2 (en) 2011-06-29 2018-12-25 Presenius Medical Care Deutschland Gmbh Dialysis machine
DE102011105916A1 (en) 2011-06-29 2013-01-03 Fresenius Medical Care Deutschland Gmbh dialysis machine
WO2013000569A1 (en) 2011-06-29 2013-01-03 Fresenius Medical Care Deutschland Gmbh Dialysis machine
EP2623139A1 (en) * 2012-02-01 2013-08-07 Vincenzo La Milia Peritoneal dialysis system
US9579443B2 (en) 2013-01-10 2017-02-28 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis systems and related devices and methods
US10675398B2 (en) 2013-01-10 2020-06-09 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis systems and related devices and methods
US10828411B2 (en) 2014-09-05 2020-11-10 Fresenius Medical Care Deutschland Gmbh Apparatus for carrying out a tidal peritoneal dialysis treatment
US11583620B2 (en) 2015-11-20 2023-02-21 Advitos Gmbh Method for extracorporeal lung support
US11833282B2 (en) 2015-11-20 2023-12-05 Advitos Gmbh Method for extracorporeal carbon dioxide removal
IL261628A (en) * 2016-03-14 2018-10-31 Hepa Wash Gmbh Systems or apparatuses and methods for performing dialysis
WO2017158392A1 (en) * 2016-03-14 2017-09-21 Hepa Wash Gmbh Systems or apparatuses and methods for performing dialysis
US11351291B2 (en) 2016-03-14 2022-06-07 Advitos Gmbh Systems or apparatuses and methods for performing dialysis
US11344656B2 (en) 2017-05-22 2022-05-31 Advitos Gmbh Methods and systems for removing carbon dioxide
WO2020014937A1 (en) * 2018-07-20 2020-01-23 Fresenius Medical Care R&D (Shanghai) Co., Ltd. Centrally controlled multi-patient dialysis treatment system and its use
WO2023198540A1 (en) * 2022-04-14 2023-10-19 Gambro Lundia Ab Determination of intraperitoneal volume during peritoneal dialysis

Also Published As

Publication number Publication date
PL1691863T3 (en) 2008-07-31
KR20060128862A (en) 2006-12-14
EP1691863A1 (en) 2006-08-23
ES2298818T3 (en) 2008-05-16
JP4658062B2 (en) 2011-03-23
DE602004011981D1 (en) 2008-04-03
AU2004279280A1 (en) 2005-04-21
AU2004279280B2 (en) 2009-11-26
CA2536421C (en) 2012-03-13
EP1691863B1 (en) 2008-02-20
CA2536421A1 (en) 2005-04-21
JP2007508101A (en) 2007-04-05
DE602004011981T2 (en) 2009-03-05
ATE386557T1 (en) 2008-03-15
KR101112117B1 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
EP1691863B1 (en) A device for carrying out a peritoneal dialysis treatment
US8500676B2 (en) Device for carrying out a peritoneal dialysis treatment
US20200230310A1 (en) Systems for performing peritoneal dialysis
US10702645B2 (en) Drain and fill logic for automated peritoneal dialysis
EP2391405B1 (en) Method for optimizing tidal therapies employing ultrafiltrate trending
JP6604639B2 (en) Drain and fill logic for automatic peritoneal dialysis
KR20010022416A (en) Method and apparatus for performing peritoneal dialysis
US20200330672A1 (en) Method and apparatus for trending automated peritoneal dialysis treatments
US20240009365A1 (en) Weight-based peritoneal dialysis system including a drain trolley
WO2018206706A1 (en) Continuous ambulatory dialysis system
WO2022192000A2 (en) Automated peritoneal dialysis cycler having gravimetric control
WO2023122423A1 (en) Pneumatically driven peritoneal dialysis machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028504.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004775545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004279280

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2536421

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2004279280

Country of ref document: AU

Date of ref document: 20041013

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004279280

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067007022

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006535305

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004775545

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007022

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004775545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10575461

Country of ref document: US