WO2005032791A1 - Process for producing eyelens article and production apparatus therefor - Google Patents

Process for producing eyelens article and production apparatus therefor Download PDF

Info

Publication number
WO2005032791A1
WO2005032791A1 PCT/JP2004/013345 JP2004013345W WO2005032791A1 WO 2005032791 A1 WO2005032791 A1 WO 2005032791A1 JP 2004013345 W JP2004013345 W JP 2004013345W WO 2005032791 A1 WO2005032791 A1 WO 2005032791A1
Authority
WO
WIPO (PCT)
Prior art keywords
ophthalmic lens
light
led
mold
molding
Prior art date
Application number
PCT/JP2004/013345
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Nakada
Shigeyasu Nagai
Masateru Kobayashi
Takahito Nakase
Original Assignee
Menicon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menicon Co., Ltd. filed Critical Menicon Co., Ltd.
Priority to JP2005514382A priority Critical patent/JPWO2005032791A1/en
Publication of WO2005032791A1 publication Critical patent/WO2005032791A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00134Curing of the contact lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method for manufacturing an ophthalmic lens article and a manufacturing apparatus used for the method, and in particular, an ophthalmic lens article can be advantageously manufactured using an LED as a light source during photopolymerization.
  • the present invention relates to a method and a manufacturing apparatus used for the method.
  • ophthalmic lenses such as contact lenses and intraocular lenses, or semi-finished products thereof, for example, one surface is formed into a completed lens surface shape, while the other surface is a lens surface. It is still completed, but it is formed into a shape that requires post-processing such as cutting, the ophthalmic lens material that gives the ophthalmic lens, and further processed by double-sided cutting, etc.
  • One of the methods for manufacturing so-called ophthalmic lens articles such as a lens blank on which a contact lens or an intraocular lens is formed, such as a combination of a male mold and a female mold or a combination of an upper mold and a lower mold.
  • a resin material configured to perform mold matching by combining the first mold and the second mold, and to form a molding cavity in a shape that gives the ophthalmic lens article between the molds.
  • Molds made of light transmissive materials such as After filling the molding cavity of the mold with a predetermined monomer liquid, the monomer liquid is irradiated with UV light, and the filled monomer liquid is polymerized by the UV light transmitted through the molding die.
  • the technical ability to mold ophthalmic lens products is known.
  • the light source is generally a xenon lamp or a mercury lamp
  • UV lamps such as deuterium lamps are used, and UV light from such UV lamps
  • a reflector such as a mirror is installed on the inner surface of a dome-shaped housing, and UV light radiated from a light source provided on the top of the dome-shaped housing that is powerful is reflected by the reflector to achieve all of the above.
  • Molding mold cavity Adjustments are made so that the UV light is irradiated at a substantially constant irradiance to the monomer liquid filled therein.
  • an ultraviolet lamp generally used as a light source conventionally emits not only light having a wavelength necessary for photopolymerizing a monomer liquid but also light having an unnecessary wavelength that adversely affects a lens material. Therefore, it is necessary to cut off light of an extra wavelength by a shielding means such as an optical filter so that light of such a wavelength is not adversely affected.
  • a shielding means such as an optical filter
  • the ultraviolet lamp has a short lamp life, complicated irradiance is required so that the UV light can be irradiated to the monomer liquid in the mold at a predetermined irradiance every time the frequency of replacement is high. We had to make settings.
  • UV lamps generate heat and need to cool down the power, it takes time for the irradiance to stabilize after lighting, and the longer the lighting time, the lower the irradiance will be. Are also inherent.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2003-503234 (Patent Document 1) describes the purpose of Japanese Patent Application Laid-Open Publication No. 2003-503234 (JP-A-2003-503234) to secure a constant quality of an ophthalmic molded product that is biocompatible and has a polymer material strength.
  • a number of optical fibers are connected to an ultraviolet light, each of the powerful optical fibers is attached to one of a number of casting molds, and UV light from the ultraviolet light is applied to the mold.
  • a method of irradiating a mold through an optical fiber and performing molding has been clarified.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 59-215838
  • an ultraviolet light source and a cavity or a cavity core are optically connected by an optical fiber, and an expensive light source is formed into a plurality of molding dies.
  • a molding apparatus that is also used in the above-mentioned, but also in this case, there is an inherent problem similar to that of Patent Document 1.
  • Patent Document 1 Japanese Patent Application Publication No. 2003-503234
  • Patent Document 2 JP-A-59-215838
  • the present invention has been made in the background of vigorous circumstances, and a problem to be solved is to solve all the above-mentioned problems caused by the use of an ultraviolet lamp, It is an object of the present invention to provide a method for manufacturing an ophthalmic lens article that can advantageously ensure the above-mentioned quality, and an apparatus for manufacturing an ophthalmic lens article used in the method.
  • the present invention has been made to solve the above-described problems, and a first aspect of the present invention is to form an upper mold and a lower mold that also have a light transmitting material strength.
  • a mold having a shape that gives a desired ophthalmic lens article such as an ophthalmic lens, a semi-finished product thereof, and a lens blank, is formed between the molds.
  • the molding cavity is filled with the monomer liquid while the molding cavity is filled with the monomer liquid, and at least one of the upper and lower sides of the molding cavity is illuminated with the LED light, and the molding cavity is transmitted through the molding cavity.
  • a method for producing an ophthalmic lens article characterized in that the monomer liquid filled in the molding cavity is photopolymerized with light to mold the objective ophthalmic lens article.
  • a plurality of the molds are arranged, and the LED is provided for each of the molds. Will be adopted advantageously.
  • the upper mold is a male mold having a convex molding cavity surface, while the lower mold is a concave molding.
  • the monomer liquid contains at least one acrylic monomer.
  • the acrylic monomer is a silicon-containing acrylic monomer, and a vigorous silicon-containing acrylic monomer is contained in the monomer liquid. To 10 to 70% by weight.
  • the acrylic monomer is dialkyl (meth) acrylamide, and strong dialkyl (meth) acrylamide is contained in the monomer liquid. In addition, 30-70% by weight will be contained.
  • the irradiation time of the LED is set to 60 minutes or less.
  • the module The Nomer liquid contains a UV absorber, and the LED power is adjusted so that the peak wavelength power of the irradiated light is in the range of 380 to 500 nm, preferably 400 to 470 nm.
  • the monomer liquid further includes a dye.
  • a yellow or orange dye is preferably used as this dye.
  • a photopolymerization initiator having a high extinction coefficient at 405 nm is used in the photopolymerization of the monomer solution.
  • the present invention is also directed to a manufacturing apparatus which is advantageously used in the method for manufacturing an ophthalmic lens article as described above, and is also an object thereof, and includes an upper mold and a lower mold having a light-transmitting material strength.
  • a molding die in which a molding cavity, such as an ophthalmic lens, a semi-finished product, and a lens, having a shape that gives a desired ophthalmic lens article is formed between the dies by matching the and the dies.
  • an LED installed on at least one of the upper and lower mold sides of the molding die to irradiate the monomer liquid filled in the molding cavity of the molding die with light.
  • An apparatus for manufacturing an ophthalmic lens article which is a feature of the present invention, is one embodiment thereof.
  • a plurality of the molding dies are arranged in a predetermined conveying means, and the LED is provided for each of the molding dies. Is adopted.
  • the measuring means for measuring the irradiance of the light irradiated with the LED force may be provided so as to sandwich the mold.
  • the irradiance is installed on the side facing the LED, and the irradiance is measured by a powerful measuring means.
  • control means for controlling a voltage to be supplied to the LED is provided.
  • the voltage supplied to the LED is controlled so that the value of the irradiance measured by the measuring means matches the target value, and the irradiance of light emitted from the LED is kept constant. That is.
  • a diffusing unit for diffusing light emitted from the LED is provided between the mold and the LED.
  • the irradiation angle of the light from the LED is widened, and the light is uniform with respect to the monomer liquid filled in the molding cavity of the molding die. Will be irradiated.
  • a moving means for moving the diffusing means in a direction away from or approaching the mold is provided.
  • the light can be uniformly applied to the monomer liquid filled in the molding cavity.
  • the monomer liquid filled in the molding cavity of the molding die made of a light transmissive material can be generated by the LED power.
  • the problems caused by the ultraviolet lamp can be completely eliminated. That is, since an LED does not emit light having a wavelength unnecessary for polymerization as compared with an ultraviolet lamp, it is possible to irradiate the monomer liquid only with light having a wavelength effective for the polymerization.
  • UV lamps have a short lamp life and must be replaced frequently, whereas LEDs have a long life and provide stable irradiance immediately after lighting. Setting is easy.
  • the light is turned off from the end of the polymerization operation of the monomer liquid filled in the molding cavity of a certain molding die until the start of the polymerization operation of the monomer liquid filled in the molding cavity of the next molding die.
  • This also has the advantage of eliminating the need to unnecessarily irradiate light harmful to the eyes.
  • LEDs generate much less heat than UV lamps, so the heat conducted through the monomer solution does not make it difficult to control the polymerization. LED also varies the amount of voltage supplied Therefore, it also has the feature that fine adjustment of irradiance can be easily performed.
  • the monomer liquid when an LED is used as a light source, the monomer liquid can be irradiated with stable irradiance light for a long time, advantageously and safely. Articles can be advantageously produced with stable quality. Also, by using LEDs, high irradiance can be efficiently obtained by using LEDs, and rapid polymerization of a monomer liquid can be performed.
  • LEDs are small in size and small in angle of directivity, they are effectively applied to molding dies for molding small ophthalmic lens articles. Separate installation for each mold can be easily realized.
  • At least one light source is provided because at least one LED is provided for one set of molds.
  • the monomer liquid filled in the molding cavities of a pair of molding dies is polymerized.
  • the instability of quality due to irradiation unevenness which is caused when one light source irradiates a plurality of molds with light, can be advantageously solved.
  • Another advantage is that the LED light applied to each mold can be managed separately. Therefore, the stable quality of the ophthalmic lens article can be maintained more advantageously.
  • the entirety of the monomer liquid filled in the optical power molding cavity irradiated from the LED power is irradiated. Become.
  • the light emitted from the LED has a certain directional angle, sufficient light is introduced into the molding cavity by refraction or reflection on the surface of the molding die before reaching the molding cavity.
  • the problem of unavailability is advantageously prevented, and the LED light is advantageously directed to the entire molding cavity.
  • the monomer liquid contains an acrylic monomer having an acryl group or a methacryl group.
  • an acrylic monomer having an acryl group or a methacryl group is advantageous in that an ophthalmic lens article excellent in oxygen permeability can be obtained.
  • dialkyl (meth) acrylamide is used in a predetermined ratio as an acrylic monomer, it is excellent in hydrophilicity or water content. An ophthalmic lens article will advantageously be obtained.
  • an ophthalmic lens article can be manufactured with good workability.
  • the photopolymerization operation of a monomer liquid containing a UV absorber using an LED can proceed effectively. It can be done.
  • the LED light emission wavelength on the long wavelength side is effectively absorbed, and the polymerization proceeds rapidly.
  • the intended ophthalmic lens article can be advantageously obtained.
  • the quality is unstable due to irradiation unevenness.
  • the dangling power is advantageously eliminated, and the stable quality of the ophthalmic lens article can be maintained more advantageously, and the ophthalmic lens article can be continuously mass-produced.
  • the irradiance of the irradiation light is measured, and the irradiation condition of the light from the LED is obtained from the measured value of the irradiance that is strong.
  • the polymerization conditions are accurate or not.
  • the irradiance is too high or too low, the irradiation time of the LED light is appropriately changed, or the voltage supplied to the LED is appropriately changed, for example, to change the monomer liquid.
  • the polymerization can be controlled and controlled to keep the quality of the ophthalmic lens article constant.
  • the control means controls the irradiance value measured by the measurement means and the preset target value.
  • the voltage supplied to the LED is controlled so that the light intensity of the LED lens is controlled so that the irradiance of light can be automatically kept constant. Quality can be further advantageously ensured.
  • the light from the LEDs is evenly and uniformly applied to the monomer liquid in the molding cavity. It can be irradiated. Therefore, for example, in the case of manufacturing a contact lens as an ophthalmic lens article, the edge portion of the outer peripheral edge of the contact lens is also surely polymerized, so that an ophthalmic lens article having a desired shape can be accurately formed. It will be.
  • FIG. 1 is an explanatory partial cross-sectional view schematically showing a main part of an example of an apparatus for manufacturing an ophthalmic lens article according to the present invention.
  • FIG. 2 is a partial cross-sectional explanatory view showing another example of the process of manufacturing an ophthalmic lens article using a mold for mold polymerization according to the method of the present invention, and is provided for each of a plurality of molds. This shows a state in which each of the molds is irradiated with light from the LED light source.
  • FIG. 3 is a partial cross-sectional explanatory view schematically showing a main part of another example of the apparatus for manufacturing an ophthalmic lens article according to the present invention.
  • FIG. 1 schematically shows an apparatus for manufacturing a contact lens as one embodiment of an apparatus for manufacturing an ophthalmic lens article having a structure according to the present invention.
  • the contact lens manufacturing apparatus of the present embodiment emits light having a predetermined peak wavelength to a molding die 10 for molding a contact lens and a powerful molding die 10.
  • a light source 12 that also emits LED power
  • a light detector 14 that measures irradiance of light emitted from the LED light source 12, and a irradiance power measured by the light detector 14 is also an LED light source 12.
  • a light intensity control device 16 as control means for controlling a voltage supplied to the light source; a diffusion lens 18 as diffusion means provided between the molding die 10 and the LED light source 12; It has a crank device 20 and a stepping motor 22 as moving means for moving in a direction away from or approaching from the machine 10, and a transfer machine 24 as a transfer means for holding and transferring the molding die 10. , Composed! .
  • the molding die 10 is shown as a cross-sectional view, and includes a male die 26 as an upper die and a female die 28 as a lower die.
  • each of the molds is formed of a material through which light can be transmitted, and by mating the male mold 26 and the female mold 28, a desired contact lens is formed between the molds.
  • a molding cavity 30 having a given shape is formed.
  • the light-transmitting material constituting the bulky molding die 10 is not particularly limited as long as it can transmit light emitted from the LED light source 12, and is not limited to a specific example.
  • polyolefins such as polyethylene, polypropylene and polymethylpentene
  • resin materials such as polyamides such as nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, and combinations thereof
  • glass, quartz An inorganic material such as fused quartz can be used.
  • resin materials such as polyolefins and polyamides are preferably used in consideration of the affinity, economics, moldability, etc., of the monomer liquid filled in the molding cavity 30 and its polymer. It becomes.
  • the male mold 26 and the female mold 28 constituting the molding die 10 may be formed of the same light transmissive material, or may be formed of different light transmissive materials separately from each other. The difference I don't support it.
  • the light transmitting material constituting the mold 10 may be In general, it is desirable that the transmittance of the LED light at the main wavelength be 20% or more, more preferably 25% or more.
  • polypropylene or polymethylpentene is advantageously used.
  • the male mold 26 constituting the above-described molding die 10 has a cylindrical shape with an opening at the top as a whole, and a bottom portion 32 located at the lower portion thereof has a cavity forming portion.
  • the outer surface (convex surface) of the strong bottom 32 has a rear surface shape that accurately corresponds to the rear surface (base curve surface) of the target contact lens.
  • the cavity surface 34 is configured to give.
  • the thickness of the bottom portion 32 is not particularly limited, it is introduced into the molding cavity 30 through the light power from the LED light source 12 to be described later, and the inside of the molding cavity 30 is formed. It is desirable that the LED light be substantially constant so that the LED light can be evenly radiated.
  • the force be approximately 0.1 mm to 3 mm.
  • the male mold 26 is formed integrally with an outer flange portion 38 protruding radially outward on the outer peripheral portion on the upper opening side of the cylindrical wall portion 36.
  • the female mold 28 constituting the molding die 10 has a cylindrical shape with a bottom and an opening at the bottom as a whole.
  • a ball-shaped concave portion 44 which is depressed in response to the force acts as a cavity forming portion.
  • a step 46 is provided at a middle portion in the depth direction of the hemispherical concave portion 44, and an inner surface (concave surface) of a bottom side portion below the step 46 is provided.
  • Surface which corresponds to the front molding cavity surface 48 that exactly corresponds to the surface.
  • the male mold 26 and the female mold 28 are separated from each other at the bottom corner of the cylindrical wall 36 of the male mold 26 and the corner of the step 46 of the female mold 28.
  • the rear surface of the male mold 26 is formed by assembling and matching so that the lower surface of the outer flange portion 38 of the male mold 26 and the upper end surface of the female mold 28 abut each other.
  • Front side of cavity face 34 and female mold 28 In the space between the molded cavity surface 48 and the molded cavity 30 having a shape that gives a desired contact lens, the molded cavity 30 is formed.
  • the molding liquid 30 that is strong is filled with a monomer liquid 50 that gives a polymer constituting a target contact lens.
  • This monomer liquid 50 is contained in a predetermined amount in the concave portion 44 of the female mold 28 prior to the matching of the male mold 26 and the female mold 28, and after the accommodation, the male liquid is formed as described above.
  • the mold cavity 30 is filled.
  • the excess monomer liquid 50 that overflows from the molding cavity 30 due to such a mold matching is applied to the corner of the bottom side of the cylindrical wall 36 of the male mold 26 and the corner of the step 46 of the female mold 28.
  • the space 52 formed above the contact portion that is, between the upper outer peripheral surface of the cylindrical wall portion 36 of the male mold 26 and the inner peripheral surface of the opening side portion of the concave portion 44 of the female mold 28. , And can be stored in the annular space 52.
  • the monomer liquid 50 to be polymerized various known liquid monomer compositions which give a polymer constituting the target contact lens can be used. It is desirable that the monomer liquid 50 contains at least one acrylic monomer (acrylic or methacrylic group-containing monomer), so that the photopolymerizability of the monomer liquid 50 is good. Will be secured.
  • acrylic monomer acrylic or methacrylic group-containing monomer
  • the acrylic monomer having a powerful acrylic group or methacryl group include, for example, silicon-containing (meth) acrylate, alkyl (meth) acrylate, fluorine-containing (meth) acrylate, and hydroxyalkyl ( Examples thereof include (meth) acrylate, aryl-containing (meth) acrylate, N alkyl (meth) acrylamide, and N, N-dialkyl (meth) acrylamide. More preferably, the strong acrylic monomer is contained in the monomer liquid 50 at a ratio of at least 10% by weight.
  • “(meth) acryl” means acryl and Z or methacryl
  • “(meth) atalylate” means atalylate and Z or metharylate. Used.
  • an acrylic monomer a silicon-containing acrylic monomer as disclosed in International Publication No. 01Z71415 pamphlet, JP-A-6-121826, etc. was selected, If the monomer component 50 contains 10 to 70% by weight as a main component, excellent oxygen permeability can be advantageously imparted to the obtained contact lens.
  • dialkyl (meth) acrylic compounds such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) acrylamide, and N-isopropyl (meth) acrylamide
  • acrylamide is used as a main component in the monomer liquid 50 at a ratio of 30 to 70% by weight, excellent hydrophilicity or water content is advantageously imparted to the obtained contact lens. Will be done.
  • the powerful monomer liquid 50 may include, if necessary, a desired lens type (for example, hard, soft, non-water-containing, water-containing, and the like) and properties required for the lens (for example, Depending on the oxygen permeability, coloring, ultraviolet absorption, etc.), various conventional monomer components other than the acrylic monomers as described above, and various conventional additives commonly used.
  • a desired lens type for example, hard, soft, non-water-containing, water-containing, and the like
  • properties required for the lens for example, Depending on the oxygen permeability, coloring, ultraviolet absorption, etc.
  • various conventional monomer components other than the acrylic monomers as described above for example, Depending on the oxygen permeability, coloring, ultraviolet absorption, etc.
  • an appropriate amount of an ultraviolet (UV) absorber, a coloring agent, etc. does not interfere with the addition of added calories, and the amount of the non-polymerizable solvent does not hinder the polymerization.
  • UV absorbers and dyes examples include known UV absorbers such as benzophenone type, benzotriazole type and salicylic acid derivative type, and azo type, anthraquinone type, nitro type and phthalocyanine type.
  • known UV-absorbing agents and pigments among which those having a polymerizable group such as an atalyloyl group, a methacryloyl group, a butyl group, an aryl group, and an isobutyl group.
  • the polymer is copolymerized with the monomers constituting the monomer liquid 50 by the photopolymerization operation according to the present invention so as to form a desired ophthalmic lens article as a component of the polymer.
  • the amount of the additive added to the monomer liquid 50 of the UV absorber and the dye is appropriately selected within a conventionally known range, but generally, the UV absorber is 100% of all the polymerization components.
  • the dye is used in a ratio of about 0.02 to 12 parts by weight based on parts by weight, and the dye is used in a ratio of about 0.0001 to 0.1 part by weight based on 100 parts by weight of all the polymerization components. Become.
  • the monomer liquid 50 contains methylorthobenzoylbenzoate, methylbenzoylformate, benzoinmethylether, and benzoin so that polymerization by light can be advantageously achieved.
  • the use of a photopolymerization initiator having a high extinction coefficient at a wavelength around 405 nm makes it easier to absorb the emission wavelength on the long wavelength side from the LED light source 12, thereby improving the polymerization rate.
  • the initiator having a high extinction coefficient at such a wavelength: 405 nm is 2-benzyl-2-dimethylamino-1 (4 morpholinophenyl) butanone-1,1,1,2 octanedione 1— [4— (Ferthiol) -1- 2-(O-benzoyloxime)], 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine scan fins oxide, bi scan (7 5 -?
  • initiators are particularly effective when an LED whose irradiation light has a peak wavelength of 400 nm or more is used as the LED light source 12.
  • the polymerization initiator has the property of avoiding light absorption by the UV absorber and exhibiting light absorption at a longer wavelength side. It is recommended to use a polymerization initiator having a high extinction coefficient at the above-mentioned wavelength: 405 nm. Further, it is effective to use such a polymerization initiator having a high extinction coefficient in combination with another polymerization initiator having a low extinction coefficient at a wavelength of 405 nm ⁇ a photosensitizer. It is also possible to use a photosensitizer in combination.
  • the LED light source 12 capable of irradiating light is provided on the side of the male die 26 which is the upper die of the molding die 10 having the structure as described above, specifically,
  • the contact lens is arranged on the optical axis (optical center axis) of the contact lens molded in the mold 10 and at a predetermined distance above the male mold 26.
  • each LED light source 12 is smaller than that of the conventional ultraviolet lamp, at least one LED light source 12 can be installed in one set of molds 10. You can. Conventionally, as described above, relatively large equipment, such as a dome-shaped housing, was required to irradiate the light of one ultraviolet lamp light source to a plurality of molds. If the LED light source 12 is provided for each force forming die 10, such a housing or the like becomes unnecessary, and thus, there is an advantage that the manufacturing apparatus of the ophthalmic lens article can be advantageously reduced in size.
  • the LED light source 12 is installed for each mold 10, the quality of the ophthalmic lens article due to uneven light irradiation, which is caused when one light source irradiates light to a plurality of molds, is improved. Instability disappears. Furthermore, even when mass production is performed, the LED light irradiation conditions can be controlled for each mold 10. For this reason, the stable quality of the ophthalmic lens article can be maintained more advantageously.
  • an LED is arranged on the optical axis of the contact lens molded in the molding die 10, and in other words, from the male mold 26 side having a convex rear molding cavity surface 34.
  • the LED light since the LED light is emitted from the concave side of the contact lens molded in the mold 10, the LED light passes through the male mold 26 of the mold 10 and The monomer liquid 50 filled in the molding cavity 30 is advantageously irradiated.
  • the convex surface of the mold 10 Since the surface of the mold is irradiated with light, and the light that also emits LED power has a directional angle, it can be sufficiently refracted or reflected on the surface of the mold 10 before reaching the inside of the mold cavity 30.
  • the LED light source 12 does not emit light of a wavelength unnecessary for polymerization of the monomer liquid 50 as compared with a conventional xenon lamp, a mercury lamp, a deuterium lamp, or other ultraviolet lamp.
  • This has the advantage that the monomer liquid 50 can be advantageously irradiated with only light having an effective wavelength centered on the peak wavelength.
  • the LED light source 12 has advantages such as low heat generation and power consumption, long service life, and stable irradiance even immediately after lighting.It eliminates all problems with conventional UV lamps. You can do it. In other words, as mentioned above, UV lamps have a short life span and must be replaced frequently, whereas LEDs have a long life span and have a stable irradiance even immediately after lighting.
  • the irradiance can be easily adjusted by changing the amount of voltage to be supplied, so that it is easy to finely adjust the irradiance. I can do it.
  • LEDs By using LEDs, it is possible to turn off the light during the interval from the end of the polymerization operation to the start of the next polymerization operation, thus avoiding unnecessary irradiation of harmful light to the eyes. It becomes possible. Further, since the LED generates much less heat than an ultraviolet lamp, the temperature of the atmosphere before polymerization can be kept constant, and the polymerization of the monomer liquid 50 without the progress of polymerization due to heat can be reduced. It is easier to control than in the past.
  • the LED (light emitting diode) used as the LED light source 12 needs to be capable of emitting light having a wavelength capable of polymerizing the monomer liquid 50. .
  • the wavelength of the light emitted from the LED light source 12 depends on the initiator.
  • the peak wavelength is generally in the range of 350-500 nm, more preferably in the range of 360-470 nm, and even more preferably in the range of 360-400 nm. If the peak wavelength is shorter than the above range, the contact lens material (polymer forming the contact lens) may be deteriorated.
  • the peak wavelength is generally in the range of 380 to 500 nm, preferably 400 to 470 nm. Desirably.
  • the desired peak wavelength in the irradiation light of the LED light source 12 changes depending on the presence or absence of the UV absorber in the monomer solution 50, but depends on the presence or absence of the dye appropriately added as necessary. It is hardly affected. It is desirable that the light emitted from the LED light source 12 has substantially no peak wavelength other than the above-mentioned wavelength range.
  • the directivity angle (2 ⁇ 1 / 2) of the LED light source 12 is smaller than that of a conventional ultraviolet lamp or the like, and is not particularly limited.
  • the above-mentioned directional angle is 10 to 120 °.
  • the directional angle is appropriately set according to the size of the ophthalmic lens article to be manufactured, that is, the area to be irradiated with light.
  • the directional angle is within the range of 20 to 110 °.
  • 30-120 ° force is preferred within the above range! / ⁇ .
  • the LED light is diffused as necessary.
  • the directional angle is large with respect to the size of the target ophthalmic lens article, for example, the directional light can be provided on the optical path between the LED light source 12 and the mold 10. If the angle exceeds 120 °, etc., use a light condensing means for condensing LED light. It can be installed on the optical path between 2 and the mold 10.
  • the diffusing means may include a diffusing plate such as a diffusing filter, a diffusing lens, or the like, while the condensing means may include a condensing lens.
  • the directivity angle of the light emitted from the LED light source 12 is smaller than the molding cavity 10, as shown in the cross-sectional form in FIG.
  • a diffusion lens 18 is arranged between the molding die 10 and the light power emitted from the LED light source 12 is transmitted through the diffusion lens 18, so that the irradiation angle is widened, and the light is transmitted into the molding cavity 30.
  • the charged monomer liquid 50 can be evenly and uniformly irradiated. As a result, local progress of polymerization of the monomer liquid 50 is advantageously prevented, and uniform polymerization of the monomer liquid 50 can be realized extremely advantageously. Also, the distance between the LED light source 12 and the mold 10 can be reduced.
  • the vertical distance (irradiation distance: D) from the LED light source 12 to the outer surface of the cavity forming portion (32, 44) of the molding die 10 is not particularly limited.
  • the peak wavelength of the irradiation light, the presence or absence of a UV absorber, the directional angle of the LED light source 12 and light irradiation Depending on the power area, etc. it will be set appropriately within the range of about 0.5 to 30 mm.
  • the irradiation distance (D) of 3 to 30 mm is advantageously used for polymerization in which the peak wavelength of irradiation light is 350 to 400 nm.
  • an irradiation distance (D) of 1-130 mm is advantageously employed.
  • the irradiation distance (D) of 0.5 to 25 mm is increased due to polymerization using irradiation light having a peak wavelength of 380 to 500 nm. It will be adopted advantageously.
  • the photodetector 14 for measuring the intensity of light emitted from the LED light source 12 specifically, the irradiance is provided by the female mold as the lower mold of the mold 10. Below the mold 28, it is installed so as to face the LED light source 12 with the mold 10 interposed therebetween. Then, of the light emitted from the LED light source 12, the light transmitted through the mold 10 is detected by the photodetector 14.
  • the photodetector 14 is connected to a light intensity control device 16 including an arithmetic processing unit such as a computer and a variable voltage circuit. Then, the data of the irradiance measured by the photodetector 14 is input to the light intensity control device 16, and the light intensity control device 16 controls the voltage supplied to the LED light source 12. . More specifically, in the light intensity control device 16, a target value of the irradiance required for the polymerization of the monomer liquid 50 is set in advance, and the arithmetic processing unit of the light intensity control device 16 transmits the irradiance target value from the photodetector 14. A calculation process is performed to determine whether the input measured value matches a preset target value.
  • variable voltage circuit increases or decreases the amount of voltage applied to the LED light source 12 so that the measured value matches the target value. is there. Then, the intensity of the light emitted from the LED is finely adjusted by the voltage supplied from the light intensity control device 16 to the LED light source 12 connected to the light intensity control device 16, and is kept constant. It is like that.
  • the target value can be appropriately set by an operator through an input operation using a keyboard or the like!
  • the manufacturing apparatus includes a movement for moving the diffusion lens 18 in a direction away from the mold 10 (upward) or in a direction approaching the mold 10 (downward).
  • the rotational motion of the stepping motor 22 is converted into a reciprocating motion by the known crank device 20, and the driving force of the stepping motor 22 causes the diffusion lens 18 connected to the crank device 20 to move vertically (see FIG. 1 in the direction of ⁇ ).
  • the stepping motor 22 is used, fine adjustment of the position of the diffusion lens 18 can be easily performed.
  • the diffusion lens 18 is driven by the driving force of the stepping motor 22. If it is moved upward, the entire molding cavity 30 of the molding die 10 can be irradiated with light. Conversely, when the light irradiated on the mold 10 is too wide, the position of the diffusion lens 18 may be moved downward by the driving force of the stepping motor 22.
  • the molding die 10 as described above is placed on a transfer device 24 as a transfer means.
  • the powerful transfer device 24 is a force that can be configured by a conventionally known device such as a belt conveyor or a chain conveyor, and is configured by a belt conveyor here. With the movement of the belt by the operation of the conveyor 24, the molding die 10 is conveyed in the moving direction of the belt.
  • the belt of the conveyor 24 has a large number of through-holes 25 having a size smaller than the outer dimension of the molding die 10 at a predetermined interval from each other. It is placed so as to cover the periphery of the hole 25.
  • the operation is performed as follows. It will be advanced. In the following, as a specific example, a method for continuously manufacturing a plurality of contact lenses will be described in detail.
  • a plurality of molds 10 for molding a target contact lens are prepared, and the female mold 28 of the powerful molds 10 is placed at a predetermined position of the transfer device 24, Will be retained. Then, the transfer device 24 is operated to first transfer the female mold 28 to a monomer liquid supply device (not shown). Then, when the female mold 28 reaches the place where the monomer liquid is supplied, the transfer device 24 is stopped and the polymer constituting the target contact lens is provided in the concave portion 44 of the female mold 28, respectively. A predetermined amount of the monomer liquid 50 is supplied.
  • the transporter 24 is operated again, and the female mold 28 containing the monomer liquid 50 is transported to a place where the mold matching step is performed. Then, when the female mold 28 reaches a place where the mold matching process is performed, the transfer device 24 is temporarily stopped, and the upward force of the female mold 28 is also applied to the male mold 26 at the corner of the step 46 in the female mold 28.
  • the cylinder in the male mold 26 Assemble the mold so that the corners on the bottom 32 side of the outer peripheral surface of the wall 36 abut, and the lower surface of the outer flange 38 of the male mold 26 and the upper surface of the female mold 28 abut each other. Perform. As a result, a molding cavity 30 is formed between the male mold 26 and the female mold 28, and the monomer liquid 50 is filled in the molding cavity 30.
  • the transporter 24 is operated again, and each of the molds 10 filled with the monomer liquid 50 is moved in the transport direction of the transporter 24.
  • the light is conveyed to the light irradiation position arranged on the downstream side, that is, between the LED light source 12 and the photodetector 14, as shown in FIGS.
  • the transporter 24 is stopped, and the LED light sources 12 are positioned one by one on the optical axis of the contact lens to be molded.
  • light is emitted from each of the LED light sources 12 installed or arranged above the molds 10.
  • the light emitted from the LED light source 12 is advantageously introduced into the molding cavity 30 through the male mold 26 of the molding die 10 having light transmittance, thereby filling the molding cavity 30.
  • the monomer liquid 50 is photopolymerized.
  • the photodetectors 14 arranged one by one for each of the molding dies 10 serve to detect the intensity of light emitted from the LED light sources 12 which are positioned to face each other with the molding dies 10 therebetween.
  • Detected via the mold 10 and the detected light intensity, specifically irradiance is input to the light intensity controller 16 via a known interface.
  • the light intensity control device 16 determines whether the irradiance input from the light detection device 14 matches the preset target value, and If it is lower than the target value, the amount of voltage supplied to the LED light source 12 is increased, while if it exceeds the target value, the amount of voltage supplied to the LED light source 12 is reduced.
  • the irradiance detected by the photodetector 14 matches the target value.
  • the irradiation intensity of light emitted from the LED light source 12 be controlled for each LED light source 12 as described above.
  • the quality of the product can be further enhanced and stabilized more stably, and the occurrence rate of defective products can be reduced. It will be reduced very effectively.
  • the directivity angular power of the light emitted from the LED light source 12 is smaller than the target contact lens diameter, in other words, when the entire molded cavity 30 for providing the contact lens is not irradiated with light. As shown by a solid line in FIG.
  • a diffusion lens 18 as a diffusion means is disposed between the LED light source 12 and the molding die 10 to form a contact lens.
  • the entire molding cavity 30 is irradiated with the LED light up to the portion corresponding to the peripheral portion of the LED.
  • the position of the diffusion lens 18 is finely adjusted by the moving means including the stepping motor 22 and the crank device 20.
  • the LED light source 12 and the molding die 10 are not illustrated, but are similar to the diffusion means.
  • a light-collecting means such as a light-collecting lens be disposed between the light sources.
  • a light-collecting means By arranging such light-collecting means, the light energy of the LED light emitted from the LED light source 12 is polymerized in the monomer liquid 50. It is effectively used for the above, and wasteful irradiation of light which does not contribute to polymerization is advantageously reduced.
  • a plurality of molding dies 10 filled with the monomer liquid 50 in the molding matching process are transported between the LED light source 12 and the photodetector 14.
  • a plurality of other female molds 28 containing the monomer liquid 50 are transported to the place where the matching process is performed, and at the same time, another female mold 28 containing no monomer liquid 50 is stored.
  • the female mold 28 is transported to the monomer liquid supply device. That is, light is emitted from the LED light source 12 to the molding die 10 filled in the molding cavity 30 with the monomer liquid 50 by the mold matching process (the light irradiation step is performed), while the monomer liquid 50 is contained.
  • a mold matching process of assembling the male mold 26 with another female mold 28 is performed, and a filling process of the monomer liquid 50 for supplying the monomer liquid 50 into the concave portion 44 of another female mold 28 is further performed.
  • the three steps, which are performed are performed simultaneously on different molds 10.
  • the wavelength of light emitted from the LED light source 12 to the monomer liquid 50 is not particularly limited, but may be sufficient to sufficiently polymerize the monomer component in the monomer liquid 50.
  • V absorbers are present, LED light power with a peak wavelength in the range of 380-500 nm is particularly preferably employed.
  • the irradiation amount per unit area from the LED light source 12, the so-called irradiance is not particularly limited, but if it is too small, the polymerization of the monomer liquid 50 does not proceed and it is too large. Also, since there is a possibility that adverse effects such as deterioration of the contact lens material may be exerted, it is preferably 0.5 to 30 mWZcm 2 , and more preferably 111 to 20 mWZcm 2 .
  • the irradiation time of the LED light to the mold 10 is also appropriately determined according to the size of the target contact lens, the intensity of the light emitted from the LED light source, the type of the monomer liquid 50, and the like.
  • the upper limit is preferably 120 minutes or less, more preferably 60 minutes or less, while the lower limit is preferably 3 minutes or more, and more preferably. Is 5 minutes or longer. This is because, if the irradiation time is too long, the light irradiation step and, consequently, the entire production process of the target contact lens are unnecessarily lengthened, leading to poor workability and reduced productivity.
  • the LED light source 12 is employed as the light source, the heat generated by light irradiation is relatively small, and the progress of polymerization due to heat can be suppressed, so that the polymerization is more stable.
  • the light irradiation step is performed so that the mold 10 does not exceed the ambient temperature + 5 ° C, that is, does not exceed the ambient temperature approximately 5 ° C. It is desirable to be done.
  • any temperature can be adopted as long as it is lower than the proper operation maximum temperature of the LED light source 12, and the polymerization can be performed while increasing the temperature in such a temperature range. is there.
  • the monomer liquid 50 filled in the molding cavity 30 of the molding die 10 is photopolymerized by vigorously irradiating the molding die 10 with light. Is formed.
  • the contact lens thus formed is provided with a base curve surface corresponding to the rear mold cavity surface 34 of the male mold 26 and a front curve surface corresponding to the front mold cavity surface 48 of the female mold 28. It will be.
  • the conveyor 24 is operated again, and the plurality of molds 10 on which the photopolymerization has been performed are connected to the LED light source 12 and the photodetector 14. Between the transfer devices 24 in the transfer direction of the transfer device 24. Thereafter, the mold is opened by removing the male mold 26 of the mold 10 from the female mold 28, and the contact lens is removed by the same release operation as in the past, thereby obtaining the desired contact lens. It is done.
  • the monomer liquid 50 filled in the molding cavity of the molding die made of a light transmitting material is polymerized by the light emitted from the LED light source 12. Therefore, the problem caused when a conventional ultraviolet lamp is used is advantageously solved, and a stable irradiance can be obtained with respect to the monomer liquid 50 filled in the molding cavity 30 of the mold 10. LED light can be advantageously emitted over a long period of time. Therefore, a contact lens as an ophthalmic lens article can be advantageously manufactured with stable quality.
  • the force is also caused when one LED light source 12 is provided for one set of molds 10 and one light source irradiates a plurality of molds with light. Instability of quality due to irradiation unevenness is advantageously eliminated.
  • the light applied to each mold 10 can be controlled separately, high quality of a contact lens as an ophthalmic lens article can be more easily ensured.
  • high irradiance can be efficiently obtained, and rapid polymerization of the monomer liquid 50 can be achieved.
  • the force in which one LED light source 12 is arranged for one set of molds 10 is as follows. It is also possible to dispose two or more LED light sources 12 which are not limited to the one described above. However, when two or more LED light sources 12 are arranged for one set of molds 10, In this case, at least one of the light sources emitted from the LED light source 12 is provided above and below the mold 10 so as to advantageously contribute to the photopolymerization of the monomer liquid 50 filled in the mold cavity 30. It is preferable that the LED light sources 12 be installed one by one, and that the LED light be emitted from the upper and lower sides of the mold 10.
  • such light irradiation with a two-directional force above and below the mold 10 may cause a monomer solution 50 containing a UV absorber or a pigment to be polymerized with light having a peak wavelength of 380 to 500 nm. It is advantageously employed from the viewpoint of, for example, reducing the deformation defect of the obtained ophthalmic lens product as a polymer product.
  • a contact lens it is possible to obtain sufficient light energy with only one LED light source 12 without using two or more LED light sources 12.
  • the LED light source 12 is installed at a position separated from the male mold 26 and on the optical axis of the contact lens to be molded. Since the irradiation was started from the molding cavity surface 34 side, sufficient LED light could not be introduced into the molding cavity because it was refracted on the surface of the molding die before reaching the molding cavity. However, as shown in FIG. 3, the LED light source 12 was moved to the female mold 28 side, as shown in FIG. When installed, the light emitted from the LED light source 12 can be irradiated from the front molding cavity surface 48 side. When the LED light source 12 is installed on the female mold 28 side as described above, it is preferable that the photodetector 14 is arranged on the male mold 26 side. Further, it is desirable that the LED light source 12 is installed on the optical axis of the ophthalmic lens article to be molded.
  • the diffusion lens 18 as the diffusion means was provided. It is appropriately used according to the size of the LED light source, the distance from the LED light source 12 to the molding die 10, the directional angle of the LED light source, and the like, and is not essential in the present invention. Further, as described above, it is also possible to use a light collecting means instead of the diffusing means.
  • the moving means for moving the diffusing lens 18 in the up and down direction a means that also has a steering motor and a known crank device force is adopted, and the diffusing lens 18 is driven by the stepping motor as the driving means. Small movements of the lens 18 can be advantageously achieved.
  • a conventionally known driving means other than a stepping motor can be used as the driving means.
  • such a moving means can be used as needed, similarly to the diffusion lens 18 described above, and is not necessarily required in the present invention.
  • the irradiance of the light emitted from the LED light source 12 is automatically kept constant by the light intensity control device 16 including the arithmetic processing unit and the variable voltage circuit.
  • the light intensity control device 16 including the arithmetic processing unit and the variable voltage circuit.
  • the intensity of the light emitted from the LED light source 12, specifically, the irradiance is detected by the photodetector 14, but such irradiance is Even if it is detected directly, or indirectly detected by being converted into a physical force representing the intensity of light other than irradiance, there is no problem at all.
  • the photodetector 14 is also used as needed, and is not essential in the present invention.
  • an ophthalmic lens such as an intraocular lens, or a semi-finished product of such an ophthalmic lens (for example, one surface is formed into a completed lens surface shape, while the other surface is used as a lens surface) Is an ophthalmic lens material that has not yet been completed and is formed into a shape that requires post-processing such as cutting, and that provides the ophthalmic lens).
  • the present invention can also be advantageously applied to a molding die for molding a so-called ophthalmic lens article such as a lens blank which can be provided by performing the above-described processing, and a method for producing the same.
  • a so-called ophthalmic lens article such as a lens blank which can be provided by performing the above-described processing, and a method for producing the same.
  • the ophthalmic lens article is an intraocular lens
  • the thickness is considerably larger than that of a contact lens
  • at least one of each is provided above and below the mold 10.
  • the direction angle of the LED light source 12 is 10-100 °. preferable.
  • the plurality of molding dies 10 (female dies 28) held by the transfer machine 24 are moved to the monomer liquid supply position and the mold by the transfer machine 24 using the transfer machine 24. Alignment position And the light irradiation position, and the monomer solution supply step, the mold matching step, and the light irradiation step are simultaneously performed at each of the transfer positions, so that the contact lens as the objective ophthalmic lens article is obtained.
  • Alignment position And the light irradiation position, and the monomer solution supply step, the mold matching step, and the light irradiation step are simultaneously performed at each of the transfer positions, so that the contact lens as the objective ophthalmic lens article is obtained.
  • the LED since the LED is used as the light source, one light source can be arranged for each one of the molds 10, and therefore, one light source can be used for a plurality of molds. In contrast to the case where light irradiation is performed, the intended ophthalmic lens article can be manufactured individually and efficiently. In addition, it is also possible to simultaneously perform different light irradiation for each LED light source depending on the case, such as setting the irradiation amount and irradiation time of the LED light for each lens standard.
  • the structure of the male mold 26 and the female mold 28 constituting the molding die 10 may be appropriately selected from various known structures, and is not particularly limited to the structure shown in the embodiment. Of course, this is not the case.
  • Formulation Solution 1 and Formulation Solution 2 having the compositions shown in Tables 1 and 2 below are prepared, while the peak wavelength of irradiation light, Table 3 below shows five types of LED light sources (12) with different maximum emission wavelengths. Prepared as indicated.
  • three commercially available photopolymerization initiators namely, 2-hydroxy-2-methyl-1-phenylene-propane-1one (initiator A), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide ( Initiator B) and bis (2,4,6 polymethylbenzoyl) phenylphosphine oxide (Initiator C) were prepared.
  • LED light having a predetermined peak wavelength was irradiated at room temperature for 30 minutes, and photopolymerization was performed, respectively.
  • the male mold (26) and female Each of the molds (28) was made of polypropylene, and the irradiation distance (D), which was the distance between the LED light source (12) and the female mold (28), was 5 mm.
  • the mold (10) filled with such various monomer liquids (50) is opposed to the mold (26) and the female mold (28) from two directions. Then, by using two LED light sources (12) having the same peak wavelength and irradiating light with a predetermined peak wavelength, respectively, photopolymerization is performed, and the objective lens product outside the contour (eye) Lens products). The photopolymerization is carried out by irradiating light for 30 minutes at room temperature.
  • the irradiation distance (D) which is the distance of each LED light source (12) from the male type (26) or the female type (28), was 2 mm, respectively.
  • the monomer liquid (50) to which the UV absorber obtained by the addition of the force was added had various peak wavelengths.
  • the LED light source (12) having a peak wavelength of 400 nm or less was used. No matter which polymerization initiator is used, a molded product having sufficient shape retention as a contact lens when the contact lens product obtained as a polymerization product is hydrated, As a result.
  • phosphine oxide-based initiator B or initiator C which is an initiator having a high extinction coefficient at 405 nm, is added, an LED light source having a peak wavelength in the range of 380 nm to 470 nm ( The desired contact lens product could be advantageously obtained by photopolymerization using (12).
  • a phosphine oxide-based initiator B or C having a high extinction coefficient at 405 nm was used.
  • an LED light source (12) having a peak wavelength from 380 nm to 470 nm it was possible to mold the desired contact lens product advantageously.
  • the monomer liquid (50) having the composition shown in Tables 4 and 5 above was further added with 0.002% by weight of 1-phenylazo-3-methacryloyloxy-2-naphthol as a pigment. Caro part Instead, when photopolymerization was performed using the LED light sources (12) having the various peak wavelengths described above, the same results were obtained in each case, and the photopolymerization of the monomer liquid (50) showed the presence of a dye. It was confirmed that it did not have a significant effect.

Abstract

A process for producing an eyelens article that realizes resolution of all the problems attributed to ultraviolet lamps and advantageously ensuring of stable quality; and an eyelens article production apparatus therefor. Use is made of shaping mold (10) wherein shaping cavity (30) of configuration capable of producing desired eyelens articles is provided by registering of upper die (26) and lower die (28) both constituted of a light transmissive material. Monomer liquid (50) is charged in the shaping cavity (30), and polymerization of the charged monomer liquid (50) is carried out by exposing the same to light emitted from LED light source (12) disposed on the side of at least one of the upper and lower dies of the shaping mold (10). Thus, mold shaping of eyelens articles can be accomplished.

Description

明 細 書  Specification
眼用レンズ物品の製造方法及びそれに用レ、られる製造装置  Ophthalmic lens article manufacturing method and manufacturing apparatus used therefor
技術分野  Technical field
[0001] 本発明は、眼用レンズ物品の製造方法及びそれに用いられる製造装置に係り、特 に、光重合の際の光源として LEDを用いて、眼用レンズ物品を有利に製造すること の出来る方法及びそれに用いられる製造装置に関するものである。  The present invention relates to a method for manufacturing an ophthalmic lens article and a manufacturing apparatus used for the method, and in particular, an ophthalmic lens article can be advantageously manufactured using an LED as a light source during photopolymerization. The present invention relates to a method and a manufacturing apparatus used for the method.
背景技術  Background art
[0002] 従来から、コンタクトレンズや眼内レンズの如き眼用レンズ、またはその半完成品、 例えば、一方の面が完成されたレンズ面形状に成形されている一方、他方の面が、 レンズ面としては未だ完成されて 、な、、切削加工等の後加工を必要とする形状に 成形された、前記眼用レンズを与える眼用レンズ材料、更には両面切削等の加工に よって、 目的とするコンタクトレンズや眼内レンズが形成されるレンズブランク等の、所 謂眼用レンズ物品の製造方法の一つとして、雄型と雌型との組合せや上型と下型と の組合せ等のように、第一の型と第二の型とを組み合わせて型合わせを行い、それ らの型の間に、前記眼用レンズ物品を与える形状の成形キヤビティが形成されるよう に構成した、榭脂材料等の光透過性材料からなる成形型を用い、この成形型の成形 キヤビティ内に、所定のモノマー液を充填した後、 UV光を照射することにより、成形 型を透過する UV光にて、充填されたモノマー液を重合せしめて、 目的とする眼用レ ンズ物品をモールド成形するようにした技術力、知られて!/、る。  [0002] Conventionally, ophthalmic lenses such as contact lenses and intraocular lenses, or semi-finished products thereof, for example, one surface is formed into a completed lens surface shape, while the other surface is a lens surface. It is still completed, but it is formed into a shape that requires post-processing such as cutting, the ophthalmic lens material that gives the ophthalmic lens, and further processed by double-sided cutting, etc. One of the methods for manufacturing so-called ophthalmic lens articles such as a lens blank on which a contact lens or an intraocular lens is formed, such as a combination of a male mold and a female mold or a combination of an upper mold and a lower mold. A resin material configured to perform mold matching by combining the first mold and the second mold, and to form a molding cavity in a shape that gives the ophthalmic lens article between the molds. Molds made of light transmissive materials such as After filling the molding cavity of the mold with a predetermined monomer liquid, the monomer liquid is irradiated with UV light, and the filled monomer liquid is polymerized by the UV light transmitted through the molding die. The technical ability to mold ophthalmic lens products is known.
[0003] ところで、このようにして眼用レンズ物品を製造するに際しては、通常、バッチ方式 が採用されており、 1つの光源カゝら照射された UV光で、多数の眼用レンズ物品がモ 一ルド成形されている。この際、光源としては、一般に、キセノンランプや、水銀ランプ [0003] By the way, in manufacturing an ophthalmic lens article in this way, a batch method is usually employed, and a large number of ophthalmic lens articles are subjected to irradiation with UV light irradiated from one light source. It is molded. In this case, the light source is generally a xenon lamp or a mercury lamp
、重水素ランプ等の紫外線ランプが用いられ、このような紫外線ランプからの UV光がUV lamps such as deuterium lamps are used, and UV light from such UV lamps
、光重合を同時に行なう複数の成形型の全てに万遍なく均一に照射されるように、従 来より各種の工夫がなされてきている。例えば、ドーム状のハウジングの内面にミラー 等の反射板を設置して、力かるドーム状のハウジングの頂部に配設された光源から 放射される UV光を該反射板で反射させることにより、全ての成形型の成形キヤビティ 内に充填されるモノマー液に、 UV光が略一定の放射照度で照射されるように、調整 を行なっている。 Conventionally, various devices have been devised so that all of a plurality of molds simultaneously performing photopolymerization are uniformly irradiated. For example, a reflector such as a mirror is installed on the inner surface of a dome-shaped housing, and UV light radiated from a light source provided on the top of the dome-shaped housing that is powerful is reflected by the reflector to achieve all of the above. Molding mold cavity Adjustments are made so that the UV light is irradiated at a substantially constant irradiance to the monomer liquid filled therein.
[0004] し力しながら、このようにして、ミラー等の反射板を用いて光照射を行なっても、全て の成形型に対して同様に光を照射することは極めて困難であり、成形型の配置され る部位によっては、 UV光が充分に照射されないといった問題があった。そして、この ような不均等な光照射の下で、モールド成形操作が同時に行なわれた眼用レンズ物 品にあっては、所謂製造ロット番号が同一な眼用レンズ物品であっても、例えば、複 数の成形型が並べられたうちの中央部に配置されたものと、端部に配置されたものと では、重合度や架橋結合度が異なってしまうといった問題力 しばしば生じていたの である。また、重合度や架橋結合度が異なることによって、レンズ物性やレンズ形状 に悪影響が生じ、例えば、或るコンタクトレンズにあっては、そのエッジが明確に形成 されな 、等、品質にバラツキが生じて 、たのである。  [0004] Even if light is irradiated using a reflector such as a mirror in this way, it is extremely difficult to irradiate light to all the molds in the same manner. However, there is a problem that the UV light is not sufficiently irradiated depending on the portion where the LED is arranged. Then, in the case of the ophthalmic lens article on which the molding operation has been performed simultaneously under such uneven light irradiation, even if the so-called ophthalmic lens article having the same production lot number, for example, The problem was that the degree of polymerization and the degree of cross-linking differed between the one placed at the center and the one placed at the end of the arrangement of multiple molds. . In addition, the difference in the degree of polymerization and the degree of cross-linking adversely affects the physical properties and lens shape of the lens.For example, in a certain contact lens, the edge is not clearly formed, and the quality varies. That's it.
[0005] また、従来より光源として汎用されている紫外線ランプは、モノマー液を光重合する のに必要とされる波長の光以外に、レンズ材質に弊害をもたらすような不必要な波長 の光を発生するため、そのような波長の光によって悪影響が及ぼされないように、光 フィルタ一等の遮蔽手段によって、余分な波長の光をカットする必要があった。更に、 紫外線ランプは、ランプ寿命が短いところから、交換頻度が高ぐ交換の度毎に、 UV 光が成形型中のモノマー液に所定の放射照度で照射され得るように、煩雑な放射照 度設定を行なわなければならな力つたのである。カロえて、紫外線ランプは、発熱する ところ力も冷却を行なう必要があると共に、点灯後、放射照度が安定するまでに時間 が掛かり、また、点灯時間が長くなると、放射照度が低下するといつた欠点をも内在し ている。  [0005] Further, an ultraviolet lamp generally used as a light source conventionally emits not only light having a wavelength necessary for photopolymerizing a monomer liquid but also light having an unnecessary wavelength that adversely affects a lens material. Therefore, it is necessary to cut off light of an extra wavelength by a shielding means such as an optical filter so that light of such a wavelength is not adversely affected. Further, since the ultraviolet lamp has a short lamp life, complicated irradiance is required so that the UV light can be irradiated to the monomer liquid in the mold at a predetermined irradiance every time the frequency of replacement is high. We had to make settings. In addition to the fact that UV lamps generate heat and need to cool down the power, it takes time for the irradiance to stabilize after lighting, and the longer the lighting time, the lower the irradiance will be. Are also inherent.
[0006] 一方、特表 2003— 503234号公報 (特許文献 1)にお!/、ては、生体適合性がある重 合性材料力もなる眼用成形品の一定した品質を確保することを目的として、多数の 光ファイバ一を紫外灯に接続し、力かる光ファイバ一を、それぞれ、多数ある注型成 形用型のうちの一つに取り付け、そして、紫外灯からの UV光を、該光ファイバ一を通 じて成形型に照射して、モールド成形を行なうようにした手法が、明らかにされている [0007] このように、多数の成形型に対して、紫外灯の光を直接照射するのではなぐ複数 の光ファイバ一を通じて、それぞれの成形型毎に光を照射するようにすれば、成形型 の配置場所の違いによる、光の照射ムラの発生を防止して、各成形型に均等に UV 光を照射することが出来るようになる。しかしながら、紫外灯自体において、均一な放 射照度を確保し得る部位が狭ぐ一つの紫外灯に取り付けることの出来る光ファイバ 一の数にも限界があった。更に、かかる手法では、複数の光ファイバ一を紫外灯に取 り付ける作業が煩雑であったり、光ファイバ一で光が損失する等の問題が内在してい る。し力も、紫外灯を点灯することによって発生する熱を逃がすためのクーリングが必 要となったり、また、紫外灯の使用時間に伴う放射照度変化の問題、更には、紫外灯 が壊れた場合に、多数の成形型に影響が及ぼされる等の、紫外線ランプに起因する 問題が、依然として、払拭されていないのである。 [0006] On the other hand, Japanese Unexamined Patent Application Publication No. 2003-503234 (Patent Document 1) describes the purpose of Japanese Patent Application Laid-Open Publication No. 2003-503234 (JP-A-2003-503234) to secure a constant quality of an ophthalmic molded product that is biocompatible and has a polymer material strength. As an example, a number of optical fibers are connected to an ultraviolet light, each of the powerful optical fibers is attached to one of a number of casting molds, and UV light from the ultraviolet light is applied to the mold. A method of irradiating a mold through an optical fiber and performing molding has been clarified. [0007] As described above, if a large number of molds are irradiated with light from each of the molds through a plurality of optical fibers instead of directly irradiating the light of the ultraviolet lamp, the molds can be molded. Irradiation unevenness of light due to the difference in the arrangement location of the dies can be prevented, and each mold can be evenly irradiated with UV light. However, there is a limit in the number of optical fibers that can be attached to a single ultraviolet light because the part of the ultraviolet light itself that can ensure uniform irradiance is narrow. Further, in such a method, there are problems such as a complicated operation of attaching a plurality of optical fibers to an ultraviolet light and a loss of light in the optical fibers. As for the power, cooling to release the heat generated by turning on the ultraviolet light is required, the irradiance change due to the usage time of the ultraviolet light, and when the ultraviolet light is broken Problems caused by UV lamps, such as affecting many molds, have not yet been eliminated.
[0008] また、特開昭 59— 215838号公報 (特許文献 2)においても、紫外線照射光源とキヤ ビティ又はキヤビティコアとを光ファイバ一で光学的に連結して、高価な光源を複数 の成形型で兼用するようにした成形装置が提案されているが、そこでも、上記特許文 献 1と同様な問題が内在している。  [0008] Also, in Japanese Unexamined Patent Application Publication No. 59-215838 (Patent Document 2), an ultraviolet light source and a cavity or a cavity core are optically connected by an optical fiber, and an expensive light source is formed into a plurality of molding dies. There has been proposed a molding apparatus that is also used in the above-mentioned, but also in this case, there is an inherent problem similar to that of Patent Document 1.
[0009] 特許文献 1:特表 2003— 503234号公報  Patent Document 1: Japanese Patent Application Publication No. 2003-503234
特許文献 2 :特開昭 59— 215838号公報  Patent Document 2: JP-A-59-215838
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] ここにおいて、本発明は、力かる事情を背景にして為されたものであって、その解決 課題とするところは、紫外線ランプの使用に起因する上記した問題を悉く解消して、 安定した品質を有利に確保することの出来る眼用レンズ物品の製造方法、及びそれ に用いられる眼用レンズ物品の製造装置を提供することにある。 [0010] Here, the present invention has been made in the background of vigorous circumstances, and a problem to be solved is to solve all the above-mentioned problems caused by the use of an ultraviolet lamp, It is an object of the present invention to provide a method for manufacturing an ophthalmic lens article that can advantageously ensure the above-mentioned quality, and an apparatus for manufacturing an ophthalmic lens article used in the method.
課題を解決するための手段  Means for solving the problem
[0011] そして、本発明は、上述の如き課題を解決するために為されたものであって、その 第一の態様とするところは、光透過性材料力もなる上型と下型とを型合わせすること により、それらの型の間に、眼用レンズやその半完成品、レンズブランク等の、目的と する眼用レンズ物品を与える形状の成形キヤビティが形成されるようにした成形型を 用い、力かる成形キヤビティ内に、モノマー液を充填する一方、該成形型の上下の少 なくとも一方の型の側に設置された LED力 光を照射することにより、該成形型を透 過する光にて、前記成形キヤビティに充填されたモノマー液を光重合して、前記目的 とする眼用レンズ物品をモールド成形することを特徴とする眼用レンズ物品の製造方 法にある。 [0011] The present invention has been made to solve the above-described problems, and a first aspect of the present invention is to form an upper mold and a lower mold that also have a light transmitting material strength. By forming the molds, a mold having a shape that gives a desired ophthalmic lens article, such as an ophthalmic lens, a semi-finished product thereof, and a lens blank, is formed between the molds. The molding cavity is filled with the monomer liquid while the molding cavity is filled with the monomer liquid, and at least one of the upper and lower sides of the molding cavity is illuminated with the LED light, and the molding cavity is transmitted through the molding cavity. A method for producing an ophthalmic lens article, characterized in that the monomer liquid filled in the molding cavity is photopolymerized with light to mold the objective ophthalmic lens article.
[0012] また、本発明に従う眼用レンズ物品の製造方法における第二の態様にあっては、 前記成形型が複数配置され、かかる成形型の一つ毎に、前記 LEDが設置される構 成が、有利〖こ採用されることとなる。  In a second aspect of the method for manufacturing an ophthalmic lens article according to the present invention, a plurality of the molds are arranged, and the LED is provided for each of the molds. Will be adopted advantageously.
[0013] さらに、本発明に従う眼用レンズ物品の製造方法の第三の態様においては、前記 上型が凸面状の成形キヤビティ面を有する雄型である一方、前記下型が凹面状の成 形キヤビティ面を有する雌型であり、前記 LEDが、該雄型から上方に離隔した位置 で、且つ成形される眼用レンズ物品の光軸上に設置される。  [0013] Further, in a third aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the upper mold is a male mold having a convex molding cavity surface, while the lower mold is a concave molding. A female mold having a cavity surface, wherein the LED is installed at a position separated upward from the male mold and on the optical axis of the ophthalmic lens article to be molded.
[0014] 力!]えて、本発明に従う眼用レンズ物品の製造方法の第四の態様においては、前記 モノマー液は、少なくとも 1種のアクリル系モノマーを含有している。  [0014] Power! In a fourth aspect of the method for producing an ophthalmic lens article according to the present invention, the monomer liquid contains at least one acrylic monomer.
[0015] また、本発明に従う眼用レンズ物品の製造方法の第五の態様では、前記アクリル系 モノマーが、シリコン含有アクリル系モノマーであり、力かるシリコン含有アクリル系モ ノマーが、前記モノマー液中に、 10— 70重量%の割合で含有されることとなる。  [0015] In a fifth aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the acrylic monomer is a silicon-containing acrylic monomer, and a vigorous silicon-containing acrylic monomer is contained in the monomer liquid. To 10 to 70% by weight.
[0016] さらに、本発明に従う眼用レンズ物品の製造方法の第六の態様においては、前記 アクリル系モノマーが、ジアルキル (メタ)アクリルアミドであり、力かるジアルキル (メタ) アクリルアミドが、前記モノマー液中に、 30— 70重量%の割合で含有されることとな る。  [0016] Further, in a sixth aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the acrylic monomer is dialkyl (meth) acrylamide, and strong dialkyl (meth) acrylamide is contained in the monomer liquid. In addition, 30-70% by weight will be contained.
[0017] 更にまた、力かる本発明に従う眼用レンズ物品の製造方法の第七の態様では、前 記 LEDの照射時間が、 60分以下とされる。  [0017] Furthermore, in the seventh aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the irradiation time of the LED is set to 60 minutes or less.
[0018] 力!]えて、本発明に従う眼用レンズ物品の製造方法の第八の態様においては、ピー ク波長力 350— 500nm、好ましく ίま 360— 470nm、特に好ましく ίま 360— 400nm の範囲内にある光を、前記 LEDから照射して、前記モノマー液を、 UV吸収剤の不 存在下において、光重合せしめることを特徴とする。 [0018] Power! In an eighth embodiment of the method for producing an ophthalmic lens article according to the present invention, light having a peak wavelength power of 350 to 500 nm, preferably 360 to 470 nm, particularly preferably 360 to 400 nm is used. Irradiating from the LED, the monomer solution is photopolymerized in the absence of a UV absorber.
[0019] また、本発明に従う眼用レンズ物品の製造方法の第九の態様においては、前記モ ノマー液が UV吸収剤を含有しており、且つ前記 LED力 照射される光のピーク波 長力 380— 500nm、好ましく ίま 400— 470nmの範囲内にあるようにされて!ヽる。 In a ninth aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the module The Nomer liquid contains a UV absorber, and the LED power is adjusted so that the peak wavelength power of the irradiated light is in the range of 380 to 500 nm, preferably 400 to 470 nm.
[0020] さらに、本発明に従う眼用レンズ物品の製造方法の第十の態様においては、前記 モノマー液が、更に色素を含有するように構成されている。特に、この色素としては、 黄色又は橙色のものが、好適に用いられることとなる。 [0020] Further, in a tenth aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the monomer liquid further includes a dye. In particular, as this dye, a yellow or orange dye is preferably used.
[0021] そして、本発明に従う眼用レンズ物品の製造方法の第十一の態様においては、前 記 LEDの二つが用いられて、前記成形型の上方と下方にそれぞれ配置され、それら 二つの LED力も相対向するように光が照射せしめられることとなる。 [0021] In the eleventh aspect of the method for manufacturing an ophthalmic lens article according to the present invention, two of the LEDs are used, and are disposed above and below the mold, respectively. The light is applied so that the forces also face each other.
[0022] また、本発明に従う眼用レンズ物品の製造方法の第十二の態様においては、前記 モノマー液の光重合に際して、 405nmでの吸光係数の高い光重合開始剤が用いら れる。 [0022] In a twelfth aspect of the method for producing an ophthalmic lens article according to the present invention, a photopolymerization initiator having a high extinction coefficient at 405 nm is used in the photopolymerization of the monomer solution.
[0023] ところで、本発明は、上述せる如き眼用レンズ物品の製造方法に有利に用いられる 製造装置も、また、その対象とするものであって、光透過性材料力もなる上型と下型と を型合わせすることにより、それらの型の間に、眼用レンズやその半完成品、レンズ 等の、目的とする眼用レンズ物品を与える形状の成形キヤビティが形成されるようにし た成形型と、該成形型の上下の少なくとも一方の型の側に設置され、前記成形型の 前記成形キヤビティに充填されるモノマー液に対して光を照射するための LEDとを 含んで構成されることを特徴とする眼用レンズ物品の製造装置を、その一つの態様と している。  Meanwhile, the present invention is also directed to a manufacturing apparatus which is advantageously used in the method for manufacturing an ophthalmic lens article as described above, and is also an object thereof, and includes an upper mold and a lower mold having a light-transmitting material strength. A molding die in which a molding cavity, such as an ophthalmic lens, a semi-finished product, and a lens, having a shape that gives a desired ophthalmic lens article is formed between the dies by matching the and the dies. And an LED installed on at least one of the upper and lower mold sides of the molding die to irradiate the monomer liquid filled in the molding cavity of the molding die with light. An apparatus for manufacturing an ophthalmic lens article, which is a feature of the present invention, is one embodiment thereof.
[0024] また、本発明に従う眼用レンズ物品の製造装置における第二の態様にあっては、 所定の搬送手段に、前記成形型が複数配置されると共に、それぞれの成形型毎に、 前記 LEDが設置される構成が採用される。  [0024] In the second aspect of the ophthalmic lens article manufacturing apparatus according to the present invention, a plurality of the molding dies are arranged in a predetermined conveying means, and the LED is provided for each of the molding dies. Is adopted.
[0025] さらに、本発明に従う眼用レンズ物品の製造装置の第三の態様おいては、前記 LE D力 照射される光の放射照度を測定するための測定手段が、前記成形型を挟んで 、前記 LEDに対向する側に設置され、力かる測定手段にて、放射照度が測定される ようになっている。  [0025] Further, in the third aspect of the apparatus for manufacturing an ophthalmic lens article according to the present invention, the measuring means for measuring the irradiance of the light irradiated with the LED force may be provided so as to sandwich the mold. The irradiance is installed on the side facing the LED, and the irradiance is measured by a powerful measuring means.
[0026] 力!]えて、本発明に従う眼用レンズ物品の製造装置の第四の態様においては、前記 LEDに供給する電圧を制御するための制御手段が設けられ、該制御手段にて、前 記測定手段にて測定された放射照度の値と目標値とがー致するように該 LEDに供 給する電圧が制御されて、該 LEDから照射される光の放射照度が一定に保たれるこ ととなる。 [0026] Power! In a fourth aspect of the apparatus for manufacturing an ophthalmic lens article according to the present invention, control means for controlling a voltage to be supplied to the LED is provided. The voltage supplied to the LED is controlled so that the value of the irradiance measured by the measuring means matches the target value, and the irradiance of light emitted from the LED is kept constant. That is.
[0027] また、本発明に従う眼用レンズ物品の製造装置の第五の態様では、前記 LEDから 照射される光を拡散するための拡散手段が、前記成形型と前記 LEDの間に設けら れ、力かる拡散手段を介して光を照射することにより、該 LEDからの光の照射角度が 広げられて、前記成形型の前記成形キヤビティに充填されたモノマー液に対して、か かる光が均一に照射されるようになる。  [0027] In the fifth aspect of the ophthalmic lens article manufacturing apparatus according to the present invention, a diffusing unit for diffusing light emitted from the LED is provided between the mold and the LED. By irradiating the light through the powerful diffusion means, the irradiation angle of the light from the LED is widened, and the light is uniform with respect to the monomer liquid filled in the molding cavity of the molding die. Will be irradiated.
[0028] さらに、本発明に従う眼用レンズ物品の製造装置の第六の態様においては、前記 拡散手段を前記成形型から離隔する方向乃至は接近する方向に移動するための移 動手段が設けられ、力かる移動手段にて、該拡散手段の位置を調整することにより、 前記成形キヤビティに充填されたモノマー液に対して、前記光が均一に照射されるこ ととなる。  [0028] Further, in a sixth aspect of the apparatus for manufacturing an ophthalmic lens article according to the present invention, a moving means for moving the diffusing means in a direction away from or approaching the mold is provided. By adjusting the position of the diffusing means with a powerful moving means, the light can be uniformly applied to the monomer liquid filled in the molding cavity.
発明の効果  The invention's effect
[0029] そして、本発明に従う眼用レンズ物品の製造方法における、先述した第一の態様に よれば、光透過性材料からなる成形型の成形キヤビティに充填されたモノマー液を、 LED力 発せられる光にて重合するようにして 、るところから、紫外線ランプに起因 する問題を悉く解消することが出来るのである。即ち、 LEDは、紫外線ランプと比べ ると重合に不必要な波長の光を出さないところから、モノマー液に対して、その重合 に有効な波長の光のみを有利に照射せしめることが出来る。また、紫外線ランプはラ ンプ寿命が短ぐ頻繁に交換をしなければならなかったのに対して、 LEDは、寿命が 長ぐまた、点灯直後でも安定した放射照度が得られるところから、放射照度設定も 容易である。その上、或る成形型の成形キヤビティに充填されたモノマー液の重合操 作の終了から、次の成形型の成形キヤビティに充填されたモノマー液の重合操作を 開始するまでの間、消灯することも可能となり、眼に対して有害である光を不必要に 照射しなくても良いといった利点も得られるのである。更に、 LEDは、紫外線ランプに 比して発熱が非常に少ないところから、モノマー液に伝導された熱によって重合の制 御が困難となるようなこともないのである。し力も、 LEDは、供給する電圧量を変化さ せること〖こよって、放射照度の微調整を容易に行なうことが出来ると ヽつた特徴をも有 しているのである。 According to the above-described first aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the monomer liquid filled in the molding cavity of the molding die made of a light transmissive material can be generated by the LED power. By polymerizing with light, the problems caused by the ultraviolet lamp can be completely eliminated. That is, since an LED does not emit light having a wavelength unnecessary for polymerization as compared with an ultraviolet lamp, it is possible to irradiate the monomer liquid only with light having a wavelength effective for the polymerization. In addition, UV lamps have a short lamp life and must be replaced frequently, whereas LEDs have a long life and provide stable irradiance immediately after lighting. Setting is easy. In addition, the light is turned off from the end of the polymerization operation of the monomer liquid filled in the molding cavity of a certain molding die until the start of the polymerization operation of the monomer liquid filled in the molding cavity of the next molding die. This also has the advantage of eliminating the need to unnecessarily irradiate light harmful to the eyes. In addition, LEDs generate much less heat than UV lamps, so the heat conducted through the monomer solution does not make it difficult to control the polymerization. LED also varies the amount of voltage supplied Therefore, it also has the feature that fine adjustment of irradiance can be easily performed.
[0030] このように、 LEDを光源として使用すると、モノマー液に対して、安定した放射照度 の光を、長期間に亘つて、有利に且つ安全に照射することが出来るところから、眼用 レンズ物品を、安定した品質で有利に製造することが出来るのである。し力も、 LED を用いることにより、高い放射照度を効率的に得ることが出来るようになって、モノマ 一液の迅速な重合も可能となる。  [0030] As described above, when an LED is used as a light source, the monomer liquid can be irradiated with stable irradiance light for a long time, advantageously and safely. Articles can be advantageously produced with stable quality. Also, by using LEDs, high irradiance can be efficiently obtained by using LEDs, and rapid polymerization of a monomer liquid can be performed.
[0031] し力も、 LEDは、一つ一つの大きさが小さぐまた指向角も小さいところから、小さな 眼用レンズ物品をモールド成形するための成形型に有効に適用され、そのような成 形型毎に、別個に設置することが、容易に実現され得るのである。  Since LEDs are small in size and small in angle of directivity, they are effectively applied to molding dies for molding small ophthalmic lens articles. Separate installation for each mold can be easily realized.
[0032] 従って、本発明に従う眼用レンズ物品の製造方法の第二の態様によれば、一組の 成形型に対して、少なくとも一つの LEDが設置されているところから、少なくとも一つ の光源で、一組の成形型の成形キヤビティ内に充填されたモノマー液が重合されるこ ととなる。これにより、一つの光源で複数の成形型に光を照射する場合に惹起されて いた、照射ムラによる品質の不安定化が、有利に解消されることとなる。また、各成形 型に照射される LED光を、それぞれ別個に管理することが出来る利点もある。このた め、眼用レンズ物品の安定した品質を、より一層有利に維持することが出来るのであ る。  [0032] Therefore, according to the second embodiment of the method for manufacturing an ophthalmic lens article according to the present invention, at least one light source is provided because at least one LED is provided for one set of molds. Thus, the monomer liquid filled in the molding cavities of a pair of molding dies is polymerized. As a result, the instability of quality due to irradiation unevenness, which is caused when one light source irradiates a plurality of molds with light, can be advantageously solved. Another advantage is that the LED light applied to each mold can be managed separately. Therefore, the stable quality of the ophthalmic lens article can be maintained more advantageously.
[0033] さらに、本発明に従う眼用レンズ物品の製造方法の第三の態様によれば、 LED力 ら照射される光力 成形キヤビティ内に充填されたモノマー液全体に確実に照射され ることとなる。つまり、 LED力も放射される光が、一定の指向角を有することから、成形 キヤビティ内に到達する前に成形型の表面で屈折又は反射する等して、充分な光が 成形キヤビティ内に導入され得なくなるといった問題が有利に防止されて、 LED光が 成形キヤビティ全体に有利に照射されるようになるのである。  Further, according to the third aspect of the method for manufacturing an ophthalmic lens article according to the present invention, it is ensured that the entirety of the monomer liquid filled in the optical power molding cavity irradiated from the LED power is irradiated. Become. In other words, since the light emitted from the LED has a certain directional angle, sufficient light is introduced into the molding cavity by refraction or reflection on the surface of the molding die before reaching the molding cavity. The problem of unavailability is advantageously prevented, and the LED light is advantageously directed to the entire molding cavity.
[0034] 加えて、本発明に従う眼用レンズ物品の製造方法の第四乃至第六の態様によれば 、モノマー液において、アクリル基乃至はメタクリル基を有するアクリル系モノマーが 含有せしめられているところから、光重合が有効に実現されることとなる。特に、アタリ ル系モノマーとして、シリコン含有アクリル系モノマーを所定の割合で用いる場合に は、酸素透過性に優れた眼用レンズ物品が有利に得られるのであり、また、アクリル 系モノマーとして、ジアルキル (メタ)アクリルアミドを所定の割合で用いる場合には、 親水性又は含水性に優れた眼用レンズ物品が有利に得られることとなる。 In addition, according to the fourth to sixth aspects of the method for manufacturing an ophthalmic lens article according to the present invention, the monomer liquid contains an acrylic monomer having an acryl group or a methacryl group. Thus, photopolymerization is effectively realized. In particular, when a silicon-containing acrylic monomer is used at a predetermined ratio as an acryl monomer, Is advantageous in that an ophthalmic lens article excellent in oxygen permeability can be obtained.When dialkyl (meth) acrylamide is used in a predetermined ratio as an acrylic monomer, it is excellent in hydrophilicity or water content. An ophthalmic lens article will advantageously be obtained.
[0035] また、本発明に従う眼用レンズ物品の製造方法の第七の態様によれば、良好なる 作業性をもって、眼用レンズ物品を製造することが出来る。  Further, according to the seventh aspect of the method for manufacturing an ophthalmic lens article according to the present invention, an ophthalmic lens article can be manufactured with good workability.
[0036] さらに、本発明に従う眼用レンズ物品の製造方法の第八乃至第十の態様によればFurther, according to the eighth to tenth aspects of the method for manufacturing an ophthalmic lens article according to the present invention,
、モノマー液の重合が効果的に実現され、本発明の目的がより一層有利に達成され 得ることとなる。 In addition, the polymerization of the monomer liquid is effectively realized, and the object of the present invention can be more advantageously achieved.
[0037] そして、本発明に従う眼用レンズ物品の製造方法の第十一の態様によれば、 UV吸 収剤を含有するモノマー液の LEDを用いた光重合操作が、効果的に進行せしめら れ得るのである。  [0037] According to the eleventh aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the photopolymerization operation of a monomer liquid containing a UV absorber using an LED can proceed effectively. It can be done.
[0038] 更にまた、本発明に従う眼用レンズ物品の製造方法の第十二の態様によれば、長 波長側の LED発光波長を効果的に吸収して、迅速に重合を進行せしめ、以て目的 とする眼用レンズ物品を有利に得ることが出来る。  [0038] Furthermore, according to the twelfth aspect of the method for manufacturing an ophthalmic lens article according to the present invention, the LED light emission wavelength on the long wavelength side is effectively absorbed, and the polymerization proceeds rapidly. The intended ophthalmic lens article can be advantageously obtained.
[0039] また、本発明に従う眼用レンズ物品の製造装置の第一の態様においては、光源と して、 LEDが採用されているところから、上述せるように、紫外線ランプに起因する問 題が悉く解消され得ると共に、眼用レンズ物品の品質を安定に維持することが出来る という特徴が発揮される。  Further, in the first embodiment of the apparatus for manufacturing an ophthalmic lens article according to the present invention, since an LED is used as a light source, there is a problem caused by an ultraviolet lamp as described above. In addition to being able to be eliminated altogether, it is possible to stably maintain the quality of the ophthalmic lens article.
[0040] さらに、本発明に従う眼用レンズ物品の製造装置の第二の態様によれば、前記した 眼用レンズ物品の製造方法の第二の態様と同様に、照射ムラによる品質の不安定ィ匕 力 有利に解消されて、眼用レンズ物品の安定した品質を、より一層有利に維持する ことが可能となると共に、眼用レンズ物品を、連続的に大量生産することも可能となる  Further, according to the second aspect of the apparatus for manufacturing an ophthalmic lens article according to the present invention, similarly to the second aspect of the method for manufacturing an ophthalmic lens article, the quality is unstable due to irradiation unevenness. The dangling power is advantageously eliminated, and the stable quality of the ophthalmic lens article can be maintained more advantageously, and the ophthalmic lens article can be continuously mass-produced.
[0041] 力!]えて、本発明に従う眼用レンズ物品の製造装置の第三の態様によれば、照射光 の放射照度が測定されるところから、力かる放射照度の測定値から、 LEDからの光の 照射条件、ひいては重合条件が的確であるか、否か等を判断することが出来る。そし て、放射照度が高過ぎたり、低過ぎたりした場合には、 LED光の照射時間を適宜に 変更したり、或いは、 LEDに供給する電圧を適宜に変更する等して、モノマー液の 重合を制御、管理し、眼用レンズ物品の品質を一定に保つようにすることが出来る。 [0041] Power! According to the third aspect of the ophthalmic lens article manufacturing apparatus according to the present invention, the irradiance of the irradiation light is measured, and the irradiation condition of the light from the LED is obtained from the measured value of the irradiance that is strong. Thus, it can be determined whether the polymerization conditions are accurate or not. When the irradiance is too high or too low, the irradiation time of the LED light is appropriately changed, or the voltage supplied to the LED is appropriately changed, for example, to change the monomer liquid. The polymerization can be controlled and controlled to keep the quality of the ophthalmic lens article constant.
[0042] また、本発明に従う眼用レンズ物品の製造装置における第四の態様によれば、制 御手段にて、前記測定手段にて測定された放射照度の値と、予め設定された目標値 とが一致するように、 LEDに供給する電圧が制御されるようになって 、るところから、 自動的に、光の放射照度を一定に保つことが可能となり、ひいては、眼用レンズ物品 の安定した品質を更に有利に確保することが可能となる。  [0042] Further, according to the fourth aspect of the ophthalmic lens article manufacturing apparatus according to the present invention, the control means controls the irradiance value measured by the measurement means and the preset target value. The voltage supplied to the LED is controlled so that the light intensity of the LED lens is controlled so that the irradiance of light can be automatically kept constant. Quality can be further advantageously ensured.
[0043] さらに、本発明に従う眼用レンズ物品の製造装置における第五の態様や第六の態 様によれば、成形キヤビティ内のモノマー液に対して、 LEDからの光が万遍なく均一 に照射せしめられ得るのである。このため、眼用レンズ物品として、例えば、コンタクト レンズを製造する場合には、コンタクトレンズの外周縁のエッジ部も確実に重合され て、目的とする形状の眼用レンズ物品が正確に成形され得ることとなる。  Further, according to the fifth and sixth aspects of the apparatus for manufacturing an ophthalmic lens article according to the present invention, the light from the LEDs is evenly and uniformly applied to the monomer liquid in the molding cavity. It can be irradiated. Therefore, for example, in the case of manufacturing a contact lens as an ophthalmic lens article, the edge portion of the outer peripheral edge of the contact lens is also surely polymerized, so that an ophthalmic lens article having a desired shape can be accurately formed. It will be.
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]本発明に従う眼用レンズ物品の製造装置の一例の要部を概略的に示す部分 断面説明図である。  FIG. 1 is an explanatory partial cross-sectional view schematically showing a main part of an example of an apparatus for manufacturing an ophthalmic lens article according to the present invention.
[図 2]本発明手法に従って、モールド重合用成形型を用いて眼用レンズ物品を製造 する工程の別の一例を示す部分断面説明図であって、複数の成形型の一つ毎に設 置された LED光源から、成形型の各々に対して、光を照射させた状態を示している。  FIG. 2 is a partial cross-sectional explanatory view showing another example of the process of manufacturing an ophthalmic lens article using a mold for mold polymerization according to the method of the present invention, and is provided for each of a plurality of molds. This shows a state in which each of the molds is irradiated with light from the LED light source.
[図 3]本発明に従う眼用レンズ物品の製造装置の他の一例の要部を概略的に示す部 分断面説明図である。  FIG. 3 is a partial cross-sectional explanatory view schematically showing a main part of another example of the apparatus for manufacturing an ophthalmic lens article according to the present invention.
符号の説明  Explanation of symbols
[0045] 10 成形型 12 LED光源 [0045] 10 Mold 12 LED light source
14 光検出器 16 光強度制御装置  14 Photodetector 16 Light intensity controller
18 拡散レンズ 20 クランク装置  18 Diffusing lens 20 Crank device
22 ステッピングモータ 24 搬送機  22 Stepping motor 24 Conveyor
26 雄型 28 雌型  26 Male 28 Female
30 成形キヤビティ 32 底部  30 Molded cavity 32 Bottom
34 後面成形キヤビティ面 44 凹部  34 Rear molding cavity surface 44 Recess
48 前面成形キヤビティ面 50 モノマー液 発明を実施するための最良の形態 48 Front molding cavity surface 50 Monomer liquid BEST MODE FOR CARRYING OUT THE INVENTION
[0046] 以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について 、図面を参照しつつ、詳細に説明することとする。  Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0047] 先ず、図 1には、本発明に従う構造を有する眼用レンズ物品の製造装置の一実施 形態として、コンタクトレンズの製造装置が、概略的に示されている。そして、この図 1 からも明らかなように、本実施形態のコンタクトレンズ製造装置は、コンタクトレンズを モールド成形するための成形型 10と、力かる成形型 10に対して所定のピーク波長の 光を照射せしめる LED力もなる光源 12と、該 LED光源 12から照射された光の放射 照度を測定する、測定手段たる光検出器 14と、該光検出器 14にて測定された放射 照度力も LED光源 12に供給する電圧を制御する、制御手段たる光強度制御装置 1 6と、成形型 10と LED光源 12との間に設けられた、拡散手段たる拡散レンズ 18と、 該拡散レンズ 18を前記成形型 10から離隔する方向乃至は接近する方向に移動せし める、移動手段たるクランク装置 20及びステッピングモータ 22と、成形型 10を保持し て搬送する搬送手段としての搬送機 24とを有して、構成されて!、る。  First, FIG. 1 schematically shows an apparatus for manufacturing a contact lens as one embodiment of an apparatus for manufacturing an ophthalmic lens article having a structure according to the present invention. As is apparent from FIG. 1, the contact lens manufacturing apparatus of the present embodiment emits light having a predetermined peak wavelength to a molding die 10 for molding a contact lens and a powerful molding die 10. A light source 12 that also emits LED power, a light detector 14 that measures irradiance of light emitted from the LED light source 12, and a irradiance power measured by the light detector 14 is also an LED light source 12. A light intensity control device 16 as control means for controlling a voltage supplied to the light source; a diffusion lens 18 as diffusion means provided between the molding die 10 and the LED light source 12; It has a crank device 20 and a stepping motor 22 as moving means for moving in a direction away from or approaching from the machine 10, and a transfer machine 24 as a transfer means for holding and transferring the molding die 10. , Composed! .
[0048] そこにおいて、成形型 10は、断面図として示されており、上型としての雄型 26と、下 型としての雌型 28とから構成されている。また、何れの型も、光が透過可能な材料か ら形成されており、それら雄型 26と雌型 28とが型合わせされることにより、それらの型 の間に、目的とするコンタクトレンズを与える形状の成形キヤビティ 30が形成されるよ うになつている。ここで、カゝかる成形型 10を構成する光透過性材料としては、 LED光 源 12から放射される光を透過することが出来るものであれば、特に限定されるもので はなぐ具体例としては、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン等 のポリオレフイン;ナイロン 6、ナイロン 66、ナイロン 610、ナイロン 612、ナイロン 11、 ナイロン 12等のポリアミド等の榭脂材料及びそれらの組合せや、ガラス、石英、溶融 石英等の無機材料を挙げることが出来る。これらの中でも、成形キヤビティ 30に充填 されるモノマー液やその重合体との親和性、経済性、成形性等を考慮すると、特に、 ポリオレフインやポリアミド等の榭脂材料が、好適に採用されることとなる。また、协 る成形型 10を構成する雄型 26と雌型 28は、同一の光透過性材料から形成されてい ても、或いは、それぞれ別個に異なる光透過性材料カゝら形成されていても、何等差 支えない。更に、モノマー液が uv吸収剤を含有している場合において、後述するよ うに、ピーク波長が 380— 500nmの照射光を用いて重合せしめるときには、成形型 1 0を構成する光透過性材料としては、 LED光の主波長での透過率が、一般に 20% 以上、より好ましくは 25%以上のものが望ましぐ例えばポリプロプレンやポリメチル ペンテン等が有利に用いられることとなる。 [0048] Here, the molding die 10 is shown as a cross-sectional view, and includes a male die 26 as an upper die and a female die 28 as a lower die. In addition, each of the molds is formed of a material through which light can be transmitted, and by mating the male mold 26 and the female mold 28, a desired contact lens is formed between the molds. A molding cavity 30 having a given shape is formed. Here, the light-transmitting material constituting the bulky molding die 10 is not particularly limited as long as it can transmit light emitted from the LED light source 12, and is not limited to a specific example. Are, for example, polyolefins such as polyethylene, polypropylene and polymethylpentene; resin materials such as polyamides such as nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, and combinations thereof; glass, quartz, An inorganic material such as fused quartz can be used. Among these, resin materials such as polyolefins and polyamides are preferably used in consideration of the affinity, economics, moldability, etc., of the monomer liquid filled in the molding cavity 30 and its polymer. It becomes. Further, the male mold 26 and the female mold 28 constituting the molding die 10 may be formed of the same light transmissive material, or may be formed of different light transmissive materials separately from each other. The difference I don't support it. Further, in the case where the monomer liquid contains a uv absorber, as described later, when polymerizing using irradiation light having a peak wavelength of 380 to 500 nm, the light transmitting material constituting the mold 10 may be In general, it is desirable that the transmittance of the LED light at the main wavelength be 20% or more, more preferably 25% or more. For example, polypropylene or polymethylpentene is advantageously used.
[0049] より具体的には、上記の成形型 10を構成する雄型 26は、全体として、上方が開口 された有底円筒形状を呈しており、その下部に位置する底部 32が、キヤビティ形成 部として、外方に凸なる湾曲面形状とされており、力かる底部 32の外面(凸面)が、目 的とするコンタクトレンズの後面 (ベースカーブ面)に正確に対応した形状の後面成 形キヤビティ面 34を与えるように構成されている。そして、かかる底部 32の厚みは、 特に制限されるものではないものの、後述する LED光源 12からの光力 底部 32を通 じて成形キヤビティ 30内に導入されるところから、該成形キヤビティ 30内に LED光が 均等に照射され得るように、略一定であることが望ましぐまた、重合収縮等による影 響や光の減衰等を考慮すると、 0. 1mm— 3mm程度とされること力 望ましい。特に 、 LED光源 12を用いた光照射によれば、成形型 10の型材の温度上昇は殆ど惹起さ れることがないところから、底部 32の厚さを薄くすることが出来る特徴を発揮する。な お、雄型 26には、筒壁部 36の上側の開口部側の外周部に、径方向外方に突出する 外フランジ部 38が、一体的に形成されている。  [0049] More specifically, the male mold 26 constituting the above-described molding die 10 has a cylindrical shape with an opening at the top as a whole, and a bottom portion 32 located at the lower portion thereof has a cavity forming portion. The outer surface (convex surface) of the strong bottom 32 has a rear surface shape that accurately corresponds to the rear surface (base curve surface) of the target contact lens. The cavity surface 34 is configured to give. Although the thickness of the bottom portion 32 is not particularly limited, it is introduced into the molding cavity 30 through the light power from the LED light source 12 to be described later, and the inside of the molding cavity 30 is formed. It is desirable that the LED light be substantially constant so that the LED light can be evenly radiated. Further, in consideration of the effects of polymerization shrinkage and the like and the attenuation of light, it is desirable that the force be approximately 0.1 mm to 3 mm. In particular, according to the light irradiation using the LED light source 12, since the temperature rise of the mold material of the molding die 10 is hardly caused, the thickness of the bottom portion 32 can be reduced. The male mold 26 is formed integrally with an outer flange portion 38 protruding radially outward on the outer peripheral portion on the upper opening side of the cylindrical wall portion 36.
[0050] 一方、成形型 10を構成する雌型 28は、全体として、下方が開口された有底円筒形 状を呈しており、その上部に位置する上底部 40が、略半球面状に下方に向力つて窪 んだボール形状の凹部 44とされて、キヤビティ形成部となっている。そして、かかる半 球状の凹部 44の深さ方向中間部分に、段差 46が設けられて、この段差 46よりも下 側の底部側部位の内面(凹面)力 目的とするコンタクトレンズの前面 (フロントカーブ 面)に正確に対応した前面成形キヤビティ面 48とされて 、る。  On the other hand, the female mold 28 constituting the molding die 10 has a cylindrical shape with a bottom and an opening at the bottom as a whole. A ball-shaped concave portion 44 which is depressed in response to the force acts as a cavity forming portion. In addition, a step 46 is provided at a middle portion in the depth direction of the hemispherical concave portion 44, and an inner surface (concave surface) of a bottom side portion below the step 46 is provided. Surface), which corresponds to the front molding cavity surface 48 that exactly corresponds to the surface.
[0051] そして、それら雄型 26と雌型 28は、図 1に示されるように、雄型 26の筒壁部 36の底 部側角部と雌型 28の段差 46の角部とにおいて互いに当接するように、また、雄型 26 の外フランジ部 38の下面と雌型 28の上端面とが互いに当接するように、組み付けら れて、型合わせされることにより、雄型 26の後面成形キヤビティ面 34と雌型 28の前面 成形キヤビティ面 48との間の空間にて、 目的とするコンタクトレンズを与える形状の成 形キヤビティ 30が形成されるようになって 、る。 As shown in FIG. 1, the male mold 26 and the female mold 28 are separated from each other at the bottom corner of the cylindrical wall 36 of the male mold 26 and the corner of the step 46 of the female mold 28. The rear surface of the male mold 26 is formed by assembling and matching so that the lower surface of the outer flange portion 38 of the male mold 26 and the upper end surface of the female mold 28 abut each other. Front side of cavity face 34 and female mold 28 In the space between the molded cavity surface 48 and the molded cavity 30 having a shape that gives a desired contact lens, the molded cavity 30 is formed.
[0052] また、力かる成形キヤビティ 30内には、図 1に示されるように、 目的とするコンタクトレ ンズを構成する重合体を与えるモノマー液 50が、充填されている。このモノマー液 50 は、雄型 26と雌型 28との型合せに先立って、雌型 28の凹部 44内に、所定量におい て収容され、そして、その収容後、上述せるようにして、雄型 26と雌型 28との型合せ が行なわれることによって、成形キヤビティ 30内に充填されることとなる。また、そのよ うな型合せによって、成形キヤビティ 30から溢れ出た余剰のモノマー液 50は、雄型 2 6の筒壁部 36の底部側角部と雌型 28の段差 46の角部との当接部位の上側に形成 された空間 52、つまり、雄型 26の筒壁部 36の上側外周面と雌型 28の凹部 44にお ける開口部側部位の内周面との間に形成された、円環状の空間 52に、溜められるよ うになつている。 Further, as shown in FIG. 1, the molding liquid 30 that is strong is filled with a monomer liquid 50 that gives a polymer constituting a target contact lens. This monomer liquid 50 is contained in a predetermined amount in the concave portion 44 of the female mold 28 prior to the matching of the male mold 26 and the female mold 28, and after the accommodation, the male liquid is formed as described above. When the mold 26 and the female mold 28 are matched, the mold cavity 30 is filled. In addition, the excess monomer liquid 50 that overflows from the molding cavity 30 due to such a mold matching is applied to the corner of the bottom side of the cylindrical wall 36 of the male mold 26 and the corner of the step 46 of the female mold 28. The space 52 formed above the contact portion, that is, between the upper outer peripheral surface of the cylindrical wall portion 36 of the male mold 26 and the inner peripheral surface of the opening side portion of the concave portion 44 of the female mold 28. , And can be stored in the annular space 52.
[0053] ここにおいて、重合せしめられるモノマー液 50としては、 目的とするコンタクトレンズ を構成する重合体を与える、従来力 公知の各種の液状のモノマー組成物が、用い られることとなるのである力 力かるモノマー液 50には、少なくとも 1種のアクリル系モ ノマー(アクリル基乃至はメタクリル基含有モノマー)が含有せしめられていることが望 ましぐこれによつて、モノマー液 50の光重合性が良好に確保されることとなる。なお 、力かるアクリル基乃至はメタクリル基を有するアクリル系モノマーの具体例としては、 例えば、ケィ素含有 (メタ)アタリレート、アルキル (メタ)アタリレート、フッ素含有 (メタ) アタリレート、ヒドロキシアルキル (メタ)アタリレート、ァリール含有 (メタ)アタリレート、 N アルキル (メタ)アクリルアミド、 N, N—ジアルキル (メタ)アクリルアミド等を挙げること が出来る。更に好適には、力かるアクリル系モノマーは、モノマー液 50中に、少なくと も 10重量%の割合において含有されること力 望ましい。なお、上記において、更に は以下の記載において、「(メタ)アクリル」は、アクリル及び Z又はメタクリルを示す一 方、「(メタ)アタリレート」は、アタリレート及び Z又はメタタリレートを示すものとして、用 いられている。  [0053] Here, as the monomer liquid 50 to be polymerized, various known liquid monomer compositions which give a polymer constituting the target contact lens can be used. It is desirable that the monomer liquid 50 contains at least one acrylic monomer (acrylic or methacrylic group-containing monomer), so that the photopolymerizability of the monomer liquid 50 is good. Will be secured. Specific examples of the acrylic monomer having a powerful acrylic group or methacryl group include, for example, silicon-containing (meth) acrylate, alkyl (meth) acrylate, fluorine-containing (meth) acrylate, and hydroxyalkyl ( Examples thereof include (meth) acrylate, aryl-containing (meth) acrylate, N alkyl (meth) acrylamide, and N, N-dialkyl (meth) acrylamide. More preferably, the strong acrylic monomer is contained in the monomer liquid 50 at a ratio of at least 10% by weight. In the description above and further in the following description, “(meth) acryl” means acryl and Z or methacryl, while “(meth) atalylate” means atalylate and Z or metharylate. Used.
[0054] 特に、アクリル系モノマーとして、国際公開第 01Z71415号パンフレットゃ特開平 6 —121826号公報等に開示の如きシリコン含有アクリル系モノマーを選択し、これを、 モノマー液 50中に、主たる構成成分として、 10— 70重量%の割合において含有せ しめれば、得られるコンタクトレンズに、優れた酸素透過性が有利に付与されることと なる。また、アクリル系モノマーとして、 N, N—ジメチル (メタ)アクリルアミド、 N, N-ジ ェチル (メタ)アクリルアミド、 N, N—ジプロピル (メタ)アクリルアミド、 N—イソプロピル( メタ)アクリルアミド等のジアルキル (メタ)アクリルアミドを用い、これを、モノマー液 50 中に、主たる構成成分として、 30— 70重量%の割合において含有せしめれば、得ら れるコンタクトレンズに、優れた親水性或いは含水性が有利に付与されることとなる。 In particular, as an acrylic monomer, a silicon-containing acrylic monomer as disclosed in International Publication No. 01Z71415 pamphlet, JP-A-6-121826, etc. was selected, If the monomer component 50 contains 10 to 70% by weight as a main component, excellent oxygen permeability can be advantageously imparted to the obtained contact lens. In addition, as acrylic monomers, dialkyl (meth) acrylic compounds such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) acrylamide, and N-isopropyl (meth) acrylamide ) When acrylamide is used as a main component in the monomer liquid 50 at a ratio of 30 to 70% by weight, excellent hydrophilicity or water content is advantageously imparted to the obtained contact lens. Will be done.
[0055] また、力かるモノマー液 50には、必要に応じて、目的とするレンズの種類 (例えば、 ハード、ソフト、非含水性、含水性等)や、レンズに必要とされる特性 (例えば、酸素透 過性、着色、紫外線吸収性等)に応じて、上述せる如きアクリル系モノマー以外の従 来力 公知の各種のモノマー成分や、従来力 一般的に用いられている各種の添カロ 剤、例えば、紫外線 (UV)吸収剤や色素等が、従来と同様に、適量において、添カロ せしめられても何等差支えなぐ更には、非重合性の溶媒が、重合の妨げにならない 程度の量にぉ 、て添カ卩されて 、てもよ 、。  [0055] Further, the powerful monomer liquid 50 may include, if necessary, a desired lens type (for example, hard, soft, non-water-containing, water-containing, and the like) and properties required for the lens (for example, Depending on the oxygen permeability, coloring, ultraviolet absorption, etc.), various conventional monomer components other than the acrylic monomers as described above, and various conventional additives commonly used. For example, as in the prior art, an appropriate amount of an ultraviolet (UV) absorber, a coloring agent, etc., does not interfere with the addition of added calories, and the amount of the non-polymerizable solvent does not hinder the polymerization.ぉ て て て て て も て も て も て も.
[0056] ここで、上記の UV吸収剤や色素としては、例えば、ベンゾフエノン系、ベンゾトリア ゾール系、サリチル酸誘導体系等の公知の UV吸収剤や、ァゾ系、アントラキノン系、 ニトロ系、フタロシアニン系等の公知の色素(塗料)を挙げることが出来、中でも、それ ら UV吸収剤や色素は、アタリロイル基、メタクリロイル基、ビュル基、ァリル基、イソプ 口べ-ル基等の重合性基を有し、本発明に従う光重合操作によって、モノマー液 50 を構成するモノマー類と共重合せしめられて、重合体の一成分として、目的とする眼 用レンズ物品を形成するようにされることが望ましい。なお、それら UV吸収剤や色素 のモノマー液 50への添カ卩量としては、従来力 公知の範囲内において適宜に選定さ れることとなるが、一般に、 UV吸収剤は、全重合成分の 100重量部に対して 0. 02 一 2重量部程度の割合において用いられ、また色素は、全重合成分の 100重量部に 対して 0. 0001—0. 1重量部程度の割合において用いられることとなる。  Here, examples of the above-mentioned UV absorbers and dyes include known UV absorbers such as benzophenone type, benzotriazole type and salicylic acid derivative type, and azo type, anthraquinone type, nitro type and phthalocyanine type. Known UV-absorbing agents and pigments, among which those having a polymerizable group such as an atalyloyl group, a methacryloyl group, a butyl group, an aryl group, and an isobutyl group. It is desirable that the polymer is copolymerized with the monomers constituting the monomer liquid 50 by the photopolymerization operation according to the present invention so as to form a desired ophthalmic lens article as a component of the polymer. In addition, the amount of the additive added to the monomer liquid 50 of the UV absorber and the dye is appropriately selected within a conventionally known range, but generally, the UV absorber is 100% of all the polymerization components. The dye is used in a ratio of about 0.02 to 12 parts by weight based on parts by weight, and the dye is used in a ratio of about 0.0001 to 0.1 part by weight based on 100 parts by weight of all the polymerization components. Become.
[0057] さらに、上記モノマー液 50には、従来と同様に、光による重合が有利に実現され得 るように、メチルオルソベンゾィルベンゾエート、メチルベンゾィルフオルメート、ベンゾ インメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソプロピルエーテル、 ベンゾインイソブチルエーテル、ベンゾイン n ブチルエーテル等のベンゾイン系光 重合開始剤や、 N, N—テトラェチルー 4, 4ージァミノべンゾフエノン、 2, 4, 6—トリメチ ルベンゾフヱノン等のベンゾフヱノン系光重合開始剤、ベンジル等のカルボ-ル系光 重合開始剤、 2—ヒドロキシー 2—メチルー 1—フエ-ループロパン— 1 オン、 1— (4一(2— ヒドロキシエトキシ)フエ-ル)—2—ヒドロキシー 2—メチルー 1—フエ-ループロパン— 1ーォ ン等のァセトフエノン系光重合開始剤、ベンゾィルパーオキサイド等の過酸ィ匕物、ァ ゾビスイソブチ口-トリル等のァゾ系重合開始剤、メタ口セン系等のカチオンタイプの 重合開始剤等の、従来力 公知の重合開始剤のうちの 1種又は 2種以上が適宜に添 加される。そして、これらの重合開始剤の中でも、ラジカル型の開始剤が、重合性や 重合速度の点力も好適に用いられることとなる。更に、このような重合開始剤に加え て、公知の光増感剤を併用することも、有効である。 [0057] Further, as in the conventional case, the monomer liquid 50 contains methylorthobenzoylbenzoate, methylbenzoylformate, benzoinmethylether, and benzoin so that polymerization by light can be advantageously achieved. Ethyl ether, benzoin isopropyl ether, Benzoin-based photopolymerization initiators such as benzoin isobutyl ether and benzoin n-butyl ether; benzophenone-based photopolymerization initiators such as N, N-tetraethyl-4,4 diaminobenzozophenone and 2,4,6-trimethylbenzophenone; and carbohydrates such as benzyl -Hydroxy photoinitiator, 2-hydroxy-2-methyl-1-phenyl-1-propane, 1-on, 1- (4- (2-hydroxyethoxy) phenyl) -2-hydroxy-2-methyl-1-phenyl- Acetophenone-based photopolymerization initiators such as loop ropane-1-one; peroxides such as benzoyl peroxide; azo-based polymerization initiators such as azobisisobutymouth-tolyl; One or two or more of conventionally known polymerization initiators, such as the above polymerization initiator, are appropriately added. Then, among these polymerization initiators, radical initiators are also suitably used in terms of polymerizability and point strength of polymerization rate. It is also effective to use a known photosensitizer in addition to such a polymerization initiator.
また、本発明において、 405nm付近の波長での吸光係数の高い光重合開始剤の 採用は、 LED光源 12からの長波長側の発光波長を吸収し易くして、それによつて重 合率を向上し、迅速に重合を進める上において、有利である。なお、かかる波長: 40 5nmでの吸光係数の高い開始剤としては、 2—べンジルー 2—ジメチルアミノー 1 (4 モルフォリノフエ-ル)ーブタノン一 1、 1, 2 オクタンジオン 1— [4— (フエ-ルチオ)一 2 — (O—ベンゾィルォキシム)]、 2, 4, 6—トリメチルベンゾィルージフエ-ルフォスフィン オキサイド、ビス(2, 4, 6—トリメチルベンゾィル)—フエ-ルフォスフィンオキサイド、ビ ス(7? 5— 2, 4—シクロペンタジェンー 1 ィル) ビス(2, 6—ジフルォロ— 3— (1H ピロ 一ルー 1 ィル)—フエ-ル)チタニウム、 4 メチルベンゾィルージフエ-ルフォスフィン オキサイド、 2, 4, 6—トリメチルベンゾィルージメトキシーフォスフィンオキサイド、イソブ チルベンゾィルージフエ-ルーフォスフィンオキサイド、イソブチルベンゾィルージメトキ シーフォスフィンオキサイド、ベンゾィルージフエ-ルーフォスフィンオキサイド、 2—メチ ルベンゾィルージフエ-ルーフォスフィンオキサイド、ベンゾィルージェトキシーフォスフ インオキサイド、 2, 6—ジクロ口べンゾィルージメトキシーフォスフィンオキサイド、ビス(2 , 6—ジクロ口ベンゾィル) (4—ブチルフエ-ル)フォスフィンオキサイド、 2, 4—トリクロ ロメチル(4'ーメトキシスチリル)— 6—トリァジン、 2— (2' — (5' ' メチルフリル)ェチ リデン) 4, 6—ビス(トリクロロメチル) s トリアジン等を挙げることが出来、これら開始 剤は、一般に、 lOOmlZg'cm以上の吸光係数 (405nm)を有している。そして、こ れらの開始剤は、照射光のピーク波長が 400nm以上である LEDを、 LED光源 12と して用いた場合において、特に有効である。また、 UV吸収剤を含有せしめたモノマ 一液 50の光重合では、重合開始剤は UV吸収剤による光吸収を避けて、より長波長 側での光吸収を示す特性を有することが望ましいところから、前記した波長: 405nm での吸光係数の高い重合開始剤を用いることが、推奨されるのである。更に、そのよ うな吸光係数の高い重合開始剤を、波長: 405nmでの吸光係数の低い他の重合開 始剤ゃ光増感剤と併用することも、有効であり、更にまた、 UV吸収剤に光増感剤を 組み合わせて用いることも、可能である。 Further, in the present invention, the use of a photopolymerization initiator having a high extinction coefficient at a wavelength around 405 nm makes it easier to absorb the emission wavelength on the long wavelength side from the LED light source 12, thereby improving the polymerization rate. However, it is advantageous in promptly proceeding polymerization. The initiator having a high extinction coefficient at such a wavelength: 405 nm is 2-benzyl-2-dimethylamino-1 (4 morpholinophenyl) butanone-1,1,1,2 octanedione 1— [4— (Ferthiol) -1- 2-(O-benzoyloxime)], 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine scan fins oxide, bi scan (7 5 -? 2, 4-cyclopentadiene-1 I-le) bis (2, 6-Jifuruoro - 3- (IH pyro one rule 1 I Le) - Hue - Le) titanium, 4-methyl Benzoyl-diphenylphosphine oxide, 2,4,6-trimethylbenzoyldimethoxy-phosphine oxide, isobutylbenzoyldiphenyl-phosphine oxide, isobutylbenzoyldimethoxyphosphine Oxide, benzoyl sulfide-ruphosphine oxide, 2-methyl benzoyl sulfide-ruo phosphine oxide, benzoyl lute oxy phosphine oxide, 2,6-dichloro mouth benzoyl methoxy phosphine oxide , Bis (2,6-dichlorobenzoyl) (4-butylphenyl) phosphine oxide, 2,4-trichloromethyl (4'-methoxystyryl) -6-triazine, 2- (2 '— (5'') Methylfuryl) ethylidene) 4,6-bis (trichloromethyl) s triazine The agent generally has an extinction coefficient (405 nm) of lOOmlZg'cm or more. These initiators are particularly effective when an LED whose irradiation light has a peak wavelength of 400 nm or more is used as the LED light source 12. In addition, in the photopolymerization of monomer liquid 50 containing a UV absorber, it is desirable that the polymerization initiator has the property of avoiding light absorption by the UV absorber and exhibiting light absorption at a longer wavelength side. It is recommended to use a polymerization initiator having a high extinction coefficient at the above-mentioned wavelength: 405 nm. Further, it is effective to use such a polymerization initiator having a high extinction coefficient in combination with another polymerization initiator having a low extinction coefficient at a wavelength of 405 nm ゃ a photosensitizer. It is also possible to use a photosensitizer in combination.
[0059] ところで、本実施形態の製造装置においては、光を照射し得る LED光源 12が、上 述の如き構造とされた成形型 10の上型たる雄型 26の側、具体的には、成形型 10内 で成形されるコンタクトレンズの光軸 (光学的中心軸)上で、且つ雄型 26から上方に 所定の距離だけ離隔した位置に、配置されている。  Meanwhile, in the manufacturing apparatus of the present embodiment, the LED light source 12 capable of irradiating light is provided on the side of the male die 26 which is the upper die of the molding die 10 having the structure as described above, specifically, The contact lens is arranged on the optical axis (optical center axis) of the contact lens molded in the mold 10 and at a predetermined distance above the male mold 26.
[0060] このように、 LED光源 12は、従来の紫外線ランプに比して一個一個の大きさが小さ いところから、一組の成形型 10に対して、少なくとも一つずつ、設置することが出来る のである。従来では、前述せるように、一つの紫外線ランプ光源の光を、複数の成形 型に対して照射するために、ドーム状のハウジング等の、比較的に大きな設備が必 要とされていたのである力 成形型 10毎に LED光源 12を設置すれば、そのようなハ ウジング等が不要となるのであり、これにより、眼用レンズ物品の製造装置が有利に 小型化され得る利点がある。また、成形型 10毎に LED光源 12を設置すれば、一つ の光源で複数の成形型に対して光を照射する場合に惹起されていた、光の照射ムラ による眼用レンズ物品の品質の不安定化もなくなる。更には、大量生産を行なっても 、成形型 10毎に、 LED光の照射条件を管理することが出来るようになる。このため、 眼用レンズ物品の安定した品質を、より一層有利に維持することが出来るのである。  [0060] As described above, since the size of each LED light source 12 is smaller than that of the conventional ultraviolet lamp, at least one LED light source 12 can be installed in one set of molds 10. You can. Conventionally, as described above, relatively large equipment, such as a dome-shaped housing, was required to irradiate the light of one ultraviolet lamp light source to a plurality of molds. If the LED light source 12 is provided for each force forming die 10, such a housing or the like becomes unnecessary, and thus, there is an advantage that the manufacturing apparatus of the ophthalmic lens article can be advantageously reduced in size. In addition, if the LED light source 12 is installed for each mold 10, the quality of the ophthalmic lens article due to uneven light irradiation, which is caused when one light source irradiates light to a plurality of molds, is improved. Instability disappears. Furthermore, even when mass production is performed, the LED light irradiation conditions can be controlled for each mold 10. For this reason, the stable quality of the ophthalmic lens article can be maintained more advantageously.
[0061] また、本実施形態においては、成形型 10内で成形されるコンタクトレンズの光軸上 に LEDが配置され、凸面状の後面成形キヤビティ面 34を有する雄型 26側から、換 言すれば、成形型 10内で成形されるコンタクトレンズの凹面側から、 LED光が照射 されるようになっているため、 LED光が成形型 10の雄型 26を透過して、成形型 10の 成形キヤビティ 30内に充填されたモノマー液 50に対して、有利に照射されることとな るのである。つまり、凹面状の前面成形キヤビティ面 48を有する雌型 28側から、換言 すれば、成形型 10内で成形されるコンタクトレンズの凸面側から LED光を照射する ようにすると、成形型 10の凸面状の表面に光が照射されることとなり、 LED力も発せ られる光が、指向角を有することから、成形キヤビティ内 30に到達する前に成形型 10 の表面で屈折や反射する等して、充分な光が成形キヤビティ 30内、特にコンタクトレ ンズ周縁部に対応する部位に導入され得なくなる恐れがあるのであるが、成形型 10 の凹面状の表面に照射すれば、光の屈折や反射による透過光の減少が有利に抑制 されて、成形キヤビティ 30全体に、 LED光が有利に照射され得るようになり、これによ つて、作業性やレンズ完成度、安全性が高度に確保されることとなる。 In the present embodiment, an LED is arranged on the optical axis of the contact lens molded in the molding die 10, and in other words, from the male mold 26 side having a convex rear molding cavity surface 34. For example, since the LED light is emitted from the concave side of the contact lens molded in the mold 10, the LED light passes through the male mold 26 of the mold 10 and The monomer liquid 50 filled in the molding cavity 30 is advantageously irradiated. In other words, when the LED light is irradiated from the female mold 28 side having the concave front mold cavity surface 48, in other words, from the convex side of the contact lens molded in the mold 10, the convex surface of the mold 10 Since the surface of the mold is irradiated with light, and the light that also emits LED power has a directional angle, it can be sufficiently refracted or reflected on the surface of the mold 10 before reaching the inside of the mold cavity 30. There is a risk that the light may not be able to be introduced into the molding cavity 30, in particular, the portion corresponding to the peripheral edge of the contact lens.However, if the concave surface of the molding die 10 is irradiated, The reduction in light is advantageously suppressed, and the entire molding cavity 30 can be advantageously irradiated with LED light, thereby ensuring high workability, lens perfection, and safety. Become.
[0062] さらに、 LED光源 12は、従来のキセノンランプや、水銀ランプ、重水素ランプ等の 紫外線ランプと比べると、モノマー液 50の重合に不必要な波長の光を放射するもの ではないところから、モノマー液 50に対して、ピーク波長を中心に有効な波長の光の みを有利に照射することが出来るといった利点が得られる。カロえて、 LED光源 12は、 発熱や消費電力が少ない、寿命が長い、点灯直後でも安定した放射照度が得られる 等の長所を有しているところから、従来の紫外線ランプにおける問題を悉く解消する ことが出来るのである。即ち、前述せるように、紫外線ランプは、ランプ寿命が短ぐそ のために頻繁に交換をしなければならなかったのに対して、 LEDは、寿命が長ぐま た、点灯直後でも安定した放射照度が得られ、且つ、供給する電圧量を変化させるこ とによって、放射照度の微調整を簡単に実施することが出来るところから、経済性に 優れると共に、所望とする放射照度を容易に得ることが出来る。しカゝも、 LEDを用い ると、重合操作の終了から次の重合操作開始までのインターバルにおいて、消灯す ることも可能となり、眼に有害光となる光の不必要な照射を避けることも可能となる。更 に、 LEDは、紫外線ランプに比して発熱が非常に少ないところから、重合前の雰囲 気温度を一定に保つことが出来、熱による重合が進行することなぐモノマー液 50の 重合を、従来に比して制御し易くなつているのである。  [0062] Further, the LED light source 12 does not emit light of a wavelength unnecessary for polymerization of the monomer liquid 50 as compared with a conventional xenon lamp, a mercury lamp, a deuterium lamp, or other ultraviolet lamp. This has the advantage that the monomer liquid 50 can be advantageously irradiated with only light having an effective wavelength centered on the peak wavelength. The LED light source 12 has advantages such as low heat generation and power consumption, long service life, and stable irradiance even immediately after lighting.It eliminates all problems with conventional UV lamps. You can do it. In other words, as mentioned above, UV lamps have a short life span and must be replaced frequently, whereas LEDs have a long life span and have a stable irradiance even immediately after lighting. The irradiance can be easily adjusted by changing the amount of voltage to be supplied, so that it is easy to finely adjust the irradiance. I can do it. By using LEDs, it is possible to turn off the light during the interval from the end of the polymerization operation to the start of the next polymerization operation, thus avoiding unnecessary irradiation of harmful light to the eyes. It becomes possible. Further, since the LED generates much less heat than an ultraviolet lamp, the temperature of the atmosphere before polymerization can be kept constant, and the polymerization of the monomer liquid 50 without the progress of polymerization due to heat can be reduced. It is easier to control than in the past.
[0063] なお、ここにおいて、 LED光源 12として用いられる LED (発光ダイオード)としては 、モノマー液 50を重合することの出来る波長の光を放射し得るものである必要がある 。具体的には、 LED光源 12から照射される光の波長としては、開始剤にも依存する 力 モノマー液 50の重合性の点から、力かるモノマー液 50が UV吸収剤を含有して いない場合においては、そのピーク波長が、一般に 350— 500nmの範囲に、より好 ましくは 360— 470nmの範囲に、更に好ましくは 360— 400nmの範囲にあることが 、望ましい。何故なら、かかるピーク波長が、上記の範囲より短い波長範囲にある場 合には、コンタクトレンズ材料 (コンタクトレンズを構成する重合体)が劣化してしまう恐 れがあるからであり、また、長い波長範囲にある場合には、重合性が低下したり、熱の 発生が問題となるからである。特に、 UV吸収剤を含有するモノマー液 50を用いて、 UV吸収性レンズ(眼用レンズ物品)を製造する場合には、ピーク波長が、一般に 38 0— 500nm、好ましくは 400— 470nmの範囲にあることが望ましい。このように、 LE D光源 12の照射光における望ましいピーク波長は、モノマー液 50中の UV吸収剤の 存在の有無により変化するものの、必要に応じて適宜に添加される色素の有無によ つては、殆ど影響を受けることはないのである。なお、この LED光源 12から照射され る光には、上記した波長範囲以外に、ピーク波長が実質的に存在しないことが、望ま しい。 [0063] Here, the LED (light emitting diode) used as the LED light source 12 needs to be capable of emitting light having a wavelength capable of polymerizing the monomer liquid 50. . Specifically, the wavelength of the light emitted from the LED light source 12 depends on the initiator. In view of the polymerizability of the monomer solution 50, when the strong monomer solution 50 does not contain a UV absorber, In the above, it is desirable that the peak wavelength is generally in the range of 350-500 nm, more preferably in the range of 360-470 nm, and even more preferably in the range of 360-400 nm. If the peak wavelength is shorter than the above range, the contact lens material (polymer forming the contact lens) may be deteriorated. This is because, when the wavelength is within the wavelength range, the polymerizability is reduced and heat generation becomes a problem. In particular, when a UV-absorbing lens (ophthalmic lens article) is manufactured using a monomer liquid 50 containing a UV absorber, the peak wavelength is generally in the range of 380 to 500 nm, preferably 400 to 470 nm. Desirably. As described above, the desired peak wavelength in the irradiation light of the LED light source 12 changes depending on the presence or absence of the UV absorber in the monomer solution 50, but depends on the presence or absence of the dye appropriately added as necessary. It is hardly affected. It is desirable that the light emitted from the LED light source 12 has substantially no peak wavelength other than the above-mentioned wavelength range.
[0064] また、 LED光源 12の指向角(2 Θ 1/2)は、従来の紫外線ランプ等に比して小さい ことが知られており、特に限定されるものではないものの、小さ過ぎると、有効照射面 積が得られ難ぐ反対に、大き過ぎると、有効な放射照度が得られ難い。このため、 L EDの光エネルギーの有効活用の点から、上記の指向角は 10— 120° であることが 、望ましい。なお、かかる指向角は、製造する眼用レンズ物品の大きさ、つまり、光照 射すべき面積等に応じて適宜に設定され、特に、含水性コンタクトレンズでは、上記 した範囲の中でも、 20— 110° 、非含水性コンタクトレンズでは、上記した範囲の中 でち、 30- 120° 力好まし!/ヽ。  Further, it is known that the directivity angle (2Θ1 / 2) of the LED light source 12 is smaller than that of a conventional ultraviolet lamp or the like, and is not particularly limited. On the other hand, if it is too large, it is difficult to obtain effective irradiance. Therefore, from the viewpoint of effective use of light energy of the LED, it is desirable that the above-mentioned directional angle is 10 to 120 °. The directional angle is appropriately set according to the size of the ophthalmic lens article to be manufactured, that is, the area to be irradiated with light. In particular, in the case of a hydrated contact lens, the directional angle is within the range of 20 to 110 °. For non-hydrated contact lenses, 30-120 ° force is preferred within the above range! / ヽ.
[0065] さらに、上記の指向角が目的とする眼用レンズ物品の大きさに対して小さい場合、 例えば、指向角が 10° 未満の場合等には、必要に応じて、 LED光を拡散するため の拡散手段を、 LED光源 12と成形型 10との間の光路上に設置することが出来る一 方、指向角が目的とする眼用レンズ物品の大きさに対して大きい場合、例えば、指向 角が 120° を超える場合等には、 LED光を集光するための集光手段を、 LED光源 1 2と成形型 10との間の光路上に設置することが可能である。このように、拡散手段や 集光手段を介して LED光を照射するようにすれば、均一な重合が有利に実現される こととなる。ここにおいて、上記拡散手段としては、拡散フィルタ等の拡散板や拡散レ ンズ等を挙げることが出来る一方、上記集光手段としては、集光レンズ等を挙げること が出来る。 Further, when the above-mentioned directivity angle is smaller than the size of the target ophthalmic lens article, for example, when the directivity angle is less than 10 °, the LED light is diffused as necessary. For example, when the directional angle is large with respect to the size of the target ophthalmic lens article, for example, the directional light can be provided on the optical path between the LED light source 12 and the mold 10. If the angle exceeds 120 °, etc., use a light condensing means for condensing LED light. It can be installed on the optical path between 2 and the mold 10. As described above, by irradiating the LED light via the diffusing means or the condensing means, uniform polymerization can be advantageously achieved. Here, the diffusing means may include a diffusing plate such as a diffusing filter, a diffusing lens, or the like, while the condensing means may include a condensing lens.
[0066] なお、本実施形態においては、 LED光源 12から放射される光の指向角が、成形キ ャビティ 10に対して小さいところから、図 1において断面形態で示されるように、 LED 光源 12と成形型 10との間に、拡散レンズ 18が、配置されており、 LED光源 12から 発せられた光力 拡散レンズ 18を透過することによって、照射角度が広げられて、成 形型キヤビティ 30内に充填されたモノマー液 50に対して、万遍なく均一に照射され 得るようになつている。この結果、モノマー液 50の重合が局部的に進行するようなこと が有利に回避されて、モノマー液 50の均一な重合を、極めて有利に実現することが 出来るようになっているのである。また、 LED光源 12と成形型 10との間の距離も短縮 することが出来る。  In the present embodiment, since the directivity angle of the light emitted from the LED light source 12 is smaller than the molding cavity 10, as shown in the cross-sectional form in FIG. A diffusion lens 18 is arranged between the molding die 10 and the light power emitted from the LED light source 12 is transmitted through the diffusion lens 18, so that the irradiation angle is widened, and the light is transmitted into the molding cavity 30. The charged monomer liquid 50 can be evenly and uniformly irradiated. As a result, local progress of polymerization of the monomer liquid 50 is advantageously prevented, and uniform polymerization of the monomer liquid 50 can be realized extremely advantageously. Also, the distance between the LED light source 12 and the mold 10 can be reduced.
[0067] また、 LED光源 12から、成形型 10のキヤビティ形成部(32、 44)の外面に至るまで の、鉛直方向の距離 (照射距離: D)としては、特に制限されるものではないが、良好 なる作業性を確保して、 LED光源 12の汚染や重合熱による影響等を回避するため に、照射光のピーク波長、 UV吸収剤の存在の有無、 LED光源 12の指向角や光照 射すべき面積等に応じて、 0. 5— 30mm程度の範囲内において、適宜に設定される こととなる。具体的には、モノマー液 50が UV吸収剤を含まない場合において、照射 光のピーク波長が 350— 400nmである重合では、 3— 30mmの照射距離(D)が有 利に採用され、また照射光のピーク波長が 400— 500nmである重合では、 1一 30m mの照射距離 (D)が有利に採用されることとなる。更に、モノマー液 50が UV吸収剤 又はそれと共に色素を含む場合においては、ピーク波長が 380— 500nmである照 射光を用いた重合のために、 0. 5— 25mmの照射距離 (D)が、有利に採用されるこ ととなる。なお、成形型 10の照射光の主波長での透過率が 50%以下となるような場 合には、 LED光源 12を近接させることが望ましぐ一般に、 0. 5— 5mm程度の照射 距離 (D)が採用されることとなる。 [0068] さらに、本実施形態の製造装置においては、 LED光源 12から照射される光の強度 、具体的には、放射照度を測定する光検出器 14が、成形型 10の下型たる雌型 28の 下方に、該成形型 10を挟んで、 LED光源 12に対向するように設置されている。そし て、 LED光源 12から放射された光のうち、成形型 10を透過した光が、かかる光検出 器 14で検出されるようになって 、る。 [0067] The vertical distance (irradiation distance: D) from the LED light source 12 to the outer surface of the cavity forming portion (32, 44) of the molding die 10 is not particularly limited. In order to ensure good workability and avoid contamination of the LED light source 12 and the effects of polymerization heat, etc., the peak wavelength of the irradiation light, the presence or absence of a UV absorber, the directional angle of the LED light source 12 and light irradiation Depending on the power area, etc., it will be set appropriately within the range of about 0.5 to 30 mm. Specifically, when the monomer liquid 50 does not contain a UV absorber, the irradiation distance (D) of 3 to 30 mm is advantageously used for polymerization in which the peak wavelength of irradiation light is 350 to 400 nm. In polymerizations where the peak wavelength of light is 400-500 nm, an irradiation distance (D) of 1-130 mm is advantageously employed. Further, when the monomer liquid 50 contains a UV absorber or a pigment together therewith, the irradiation distance (D) of 0.5 to 25 mm is increased due to polymerization using irradiation light having a peak wavelength of 380 to 500 nm. It will be adopted advantageously. When the transmittance of the irradiation light of the mold 10 at the main wavelength is 50% or less, it is generally desirable to bring the LED light source 12 close to the irradiation distance of about 0.5 to 5 mm. (D) will be adopted. Further, in the manufacturing apparatus of the present embodiment, the photodetector 14 for measuring the intensity of light emitted from the LED light source 12, specifically, the irradiance is provided by the female mold as the lower mold of the mold 10. Below the mold 28, it is installed so as to face the LED light source 12 with the mold 10 interposed therebetween. Then, of the light emitted from the LED light source 12, the light transmitted through the mold 10 is detected by the photodetector 14.
[0069] また、上記光検出器 14は、コンピュータ一等の演算処理部と、可変電圧回路とを内 蔵する光強度制御装置 16に接続せしめられている。そして、光検出器 14で測定され た放射照度のデータが光強度制御装置 16に入力され、かかる光強度制御装置 16 にて、 LED光源 12へ供給する電圧量が制御されるようになっている。より具体的に は、光強度制御装置 16では、予め、モノマー液 50の重合に必要な放射照度の目標 値が設定されており、光強度制御装置 16の演算処理部で、光検出器 14から入力さ れた測定値と、予め設定された目標値とがー致するか、どうかの演算処理が行なわ れる。そして、測定値と目標値が一致しない場合には、測定値が目標値に一致する ように、可変電圧回路にて、 LED光源 12に供給する電圧の印加量が増加乃至は低 減せしめられるのである。そして、光強度制御装置 16から、該光強度制御装置 16に 接続せしめられた LED光源 12に供給される電圧によって、 LEDから照射される光の 強度が、微調整されて、一定に保たれるようになっているのである。なお、上記目標 値は、例えば、オペレーターが、キーボード等を用いた入力操作によって、適宜に設 定することが出来るようになって!/ヽる。  [0069] Further, the photodetector 14 is connected to a light intensity control device 16 including an arithmetic processing unit such as a computer and a variable voltage circuit. Then, the data of the irradiance measured by the photodetector 14 is input to the light intensity control device 16, and the light intensity control device 16 controls the voltage supplied to the LED light source 12. . More specifically, in the light intensity control device 16, a target value of the irradiance required for the polymerization of the monomer liquid 50 is set in advance, and the arithmetic processing unit of the light intensity control device 16 transmits the irradiance target value from the photodetector 14. A calculation process is performed to determine whether the input measured value matches a preset target value. If the measured value does not match the target value, the variable voltage circuit increases or decreases the amount of voltage applied to the LED light source 12 so that the measured value matches the target value. is there. Then, the intensity of the light emitted from the LED is finely adjusted by the voltage supplied from the light intensity control device 16 to the LED light source 12 connected to the light intensity control device 16, and is kept constant. It is like that. Note that the target value can be appropriately set by an operator through an input operation using a keyboard or the like!
[0070] 力!]えて、本実施形態の製造装置には、前記した拡散レンズ 18を、成形型 10から離 隔する方向(上方)、或いは、成形型 10に接近する方向(下方)に移動するための移 動手段たる、クランク装置 20とステッピングモータ 22とが、設置されている。そして、ス テツビングモータ 22の回転運動力 公知のクランク装置 20によって往復運動に変換 されることによって、ステッピングモータ 22の駆動力にて、クランク装置 20に連結され た拡散レンズ 18が上下方向(図 1中、ィの方向)に移動することが出来るようになって いる。このように、ステッピングモータ 22を用いれば、拡散レンズ 18の位置の微調整 が容易に実施され得るのである。このため、成形型 10の成形キヤビティ 30に充填さ れたモノマー液 50全体に、 LED光が照射され得ないような場合、例えば、成形キヤ ビティ 30の中央部のみに光が照射されて、コンタクトレンズ周縁部に対応する成形キ ャビティ 30の部位に光が照射されな 、ような場合、ステッピングモータ 22の駆動力に よって、拡散レンズ 18を上方に移動せしめれば、成形型 10の成形キヤビティ 30の全 体に光が照射され得るようになるのである。また逆に、成形型 10に対して照射される 光が広がり過ぎている場合には、ステッピングモータ 22の駆動力によって、拡散レン ズ 18の位置を下方に移動させれば良いのである。 [0070] Power! In addition, the manufacturing apparatus according to the present embodiment includes a movement for moving the diffusion lens 18 in a direction away from the mold 10 (upward) or in a direction approaching the mold 10 (downward). Means, a crank device 20 and a stepping motor 22, are provided. The rotational motion of the stepping motor 22 is converted into a reciprocating motion by the known crank device 20, and the driving force of the stepping motor 22 causes the diffusion lens 18 connected to the crank device 20 to move vertically (see FIG. 1 in the direction of ィ). As described above, if the stepping motor 22 is used, fine adjustment of the position of the diffusion lens 18 can be easily performed. For this reason, in the case where the entire monomer liquid 50 filled in the molding cavity 30 of the molding die 10 cannot be irradiated with LED light, for example, the molding cavity In the case where light is irradiated only to the center of the cavity 30 and light is not irradiated to the portion of the molding cavity 30 corresponding to the periphery of the contact lens, the diffusion lens 18 is driven by the driving force of the stepping motor 22. If it is moved upward, the entire molding cavity 30 of the molding die 10 can be irradiated with light. Conversely, when the light irradiated on the mold 10 is too wide, the position of the diffusion lens 18 may be moved downward by the driving force of the stepping motor 22.
[0071] また、本実施形態においては、前述せる如き成形型 10が、搬送手段たる搬送機 24 上に載置されている。なお、力かる搬送機 24は、例えば、ベルトコンベアやチェーン コンベア等、従来より公知のものにて構成され得る力 ここでは、ベルトコンベアにて 構成されている。そして、搬送機 24の作動によるベルトの移動に伴って、該ベルトの 移動方向に、成形型 10が搬送されるようになっている。なお、この搬送機 24のベルト には、前記成形型 10の外寸より小さな大きさの透孔 25が、互いに所定間隔を隔てて 、多数形成されており、成形型 10は、そのような透孔 25の周囲を覆うようにして載置 されているのである。 [0071] Further, in the present embodiment, the molding die 10 as described above is placed on a transfer device 24 as a transfer means. In addition, the powerful transfer device 24 is a force that can be configured by a conventionally known device such as a belt conveyor or a chain conveyor, and is configured by a belt conveyor here. With the movement of the belt by the operation of the conveyor 24, the molding die 10 is conveyed in the moving direction of the belt. The belt of the conveyor 24 has a large number of through-holes 25 having a size smaller than the outer dimension of the molding die 10 at a predetermined interval from each other. It is placed so as to cover the periphery of the hole 25.
[0072] ところで、力べの如き構造とされた本実施形態のコンタクトレンズの製造装置を用い て、目的とするコンタクトレンズを製造する際には、例えば、以下のようにして、その操 作が進められることとなる。なお、以下では、一具体例として、複数のコンタクトレンズ を連続的に製造する方法を詳述することとする。  By the way, when the target contact lens is manufactured using the contact lens manufacturing apparatus of the present embodiment having a structure like a brute force, for example, the operation is performed as follows. It will be advanced. In the following, as a specific example, a method for continuously manufacturing a plurality of contact lenses will be described in detail.
[0073] すなわち、先ず、目的とするコンタクトレンズを成形するための成形型 10の複数が 準備され、力かる成形型 10のうちの雌型 28が、搬送機 24の所定の位置に載置、保 持される。そして、搬送機 24を作動させて、先ず、図示しないモノマー液供給装置ま で雌型 28を搬送する。そして、雌型 28が、モノマー液を供給する場所に到達したら、 搬送機 24をー且停止し、雌型 28の凹部 44内に、それぞれ、目的とするコンタクトレ ンズを構成する重合体を与えるモノマー液 50を、所定量ずつ供給する。そして、この モノマー液供給工程の後、搬送機 24を再び作動せしめて、モノマー液 50が収容さ れた雌型 28を、型合せ工程を実施する場所まで搬送する。そして、かかる雌型 28が 、型合せ工程を実施する場所に到達したら、搬送機 24を一旦停止し、雌型 28の上 方力も雄型 26を、雌型 28における前記段差 46の角部に対して、雄型 26における筒 壁部 36の外周面の底部 32側角部が当接するように、また、雄型 26の外フランジ部 3 8の下面と雌型 28の上面とが互いに当接するように、組み付けて、型合わせを行なう 。これにより、雄型 26と雌型 28との間に成形キヤビティ 30が形成されると共に、かか る成形キヤビティ 30内にモノマー液 50が充填される。 [0073] That is, first, a plurality of molds 10 for molding a target contact lens are prepared, and the female mold 28 of the powerful molds 10 is placed at a predetermined position of the transfer device 24, Will be retained. Then, the transfer device 24 is operated to first transfer the female mold 28 to a monomer liquid supply device (not shown). Then, when the female mold 28 reaches the place where the monomer liquid is supplied, the transfer device 24 is stopped and the polymer constituting the target contact lens is provided in the concave portion 44 of the female mold 28, respectively. A predetermined amount of the monomer liquid 50 is supplied. Then, after the monomer liquid supply step, the transporter 24 is operated again, and the female mold 28 containing the monomer liquid 50 is transported to a place where the mold matching step is performed. Then, when the female mold 28 reaches a place where the mold matching process is performed, the transfer device 24 is temporarily stopped, and the upward force of the female mold 28 is also applied to the male mold 26 at the corner of the step 46 in the female mold 28. On the other hand, the cylinder in the male mold 26 Assemble the mold so that the corners on the bottom 32 side of the outer peripheral surface of the wall 36 abut, and the lower surface of the outer flange 38 of the male mold 26 and the upper surface of the female mold 28 abut each other. Perform. As a result, a molding cavity 30 is formed between the male mold 26 and the female mold 28, and the monomer liquid 50 is filled in the molding cavity 30.
[0074] そして、上述の如くして、モノマー液 50の充填が終了したら、搬送機 24を再び作動 させて、モノマー液 50が充填された成形型 10のそれぞれを、搬送機 24の搬送方向 の下流側に配置された光照射位置、つまり、図 1や図 2に示されるように、 LED光源 1 2と光検出器 14の間まで搬送する。そして、成形型 10が、 LED光源 12と光検出器 1 4の間に到達したら、搬送機 24を停止して、成形されるコンタクトレンズの光軸上に、 LED光源 12がそれぞれ一つずつ位置するように止める一方、各成形型 10に対して 、成形型 10の上方に設置乃至は配置された各 LED光源 12から光を放射する。これ により、 LED光源 12から放射された光が、光透過性を有する成形型 10の雄型 26を 通じて、成形キヤビティ 30内に有利に導入され、以て、前記成形キヤビティ 30に充填 されたモノマー液 50が光重合せしめられる。  Then, as described above, when the charging of the monomer liquid 50 is completed, the transporter 24 is operated again, and each of the molds 10 filled with the monomer liquid 50 is moved in the transport direction of the transporter 24. The light is conveyed to the light irradiation position arranged on the downstream side, that is, between the LED light source 12 and the photodetector 14, as shown in FIGS. When the mold 10 reaches between the LED light source 12 and the photodetector 14, the transporter 24 is stopped, and the LED light sources 12 are positioned one by one on the optical axis of the contact lens to be molded. On the other hand, for each of the molds 10, light is emitted from each of the LED light sources 12 installed or arranged above the molds 10. As a result, the light emitted from the LED light source 12 is advantageously introduced into the molding cavity 30 through the male mold 26 of the molding die 10 having light transmittance, thereby filling the molding cavity 30. The monomer liquid 50 is photopolymerized.
[0075] また一方、成形型 10毎にそれぞれ一つずっ配設された光検出器 14は、成形型 10 を挟んで対向するように位置せしめられた LED光源 12から照射される光の強度を、 成形型 10を介して検知し、そしてその検出された光の強度、具体的には放射照度を 、公知のインターフェースを介して、光強度制御装置 16に入力する。このようにして、 放射照度が入力されると、光強度制御装置 16は、光検出装置 14から入力された放 射照度が、予め設定された目標値と一致している力 どうかを判別し、その目標値を 下回る場合には、 LED光源 12に供給する電圧の印加量を増加せしめるようにする 一方、その目標値を上回る場合には、 LED光源 12に供給する電圧量を低減せしめ るようにして、光検出器 14にて検知される放射照度が目標値に一致するように、フィ ードバック制御を行なう。なお、このような LED光源 12から放射される光の照射強度 は、図 2に示されるように、 LED光源 12毎に制御されることが望ましぐこのように成 形型 10毎に LED光源 12を配設して、 LED光源 12から発せられる光を個別に制御 するようにすれば、製品の品質をより一層高度に且つ安定に確保することが出来、以 て、不良品の発生率も極めて効果的に低減されることとなる。 [0076] さらに、 LED光源 12から発せられる光の指向角力 目的とするコンタクトレンズの直 径に比して小さい場合には、換言すれば、コンタクトレンズを与える成形キヤビティ 30 全体に光が照射されない場合には、図 1の実線や図 2の二点鎖線にて示されるように 、 LED光源 12と成形型 10との間に、拡散手段たる拡散レンズ 18を配設して、成形さ れるコンタクトレンズの周縁部に対応する部位まで、成形キヤビティ 30全体に、 LED 光が照射されるようにする。この際、拡散レンズ 18の位置は、ステッピングモータ 22と クランク装置 20にて構成される移動手段にて微調整されることとなる。これに対して、 使用する LED光源 12の指向角力 目的とするコンタクトレンズの直径に比して大き 過ぎる場合には、図示はしないものの、拡散手段と同様に、 LED光源 12と成形型 10 との間に、集光レンズ等の集光手段が配設されることが望ましぐかかる集光手段を 配設することによって、 LED光源 12から発せられる LED光の光エネルギー力 モノ マー液 50の重合に有効に用いられて、重合に寄与しない光の無駄な照射が有利に 低減されることとなる。 [0075] On the other hand, the photodetectors 14 arranged one by one for each of the molding dies 10 serve to detect the intensity of light emitted from the LED light sources 12 which are positioned to face each other with the molding dies 10 therebetween. , Detected via the mold 10 and the detected light intensity, specifically irradiance, is input to the light intensity controller 16 via a known interface. In this way, when the irradiance is input, the light intensity control device 16 determines whether the irradiance input from the light detection device 14 matches the preset target value, and If it is lower than the target value, the amount of voltage supplied to the LED light source 12 is increased, while if it exceeds the target value, the amount of voltage supplied to the LED light source 12 is reduced. Then, feedback control is performed so that the irradiance detected by the photodetector 14 matches the target value. As shown in FIG. 2, it is desirable that the irradiation intensity of light emitted from the LED light source 12 be controlled for each LED light source 12 as described above. By arranging the 12 and individually controlling the light emitted from the LED light source 12, the quality of the product can be further enhanced and stabilized more stably, and the occurrence rate of defective products can be reduced. It will be reduced very effectively. Further, when the directivity angular power of the light emitted from the LED light source 12 is smaller than the target contact lens diameter, in other words, when the entire molded cavity 30 for providing the contact lens is not irradiated with light. As shown by a solid line in FIG. 1 and a two-dot chain line in FIG. 2, a diffusion lens 18 as a diffusion means is disposed between the LED light source 12 and the molding die 10 to form a contact lens. The entire molding cavity 30 is irradiated with the LED light up to the portion corresponding to the peripheral portion of the LED. At this time, the position of the diffusion lens 18 is finely adjusted by the moving means including the stepping motor 22 and the crank device 20. On the other hand, if the directional angular force of the LED light source 12 to be used is too large as compared with the diameter of the target contact lens, the LED light source 12 and the molding die 10 are not illustrated, but are similar to the diffusion means. It is desirable that a light-collecting means such as a light-collecting lens be disposed between the light sources. By arranging such light-collecting means, the light energy of the LED light emitted from the LED light source 12 is polymerized in the monomer liquid 50. It is effectively used for the above, and wasteful irradiation of light which does not contribute to polymerization is advantageously reduced.
[0077] なお、この成形型 10に対する LED光の照射のために、型合せ工程においてモノマ 一液 50が充填された複数の成形型 10を、 LED光源 12と光検出器 14との間まで搬 送する際には、それと同時に、モノマー液 50が収容された別の雌型 28の複数が、型 合せ工程を実施する場所まで搬送され、またそれと同時に、モノマー液 50が収容さ れていない別の雌型 28の複数力 モノマー液供給装置まで搬送されるようになって いる。即ち、型合せ工程によりモノマー液 50が成形キヤビティ 30内に充填された成 形型 10に対して、 LED光源 12から光が照射せしめられる (光照射工程の実施)一方 で、モノマー液 50が収容された別の雌型 28に、雄型 26を組み付ける型合せ工程が 実施されると共に、それらとは更に別の雌型 28の凹部 44内に、モノマー液 50を供給 するモノマー液 50の充填工程が実施されることからなる、三つの工程が、異なる成形 型 10に対して同時的に進行せしめられるようになっているのである。  In order to irradiate the molding die 10 with LED light, a plurality of molding dies 10 filled with the monomer liquid 50 in the molding matching process are transported between the LED light source 12 and the photodetector 14. At the same time, a plurality of other female molds 28 containing the monomer liquid 50 are transported to the place where the matching process is performed, and at the same time, another female mold 28 containing no monomer liquid 50 is stored. The female mold 28 is transported to the monomer liquid supply device. That is, light is emitted from the LED light source 12 to the molding die 10 filled in the molding cavity 30 with the monomer liquid 50 by the mold matching process (the light irradiation step is performed), while the monomer liquid 50 is contained. A mold matching process of assembling the male mold 26 with another female mold 28 is performed, and a filling process of the monomer liquid 50 for supplying the monomer liquid 50 into the concave portion 44 of another female mold 28 is further performed. Thus, the three steps, which are performed, are performed simultaneously on different molds 10.
[0078] なお、光の照射工程において、 LED光源 12からモノマー液 50に照射される光の 波長は、特に限定されるものではないが、モノマー液 50中のモノマー成分を充分に 重合させる上で、上述せるように、モノマー液 50中に UV吸収剤が存在しない場合に は、ピーク波長が 350— 500nmの範囲にある LED光力 また、モノマー液 50中に U V吸収剤が存在する場合には、ピーク波長が 380— 500nmの範囲内にある LED光 力 特に、好適に採用される。また、 LED光源 12からの単位面積当たりの照射量、 所謂放射照度としては、特に制限されるものではないものの、小さ過ぎる場合には、 モノマー液 50の重合が進行せず、また、大き過ぎても、コンタクトレンズ材料の劣化 等の悪影響が及ぼされる恐れがあるところから、好ましくは 0. 5— 30mWZcm2、更 に好ましくは 1一 20mWZcm2とされる。 [0078] In the light irradiation step, the wavelength of light emitted from the LED light source 12 to the monomer liquid 50 is not particularly limited, but may be sufficient to sufficiently polymerize the monomer component in the monomer liquid 50. However, as described above, when no UV absorber is present in the monomer solution 50, the LED light power whose peak wavelength is in the range of 350 to 500 nm. When V absorbers are present, LED light power with a peak wavelength in the range of 380-500 nm is particularly preferably employed. Further, the irradiation amount per unit area from the LED light source 12, the so-called irradiance is not particularly limited, but if it is too small, the polymerization of the monomer liquid 50 does not proceed and it is too large. Also, since there is a possibility that adverse effects such as deterioration of the contact lens material may be exerted, it is preferably 0.5 to 30 mWZcm 2 , and more preferably 111 to 20 mWZcm 2 .
[0079] また、成形型 10に対する LED光の照射時間も、 目的とするコンタクトレンズの大き さや LED光源力 発せられる光の強さ、モノマー液 50の種類等に応じて、適宜に決 定されるところではあるものの、作業性やレンズの完成度を考慮すると、上限としては 、好ましくは 120分以下、更に好ましくは 60分以下とされる一方、下限としては、好ま しくは 3分以上、更に好ましくは 5分以上とされる。何故なら、照射時間が長過ぎる場 合には、光照射工程、ひいては目的とするコンタクトレンズの製造工程全体を無用に 長期化させ、作業性の悪ィ匕ゃ生産性の低下を招来することとなるからであり、また、 L ED光の照射時間が短すぎると、モノマー液 50に対する光の照射量が少な過ぎると ころ力ら、モノマー液 50中のモノマー成分の光重合が不充分となって、残留モノマー 量が増加するといつた問題が惹起されるからである。  [0079] The irradiation time of the LED light to the mold 10 is also appropriately determined according to the size of the target contact lens, the intensity of the light emitted from the LED light source, the type of the monomer liquid 50, and the like. However, in consideration of workability and the degree of perfection of the lens, the upper limit is preferably 120 minutes or less, more preferably 60 minutes or less, while the lower limit is preferably 3 minutes or more, and more preferably. Is 5 minutes or longer. This is because, if the irradiation time is too long, the light irradiation step and, consequently, the entire production process of the target contact lens are unnecessarily lengthened, leading to poor workability and reduced productivity. In addition, if the irradiation time of the LED light is too short, if the irradiation amount of the light to the monomer liquid 50 is too small, the photopolymerization of the monomer component in the monomer liquid 50 becomes insufficient due to the excessive force. This is because a problem is caused when the amount of residual monomer increases.
[0080] さらに、本工程では、光源として、 LED光源 12が採用されているところから、光照射 による発熱が比較的に少なぐ熱による重合の進行が抑制され得るのである力 より 一層安定した重合を実現すベぐ光照射工程の間、成形型 10が、環境温度 + 5°C程 度以下、つまり、環境温度よりも大略 5°Cを越えることがないように、光照射工程が実 施されることが望ましい。尤も、力かる光重合温度としては、 LED光源 12の適正作動 最高温度以下であれば、如何なる温度も採用可能であり、そのような温度領域内に おいて昇温しつつ重合させることも可能である。また、光重合を開始させてから一定 時間の後、成形型 10のみを熱重合槽に移動させて、本発明の目的の達成に悪影響 をもたらさない限りにおいて、加熱を行ない、重合を促進させるようにすることも出来る  Further, in this step, since the LED light source 12 is employed as the light source, the heat generated by light irradiation is relatively small, and the progress of polymerization due to heat can be suppressed, so that the polymerization is more stable. During the light irradiation step, the light irradiation step is performed so that the mold 10 does not exceed the ambient temperature + 5 ° C, that is, does not exceed the ambient temperature approximately 5 ° C. It is desirable to be done. However, as the vigorous photopolymerization temperature, any temperature can be adopted as long as it is lower than the proper operation maximum temperature of the LED light source 12, and the polymerization can be performed while increasing the temperature in such a temperature range. is there. Also, after a certain period of time from the start of the photopolymerization, only the mold 10 is moved to the thermal polymerization tank, and heating is carried out to promote the polymerization as long as it does not adversely affect the achievement of the object of the present invention. Can also be
[0081] 力べして、力くの如き成形型 10への光照射によって、成形型 10の成形キヤビティ 30 に充填されたモノマー液 50が光重合せしめられることにより、 目的とするコンタクトレ ンズが形成されるのである。なお、このようにして形成されたコンタクトレンズには、雄 型 26の後面成形キヤビティ面 34に対応したベースカーブ面と、雌型 28の前面成形 キヤビティ面 48に対応したフロントカーブ面が付与されることとなる。 The monomer liquid 50 filled in the molding cavity 30 of the molding die 10 is photopolymerized by vigorously irradiating the molding die 10 with light. Is formed. The contact lens thus formed is provided with a base curve surface corresponding to the rear mold cavity surface 34 of the male mold 26 and a front curve surface corresponding to the front mold cavity surface 48 of the female mold 28. It will be.
[0082] そして、力かる成形型 10への光照射工程が終了した後、搬送機 24を再び作動せ しめて、光重合が実施された成形型 10の複数を、 LED光源 12と光検出器 14の間か ら、搬送機 24の搬送方向の下流側に搬送する。その後、成形型 10の雄型 26を雌型 28から取り外すことによって型開きを行ない、そして、従来と同様な離型操作で、コン タクトレンズを脱型することにより、目的とするコンタクトレンズが得られるのである。  [0082] Then, after the step of irradiating the mold 10 with light to be vigorous, the conveyor 24 is operated again, and the plurality of molds 10 on which the photopolymerization has been performed are connected to the LED light source 12 and the photodetector 14. Between the transfer devices 24 in the transfer direction of the transfer device 24. Thereafter, the mold is opened by removing the male mold 26 of the mold 10 from the female mold 28, and the contact lens is removed by the same release operation as in the past, thereby obtaining the desired contact lens. It is done.
[0083] このように、本実施形態にぉ ヽては、光透過性材料からなる成形型の成形キヤビテ ィに充填されたモノマー液 50を、 LED光源 12から発せられる光にて重合するように しているところから、従来の紫外線ランプを使用した際に惹起せしめられていた問題 が有利に解消され、成形型 10の成形キヤビティ 30内に充填されたモノマー液 50に 対して、安定した放射照度の LED光を、長期間に亘つて有利に照射することが出来 る。従って、眼用レンズ物品たるコンタクトレンズを、安定した品質で有利に製造する ことが出来るのである。  As described above, in the present embodiment, the monomer liquid 50 filled in the molding cavity of the molding die made of a light transmitting material is polymerized by the light emitted from the LED light source 12. Therefore, the problem caused when a conventional ultraviolet lamp is used is advantageously solved, and a stable irradiance can be obtained with respect to the monomer liquid 50 filled in the molding cavity 30 of the mold 10. LED light can be advantageously emitted over a long period of time. Therefore, a contact lens as an ophthalmic lens article can be advantageously manufactured with stable quality.
[0084] し力も、一組の成形型 10に対して、一つの LED光源 12が設置されているところか ら、一つの光源で複数の成形型に光を照射する場合に惹起されていた、照射ムラに よる品質の不安定化が、有利に解消されることとなる。また、各成形型 10に照射され る光を、それぞれ別個に制御することが可能となって、眼用レンズ物品たるコンタクト レンズの高い品質を、より一層容易に確保することが出来るのである。また、高い放射 照度を効率的に得ることも可能となり、モノマー液 50の迅速な重合も可能となる。  [0084] The force is also caused when one LED light source 12 is provided for one set of molds 10 and one light source irradiates a plurality of molds with light. Instability of quality due to irradiation unevenness is advantageously eliminated. In addition, since the light applied to each mold 10 can be controlled separately, high quality of a contact lens as an ophthalmic lens article can be more easily ensured. In addition, high irradiance can be efficiently obtained, and rapid polymerization of the monomer liquid 50 can be achieved.
[0085] 以上、本発明の代表的な実施形態について詳述してきたが、それは、あくまでも、 例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述 によって、何等限定的に解釈されるものではないことが、理解されるべきである。  [0085] Although the representative embodiment of the present invention has been described in detail above, it is merely an example, and the present invention is not limited to the specific description according to such an embodiment. It should be understood that they are not to be construed as limiting in any way.
[0086] 例えば、上記の実施形態では、一組の成形型 10に対して、一つの LED光源 12が 配置されていた力 一組の成形型 10に対して配置する LED光源 12の数は、上記し た一個に何等限定されるものではなぐ二つ以上の LED光源 12を配置することも可 能である。但し、一組の成形型 10に対して、二つ以上の LED光源 12を配置する場 合には、 LED光源 12から発せられる光力 成形キヤビティ 30内に充填されたモノマ 一液 50の光重合に有利に寄与するように、成形型 10の上方と下方に、それぞれ、少 なくとも一つずつ、 LED光源 12を設置せしめ、そして、成形型 10の上側と下側から L ED光を照射するようにすることが望ましい。特に、このような成形型 10の上方と下方 の二方向力もの光照射は、 UV吸収剤又はそれと共に色素を含むモノマー液 50を、 ピーク波長が 380— 500nmの光にて重合せしめる場合において、得られる重合生 成物たる眼用レンズ物品の変形不良を減少させる等の点から、有利に採用されること となる。尤も、コンタクトレンズを製造するに際しては、二つ以上の LED光源 12を用 いなくとも、一つの LED光源 12のみで充分な光エネルギーを得ることも可能である。 [0086] For example, in the above embodiment, the force in which one LED light source 12 is arranged for one set of molds 10 The number of LED light sources 12 arranged for one set of molds 10 is as follows. It is also possible to dispose two or more LED light sources 12 which are not limited to the one described above. However, when two or more LED light sources 12 are arranged for one set of molds 10, In this case, at least one of the light sources emitted from the LED light source 12 is provided above and below the mold 10 so as to advantageously contribute to the photopolymerization of the monomer liquid 50 filled in the mold cavity 30. It is preferable that the LED light sources 12 be installed one by one, and that the LED light be emitted from the upper and lower sides of the mold 10. In particular, such light irradiation with a two-directional force above and below the mold 10 may cause a monomer solution 50 containing a UV absorber or a pigment to be polymerized with light having a peak wavelength of 380 to 500 nm. It is advantageously employed from the viewpoint of, for example, reducing the deformation defect of the obtained ophthalmic lens product as a polymer product. However, in manufacturing a contact lens, it is possible to obtain sufficient light energy with only one LED light source 12 without using two or more LED light sources 12.
[0087] また、上例では、 LED光源 12が、雄型 26から離隔した位置で、且つ成形されるコ ンタクトレンズの光軸上に設置されており、力かる LED光源 12からの光力 後面成形 キヤビティ面 34側から照射されるようになっていたところから、成形キヤビティ内に到 達する前に成形型の表面で屈折する等して、充分な LED光が成形キヤビティ内に導 入され得なくなると ヽつた問題が有利に防止されて、 LED光が成形キヤビティ全体に 有利に照射されるようになっていたのであるが、図 3に示されるように、 LED光源 12を 、雌型 28側に設置して、 LED光源 12から発せられる光を、前面成形キヤビティ面 48 側から照射することも可能である。なお、このように雌型 28側に LED光源 12を設置 する場合、光検出器 14は、雄型 26側に配置されることが望ましい。また、 LED光源 1 2は、成形される眼用レンズ物品の光軸上に設置されることが望ましい。  In the above example, the LED light source 12 is installed at a position separated from the male mold 26 and on the optical axis of the contact lens to be molded. Since the irradiation was started from the molding cavity surface 34 side, sufficient LED light could not be introduced into the molding cavity because it was refracted on the surface of the molding die before reaching the molding cavity. However, as shown in FIG. 3, the LED light source 12 was moved to the female mold 28 side, as shown in FIG. When installed, the light emitted from the LED light source 12 can be irradiated from the front molding cavity surface 48 side. When the LED light source 12 is installed on the female mold 28 side as described above, it is preferable that the photodetector 14 is arranged on the male mold 26 side. Further, it is desirable that the LED light source 12 is installed on the optical axis of the ophthalmic lens article to be molded.
[0088] さらに、上記実施形態では、 LED光源 12から照射される光の照射角度を広げるた めに、拡散手段たる拡散レンズ 18が設けられていた力 力かる拡散レンズ 18は、眼 用レンズ物品の寸法や LED光源 12から成形型 10までの距離、 LED光源の指向角 等に応じて、適宜に用いられるものであって、本発明において、何等必須のものでは ない。また、前述せるように、拡散手段に代えて、集光手段を使用することも可能であ る。  Further, in the above embodiment, in order to widen the irradiation angle of the light emitted from the LED light source 12, the diffusion lens 18 as the diffusion means was provided. It is appropriately used according to the size of the LED light source, the distance from the LED light source 12 to the molding die 10, the directional angle of the LED light source, and the like, and is not essential in the present invention. Further, as described above, it is also possible to use a light collecting means instead of the diffusing means.
[0089] カロえて、上例では、拡散レンズ 18を上下方向に移動するための移動手段として、ス テツビングモータと公知のクランク装置力もなるものが採用され、駆動手段であるステ ッビングモータによって、拡散レンズ 18の微少な移動が有利に実現され得るようにな つていたが、駆動手段はステッピングモータ以外にも、従来から公知のものを採用す ることが可能である。また、かかる移動手段も、上記した拡散レンズ 18と同様に、必要 に応じて使用され得るものであって、本発明において、必ずしも必要とされるものでは ない。 In the above example, as the moving means for moving the diffusing lens 18 in the up and down direction, a means that also has a steering motor and a known crank device force is adopted, and the diffusing lens 18 is driven by the stepping motor as the driving means. Small movements of the lens 18 can be advantageously achieved. However, a conventionally known driving means other than a stepping motor can be used as the driving means. Further, such a moving means can be used as needed, similarly to the diffusion lens 18 described above, and is not necessarily required in the present invention.
[0090] また、上記実施形態では、演算処理部と可変電圧回路とを内蔵する光強度制御装 置 16によって、 LED光源 12から照射される光の放射照度力 自動的に一定に保た れるようになっていたが、このような光強度制御装置 16を何等使用することなぐ作業 者が、 LED光源 12に供給する電圧を適宜に設定することも可能である。  In the above embodiment, the irradiance of the light emitted from the LED light source 12 is automatically kept constant by the light intensity control device 16 including the arithmetic processing unit and the variable voltage circuit. However, it is possible for an operator who does not use such light intensity control device 16 to appropriately set the voltage to be supplied to the LED light source 12.
[0091] さらに、上例では、光検出器 14にて、 LED光源 12から照射される光の強度、具体 的には、放射照度が検知されるようになっていたが、かかる放射照度は、直接的に検 知されても、或いは放射照度以外の光の強さを表わす物理量力 換算される等して 、間接的に検知されても、何等差支えない。また、この光検出器 14も必要に応じて使 用されるものであって、本発明において、何等必須のものではない。  [0091] Further, in the above example, the intensity of the light emitted from the LED light source 12, specifically, the irradiance is detected by the photodetector 14, but such irradiance is Even if it is detected directly, or indirectly detected by being converted into a physical force representing the intensity of light other than irradiance, there is no problem at all. The photodetector 14 is also used as needed, and is not essential in the present invention.
[0092] また、前記実施形態では、コンタクトレンズを製造するための製造装置及びその製 造方法に対して本発明を適用したものの具体例を示したが、本発明は、そのようなコ ンタクトレンズの他、眼内レンズ等の眼用レンズ、或いは、それらの眼用レンズの半完 成品(例えば、一方の面が完成されたレンズ面形状に成形されている一方、他方の 面力 レンズ面としては未だ完成されていない、切削加工等の後加工を必要とする形 状に成形された、該眼用レンズを与える眼用レンズ材料)、更にはそのような眼用レン ズを、両面切削等の加工を施すことによって与え得るレンズブランク等の、所謂眼用 レンズ物品を成形するための成形型及びそれらの製造方法に対しても、有利に適用 され得るものである。そして、特に、眼用レンズ物品が眼内レンズの場合には、その厚 みは、コンタクトレンズに比してかなり大きいものであるところから、成形型 10の上方と 下方に、それぞれ、少なくとも一つずつ、 LED光源 12を設置して、上下方向から、 L ED光を照射することが望ましぐまた、眼内レンズを製造する際の LED光源 12の指 向角としては、 10— 100° が好ましい。  [0092] Further, in the above-described embodiment, a specific example in which the present invention is applied to a manufacturing apparatus and a manufacturing method thereof for manufacturing a contact lens has been described. However, the present invention relates to such a contact lens. In addition, an ophthalmic lens such as an intraocular lens, or a semi-finished product of such an ophthalmic lens (for example, one surface is formed into a completed lens surface shape, while the other surface is used as a lens surface) Is an ophthalmic lens material that has not yet been completed and is formed into a shape that requires post-processing such as cutting, and that provides the ophthalmic lens). The present invention can also be advantageously applied to a molding die for molding a so-called ophthalmic lens article such as a lens blank which can be provided by performing the above-described processing, and a method for producing the same. In particular, when the ophthalmic lens article is an intraocular lens, since its thickness is considerably larger than that of a contact lens, at least one of each is provided above and below the mold 10. It is desirable to install the LED light source 12 and irradiate the LED light from above and below. In addition, when manufacturing the intraocular lens, the direction angle of the LED light source 12 is 10-100 °. preferable.
[0093] さらに、本実施形態では、搬送機 24を用いて、この搬送機 24に保持された複数の 成形型 10 (雌型 28)を、搬送機 24の作動により、モノマー液供給位置と型合せ位置 と光照射位置とに、順次搬送して、それぞれの搬送位置で、モノマー液供給工程と 型合せ工程と光照射工程とを、それぞれ同時に実施することによって、目的とする眼 用レンズ物品たるコンタクトレンズを連続的に大量生産するようにした製造方法の具 体例を挙げたが、本発明は、このような方法に何等限定されるものではなぐ搬送機 2 4を使用することなぐ上述せる如き各工程を、一つの成形型 10毎に独立して行なう ようにすることも可能である。要するに、本発明においては、光源として LEDが採用さ れているところから、一つの光源を一つの成形型 10毎に配置することが出来、そのた め、一つの光源にて複数の成形型に対して光照射を実施する場合とは異なって、目 的とする眼用レンズ物品を、個別に且つ効率的に製造することが出来るのである。ま た、レンズ規格毎に LED光の照射量や照射時間を設定する等、場合に応じて、 LE D光源毎に異なる光照射を同時に実施することも可能である。 [0093] Further, in the present embodiment, the plurality of molding dies 10 (female dies 28) held by the transfer machine 24 are moved to the monomer liquid supply position and the mold by the transfer machine 24 using the transfer machine 24. Alignment position And the light irradiation position, and the monomer solution supply step, the mold matching step, and the light irradiation step are simultaneously performed at each of the transfer positions, so that the contact lens as the objective ophthalmic lens article is obtained. Although specific examples of the manufacturing method for continuously mass-producing the above have been given, the present invention is not limited to such a method, and each step as described above without using the transporter 24 is not limited. Can be performed independently for each molding die 10. In short, in the present invention, since the LED is used as the light source, one light source can be arranged for each one of the molds 10, and therefore, one light source can be used for a plurality of molds. In contrast to the case where light irradiation is performed, the intended ophthalmic lens article can be manufactured individually and efficiently. In addition, it is also possible to simultaneously perform different light irradiation for each LED light source depending on the case, such as setting the irradiation amount and irradiation time of the LED light for each lens standard.
[0094] 更にまた、成形型 10を構成する雄型 26及び雌型 28の構造も、公知の各種のもの が適宜に選定されて用いられ得、前記実施形態に示されるものに、特に限定されるも のでないことは、勿論である。  [0094] Furthermore, the structure of the male mold 26 and the female mold 28 constituting the molding die 10 may be appropriately selected from various known structures, and is not particularly limited to the structure shown in the embodiment. Of course, this is not the case.
[0095] その他、一々列挙はしないが、本発明が、当業者の知識に基づいて、種々なる変 更、修正、改良等を加えた態様において実施され得るものであり、また、そのような実 施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属 するものであることは、言うまでもないところである。  [0095] Although not enumerated one by one, the present invention can be embodied in embodiments in which various changes, modifications, improvements, and the like are added based on the knowledge of those skilled in the art. It goes without saying that all embodiments fall within the scope of the present invention unless they depart from the gist of the present invention.
実施例  Example
[0096] 以下に、本発明の代表的な実施例を含むいくつかの実験例を示し、本発明を更に 具体的に明らかにすることとする力 本発明が、そのような実験例の記載によって、何 等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には 、以下の実施例の他にも、更には、上記の具体的記述以外にも、本発明の趣旨を逸 脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を カロえ得るものであることが、理解されるべきである。  [0096] Hereinafter, several experimental examples including representative examples of the present invention will be shown, and the present invention will be described in more detail with reference to such experimental examples. It goes without saying that it is not subject to any restrictions. In addition, in addition to the specific examples described above, various modifications of the present invention may be made based on the knowledge of those skilled in the art in addition to the specific examples described above without departing from the spirit of the present invention. It should be understood that modifications, improvements, etc. can be made.
[0097] 先ず、本発明に従って、光重合せしめられるモノマー液(50)として、下記表 1及び 表 2に示される組成の配合液 1及び配合液 2を調製する一方、照射光のピーク波長、 換言すれば最大発光波長が、それぞれ異なる 5種の LED光源(12)を、下記表 3に 示されるように、準備した。更に、市販の三種の光重合開始剤、即ち 2—ヒドロキシー 2 ーメチルー 1—フエ-ループロパン— 1 オン(開始剤 A)、 2, 4, 6—トリメチルベンゾィル —ジフエ二ルーフォスフィンオキサイド(開始剤 B)及びビス(2, 4, 6 ポリメチルベンゾ ィル) フエ-ルフォスフィンオキサイド(開始剤 C)を準備した。 First, according to the present invention, as a monomer solution (50) to be photopolymerized, Formulation Solution 1 and Formulation Solution 2 having the compositions shown in Tables 1 and 2 below are prepared, while the peak wavelength of irradiation light, Table 3 below shows five types of LED light sources (12) with different maximum emission wavelengths. Prepared as indicated. In addition, three commercially available photopolymerization initiators, namely, 2-hydroxy-2-methyl-1-phenylene-propane-1one (initiator A), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide ( Initiator B) and bis (2,4,6 polymethylbenzoyl) phenylphosphine oxide (Initiator C) were prepared.
[0098] [表 1] [0098] [Table 1]
[0099] [表 2]  [0099] [Table 2]
[0100] [表 3] [0100] [Table 3]
次いで、力かる配合液 1、 2において開始剤 A— Cを選択して得られる各種のモノマ 一液(50)について、図 3に示される LED光の照射構造において、各種ピーク波長 の LED光源(12)を用いて、室温で 30分間、所定のピーク波長の LED光を照射せし めて、それぞれ、光重合を行なった。なお、成形型(10)を構成する雄型(26)及び雌 型(28)は、何れも、ポリプロピレンを材質とするものであり、また、 LED光源(12)と雌 型(28)との間の距離となる照射距離 (D)は、 5mmとされた。 Next, with respect to various monomer liquids (50) obtained by selecting initiators A to C in vigorous compounding liquids 1 and 2, in the LED light irradiation structure shown in FIG. Using 12), LED light having a predetermined peak wavelength was irradiated at room temperature for 30 minutes, and photopolymerization was performed, respectively. Note that the male mold (26) and female Each of the molds (28) was made of polypropylene, and the irradiation distance (D), which was the distance between the LED light source (12) and the female mold (28), was 5 mm.
[0102] 力かる各種のモノマー液(50)に対する各種ピーク波長の LED光源(12)を用いた 光重合操作にぉ ヽて得られた重合生成物たるコンタクトレンズ製品(眼用レンズ物品 )について、未重合モノマーが残存している力、どうかについて調べ、その結果を、下 記表 4に示した。なお、下記表 4における評価基準において、〇は、光重合して得ら れたコンタクトレンズ製品において、僅かに未重合モノマーが残留していることを検知 した場合を示し、また△は、コンタクトレンズ製品において、未重合モノマーが存在し ていることを示し、更に Xは、コンタクトレンズ製品中に未重合モノマーの残存量が多 ぐ製品自体が軟質であって、変形され易いものであることを示している。  [0102] For contact lens products (ophthalmic lens articles), which are polymerization products obtained by photopolymerization using various LED light sources (12) with various peak wavelengths against various powerful monomer liquids (50), It was examined whether the unpolymerized monomer remained or not, and the results are shown in Table 4 below. In the evaluation criteria in Table 4 below, 〇 indicates the case where it was detected that a small amount of unpolymerized monomer remained in the contact lens product obtained by photopolymerization. X indicates that unpolymerized monomer is present in the product, and X indicates that the product itself, which has a large amount of unpolymerized monomer in the contact lens product, is soft and easily deformed. ing.
[0103] [表 4]  [0103] [Table 4]
[0104] また、表 1及び表 2に示される配合液 1及び配合液 2に対して、更に、 UV吸収剤: 2 ー[2'—ヒドロキシー 5' (2~—メタクリロイルォキシエトキシ)—3'—ターシヤリブチルフエ -ル ]ー5—メチルー 2H—べンゾトリアゾールの 1重量部を、それぞれ添カ卩し、これに、 下記表 5に示される如き組合せにおいて、開始剤 A— Cを用いて、モノマー液(50) を調製した後、それを、図 3に示される如きポリプロピレン製の成形型 10を構成する 雄型 (26)と雌型 (28)との間に形成される成形キヤビティ (30)に、充填せしめた。  [0104] Further, with respect to the mixed liquid 1 and the mixed liquid 2 shown in Tables 1 and 2, a UV absorber: 2- [2'-hydroxy-5 '(2--methacryloyloxyethoxy) -3 '-Tert-butylphenyl] -5-methyl-2H-benzotriazole (1 part by weight) was added to each mixture, and the initiators A to C were added thereto in a combination as shown in Table 5 below. After preparing a monomer liquid (50) by using the same, a molding liquid formed between a male mold (26) and a female mold (28) constituting a polypropylene mold 10 as shown in FIG. 3 is formed. The cavity (30) was filled.
[0105] そして、そのような各種のモノマー液(50)が充填された成形型(10)に対して、その 雄型(26)側と雌型(28)側の 2方向から、対向するようにして、同じピーク波長を有す る LED光源(12)の二つを用いて、それぞれ、所定のピーク波長の光を照射せしめる ことにより、光重合を行ない、 目的とするコンタ外レンズ製品(眼用レンズ物品)を製 造した。なお、かかる光重合は、室温下において、 30分間の光照射を行なうことによ り実施され、また、雄型 (26)又は雌型 (28)に対する各 LED光源(12)力ゝらの距離で ある照射距離 (D)は、それぞれ、 2mmとされた。 [0105] The mold (10) filled with such various monomer liquids (50) is opposed to the mold (26) and the female mold (28) from two directions. Then, by using two LED light sources (12) having the same peak wavelength and irradiating light with a predetermined peak wavelength, respectively, photopolymerization is performed, and the objective lens product outside the contour (eye) Lens products). The photopolymerization is carried out by irradiating light for 30 minutes at room temperature. The irradiation distance (D), which is the distance of each LED light source (12) from the male type (26) or the female type (28), was 2 mm, respectively.
[0106] 力べして得られた UV吸収剤を添加せしめたモノマー液(50)の、各種ピーク波長の[0106] The monomer liquid (50) to which the UV absorber obtained by the addition of the force was added had various peak wavelengths.
LED光による光重合によるモールド成形品(コンタクトレンズ製品)について、上記と 同様に評価して、その結果を、下記表 5に併せて示した。 Molded products (contact lens products) by photopolymerization using LED light were evaluated in the same manner as above, and the results are shown in Table 5 below.
[0107] [表 5] [0107] [Table 5]
[0108] かかる表 4の結果から明らかな如ぐ UV吸収剤を含有していないモノマー液(50) を用いた、本発明に従う光重合操作においては、 400nm以下のピーク波長の LED 光源(12)を用いることによって、何れの重合開始剤を用いた場合にあっても、得られ た重合生成物であるコンタクトレンズ製品を水和させた場合にコンタクトレンズとして 充分な形状保持性を有するモールド成形品として、得ることが出来た。また、 405nm での吸光係数の高い開始剤であるフォスフィンオキサイド系の開始剤 B若しくは開始 剤 Cを添カ卩した場合にあっては、 380nm— 470nmの範囲のピーク波長を有する LE D光源(12)を用いて、光重合することにより、目的とするコンタクトレンズ製品を有利 に得ることが出来た。  As apparent from the results in Table 4, in the photopolymerization operation according to the present invention using the monomer liquid (50) containing no UV absorber, the LED light source (12) having a peak wavelength of 400 nm or less was used. No matter which polymerization initiator is used, a molded product having sufficient shape retention as a contact lens when the contact lens product obtained as a polymerization product is hydrated, As a result. In addition, when phosphine oxide-based initiator B or initiator C, which is an initiator having a high extinction coefficient at 405 nm, is added, an LED light source having a peak wavelength in the range of 380 nm to 470 nm ( The desired contact lens product could be advantageously obtained by photopolymerization using (12).
[0109] また、 UV吸収剤を含むモノマー液(50)にあっても、表 5に示される如ぐ 405nm での吸光係数の高い開始剤であるフォスフィンオキサイド系の開始剤 B若しくは Cを 用い、そして、 380nm— 470nmまでのピーク波長を有する LED光源(12)を用いて 光重合を行なうことにより、目的とするコンタクトレンズ製品を有利にモールド成形する ことが可能であった。  Further, even in the monomer liquid (50) containing a UV absorber, as shown in Table 5, a phosphine oxide-based initiator B or C having a high extinction coefficient at 405 nm was used. By performing photopolymerization using an LED light source (12) having a peak wavelength from 380 nm to 470 nm, it was possible to mold the desired contact lens product advantageously.
[0110] なお、上記の表 4や表 5に示される組成のモノマー液(50)に対して、更に、色素と して、 1 フエ-ルァゾ 3—メタクリロイルォキシー 2—ナフトールの 0. 002重量部をカロ えて、上記した各種ピーク波長の LED光源(12)を用いて光重合を行なったところ、 何れも、上記と同様な結果が得られ、モノマー液(50)の光重合には、色素の存在が 大きな影響をもたらすものでないことを、確認した。 [0110] The monomer liquid (50) having the composition shown in Tables 4 and 5 above was further added with 0.002% by weight of 1-phenylazo-3-methacryloyloxy-2-naphthol as a pigment. Caro part Instead, when photopolymerization was performed using the LED light sources (12) having the various peak wavelengths described above, the same results were obtained in each case, and the photopolymerization of the monomer liquid (50) showed the presence of a dye. It was confirmed that it did not have a significant effect.

Claims

請求の範囲 The scope of the claims
[1] 光透過性材料力もなる上型と下型とを型合わせすることにより、それらの型の間に、 眼用レンズやその半完成品、レンズブランク等の、目的とする眼用レンズ物品を与え る形状の成形キヤビティが形成されるようにした成形型を用い、カゝかる成形キヤビティ 内に、モノマー液を充填する一方、該成形型の上下の少なくとも一方の型の側に設 置された LED力 光を照射することにより、該成形型を透過する光にて、前記成形キ ャビティに充填されたモノマー液を光重合して、前記目的とする眼用レンズ物品をモ 一ルド成形することを特徴とする眼用レンズ物品の製造方法。  [1] By molding an upper mold and a lower mold that also have a light-transmitting material strength, a desired ophthalmic lens article such as an ophthalmic lens, a semi-finished product thereof, or a lens blank is formed between the molds. The molding liquid is filled with the monomer liquid using a molding die in which a molding cavity having a shape giving the shape is formed, and the molding liquid is placed on at least one of the upper and lower sides of the molding die. By irradiating the LED light, the monomer liquid filled in the molding cavity is photopolymerized by light transmitted through the molding die, and the target ophthalmic lens article is molded. A method for producing an ophthalmic lens article, comprising:
[2] 前記成形型が複数配置され、かかる成形型の一つ毎に、前記 LEDが設置されて[2] A plurality of the molds are arranged, and the LED is installed for each of the molds.
V、る請求項 1に記載の眼用レンズ物品の製造方法。 V. The method for producing an ophthalmic lens article according to claim 1.
[3] 前記上型が凸面状の成形キヤビティ面を有する雄型である一方、前記下型が凹面 状の成形キヤビティ面を有する雌型であり、前記 LEDが、該雄型から上方に離隔し た位置で、且つ成形される眼用レンズ物品の光軸上に設置されている請求項 1又は 請求項 2に記載の眼用レンズ物品の製造方法。  [3] The upper mold is a male mold having a convex molding cavity surface, while the lower mold is a female mold having a concave molding cavity surface, and the LED is separated upward from the male mold. The method for producing an ophthalmic lens article according to claim 1, wherein the ophthalmic lens article is installed at an inclined position and on an optical axis of an ophthalmic lens article to be molded.
[4] 前記モノマー液が、少なくとも 1種のアクリル系モノマーを含有している請求項 1乃 至請求項 3の何れかに記載の眼用レンズ物品の製造方法。 [4] The method for producing an ophthalmic lens article according to any one of claims 1 to 3, wherein the monomer liquid contains at least one acrylic monomer.
[5] 前記アクリル系モノマー力 シリコン含有アクリル系モノマーであり、力かるシリコン 含有アクリル系モノマー力 前記モノマー液中に、 10— 70重量%の割合で含有され て ヽる請求項 4に記載の眼用レンズ物品の製造方法。 [5] The eye according to claim 4, wherein the acrylic monomer power is a silicon-containing acrylic monomer, and the silicon-containing acrylic monomer power is contained in the monomer liquid at a ratio of 10 to 70% by weight. Of manufacturing lens articles for automobiles.
[6] 前記アクリル系モノマー力 ジアルキル (メタ)アクリルアミドであり、力かるジアルキ ル (メタ)アクリルアミドカ 前記モノマー液中に、 30— 70重量%の割合で含有されて[6] The acrylic monomer power is a dialkyl (meth) acrylamide, which is contained in the monomer liquid in a ratio of 30 to 70% by weight.
V、る請求項 4又は請求項 5に記載の眼用レンズ物品の製造方法。 6. The method for manufacturing an ophthalmic lens article according to claim 4 or claim 5.
[7] 前記 LEDの照射時間が、 60分以下である請求項 1乃至請求項 6の何れかに記載 の眼用レンズ物品の製造方法。  7. The method for manufacturing an ophthalmic lens article according to claim 1, wherein the irradiation time of the LED is 60 minutes or less.
[8] ピーク波長が 350— 500nmの範囲内にある光を、前記 LEDから照射して、前記モ ノマー液を、 UV吸収剤の不存在下において、光重合せしめることを特徴とする請求 項 1乃至請求項 7の何れかに記載の眼用レンズ物品の製造方法。  [8] The method according to claim 1, wherein light having a peak wavelength in a range of 350 to 500 nm is irradiated from the LED, and the monomer liquid is photopolymerized in the absence of a UV absorber. A method for producing an ophthalmic lens article according to any one of claims 1 to 7.
[9] 前記モノマー液が UV吸収剤を含有しており、且つ前記 LEDから照射される光のピ ーク波長が、 380— 500nmの範囲内にある請求項 1乃至請求項 7の何れかに記載 の眼用レンズ物品の製造方法。 [9] The monomer liquid contains a UV absorber, and the light emitted from the LED 8. The method for producing an ophthalmic lens article according to claim 1, wherein the peak wavelength is in a range of 380 to 500 nm.
[10] 前記モノマー液が、色素を含有している請求項 8又は請求項 9に記載の眼用レンズ 物品の製造方法。 10. The method for manufacturing an ophthalmic lens article according to claim 8, wherein the monomer liquid contains a dye.
[11] 前記 LEDの二つが用いられて、前記成形型の上方と下方にそれぞれ配置され、そ れら二つの LED力も相対向するように光が照射せしめられる請求項 1乃至請求項 10 の何れかに記載の眼用レンズ物品の製造方法。  11. The method according to claim 1, wherein two of the LEDs are used, arranged above and below the molding die, respectively, and the two LEDs are irradiated with light so that the two LEDs also face each other. A method for producing an ophthalmic lens article according to any one of the above.
[12] 前記モノマー液の光重合に際して、 405nmでの吸光係数の高い光重合開始剤が 用いられる請求項 1乃至請求項 11の何れかに記載の眼用レンズ物品の製造方法。  12. The method for producing an ophthalmic lens article according to claim 1, wherein a photopolymerization initiator having a high extinction coefficient at 405 nm is used in the photopolymerization of the monomer liquid.
[13] 光透過性材料力もなる上型と下型とを型合わせすることにより、それらの型の間に、 眼用レンズやその半完成品、レンズブランク等の、目的とする眼用レンズ物品を与え る形状の成形キヤビティが形成されるようにした成形型と、該成形型の上下の少なくと も一方の型の側に設置され、前記成形型の前記成形キヤビティに充填されるモノマ 一液に対して光を照射するための LEDとを含んで構成されることを特徴とする眼用レ ンズ物品の製造装置。  [13] By molding an upper mold and a lower mold that also have a light-transmitting material strength, a desired ophthalmic lens article such as an ophthalmic lens, a semi-finished product thereof, or a lens blank is formed between the molds. A molding die having a shape capable of forming a mold cavity, and a one-component monomer which is disposed on at least one of the upper and lower sides of the molding die and is filled in the molding cavity of the molding die. An ophthalmic lens article manufacturing apparatus, comprising: an LED for irradiating light to the lens.
[14] 所定の搬送手段に、前記成形型が複数配置されると共に、それぞれの成形型毎に 、前記 LEDが設置されて 、る請求項 13に記載の眼用レンズ物品の製造装置。  14. The apparatus for manufacturing an ophthalmic lens article according to claim 13, wherein a plurality of the molding dies are arranged in a predetermined conveying means, and the LED is provided for each of the molding dies.
[15] 前記 LEDから照射される光の放射照度を測定するための測定手段が、前記成形 型を挟んで、前記 LEDに対向する側に設置され、力かる測定手段にて、放射照度を 測定するように構成したことを特徴とする請求項 13又は請求項 14に記載の眼用レン ズ物品の製造装置。  [15] Measuring means for measuring the irradiance of the light emitted from the LED is provided on the side opposite to the LED with the molding die interposed therebetween, and the irradiance is measured by a powerful measuring means. 15. The apparatus for manufacturing an ophthalmic lens article according to claim 13, wherein the apparatus is configured to perform the following.
[16] 前記 LEDに供給する電圧を制御するための制御手段が設けられ、該制御手段に て、前記測定手段にて測定された放射照度の値と目標値とがー致するように該 LED に供給する電圧を制御して、該 LED力 照射される光の放射照度を一定に保つよう にしたことを特徴とする請求項 15に記載の眼用レンズ物品の製造装置。  [16] Control means for controlling the voltage supplied to the LED is provided, and the control means controls the LED so that the irradiance value measured by the measurement means and a target value match. 16. The apparatus for manufacturing an ophthalmic lens article according to claim 15, wherein a voltage supplied to the lens is controlled so as to keep the irradiance of the light irradiated with the LED force constant.
[17] 前記 LEDから照射される光を拡散するための拡散手段が、前記成形型と前記 LE Dの間に設けられ、かかる拡散手段を介して光を照射することにより、該 LED力 の 光の照射角度を広げて、前記成形型の前記成形キヤビティに充填されたモノマー液 に対して、力かる光が均一に照射されるようにしたことを特徴とする請求項 13乃至請 求項 16の何れかに記載の眼用レンズ物品の製造装置。 [17] A diffusing means for diffusing the light emitted from the LED is provided between the mold and the LED, and by irradiating the light through the diffusing means, the light of the LED power is reduced. The irradiation angle of the monomer liquid filled in the molding cavity of the molding die The apparatus for manufacturing an ophthalmic lens article according to any one of claims 13 to 16, wherein a strong light is uniformly applied to the lens.
前記拡散手段を前記成形型から離隔する方向乃至は接近する方向に移動するた めの移動手段が設けられ、力かる移動手段にて、該拡散手段の位置を調整すること により、前記成形キヤビティに充填されたモノマー液に対して、前記光が均一に照射 されるようにしたことを特徴とする請求項 17に記載の眼用レンズ物品の製造装置。  A moving means for moving the diffusing means in a direction away from or approaching the mold is provided, and the position of the diffusing means is adjusted by a powerful moving means, so that the molding cavity can be moved. 18. The manufacturing apparatus for an ophthalmic lens article according to claim 17, wherein the light is uniformly applied to the filled monomer liquid.
PCT/JP2004/013345 2003-10-06 2004-09-14 Process for producing eyelens article and production apparatus therefor WO2005032791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514382A JPWO2005032791A1 (en) 2003-10-06 2004-09-14 Manufacturing method of ophthalmic lens article and manufacturing apparatus used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003346604 2003-10-06
JP2003-346604 2003-10-06

Publications (1)

Publication Number Publication Date
WO2005032791A1 true WO2005032791A1 (en) 2005-04-14

Family

ID=34419551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013345 WO2005032791A1 (en) 2003-10-06 2004-09-14 Process for producing eyelens article and production apparatus therefor

Country Status (2)

Country Link
JP (1) JPWO2005032791A1 (en)
WO (1) WO2005032791A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069608A (en) * 2005-08-09 2007-03-22 Coopervision Inc System and method for production of silicone hydrogel contact lens from polymerizable composition
EP1924427A1 (en) * 2005-08-24 2008-05-28 Novartis AG Process for the manufacture of an ophthalmic lens
JP2009097902A (en) * 2007-10-15 2009-05-07 Sony Corp Reaction control device and reaction control method
JP2011242392A (en) * 2010-05-17 2011-12-01 Luminex Corp System and method for performing measurements of one or more materials
WO2020194110A1 (en) * 2019-03-28 2020-10-01 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
JP2020160212A (en) * 2019-03-26 2020-10-01 凸版印刷株式会社 Primer layer formation composition, barrier film and wavelength conversion sheet and method for manufacturing wavelength conversion sheet
US10816822B2 (en) 2010-04-13 2020-10-27 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US10894374B2 (en) 2010-04-13 2021-01-19 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
RU2779564C1 (en) * 2019-03-28 2022-09-09 Джонсон Энд Джонсон Вижн Кэа, Инк. Methods for manufacture of photo-absorbing contact lenses, and photo-absorbing contact lenses obtained by means of them
US11443940B2 (en) 2020-06-24 2022-09-13 Canon Kabushiki Kaisha Apparatus for uniform light intensity and methods of using the same
US11656546B2 (en) 2020-02-27 2023-05-23 Canon Kabushiki Kaisha Exposure apparatus for uniform light intensity and methods of using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57608A (en) * 1980-02-28 1982-01-05 Medeikorunea Method of manufacturing contact lens and contact lens manufactured thereby
JPH06121826A (en) * 1992-08-26 1994-05-06 Menicon Co Ltd Lens material for eye
JPH07134272A (en) * 1993-11-08 1995-05-23 Seiko Epson Corp Production of colored soft contact lens
JP2002246201A (en) * 2001-02-21 2002-08-30 Matsushita Electric Ind Co Ltd Electronic part and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1212188B1 (en) * 1999-06-25 2004-05-19 Novartis AG Uv-illumination device
JP2004509187A (en) * 2000-09-14 2004-03-25 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Acylphosphine oxide photoinitiators in methacrylate casting resins.
JP2003094458A (en) * 2001-09-25 2003-04-03 Menicon Co Ltd Molding die for contact lens, and manufacturing method for contact lens using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57608A (en) * 1980-02-28 1982-01-05 Medeikorunea Method of manufacturing contact lens and contact lens manufactured thereby
JPH06121826A (en) * 1992-08-26 1994-05-06 Menicon Co Ltd Lens material for eye
JPH07134272A (en) * 1993-11-08 1995-05-23 Seiko Epson Corp Production of colored soft contact lens
JP2002246201A (en) * 2001-02-21 2002-08-30 Matsushita Electric Ind Co Ltd Electronic part and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069608A (en) * 2005-08-09 2007-03-22 Coopervision Inc System and method for production of silicone hydrogel contact lens from polymerizable composition
US8298458B2 (en) 2005-08-09 2012-10-30 Coopervision International Holding Company, Lp Systems and methods for producing silicone hydrogel contact lenses from a polymerizable composition
US8308999B2 (en) 2005-08-09 2012-11-13 Coopervision International Holding Company, Lp Systems and methods for producing contact lenses from a polymerizable composition
EP1924427A1 (en) * 2005-08-24 2008-05-28 Novartis AG Process for the manufacture of an ophthalmic lens
US11125678B2 (en) 2006-06-02 2021-09-21 Luminex Corporation Systems and methods for performing measurements of one or more materials
US10451541B2 (en) 2006-06-02 2019-10-22 Luminsex Corporation Systems and methods for performing measurements of one or more materials
JP2009097902A (en) * 2007-10-15 2009-05-07 Sony Corp Reaction control device and reaction control method
US11391965B2 (en) 2010-04-13 2022-07-19 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US10816822B2 (en) 2010-04-13 2020-10-27 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US10894374B2 (en) 2010-04-13 2021-01-19 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US11724472B2 (en) 2010-04-13 2023-08-15 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US11789291B2 (en) 2010-04-13 2023-10-17 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
JP2011242392A (en) * 2010-05-17 2011-12-01 Luminex Corp System and method for performing measurements of one or more materials
JP2020160212A (en) * 2019-03-26 2020-10-01 凸版印刷株式会社 Primer layer formation composition, barrier film and wavelength conversion sheet and method for manufacturing wavelength conversion sheet
WO2020194110A1 (en) * 2019-03-28 2020-10-01 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
RU2779564C1 (en) * 2019-03-28 2022-09-09 Джонсон Энд Джонсон Вижн Кэа, Инк. Methods for manufacture of photo-absorbing contact lenses, and photo-absorbing contact lenses obtained by means of them
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
US11656546B2 (en) 2020-02-27 2023-05-23 Canon Kabushiki Kaisha Exposure apparatus for uniform light intensity and methods of using the same
US11443940B2 (en) 2020-06-24 2022-09-13 Canon Kabushiki Kaisha Apparatus for uniform light intensity and methods of using the same

Also Published As

Publication number Publication date
JPWO2005032791A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
US6772988B2 (en) Method and mold to control optical device polymerization
US6712596B1 (en) System for producing ultraviolet blocking lenses
US5470892A (en) Polymerizable resin for forming clear, hard plastics
RU2532507C2 (en) Free form lenses with variable refraction index
CN1137027C (en) Plastic lens systems, compositions and methods
KR101834734B1 (en) Process for manufacture of a thermochromic contact lens material
KR100193488B1 (en) Method and apparatus for manufacturing plastic lens
US6827885B2 (en) Methods and devices to control polymerization
KR101006414B1 (en) Rapid layer upon layer form stereolithography
WO2005032791A1 (en) Process for producing eyelens article and production apparatus therefor
JP2010516522A (en) Ophthalmic lens mold having a vent hole surrounding the circumference
JPH0698628B2 (en) Method and apparatus for continuous curing of visible light polymerization resin
JP2006072358A (en) Masked preliminary cure of contact lens, and system and method thereof
US10259096B2 (en) Blocking unit for a block piece for a spectacle lens and process of curing
JP2022524664A (en) Manufacturing method of light-absorbing contact lenses and light-absorbing contact lenses produced by them
KR20210069067A (en) Multi-Wavelength Lens Forming Systems and Methods
JP2003529468A (en) Apparatus and system for making plastic lenses
WO2017100351A1 (en) Radiation delivery system and method
RU2257396C2 (en) Compositions and methods for manufacturing ophthalmological lenses
US20020003315A1 (en) Method and device to control polymerization
ATE267080T1 (en) UV LIGHTING DEVICE
JP2023546292A (en) Eyewear lens manufacturing method using additive manufacturing technology using diffused light
US11623371B2 (en) UV curing apparatus for contact-lens polymerization process
US20220212427A1 (en) Uv curing apparatus for contact-lens polymerization process
TWM613082U (en) Ultraviolet curing system for contact lens polymerization process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514382

Country of ref document: JP

122 Ep: pct application non-entry in european phase