WO2005032465A2 - 3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists - Google Patents

3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists Download PDF

Info

Publication number
WO2005032465A2
WO2005032465A2 PCT/US2004/031675 US2004031675W WO2005032465A2 WO 2005032465 A2 WO2005032465 A2 WO 2005032465A2 US 2004031675 W US2004031675 W US 2004031675W WO 2005032465 A2 WO2005032465 A2 WO 2005032465A2
Authority
WO
WIPO (PCT)
Prior art keywords
halo
group
substituted
disease
4alkyl
Prior art date
Application number
PCT/US2004/031675
Other languages
French (fr)
Other versions
WO2005032465A3 (en
Inventor
George A. Doherty
Jeffrey J. Hale
Irene E. Legiec
Christopher L. Lynch
Leslie M. Toth
Original Assignee
Merck & Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck & Co., Inc. filed Critical Merck & Co., Inc.
Priority to AU2004277947A priority Critical patent/AU2004277947A1/en
Priority to US10/571,334 priority patent/US20070043014A1/en
Priority to EP04789100A priority patent/EP1670463A2/en
Priority to JP2006533999A priority patent/JP2007528872A/en
Priority to CA002539438A priority patent/CA2539438A1/en
Publication of WO2005032465A2 publication Critical patent/WO2005032465A2/en
Publication of WO2005032465A3 publication Critical patent/WO2005032465A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/061,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles

Definitions

  • the present invention is related to compounds that are SlPi Edgl receptor agonists and thus have immunosuppressive activities by modulating leukocyte trafficking, sequestering lymphocytes in secondary lymphoid tissues, and interfering with cel cell interactions required for an efficient immune response.
  • the invention is also directed to pharmaceutical compositions containing such compounds and methods of treatment or prevention.
  • Immunosuppressive agents have been shown to be useful in a wide variety of autoimmune and chronic inflammatory diseases, including systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis and other disorders such as Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy, atopic dermatitis and asthma.
  • chemotherapeutic regimens for the treatment of cancers, lymphomas and leukemias.
  • pathogenesis of each of these conditions may be quite different, they have in common the appearance of a variety of autoantibodies and/or self -reactive lymphocytes. Such self-reactivity may be due, in part, to a loss of the homeostatic controls under which the normal immune system operates.
  • the host lymphocytes recognize the foreign tissue antigens and begin to produce both cellular and humoral responses including antibodies, cytokines and cytotoxic lymphocytes which lead to graft rejection.
  • autoimmune or a rejection process tissue destruction caused by inflammatory cells and the mediators they release.
  • Anti-inflammatory agents such as NS AJDs act principally by blocking the effect or secretion of these mediators but do nothing to modify the immunologic basis of the disease.
  • cytotoxic agents such as cyclophosphamide, act in such a nonspecific fashion that both the normal and autoimmune responses are shut off. Indeed, patients treated with such nonspecific immunosuppressive agents are as likely to succumb to infection as they are to their autoimmune disease.
  • Cyclosporin A is a drug used to prevent rejection of transplanted organs.
  • FK-506 is another drug approved for the prevention of transplant organ rejection, and in particular, liver transplantation.
  • Cyclosporin A and FK-506 act by inhibiting the body's immune system from mobilizing its vast arsenal of natural protecting agents to reject the transplant's foreign protein.
  • Cyclosporin A was approved for the treatment of severe psoriasis and has been approved by European regulatory agencies for the treatment of atopic dermatitis. Though they are effective in delaying or suppressing transplant rejection, Cyclosporin A and FK-506 are known to cause several undesirable side effects including nephrotoxicity, neurotoxicity, and gastrointestinal discomfort. Therefore, an immunosuppressant without these side effects still remains to be developed and would be highly desirable.
  • the immunosuppressive compound FTY720 is a lymphocyte sequestration agent currently in clinical trials.
  • FTY720 is metabolized in mammals to a compound that is a potent agonist of sphingosine 1-phosphate receptors.
  • Agonism of sphingosine 1-phosphate receptors modulates leukocyte trafficking, induces the sequestration of lymphocytes (T-cells and B -cells) in lymph nodes and Peyer's patches without lymphodepletion, and disrupts splenic architecture, thereby interfering with T cell dependent and independent antibody responses.
  • lymphocytes T-cells and B -cells
  • Such i munosuppression is desirable to prevent rejection after organ transplantation and in the treatment of autoimmune disorders.
  • Sphingosine 1-phosphate is a bioactive sphingolipid metabolite that is secreted by hematopoietic cells and stored and released from activated platelets.
  • SIPi S 1P2, S IP3, SIP4, and SIP5, also known as endothelial differentiation genes Edgl, Edg5, Edg3, Edg6, Edg8), that have widespread cellular and tissue distribution and are well conserved in human and rodent species (see Table). Binding to SIP receptors elicits signal transduction through Gq-, Gi/o, G12-, G13-, and Rho-dependent pathways. Ligand-induced activation of SlP ⁇ and SIP3 has been shown to promote angiogenesis, chemotaxis, and adherens junction assembly through Rac- and Rho-, see Lee, M.-L, S. Thangada, K.P.
  • SIP4 is localized to hematopoietic cells and tissues, see Graeler, M.H., G. Bernhardt, and M. Lipp. 1999. Curr. Top. Microbiol. Immunol. 246:131-6
  • SIP5 is primarily a neuronal receptor with some expression in lymphoid tissue, see hn, D.S., C.E. Heise, N. Ancellin, B.F. O'Dowd, G.J. Shei, R.P. Heavens, M.R. Rigby, T. Hla, S. Mandala, G. McAllister, S.R. George, and K.R. Lynch. 2000. J. Biol. Chem.
  • sphingosine 1-phosphate also has cardiovascular and bronchoconstrictor effects that limit its utility as a therapeutic agent.
  • Intravenous administration of sphingosine 1-phosphate decreases the heart rate, ventricular contraction and blood pressure in rats, see Sugiyama, A., N.N. Aye, Y. Yatomi, Y. Ozaki, and K. Hashimoto. 2000. Jpn. J. Pharmacol. 82:338-342.
  • sphingosine 1-phosphate modulates contraction, cell growth and cytokine production that promote bronchoconstriction, airway inflammation and remodeling in asthma, see Ammit, A.J., AT. Hastie, L. C. Edsall, R.K. Hoffman, Y. Amrani, V.P. Krymskaya, S.A. Kane, S.P.
  • the undesirable effects of sphingosine 1-phosphate are associated with its non- selective, potent agonist activity on all SIP receptors.
  • the present invention encompasses compounds which are agonists of the
  • SlPi Edgl receptor having selectivity over the SlP3 Edg3 receptor.
  • An SlPi Edgl receptor selective agonist has advantages over current therapies and extends the therapeutic window of lymphocyte sequestration agents, allowing better tolerability with higher dosing and thus improving efficacy as monotherapy.
  • other uses for such compounds include the treatment of arthritis, in particular, rheumatoid arthritis, insulin and non-insulin dependent diabetes, multiple sclerosis, psoriasis, inflammatory bowel disease, Crohn's disease, lupus erythematosis and the like.
  • the present invention is focused on providing immunosuppressant compounds that are safer and more effective than prior compounds.
  • the compounds are useful for treating immune mediated diseases and conditions, such as bone marrow, organ and tissue transplant rejection.
  • Pharmaceutical compositions and methods of use are included.
  • A is selected from the group consisting of: phenyl, naphthyl and HETl, each substituted with one to three substituents independently selected from the group consisting of: halo, C ⁇ _6alkyl, halo-substitutedC ⁇ _6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci- 6alkoxy and halo-substituted-C ⁇ _6alkoxy, or A is C3_6cycloalkyl, optionally substituted with one to three substituents independently selected from the group consisting of: halo, C ⁇ _6alkyl, halo-substitutedCi_6 " alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci- ⁇ alkoxy and halo-substituted-Ci- ⁇ alk
  • An embodiment of the invention encompasses a compound of Formula I wherein: A is selected from the group consisting of: phenyl, pyridyl and pyrazinyl, substituted with one to two substituents independently selected from the group consisting of: halo, C ⁇ _6alkyl, halo-substitutedC ⁇ _6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci- galkoxy and halo-substituted-C ⁇ ⁇ 6alkoxy, or A is C3-6cycloalkyl, optionally substituted with one to two substituents independently selected from the group consisting of: halo, Ci- ⁇ alkyl, halo-substitutedCi_6alkyl, C3
  • Another embodiment of the invention encompasses a compound of Formula I wherein: A is phenyl substituted at the para position relative to the attachment of the 1,2,4- oxadiazole group shown in Formula I with a substituent selected from the group consisting of: C ⁇ _6alkyl, halo-substitutedC ⁇ _6alkyl, C3_6cycloalkyl, halo-substitutedC3-6cycloalkyl, C ⁇ _
  • A is pyridyl substituted at the 1,4-position relative to the attachment of the 1,2,4- oxadiazole group shown in Formula I with a substituent selected from the group consisting of: Ci_6alkyl, halo-substitutedCi-6alkyl, C3-6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci_ 6alkoxy and halo-substituted-Ci-6alkoxy.
  • the "1,4-position" means, for example, the position shown in Examples 6 to 11 and 16 below.
  • Another embodiment of the invention encompasses a compound of Formula I wherein A is cyclohexyl.
  • Another embodiment of the invention encompasses a compound of Formula I wherein B is phenyl, optionally substituted with a substituent selected from the group consisting of: halo, Ci_4alkyl, halo-substitutedC ⁇ _4alkyl and hydroxy-substituted C ⁇ _4alkyl.
  • Another embodiment of the invention encompasses a compound of Formula I wherein B is selected from the group consisting of: isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, C ⁇ _4alkyl, halo-substitutedCi_4alkyl and hydroxy-substituted Ci_4alkyl.
  • Another embodiment of the invention encompasses a compound of Formula I wherein X is methyl.
  • the invention also encompasses a compound of formula la
  • A is selected from the group consisting of: phenyl, pyridyl and pyrazinyl, substituted with one to two substituents independently selected from the group consisting of: halo, Ci-6alkyl, halo-substitutedCi- ⁇ alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci_ 6alkoxy and halo-substituted-C ⁇ _6alkoxy, or A is C3-6cycloalkyl, optionally substituted with one to two substituents independently selected from the group consisting of: halo, Ci- ⁇ alkyl, halo ⁇ substitutedCl_6alkyl, C3-6cycloalkyl, halo-substitutedC3-6cycloalkyl, C ⁇ _6alkoxy and halo-substituted-C ⁇ _6alkoxy.
  • An embodiment of the invention is selected from the group consisting of:
  • B is selected from the group consisting of: phenyl, isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Cl_4alkyl, halo-substitutedCi_4alkyl and hydroxy-substituted Ci-4alkyl; and X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole group shown in Formula I.
  • Another embodiment of the invention encompasses a compound of Formula Ic
  • Z is selected from the group consisting of: Ci- ⁇ alkyl, halo-substitutedCi_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, C ⁇ _6alkoxy and halo-substituted-Ci-6alkoxy;
  • B is selected from the group consisting of: phenyl, isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Cl_4alkyl, halo-substitutedC ⁇ _4alkyl and hydroxy-substituted Ci_4alkyl; and
  • X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,
  • Another embodiment of the invention encompasses a compound of Formula I wherein Z is Ci_6alkoxy or halo-substituted-C ⁇ _6alkoxy.
  • the invention is further exemplified in the examples that follow.
  • the invention also encompasses a method of treating an immunoregulatory abnormality in a mammalian patient in need of such treatment comprising administering to said patient a compound of Formula I in an amount that is effective for treating said immunoregulatory abnormality.
  • the immunoregulatory abnormality is an autoimmune or chronic inflammatory disease selected from the group consisting of: systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis, Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy and asthma.
  • an autoimmune or chronic inflammatory disease selected from the group consisting of: systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis, Crohn's disease, ulcerative colitis, bullous pemphigoid
  • the immunoregulatory abnormality is bone marrow or organ transplant rejection or graft- versus-host disease. Also within this embodiment is encompassed the above method wherein the immunoregulatory abnormality is selected from the group consisting of: transplantation of organs or tissue, graft- versus-host diseases brought about by transplantation, autoimmune syndromes including rheumatoid arthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes, uveitis, posterior uveitis, allergic encephalomyelitis, glomeralonephritis, post-infectious autoimmune diseases including rheumatic fever and post-infectious glomeralonephritis, inflammatory and hyperproliferative skin diseases, psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitis, seborr
  • the immunoregulatory abnormality is selected from the group consisting of: 1) multiple sclerosis, 2) rheumatoid arthritis, 3) systemic lupus erythematosus, 4) psoriasis, 5) rejection of transplanted organ or tissue, 6) inflammatory bowel disease, 7) a malignancy of lymphoid origin, 8) acute and chronic lymphocytic leukemias and lymphomas and 9) insulin and non-insulin dependent diabetes.
  • the invention also encompasses a method of suppressing the immune system in a mammalian patient in need of immunosuppression comprising administering to said patient an immunosuppressing effective amount of a compound of Formula I.
  • the invention also encompasses a pharmaceutical composition comprised of a compound of Formula I in combination with a pharmaceutically acceptable carrier.
  • the invention also encompasses a method of treating a respiratory disease or condition in a mammalian patient in need of such treatment comprising administering to said patient a compound of Formula I in an amount that is effective for treating said respiratory disease or condition.
  • the respiratory disease or condition is selected from the group consisting of: asthma, chronic bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia.
  • the respiratory disease or condition is selected from the group consisting of: asthma, chronic bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia.
  • the patient also has a respiratory disease or condition.
  • the patient is also suffering from a cardiovascular disease or condition.
  • halogen or “halo” includes F, CI, Br, and I.
  • alkyl means linear or branched structures and combinations thereof, having the indicated number of carbon atoms.
  • C - ⁇ alkyl includes methyl, ethyl, propyl, 2-propyl, s- and t-butyl, butyl, pentyl, hexyl, 1,1-dimethylethyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • alkoxy means alkoxy groups of a straight, branched or cyclic configuration having the indicated number of carbon atoms. Ci_6alkoxy, for example, includes methoxy, ethoxy, propoxy, isopropoxy, and the like.
  • cycloalkyl means mono-, bi- or tri-cyclic structures, optionally combined with linear or branched structures, having the indicated number of carbon atoms. Examples of cycloalkyl groups include cyclopropyl, cyclopentyl, cycloheptyl, adamantyl, cyclododecylmethyl, 2-ethyl-l- bicyclo[4.4.0]decyl, cyclobutylmethyl and the like.
  • halo-substituted alkyl means alkyl as defined above substituted with one or more halo groups as defined above up to the maximum number of substitutable positions, such as trifluoromethyl and the like.
  • halo-substituted alkoxy means alkoxy as defined above substituted with one or more halo groups as defined above up to the maximum number of substitutable positions, such as trifluroal oxy and the like.
  • halo-substituted cycloalkylalkyl means cycloalkyl as defined above substituted with one or more halo groups as defined above up to the maximum number of substitutable positions.
  • hydroxy-substituted alkyl means alkyl as defined above substituted with one or more hydroxy groups up to the maximum number of substitutable positions.
  • treating encompasses not only treating a patient to relieve the patient of the signs and symptoms of the disease or condition but also prophylactically treating an asymptomatic patient to prevent the onset or progression of the disease or condition.
  • amount effective for treating is intended to mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, a system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
  • the term also encompasses the amount of a pharmaceutical drug that will prevent or reduce the risk of occurrence of the biological or medical event that is sought to be prevented in a tissue, a system, animal or human by a researcher, veterinarian, medical doctor or other clinician.
  • the invention described herein includes pharmaceutically acceptable salts and hydrates.
  • Pharmaceutically acceptable salts include both the metallic (inorganic) salts and organic salts; a list of which is given in Remington's Pharmaceutical Sciences, 17th Edition, pg. 1418 (1985). It is well known to one skilled in the art that an appropriate salt form is chosen based on physical and chemical stability, flowability, hydroscopicity and solubility.
  • pharmaceutically acceptable salts include, but are not limited to salts of inorganic acids such as hydrochloride, sulfate, phosphate, diphosphate, hydrobromide, and nitrate or salts of an organic acid such as malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate, p-toluenesulfonate or pamoate, salicylate and stearate.
  • pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium and ammonium (especially ammonium salts with secondary amines).
  • Preferred salts of this invention for the reasons cited above include potassium, sodium, calcium and ammonium salts.
  • crystal forms, hydrates and solvates of the compounds of Formula I are included within the scope of this invention.
  • pharmaceutically acceptable hydrate means the compounds of the instant invention crystallized with one or more molecules of water to form a hydrated form.
  • the invention also includes the compounds alling within Formula I in the form of one or more stereoisomers, in substantially pure form or in the form of a mixture of stereoisomers. All such isomers are encompassed within the present invention.
  • the compounds of the present invention are immunoregulatory agents useful for treating or preventing automimmune or chronic inflammatory diseases.
  • the compounds of the present invention are useful to suppress the immune system in instances where immunosuppression is in order, such as in bone marrow, organ or transplant rejection, autoimmune and chronic inflammatory diseases, including systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis, Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy and asthma.
  • the compounds of the present invention are useful to treat or prevent a disease or disorder selected from the group consisting of: transplantation of organs or tissue, graft- versus-host diseases brought about by transplantation, autoimmune syndromes including rheumatoid arthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes, uveitis, posterior uveitis, allergic encephalomyelitis, glomeralonephritis, post-infectious autoimmune diseases including rheumatic fever and post- infectious glomeralonephritis, inflammatory and hyperproliferative skin diseases, psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitis, seborrhoeic dermatitis, lichen planus, pemphigus, bullous pemphigoid, epidermolysis bullosa, urticaria
  • Alzheimer's Disease Also embodied within the present invention is a method of preventing or treating resistance to transplantation or transplantation rejection of organs or tissues in a mammalian patient in need thereof, which comprises administering a therapeutically effective amount of the compound of Formula I.
  • a method of suppressing the immune system in a mammalian patient in need thereof, which comprises administering to the patient an immune system suppressing amount of the compound of Formula I is yet another embodiment.
  • the method described herein encompasses a method of treating or preventing bone marrow or organ transplant rejection which is comprised of admininstering to a mammalian patient in need of such treatment or prevention a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof, in an amount that is effective for treating or preventing bone marrow or organ transplant rejection.
  • the compounds of the present invention are also useful for treating a respiratory dieases or condition, such as asthma, chronic bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia
  • a respiratory dieases or condition such as asthma, chronic bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia
  • the compounds of the present invention are selective agonists of the SlPi Edgl receptor having selectivity over SlP
  • the present invention also includes a pharmaceutical formulation comprising a pharmaceutically acceptable carrier and the compound of Formula I or a pharmaceutically acceptable salt or hydrate thereof.
  • a preferred embodiment of the formulation is one where a second immunosuppressive agent is also included.
  • second immunosuppressive agents are, but are not limited to azathioprine, brequinar sodium, deoxyspergualin, mizaribine, mycophenolic acid morpholino ester, cyclosporin, FK-506, rapamycin, FTY720 and IS Atx247 (Isotechnika).
  • compositions of co-administering a compound of Formula I with a second immunosuppressive agent including one or more of the above, is also encompassed within the invention.
  • the present compounds, including salts and hydrates thereof, are useful in the treatment of autoimmune diseases, including the prevention of rejection of bone marrow transplant, foreign organ transplants and/or related afflictions, diseases and illnesses.
  • the compounds of this invention can be administered by any means that effects contact of the active ingredient compound with the site of action in the body of a warm-blooded animal.
  • administration can be oral, topical, including transdermal, ocular, buccal, intranasal, inhalation, intravaginal, rectal, intracisternal and parenteral.
  • parenteral refers to modes of administration which include subcutaneous, intravenous, intramuscular, intraarticular injection or infusion, intrasternal and intraperitoneal.
  • the compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but are generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
  • the dosage administered will be dependent on the age, health and weight of the recipient, the extent of disease, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired. Usually, a daily dosage of active ingredient compound will be from about 0.1-2000 milligrams per day.
  • the active ingredient can be administered orally in solid dosage forms, such as capsules, tablets, troches, dragees, granules and powders, or in liquid dosage forms, such as elixirs, syrups, emulsions, dispersions, and suspensions.
  • the active ingredient can also be administered parenterally, in sterile liquid dosage forms, such as dispersions, suspensions or solutions.
  • dosages forms that can also be used to administer the active ingredient as an ointment, cream, drops, transdermal patch or powder for topical administration, as an ophthalmic solution or suspension formation, i.e., eye drops, for ocular administration, as an aerosol spray or powder composition for inhalation or intranasal administration, or as a cream, ointment, spray or suppository for rectal or vaginal administration.
  • Gelatin capsules contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets.
  • Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours.
  • Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.
  • Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.
  • water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene gycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances.
  • Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propylparaben, and chlorobutanol. Suitable pharmaceutical carriers are described in Remington's Pharmaceutical
  • the compounds of the present invention may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or nebulisers.
  • the compounds may also be delivered as powders which may be formulated and the powder composition may be inhaled with the aid of an insufflation powder inhaler device.
  • the preferred delivery system for inhalation is a metered dose inhalation (MDI) aerosol, which may be formulated as a suspension or solution of a compound of Formula I in suitable propellants, such as fluorocarbons or hydrocarbons.
  • MDI metered dose inhalation
  • an ophthalmic preparation may be formulated with an appropriate weight percent solution or suspension of the compounds of Formula I in an appropriate ophthalmic vehicle, such that the compound is maintained in contact with the ocular surface for a sufficient time period to allow the compound to penetrate the corneal and internal regions of the eye.
  • Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows: CAPSULES A large number of unit capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate.
  • SOFT GELATIN CAPSULES A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil is prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules are washed and dried. TABLETS A large number of tablets are prepared by conventional procedures so that the dosage ,unit is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.
  • a parenteral composition suitable for administration by injection is prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol. The solution is made to volume with water for injection and sterilized.
  • aqueous suspension is prepared for oral administration so that each 5 milliliters contain 100 milligrams of finely divided active ingredient, 100 milligrams of sodium carboxymethyl cellulose, 5 milligrams of sodium benzoate, 1.0 grams of sorbitol solution, U.S.P., and 0.025 milliliters of vanillin.
  • the same dosage forms can generally be used when the compounds of this invention are administered stepwise or in conjunction with another therapeutic agent.
  • the dosage form and administration route should be selected depending on the compatibility of the combined drags.
  • coadministration is understood to include the administration of the two agents concomitantly or sequentially, or alternatively as a fixed dose combination of the two active components.
  • Aromatic carboxylic acid ii can be activated for acylation with a reagent such as N,N'-dicyclohexylcarbodiimide, l-(3-dimethylaminopropyl)-3- ethylcarbodiimide, l,r ⁇ carbonyldiimidazole, or bis(2-oxo-3-oxazolidinyl)phosphinic chloride in the presence of a suitable base (if necessary) such as triethylamine, N,N-diisopropylethylamine, or sodium bicarbonate in a solvent such as 1,2-dichloroethane, toluene, xylenes, N,N- dimethylformamide or N-methyl pyrrolidinone.
  • a suitable base if necessary
  • An aryl N-hydroxyamidine of general structure iii can then be added which results in the formation of an acyl N-hydroxyamidine iv.
  • This intermediate can be isolated using methods known to those skilled in the art (e.g., crystallization, silica gel chromatography, HPLC) and in a subsequent step, cyclized/dehydrated by warming iv in a suitable solvent (e.g., 1,2-dichloroethane, toluene, xylenes, N,N-dimethylformamide or N- methyl pyrrolidinone) to give a 1,2,4-oxadiazole of structure i.
  • a suitable solvent e.g., 1,2-dichloroethane, toluene, xylenes, N,N-dimethylformamide or N- methyl pyrrolidinone
  • Conversion of iii to iv may require added base, in which case reagents such as pyridine, N,N-diisopropylethylamine or tetrabutylammonium fluoride can be used. It may be more convenient or desirable to not isolate N-hydroxyamidine iv, in which case the transformation of ii to i can be carried out as a continuous process. It is possible to use acylating agents other than activated aromatic carboxylic acid ii to give compounds i.
  • 1,2,4-oxadiazole compounds i as described above.
  • Methods to prepare 1,2,4-oxadiazoles using these other acylating agents as well as other methods pertinent to the present invention are known to those skilled in the art and have been reviewed in the literature (see, Clapp, L.B., "1,2,3- and 1,2,4-Oxadiazoles", pp. 366- 91 in Comprehensive Heterocyclic Chemistry, Volume 6, Potts, K. T., Editor, Pergamon Press, 1984).
  • HET 1 phenyl, napthyl or HET 2
  • aromatic carbonitriles v as well as the aromatic carboxylic acids ii are available from commercial sources or can be prepared by those skilled in the art. using reported literature procedures. While the general structure i is achiral, it is understood that any of groups on either or both of its aromatic rings may have asymmetric centers, in which case the individual stereoisomers of i can obtained by methods known to those skilled in the art which include (but are not limited to): stereospecific synthesis, resolution of salts of i or any of the intermediates used in its preparation with enantiopure acids or bases, resolution of i or any of the intermediates used in its preparation by HPLC employing enantiopure stationary phases.
  • reaction mixture was partitioned between 50 mL of EtOAc ethyl acetate and 25 mL of 2 N HC1 and the layers were separated. The organic layer was washed with 25 mL of sat'd NaCl, dried and concentrated.
  • Step B (+/-)-4-(l-Oxo-2-methylbutyl)benzoic acid
  • the mixture was diluted with 20 mL of H 2 O and extracted with 25 mL of CH 2 C1 2 .
  • the aqueous layer was acidified (pH 1) and extracted with 50 mL of EtOAc.
  • CARBOXYLIC ACID 3 4-(l-Oxo-2-methylpropyl)benzoic acid
  • Step A Ethyl 4-(cyclobutylcarbonyl)benzoate
  • Step B Ethyl 4-(cyclobutyldifluoromethyl)benzoate A solution of 810 mg (3.5 mmol) of ethyl 4-(cyclobutylcarbonyl)benzoic acid (from Step A) in 5 mL of toluene was treated with 1.30 g (5.9 mmol) of [bis(2- methoxyethyl)amino] sulfur trifluoride and 0.41 mL (0.7 mmol) of EtOH and the resulting mixture was heated to 80°C for 18 h. The reaction was concentrated.
  • Step C 4-(Cyclobutyldifluror0methyl)benzoic acid
  • a solution of 360 mg (1.4 mmol) of ethyl 4-(cyclobutyldifluoromethyl)benzoate (from Step B) in 4 mL of 1:1 v/v MeOH THF was treated with 2.1 mL of 1.0 N NaOH.
  • the resulting mixture was stirred at 50°C for 3 h at, then cooled and concentrated. The residue was partitioned between EtOAc and 2 N HC1.
  • CARBOXYLIC ACID 5 4-(Ll-Difluoro-2-methylpropyl)benzoic acid
  • Step B 3-Fluoro-4-isobutyrylbenzoic acid
  • CARBOXYLIC ACID 7 3-Trifluoromethyl-4-(2-(S)-butoxy)benzoic acid
  • Step A 3-Trifluoromethyl-4-(2-(S)-butoxy)benzonitrile
  • a solution of 1.1 g (5.9 mmol) of 4-fluoro-3-trifluoromethylbenzonitrile and 485 mg (6.5 mmol) of (S)-(+)-2-butanol in 10 mL of THF at -10°C was treated with 235 mg (5.9 mmol) of sodium hydride. The resulting mixture was stirred cold for 2 h, then quenched with 10 mL of H 2 O.
  • Step B 3-Trifluoromethyl-4-(2-(S)-butoxy)benzoic acid
  • a solution of 550 mg (2.2 mmol) of 3-trifluoromethyl-4-(2-(S)-methylpropyloxy) benzonitrile (from Step A) in 5 mL of ethanol was treated with 1.5 mL of 5.0 N NaOH and was heated to 80°C for 3 h.
  • CARBOXYLIC ACID 15 3-Trifluoromethyl-4-(l-(S)-methyl-2.2,2-trifluoroethoxy)benzoic acid
  • Step A l-(S)-Methyl-2,2,2-trifluoroethanol
  • the title compound was prepared using the procedure reported by Ramachandran, P. V., etal. in Tetrahedron, 1993, 49(9), 1725-38.
  • Step B 3-Trifluoromethyl-4-(l-(S)-methyl-2,2,2-trifluoroethoxy)benzoic acid
  • the title compound was prepared using procedures analogous to those described for CARBOXYLIC ACID 7 substituting l-(S)-methyl-2,2,2-trifluoroethanol (from Step A) for (S)-2-butanol in CARBOXYLIC ACID 7, Step A.
  • the enantiomeric purity of the title compound was determined by converting it to the corresponding methyl ester (excess 2.0 M trimethylsilyldiazomethane solution in cyclohexane, THF/MeOH, 5 min) and assaying by HPLC.
  • Step B 3-Fluoro-4-(2-(S)-butoxy)benzoic acid
  • a solution of 130 mg (0.66 mmol) of 3-fluoro-4-(2-(S)-butoxy)benzaldehyde (from Step A) in 1 mL of acetone was treated with a 73 mg (0.73 mmol) of chromium (VI) oxide in a 3: 1 v/v mixture of water/sulfuric acid at 0 °C.
  • Step B 3,5-Difluoro-4-(2-(S)-butoxy)benzonitrile
  • the resulting solution was heated to 80°C for 1 hour and then cooled and concentrated.
  • Step C 3,5-Difluoro-4-(2-(S)-butoxy)benzoic acid
  • Step A Methyl 4-(2-(S)-butoxy)benzoate The title compound was prepared using procedure analogous to that described in CARBOXYLIC ACID 16, Step A substituting methyl 4-hydroxybenzoate for 3-fluoro-4- hydroxybenzaldehyde.
  • Step B 4-(2-(S)-Butoxy)benzoic acid A solution of 1.0 g (4.8 mmol) of methyl 4-(2-(S)-butoxy)benzoate in 15 mL of MeOH was treated with 1 mL of 5.0 N NaOH at rt for 1 h. The solution was concentrated, acidified with 6 mL of 2 N HC1 , extracted with EtOAc, dried and concentrated to afford 800 mg (86%) of the title compound.
  • CARBOXYLIC ACID 19 4-(2-(S)-Butoxy-2-f_uoro-benzoic acid Step A: 4-(2-(S)-Butoxy-2-fluoro-benzonitrile The title compound was prepared using a procedure analogous to that described in CARBOXYLIC ACID 16, Step A substituting 2-fluoro-4-hydroxy-benzonitrile for 3-fluoro-4- hydroxybenzaldehyde.
  • Step B 4-(2-(S)-Butoxy-2-fluoro-benzoic acid A mixture of 770 mg (4.0 mmol) of 4-(2-(S)-butoxy-2-fluoro-benzonitrile (from Step A) 20 mL of EtOH and 8 mL of 5 N NaOH (8 ml) was stirred at 80°C for 20 hours.
  • Step A 5-Bromo-l,3-difluoro-2-(2,2,2-trifluoroethoxy)benzene
  • a mixture of 1.25 g (6 mmol) of 4-bromo-2,6-difluorophenol and 3.93 g (12 mmol) of cesium carbonate in 10 mL of acetonitrile was treated with 1.4 g (6 mmol) of 2,2,2- trifluoroethyltrifluoromethanesulfonate and stirred at rt for 2 h.
  • the reaction mixture was diluted with EtOAc and washed with 2 N HC1.
  • the organic layer was dried and concentrated.
  • Silica gel chromatography using 9:1 hexanes/EtOAc as the eluent afforded 230 mg of the title compound:
  • Step B 3,5-Difluoro-4-(2,2,2-trifluoroethoxy)benzonitrile
  • Step C 3,5-Difluoro-4-(2,2,2-trifluoroethoxy)benzoic acid
  • CARBOXYLIC ACID 21 5-(2-Methyl-l-oxopropyl)pyridine-2-carboxylic acid
  • Step A (+/-)-5-(2-Methyl-l-hydroxypropyl)-2-bromopyridine
  • a solution of 1.00 g (4.4 mmol) of 2,5-dibromopyridine in 10 mL of THF at 0 °C was treated wit 2.5 mL of 2 M isopropylmagnesium chloride solution in THF and the resulting mixture was stirred cold for 1 h.
  • the mixture was treated with 0.46 mL (5.1 mmol) of isobutyraldehyde, warmed to rt and stirred for 16 h.
  • Step B 5-(2-Methyl-l-oxopropyl)-2-bromopyridine
  • a mixture of 290 mg (1.25 mmol) of 5-(2 ⁇ methyl-l-hydroxypropyl)-2- bromopyridine (from Step A) and 220 mg (1.9 mmol) of N-methylmorpholine-N-oxide in 5 mL of CH 2 C1 2 was treated with 20 mg of tetrapropylammonium perruthenate. The mixture was stirred at rt for 3 h.
  • Step C 5-(2-Methyl-l-oxopropyl)pyridine-2-carbonitrile
  • Step D 5-(2-Methyl-l-oxopropyl)pyridine-2-carboxylic acid
  • a solution of 125 mg (0.7 mmol) of 5-(2-methyl-l-oxopropyl)pyridine-2- carbonitrile (from Step C) and 0.7 mL of 5.0 N NaOH in 2.5 mL of EtOH was stirred at 75 °C for 1 h.
  • the reaction was cooled, diluted with 50 mL of EtOAc, washed with 20 mL of 2 N HC1, 25 mL of sat'd NaCl, dried and concentrated to give 108 mg of the title compound.
  • CARBOXYLIC ACID 22 5-(Ll-Difluoro-2-methylpropyl)pyri(3ine-2-carboxylic acid
  • Step B (S)-3-(4-Bromophenyl)- 1 , 1 -difluorocyclopentane
  • a mixture of 2.1 mL (11.4 mmol) of [bis(2-methoxyethyl)amino] sulfur trifluoride and 0.10 mL (0.7 mmol) of borontrifluoride etherate in 7 mL of toluene at 0 °C was allowed to stand for 1.3 h with occasional stirring.
  • a solution of 1.9 g (7.9 mmol) of (S)-3-(4- bromophenyl)cyclopentanone (from Step A) in 13 mL of toluene was added.
  • the reaction was stirred at 55 °C for 2 days. After cooling, the mixture was added to 250 mL of 2N NaOH and 250 mL of Et 2 O at 0 °C. After stirring for 30 min, the phases were separated. The organic layer was washed with 250 mL of 1 N NaOH and 250 mL of H 2 O, dried over MgSO and concentrated.
  • Step C (S)-4-(3,3-Difluorocyclopentyl) benzoic acid
  • a solution of 1.0 g (3.8 mmol) of (S)-3-(4-bromophenyl)-l,l- difluorocyclopentane (from Step B) in 15 mL of THF at -78 °C was treated with 1.6 mL (4.0 mmol) of 2.5M BuLi in hexanes. After stirring for 15 min, the reaction was added to a suspension of dry ice in 200 mL of Et 2 O. The mixture was allowed to warm to rt. The reaction mixture was extracted with 100 mL of 1 N NaOH.
  • CARBOXYLIC ACID 24 (R)-4-(3.3-Difluorocyclopentyl) benzoic acid
  • the title compound was prepared using analogous procedures to CARBOXYLIC ACID 23, except (R)-2,2'-bis(diphenylphosphino)-l,l'binaphthyl (BINAP) was substituted for (S)-2,2'-bis(diphenylphosphino)-l,l'binaphthyl (BINAP) in Step A.
  • Step A N-Hydroxy-(2-methyl-5-chloro)benzamidine
  • a mixture 2.50 g (16.5 mmol) of 5-chloro-2-methylbenzonitrile, 2.30 g (33 mmol) of hydroxylamine hydrochloride and 6.90 g (82.5 mmol) of sodium bicarbonate in 25 mL of MeOH methanol was stirred at 50 °C for 16 h.
  • the reaction mixture was cooled, diluted with 50 mL of 2 N HC1 , then extracted with 3 x 30 mL of CH 2 C1 2 and 1 x 30 mL of EtOAc.
  • Step B 3-(2-Methyl-5-chlorophenyl)-5-(4-(2-methylpropyl)phenyl)-l,2,4-oxadiazole
  • EXAMPLES 26-31 The following were prepared using procedures analogous to those described in EXAMPLE 1 substituting the appropriate nitrile for (2-methyl-5-chloro)benzonitrile in Step A and the appropriate carboxylic acid for 4-(2-methylpropyl)benzoic acid in Step B.
  • SlPi/Edgl, SlP3,/Edg3, SlP2/Edg5, SlP4/Edg6 or SIP5 /Edg8 activity of the compounds of the present invention can be evaluated using the following assays:
  • 33p-sphingosine-l-phosphate was synthesized enzymatically from ⁇ 33p_ATP and sphingosine using a crude yeast extract with sphingosine kinase activity in a reaction mix containing 50 mM KH2PO4, 1 mM mercaptoethanol, 1 mM Na3VO4, 25 mM KF, 2 mM semicarbazide, 1 mM Na2EDTA, 5 mM MgCl2, 50 mM sphingosine, 0.1% TritonX-114, and 1 mCi ⁇ 33p_ATP (NEN; specific activity 3000 Ci/mmol).
  • Reaction products were extracted with butanol and 33p_ S phingosine-l-phosphate was purified by HPLC.
  • Cells expressing EDG/S1P receptors were harvested with enzyme-free dissociation solution (Specialty Media, Lavallette, NJ). They were washed once in cold PBS and suspended in binding assay buffer consisting of 50 mM HEPES-Na, pH 7.5, 5mM MgCl2, lmM CaCl2, and 0.5% fatty acid-free BSA.
  • 3p-sphingosine- 1-phosphate was sonicated with 0.1 nM sphingosine- 1-phosphate in binding assay buffer; 100 ⁇ l of the ligand mixture was added to 100 ⁇ l cells (1 x l ⁇ 6 cells/ml) in a 96 well microtiter dish. Binding was performed for 60 min at room temperature with gentle mixing. Cells were then collected onto GF/B filter plates with a Packard Filtermate Universal Harvester. After drying the filter plates for 30 min, 40 ⁇ l of Microscint 20 was added to each well and binding was measured on a Wallac Microbeta Scintillation Counter.
  • Non-specific binding was defined as the amount of radioactivity remaining in the presence of 0.5 ⁇ M cold sphingosine- 1-phosphate.
  • ligand binding assays were performed on membranes prepared from cells expressing Edg/SlP receptors. Cells were harvested with enzyme-free dissociation solution and washed once in cold PBS. Cells were disrupted by homogenization in ice cold 20 mM HEPES pH 7.4, 10 mM EDTA using a Kinematica polytron (setting 5, for 10 seconds). Homogenates were centrifuged at 48,000 x g for 15 min at 4°C and the pellet was suspended in 20 mM HEPES pH 7.4, 0.1 mM EDTA.
  • Ligand binding assays were performed as described above, using 0.5 to 2 ⁇ g of membrane protein.
  • Agonists and antagonists of Edg/SlP receptors can be identified in the 33p_ sphingosine- 1-phosphate binding assay.
  • Compounds diluted in DMSO, methanol, or other solvent, were mixed with probe containing 33p-sphingosine- 1-phosphate and binding assay buffer in microtiter dishes.
  • Membranes prepared from cells expressing Edg/SlP receptors were added, and binding to 33p.
  • S p ingosine- 1-phosphate was performed as described. Determination of the amount of binding in the presence of varying concentrations of compound and analysis of the data by non-linear regression software such as MRLCalc (Merck Research Laboratories) or PRISM (GraphPad Software) was used to measure the affinity of compounds for the receptor. Selectivity of compounds for Edg/S IP receptors was determined by measuring the level of 33p. sphingosine- 1-phosphate binding in the presence of the compound using membranes prepared from cells transfected with each respective receptor (SlPi/Edgl, SlP3/Edg3, SlP2/Edg5, SlP4 Edg6, SlP5 Edg8).
  • Binding was performed for 1 hour at room temperature with gentle mixing, and terminated by harvesting the membranes onto GF B filter plates with a Packard Filtermate Universal Harvester. After drying the filter plates for 30 min, 40 ⁇ l of Microscint 20 was added to each well and binding was measured on a Wallac Microbeta Scintillation Counter. Agonists and antagonists of SlP/Edg receptors can be discriminated in the 5s- GTP ⁇ S binding assay. Compounds diluted in DMSO, methanol, or other solvent, were added to microtiter dishes to provide final assay concentrations of 0.01 nM to 10 ⁇ M.
  • Membranes prepared from cells expressing SlP/Edg receptors were added, and binding to 35s-GTP ⁇ S was performed as described. When assayed in the absence of the natural ligand or other known agonist, compounds that stimulate 35s-GTP ⁇ S binding above the endogenous level were considered agonists, while compounds that inhibit the endogenous level of 35s-GTP ⁇ S binding were considered inverse agonists. Antagonists were detected in a 35s-GTP ⁇ S binding assay in the presence of a sub-maximal level of natural ligand or known SlP/Edg receptor agonist, where the compounds reduced the level of 35s-GTP ⁇ S binding.
  • Determination of the amount of binding in the presence of varying concentrations of compound was used to measure the potency of compounds as agonists, inverse agonists, or antagonists of SlP/Edg receptors.
  • percent stimulation over basal was calculated as binding in the presence of compound divided by binding in the absence of ligand, multiplied by 100.
  • Dose response curves were plotted using a non-linear regression curve fitting program MRLCalc (Merck Research Laboratories), and EC50 values were defined to be the concentration of agonist required to give 50% of its own maximal stimulation.
  • Selectivity of compounds for SlP/Edg receptors was determined by measuring the level of 35s-GTP ⁇ S binding in the presence of compound using membranes prepared from cells transfected with each respective receptor.
  • FLIPR Fluorescence Imaging Plate Reader
  • the cells were washed twice with buffer before plating 1.5xl ⁇ 5 per well (90 ⁇ l) in 96 well polylysine coated black microtiter dishes.
  • a 96-well ligand plate was prepared by diluting sphingosine- 1-phosphate or other agonists into 200 ⁇ l of assay buffer to give a concentration that was 2-fold the final test concentration.
  • the ligand plate and the cell plate were loaded into the FLIPR instrument for analysis. Plates were equilibrated to 37°C.
  • the assay was initiated by transferring an equal volume of ligand to the cell plate and the calcium flux was recorded over a 3 min interval. Cellular response was quantitated as area (sum) or maximal peak height (max).
  • Antagonists were evaluated in the absence of natural ligand by dilution of compounds into the appropriate solvent and transfer to the Fluo-4 labeled cells. Antagonists were evaluated by pretreating Fluo-4 labeled cells with varying concentrations of compounds for 15 min prior to the initiation of calcium flux by addition of the natural ligand or other SlP/Edg receptor agonist.
  • 5' and or 3' RACE may be performed to generate a full-length cDNA sequence; (2) direct functional expression of the Edg/SlP cDNA following the construction of an SlP/Edg- containing cDNA library in an appropriate expression vector system; (3) screening an SlP/Edg- containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a labeled degenerate oligonucleotide probe designed from the amino acid sequence of the SlP/Edg protein; (4) screening an SlP/Edg-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a partial cDNA encoding the SlP/Edg protein.
  • This partial cDNA is obtained by the specific PCR amplification of SlP/Edg DNA fragments through the design of degenerate oligonucleotide primers from the amino acid sequence known for other proteins which are related to the SlP/Edg protein; (5) screening an SlP/Edg-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a partial cDNA or oligonucleotide with homology to a mammalian SlP/Edg protein.
  • This strategy may also involve using gene- specific oligonucleotide primers for PCR amplification of SlP/Edg cDNA; or (6) designing 5' and 3' gene specific oligonucleotides using the SlP Edg nucleotide sequence as a template so that either the full-length cDNA may be generated by known RACE techniques, or a portion of the coding region may be generated by these same known RACE techniques to generate and isolate a portion of the coding region to use as a probe to screen one of numerous types of cDNA and/or genomic libraries in order to isolate a full-length version of the nucleotide sequence encoding SlP/Edg. It is readily apparent to those skilled in the art that other types of libraries, as well as libraries constructed from other cell types-or species types, may be useful for isolating an SlP Edg nucleotide sequence as a template so that either the full-length cDNA may be generated by known RACE techniques, or a portion of the coding
  • SlP Edg-encoding DNA or an SlP Edg homologue include, but are not limited to, cDNA libraries derived from other cells. It is readily apparent to those skilled in the art that suitable cDNA libraries may be prepared from cells or cell lines which have SlP Edg activity. The selection of cells or cell lines for use in preparing a cDNA library to isolate a cDNA encoding SlP/Edg may be done by first measuring cell-associated SlP/Edg activity using any known assay available for such a purpose. Preparation of cDNA libraries can be performed by standard techniques well known in the art.
  • cDNA library construction techniques can be found for example, in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Complementary DNA libraries may also be obtained from numerous commercial sources, including but not limited to Clontech Laboratories, Inc. and Stratagene.
  • An expression vector containing DNA encoding an SlP/Edg-like protein may be used for expression of SlP/Edg in a recombinant host cell. Such recombinant host cells can be cultured under suitable conditions to produce SlP/Edg or a biologically equivalent form.
  • Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses.
  • Commercially available mammalian expression vectors may be suitable for recombinant SlP/Edg expression.
  • Recombinant host cells may be prokaryotic or eukaryotic, including but not limited to, bacteria such as E. coli, fungal cells such as yeast, mammalian cells including, but not limited to, cell lines of bovine, porcine, monkey and rodent origin; and insect cells including but not limited to Drosophila and silkworm derived cell lines.
  • the nucleotide sequences for the various SlP/Edg receptors are known in the art.
  • EDG6 Human Graler, M.H., G. Bernhardt, M. Lipp 1998 EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics 53: 164-169, hereby incorporated by reference in its entirety.
  • WO 98/48016 published October 29, 1998, hereby incorporated by reference in its entirety.
  • U.S. No. 5,912,144 granted June 15, 1999, hereby incorporated by reference in its entirety.
  • WO 98/50549 published November 12, 1998, hereby incorporated by reference in its entirety.
  • the effects of compounds of the present invention on cardiovascular parameters can be evaluated by the following procedure: Adult male rats (approx. 350 g body weight) were instrumented with femoral arterial and venous catheters for measurement of arterial pressure and intravenous compound administration, respectively. Animals were anesthetized with Nembutal (55 mg/kg, ip). Blood pressure and heart rate were recorded on the Gould Po-Ne-Mah data acquisition system. Heart rate was derived from the arterial pulse wave. Following an acclimation period, a baseline reading was taken (approximately 20 minutes) and the data averaged.
  • Compound was administered intravenously (either bolus injection of approximately 5 seconds or infusion of 15 minutes duration), and data were recorded every 1 minute for 60 minutes post compound administration. Data are calculated as either the peak change in heart rate or mean arterial pressure or are calculated as the area under the curve for changes in heart rate or blood pressure versus time. Data are expressed as mean + SEM. A one-tailed Student's paired t-test is used for statistical comparison to baseline values and considered significant at p ⁇ 0.05. The SIP effects on the rat cardiovascular system are described in Sugiyama, A.,
  • a single mouse is dosed intravenously (tail vein) with 0.1 ml of test compound dissolved in a non-toxic vehicle and is observed for signs of toxicity. Severe signs may include death, seizure, paralysis or unconciousness. Milder signs are also noted and may include ataxia, labored breathing, ruffling or reduced activity relative to normal.
  • the dosing solution is diluted in the same vehicle. The diluted dose is administered in the same fashion to a second mouse and is likewise observed for signs. The process is repeated until a dose is reached that produces no signs. This is considered the estimated no-effect level. An additional mouse is dosed at this level to confirm the absence of signs.
  • Toxicity and lymphopenia is assessed in mice at three hours post dose as follows. After rendering a mouse unconscious by CO2 to effect, the chest is opened, 0.5 ml of blood is withdrawn via direct cardiac puncture, blood is immediately stabilized with EDTA and hematology is evaluated using a clinical hematology autoanalyzer calibrated for performing murine differential counts (H2000, CARESIDE, Culver City CA). Reduction in lymphocytes by test treatment is established by comparison of hematological parameters of three mice versus three vehicle treated mice. The dose used for this evaluation is determined by tolerability using a modification of the dilution method above. For this purpose, no-effect is desirable, mild effects are acceptable and severely toxic doses are serially diluted to levels that produce only mild effects.
  • Examples disclosed herein have utility as immunoregulatory agents as demonstrated by their activity as potent and selective agonists of the SlP ⁇ / ⁇ dgl receptor over the S1PR3/Edg3 receptor as measured in the assays described above.
  • the examples disclosed herein possess a selectivity for the SlPi Edgl receptor over the S1PR3/Edg3 receptor of more than 100 fold as measured by the ratio of EC50 for the S lPi Edgl receptor to the EC50 for the SlP3/ ⁇ dg3 receptor as evaluated in the 35s-GTP ⁇ S binding assay described above and possess an EC50 for binding to the SlPi/Edgl receptor of less than 10 nM as evaluated by the 35s-GTP ⁇ S binding assay described above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Diabetes (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Communicable Diseases (AREA)
  • Hematology (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Pain & Pain Management (AREA)
  • Ophthalmology & Optometry (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention encompasses compounds of Formula I: (I) as well as the pharmaceutically acceptable salts thereof. The compounds are useful for treating immune mediated diseases and conditions, such as bone marrow, organ and tissue transplant rejection. Pharmaceutical compositions and methods of use are included.

Description

TΓΓLE OF THE INVENTION
3,5-ARYL, HETEROARYL OR CYCLOALKYL ST BSTRTUTED-L,2,4-OXADIAZOLES AS
SIP RECEPTOR AGONISTS
BACKGROUND OF THE INVENTION The present invention is related to compounds that are SlPi Edgl receptor agonists and thus have immunosuppressive activities by modulating leukocyte trafficking, sequestering lymphocytes in secondary lymphoid tissues, and interfering with cel cell interactions required for an efficient immune response. The invention is also directed to pharmaceutical compositions containing such compounds and methods of treatment or prevention. Immunosuppressive agents have been shown to be useful in a wide variety of autoimmune and chronic inflammatory diseases, including systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis and other disorders such as Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy, atopic dermatitis and asthma. They have also proved useful as part of chemotherapeutic regimens for the treatment of cancers, lymphomas and leukemias. Although the underlying pathogenesis of each of these conditions may be quite different, they have in common the appearance of a variety of autoantibodies and/or self -reactive lymphocytes. Such self-reactivity may be due, in part, to a loss of the homeostatic controls under which the normal immune system operates. Similarly, following a bone-marrow or an organ transplantation, the host lymphocytes recognize the foreign tissue antigens and begin to produce both cellular and humoral responses including antibodies, cytokines and cytotoxic lymphocytes which lead to graft rejection. One end result of an autoimmune or a rejection process is tissue destruction caused by inflammatory cells and the mediators they release. Anti-inflammatory agents such as NS AJDs act principally by blocking the effect or secretion of these mediators but do nothing to modify the immunologic basis of the disease. On the other hand, cytotoxic agents, such as cyclophosphamide, act in such a nonspecific fashion that both the normal and autoimmune responses are shut off. Indeed, patients treated with such nonspecific immunosuppressive agents are as likely to succumb to infection as they are to their autoimmune disease. Cyclosporin A is a drug used to prevent rejection of transplanted organs. FK-506 is another drug approved for the prevention of transplant organ rejection, and in particular, liver transplantation. Cyclosporin A and FK-506 act by inhibiting the body's immune system from mobilizing its vast arsenal of natural protecting agents to reject the transplant's foreign protein. Cyclosporin A was approved for the treatment of severe psoriasis and has been approved by European regulatory agencies for the treatment of atopic dermatitis. Though they are effective in delaying or suppressing transplant rejection, Cyclosporin A and FK-506 are known to cause several undesirable side effects including nephrotoxicity, neurotoxicity, and gastrointestinal discomfort. Therefore, an immunosuppressant without these side effects still remains to be developed and would be highly desirable. The immunosuppressive compound FTY720 is a lymphocyte sequestration agent currently in clinical trials. FTY720 is metabolized in mammals to a compound that is a potent agonist of sphingosine 1-phosphate receptors. Agonism of sphingosine 1-phosphate receptors modulates leukocyte trafficking, induces the sequestration of lymphocytes (T-cells and B -cells) in lymph nodes and Peyer's patches without lymphodepletion, and disrupts splenic architecture, thereby interfering with T cell dependent and independent antibody responses. Such i munosuppression is desirable to prevent rejection after organ transplantation and in the treatment of autoimmune disorders. Sphingosine 1-phosphate is a bioactive sphingolipid metabolite that is secreted by hematopoietic cells and stored and released from activated platelets. Yatomi, Y., T. Ohmori, G. Rile, F. Kazama, H. Okamoto, T. Sano, K. Satoh, S. Kume, G. Tigyi, Y. Igarashi, and Y. Ozaki. 2000. Blood. 96:3431-8. It acts as an agonist on a family of G protein-coupled receptors to regulate cell proliferation, differentiation, survival, and motility. Fukushima, N., I. Ishii, J.J.A. Contos, LA. Weiner, and J. Chun. 2001. Lysophospholipid receptors. Annu. Rev. Pharmacol. Toxicol. 41:507-34; Efla, T., M.-L Lee, N. Ancellin, J.H. Paik, and MJ. Kluk. 2001.
Lysophospholipids - Receptor revelations. Science. 294:1875-1878; Spiegel, S., and S. Milstien. 2000. Functions of a new family of sphingosine- 1-phosphate receptors. Biochim. Biophys. Acta. 1484:107-16; Pyne, S., and N. Pyne. 2000. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein coupled receptors. Pharm. & Therapeutics. 88:115-131. Five sphingosine 1-phosphate receptors have been identified (S IPi, S 1P2, S IP3, SIP4, and SIP5, also known as endothelial differentiation genes Edgl, Edg5, Edg3, Edg6, Edg8), that have widespread cellular and tissue distribution and are well conserved in human and rodent species (see Table). Binding to SIP receptors elicits signal transduction through Gq-, Gi/o, G12-, G13-, and Rho-dependent pathways. Ligand-induced activation of SlPχ and SIP3 has been shown to promote angiogenesis, chemotaxis, and adherens junction assembly through Rac- and Rho-, see Lee, M.-L, S. Thangada, K.P. Claffey, N. Ancellin, CH. Liu, M. Kluk, M. Volpi, R.I. Sha'afi, and T. Hla. 1999. Cell. 99:301-12, whereas agonism of SIP2 promotes neurite retraction, see Van Brooklyn, J.R., Z. Tu, L.C. Edsall, R.R. Schmidt, and S. Spiegel. 1999. /. Biol. Chem. 274:4626-4632, and inhibits chemotaxis by blocking Rac activation, see Okamoto, H., N. Takuwa, T. Yokomizo, N. Sugimoto, S. Sakurada, H. Shigematsu, and Y. Takuwa. 2000. Mol. Cell. Biol. 20:9247-9261. SIP4 is localized to hematopoietic cells and tissues, see Graeler, M.H., G. Bernhardt, and M. Lipp. 1999. Curr. Top. Microbiol. Immunol. 246:131-6, whereas SIP5 is primarily a neuronal receptor with some expression in lymphoid tissue, see hn, D.S., C.E. Heise, N. Ancellin, B.F. O'Dowd, G.J. Shei, R.P. Heavens, M.R. Rigby, T. Hla, S. Mandala, G. McAllister, S.R. George, and K.R. Lynch. 2000. J. Biol. Chem. 275:14281-6. Administration of sphingosine 1-phosphate to animals induces systemic sequestration of peripheral blood lymphocytes into secondary lymphoid organs, thus resulting in therapeutically useful immunosuppression, see Mandala, S., R. Hajdu, J. Bergstrom, E. Quackenbush, J. Xie, J. Milligan, R. Thornton, G.-J. Shei, D. Card, C. Keohane, M. Rosenbach, J. Hale, C.L. Lynch, K. Rupprecht, W. Parsons, H. Rosen. 2002. Science. 296:346-349. However, sphingosine 1-phosphate also has cardiovascular and bronchoconstrictor effects that limit its utility as a therapeutic agent. Intravenous administration of sphingosine 1-phosphate decreases the heart rate, ventricular contraction and blood pressure in rats, see Sugiyama, A., N.N. Aye, Y. Yatomi, Y. Ozaki, and K. Hashimoto. 2000. Jpn. J. Pharmacol. 82:338-342. In human airway smooth muscle cells, sphingosine 1-phosphate modulates contraction, cell growth and cytokine production that promote bronchoconstriction, airway inflammation and remodeling in asthma, see Ammit, A.J., AT. Hastie, L. C. Edsall, R.K. Hoffman, Y. Amrani, V.P. Krymskaya, S.A. Kane, S.P. Peters, R.B. Penn, S. Spiegel, R.A. Panettieri. Jr. 2001, FASEB J. 15:1212-1214. The undesirable effects of sphingosine 1-phosphate are associated with its non- selective, potent agonist activity on all SIP receptors. The present invention encompasses compounds which are agonists of the
SlPi Edgl receptor having selectivity over the SlP3 Edg3 receptor. An SlPi Edgl receptor selective agonist has advantages over current therapies and extends the therapeutic window of lymphocyte sequestration agents, allowing better tolerability with higher dosing and thus improving efficacy as monotherapy. While the main use for immunosuppressants is in treating bone marrow, organ and transplant rejection, other uses for such compounds include the treatment of arthritis, in particular, rheumatoid arthritis, insulin and non-insulin dependent diabetes, multiple sclerosis, psoriasis, inflammatory bowel disease, Crohn's disease, lupus erythematosis and the like. Thus, the present invention is focused on providing immunosuppressant compounds that are safer and more effective than prior compounds. These and other objects will be apparent to those of ordinary skill in the art from the description contained herein.
SUMMARY OF THE INVENTION The present invention encompasses compounds of Formula I:
Figure imgf000006_0001
as well as the pharmaceutically acceptable salts thereof. The compounds are useful for treating immune mediated diseases and conditions, such as bone marrow, organ and tissue transplant rejection. Pharmaceutical compositions and methods of use are included.
DETAILED DESCRIPTION OF THE INVENTION The present invention encompasses compounds represented by Formula I:
Figure imgf000006_0002
I or a pharmaceutically acceptable salt thereof, wherein: A is selected from the group consisting of: phenyl, naphthyl and HETl, each substituted with one to three substituents independently selected from the group consisting of: halo, Cι_6alkyl, halo-substitutedCι_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci- 6alkoxy and halo-substituted-Cι_6alkoxy, or A is C3_6cycloalkyl, optionally substituted with one to three substituents independently selected from the group consisting of: halo, Cι_6alkyl, halo-substitutedCi_6"alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci-βalkoxy and halo-substituted-Ci-βalkoxy; B is selected from the group consisting of: phenyl, naphthyl, HET2 and C3_ βcycloalkyl, each optionally substituted with one to three substituents independently selected from the group consisting of: halo, Cι_4alkyl, halo-substitutedCl-4alkyl and hydroxy-substituted Ci-4alkyl; HETl is selected from the group consisting of: benzimidazolyl, benzofuranyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxadiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, azetidinyl, 1,4-dioxanyl, hexahydroazepinyl, piperazinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroindolyl, dihydroisooxazolyl, dihydroisothiazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyrazolyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydroquinolinyl, dihydrotetrazolyl, dihydrothiadiazolyl, dihydrothiazolyl, dihydrothienyl, dihydrotriazolyl, dihydroazetidinyl, methylenedioxybenzoyl, tetrahydrofuranyl, and tetrahydrothienyl, said HETl being optionally substituted with 1-2 oxo groups; HET2 is selected from the group consisting of: furanyl, imidazolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, pyrazolyl, pyrrolyl, thiadiazolyl, thiazolyl, thienyl and triazolyl; and X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole group shown in Formula I. The phrase "X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole" means the 1,2-position and is exemplified in the examples that follows. An embodiment of the invention encompasses a compound of Formula I wherein: A is selected from the group consisting of: phenyl, pyridyl and pyrazinyl, substituted with one to two substituents independently selected from the group consisting of: halo, Cι_6alkyl, halo-substitutedCι_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci- galkoxy and halo-substituted-Cι~6alkoxy, or A is C3-6cycloalkyl, optionally substituted with one to two substituents independently selected from the group consisting of: halo, Ci-βalkyl, halo-substitutedCi_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Cl_6alkoxy and halo-substituted-Cι_6alkoxy. Another embodiment of the invention encompasses a compound of Formula I wherein: A is phenyl substituted at the para position relative to the attachment of the 1,2,4- oxadiazole group shown in Formula I with a substituent selected from the group consisting of: Cι_6alkyl, halo-substitutedCι_6alkyl, C3_6cycloalkyl, halo-substitutedC3-6cycloalkyl, Cι_
6alkoxy and halo-substituted-Ci-6alkoxy. Another embodiment of the invention encompasses a compound of Formula I wherein: A is pyridyl substituted at the 1,4-position relative to the attachment of the 1,2,4- oxadiazole group shown in Formula I with a substituent selected from the group consisting of: Ci_6alkyl, halo-substitutedCi-6alkyl, C3-6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci_ 6alkoxy and halo-substituted-Ci-6alkoxy. The "1,4-position" means, for example, the position shown in Examples 6 to 11 and 16 below. Another embodiment of the invention encompasses a compound of Formula I wherein A is cyclohexyl. Another embodiment of the invention encompasses a compound of Formula I wherein B is phenyl, optionally substituted with a substituent selected from the group consisting of: halo, Ci_4alkyl, halo-substitutedCι_4alkyl and hydroxy-substituted Cι_4alkyl. Another embodiment of the invention encompasses a compound of Formula I wherein B is selected from the group consisting of: isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Cι_4alkyl, halo-substitutedCi_4alkyl and hydroxy-substituted Ci_4alkyl.
Another embodiment of the invention encompasses a compound of Formula I wherein X is methyl. The invention also encompasses a compound of formula la
Figure imgf000008_0001
or a pharmaceutically acceptable salt thereof, wherein: A is selected from the group consisting of: phenyl, pyridyl and pyrazinyl, substituted with one to two substituents independently selected from the group consisting of: halo, Ci-6alkyl, halo-substitutedCi-βalkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci_ 6alkoxy and halo-substituted-Cι_6alkoxy, or A is C3-6cycloalkyl, optionally substituted with one to two substituents independently selected from the group consisting of: halo, Ci-βalkyl, halo~substitutedCl_6alkyl, C3-6cycloalkyl, halo-substitutedC3-6cycloalkyl, Cι_6alkoxy and halo-substituted-Cι_6alkoxy. An embodiment of the invention encompasses a compound of Formula lb
Figure imgf000009_0001
lb
or a pharmaceutically acceptable salt thereof, wherein: B is selected from the group consisting of: phenyl, isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Cl_4alkyl, halo-substitutedCi_4alkyl and hydroxy-substituted Ci-4alkyl; and X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole group shown in Formula I. Another embodiment of the invention encompasses a compound of Formula Ic
Figure imgf000009_0002
Ic or a pharmacrutically acceptable salt thereof, wherein: Z is selected from the group consisting of: Ci-βalkyl, halo-substitutedCi_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Cι_6alkoxy and halo-substituted-Ci-6alkoxy; B is selected from the group consisting of: phenyl, isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Cl_4alkyl, halo-substitutedCι_4alkyl and hydroxy-substituted Ci_4alkyl; and X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole group shown in Formula I. Another embodiment of the invention encompasses a compound of Formula I wherein Z is Ci_6alkoxy or halo-substituted-Cι_6alkoxy. The invention is further exemplified in the examples that follow. The invention also encompasses a method of treating an immunoregulatory abnormality in a mammalian patient in need of such treatment comprising administering to said patient a compound of Formula I in an amount that is effective for treating said immunoregulatory abnormality. Within this embodiment is encompassed the above method wherein the immunoregulatory abnormality is an autoimmune or chronic inflammatory disease selected from the group consisting of: systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis, Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy and asthma. Also within this embodiment is encompassed the above method wherein the immunoregulatory abnormality is bone marrow or organ transplant rejection or graft- versus-host disease. Also within this embodiment is encompassed the above method wherein the immunoregulatory abnormality is selected from the group consisting of: transplantation of organs or tissue, graft- versus-host diseases brought about by transplantation, autoimmune syndromes including rheumatoid arthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes, uveitis, posterior uveitis, allergic encephalomyelitis, glomeralonephritis, post-infectious autoimmune diseases including rheumatic fever and post-infectious glomeralonephritis, inflammatory and hyperproliferative skin diseases, psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitis, seborrhoeic dermatitis, lichen planus, pemphigus, bullous pemphigoid, epidermolysis bullosa, urticaria, angioedemas, vasculitis, erythema, cutaneous eosinophilia, lupus erythematosus, acne, alopecia areata, keratoconjunctivitis, vernal conjunctivitis, uveitis associated with Behcet's disease, keratitis, herpetic keratitis, conical cornea, dystrophia epithelialis corneae, corneal leukoma, ocular pemphigus, Mooren's ulcer, scleritis, Graves' opthalmopathy, Vogt-Koyanagi-Harada syndrome, sarcoidosis, pollen allergies, reversible obstructive airway disease, bronchial asthma, allergic asthma, intrinsic asthma, extrinsic asthma, dust asthma, chronic or inveterate asthma, late asthma and airway hyper-responsiveness, bronchitis, gastric ulcers, vascular damage caused by ischemic diseases and thrombosis, ischemic bowel diseases, inflammatory bowel diseases, necrotizing enterocolitis, intestinal lesions associated with thermal burns, coeliac diseases, proctitis, eosinophilic gastroenteritis, mastocytosis, Crohn's disease, ulcerative colitis, migraine, rhinitis, eczema, interstitial nephritis, Goodpasture's syndrome, hemolytic-uremic syndrome, diabetic nephropathy, multiple myositis, Guillain-Barre syndrome, Meniere's disease, polyneuritis, multiple neuritis, mononeuritis, radiculopathy, hyperthyroidism, Basedow's disease, pure red cell aplasia, aplastic anemia, hypoplastic anemia, idiopathic thrombocytopenic purpura, autoimmune hemolytic anemia, agranulocytosis, pernicious anemia, megaloblastic anemia, anerythroplasia, osteoporosis, sarcoidosis, fibroid lung, idiopathic interstitial pneumonia, dermatomyositis, leukoderma vulgaris, ichthyosis vulgaris, photoallergic sensitivity, cutaneous T cell lymphoma, arteriosclerosis, atherosclerosis, aortitis syndrome, polyarteritis nodosa, myocardosis, scleroderma, Wegener's granuloma, Sjogren's syndrome, adiposis, eosinophilic fascitis, lesions of gingiva, periodontium, alveolar bone, substantia ossea dentis, glomeralonephritis, male pattern alopecia or alopecia senilis by preventing epilation or providing hair germination and/or promoting hair generation and hair growth, muscular dystrophy, pyoderma and Sezary's syndrome, Addison's disease, ischemia-reperfusion injury of organs which occurs upon preservation, transplantation or ischemic disease, endotoxin-shock, pseudomembranous colitis, colitis caused by drug or radiation, ischemic acute renal insufficiency, chronic renal insufficiency, toxinosis caused by lung-oxygen or drugs, lung cancer, pulmonary emphysema, cataracta, siderosis, retinitis pigmentosa, senile macular degeneration, vitreal scarring, corneal alkali burn, dermatitis erythema multiforme, linear IgA ballous dermatitis and cement dermatitis, gingivitis, periodontitis, sepsis, pancreatitis, diseases caused by environmental pollution, aging, carcinogenesis, metastasis of carcinoma and hypobaropathy, disease caused by histamine or leukotriene-C4 release, Behcet's disease, autoimmune hepatitis, primary biliary cirrhosis, sclerosing cholangitis, partial liver resection, acute liver necrosis, necrosis caused by toxin, viral hepatitis, shock, or anoxia, B-virus hepatitis, non-A/non-B hepatitis, cirrhosis, alcoholic cirrhosis, hepatic failure, fulminant hepatic failure, late-onset hepatic failure, "acute-on-chronic" liver failure, augmentation of chemotherapeutic effect, cytomegalovirus infection, HCMV infection, AIDS, cancer, senile dementia, trauma, and chronic bacterial infection. Also within this embodiment is encompassed the above method wherein the immunoregulatory abnormality is selected from the group consisting of: 1) multiple sclerosis, 2) rheumatoid arthritis, 3) systemic lupus erythematosus, 4) psoriasis, 5) rejection of transplanted organ or tissue, 6) inflammatory bowel disease, 7) a malignancy of lymphoid origin, 8) acute and chronic lymphocytic leukemias and lymphomas and 9) insulin and non-insulin dependent diabetes. The invention also encompasses a method of suppressing the immune system in a mammalian patient in need of immunosuppression comprising administering to said patient an immunosuppressing effective amount of a compound of Formula I. The invention also encompasses a pharmaceutical composition comprised of a compound of Formula I in combination with a pharmaceutically acceptable carrier. The invention also encompasses a method of treating a respiratory disease or condition in a mammalian patient in need of such treatment comprising administering to said patient a compound of Formula I in an amount that is effective for treating said respiratory disease or condition. Within this embodiment is encompasses the above method wherein the respiratory disease or condition is selected from the group consisting of: asthma, chronic bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia. Also, within this embodiment is encompassed the above method wherein the patient also has a respiratory disease or condition. Also, within this embodiment is encompassed the above method wherein the patient is also suffering from a cardiovascular disease or condition. The invention is described using the following definitions unless otherwise indicated. When a nitrogen atom appears in a formula of the present specification, it is understood that sufficient hydrogen atoms or substituents are present to satisfy the valency of the nitrogen atom. The term "halogen" or "halo" includes F, CI, Br, and I. The term "alkyl" means linear or branched structures and combinations thereof, having the indicated number of carbon atoms. Thus, for example, C -βalkyl includes methyl, ethyl, propyl, 2-propyl, s- and t-butyl, butyl, pentyl, hexyl, 1,1-dimethylethyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "alkoxy" means alkoxy groups of a straight, branched or cyclic configuration having the indicated number of carbon atoms. Ci_6alkoxy, for example, includes methoxy, ethoxy, propoxy, isopropoxy, and the like. The term "cycloalkyl" means mono-, bi- or tri-cyclic structures, optionally combined with linear or branched structures, having the indicated number of carbon atoms. Examples of cycloalkyl groups include cyclopropyl, cyclopentyl, cycloheptyl, adamantyl, cyclododecylmethyl, 2-ethyl-l- bicyclo[4.4.0]decyl, cyclobutylmethyl and the like. The term "halo-substituted alkyl" means alkyl as defined above substituted with one or more halo groups as defined above up to the maximum number of substitutable positions, such as trifluoromethyl and the like. The term "halo-substituted alkoxy" means alkoxy as defined above substituted with one or more halo groups as defined above up to the maximum number of substitutable positions, such as trifluroal oxy and the like. The term "halo-substituted cycloalkylalkyl" means cycloalkyl as defined above substituted with one or more halo groups as defined above up to the maximum number of substitutable positions. The term "hydroxy-substituted alkyl" means alkyl as defined above substituted with one or more hydroxy groups up to the maximum number of substitutable positions. The term "treating" encompasses not only treating a patient to relieve the patient of the signs and symptoms of the disease or condition but also prophylactically treating an asymptomatic patient to prevent the onset or progression of the disease or condition. The term "amount effective for treating" is intended to mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, a system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician. The term also encompasses the amount of a pharmaceutical drug that will prevent or reduce the risk of occurrence of the biological or medical event that is sought to be prevented in a tissue, a system, animal or human by a researcher, veterinarian, medical doctor or other clinician. The invention described herein includes pharmaceutically acceptable salts and hydrates. Pharmaceutically acceptable salts include both the metallic (inorganic) salts and organic salts; a list of which is given in Remington's Pharmaceutical Sciences, 17th Edition, pg. 1418 (1985). It is well known to one skilled in the art that an appropriate salt form is chosen based on physical and chemical stability, flowability, hydroscopicity and solubility. As will be understood by those skilled in the art, pharmaceutically acceptable salts include, but are not limited to salts of inorganic acids such as hydrochloride, sulfate, phosphate, diphosphate, hydrobromide, and nitrate or salts of an organic acid such as malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate, p-toluenesulfonate or pamoate, salicylate and stearate. Similarly pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium and ammonium (especially ammonium salts with secondary amines). Preferred salts of this invention for the reasons cited above include potassium, sodium, calcium and ammonium salts. Also included within the scope of this invention are crystal forms, hydrates and solvates of the compounds of Formula I. For purposes of this Specification, "pharmaceutically acceptable hydrate" means the compounds of the instant invention crystallized with one or more molecules of water to form a hydrated form. The invention also includes the compounds alling within Formula I in the form of one or more stereoisomers, in substantially pure form or in the form of a mixture of stereoisomers. All such isomers are encompassed within the present invention. By virtue of their S lPi/Edgl agonist activity, the compounds of the present invention are immunoregulatory agents useful for treating or preventing automimmune or chronic inflammatory diseases. The compounds of the present invention are useful to suppress the immune system in instances where immunosuppression is in order, such as in bone marrow, organ or transplant rejection, autoimmune and chronic inflammatory diseases, including systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis, Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy and asthma. More particularly, the compounds of the present invention are useful to treat or prevent a disease or disorder selected from the group consisting of: transplantation of organs or tissue, graft- versus-host diseases brought about by transplantation, autoimmune syndromes including rheumatoid arthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes, uveitis, posterior uveitis, allergic encephalomyelitis, glomeralonephritis, post-infectious autoimmune diseases including rheumatic fever and post- infectious glomeralonephritis, inflammatory and hyperproliferative skin diseases, psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitis, seborrhoeic dermatitis, lichen planus, pemphigus, bullous pemphigoid, epidermolysis bullosa, urticaria, angioedemas, vasculitis, erythema, cutaneous eosinophilia, lupus erythematosus, acne, alopecia areata, keratoconjunctivitis, vernal conjunctivitis, uveitis associated with Behcet's disease, keratitis, herpetic keratitis, conical cornea, dystrophia epithelialis corneae, corneal leukoma, ocular pemphigus, Mooren's ulcer, scleritis, Graves' opthalmopathy, Vogt-Koyanagi-Harada syndrome, sarcoidosis, pollen allergies, reversible obstructive airway disease, bronchial asthma, allergic asthma, intrinsic asthma, extrinsic asthma, dust asthma, chronic or inveterate asthma, late asthma and airway hyper-responsiveness, bronchitis, gastric ulcers, vascular damage caused by ischemic diseases and thrombosis, ischemic bowel diseases, inflammatory bowel diseases, necrotizing enterocolitis, intestinal lesions associated with thermal burns, coeliac diseases, proctitis, eosinophilic gastroenteritis, mastocytosis, Crohn's disease, ulcerative colitis, migraine, rhinitis, eczema, interstitial nephritis, Goodpasture's syndrome, hemolytic-uremic syndrome, diabetic nephropathy, multiple myositis, Guillain-Barre syndrome, Meniere's disease, polyneuritis, multiple neuritis, mononeuritis, radiculopathy, hyperthyroidism, Basedow's disease, pure red cell aplasia, aplastic anemia, hypoplastic anemia, idiopathic thrombocytopenic purpura, autoimmune hemolytic anemia, agranulocytosis, pernicious anemia, megaloblastic anemia, anerythroplasia, osteoporosis, sarcoidosis, fibroid lung, idiopathic interstitial pneumonia, dermatomyositis, leukoderma vulgaris, ichthyosis vulgaris, photoallergic sensitivity, cutaneous T cell lymphoma, arteriosclerosis, atherosclerosis, aortitis syndrome, polyarteritis nodosa, myocardosis, scleroderma, Wegener's granuloma, Sjogren's syndrome, adiposis, eosinophilic fascitis, lesions of gingiva, periodontium, alveolar bone, substantia ossea dentis, glomeralonephritis, male pattern alopecia or alopecia senilis by preventing epilation or providing hair germination and/or promoting hair generation and hair growth, muscular dystrophy, pyoderma and Sezary's syndrome, Addison's disease, ischemia-reperfusion injury of organs which occurs upon preservation, transplantation or ischemic disease, endotoxin-shock, pseudomembranous colitis, colitis caused by drug or radiation, ischemic acute renal insufficiency, chronic renal insufficiency, toxinosis caused by lung-oxygen or drags, lung cancer, pulmonary emphysema, cataracta, siderosis, retinitis pigmentosa, senile macular degeneration, vitreal scarring, corneal alkali burn, dermatitis erythema multiforme, linear IgA ballous dermatitis and cement dermatitis, gingivitis, periodontitis, sepsis, pancreatitis, diseases caused by environmental pollution, aging, carcinogenesis, metastasis of carcinoma and hypobaropathy, disease caused by histamine or leukotriene-C4 release, Behcet's disease, autoimmune hepatitis, primary biliary cirrhosis, sclerosing cholangitis, partial liver resection, acute liver necrosis, necrosis caused by toxin, viral hepatitis, shock, or anoxia, B-virus hepatitis, non-A/non-B hepatitis, cirrhosis, alcoholic cirrhosis, hepatic failure, fulminant hepatic failure, late-onset hepatic failure, "acute-on-chronic" liver failure, augmentation of chemotherapeutic effect, cytomegalovirus infection, HCMV infection, AIDS, cancer, senile dementia, trauma, and chronic bacterial infection. The compounds of the present invention are also useful for treating or preventing
Alzheimer's Disease. Also embodied within the present invention is a method of preventing or treating resistance to transplantation or transplantation rejection of organs or tissues in a mammalian patient in need thereof, which comprises administering a therapeutically effective amount of the compound of Formula I. A method of suppressing the immune system in a mammalian patient in need thereof, which comprises administering to the patient an immune system suppressing amount of the compound of Formula I is yet another embodiment. Most particularly, the method described herein encompasses a method of treating or preventing bone marrow or organ transplant rejection which is comprised of admininstering to a mammalian patient in need of such treatment or prevention a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof, in an amount that is effective for treating or preventing bone marrow or organ transplant rejection. The compounds of the present invention are also useful for treating a respiratory dieases or condition, such as asthma, chronic bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia Furthermore, the compounds of the present invention are selective agonists of the SlPi Edgl receptor having selectivity over SlP3/Εdg3 receptor. An Edgl selective agonist has advantages over current therapies and extends the therapeutic window of lymphocytes sequestration agents, allowing better tolerability with higher dosing and thus improving efficacy as monotherapy. The present invention also includes a pharmaceutical formulation comprising a pharmaceutically acceptable carrier and the compound of Formula I or a pharmaceutically acceptable salt or hydrate thereof. A preferred embodiment of the formulation is one where a second immunosuppressive agent is also included. Examples of such second immunosuppressive agents are, but are not limited to azathioprine, brequinar sodium, deoxyspergualin, mizaribine, mycophenolic acid morpholino ester, cyclosporin, FK-506, rapamycin, FTY720 and IS Atx247 (Isotechnika). Methods of co-administering a compound of Formula I with a second immunosuppressive agent, including one or more of the above, is also encompassed within the invention. The present compounds, including salts and hydrates thereof, are useful in the treatment of autoimmune diseases, including the prevention of rejection of bone marrow transplant, foreign organ transplants and/or related afflictions, diseases and illnesses. The compounds of this invention can be administered by any means that effects contact of the active ingredient compound with the site of action in the body of a warm-blooded animal. For example, administration can be oral, topical, including transdermal, ocular, buccal, intranasal, inhalation, intravaginal, rectal, intracisternal and parenteral. The term "parenteral" as used herein refers to modes of administration which include subcutaneous, intravenous, intramuscular, intraarticular injection or infusion, intrasternal and intraperitoneal. The compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but are generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice. The dosage administered will be dependent on the age, health and weight of the recipient, the extent of disease, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired. Usually, a daily dosage of active ingredient compound will be from about 0.1-2000 milligrams per day. Ordinarily, from 1 to 100 milligrams per day in one or more applications is effective to obtain desired results. These dosages are the effective amounts for the treatment of autoimmune diseases, the prevention of rejection of foreign organ transplants and/or related afflictions, diseases and illnesses. The active ingredient can be administered orally in solid dosage forms, such as capsules, tablets, troches, dragees, granules and powders, or in liquid dosage forms, such as elixirs, syrups, emulsions, dispersions, and suspensions. The active ingredient can also be administered parenterally, in sterile liquid dosage forms, such as dispersions, suspensions or solutions. Other dosages forms that can also be used to administer the active ingredient as an ointment, cream, drops, transdermal patch or powder for topical administration, as an ophthalmic solution or suspension formation, i.e., eye drops, for ocular administration, as an aerosol spray or powder composition for inhalation or intranasal administration, or as a cream, ointment, spray or suppository for rectal or vaginal administration. Gelatin capsules contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract. Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance. In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene gycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propylparaben, and chlorobutanol. Suitable pharmaceutical carriers are described in Remington's Pharmaceutical
Sciences, A. Osol, a standard reference text in this field. For administration by inhalation, the compounds of the present invention may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or nebulisers. The compounds may also be delivered as powders which may be formulated and the powder composition may be inhaled with the aid of an insufflation powder inhaler device. The preferred delivery system for inhalation is a metered dose inhalation (MDI) aerosol, which may be formulated as a suspension or solution of a compound of Formula I in suitable propellants, such as fluorocarbons or hydrocarbons. For ocular administration, an ophthalmic preparation may be formulated with an appropriate weight percent solution or suspension of the compounds of Formula I in an appropriate ophthalmic vehicle, such that the compound is maintained in contact with the ocular surface for a sufficient time period to allow the compound to penetrate the corneal and internal regions of the eye. Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows: CAPSULES A large number of unit capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate. SOFT GELATIN CAPSULES A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil is prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules are washed and dried. TABLETS A large number of tablets are prepared by conventional procedures so that the dosage ,unit is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.
INJECTABLE A parenteral composition suitable for administration by injection is prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol. The solution is made to volume with water for injection and sterilized.
SUSPENSION An aqueous suspension is prepared for oral administration so that each 5 milliliters contain 100 milligrams of finely divided active ingredient, 100 milligrams of sodium carboxymethyl cellulose, 5 milligrams of sodium benzoate, 1.0 grams of sorbitol solution, U.S.P., and 0.025 milliliters of vanillin. The same dosage forms can generally be used when the compounds of this invention are administered stepwise or in conjunction with another therapeutic agent. When drugs are administered in physical combination, the dosage form and administration route should be selected depending on the compatibility of the combined drags. Thus the term coadministration is understood to include the administration of the two agents concomitantly or sequentially, or alternatively as a fixed dose combination of the two active components.
METHODS OF SYNTHESIS
Methods for preparing the compounds of this invention are illustrated in the following examples. Alternative routes will be easily discernible to practitioners in the field. A convenient method to prepare the compounds of the general structure i in the present invention is shown in Scheme 1. Aromatic carboxylic acid ii can be activated for acylation with a reagent such as N,N'-dicyclohexylcarbodiimide, l-(3-dimethylaminopropyl)-3- ethylcarbodiimide, l,r~carbonyldiimidazole, or bis(2-oxo-3-oxazolidinyl)phosphinic chloride in the presence of a suitable base (if necessary) such as triethylamine, N,N-diisopropylethylamine, or sodium bicarbonate in a solvent such as 1,2-dichloroethane, toluene, xylenes, N,N- dimethylformamide or N-methyl pyrrolidinone. An aryl N-hydroxyamidine of general structure iii can then be added which results in the formation of an acyl N-hydroxyamidine iv. This intermediate can be isolated using methods known to those skilled in the art (e.g., crystallization, silica gel chromatography, HPLC) and in a subsequent step, cyclized/dehydrated by warming iv in a suitable solvent (e.g., 1,2-dichloroethane, toluene, xylenes, N,N-dimethylformamide or N- methyl pyrrolidinone) to give a 1,2,4-oxadiazole of structure i. Conversion of iii to iv may require added base, in which case reagents such as pyridine, N,N-diisopropylethylamine or tetrabutylammonium fluoride can be used. It may be more convenient or desirable to not isolate N-hydroxyamidine iv, in which case the transformation of ii to i can be carried out as a continuous process. It is possible to use acylating agents other than activated aromatic carboxylic acid ii to give compounds i. Specifically, it might be advantageous or desirable to use a aromatic carboxylic acid chloride, carboxylic acid anhydride, carboxamide or carbonitrile in the place of aromatic carboxylic acid ii and an acyl activating agent to prepare 1,2,4-oxadiazole compounds i as described above. Methods to prepare 1,2,4-oxadiazoles using these other acylating agents as well as other methods pertinent to the present invention are known to those skilled in the art and have been reviewed in the literature (see, Clapp, L.B., "1,2,3- and 1,2,4-Oxadiazoles", pp. 366- 91 in Comprehensive Heterocyclic Chemistry, Volume 6, Potts, K. T., Editor, Pergamon Press, 1984).
Scheme 1
Figure imgf000022_0001
s "olvenΘt, base
solvent, base, heat
Figure imgf000022_0002
= phenyl, napthyl or HET1 = phenyl, napthyl or HET2
Figure imgf000022_0003
Figure imgf000022_0004
A convenient method to prepare the aromatic N-hydroxyamidine intermediates iii used to prepare the compounds of the present invention is shown in Scheme 2. For this intermediate, the corresponding aromatic carbonitrile v is treated with hydroxylamine (from aqueous hydroxylamine solution or generated by treating hydroxylamine hydrochloride with a base such as triethylamine, N,N-diisopropylethylamine, or sodium bicarbonate) in an appropriate solvent (methanol, ethanol, water, N,N-dimethylformamide) at or above ambient temperature. This intermediate can then be isolated using methods known to those skilled in the art (e.g., crystallization, silica gel chromatography, HPLC).
Scheme 2 NH2OH, solvent
Figure imgf000023_0001
Figure imgf000023_0002
111
Many of the aromatic carbonitriles v as well as the aromatic carboxylic acids ii are available from commercial sources or can be prepared by those skilled in the art. using reported literature procedures. While the general structure i is achiral, it is understood that any of groups on either or both of its aromatic rings may have asymmetric centers, in which case the individual stereoisomers of i can obtained by methods known to those skilled in the art which include (but are not limited to): stereospecific synthesis, resolution of salts of i or any of the intermediates used in its preparation with enantiopure acids or bases, resolution of i or any of the intermediates used in its preparation by HPLC employing enantiopure stationary phases.
REPRESENTATIVE EXAMPLES Compounds of the invention are exemplified as follows:
GENERAL Concentration of solutions was carried out on a rotary evaporator under reduced pressure. Conventional flash chromatography was carried out on silica gel (230-400 mesh). Flash chromatography was also carried out using a Biotage Flash Chromatography apparatus (Dyax Corp.) on silica gel (32-63 mM, 60 A pore size) in pre-packed cartridges of the size noted. NMR spectra were obtained in CDCI3 solution unless otherwise noted. Coupling constants (J) are in hertz (Hz). Abbreviations: diethyl ether (ether), triethylamine (TEA), N,N- diisopropylethylamine (DIEA) sat'd aqueous (sat'd), rt (rt), hour(s) (h), minute(s) (min).
HPLC Methods
HPLC A: YMC ODS A, 5μ, 4.6 x 50 mm column, gradient 10:90-95:5 v/v CH3CN:H2O + 0.05% TFA over 4.5 min, then hold at 95:5 v/v CH3CN:H2O + 0.05% TFA for 1.5 min; 2.5 mL/min, diode array detection 200-400 nM
HPLC B: Analytical Sales & Service ARMOR C18 5 m 2 x 25 cm column, gradient 10:90-100:0 v/v CH3CN:H2O + 0.05% TFA over 15 min, then hold at 100.0 v/v CH3CN:H2O + 0.05% TFA for 10 min; 20 mL/min, diode array detection 200-400 nM
PREPARATION OF CARBOXYLIC ACID INTERMEDIATES
CARBOXYLIC ACID 1 3 -Fluoro-4-cyclopentyl-benzoic acid A solution of 0.45 g (1.45 mmol) of benzyl 3-fluoro-4-bromo-benzoate (0.45 g, 1.45 mmol) in 4.4 mL of 0.5 M cyclopentylzinc bromide solution in THF) was treated with ~5 mg of bis(tri-t-butylphosphine)palladium(0) and the resulting mixture was stirred at rt for 24 h. The reaction mixture was directly purified on a Biotage 40S cartridge using 1:1 hexanes/EtOAc as the eluant. A mixture of the resulting solid (0.27 g, 0.91 mmol) and 10% Pd/C in 5 mL of MeOH was stirred under 1 atm of H2 for 3 h. The reaction was filtered and concentrated. Purification by HPLC B afforded the title compound: Η NMR (500 MHz , CDC13) δ 7.83 (dd, J=1.6, 8.0, 1H), 7.72 (dd, J=1.6, 10.5, 1H), 7.36 (t, J=7.7, 1H), 3.30 (m, 1H), 2.05-2.14 (m, 2H), 1.58-1.90 (m, 6H).
CARBOXYLIC ACID 2 (+/-)-4-( 1 -Oxo-2-methylbutyl)benzoic acid Step A: (+/-)-Ethyl 4-(l-oxo-2-methylbutyl)benzoate A solution of 0.58 g (4.5 mmol) of (+/-)-2-methylbutyryl chloride in 10 mL of 0.5 M 4-(ethoxycarbonyl)phenylzinc iodide solution in THF) was treated with ~5 mg of bis(tri-t- butylphosphine)palladium(O) and the resulting mixture was stirred at rt for 1 h. The reaction mixture was partitioned between 50 mL of EtOAc ethyl acetate and 25 mL of 2 N HC1 and the layers were separated. The organic layer was washed with 25 mL of sat'd NaCl, dried and concentrated. Silica gel chromatography using 15:1 v/v hexanes/ethyl acetate (15:1) as the eluant afforded the title compound: Η NMR (500 MHz , CDC13) δ 8.12 (d, J= 8.4, 2H), 7.98 (d, J= 8.5, 2H), 4.40 (q, J= 7.2, 2H), 3.40 (m, IH), 1.83 (m, IH), 1.5i (m, IH), 1.41 (t, J= 7.2, 3H), 1.20 (d, J= 6.8 3H), 0.91 (t, J= 7.5 3H).
Step B: (+/-)-4-(l-Oxo-2-methylbutyl)benzoic acid A solution of 0.57 g (2.4 mmol) of (+/-)-ethyl 4-(l-oxo-2-methylbutyl)benzoate (from Step A) in 10 mL of MeOH, 3 mL of THF and 2.4 mL of 5 N NaOH was stirred at rt for 16 h. The mixture was diluted with 20 mL of H2O and extracted with 25 mL of CH2C12. The aqueous layer was acidified (pH 1) and extracted with 50 mL of EtOAc. The organic layer was washed with 25 mL of sat'd NaCl, dried and concentrated to give 0.41 g of the title compound: Η NMR (500 MHz , CDC13) δ 8.21 (d, J= 8.4, 2H), 8.03 (d, J= 8.5, 2H), 3.41 (m, IH), 1.85 (m, IH), 1.52 (m, IH), 1.21 (d, J= 6.9, 3H), 0.93 (t, J= 7.5, 3H).
CARBOXYLIC ACID 3 4-(l-Oxo-2-methylpropyl)benzoic acid The title compound was prepared using procedure analogous to that described for CARBOXYLIC ACID 2 substituting isobutyryl chloride for (+/-)-2-methylbutyryl chloride in Step A: Η NMR (500 MHz, CDC13) δ 8.21 (d, J= 8.5, 2H), 8.03 (d, J= 8.5, 2H), 3.57 (m, IH), 1.24 (d, J= 6.9, 6H).
CARBOXYLIC ACID 4
4-(Cvclobutyldifluoromethyl)benzoic acid Step A: Ethyl 4-(cyclobutylcarbonyl)benzoate The title compound was prepared using procedure analogous to that described for CARBOXYLIC ACID 2, substituting cyclobutanecarbonyl chloride for (+/-)-2-methylbutyryl chloride in Step A: Η NMR (500 MHz , CDC13) δ 8.10 (d, J= 8.2 , 2H), 7.93 (d, J= 8.5 , 2H), 4.40 (q, J= 7.2 , 2H), 4.01 (m, IH), 2.37-2.46 (m, 2H), 2.28-2.36 (m, 2H), 2.04-2.15 (m, IH), 1.88-1.97 (m, IH), 1.41 (t, J= 7.1 , 3H). Step B: Ethyl 4-(cyclobutyldifluoromethyl)benzoate A solution of 810 mg (3.5 mmol) of ethyl 4-(cyclobutylcarbonyl)benzoic acid (from Step A) in 5 mL of toluene was treated with 1.30 g (5.9 mmol) of [bis(2- methoxyethyl)amino] sulfur trifluoride and 0.41 mL (0.7 mmol) of EtOH and the resulting mixture was heated to 80°C for 18 h. The reaction was concentrated. Silica gel chromatography using 20:1 v/v hexanes/EtOAc afforded the title compound: Η NMR (500 MHz , CDC13) δ 8.07 (d, J= 8.2 , 2H), 7.51 (d, J= 8.5 , 2H), 4.39 (q,J= 7.2 , 2H), 2.96 (m, IH), 2.15-2.27 (m, 2H), 1.80-1.99 (m, 4H), 1.40 (t, J= 7.1 , 3H).
Step C: 4-(Cyclobutyldifluror0methyl)benzoic acid A solution of 360 mg (1.4 mmol) of ethyl 4-(cyclobutyldifluoromethyl)benzoate (from Step B) in 4 mL of 1:1 v/v MeOH THF was treated with 2.1 mL of 1.0 N NaOH. The resulting mixture was stirred at 50°C for 3 h at, then cooled and concentrated. The residue was partitioned between EtOAc and 2 N HC1. The organic layer was washed with 2 N HC1 (25 ml), 25 mL of sat'd NaCl, dried and concentrated to give 280 mg of the title compound: Η NMR (500 MHz , CDC13) δ 8.15 (d, J= 8.5 , 2H), 7.56 (d, J= 8.4 , 2H), 2.97 (m, IH), 2.17-2.27 (m, 2H), 1.80-2.02 (m, 4H).
CARBOXYLIC ACID 5 4-(Ll-Difluoro-2-methylpropyl)benzoic acid The title compound was prepared using procedure analogous to that described for CARBOXYLIC ACID 4 substituting ethyl 4-(isopropylcarbonyl)benzoate for ethyl 4- (cyclobutylcarbonyl)benzoate in Step B: Η NMR (500 MHz , CDC13) δ 8.17 (d, J= 8.3 , 2H), 7.56 (d, J= 8.4 , 2H), 2.34 (m, IH), 1.00 (d, J= 6.8 , 6H).
CARBOXYLIC ACID 6 3-Fluoro-4-(2-methylpropionyl)benzoic acid Step A: l-Bromo-3-fluoro-4-(2'-methyl)propiophenone A solution of 1.00 g (3.8 mmol) of N-methoxy-N-methyl (4-bromo-2- fluoro)benzamide in 10 mL of THF at -78 °C was treated with 2.3 mL of 2.0 M isopropylmagnesium chloride solution in THF. The reaction was allowed to warm to rt and was stirred for 3 h. The reaction was diluted with 50 mL of ethyl ether, washed with 25 mL of 2 N HC1, 25 mL of sat'd NaCl, dried and concentrated. Silica gel chromatography using 50:1 hexanes/EtOAc as the eluant gave 143 mg of the title compound: Η NMR (500 MHz , CDC13) δ 7.67 (t, J= 8.2 , IH), 7.38 (dd, J= 1.8, 8.4 , IH), 7.33 (dd, J= 1.6, 10.3, IH), 3.35 (m, IH), 1.19 (d, J= 6.9 , 6H).
Step B: 3-Fluoro-4-isobutyrylbenzoic acid A solution of 143 mg (0.58 mmol) of l-bromo-3-fluoro-4-(2' -methyl) propiophenone (from Step A), 41 mg (0.35 mmol) of zinc cyanide, 11 mg (0.011 mmol) of tris(dibenzylideneacetone)-dipalladiuni(0) and 15 mg (0.026 mmol) of 1,1- bis(diphenylphosphino)-ferrocene (15 mg, 0.026 mmol) in 2 mL of DMF and 0.030 mL water was heated to 85°C for 3 h. The reaction was cooled, loaded onto silica gel and eluted with hexane/ethyl acetate (20:1) to give the product as a yellow solid (36 mg). A solution of this solid in methanol (2 mL) was treated with excess 5 N NaOH and heated at 60°C for 3 h. The reaction was cooled, diluted with 50 mL of EtOAc, washed with 25 mL of 2 N HC1, dried and concentrated to give the title compound.
CARBOXYLIC ACID 7 3-Trifluoromethyl-4-(2-(S)-butoxy)benzoic acid Step A: 3-Trifluoromethyl-4-(2-(S)-butoxy)benzonitrile A solution of 1.1 g (5.9 mmol) of 4-fluoro-3-trifluoromethylbenzonitrile and 485 mg (6.5 mmol) of (S)-(+)-2-butanol in 10 mL of THF at -10°C was treated with 235 mg (5.9 mmol) of sodium hydride. The resulting mixture was stirred cold for 2 h, then quenched with 10 mL of H2O. The quenched solution was extracted with 30 mL of Et2O, dried over MgSO4 and concentrated. Chromatography on a Biotage 40M cartridge using 4:1 v/v hexanes/Ethyl acetate as the eluant afforded 550 mg of the title compound: 1H NMR (500 MHz) δ 0.99 (t, J= 7.6, 3H), 1.35 (d, J= 6.2, 3H), 1.58-1.83 (m, 2H), 4.51 (septet, IH), 7.04 (d, J= 8.7, IH), 7.75 (d, J= 8.7, IH), 7.85 (s, IH).
Step B: 3-Trifluoromethyl-4-(2-(S)-butoxy)benzoic acid A solution of 550 mg (2.2 mmol) of 3-trifluoromethyl-4-(2-(S)-methylpropyloxy) benzonitrile (from Step A) in 5 mL of ethanol was treated with 1.5 mL of 5.0 N NaOH and was heated to 80°C for 3 h. The reaction was then concentrated, treated with 2 N HC1, extracted with 30mL of EtOAc, dried and concentrated to afford 600 mg of the title compound: 1H NMR (500 Mhz) δ 0.99 (t, J= 7.3, 3H), 1.43 (d, J= 5.9, 3H), 1.73-1.83 (m, 2H), 4.54 (septet, IH), 7.02 (d, J= 8.9, IH), 8.21 (d, J= 8.9, IH), 8.32 (s, IH).
CARBOXYLIC ACIDs 8-14 The following intermediates were prepared using procedures analogs to those described for CARBOXYLIC ACID 7 substituting the appropriate alcohol for (S)-2-butanol in Step A.
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000029_0001
CARBOXYLIC ACID 15 3-Trifluoromethyl-4-(l-(S)-methyl-2.2,2-trifluoroethoxy)benzoic acid Step A: l-(S)-Methyl-2,2,2-trifluoroethanol The title compound was prepared using the procedure reported by Ramachandran, P. V., etal. in Tetrahedron, 1993, 49(9), 1725-38.
Step B: 3-Trifluoromethyl-4-(l-(S)-methyl-2,2,2-trifluoroethoxy)benzoic acid The title compound was prepared using procedures analogous to those described for CARBOXYLIC ACID 7 substituting l-(S)-methyl-2,2,2-trifluoroethanol (from Step A) for (S)-2-butanol in CARBOXYLIC ACID 7, Step A. The enantiomeric purity of the title compound was determined by converting it to the corresponding methyl ester (excess 2.0 M trimethylsilyldiazomethane solution in cyclohexane, THF/MeOH, 5 min) and assaying by HPLC. Conditions: Chiralcel OD 4.6 x 250 mm column, 98:2 v/v heptane/iPrOH, 1.0 mL/min, λ = 254 nM. (R)-enantiomer = 8.5 min, (S)-enantiomer = 10.4 min. CARBOXYLIC ACID 16 3-Fluoro-4-(2-(S)-butoxy)benzoic acid Step A: 3-Fluoro-4-(2-(S)-butoxy)benzaldehyde A solution of 750 mg (5.4 mmol) of 3-fluoro-4-hydroxybenzaldehyde, 403 mg
(5.4 mmol) of (R)-(-)-2-butanol and 2 g (7.5 mmol) triphenylphosphine in 10 mL of THF was treated with 1.5 mL of diisopropylazodicarboxylate. The resulting solution was stirred at rt for 14 h, cooled to rt and concentrated. Chromatography on a Biotage 40M cartridge using 4:1 v/v hexanes/Et2O as the eluant afforded 130 mg of the title compound: 1H NMR (500 Mhz) δ 0.99 (t, J= 7.6, 3H), 1.35 (d, J= 6.2, 3H), 1.58-1.83 (m, 2H), 4.47 (m, IH), 7.05 (t, J= 8.2, IH), 7.59 (d, J= 8.2, IH), 7.61 (s, IH), 9.84 (s, IH).
Step B: 3-Fluoro-4-(2-(S)-butoxy)benzoic acid A solution of 130 mg (0.66 mmol) of 3-fluoro-4-(2-(S)-butoxy)benzaldehyde (from Step A) in 1 mL of acetone was treated with a 73 mg (0.73 mmol) of chromium (VI) oxide in a 3: 1 v/v mixture of water/sulfuric acid at 0 °C. The reaction was allowed to warm to rt and was stirred for 2 hr then extracted with 10 mL of ethyl acetate, washed with brine, dried over MgSO and concentrated to afford 130 mg of the title compound: 1H NMR (500 Mhz) δ 1.00 (t, J= 7.6, 3H), 1.36 (d, J= 6.2, 3H), 1.70 (m, IH), 1.82 (m, IH), 4.44 (m, IH), 6.99 (t, J= 8.2, IH), 7.79 (d, J= 8.2, IH), 7.85 (s, IH).
CARBOXYLIC ACID 17 3 ,5 -Difluoro-4-(2-(S )-butoxy)benzoic acid Step A: l-Bromo-3,5-difluoro-4-(2-(S)-butoxy)benzene The title compound was prepared using procedure analogous to that described for
CARBOXYLIC ACID 16, Step A substituting 4-bromo-2,6-dif_uorophenol for 3-fluoro-4- hydroxybenzaldhyde .
Step B: 3,5-Difluoro-4-(2-(S)-butoxy)benzonitrile A solution of 400 mg (1.5 mmol) of l-bromo-3,5-difluoro-4-(2-(S)- butoxy)benzene (from Step A), 106 mg (0.9 mmol) of zinc cyanide, 69 mg of tris(dibenzylideneacetone)dipalladium(0) and 100 mg (0.18 mmol) of 1,1'- bis(diphenylphosino)ferrocene in 3 mL of DMF and 30 μL of water. The resulting solution was heated to 80°C for 1 hour and then cooled and concentrated. Chromatography on a Biotage 40M cartridge using 20:1 v/v hexanes EtOAc as the eluant afforded 280 mg of the title compound: 1H NMR (500 Mhz) δ 1.01 (t, J= 7.6, 3H), 1.35 (d, J= 6.2, 3H), 1.68 (m, IH), 1.79 (m, IH), 4.47 (m, IH), 7.25 (d, 2H).
Step C: 3,5-Difluoro-4-(2-(S)-butoxy)benzoic acid The title compound was prepared using procedure analogous to that described in CARBOXYLIC ACID 7, Step B substituting 3,5-difluoro-4-(2-(S)-butoxy)benzonitrile (from Step B) for 3-trifluoromethyl-4-(2-(S)-methylpropyloxy) benzonitrile: 1H NMR (500 Mhz) δ 1.0 (t, J= 7.3, 3H), 1.32 (d, J= 5.9, 3H), 1.68 (m, IH), 1.79 (m, IH), 4.45 (m, IH), 7.65 (d, J= 8.3, 2H).
CARBOXYLIC ACID 18 4-(2-(S)-Butoxy)benzoic acid
Step A: Methyl 4-(2-(S)-butoxy)benzoate The title compound was prepared using procedure analogous to that described in CARBOXYLIC ACID 16, Step A substituting methyl 4-hydroxybenzoate for 3-fluoro-4- hydroxybenzaldehyde.
Step B: 4-(2-(S)-Butoxy)benzoic acid A solution of 1.0 g (4.8 mmol) of methyl 4-(2-(S)-butoxy)benzoate in 15 mL of MeOH was treated with 1 mL of 5.0 N NaOH at rt for 1 h. The solution was concentrated, acidified with 6 mL of 2 N HC1 , extracted with EtOAc, dried and concentrated to afford 800 mg (86%) of the title compound.
CARBOXYLIC ACID 19 4-(2-(S)-Butoxy-2-f_uoro-benzoic acid Step A: 4-(2-(S)-Butoxy-2-fluoro-benzonitrile The title compound was prepared using a procedure analogous to that described in CARBOXYLIC ACID 16, Step A substituting 2-fluoro-4-hydroxy-benzonitrile for 3-fluoro-4- hydroxybenzaldehyde.
Step B: 4-(2-(S)-Butoxy-2-fluoro-benzoic acid A mixture of 770 mg (4.0 mmol) of 4-(2-(S)-butoxy-2-fluoro-benzonitrile (from Step A) 20 mL of EtOH and 8 mL of 5 N NaOH (8 ml) was stirred at 80°C for 20 hours. The solution was concentrated, acidified with 2 N HC1, extracted with EtOAc, dried and concentrated to yield 0.57 g of the title compound: 1H NMR (500 Mhz) δ 7.99 (t, J= 8.8 , IH), 6.75 (dd, J= 2.0, 6.9 , IH), 6.66 (dd, J= 2.1, 11.0 , IH), 4.38-4.44 (m, 2H), 1.75-1.85 (m, IH), 1.65-1.75 (m, IH), 1.37 (d, J= 6.0 , 3H), 1.02 (t, J= 7.4 , 3H).
CARBOXYLIC ACID 20 3,5-Difluoro-4-(2,2,2-trifluoroethoxy)benzoic acid
Step A: 5-Bromo-l,3-difluoro-2-(2,2,2-trifluoroethoxy)benzene A mixture of 1.25 g (6 mmol) of 4-bromo-2,6-difluorophenol and 3.93 g (12 mmol) of cesium carbonate in 10 mL of acetonitrile was treated with 1.4 g (6 mmol) of 2,2,2- trifluoroethyltrifluoromethanesulfonate and stirred at rt for 2 h. The reaction mixture was diluted with EtOAc and washed with 2 N HC1. The organic layer was dried and concentrated. Silica gel chromatography using 9:1 hexanes/EtOAc as the eluent afforded 230 mg of the title compound:
1H NMR (500 Mhz) δ 7.16 (d, J= 7.3 , 2H), 4.41-4.50 (m, 2H).
Step B: 3,5-Difluoro-4-(2,2,2-trifluoroethoxy)benzonitrile A mixture of 230 mg (1.8 mmol) of 5-bromo-l,3-difluoro-2-(2,2,2- trifluoroethoxy)benzene (from Step A), 63 mg (1.1 mmol) of zinc cyanide, 41 mg (0.09 mmol) of tris(dibenzylideneacetone)dipalladium(0) and 60 mg (0.21 mmol) of 1,1'- bis(diphenylphosino)ferrocene in 1.5 mL DMF and and 15uL water was heated at 95 °C for 2 h.
The reaction mixture was cooled and concentrated. Silica gel chromatography using 9:1 hexanes/EtOAc as the eluant afforded 50 mg of the title compound. Step C: 3,5-Difluoro-4-(2,2,2-trifluoroethoxy)benzoic acid The title compound was prepared using a procedure analogous to that described in CARBOXYLIC ACID 7, Step B substituting 3,5-difluoro-4-(2,2,2-trifluoroethoxy) benzonitrile for 3-trifluoromethyl-4-(2-(S)-methylρropyloxy) benzonitrile: 1H NMR (500 Mhz) δ 7.71 (d, J= 8.1 , 2H), 4.58-4.64 (m, 2H).
CARBOXYLIC ACID 21 5-(2-Methyl-l-oxopropyl)pyridine-2-carboxylic acid Step A: (+/-)-5-(2-Methyl-l-hydroxypropyl)-2-bromopyridine A solution of 1.00 g (4.4 mmol) of 2,5-dibromopyridine in 10 mL of THF at 0 °C was treated wit 2.5 mL of 2 M isopropylmagnesium chloride solution in THF and the resulting mixture was stirred cold for 1 h. The mixture was treated with 0.46 mL (5.1 mmol) of isobutyraldehyde, warmed to rt and stirred for 16 h. The mixture was partitioned between 50 mL of EtOAc and 50 mL of water and the layers were separated. The organic layer was washed with 25 mL of sat'd NaCl, dried and concentrated. Silica gel chromatography using 3:1 v/v hexanes/EtOAc as the eluant gave 290 mg of the title compound: 1H NMR (500 MHz , CDC13) δ 8.29 (d, J= 2.3, , IH), 7.55 (dd, J= 2.3, 8.0 , IH), 7.47 (d, J= 8.3 , IH), 4.45 (d, J= 6.7 , IH), 1.94 (m, IH), 0.97 (d, J= 6.6 , 3H), 0.85 (d, J= 6.9 , 3H).
Step B: 5-(2-Methyl-l-oxopropyl)-2-bromopyridine A mixture of 290 mg (1.25 mmol) of 5-(2~methyl-l-hydroxypropyl)-2- bromopyridine (from Step A) and 220 mg (1.9 mmol) of N-methylmorpholine-N-oxide in 5 mL of CH2C12 was treated with 20 mg of tetrapropylammonium perruthenate. The mixture was stirred at rt for 3 h. Silica gel chromatography of the reaction mixture using 10: 1 v/v hexanes/EtOAc as the eluant and afforded 230 mg of the title compound: 1H NMR (500 MHz , CDC13) δ 8.29 (d, J= 2.5, , IH), 8.07 (dd, J= 2.6, 8.3 , IH), 7.61 (d, J= 8.5 , IH), 3.45 (m, IH), 1.23 (d, J= 6.8 , 6H).
Step C: 5-(2-Methyl-l-oxopropyl)pyridine-2-carbonitrile A solution of 300 mg (1.3 mmol) of 5-(2-methyl-l-oxopropyl)-2-bromopyridine (from Step B), zinc cyanide (0.093 g, 0.789 mmol), tiis(dibenzylideneacetone)-dipalladium(0) (24 mg, 0.026 mmol) and l,l-bis(diphenylphosphino)-ferrocene (33 mg, 0.059 mmol) in 2 mL of DMF and 0.03 mL of water was heated at 80 °C for 2.5 h. The reaction was cooled, loaded onto silica gel and eluted with 5:1 v/v hexanes/EtOAc to give 224 mg of the product: Η NMR (500 MHz , CDC13) δ 9.21 (d, J= 1.8, , IH), 8.34 (dd, J= 2.3, 8.0 , IH), 7.83 (d, J= 8.0 , IH), 3.50 (m, IH), 1.25 (d, J= 6.8 , 6H).
Step D: 5-(2-Methyl-l-oxopropyl)pyridine-2-carboxylic acid A solution of 125 mg (0.7 mmol) of 5-(2-methyl-l-oxopropyl)pyridine-2- carbonitrile (from Step C) and 0.7 mL of 5.0 N NaOH in 2.5 mL of EtOH was stirred at 75 °C for 1 h. The reaction was cooled, diluted with 50 mL of EtOAc, washed with 20 mL of 2 N HC1, 25 mL of sat'd NaCl, dried and concentrated to give 108 mg of the title compound.
CARBOXYLIC ACID 22 5-(Ll-Difluoro-2-methylpropyl)pyri(3ine-2-carboxylic acid The title compound was prepared from 5-(2-methyl- 1 -oxopropyl)pyridine-2- carbonitrile (from CARBOXYLIC ACID 21, Step C) using procedures analogous to those described in CARBOXYLIC ACID 4, Steps B and C: Η NMR (500 MHz , CDC13) δ 8.71 (s, IH), 8.30 (d, J= 8.0 , IH), 8.01 (dd, J= 2.1, 8.3 , IH), 2.37 (m, IH), 1.04 (d, J= 6.9 , 6H); ESI- MS 216.7 (M+H).
CARBOXYLIC ACID 23 (S)-4-(3,3-Difluorocyclopentyl) benzoic acid Step A: (S)-3-(4-Bromophenyl)cyclopentanone To a mixture of 7.2 g (35.8 mmol) of 4-bromophenylboronic acid, 186 mg (0.72 mmol) of acetylacetonatobis(ethylene)rhodium (I) and 446 mg (0.71 mmol) of (S)-2,2'- bis(diphenylphosphino)-l,l'binaphthyl (BEMAP) in 60 mL of dioxane and 6 mL of H2O under nitrogen was added 1.0 mL (11.9 mmol) of 2-cyclopenten-l-one. After refluxing for 5.5 h, the reaction was concentrated. The residue was partitioned between 300 mL of EtOAc and 300 mL of 1 N NaHCO3. After separating phases, the organic layer was washed with 300 mL of brine, dried over Na SO4 and concentrated. The residue was purified on a 40M Biotage column using 9: 1 v/v hexane/EtOAc as the eluant to afford 1.90 g of the title compound as a white solid: 1H- NMR (500 MHz) δ 1.97 (m, IH), 2.29-2.37 (m, 2H), 2.43-2.52 (m, 2H), 2.69 (m, IH), 3.40 (m, IH), 7.16 (d, J = 8.5, 2H), 7.49 (d, J = 8.5, 2H).
Step B : (S)-3-(4-Bromophenyl)- 1 , 1 -difluorocyclopentane A mixture of 2.1 mL (11.4 mmol) of [bis(2-methoxyethyl)amino] sulfur trifluoride and 0.10 mL (0.7 mmol) of borontrifluoride etherate in 7 mL of toluene at 0 °C was allowed to stand for 1.3 h with occasional stirring. A solution of 1.9 g (7.9 mmol) of (S)-3-(4- bromophenyl)cyclopentanone (from Step A) in 13 mL of toluene was added. The reaction was stirred at 55 °C for 2 days. After cooling, the mixture was added to 250 mL of 2N NaOH and 250 mL of Et2O at 0 °C. After stirring for 30 min, the phases were separated. The organic layer was washed with 250 mL of 1 N NaOH and 250 mL of H2O, dried over MgSO and concentrated. The residue was purified on a 40M Biotage column using 49:1 v/v hexane/Et2O as the eluant to afford 1.47 g of the title compound: 1H-NMR (500 MHz) δ 1.85 (m, IH), 2.09-2.26 (m, 3H), 2.35 (m, IH), 2.56 (m, IH), 3.30 (m, IH), 7.13 (d, J = 8.3, 2H), 7.46 (d, J = 8.3, 2H).
Step C: (S)-4-(3,3-Difluorocyclopentyl) benzoic acid A solution of 1.0 g (3.8 mmol) of (S)-3-(4-bromophenyl)-l,l- difluorocyclopentane (from Step B) in 15 mL of THF at -78 °C was treated with 1.6 mL (4.0 mmol) of 2.5M BuLi in hexanes. After stirring for 15 min, the reaction was added to a suspension of dry ice in 200 mL of Et2O. The mixture was allowed to warm to rt. The reaction mixture was extracted with 100 mL of 1 N NaOH. After separating phases, the aqueous layer was acidified to pH 1-2 with concentrated HC1. The aqueous phase was extracted with 3 x 100 mL of CH2C1 . The combined organic phases were dried and concentrated to give 0.67 g of the title compound: 1H-NMR (500 MHz, CD3OD) δ 1.87 (m, IH), 2.13-2.37 (m, 4H), 2.54 (m, IH), 3.41 (m, IH), 7.39 (d, J = 8.2, 2H), 7.97 (d, J = 8.2, 2H).
CARBOXYLIC ACID 24 (R)-4-(3.3-Difluorocyclopentyl) benzoic acid The title compound was prepared using analogous procedures to CARBOXYLIC ACID 23, except (R)-2,2'-bis(diphenylphosphino)-l,l'binaphthyl (BINAP) was substituted for (S)-2,2'-bis(diphenylphosphino)-l,l'binaphthyl (BINAP) in Step A.
PREPARATION OF EXAMPLES
EXAMPLE 1 3-(2-Methyl-5-chlorophenyl)-5-(4-(2-methylpropyl)phenyl)- 2,4-oxadiazole
Step A: N-Hydroxy-(2-methyl-5-chloro)benzamidine A mixture 2.50 g (16.5 mmol) of 5-chloro-2-methylbenzonitrile, 2.30 g (33 mmol) of hydroxylamine hydrochloride and 6.90 g (82.5 mmol) of sodium bicarbonate in 25 mL of MeOH methanol was stirred at 50 °C for 16 h. The reaction mixture was cooled, diluted with 50 mL of 2 N HC1 , then extracted with 3 x 30 mL of CH2C12 and 1 x 30 mL of EtOAc. The combined organics were dried and concentrated to give 2.15 g of the title compound: ^H NMR (500 MHz , CD3OD): δ 7.29-7.34 (m, 2H), 7.23 (d, J= 8.0, IH), 2.38 (s, 3H).
Step B: 3-(2-Methyl-5-chlorophenyl)-5-(4-(2-methylpropyl)phenyl)-l,2,4-oxadiazole A mixture of 500 mg (2.8 mmol) 4-(2-methylpropyl)benzoic acid, 600 mg (3.1 mmol) of l-(3-(dimethylamino)propyl)-3-ethylcarbodiimide hydrochloride and 420 mg (3.1 mmol) of 1-hydroxybenzotriazole in 10 mL of acetonitrile was stirred at rt for 10 min. The mixture was treated with 520 mg (2.8 mmol) of N-hydroxy-(2-methyl-5-chloro)benzamidine (from Step A) and the resulting mixture was heated 80 °C for 16 h. The reaction was cooled and concentrated. Silica gel chromatography using 19:1 v/v hexanes/EtOAC as the eluant afforded 330 mg of the title compound: Η NMR (500 MHz , CDC13): δ 8.11-8.13 (m, 3H), 7.37 (dd, J= 2.3, 8.2, IH), 7.33 (d, J= 8.3, 2 H), 7.25-7.28 (m, IH), 2.58 (d, J= 7.3, 2H), 2.52 (s, 3H), 1.94 (m, IH), 0.94 (d, J= 6.6, 6H); ESI-MS 327 (M+H). EXAMPLES 2-18 The following were prepared using procedures analogous to those described in EXAMPLE 1 substituting the appropriate carboxylic acid for 4-(2-methylpropyl)benzoic acid in Step B. o, ULα
Ra
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
EXAMPLES 19-25 The following were prepared using procedures analogous to those described in EXAMPLE 1 substituting the appropriate nitrile for (2-methyl-5-chloro)benzonitrile in Step A and 4- (cyclohexyl)benzoic acid for Step B.
Figure imgf000040_0002
Figure imgf000040_0003
Figure imgf000041_0001
Figure imgf000042_0002
EXAMPLES 26-31 The following were prepared using procedures analogous to those described in EXAMPLE 1 substituting the appropriate nitrile for (2-methyl-5-chloro)benzonitrile in Step A and the appropriate carboxylic acid for 4-(2-methylpropyl)benzoic acid in Step B.
Figure imgf000042_0001
Figure imgf000042_0003
Figure imgf000043_0001
Figure imgf000044_0001
BIOLOGICAL ACTIVITY
The SlPi/Edgl, SlP3,/Edg3, SlP2/Edg5, SlP4/Edg6 or SIP5 /Edg8 activity of the compounds of the present invention can be evaluated using the following assays:
Ligand Binding to Edg/SlP Receptors Assay 33p-sphingosine-l-phosphate was synthesized enzymatically from γ33p_ATP and sphingosine using a crude yeast extract with sphingosine kinase activity in a reaction mix containing 50 mM KH2PO4, 1 mM mercaptoethanol, 1 mM Na3VO4, 25 mM KF, 2 mM semicarbazide, 1 mM Na2EDTA, 5 mM MgCl2, 50 mM sphingosine, 0.1% TritonX-114, and 1 mCi γ33p_ATP (NEN; specific activity 3000 Ci/mmol). Reaction products were extracted with butanol and 33p_Sphingosine-l-phosphate was purified by HPLC. Cells expressing EDG/S1P receptors were harvested with enzyme-free dissociation solution (Specialty Media, Lavallette, NJ). They were washed once in cold PBS and suspended in binding assay buffer consisting of 50 mM HEPES-Na, pH 7.5, 5mM MgCl2, lmM CaCl2, and 0.5% fatty acid-free BSA. 3p-sphingosine- 1-phosphate was sonicated with 0.1 nM sphingosine- 1-phosphate in binding assay buffer; 100 μl of the ligand mixture was added to 100 μl cells (1 x lθ6 cells/ml) in a 96 well microtiter dish. Binding was performed for 60 min at room temperature with gentle mixing. Cells were then collected onto GF/B filter plates with a Packard Filtermate Universal Harvester. After drying the filter plates for 30 min, 40 μl of Microscint 20 was added to each well and binding was measured on a Wallac Microbeta Scintillation Counter. Non-specific binding was defined as the amount of radioactivity remaining in the presence of 0.5 μM cold sphingosine- 1-phosphate. Alternatively, ligand binding assays were performed on membranes prepared from cells expressing Edg/SlP receptors. Cells were harvested with enzyme-free dissociation solution and washed once in cold PBS. Cells were disrupted by homogenization in ice cold 20 mM HEPES pH 7.4, 10 mM EDTA using a Kinematica polytron (setting 5, for 10 seconds). Homogenates were centrifuged at 48,000 x g for 15 min at 4°C and the pellet was suspended in 20 mM HEPES pH 7.4, 0.1 mM EDTA. Following a second centrifugation, the final pellet was suspended in 20 mM HEPES pH 7.4, 100 mM NaCl, 10 mM MgCl2. Ligand binding assays were performed as described above, using 0.5 to 2 μg of membrane protein. Agonists and antagonists of Edg/SlP receptors can be identified in the 33p_ sphingosine- 1-phosphate binding assay. Compounds diluted in DMSO, methanol, or other solvent, were mixed with probe containing 33p-sphingosine- 1-phosphate and binding assay buffer in microtiter dishes. Membranes prepared from cells expressing Edg/SlP receptors were added, and binding to 33p.Sp ingosine- 1-phosphate was performed as described. Determination of the amount of binding in the presence of varying concentrations of compound and analysis of the data by non-linear regression software such as MRLCalc (Merck Research Laboratories) or PRISM (GraphPad Software) was used to measure the affinity of compounds for the receptor. Selectivity of compounds for Edg/S IP receptors was determined by measuring the level of 33p. sphingosine- 1-phosphate binding in the presence of the compound using membranes prepared from cells transfected with each respective receptor (SlPi/Edgl, SlP3/Edg3, SlP2/Edg5, SlP4 Edg6, SlP5 Edg8).
35s-GTPyS Binding Assay Functional coupling of SlP/Edg receptors to G proteins was measured in a 5s- GTPγS binding assay. Membranes prepared as described in the Ligand Binding to Edg/SlP Receptors Assay (1-10 μg of membrane protein) were incubated in a 200 μl volume containing 20 mM HEPES pH 7.4, 100 mM NaCl, 10 mM MgC_2, 5 μM GDP, 0.1% fatty acid-free BSA (Sigma, catalog A8806), various concentrations of sphingosine-1-phosphate, and 125 pM 35s- GTPγS (NEN; specific activity 1250 Ci/mmol) in 96 well microtiter dishes. Binding was performed for 1 hour at room temperature with gentle mixing, and terminated by harvesting the membranes onto GF B filter plates with a Packard Filtermate Universal Harvester. After drying the filter plates for 30 min, 40 μl of Microscint 20 was added to each well and binding was measured on a Wallac Microbeta Scintillation Counter. Agonists and antagonists of SlP/Edg receptors can be discriminated in the 5s- GTPγS binding assay. Compounds diluted in DMSO, methanol, or other solvent, were added to microtiter dishes to provide final assay concentrations of 0.01 nM to 10 μM. Membranes prepared from cells expressing SlP/Edg receptors were added, and binding to 35s-GTPγS was performed as described. When assayed in the absence of the natural ligand or other known agonist, compounds that stimulate 35s-GTPγS binding above the endogenous level were considered agonists, while compounds that inhibit the endogenous level of 35s-GTPγS binding were considered inverse agonists. Antagonists were detected in a 35s-GTPγS binding assay in the presence of a sub-maximal level of natural ligand or known SlP/Edg receptor agonist, where the compounds reduced the level of 35s-GTPγS binding. Determination of the amount of binding in the presence of varying concentrations of compound was used to measure the potency of compounds as agonists, inverse agonists, or antagonists of SlP/Edg receptors. To evaluate agonists, percent stimulation over basal was calculated as binding in the presence of compound divided by binding in the absence of ligand, multiplied by 100. Dose response curves were plotted using a non-linear regression curve fitting program MRLCalc (Merck Research Laboratories), and EC50 values were defined to be the concentration of agonist required to give 50% of its own maximal stimulation. Selectivity of compounds for SlP/Edg receptors was determined by measuring the level of 35s-GTPγS binding in the presence of compound using membranes prepared from cells transfected with each respective receptor.
Intracellular Calcium Flux Assay Functional coupling of S lP Edg receptors to G protein associated intracellular calcium mobilization was measured using FLIPR (Fluorescence Imaging Plate Reader, Molecular Devices). Cells expressing SlP/Edg receptors were harvested and washed once with assay buffer (Hanks Buffered Saline Solution (BRL) containing 20mM HEPES, 0.1% BSA and 710 μg/ml probenicid (Sigma)). Cells were labeled in the same buffer containing 500 nM of the calcium sensitive dye Fluo-4 (Molecular Probes) for 1 hour at 370C and 5% CO2. The cells were washed twice with buffer before plating 1.5xlθ5 per well (90μl) in 96 well polylysine coated black microtiter dishes. A 96-well ligand plate was prepared by diluting sphingosine- 1-phosphate or other agonists into 200 μl of assay buffer to give a concentration that was 2-fold the final test concentration. The ligand plate and the cell plate were loaded into the FLIPR instrument for analysis. Plates were equilibrated to 37°C. The assay was initiated by transferring an equal volume of ligand to the cell plate and the calcium flux was recorded over a 3 min interval. Cellular response was quantitated as area (sum) or maximal peak height (max). Agonists were evaluated in the absence of natural ligand by dilution of compounds into the appropriate solvent and transfer to the Fluo-4 labeled cells. Antagonists were evaluated by pretreating Fluo-4 labeled cells with varying concentrations of compounds for 15 min prior to the initiation of calcium flux by addition of the natural ligand or other SlP/Edg receptor agonist.
Preparation of Cells Expressing SlP/Edg Receptors Any of a variety of procedures may be used to clone SlPi Edgl, SlP3/Edg3, SlP2/Edg5, SlP4/Edg6 or SlPs Edg8. These methods include, but are not limited to, (1) a RACE PCR cloning technique (Frohman, et al., 1988, Proc. Natl. head. Sci. USA 85: 8998- 9002). 5' and or 3' RACE may be performed to generate a full-length cDNA sequence; (2) direct functional expression of the Edg/SlP cDNA following the construction of an SlP/Edg- containing cDNA library in an appropriate expression vector system; (3) screening an SlP/Edg- containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a labeled degenerate oligonucleotide probe designed from the amino acid sequence of the SlP/Edg protein; (4) screening an SlP/Edg-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a partial cDNA encoding the SlP/Edg protein. This partial cDNA is obtained by the specific PCR amplification of SlP/Edg DNA fragments through the design of degenerate oligonucleotide primers from the amino acid sequence known for other proteins which are related to the SlP/Edg protein; (5) screening an SlP/Edg-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a partial cDNA or oligonucleotide with homology to a mammalian SlP/Edg protein. This strategy may also involve using gene- specific oligonucleotide primers for PCR amplification of SlP/Edg cDNA; or (6) designing 5' and 3' gene specific oligonucleotides using the SlP Edg nucleotide sequence as a template so that either the full-length cDNA may be generated by known RACE techniques, or a portion of the coding region may be generated by these same known RACE techniques to generate and isolate a portion of the coding region to use as a probe to screen one of numerous types of cDNA and/or genomic libraries in order to isolate a full-length version of the nucleotide sequence encoding SlP/Edg. It is readily apparent to those skilled in the art that other types of libraries, as well as libraries constructed from other cell types-or species types, may be useful for isolating an
SlP Edg-encoding DNA or an SlP Edg homologue. Other types of libraries include, but are not limited to, cDNA libraries derived from other cells. It is readily apparent to those skilled in the art that suitable cDNA libraries may be prepared from cells or cell lines which have SlP Edg activity. The selection of cells or cell lines for use in preparing a cDNA library to isolate a cDNA encoding SlP/Edg may be done by first measuring cell-associated SlP/Edg activity using any known assay available for such a purpose. Preparation of cDNA libraries can be performed by standard techniques well known in the art. Well known cDNA library construction techniques can be found for example, in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Complementary DNA libraries may also be obtained from numerous commercial sources, including but not limited to Clontech Laboratories, Inc. and Stratagene. An expression vector containing DNA encoding an SlP/Edg-like protein may be used for expression of SlP/Edg in a recombinant host cell. Such recombinant host cells can be cultured under suitable conditions to produce SlP/Edg or a biologically equivalent form. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses. Commercially available mammalian expression vectors may be suitable for recombinant SlP/Edg expression. Recombinant host cells may be prokaryotic or eukaryotic, including but not limited to, bacteria such as E. coli, fungal cells such as yeast, mammalian cells including, but not limited to, cell lines of bovine, porcine, monkey and rodent origin; and insect cells including but not limited to Drosophila and silkworm derived cell lines. The nucleotide sequences for the various SlP/Edg receptors are known in the art. See, for example, the following: SlPj/Edgl Human B a, T. and T. Maciag 1990 An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with stractural similarities to G-protein coupled receptors. J. Biol Chem. 265:9308-9313, hereby incorporated by reference in its entirety. WO91/15583, published on October 17, 1991, hereby incorporated by reference in its entirety. WO99/46277, published on September 16, 1999, hereby incorporated by reference in its entirety. SlPi/Edgl Mouse WO0059529, published October 12, 2000, hereby incorporated by reference in its entirety. U.S. No. 6,323,333, granted November 27, 2001, hereby incorporated by reference in its entirety. SlPi Edgl Rat Lado, D.C., C. S. Browe, A.A. Gaskin, J. M. Borden, and A. J. MacLennan. 1994 Cloning of the rat edg-1 immediate-early gene: expression pattern suggests diverse functions. Gene 149: 331-336, hereby incorporated by reference in its entirety. U.S. No. 5,585,476, granted December 17, 1996, hereby incorporated by reference in its entirety. U.S. No. 5856,443, granted January 5, 1999, hereby incorporated by reference in its entirety.
SlP3_/Edg3 Human An, S., T. Bleu, W. Huang, O.G. Hallmark, S. R. Coughlin, E.J. Goetzl 1997 Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids FEBS Lett. 417:279-282, hereby incorporated by reference in its entirety. WO 99/60019, published November 25, 1999, hereby incorporated by reference in its entirety. U.S. No. 6,130,067, granted October 10, 2000, hereby incorporated by reference in its entirety.
SlP3_/Edg3 Mouse WO 01/11022, published February 15, 2001, hereby incorporated by reference in its entirety.
Figure imgf000049_0001
WO 01/27137, published April 19, 2001, hereby incorporated by reference in its entirety. SlP9/Edg5 Human An, S., Y. Zheng, T. Bleu 2000 Sphingosine 1 -Phosphate-induced cell proliferation, survival, and related signaling events mediated by G Protein-coupled receptors Edg3 and Edg5. J. Biol. Chem 275: 288-296, hereby incorporated by reference in its entirety. WO 99/35259, published July 15, 1999, hereby incorporated by reference in its entirety. WO99/54351, published October 28, 1999, hereby incorporated by reference in its entirety. WO 00/56135, published September 28, 2000, hereby incorporated by reference in its entirety.
SlP9/Edg5 Mouse WO 00/60056, published October 12, 2000, hereby incorporated by reference in its entirety.
SlP?/Edg5 Rat Okazaki, H., N. Ishizaka, T. Sakurai, K. Kurokawa, K. Goto, M. Kumada, Y. Takuwa 1993 Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem. Biophys. Res. Comm. 190:1104-1109, hereby incorporated by reference in its entirety. MacLennan, A.J., C. S. Browe, A.A. Gaskin, D.C. Lado, G. Shaw 1994 Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol. Cell. Neurosci. 5: 201-209, hereby incorporated by reference in its entirety. U.S. No. 5,585,476, granted December 17, 1996, hereby incorporated by reference in its entirety. U.S. No. 5856,443, granted January 5, 1999, hereby incorporated by reference in its entirety.
SlP4/Edg6 Human Graler, M.H., G. Bernhardt, M. Lipp 1998 EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics 53: 164-169, hereby incorporated by reference in its entirety. WO 98/48016, published October 29, 1998, hereby incorporated by reference in its entirety. U.S. No. 5,912,144, granted June 15, 1999, hereby incorporated by reference in its entirety. WO 98/50549, published November 12, 1998, hereby incorporated by reference in its entirety. U.S. No. 6,060,272, granted May 9, 2000, hereby incorporated by reference in its entirety. WO 99/35106, published July 15, 1999, hereby incorporated by reference in its entirety. WO 00/15784, published March 23, 2000, hereby incorporated by reference in its entirety. WO 00/14233, published March 16, 2000, hereby incorporated by reference in its entirety.
SlP4/Edg6 Mouse WO 00/15784, published March 23, 2000, hereby incorporated by reference in its entirety.
SlPj/Edg8 Human Im, D.-S., J. Clemens, T.L. Macdonald, K.R. Lynch 2001 Characterization of the human and mouse sphingosine 1-phosphate receptor, SIP5 (Edg-8): Stracture- Activity relationship of sphingosine 1-phosphate receptors. Biochemistry 40:14053-14060, hereby incorporated by reference in its entirety. WO 00/11166, published March 2, 2000, hereby incorporated by reference in its entirety. WO 00/31258, published June 2, 2000, hereby incorporated by reference in its entirety. WO 01/04139, published January 18, 2001, hereby incorporated by reference in its entirety. EP 1 090 925, published April 11, 2001, hereby incorporated by reference in its entirety. SlP /Edg8 Rat Im, D.-S., C.E. Heise, N. Ancellin, B. F. O'Dowd, G.-J. Shei, R. P. Heavens, M. R. Rigby, T. Hla, S. Mandala, G. McAllister, S.R. George, K.R. Lynch 2000 Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J. Biol. Chem. 275: 14281-14286, hereby incorporated by reference in its entirety. WO 01/05829, published January 25, 2001, hereby incorporated by reference in its entirety.
Measurement of cardiovascular effects The effects of compounds of the present invention on cardiovascular parameters can be evaluated by the following procedure: Adult male rats (approx. 350 g body weight) were instrumented with femoral arterial and venous catheters for measurement of arterial pressure and intravenous compound administration, respectively. Animals were anesthetized with Nembutal (55 mg/kg, ip). Blood pressure and heart rate were recorded on the Gould Po-Ne-Mah data acquisition system. Heart rate was derived from the arterial pulse wave. Following an acclimation period, a baseline reading was taken (approximately 20 minutes) and the data averaged. Compound was administered intravenously (either bolus injection of approximately 5 seconds or infusion of 15 minutes duration), and data were recorded every 1 minute for 60 minutes post compound administration. Data are calculated as either the peak change in heart rate or mean arterial pressure or are calculated as the area under the curve for changes in heart rate or blood pressure versus time. Data are expressed as mean + SEM. A one-tailed Student's paired t-test is used for statistical comparison to baseline values and considered significant at p<0.05. The SIP effects on the rat cardiovascular system are described in Sugiyama, A.,
N.N. Aye, Y. Yatomi, Y. Ozaki, K. Hashimoto 2000
Effects of Sphingosine- 1 -Phosphate, a naturally occurring biologically active lysophospholipid, on the rat cardiovascular system. Jpn. J. Pharmacol. 82: 338-342, hereby incorporated by reference in its entirety.
Measurement of Mouse Acute Toxicity A single mouse is dosed intravenously (tail vein) with 0.1 ml of test compound dissolved in a non-toxic vehicle and is observed for signs of toxicity. Severe signs may include death, seizure, paralysis or unconciousness. Milder signs are also noted and may include ataxia, labored breathing, ruffling or reduced activity relative to normal. Upon noting signs, the dosing solution is diluted in the same vehicle. The diluted dose is administered in the same fashion to a second mouse and is likewise observed for signs. The process is repeated until a dose is reached that produces no signs. This is considered the estimated no-effect level. An additional mouse is dosed at this level to confirm the absence of signs.
Assessment of Lymphopenia Compounds are administered as described in Measurement of Mouse Acute
Toxicity and lymphopenia is assessed in mice at three hours post dose as follows. After rendering a mouse unconscious by CO2 to effect, the chest is opened, 0.5 ml of blood is withdrawn via direct cardiac puncture, blood is immediately stabilized with EDTA and hematology is evaluated using a clinical hematology autoanalyzer calibrated for performing murine differential counts (H2000, CARESIDE, Culver City CA). Reduction in lymphocytes by test treatment is established by comparison of hematological parameters of three mice versus three vehicle treated mice. The dose used for this evaluation is determined by tolerability using a modification of the dilution method above. For this purpose, no-effect is desirable, mild effects are acceptable and severely toxic doses are serially diluted to levels that produce only mild effects.
In Vitro Activity of Examples The examples disclosed herein have utility as immunoregulatory agents as demonstrated by their activity as potent and selective agonists of the SlPχ/Εdgl receptor over the S1PR3/Edg3 receptor as measured in the assays described above. In particular, the examples disclosed herein possess a selectivity for the SlPi Edgl receptor over the S1PR3/Edg3 receptor of more than 100 fold as measured by the ratio of EC50 for the S lPi Edgl receptor to the EC50 for the SlP3/Εdg3 receptor as evaluated in the 35s-GTPγS binding assay described above and possess an EC50 for binding to the SlPi/Edgl receptor of less than 10 nM as evaluated by the 35s-GTPγS binding assay described above.

Claims

WHAT IS CLAIMED IS:
1. A compound represented by Formula I
Figure imgf000054_0001
I or a pharmaceutically acceptable salt thereof, wherein: A is selected from the group consisting of: phenyl, naphthyl and HETl, each substituted with one to three substituents independently selected from the group consisting of: halo, Ci_6alkyl, halo-substitutedCi_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Cι_ βalkoxy and halo-substituted-Ci-βalkoxy, or A is C3_6cycloalkyl, optionally substituted with one to three substituents independently selected from the group consisting of: halo, Cι_6alkyl, halo-substitutedCi-galkyl, C3_6cycloalkyl, halo-substitutedC3-6cycloalkyl, Ci_6alkoxy and halo-substituted-Ci_6alkoxy;
B is selected from the group consisting of: phenyl, naphthyl, HET2 and C3_ 6cycloalkyl, each optionally substituted with one to three substituents independently selected from the group consisting of: halo, Ci_4alkyl, halo-substitutedCι_4alkyl and hydroxy-substituted Cι_4alkyl;
HETl is selected from the group consisting of: benzimidazolyl, benzofuranyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxadiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, azetidinyl, 1,4-dioxanyl, hexahydroazepinyl, piperazinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroindolyl, dihydroisooxazolyl, dihydroisothiazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyrazolyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydroquinolinyl, dihydrotetrazolyl, dihydrothiadiazolyl, dihydrothiazolyl, dihydrothienyl, dihydrotriazolyl, dihydroazetidinyl, methylenedioxybenzoyl, tetrahydrofuranyl, and tetrahydrothienyl, said HETl being optionally substituted with 1-2 oxo groups; HET2 is selected from the group consisting of: furanyl, imidazolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, pyrazolyl, pyrrolyl, thiadiazolyl, thiazolyl, thienyl and triazolyl; and
X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole group shown in Formula I.
2. The compound according to Claim 1 wherein: A is selected from the group consisting of: phenyl, pyridyl and pyrazinyl, substituted with one to two substituents independently selected from the group consisting of: halo, Cι_6alkyl, halo-substitutedCι_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Cι_ 6alkoxy and halo-substituted-Ci_6alkoxy, or A is C3_6cycloalkyl, optionally substituted with one to two substituents independently selected from the group consisting of: halo, Ci-βalkyl, halo-substitutedCi-βalkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci-βalkoxy and halo-substituted-Ci-βalkoxy.
3. The compound according to Claim 1 wherein:
A is phenyl substituted at the para position relative to the attachment of the 1,2,4- oxadiazole group shown in Formula I with a substituent selected from the group consisting of: Cι_6alkyl, halo-substitutedCi-βalkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Cι_ 6alkoxy and halo-substituted-Ci_6alkoxy.
4. The compound according to Claim 1 wherein:
A is pyridyl substituted at the 1,4-position relative to the attachment of the 1,2,4- oxadiazole group shown in Formula I with a substituent selected from the group consisting of: Cι_6alkyl, halo-substitutedCi-galkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci_ βalkoxy and halo-substituted-Ci-βalkoxy.
5. The compound according to Claim 1 wherein A is cyclohexyl.
6. The compound according to Claim 1 wherein B is phenyl, optionally substituted with a substituent selected from the group consisting of: halo, Cι_4alkyl, halo- substitutedCi_4alkyl and hydroxy-substituted Ci_4alkyl.
7. The compound according to Claim 1 wherein B is selected from the group consisting of: isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Cι_4alkyl, halo-substitutedCι_4alkyl and hydroxy- substituted Ci-4alkyl.
8. The compound according to Claim 1 wherein X is methyl.
9. The compound according to Claim 1 of formula la
Figure imgf000056_0001
la or a pharmaceutically acceptable salt thereof, wherein: A is selected from the group consisting of: phenyl, pyridyl and pyrazinyl, substituted with one to two substituents independently selected from the group consisting of: halo, Cχ-6alkyl, halo-substitutedCι_6alkyl, C3_6cycloalkyl, halo-substitutedC3-6cycloalkyl, Cχ_ 6alkoxy and halo-substituted-Ci-6alkoxy, or
A is C3_6cycloalkyl, optionally substituted with one to two substituents independently selected from the group consisting of: halo, Ci_6alkyl, halo-substitutedCi_6alkyl, C3_6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci-βalkoxy and halo-substituted-Ci_6alkoxy.
10. The compound according to Claim 1 of Formula lb
Figure imgf000057_0001
or a pharmaceutically acceptable salt thereof, wherein:
B is selected from the group consisting of: phenyl, isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Cι_4alkyl, halo-substitutedCχ_4alkyl and hydroxy-substituted Ci-4alkyl; and
X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole group shown in Formula I.
11. The compound according to Claim 1 of Formula Ic
Figure imgf000057_0002
Ic
or a pharmacrutically acceptable salt thereof, wherein: Z is selected from the group consisting of: Ci-βalkyl, halo-substitutedCl-6alkyl,
C3-6cycloalkyl, halo-substitutedC3_6cycloalkyl, Ci-6alkoxy and halo-substituted-Ci_6alkoxy;
B is selected from the group consisting of: phenyl, isoxazolyl, thiadiazolyl and thienyl, each optionally substituted with a substituent selected from the group consisting of: halo, Ci-4alkyl, halo-substitutedCι_4alkyl and hydroxy-substituted Ci_4alkyl; and
X is selected from the group consisting of: methyl, methoxy, nitro, amino, trifluoromethyl and halo, wherein X is substituted on the ring B ortho relative to the attachment of the 1,2,4-oxadiazole group shown in Formula I.
12. The compound according to Claim 11 wherein Z is Ci-6alkoxy or halo- substituted-C i _6alkoxy.
13. A compound selected from one of the following tables :
TABLE A
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000059_0001
Figure imgf000060_0001
TABLE B
Figure imgf000060_0002
Figure imgf000061_0001
TABLE C
Figure imgf000062_0001
Figure imgf000062_0002
or a pharmaceutically acceptable salt of any of the above.
14. A method of treating an immunoregulatory abnormality in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective for treating said immunoregulatory abnormality.
15. The method according to Claim 14 wherein the immunoregulatory abnormality is an autoimmune or chronic inflairtrnatory disease selected from the group consisting of: systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis, Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy and asthma.
16. The method according to Claim 14 wherein the immunoregulatory abnormality is bone marrow or organ transplant rejection or graft-versus-host disease.
17. The method according to Claim 14 wherein the immunoregulatory abnormality is selected from the group consisting of: transplantation of organs or tissue, graft- versus-host diseases brought about by transplantation, autoimmune syndromes including rheumatoid arthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes, uveitis, posterior uveitis, allergic encephalomyelitis, glomeralonephritis, post-infectious autoimmune diseases including rheumatic fever and post- infectious glomeralonephritis, inflammatory and hyperproliferative skin diseases, psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitis, seborrhoeic dermatitis, lichen planus, pemphigus, bullous pemphigoid, epidermolysis bullosa, urticaria, angioedemas, vasculitis, erythema, cutaneous eosinophilia, lupus erythematosus, acne, alopecia areata, keratoconjunctivitis, vernal conjunctivitis, uveitis associated with Behcet's disease, keratitis, herpetic keratitis, conical cornea, dystrophia epithelialis corneae, corneal leukoma, ocular pemphigus, Mooren's ulcer, scleritis, Graves' opthalmopathy, Vogt-Koyanagi-Harada syndrome, sarcoidosis, pollen allergies, reversible obstructive airway disease, bronchial asthma, allergic asthma, intrinsic asthma, extrinsic asthma, dust asthma, chronic or inveterate asthma, late asthma and airway hyper-responsiveness, bronchitis, gastric ulcers, vascular damage caused by ischemic diseases and thrombosis, ischemic bowel diseases, inflammatory bowel diseases, necrotizing enterocolitis, intestinal lesions associated with thermal burns, coeliac diseases, proctitis, eosinophilic gastroenteritis, mastocytosis, Crohn's disease, ulcerative colitis, migraine, rhinitis, eczema, interstitial nephritis, Goodpasture's syndrome, hemolytic-uremic syndrome, diabetic nephropathy, multiple myositis, Guillain-Barre syndrome, Meniere's disease, polyneuritis, multiple neuritis, mononeuritis, radiculopathy, hyperthyroidism, Basedow's disease, pure red cell aplasia, aplastic anemia, hypoplastic anemia, idiopathic thrombocytopenic purpura, autoimmune hemolytic anemia, agranulocytosis, pernicious anemia, megaloblastic anemia, anerythroplasia, osteoporosis, sarcoidosis, fibroid lung, idiopathic interstitial pneumonia, dermatomyositis, leukoderma vulgaris, ichthyosis vulgaris, photoallergic sensitivity, cutaneous T cell lymphoma, arteriosclerosis, atherosclerosis, aortitis syndrome, polyarteritis nodosa, myocardosis, scleroderma, Wegener's granuloma, Sjogren's syndrome, adiposis, eosinophilic fascitis, lesions of gingiva, periodontium, alveolar bone, substantia ossea dentis, glomeralonephritis, male pattern alopecia or alopecia senilis by preventing epilation or providing hair germination and/or promoting hair generation and hair growth, muscular dystrophy, pyoderma and Sezary's syndrome, Addison's disease, ischemia-reperfusion injury of organs which occurs upon preservation, transplantation or ischemic disease, endotoxin-shock, pseudomembranous colitis, colitis caused by drug or radiation, ischemic acute renal insufficiency, chronic renal insufficiency, toxinosis caused by lung-oxygen or drugs, lung cancer, pulmonary emphysema, cataracta, siderosis, retinitis pigmentosa, senile macular degeneration, vitreal scarring, corneal alkali burn, dermatitis erythema multiforme, linear IgA ballous dermatitis and cement dermatitis, gingivitis, periodontitis, sepsis, pancreatitis, diseases caused by environmental pollution, aging, carcinogenesis, metastasis of carcinoma and hypobaropathy, disease caused by histamine or leukotriene-C4 release, Behcet's disease, autoimmune hepatitis, primary biliary cirrhosis, sclerosing cholangitis, partial liver resection, acute liver necrosis, necrosis caused by toxin, viral hepatitis, shock, or anoxia, B-virus hepatitis, non-A/non-B hepatitis, cirrhosis, alcoholic cirrhosis, hepatic failure, fulminant hepatic failure, late-onset hepatic failure, "acute-on-chronic" liver failure, augmentation of chemotherapeutic effect, cytomegalovirus infection, HCMV infection, AIDS, cancer, senile dementia, trauma, and chronic bacterial infection.
18. The method according to Claim 14 wherein the immunoregulatory abnormality is selected from the group consisting of: 1) multiple sclerosis, 2) rheumatoid arthritis, 3) systemic lupus erythematosus, 4) psoriasis, 5) rejection of transplanted organ or tissue, 6) inflammatory bowel disease, 7) a malignancy of lymphoid origin, 8) acute and chronic lymphocytic leukemias and lymphomas and 9) insulin and non-insulin dependent diabetes.
19. A method of suppressing the immune system in a mammalian patient in need of immunosuppression comprising administering to said patient an immunosuppressing effective amount of a compound of Claim 1.
20. A pharmaceutical composition comprised of a compound in accordance with Claim 1 in combination with a pharmaceutically acceptable carrier.
21. A method of treating a respiratory disease or condition in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective for treating said respiratory disease or condition.
22. The method according to Claim 21 wherein the respiratory disease or condition is selected from the group consisting of: asthma, chronic bronchitis, chronic obstractive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia.
PCT/US2004/031675 2003-10-01 2004-09-27 3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists WO2005032465A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2004277947A AU2004277947A1 (en) 2003-10-01 2004-09-27 3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as S1P receptor agonists
US10/571,334 US20070043014A1 (en) 2003-10-01 2004-09-27 3,5-Aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists
EP04789100A EP1670463A2 (en) 2003-10-01 2004-09-27 3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists
JP2006533999A JP2007528872A (en) 2003-10-01 2004-09-27 3,5-aryl substituted, heteroaryl substituted or cycloalkyl substituted 1,2,4-oxadiazole compounds as S1P receptor agonists
CA002539438A CA2539438A1 (en) 2003-10-01 2004-09-27 3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50762203P 2003-10-01 2003-10-01
US60/507,622 2003-10-01

Publications (2)

Publication Number Publication Date
WO2005032465A2 true WO2005032465A2 (en) 2005-04-14
WO2005032465A3 WO2005032465A3 (en) 2005-11-10

Family

ID=34421642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/031675 WO2005032465A2 (en) 2003-10-01 2004-09-27 3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists

Country Status (7)

Country Link
US (1) US20070043014A1 (en)
EP (1) EP1670463A2 (en)
JP (1) JP2007528872A (en)
CN (1) CN1859908A (en)
AU (1) AU2004277947A1 (en)
CA (1) CA2539438A1 (en)
WO (1) WO2005032465A2 (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088944A1 (en) * 2005-02-14 2006-08-24 University Of Virginia Patent Foundation Sphingosine 1- phos phate agonists comprising cycloalkanes and 5 -membered heterocycles substituted by amino and phenyl groups
WO2006114400A1 (en) * 2005-04-26 2006-11-02 Neurosearch A/S Novel oxadiazole derivatives and their medical use
WO2006131336A1 (en) * 2005-06-08 2006-12-14 Novartis Ag POLYCYCLIC OXADIAZOLES OR I SOXAZOLES AND THEIR USE AS SlP RECEPTOR LIGANDS
WO2007021666A2 (en) * 2005-08-09 2007-02-22 Novartis Ag Liquid formulations
WO2007080542A1 (en) * 2006-01-11 2007-07-19 Actelion Pharmaceuticals Ltd Novel thiophene derivatives as s1p1/edg1 receptor agonists
WO2007086001A2 (en) * 2006-01-24 2007-08-02 Actelion Pharmaceuticals Ltd Novel pyridine derivatives
WO2007085451A2 (en) * 2006-01-27 2007-08-02 Novartis Ag 3,5-di (aryl or heteroaryl) isoxazoles and 1, 2, 4-oxadiazoles as s1p1 receptor agonists, immunosuppresssive and anti -inflammatory agents
WO2007116866A1 (en) 2006-04-03 2007-10-18 Astellas Pharma Inc. Hetero compound
WO2008018447A1 (en) 2006-08-08 2008-02-14 Kyorin Pharmaceutical Co., Ltd. Aminoalcohol derivative and immunosuppressant containing the same as active ingredient
WO2008018427A1 (en) 2006-08-08 2008-02-14 Kyorin Pharmaceutical Co., Ltd. Aminophosphoric acid ester derivative and s1p receptor modulator containing the same as active ingredient
WO2008029306A2 (en) * 2006-09-07 2008-03-13 Actelion Pharmaceuticals Ltd Thiophene derivatives as s1p1/edg1 receptor agonists
WO2008035239A1 (en) * 2006-09-21 2008-03-27 Actelion Pharmaceuticals Ltd Phenyl derivatives and their use as immunomodulators
WO2008037476A1 (en) * 2006-09-29 2008-04-03 Novartis Ag Oxadiazole derivatives with anti-inflammatory and immunosuppressive properties
WO2008074821A1 (en) 2006-12-21 2008-06-26 Glaxo Group Limited Indole derivatives as s1p1 receptor agonists
WO2008074820A1 (en) * 2006-12-21 2008-06-26 Glaxo Group Limited Oxadiazole derivatives as s1p1 receptor agonists
JP2008534490A (en) * 2005-03-23 2008-08-28 アクテリオン ファーマシューティカルズ リミテッド Hydrogenated benzo (C) thiophene derivatives as immunomodulators
WO2008114157A1 (en) * 2007-03-16 2008-09-25 Actelion Pharmaceuticals Ltd Amino- pyridine derivatives as s1p1 /edg1 receptor agonists
WO2008128951A1 (en) 2007-04-19 2008-10-30 Glaxo Group Limited Oxadiazole substituted indazole derivatives for use as sphingosine 1-phosphate (s1p) agonists
JP2008546758A (en) * 2005-06-24 2008-12-25 アクテリオン ファーマシューティカルズ リミテッド New thiophene derivatives
WO2009043890A1 (en) * 2007-10-04 2009-04-09 Merck Serono S.A. Oxadiazole diaryl compounds
JP2009516735A (en) * 2005-11-23 2009-04-23 アクテリオン ファーマシューティカルズ リミテッド New thiophene derivatives
WO2009057079A2 (en) * 2007-11-01 2009-05-07 Actelion Pharmaceuticals Ltd Novel pyrimidine derivatives
WO2009078983A1 (en) * 2007-12-18 2009-06-25 Arena Pharmaceuticals, Inc. Tetrahydrocyclopenta[b]indol-3-yl carboxylic acid derivatives useful in the treatment of autoimmune and inflammatory disorders
US7560477B2 (en) 2002-07-30 2009-07-14 University Of Virginia Patent Foundation Compounds active in sphingosine 1-phosphate signaling
WO2009074950A3 (en) * 2007-12-10 2009-08-06 Actelion Pharmaceuticals Ltd Thiophene derivatives as agonists of s1p1/edg1
WO2009109906A1 (en) * 2008-03-06 2009-09-11 Actelion Pharmaceuticals Ltd Pyridine compounds
WO2009109872A1 (en) * 2008-03-07 2009-09-11 Actelion Pharmaceuticals Ltd Pyridin-2-yl derivatives as immunomodulating agents
WO2009151621A1 (en) * 2008-06-13 2009-12-17 Arena Pharmaceuticals, Inc. Substituted (1, 2, 4-0xadiaz0l-3-yl) indolin-1-yl carboxylic acid derivatives useful as s1p1 agonists
WO2009151626A1 (en) * 2008-06-13 2009-12-17 Arena Pharmaceuticals, Inc. Substituted (1, 2, 4-0xadiaz0l-3-yl) indolin-1-yl carboxylic acid derivatives useful as s1p1 agonists
US7638637B2 (en) 2003-11-03 2009-12-29 University Of Virginia Patent Foundation Orally available sphingosine 1-phosphate receptor agonists and antagonists
WO2010065760A1 (en) * 2008-12-04 2010-06-10 Exelixis, Inc. Imidazo [1,2a] pyridine derivatives, their use as s1p1 agonists and methods for their production
US7750040B2 (en) 2004-07-29 2010-07-06 Actelion Pharmaceuticals Ltd Thiophene derivatives
WO2010081692A1 (en) * 2009-01-19 2010-07-22 Almirall, S.A. Oxadiazole derivatives as slpl receptor agonists
US7786173B2 (en) 2006-11-21 2010-08-31 University Of Virginia Patent Foundation Tetralin analogs having sphingosine 1-phosphate agonist activity
WO2010120741A1 (en) * 2009-04-13 2010-10-21 Irm Llc Compositions and methods for modulating retinol binding to retinol binding protein 4 (rbp4)
US7834039B2 (en) 2006-12-15 2010-11-16 Abbott Laboratories Oxadiazole compounds
JP2010540592A (en) * 2007-10-04 2010-12-24 メルク セローノ ソシエテ アノニム Oxadiazole derivatives
US7915315B2 (en) 2006-11-21 2011-03-29 University Of Virginia Patent Foundation Benzocycloheptyl analogs having sphingosine 1-phosphate receptor activity
JP2011513383A (en) * 2008-03-07 2011-04-28 アクテリオン ファーマシューティカルズ リミテッド Novel aminomethylbenzene derivatives
WO2011060389A1 (en) 2009-11-13 2011-05-19 Receptos, Inc. Sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
US7964649B2 (en) 2006-11-21 2011-06-21 University Of Virginia Patent Foundation Hydrindane analogs having sphingosine 1-phosphate receptor agonist activity
US8008286B2 (en) 2006-01-27 2011-08-30 University Of Virginia Patent Foundation Method for treatment of neuropathic pain
EP2366702A1 (en) * 2010-03-18 2011-09-21 Almirall, S.A. New oxadiazole derivatives
US8173710B2 (en) 2006-02-09 2012-05-08 University Of Virginia Patent Foundation Bicyclic sphingosine 1-phosphate analogs
CN102471328A (en) * 2009-07-16 2012-05-23 埃科特莱茵药品有限公司 Pyridin-4-yl derivatives
WO2012124825A1 (en) 2011-03-16 2012-09-20 Mitsubishi Tanabe Pharma Corporation Sulfonamide compounds having trpm8 antagonistic activity
US8288554B2 (en) 2006-09-08 2012-10-16 Actelion Pharmaceuticals Ltd. Pyridin-3-yl derivatives as immunomodulating agents
US8329730B2 (en) 2008-04-30 2012-12-11 Glaxo Group Limited Compounds
US8362048B2 (en) 2009-11-13 2013-01-29 Receptos, Inc. Selective sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
US8399451B2 (en) 2009-08-07 2013-03-19 Bristol-Myers Squibb Company Heterocyclic compounds
US8415484B2 (en) 2008-08-27 2013-04-09 Arena Pharmaceuticals, Inc. Substituted tricyclic acid derivatives as S1P1 receptor agonists useful in the treatment of autoimmune and inflammatory disorders
US8466183B2 (en) 2008-05-14 2013-06-18 The Scripps Research Institute Modulators of sphingosine phosphate receptors
US8507538B2 (en) 2009-11-13 2013-08-13 Receptos, Inc. Selective heterocyclic sphingosine 1 phosphate receptor modulators
CN103313981A (en) * 2011-01-19 2013-09-18 埃科特莱茵药品有限公司 2-methoxy-pyridin-4-yl derivatives
US8580841B2 (en) 2008-07-23 2013-11-12 Arena Pharmaceuticals, Inc. Substituted 1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid derivatives useful in the treatment of autoimmune and inflammatory disorders
US8580824B2 (en) 2006-09-07 2013-11-12 Actelion Pharmaceuticals Ltd. Pyridin-4-yl derivatives as immunomodulating agents
US8598208B2 (en) 2007-08-17 2013-12-03 Actelion Pharmaceuticals Ltd. Pyridine derivatives as S1P1/EDG1 receptor modulators
US8835470B2 (en) 2010-04-23 2014-09-16 Bristol-Myers Squibb Company Mandelamide heterocyclic compounds
US8853419B2 (en) 2010-01-27 2014-10-07 Arena Pharmaceuticals, Inc. Processes for the preparation of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid and salts thereof
AU2013201157B2 (en) * 2006-12-21 2015-06-11 Glaxo Group Limited Indole derivatives as s1p1 receptor agonists
US9085581B2 (en) 2010-03-03 2015-07-21 Arena Pharmaceuticals, Inc. Processes for the preparation of S1P1 receptor modulators and crystalline forms thereof
US9187437B2 (en) 2010-09-24 2015-11-17 Bristol-Myers Squibb Company Substituted oxadiazole compounds
US9481659B2 (en) 2011-05-13 2016-11-01 Celgene International Ii Sàrl Selective heterocyclic sphingosine 1 phosphate receptor modulators
EP3160949A4 (en) * 2014-06-26 2018-01-17 Monash University Enzyme interacting agents
US10301262B2 (en) 2015-06-22 2019-05-28 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(Compund1) for use in SIPI receptor-associated disorders
US10385043B2 (en) 2015-05-20 2019-08-20 Idorsia Pharmaceuticals Ltd Crystalline form of the compound (S)-3-{4-[5-(2-cyclopentyl-6-methoxy-pyridin-4-yl)-[1,2,4]oxadiazol-3-yl]-2-ethyl-6-methyl-phenoxy}-propane-1,2-diol
US11007175B2 (en) 2015-01-06 2021-05-18 Arena Pharmaceuticals, Inc. Methods of treating conditions related to the S1P1 receptor
WO2021122645A1 (en) 2019-12-20 2021-06-24 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds
US11478448B2 (en) 2017-02-16 2022-10-25 Arena Pharmaceuticals, Inc. Compounds and methods for treatment of inflammatory bowel disease with extra-intestinal manifestations
US11534424B2 (en) 2017-02-16 2022-12-27 Arena Pharmaceuticals, Inc. Compounds and methods for treatment of primary biliary cholangitis

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178318B1 (en) * 2004-07-16 2012-08-29 교린 세이야꾸 가부시키 가이샤 Method of effectively using medicine and method concerning prevention of side effect
EP1806338B1 (en) * 2004-10-12 2016-01-20 Kyorin Pharmaceutical Co., Ltd. Process for producing 2-amino-2-[2-[4-(3-benzyloxy-phenylthio)-2-chlorophenyl[ethyl]-1,3-propanediol hydrochloride and hydrates thereof. and intermediates the production thereof
AU2006300485B2 (en) * 2005-10-07 2011-08-25 Kyorin Pharmaceutical Co., Ltd. Therapeutic agent for liver disease containing 2-amino-1,3-propanediol derivative as active ingredient and therapeutic method for liver disease
TWI389683B (en) * 2006-02-06 2013-03-21 Kyorin Seiyaku Kk A therapeutic agent for an inflammatory bowel disease or an inflammatory bowel disease treatment using a 2-amino-1,3-propanediol derivative as an active ingredient
GB0625647D0 (en) * 2006-12-21 2007-01-31 Glaxo Group Ltd Compounds
GB0725105D0 (en) * 2007-12-21 2008-01-30 Glaxo Group Ltd Compounds
PE20091339A1 (en) * 2007-12-21 2009-09-26 Glaxo Group Ltd OXADIAZOLE DERIVATIVES WITH ACTIVITY ON S1P1 RECEPTORS
GB0725102D0 (en) * 2007-12-21 2008-01-30 Glaxo Group Ltd Compounds
WO2009099174A1 (en) 2008-02-07 2009-08-13 Kyorin Pharmaceutical Co., Ltd. Therapeutic agent or preventive agent for inflammatory bowel disease containing amino alcohol derivative as active ingredient
EP2177521A1 (en) * 2008-10-14 2010-04-21 Almirall, S.A. New 2-Amidothiadiazole Derivatives
JP2013544811A (en) * 2010-11-03 2013-12-19 ブリストル−マイヤーズ スクイブ カンパニー Heterocyclic compounds as S1P1 agonists for the treatment of autoimmune and vascular diseases
EP3097097B1 (en) * 2014-01-21 2017-10-04 F. Hoffmann-La Roche AG Imidazoles for the treatment and prophylaxis of respiratory syncytial virus infection
CN114149424A (en) * 2015-11-13 2022-03-08 奥比兰制药有限公司 Heterocyclic compounds for the treatment of diseases
KR20210074291A (en) 2018-09-06 2021-06-21 아레나 파마슈티칼스, 인크. Compounds useful for the treatment of autoimmune and inflammatory disorders
CN116217508A (en) * 2022-12-15 2023-06-06 浙江工业大学 Oxadiazole compound for protecting beta cells to treat type II diabetes, and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579880B2 (en) * 2000-06-06 2003-06-17 Ortho-Mcneil Pharmaceutical, Inc. Isoxazoles and oxadiazoles as anti-inflammatory inhibitors of IL-8

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165376A (en) * 1986-12-27 1988-07-08 Nippon Soda Co Ltd Oxa(thia)diazole derivative and production thereof and acaricidal agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579880B2 (en) * 2000-06-06 2003-06-17 Ortho-Mcneil Pharmaceutical, Inc. Isoxazoles and oxadiazoles as anti-inflammatory inhibitors of IL-8

Cited By (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560477B2 (en) 2002-07-30 2009-07-14 University Of Virginia Patent Foundation Compounds active in sphingosine 1-phosphate signaling
US7638637B2 (en) 2003-11-03 2009-12-29 University Of Virginia Patent Foundation Orally available sphingosine 1-phosphate receptor agonists and antagonists
US7750040B2 (en) 2004-07-29 2010-07-06 Actelion Pharmaceuticals Ltd Thiophene derivatives
WO2006088944A1 (en) * 2005-02-14 2006-08-24 University Of Virginia Patent Foundation Sphingosine 1- phos phate agonists comprising cycloalkanes and 5 -membered heterocycles substituted by amino and phenyl groups
US7754703B2 (en) 2005-02-14 2010-07-13 University Of Virginia Patent Foundation Cycloalkane-containing sphingosine 1-phosphate agonists
US8329676B2 (en) 2005-02-14 2012-12-11 University Of Virginia Patent Foundation Cycloalkane-containing sphingosine 1-phosphate agonists
JP2008530135A (en) * 2005-02-14 2008-08-07 ユニバーシティ オブ バージニア パテント ファンデーション Sphingosine = 1-phosphate agonist containing a cycloalkane substituted with an amino group and a phenyl group and a 5-membered heterocyclic ring
JP2008534490A (en) * 2005-03-23 2008-08-28 アクテリオン ファーマシューティカルズ リミテッド Hydrogenated benzo (C) thiophene derivatives as immunomodulators
US8039644B2 (en) 2005-03-23 2011-10-18 Actelion Pharmaceuticals Ltd. Hydrogenated benzo (C) thiophene derivatives as immunomodulators
US7723378B2 (en) 2005-03-23 2010-05-25 Actelion Pharmaceuticals Ltd. Hydrogenated benzo (C) thiophene derivatives as immunomodulators
JP2008539195A (en) * 2005-04-26 2008-11-13 ノイロサーチ アクティーゼルスカブ Novel oxadiazole derivatives and their medical use
WO2006114400A1 (en) * 2005-04-26 2006-11-02 Neurosearch A/S Novel oxadiazole derivatives and their medical use
US8017631B2 (en) 2005-04-26 2011-09-13 Neurosearch A/S Oxadiazole derivatives and their medical use
JP2008545767A (en) * 2005-06-08 2008-12-18 ノバルティス アクチエンゲゼルシャフト Polycyclic oxadiazoles or isoxazoles and their use as SIP receptor ligands
WO2006131336A1 (en) * 2005-06-08 2006-12-14 Novartis Ag POLYCYCLIC OXADIAZOLES OR I SOXAZOLES AND THEIR USE AS SlP RECEPTOR LIGANDS
JP2008546758A (en) * 2005-06-24 2008-12-25 アクテリオン ファーマシューティカルズ リミテッド New thiophene derivatives
JP2009504653A (en) * 2005-08-09 2009-02-05 ノバルティス アクチエンゲゼルシャフト Liquid formulation
RU2470631C2 (en) * 2005-08-09 2012-12-27 Новартис Аг Liquid formulations
AU2006280138B2 (en) * 2005-08-09 2010-03-04 Novartis Ag Liquid formulations
WO2007021666A3 (en) * 2005-08-09 2007-05-31 Novartis Ag Liquid formulations
WO2007021666A2 (en) * 2005-08-09 2007-02-22 Novartis Ag Liquid formulations
JP2009516735A (en) * 2005-11-23 2009-04-23 アクテリオン ファーマシューティカルズ リミテッド New thiophene derivatives
CN101370496B (en) * 2006-01-11 2012-07-04 埃科特莱茵药品有限公司 Novel thiophene derivatives as S1P1/EDG1 receptor agonists
KR101382710B1 (en) 2006-01-11 2014-04-08 액테리온 파마슈티칼 리미티드 Novel thiophene derivatives
AU2007204121B2 (en) * 2006-01-11 2012-06-07 Actelion Pharmaceuticals Ltd Novel thiophene derivatives as S1P1/EDG1 receptor agonists
WO2007080542A1 (en) * 2006-01-11 2007-07-19 Actelion Pharmaceuticals Ltd Novel thiophene derivatives as s1p1/edg1 receptor agonists
US8003800B2 (en) 2006-01-11 2011-08-23 Actelion Pharmaceuticals Ltd. Thiophene derivatives as S1P1/EDG1 receptor agonists
JP2009523165A (en) * 2006-01-11 2009-06-18 アクテリオン ファーマシューティカルズ リミテッド Novel thiophene derivatives as S1P1 / EDG1 receptor agonists
US8178562B2 (en) 2006-01-24 2012-05-15 Actelion Pharmaceuticals, Ltd. Pyridine derivatives
US8697732B2 (en) 2006-01-24 2014-04-15 Actelion Pharmaceuticals Ltd. Pyridine derivatives
CN101370805B (en) * 2006-01-24 2011-04-27 埃科特莱茵药品有限公司 Novel pyridine derivatives
WO2007086001A2 (en) * 2006-01-24 2007-08-02 Actelion Pharmaceuticals Ltd Novel pyridine derivatives
WO2007086001A3 (en) * 2006-01-24 2008-04-03 Actelion Pharmaceuticals Ltd Novel pyridine derivatives
EP2233473A1 (en) * 2006-01-27 2010-09-29 Novartis AG 3,5-di(aryl or heteroaryl)isoxazoles and 1,2,4-oxadiazoles as S1P1 receptor agonists, immunosuppresssive and anti-inflammatory agents
US7799812B2 (en) 2006-01-27 2010-09-21 Novartis Ag Reverse isoxazoles
US8008286B2 (en) 2006-01-27 2011-08-30 University Of Virginia Patent Foundation Method for treatment of neuropathic pain
WO2007085451A3 (en) * 2006-01-27 2007-12-21 Novartis Ag 3,5-di (aryl or heteroaryl) isoxazoles and 1, 2, 4-oxadiazoles as s1p1 receptor agonists, immunosuppresssive and anti -inflammatory agents
WO2007085451A2 (en) * 2006-01-27 2007-08-02 Novartis Ag 3,5-di (aryl or heteroaryl) isoxazoles and 1, 2, 4-oxadiazoles as s1p1 receptor agonists, immunosuppresssive and anti -inflammatory agents
US8173710B2 (en) 2006-02-09 2012-05-08 University Of Virginia Patent Foundation Bicyclic sphingosine 1-phosphate analogs
JP5099005B2 (en) * 2006-04-03 2012-12-12 アステラス製薬株式会社 Hetero compounds
NO342171B1 (en) * 2006-04-03 2018-04-09 Astellas Pharma Inc Hetero compound or a pharmaceutically acceptable salt thereof having S1P1 agonist activity, pharmaceutical composition or agent comprising the compound, and its use in a method of treating and / or preventing disease
EP2003132A1 (en) * 2006-04-03 2008-12-17 Astellas Pharma Inc. Hetero compound
US7951825B2 (en) 2006-04-03 2011-05-31 Astellas Pharma Inc. Hetero compound
US7678820B2 (en) 2006-04-03 2010-03-16 Astellas Pharma Inc. Hetero compound
WO2007116866A1 (en) 2006-04-03 2007-10-18 Astellas Pharma Inc. Hetero compound
EP2003132A4 (en) * 2006-04-03 2010-05-12 Astellas Pharma Inc Hetero compound
KR101345473B1 (en) 2006-04-03 2013-12-27 아스텔라스세이야쿠 가부시키가이샤 Hetero compound
WO2008018427A1 (en) 2006-08-08 2008-02-14 Kyorin Pharmaceutical Co., Ltd. Aminophosphoric acid ester derivative and s1p receptor modulator containing the same as active ingredient
WO2008018447A1 (en) 2006-08-08 2008-02-14 Kyorin Pharmaceutical Co., Ltd. Aminoalcohol derivative and immunosuppressant containing the same as active ingredient
WO2008029306A3 (en) * 2006-09-07 2008-05-15 Actelion Pharmaceuticals Ltd Thiophene derivatives as s1p1/edg1 receptor agonists
US8133910B2 (en) 2006-09-07 2012-03-13 Actelion Pharmaceuticals Ltd. Thiophene derivatives as S1P1/EDGE1 receptor agonists
KR101409560B1 (en) * 2006-09-07 2014-06-19 액테리온 파마슈티칼 리미티드 Thiophene derivatives as s1p1/edg1 receptor agonists
WO2008029306A2 (en) * 2006-09-07 2008-03-13 Actelion Pharmaceuticals Ltd Thiophene derivatives as s1p1/edg1 receptor agonists
AU2007293113B2 (en) * 2006-09-07 2013-02-14 Actelion Pharmaceuticals Ltd Thiophene derivatives as S1P1/EDG1 receptor agonists
CN101528726B (en) * 2006-09-07 2012-11-14 埃科特莱茵药品有限公司 Thiophene derivatives as S1P1/EDG1 receptor agonists
JP2010502693A (en) * 2006-09-07 2010-01-28 アクテリオン ファーマシューティカルズ リミテッド New thiophene derivatives
US8580824B2 (en) 2006-09-07 2013-11-12 Actelion Pharmaceuticals Ltd. Pyridin-4-yl derivatives as immunomodulating agents
US8288554B2 (en) 2006-09-08 2012-10-16 Actelion Pharmaceuticals Ltd. Pyridin-3-yl derivatives as immunomodulating agents
WO2008035239A1 (en) * 2006-09-21 2008-03-27 Actelion Pharmaceuticals Ltd Phenyl derivatives and their use as immunomodulators
US8044076B2 (en) 2006-09-21 2011-10-25 Actelion Pharmaceuticals Ltd. Phenyl derivatives and their use as immunomodulators
JP2010504320A (en) * 2006-09-21 2010-02-12 アクテリオン ファーマシューティカルズ リミテッド Phenyl derivatives and their use as immunomodulators
WO2008037476A1 (en) * 2006-09-29 2008-04-03 Novartis Ag Oxadiazole derivatives with anti-inflammatory and immunosuppressive properties
US7786173B2 (en) 2006-11-21 2010-08-31 University Of Virginia Patent Foundation Tetralin analogs having sphingosine 1-phosphate agonist activity
US7964649B2 (en) 2006-11-21 2011-06-21 University Of Virginia Patent Foundation Hydrindane analogs having sphingosine 1-phosphate receptor agonist activity
US7915315B2 (en) 2006-11-21 2011-03-29 University Of Virginia Patent Foundation Benzocycloheptyl analogs having sphingosine 1-phosphate receptor activity
US7834039B2 (en) 2006-12-15 2010-11-16 Abbott Laboratories Oxadiazole compounds
TWI393564B (en) * 2006-12-21 2013-04-21 Glaxo Group Ltd Novel oxadizole derivatives, pharmaceutical compositions containing them, and the use thereof
JP2010513397A (en) * 2006-12-21 2010-04-30 グラクソ グループ リミテッド Indole derivatives as S1P1 receptor agonists
WO2008074821A1 (en) 2006-12-21 2008-06-26 Glaxo Group Limited Indole derivatives as s1p1 receptor agonists
AU2013201157B2 (en) * 2006-12-21 2015-06-11 Glaxo Group Limited Indole derivatives as s1p1 receptor agonists
US8101775B2 (en) 2006-12-21 2012-01-24 Glaxo Group Limited Indole derivatives as S1P1 Receptor
EA017406B1 (en) * 2006-12-21 2012-12-28 Глэксо Груп Лимитед Indole derivatives as s1p1 receptor agonists
WO2008074820A1 (en) * 2006-12-21 2008-06-26 Glaxo Group Limited Oxadiazole derivatives as s1p1 receptor agonists
EP2206710A1 (en) * 2006-12-21 2010-07-14 Glaxo Group Limited Indole derivatives as S1P1 receptor agonists
WO2008114157A1 (en) * 2007-03-16 2008-09-25 Actelion Pharmaceuticals Ltd Amino- pyridine derivatives as s1p1 /edg1 receptor agonists
JP2010521450A (en) * 2007-03-16 2010-06-24 アクテリオン ファーマシューティカルズ リミテッド Amino-pyridine derivatives as S1P1 / EDG1 receptor agonists
AU2008227979B2 (en) * 2007-03-16 2014-02-06 Actelion Pharmaceuticals Ltd Amino- pyridine derivatives as S1P1 /EDG1 receptor agonists
JP2013151543A (en) * 2007-03-16 2013-08-08 Actelion Pharmaceuticals Ltd Amino-pyridine derivative as s1p1/edg1 receptor agonist
US8592460B2 (en) 2007-03-16 2013-11-26 Actelion Pharmaceuticals Ltd. Amino-pyridine derivatives as S1P1 /EDG1 receptor agonists
KR101454944B1 (en) * 2007-03-16 2014-10-27 액테리온 파마슈티칼 리미티드 Amino-pyridine derivatives as s1p1/edg1 receptor agonists
EA016443B1 (en) * 2007-04-19 2012-05-30 Глэксо Груп Лимитед Oxadiazole substituted indazole derivatives for use as sphingosine 1-phosphate (s1p) agonists
JP2010524886A (en) * 2007-04-19 2010-07-22 グラクソ グループ リミテッド Oxadiazole-substituted indazole derivatives for use as sphingosine 1-phosphate (S1P) agonists
WO2008128951A1 (en) 2007-04-19 2008-10-30 Glaxo Group Limited Oxadiazole substituted indazole derivatives for use as sphingosine 1-phosphate (s1p) agonists
TWI408137B (en) * 2007-04-19 2013-09-11 Glaxo Group Ltd Substituted oxadiazole derivatives, pharmaceutical use and pharmaceutical composition thereof
AU2008240773B2 (en) * 2007-04-19 2013-10-03 Glaxo Group Limited Oxadiazole substituted indazole derivatives for use as sphingosine 1-phosphate (S1P) agonists
US8598208B2 (en) 2007-08-17 2013-12-03 Actelion Pharmaceuticals Ltd. Pyridine derivatives as S1P1/EDG1 receptor modulators
US8404676B2 (en) 2007-10-04 2013-03-26 Merck Serono Sa Oxadiazole diaryl compounds
US8889668B2 (en) 2007-10-04 2014-11-18 Merck Serono Sa Oxadiazole diaryl compounds
JP2016169223A (en) * 2007-10-04 2016-09-23 メルク セローノ ソシエテ アノニム Oxadiazole diaryl compounds
JP2015025001A (en) * 2007-10-04 2015-02-05 メルク セローノ ソシエテ アノニム Oxadiazole diaryl compounds
WO2009043890A1 (en) * 2007-10-04 2009-04-09 Merck Serono S.A. Oxadiazole diaryl compounds
US8202865B2 (en) 2007-10-04 2012-06-19 Merck Serono Sa Oxadiazole derivatives
JP2010540593A (en) * 2007-10-04 2010-12-24 メルク セローノ ソシエテ アノニム Oxadiazole diaryl compounds
JP2010540592A (en) * 2007-10-04 2010-12-24 メルク セローノ ソシエテ アノニム Oxadiazole derivatives
WO2009057079A3 (en) * 2007-11-01 2009-12-03 Actelion Pharmaceuticals Ltd Novel pyrimidine derivatives
WO2009057079A2 (en) * 2007-11-01 2009-05-07 Actelion Pharmaceuticals Ltd Novel pyrimidine derivatives
US8299086B2 (en) 2007-11-01 2012-10-30 Actelion Pharmaceuticals Ltd. Pyrimidine derivatives
JP2011506423A (en) * 2007-12-10 2011-03-03 アクテリオン ファーマシューティカルズ リミテッド Novel thiophene derivatives
WO2009074950A3 (en) * 2007-12-10 2009-08-06 Actelion Pharmaceuticals Ltd Thiophene derivatives as agonists of s1p1/edg1
US8148410B2 (en) 2007-12-10 2012-04-03 Actelion Pharmaceuticals Ltd. Thiophene derivatives as agonists of S1P1/EDG1
WO2009078983A1 (en) * 2007-12-18 2009-06-25 Arena Pharmaceuticals, Inc. Tetrahydrocyclopenta[b]indol-3-yl carboxylic acid derivatives useful in the treatment of autoimmune and inflammatory disorders
WO2009109906A1 (en) * 2008-03-06 2009-09-11 Actelion Pharmaceuticals Ltd Pyridine compounds
JP2011513383A (en) * 2008-03-07 2011-04-28 アクテリオン ファーマシューティカルズ リミテッド Novel aminomethylbenzene derivatives
US8410151B2 (en) 2008-03-07 2013-04-02 Actelion Pharmaceuticals Ltd Aminomethyl benzene derivatives
RU2494099C2 (en) * 2008-03-07 2013-09-27 Актелион Фармасьютиклз Лтд Pyridin-2-yl derivatives as immunomodulatory agents
AU2009220861B2 (en) * 2008-03-07 2014-05-29 Idorsia Pharmaceuticals Ltd Pyridin-2-YL derivatives as immunomodulating agents
CN102015695B (en) * 2008-03-07 2014-08-27 埃科特莱茵药品有限公司 Pyridin-2-yl derivatives as immunomodulating agents
WO2009109872A1 (en) * 2008-03-07 2009-09-11 Actelion Pharmaceuticals Ltd Pyridin-2-yl derivatives as immunomodulating agents
CN102015695A (en) * 2008-03-07 2011-04-13 埃科特莱茵药品有限公司 Pyridin-2-yl derivatives as immunomodulating agents
KR101615779B1 (en) 2008-03-07 2016-04-26 액테리온 파마슈티칼 리미티드 Pyridin-2-yl derivatives as immunomodulating agents
JP2011513381A (en) * 2008-03-07 2011-04-28 アクテリオン ファーマシューティカルズ リミテッド Pyridin-2-yl derivatives as immunomodulators
US8329730B2 (en) 2008-04-30 2012-12-11 Glaxo Group Limited Compounds
US8796318B2 (en) 2008-05-14 2014-08-05 The Scripps Research Institute Modulators of sphingosine phosphate receptors
US8530503B2 (en) 2008-05-14 2013-09-10 The Scripps Research Institute Modulators of sphingosine phosphate receptors
US10544136B2 (en) 2008-05-14 2020-01-28 The Scripps Research Institute Modulators of sphingosine phosphate receptors
US8481573B2 (en) 2008-05-14 2013-07-09 The Scripps Research Institute Modulators of sphingosine phosphate receptors
US9382217B2 (en) 2008-05-14 2016-07-05 The Scripps Research Institute Modulators of sphingosine phosphate receptors
US8466183B2 (en) 2008-05-14 2013-06-18 The Scripps Research Institute Modulators of sphingosine phosphate receptors
US9975863B2 (en) 2008-05-14 2018-05-22 The Scripps Research Institute Modulators of sphingosine phosphate receptors
WO2009151626A1 (en) * 2008-06-13 2009-12-17 Arena Pharmaceuticals, Inc. Substituted (1, 2, 4-0xadiaz0l-3-yl) indolin-1-yl carboxylic acid derivatives useful as s1p1 agonists
WO2009151621A1 (en) * 2008-06-13 2009-12-17 Arena Pharmaceuticals, Inc. Substituted (1, 2, 4-0xadiaz0l-3-yl) indolin-1-yl carboxylic acid derivatives useful as s1p1 agonists
US9522133B2 (en) 2008-07-23 2016-12-20 Arena Pharmaceuticals, Inc. Substituted 1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid derivatives useful in the treatment of autoimmune and inflammatory disorders
US8580841B2 (en) 2008-07-23 2013-11-12 Arena Pharmaceuticals, Inc. Substituted 1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid derivatives useful in the treatment of autoimmune and inflammatory disorders
US9126932B2 (en) 2008-07-23 2015-09-08 Arena Pharmaceuticals, Inc. Substituted 1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid derivatives useful in the treatment of autoimmune and inflammatory disorders
US8415484B2 (en) 2008-08-27 2013-04-09 Arena Pharmaceuticals, Inc. Substituted tricyclic acid derivatives as S1P1 receptor agonists useful in the treatment of autoimmune and inflammatory disorders
US9108969B2 (en) 2008-08-27 2015-08-18 Arena Pharmaceuticals, Inc. Substituted tricyclic acid derivatives as S1P1 receptor agonists useful in the treatment of autoimmune and inflammatory disorders
WO2010065760A1 (en) * 2008-12-04 2010-06-10 Exelixis, Inc. Imidazo [1,2a] pyridine derivatives, their use as s1p1 agonists and methods for their production
WO2010081692A1 (en) * 2009-01-19 2010-07-22 Almirall, S.A. Oxadiazole derivatives as slpl receptor agonists
EP2210890A1 (en) * 2009-01-19 2010-07-28 Almirall, S.A. Oxadiazole derivatives as S1P1 receptor agonists
WO2010120741A1 (en) * 2009-04-13 2010-10-21 Irm Llc Compositions and methods for modulating retinol binding to retinol binding protein 4 (rbp4)
US8658675B2 (en) 2009-07-16 2014-02-25 Actelion Pharmaceuticals Ltd. Pyridin-4-yl derivatives
CN102471328A (en) * 2009-07-16 2012-05-23 埃科特莱茵药品有限公司 Pyridin-4-yl derivatives
CN102471328B (en) * 2009-07-16 2015-04-01 埃科特莱茵药品有限公司 Pyridin-4-yl derivatives
US8399451B2 (en) 2009-08-07 2013-03-19 Bristol-Myers Squibb Company Heterocyclic compounds
US8357706B2 (en) 2009-11-13 2013-01-22 Receptos, Inc. Sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
WO2011060389A1 (en) 2009-11-13 2011-05-19 Receptos, Inc. Sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
US10239846B2 (en) 2009-11-13 2019-03-26 Celgene International Ii Sàrl Selective sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
EP3868377A1 (en) * 2009-11-13 2021-08-25 Receptos Llc Selective sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
KR101781233B1 (en) * 2009-11-13 2017-09-22 셀진 인터내셔널 Ii 에스에이알엘 Sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
US8362048B2 (en) 2009-11-13 2013-01-29 Receptos, Inc. Selective sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
US9394264B2 (en) 2009-11-13 2016-07-19 Receptos, Inc. Sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
US8507538B2 (en) 2009-11-13 2013-08-13 Receptos, Inc. Selective heterocyclic sphingosine 1 phosphate receptor modulators
US9388147B2 (en) 2009-11-13 2016-07-12 Celgene International II Sárl Selective sphingosine 1 phosphate receptor modulators and methods of chiral synthesis
EA023183B1 (en) * 2009-11-13 2016-05-31 Рецептос, Инк. Sphingosine-1-phosphate receptor modulators and methods of chiral synthesis
US8853419B2 (en) 2010-01-27 2014-10-07 Arena Pharmaceuticals, Inc. Processes for the preparation of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid and salts thereof
US9175320B2 (en) 2010-01-27 2015-11-03 Arena Pharmaceuticals, Inc. Processes for the preparation of (R)-2-(7-4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclopenta[B]indol-3-yl)acetic acid and salts thereof
US11149292B2 (en) 2010-01-27 2021-10-19 Arena Pharmaceuticals, Inc. Processes for the preparation of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclopenta[B]indol-3-yl)acetic acid and salts thereof
US9447041B2 (en) 2010-01-27 2016-09-20 Arena Pharmaceuticals, Inc. Processes for the preparation of (R)-2-(7-4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclopenta[B]indol-3-yl)acetic acid and salts thereof
US11674163B2 (en) 2010-01-27 2023-06-13 Arena Pharmaceuticals, Inc. Processes for the preparation of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl)acetic acid and salts thereof
US9085581B2 (en) 2010-03-03 2015-07-21 Arena Pharmaceuticals, Inc. Processes for the preparation of S1P1 receptor modulators and crystalline forms thereof
WO2011113578A1 (en) * 2010-03-18 2011-09-22 Almirall, S.A. New oxadiazole derivatives
EP2366702A1 (en) * 2010-03-18 2011-09-21 Almirall, S.A. New oxadiazole derivatives
US8835470B2 (en) 2010-04-23 2014-09-16 Bristol-Myers Squibb Company Mandelamide heterocyclic compounds
US9187437B2 (en) 2010-09-24 2015-11-17 Bristol-Myers Squibb Company Substituted oxadiazole compounds
US9133179B2 (en) 2011-01-19 2015-09-15 Actelion Pharmaceuticals Ltd. 2-methoxy-pyridin-4-yl-derivatives
CN103313981A (en) * 2011-01-19 2013-09-18 埃科特莱茵药品有限公司 2-methoxy-pyridin-4-yl derivatives
CN103313981B (en) * 2011-01-19 2016-05-11 埃科特莱茵药品有限公司 2-methoxyl group-pyridin-4-yl derivatives
WO2012124825A1 (en) 2011-03-16 2012-09-20 Mitsubishi Tanabe Pharma Corporation Sulfonamide compounds having trpm8 antagonistic activity
US9481659B2 (en) 2011-05-13 2016-11-01 Celgene International Ii Sàrl Selective heterocyclic sphingosine 1 phosphate receptor modulators
EP3160949A4 (en) * 2014-06-26 2018-01-17 Monash University Enzyme interacting agents
US11896578B2 (en) 2015-01-06 2024-02-13 Arena Pharmaceuticals, Inc. Methods of treating conditions related to the S1P1 receptor
US11007175B2 (en) 2015-01-06 2021-05-18 Arena Pharmaceuticals, Inc. Methods of treating conditions related to the S1P1 receptor
US11390615B2 (en) 2015-05-20 2022-07-19 Idorsia Pharmaceuticals Ltd Crystalline form of the compound (S)-3-{4-[5-(2-cyclopentyl-6-methoxy-pyridin-4-yl)-[1,2,4]oxadiazol-3-yl]-2-ethyl-6-methyl-phenox
US10836754B2 (en) 2015-05-20 2020-11-17 Idorsia Pharmaceuticals Ltd Crystalline form of the compound (S)-3-{4-[5-(2-cyclopentyl-6-methoxy-pyridin-4-yl)-[1,2,4]oxadiazol-3-yl]-2-ethyl-6-methyl-phenoxy}-propane-1,2-diol
US10385043B2 (en) 2015-05-20 2019-08-20 Idorsia Pharmaceuticals Ltd Crystalline form of the compound (S)-3-{4-[5-(2-cyclopentyl-6-methoxy-pyridin-4-yl)-[1,2,4]oxadiazol-3-yl]-2-ethyl-6-methyl-phenoxy}-propane-1,2-diol
US11834443B2 (en) 2015-05-20 2023-12-05 Idorsia Pharmaceuticals Ltd Crystalline form of the compound (s)-3-{4-[5-(2-cyclopentyl-6-methoxy-pyridin-4-yl)-[1,2,4]oxadiazol-3-yl]-2-ethyl-6-methyl-phenoxy}-propane-1,2-diol
US11091435B2 (en) 2015-06-22 2021-08-17 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3, 4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(compound1) for use in S1P1 receptor-associated disorders
US10676435B2 (en) 2015-06-22 2020-06-09 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(Compound 1) for use in SIPI receptor-associated disorders
US11884626B2 (en) 2015-06-22 2024-01-30 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(Compound1) for use in S1P1 receptor-associated disorders
US10301262B2 (en) 2015-06-22 2019-05-28 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(Compund1) for use in SIPI receptor-associated disorders
US11478448B2 (en) 2017-02-16 2022-10-25 Arena Pharmaceuticals, Inc. Compounds and methods for treatment of inflammatory bowel disease with extra-intestinal manifestations
US11534424B2 (en) 2017-02-16 2022-12-27 Arena Pharmaceuticals, Inc. Compounds and methods for treatment of primary biliary cholangitis
WO2021122645A1 (en) 2019-12-20 2021-06-24 Syngenta Crop Protection Ag Pesticidally active azole-amide compounds

Also Published As

Publication number Publication date
US20070043014A1 (en) 2007-02-22
JP2007528872A (en) 2007-10-18
EP1670463A2 (en) 2006-06-21
AU2004277947A1 (en) 2005-04-14
CN1859908A (en) 2006-11-08
CA2539438A1 (en) 2005-04-14
WO2005032465A3 (en) 2005-11-10

Similar Documents

Publication Publication Date Title
EP1670463A2 (en) 3,5-aryl, heteroaryl or cycloalkyl substituted-1,2,4-oxadiazoles as s1p receptor agonists
US7220734B2 (en) 1-(amino)indanes and (1,2-dihydro-3-amino)-benzofurans, benzothiophenes and indoles as Edg receptor agonists
US7199142B2 (en) 1-((5-aryl-1,2,4-oxadiazol-3-yl) benzyl)azetidine-3-carboxylates and 1-((5-aryl-1,2,4-oxadiazol-3-yl)benzyl) pyrrolidine-3-carboxylates as edg receptor agonists
US20060252741A1 (en) 3-(2-amino-1-azacyclyl)-5-aryl-1,2,4-oxadiazoles as s1p receptor agonists
EP1470137B1 (en) Edg receptor agonists
JP4709488B2 (en) N- (benzyl) aminoalkylcarboxylic acid compounds, phosphinic acid compounds, phosphonic acid compounds and tetrazoles as Edg receptor agonists
WO2003061567A2 (en) Selective s1p1/edg1 receptor agonists
AU2003216054A1 (en) Selective S1P1/Edg1 receptor agonists
AU2003202994A1 (en) N-(benzyl)aminoalkylcarboxylates, phosphinates, phosphonates and tetrazoles as Edg receptor agonists
WO2006047195A2 (en) 2-(aryl)azacyclylmethyl carboxylates, sulfonates, phosphonates, phosphinates and heterocycles as s1p receptor agonists
AU2003207567A1 (en) Edg receptor agonists
JP2005531506A (en) Aminoalkylphosphonates and related compounds as agonists of EDG receptors
EP1482896A2 (en) Aminoalkylphosphonates and related compounds as edg receptor agonists

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028299.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007043014

Country of ref document: US

Ref document number: 10571334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2539438

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004277947

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1543/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004789100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006533999

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2004277947

Country of ref document: AU

Date of ref document: 20040927

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004277947

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004789100

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10571334

Country of ref document: US