WO2005021637A1 - 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物 - Google Patents

共役ジエン系ゴム組成物、その製造方法およびゴム架橋物 Download PDF

Info

Publication number
WO2005021637A1
WO2005021637A1 PCT/JP2004/012660 JP2004012660W WO2005021637A1 WO 2005021637 A1 WO2005021637 A1 WO 2005021637A1 JP 2004012660 W JP2004012660 W JP 2004012660W WO 2005021637 A1 WO2005021637 A1 WO 2005021637A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conjugated
rubber
active
rubber composition
Prior art date
Application number
PCT/JP2004/012660
Other languages
English (en)
French (fr)
Inventor
Takeshi Karato
Masao Nakamura
Koichi Endo
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to CN2004800327516A priority Critical patent/CN1878830B/zh
Priority to JP2005513524A priority patent/JP4670639B2/ja
Priority to US10/570,025 priority patent/US7700693B2/en
Priority to KR1020067004210A priority patent/KR101113618B1/ko
Priority to EP04772616A priority patent/EP1661946B1/en
Publication of WO2005021637A1 publication Critical patent/WO2005021637A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the present invention relates to a conjugated rubber composition, a method for producing the same, and a crosslinked rubber composition.
  • an uncrosslinked rubber composition having excellent processability can be obtained when silica is blended, and a synergistic agent capable of providing a rubber crosslinked material having excellent low heat build-up, wet grip properties and abrasion resistance.
  • the present invention relates to a rubber composition, a production method thereof, and a cross-linked rubber product obtained by cross-linking the same.
  • the rubber composition containing silica is excellent in low heat build-up as compared with the rubber composition containing carbon black which is usually used, a fuel-efficient tire can be manufactured by using the rubber composition.
  • a silica-containing rubber composition of a rubbery polymer obtained by lithiating a gen-based rubber polymer with an organolithium compound and then reacting with a silicon-containing compound has been proposed (see Patent Document 1).
  • a rubber composition comprising a silanol group-containing gen-based polymer and a special carbon black having silica fixed on its surface has been proposed (Patent Documents).
  • the rubber composition as described above has improved low heat build-up, the uncrosslinked silica-containing rubber composition has poor processability, and the crosslinked product has poor balance between wet grip performance and abrasion resistance. was there.
  • a polyorganosiloxane having a specific functional group is added to a gen-based polymer having an active terminal of an alkali metal obtained by polymerization by using an alkali metal polymerization initiator, and an alkali metal polymerization initiator 1
  • a silica-containing rubber composition of a polyonoleganosiloxane-modified gen-based polymer obtained by reacting the polyorganosiloxane in an amount of 0.1 to 2 mol per mol is proposed (Patent Reference 3).
  • a silsesquioxane conjugate having a polyhedral structure and a gen-based polymer having an alkali metal active terminal obtained by polymerization using an alkali metal polymerization initiator is added to 1 mole of an alkali metal polymerization initiator.
  • a rubber composition containing a silsesquioxane-modified gen-based polymer obtained by reacting the cinoresesquioxane compound in an amount of 0.1 to 1.5 mol has been proposed. Patent Document 4).
  • the above-mentioned polyorganosiloxane-modified gen-based polymer and silsesquioxane-modified gen-based polymer have excellent balance between low heat build-up and wet grip properties, but are not crosslinked silica.
  • the compounded rubber composition was inferior in processability, and the crosslinked product was sometimes inferior in abrasion resistance.
  • Patent Document 1 JP-A-10-7702
  • Patent Document 2 JP-A-10-316800
  • Patent Document 3 JP-A-9-110904
  • Patent Document 4 JP-A-2002-80534
  • an object of the present invention is to obtain an uncrosslinked rubber composition having excellent processability when silica is blended, and to provide low heat build-up, wet grip properties, abrasion resistance, and the like.
  • An object of the present invention is to provide a conjugated rubber composition capable of providing a crosslinked product having excellent tensile strength, a method for producing the same, and a crosslinked rubber product.
  • the present inventors have made intensive efforts to achieve the above object, and as a result, a branched structure having a structure in which at least three or more conjugated gen-based polymer chains are bonded via a polyonoreganosiloxane.
  • silica is compounded in a conjugated rubber composition containing a specific amount of a conjugated rubber and a conjugated rubber obtained by reacting a compound having a specific functional group in the molecule, an uncrosslinked rubber composition having excellent processability can be obtained.
  • the product was obtained, and the crosslinked product was found to be excellent in low heat build-up, wet grip, abrasion resistance and tensile strength. Based on this finding, the present invention was completed.
  • a conjugated diene rubber composition comprising 95,000,000 to 5% by weight of a conjugated diene rubber (B) of 3,000,000.
  • R 1 to R 8 are an alkyl group having 16 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms, which may be the same or different.
  • X 1 and X 4 are (i) a functional group, a part of which reacts with the active metal at the chain end of the active conjugated polymer, The remainder is a group derived from the functional group or a single bond, or (ii) an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and X 1 and X 4 are the same as each other. Or may be different.
  • X 2 is partly a functional group which reacts with active conjugated diene polymer chain end of the active metal, the remainder is a group or a single bond derived from the said functional groups.
  • X 3 is a group containing 220 repeating units of alkylene glycol, and a part of X 3 may be a group derived from a group containing 2-20 repeating units of alkylene glycol.
  • m is an integer from 3 to 200
  • n is an integer from 0 to 200
  • k is an integer from 0 to 200.
  • R 9 to R 16 are an alkyl group having 16 carbon atoms or an aryl group having 6 to 12 carbon atoms, which may be the same or different.
  • X 5 — X 8 is a functional group partially reacting with the active metal at the terminal of the active conjugated polymer, and the remainder is a group or a single bond derived from the functional group.
  • R 1 R iy represents an alkyl group having 16 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms, which may be the same or different.
  • X 9 —X 11 is a functional group partially reacting with the active metal at the end of the chain of the active conjugated diene polymer, and the remainder is a group or a single bond derived from the functional group. s is an integer of 118.
  • X 1 —X 11 is a polyorganosiloxane defined as described above, after the reaction) Of polyorganosiloxane ")
  • a method for producing the conjugated diene rubber composition that is, a method for producing the following (I) and (II).
  • the activity of the active conjugated polymer chain end in an amount of more than 0.001 and less than 0.1 mole per mole of the organic active metal used in the polymerization.
  • X 1 and X 4 represent a force that is a functional group that reacts with the active metal at the chain end of the active conjugated polymer, or an alkyl group having 16 carbon atoms. Or an aryl group having 6 to 12 carbon atoms, X 2 is a functional group which reacts with the active metal at the terminal of the active conjugated polymer, and X 3 contains a repeating unit of 2 to 20 alkylene glycol. It is a group.
  • X 5 to X 8 are functional groups that react with the active metal at the chain end of the active conjugated diene polymer.
  • X 9 —X 11 is a functional group that reacts with the active metal at the chain end of the active conjugated polymer.
  • X 1 to X 11 are referred to as “pre-reaction polyorganosiloxanes”.
  • C 0 group
  • C S group, amino group, imino group, epoxy group, pyridyl group, alkoxy group
  • a compound having at least one functional group selected from the group consisting of a halogen group and a halogen is reacted, and then 10 to 100% by weight of the remaining active conjugated polymer chain and the remaining organic active metal 1
  • a cross-linked rubber obtained by cross-linking the conjugated gen-based rubber composition.
  • a branched conjugated gen-based rubber having a structure in which at least three or more conjugated gen-based polymer chains are bonded via a polyonoreganosiloxane, and a specific functional group introduced into the molecule.
  • the conjugated rubber composition of the present invention comprising The rubber cross-linked product has excellent heat build-up properties, low heat build-up, wet grip properties, abrasion resistance and bow strength.
  • the conjugated diene rubber (A) contained in the conjugated diene rubber composition of the present invention is a polyorgano rubber wherein at least three or more conjugated diene polymer chains are represented by the above general formulas (1), (2) and (3). It is a conjugated diene rubber having a structure linked through at least one selected from siloxane (polyorganosiloxane after reaction) and having a weight average molecular weight of 1,000 to 3,000,000. .
  • the polymer chain constituting the conjugated gen-based rubber is preferably a homopolymer chain of a conjugated gen monomer or a copolymer chain of a conjugated gen monomer and an aromatic butyl monomer. More preferably, it is composed of 50-100% by weight of a monomer unit of the maize synergist and 50-0% by weight of an aromatic vinyl monomer unit.
  • the conjugated gen-based polymer chain is particularly preferably a copolymer chain of a conjugated gen monomer and an aromatic butyl monomer. 50-95% by weight of monomer units, preferably 55-90% by weight, more preferably 6085% by weight, and aromatic butyl monomer units 50-5% by weight, preferably 45-10% by weight, more preferably Ranges from 40 to 15% by weight.
  • the bonding mode of the conjugated diene monomer unit and the aromatic vinyl monomer unit can be various bonding modes such as a block shape, a tapered shape, and a random shape.
  • the chain distribution of the aromatic vinyl monomer copolymerized with the conjugated monomer is not particularly limited.
  • the single chain of the aromatic vinyl monomer in the entire chain of the body is preferably 40 to 100% by weight, more preferably 60 to 90% by weight, a crosslinked product excellent in low heat build-up can be obtained.
  • the content of a long chain in which eight or more aromatic vinyl monomer units are connected is preferably 10% by weight or less, more preferably 3% by weight or less.
  • the content of the bullet bond in the conjugated diene monomer unit is not particularly limited, and is usually 5 to 95. %, Preferably 20-80% by weight, more preferably 30-70% by weight, particularly preferably 35-65% by weight.
  • the Bull bond content is relatively high, a crosslinked product having a better balance between low heat build-up and wet grip properties can be obtained.
  • the vinyl bond content is relatively medium, a crosslinked product having an excellent balance between wet grip properties and abrasion resistance can be obtained.
  • the glass transition temperature of the conjugated diene rubber (A) is not particularly limited, but is usually -120 20 ° C, preferably -100-10 ° C, and more preferably -90-1-20. C.
  • the glass transition temperature is relatively high, a crosslinked product having low heat build-up, excellent tensile strength and excellent wet grip properties can be obtained.
  • the glass transition temperature is relatively low, a crosslinked product having low heat build-up, excellent tensile strength and excellent wear resistance can be obtained.
  • Examples of the conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethinolane 1,3-butadiene, and 1,3-pentadiene. Of these, 1,3-butadiene and 2-methyl-1,3-butadiene are preferred, and 1,3-butadiene is particularly preferred. These can be used alone or in combination of two or more.
  • aromatic biel monomer examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, — T-butyl-2-methylstyrene, 4_t-butoxystyrene, dimethylaminomethylstyrene, dimethylaminoethylstyrene and the like. Of these, styrene is preferred. These can be used alone or in combination of two or more.
  • the conjugated gen-based polymer chain may be any other monomer unit other than the conjugated gen monomer unit and the aromatic vinyl monomer unit within a range that does not substantially impair the effects of the present invention. May be included.
  • Other monomers include, for example, ethylenically unsaturated carboxylate monomers such as isopropyl (meth) acrylate, n-butyl (meth) acrylate, and dimethylaminopropyl (meth) acrylate.
  • olefin monomers such as propylene, isobutylene and butylcyclohexane; and non-conjugated dimers such as 1,4-pentagen and 1,4-hexadiene.
  • the amount of these monomer units is preferably 10% by weight or less. % Or less is more preferable.
  • the conjugated diene rubber (A) is obtained by reacting at least three or more of the conjugated diene polymer chains represented by the general formulas (1), (2) and (3). It has a structure linked through at least one kind selected from the following.
  • R 1 to R 8 are an alkyl group having 1 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms, which may be the same or different.
  • X 1 and X 4 each represent (i) a functional group partially reacting with the active metal at the terminal of the active conjugated diene polymer chain, and the remainder being a group or a single bond derived from the functional group or (Ii) an alkyl group having 16 carbon atoms or an aryl group having 612 carbon atoms, and X 1 and X 4 may be the same or different.
  • X 2 is partly a functional group which reacts with active metals of the active conjugated diene polymer chain end, balance, Ru group or a single bond der derived from said functional group.
  • X 3 is a group containing 2 to 20 alkylene glycol repeating units, and a part of X 3 may be a group derived from a group containing 2 to 20 alkylene glycol repeating units. mi is an integer from 3 to 200, ⁇ is an integer from 0 to 200, ki is an integer from 0 to 200.
  • Examples of the alkyl group having 16 carbon atoms constituting X 1 and X 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, and a cycloalkyl group. Hexinole group and the like.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. Among these alkyl groups and aryl groups, a methyl group is particularly preferred.
  • Examples of the functional group that reacts with the active metal at the terminal of the active conjugated polymer chain constituting xx 2 and X 4 include an alkoxyno group having 15 to 15 carbon atoms, a hydrocarbon group containing a 2_pyrrolidonyl group, and Epoxy-containing groups having 4 to 12 carbon atoms are preferred.
  • the ⁇ group derived from the functional group (functional group that reacts with the active metal at the active conjugated polymer chain terminal) '' refers to having an active metal at the polymer chain terminal.
  • alkoxy group having 115 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group. Of these, a methoxy group is preferred.
  • hydrocarbon group having a 2_pyrrolidonyl group a group represented by the following general formula (4) is preferably exemplified.
  • j is an integer from 2-10.
  • those having j force ⁇ ⁇ ⁇ ⁇ are preferred.
  • the C4-C12 group having an epoxy group is represented by the following general formula (5).
  • Z is a C1-C10 alkylene group or alkylarylene group
  • Y is a methylene group, a sulfur atom or an oxygen atom
  • E is an epoxy group-containing C2-C10 hydrocarbon group. It is. Among these, those in which Y is an oxygen atom are preferred, those in which Y is an oxygen atom, and those in which E is a glycidyl group are more preferred.
  • Z is an alkylene group having 3 carbon atoms, Y is an oxygen atom, and And E is particularly preferably a glycidinole group.
  • part of X 1 and / or X 4 is an alkoxyl group having 15 to 15 carbon atoms, a hydrocarbon group containing a 2-pyrrolidonyl group, and a carbon number 4 containing an epoxy group.
  • the remainder is a group derived from the functional group or a single bond.
  • X 2 is a group partially selected from an alkoxyl group having 15 to 15 carbon atoms, a hydrocarbon group containing a 2_pyrrolidonyl group, and a group having 4 to 12 carbon atoms containing an epoxy group, The remainder is a group or a single bond derived from the functional group.
  • X 1 , X 2 and X 4 is a C 4-12 group containing an epoxy group
  • the reaction of an active conjugated polymer chain with a polyorganosiloxane forms an epoxy ring.
  • the constituent oxygen-carbon bond is cleaved to form a structure in which a conjugated gen-based polymer chain is bonded to the carbon atom.
  • X 1 and X 4 are, among those described above, an epoxy group-containing C 4-12 group and a group derived therefrom.
  • X is preferably an alkyl group having 16 carbon atoms.
  • X 2 is preferably an epoxy group-containing group having 412 carbon atoms or a group derived therefrom.
  • X 3 that is, a group containing 2 to 20 alkylene glycol repeating units, is preferably a group represented by the following general formula (6).
  • t is an integer of 2-20
  • P is an alkylene group or an alkyl group having 2-10 carbon atoms.
  • R is a hydrogen atom or a methyl group
  • Q is an alkoxy group or an aryloxy group having 110 carbon atoms.
  • Part of Q may be a single bond.
  • P is an alkylene group having 3 carbon atoms
  • R is a hydrogen atom
  • Q is a methoxy group
  • m is an integer of 3 to 200, preferably 20 to 150, and more preferably 30 to 120.
  • the number is small, the processability of an uncrosslinked rubber compound obtained by compounding silica with a conjugated gen-based rubber is lowered, or the balance between abrasion resistance and low heat generation is poor. If this number is large, the production of the corresponding polyorganosiloxane becomes difficult, and the viscosity of the polyorganosiloxane becomes too high, making it difficult to handle.
  • n is an integer of 0 to 200, preferably an integer of 0 150, and more preferably an integer of 0 120. It is an integer of kf to 0 to 200, preferably an integer of f to 0 to 150, more preferably an integer of f to 0 to 120.
  • the total number of m, n and k is preferably 400 or less, more preferably 300 or less, and particularly preferably 250 or less. If the total number is too large, the production of the polyorganosiloxane becomes difficult, and the viscosity of the polyorganosiloxane becomes too high, which makes handling difficult.
  • R 9 to R 16 are an alkyl group having 16 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms. Yes, they may be the same or different.
  • X 5 to X 8 are a part of which is a functional group which reacts with the active metal at the end of the chain of the active conjugated polymer, and the remaining part is a group or a single bond derived from the functional group.
  • R 17 to R 19 are an alkyl group having 16 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms. Yes, they may be the same or different.
  • X 9 —X 11 is a functional group partially reacting with the active metal at the chain end of the active conjugated polymer, and the remainder is a group or a single bond derived from the functional group.
  • s is an integer of 118.
  • the alkyl group having 16 to 16 carbon atoms, the aryl group having 6 to 12 carbon atoms, the functional group that reacts with the active metal at the terminal of the chain of the active conjugated polymer, and the group derived from the functional group are represented by the general formula: The same as described for the polyorganosiloxane after the reaction represented by (1).
  • the branched conjugated polymer constituting the conjugated rubber (A) has a structure in which at least four or more conjugated polymer chains are bonded via a polyorganosiloxane. Is preferred.
  • a conjugated gen-based rubber having a structure in which at least four or more conjugated gen-based polymer chains are bonded via a polyorganosiloxane accounts for 290% by weight, particularly 580% by weight of the conjugated-based rubber (A). preferable.
  • a conjugated rubber containing a polymer having a structure in which at least four or more conjugated polymer chains are bonded via a polyorganosiloxane is used when producing a composition.
  • a rubber with improved coagulability and drying properties, and also a non-crosslinked rubber composition with better processability when silica is blended, and a more improved balance of low heat build-up, wet grip properties and abrasion resistance gives a crosslinked product.
  • the weight average molecular weight of the conjugated rubber (A) is from 1,000 to 3,000,000, preferably from 10,000 to 2,000,000, more preferably ⁇ 300,000 to 1,200,000. Is appropriately selected within the range. If the molecular weight is too high, the compounding of silica tends to be difficult, and the processability of the unbridged rubber composition containing silica tends to decrease. Conversely, if the molecular weight is too low, the low heat build-up tends to decrease and the cost tends to increase.
  • the weight average molecular weight of the conjugated gen-based rubber (A) is usually from 100,000 to 3,000,000, preferably from 100,000 to 3,000,000. ⁇ Is 150,000—2,000,000, more preferred ⁇ is 200,000 in the range of 1,500,000. Also, it is possible to improve the kneading viscosity of the composition, the dispersibility of the filler, and the gripping property by including the conjugated diene rubber (A) as a liquid rubber together with other solid rubbers in the rubber composition. In that case, the weight average molecular weight of the conjugated rubber (A) is usually from 3,000,000 to 100,000, preferably from 10,000 to 80,000, more preferably from 30,000 to 70,000. Is selected in the range.
  • the amount of the conjugated rubber ( ⁇ ) contained in the conjugated rubber composition of the present invention is It is 5 to 95% by weight, preferably 7 to 80% by weight, and more preferably 10 to 75% by weight of the total amount of the active rubber composition.
  • the content of the conjugated diene rubber (A) is low, the uncrosslinked rubber composition obtained by blending silica with the conjugated diene rubber is inferior in processability, and other low heat generation properties of the obtained crosslinked rubber are not sufficient. Poor physical properties.
  • Conjugated gen-based rubber (B) has a conjugated gen-based rubber having a structure in which two conjugated gen-based polymer chains are bonded via the above-described functional group, and the above-described functional group is bonded to the conjugated gen-based polymer chain end. At least one of the conjugated diene rubbers having the above-mentioned structure.
  • ⁇ -substituted cyclic amides 3-substituted cyclic ureas, such as 1,3-dimethylethylene urea and 1,3-dimethyl-2, imidazolidinone; 4,4'-bis (dimethylamino) benzophenone, 4,4, -bis ⁇ ⁇ -substituted amino ketones such as (getylamino) benzophenone; and aromatic isocyanates such as diphenylmethane diisocyanate and 2,4-tolylene diisocyanate.
  • ⁇ -substituted cyclic amides ⁇ -substituted cyclic ureas and ⁇ -substituted aminoketones are preferred.
  • ⁇ -Bull_2_pyrrolidone ⁇ -Phenyl-2_pyrrolidone, ⁇ -Methylenol ⁇ -Caprolactam, 1,3-Jetyl-2-imidazolidinone, and 4,4'-bis (diethylamino) benzophenone Especially preferred ,.
  • the compound having an amino group include N, N-disubstituted aminoalkyl methacrylamide compounds such as N, N-dimethylaminopropyl methacrylamide; and 4_N, N_dimethyl N-substituted aminoaldehydes such as luminaminobenzaldehyde.
  • the compound having an imino group include N-substituted carbodiimides such as dicyclohexylcarbodiimide; and Schiff bases such as N-ethylethylideneimine and N-methylbenzylideneimine.
  • the compound containing an epoxy group examples include propylene oxide, tetraglycidyl-1,3-bisaminomethylcyclohexane, epoxidized polybutadiene, and the like.
  • a specific example of the compound having a pyridyl group there may be mentioned a Vully conjugate having a pyridyl group such as 4-butylpyridine.
  • the compound containing an alkoxyl group include bis (triethoxysilylpropyl) tetrasulfide, bis (tributoxysilylpropyl) tetrasulfide, and ⁇ -glycidoxy.
  • the compound containing a halogen examples include tin tetrachloride, silicon tetrachloride, triphenyl monochlorotin, triphenoxychlorosilane, methyltriphenoxysilane, and diphenoxydichlorosilane.
  • the conjugated gen-based polymer chain constituting the conjugated gen-based rubber ( ⁇ ) is the same as the conjugated gen-based polymer chain constituting the conjugated gen-based rubber ( ⁇ ) described above. It is preferably a polymer chain or a copolymer chain of a conjugated gen monomer and an aromatic butyl monomer, preferably 50 to 100% by weight of a conjugated gen monomer unit and 50 to 100% by weight of an aromatic butyl monomer unit. More preferably, it comprises 0% by weight. Further, if desired, the conjugated gen-based polymer chain may contain other monomer units other than the conjugated gen monomer unit and the aromatic butyl monomer unit.
  • the types and ratios of the conjugated diene monomer, aromatic butyl monomer and other monomers are different from those of the above-mentioned condensed diene polymer chain constituting the conjugated diene rubber ( ⁇ ). Can be selected as well.
  • the weight average molecular weight of the conjugated rubber ( ⁇ ) is 1,000 to 3,000,000, preferably 10,000 to 2,000,000, similar to the aforementioned conjugated rubber ( ⁇ ). More preferably, it is appropriately selected in the range of 300,000—1,200,000. If the molecular weight is too high, the compounding of silica becomes difficult, or the processability of the uncrosslinked rubber composition containing silica tends to decrease. There is a direction. Conversely, if the molecular weight is too low, low heat build-up may be reduced or costs may be increased.
  • the weight average molecular weight of the conjugated gen-based rubber ( ⁇ ) is generally up to 100,000—3,000,000, preferably up to 100%. 150,000,000 2,000,000, more preferred ⁇ is selected in the range of 200,000 1,500,000. Further, it is also possible to improve the kneading viscosity of the composition, the dispersibility of the filler, and the gripping property by including the conjugated diene rubber ( ⁇ ) as a liquid rubber together with other solid rubbers in the rubber composition. In this case, the weight-average molecular weight of the conjugated rubber ( ⁇ ) is usually selected from the range of from 3,000 to 100,000, preferably from 10,000 to 80,000, more preferably from 30,000 to 70,000. It is.
  • the content of the conjugated diene rubber (beta) is conjugated diene-based rubber composition the total amount of 5 95 wt 0/0, preferably more preferably 7 80 wt 0 I 10 60% by weight.
  • the content of the conjugated diene rubber ( ⁇ ⁇ ⁇ ) is low, the uncrosslinked rubber composition obtained by blending silica with the conjugated rubber has poor processability, and the obtained rubber crosslinked product does not have sufficient low heat build-up. Poor physical properties.
  • the content of the conjugated diene rubber (II) is large, the resulting cross-linked product is inferior in low heat build-up and abrasion resistance.
  • the conjugated rubber ( ⁇ ) is a polymer chain obtained by polymerizing a conjugated monomer or a conjugated monomer and an aromatic butyl monomer in an inert solvent using an organic active metal.
  • the active conjugated polymer chain having an active metal at the terminal has a functional group capable of reacting with the active metal at the terminal of the active conjugated polymer chain. It is obtained by reacting at least one selected from the polyorganosiloxanes represented (polyorganosiloxanes before the reaction).
  • the conjugated rubber ( ⁇ ) is a polymer chain obtained by polymerizing a conjugated gen monomer or a conjugated gen monomer and an aromatic vinyl monomer in an inert solvent using an organic active metal.
  • the conjugated gen-based rubber composition of the present invention is prepared by mixing both the conjugated gen-based rubber (A) and the conjugated gen-based rubber (B) separately produced as described above. (The first method for producing a conjugated rubber composition).
  • the conjugated rubber composition of the present invention containing the conjugated rubber (A) and the conjugated rubber (B) can be obtained (conjugated Second method for producing a rubber composition).
  • the amounts of the conjugated gen monomer or the conjugated gen monomer and the aromatic butyl monomer used in the polymerization are adjusted so that the amount of each monomer unit of the finally obtained conjugated rubber becomes a desired value. What is necessary is just to set suitably.
  • a solvent which is generally used in solution polymerization and which does not inhibit the polymerization reaction is not particularly limited. That Specific examples include aliphatic hydrocarbons such as butane, pentane, hexane, and 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and cyclohexene; and aromatics such as benzene, toluene, and xylene. Group hydrocarbons.
  • the amount of the inert solvent used is such that the monomer concentration is usually 1 to 50% by weight, preferably 10 to 40% by weight.
  • organic active metal examples include an organic alkali metal compound, an organic alkaline earth metal compound, and an organic transition metal compound.
  • organic alkali metal compounds are preferably used. Specific examples thereof include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, Organic polyvalent lithium compounds such as 4-dilithiobutane, 1,4-dilithium 2_ethylcyclohexane, 1,3,5_trilithiobenzene; organic sodium compounds such as sodium naphthalene; and organic potassium compounds such as potassium naphthalene No.
  • organolithium compounds particularly organic monolithium compounds
  • the organic alkali metal compound may be previously reacted with a secondary amine such as dibutylamine, dihexylamine, dibenzylinoamine, or pyrrolidine to be used as an organic alkali metal amide compound.
  • a secondary amine such as dibutylamine, dihexylamine, dibenzylinoamine, or pyrrolidine
  • organic active metals can be used alone or in combination of two or more.
  • the amount of the organic active metal to be used is preferably in the range of 1 to 50 mmol, more preferably 2 to 20 mmol, per 1, 000 g of the monomer mixture.
  • a polar compound in order to adjust the amount of vinyl bond in the conjugated diene monomer unit to a desired value.
  • the polar compound include ether compounds such as dibutyl ether and tetrahydrofuran; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; and phosphine compounds. Among them, ether compounds and tertiary amines are preferred, and tertiary amines are more preferred. Tetramethylethylenediamine is particularly preferred.
  • the amount of the polar compound to be used is preferably in the range of 0.01 to 100 monoles, more preferably 0.330 mol, per 1 mol of the organic active metal.
  • the polymerization temperature is usually in the range of -78 to 150 ° C, preferably 0 to 100 ° C, and more preferably 30 to 90 ° C.
  • any mode such as a batch mode and a continuous mode can be adopted.
  • the batch type is advantageous
  • the vinyl bond amount is low to medium
  • the continuous type is advantageous.
  • the aromaticity in the polymerization system is increased in order to improve the randomness of the bond between the conjugated gen monomer unit and the aromatic vinyl monomer unit.
  • the conjugated gen monomer or the conjugated gen monomer and the aromatic vinyl monomer are mixed so that the ratio of the aromatic vinyl monomer in the composition ratio of the vinyl monomer and the conjugated gen monomer is maintained in a specific range.
  • the mixture is continuously or intermittently supplied to the polymerization reaction system for polymerization.
  • conjugated gen-based rubber (A) In the production of the conjugated gen-based rubber (A), a functional group capable of reacting with the active metal at the terminal is added to the active conjugated polymer chain having an active metal at the terminal obtained as described above. Is reacted.
  • the polyonoreganosiloxane used is a polyonoreganosiloxane represented by the general formula (1), (2) or (3) (wherein, in the general formula (1), X 1 and X 4 represent an active conjugated polymer. A functional group that reacts with the active metal at the chain end, or an alkyl group having 16 to 16 carbon atoms or an aryl group having 6 to 12 carbon atoms, and X 2 is the activity of the active conjugated diene polymer chain end.
  • X 3 is a group containing a repeating unit of alkylene glycol of 2 to 20.
  • the polyonoleganosiloxane represented by the general formula (2) is represented by X 5 — X 8 is a functional group that reacts with the active metal at the end of the chain of the active conjugated polymer
  • X 9 X 11 is an active conjugated gen. It is a functional group that reacts with the active metal at the end of the chain of the system polymer. Is at least a kind are also selected from the group consisting of.
  • the above polyonoreganosiloxane can be obtained, for example, by the methods described in The Chemical Society of Japan, 4th edition, Experimental Chemistry Course, Vol. 28, and references therein. Also, commercially available products can be obtained and used.
  • the amount of polyorganosiloxane used is based on 1 mole of the organic active metal used for polymerization. More than 0.001 and less than 0.1, preferably more than 0.005 and less than 0.09, more preferably more than 0.01 and less than 0.08. Amount. If the amount is small or large, the effect of the present invention, in which a branched conjugated polymer is hardly produced, cannot be obtained.
  • the polyorganosiloxane When the polyorganosiloxane is added to the polymerization system, it dissolves in the inert solvent used in the polymerization, and the active metal at the chain end of the active conjugated polymer becomes easily reacted with the polyorganosiloxane uniformly.
  • the concentration of the solution is preferably 1 to 50% by weight.
  • the time when the polyorganosiloxane is reacted with the active conjugated polymer chain is preferably at the time when the polymerization reaction is almost completed.After the polymerization reaction is almost completed, the active conjugated polymer chain gels by a side reaction. It is more preferable before the reaction or before undergoing a chain transfer reaction due to impurities in the polymerization system.
  • a polymerization terminator Prior to the reaction of the active conjugated polymer chain with the polyorganosiloxane, a polymerization terminator, a polymerization terminal modifier, a coupling agent and the like which are generally used in anion polymerization are used as long as the effects of the present invention are not impaired. It may be added to the polymerization system to inactivate a part of the active metal at the chain end of the active conjugated diene polymer.
  • Conditions for reacting the polyorganosiloxane with the active conjugated diene polymer chain are as follows: the reaction temperature is usually in the range of 0 to 100 ° C, preferably 30 to 90 ° C, and the reaction time is usually , 120 minutes, preferably 2 to 60 minutes.
  • an alcohol such as methanol or isopropanol or water is added as a polymerization terminator to terminate the reaction to obtain a polymerization solution.
  • the anionic conjugated polymer chain may be optionally added before the addition of the polymerization terminator.
  • a polymerization end modifier, a coupling agent, and the like, which are usually used in polymerization, may be added to the polymerization system and reacted.
  • These functional group-containing compounds can be used alone or in combination of two or more.
  • An active metal is obtained at the polymer chain end obtained by polymerizing a conjugated gen monomer or a conjugated gen monomer and an aromatic vinyl monomer with an organic active metal in an inert solvent.
  • the compound having the above functional group capable of reacting with the above-mentioned polyonoreganosiloxane and the active metal at the end of the chain of the active conjugated diene polymer is successively reacted with the active conjugated diene polymer chain to form the conjugate of the present invention.
  • the compound having the functional group described above is reacted to form a conjugated gen-based rubber (B), and then, the polyorganosiloxane is reacted with the remaining active conjugated-based polymer chain to form a conjugated gen-based rubber (B).
  • the rubber (A) it is preferable to produce the rubber (A). Conversely to the order of the steps, when the polyorganosiloxane is first reacted to form the conjugated gen-based rubber (A), and then the compound having the above functional group is reacted, the desired amount of conjugated rubber is obtained. It is difficult to generate the gen-based rubber (B), and it is difficult to obtain a rubber crosslinked product having low heat build-up and excellent abrasion resistance.
  • a modification rate ie, a polymer in which the above-mentioned functional group is introduced into a conjugated gen-based polymer molecule having an active terminal
  • the higher the degree of modification due to the terminal modification the more improved the grip properties and low heat buildup.
  • the denaturation rate is determined by calculating the ratio of the absorption intensity (UV) measured by an ultraviolet-visible spectrophotometer (UV / RI) to the differential refractive index (RI) measured by a GPC differential refractometer, and using a calibration curve created in advance. can do.
  • the coupling rate is The peak area after the coupling reaction at the same position as the peak before the coupling reaction and the peak after the coupling reaction with a higher molecular weight than the peak before the coupling reaction Can be determined from the ratio to the area of
  • the polymerization solvent is separated from the polymerization solution by direct drying or steam stripping, and the target rubber is recovered.
  • the polymerization solution can be mixed with an extender oil and recovered as an oil-extended rubber.
  • the extender oil a process oil described below or the like can be used, and the amount of the extender oil is usually based on 100 parts by weight of the total amount of the synergistic rubber (A) and / or the conjugated rubber (B). It is 5-100 parts by weight, preferably 1060 parts by weight, more preferably 2050 parts by weight.
  • the conjugated diene rubber composition of the present invention contains 5-95% by weight of a conjugated diene rubber (A) and 95-5% by weight of a conjugated diene rubber (B).
  • the ratio (A) / (B) (weight ratio) between the conjugated rubber (A) and the conjugated rubber (B) is usually 5 / 95-95 / 5, preferably 7 / 93-93 /. 7, more preferably in the range of 10 / 90-85 / 15. Outside this range, it becomes difficult to obtain the desired crosslinked product having excellent low heat build-up, wet grip, abrasion resistance and tensile strength. In particular, the effect of improving low heat buildup when silica and carbon black are used in combination is poor.
  • conjugated gen-based rubber (A) and the conjugated gen-based rubber (B) two conjugated gen-based rubbers are generally used in addition to the conjugated gen-based rubber (A) and the conjugated gen-based rubber (B).
  • conjugated gen-based polymer chains Polyanoreganosiloxane-modified conjugated gen-based polymers in which one polyorganosiloxane is bonded at the end, and polyorganosiloxane bonded
  • Unmodified conjugated polymers modified conjugated gen-based polymers modified with polymerization terminal modifiers commonly used in anion polymerization, and coupling agents commonly used in anion polymerization.
  • the conjugated rubber composition of the present invention may contain these conjugated polymers.
  • the conjugated rubber composition of the present invention has a polymer having a glass transition temperature of -120 ° C to 200 ° C and a weight average molecular weight of 1,000,000 3,000,000. The ability to mix
  • the polymer to be blended is a resinous or rubbery polymer having a weight average molecular weight within the above range, preferably 300,000 to 2,000,000, more preferably ⁇ 100,000 to 1,200,000. And preferably a rubbery polymer.
  • the rubbery polymer may be a conjugated diene polymer, in which case the glass transition temperature is usually -110 ° C 100 ° C, preferably -110 ° C-10 ° C, more preferably The temperature is 110 ° C 25 ° C. If the glass transition temperature is too high, the low heat buildup and abrasion resistance of the rubber crosslinked product may not be sufficient
  • the rubbery polymer to be blended include natural rubber, polyisoprene rubber, emulsion-polymerized styrene-butadiene copolymer rubber, solution-polymerized styrene-butadiene copolymer rubber (for example, when the amount of bound styrene is 5 to 50% by weight).
  • the blending amount of these polymers is usually 900 parts by weight or less, preferably 700 parts by weight or less, more preferably 100 parts by weight or less with respect to 100 parts by weight of the total of the conjugated rubber (A) and the conjugated rubber (B). Is less than 500 parts by weight. If the amount of the polymer is too large, it becomes difficult to obtain a crosslinked product having excellent processability of the uncrosslinked composition, low heat build-up of the rubber crosslinked product, wet grip properties and abrasion resistance.
  • the rubber composition of the present invention preferably contains at least one filler selected from silica and carbon black.
  • the filler preferably contains silica or both silica and carbon black.
  • silica examples include dry method white carbon, wet method white carbon, and colloidal silica.
  • a wet-process white carbon mainly containing hydrous caustic acid is preferred.
  • a carbon silica dual 'phase' filter having silica supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area of the silica is preferably from 50 to 400 m 2 / g, more preferably from 100 to 220 m 2 / g. Within this range, more excellent wear resistance and low heat build-up will be obtained.
  • silica When silica is blended, low heat buildup and abrasion resistance can be further improved by further blending a silane coupling agent.
  • silane coupling agent examples include biertriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N— (j3-aminoethyl) - ⁇ -aminopropyltrimethoxysilane, Octathio- 1-propyltriethoxysilane, bis (3- (triethoxide, ⁇ -trimethoxysilinolepropyldimethylthio-capillyl valaminoletetrasulfide, ⁇ -trimethoxysilylpropylbenzothiazyltetrasulfide, etc.
  • sulfides containing no more than 4 sulfur atoms in one molecule are preferable because scorch during kneading can be prevented.
  • two or more kinds can be used in combination.
  • the amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of silica.
  • Examples of carbon black include furnace black, acetylene black, and thermal black. , Channel black, graphite, graphite fibers, fullerene and the like. Of these, specific examples of furnace black preferred are SAF, ISAF, ISAF-HS, ISAF_LS, IISAF_HS, HAF, HAF_HS, HAF-LS, and FEF. These carbon blacks can be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (NSA) of the carbon black is preferably from 5 to 200 m 2 / g,
  • DBP dibutyl phthalate
  • the adsorption specific surface area of cetyl trimethylammonium bromide (CTAB) disclosed in JP-A-5-230290 is 110-170 m 2 / g, and compression is repeated four times at a pressure of 165 MPa.
  • CTAB cetyl trimethylammonium bromide
  • the use of a high-structure carbon black having a DBP (24M4DBP) oil absorption of 110-130 ml / 100 g after the addition of is further improved in abrasion resistance S.
  • the compounding amount of the filler is preferably 5 to 150 parts by weight, more preferably 20 to 120 parts by weight, and particularly preferably 40 to 100 parts by weight based on 100 parts by weight of the whole rubber. If the amount of the filler is too small, the crosslinked rubber, which has an insufficient effect of improving the reinforcing properties, has insufficient abrasion resistance. Conversely, if the amount is too large, the processability of the uncrosslinked rubber composition and the low heat buildup of the crosslinked rubber composition are not sufficient.
  • the filler may be filled into the solid rubber by a dry kneading method, or may be a wet kneading method, that is, the respective fillers may be blended into a polymer solution and then coagulated and dried.
  • a rubber composition filled with 0 to 150 parts by weight of silica per 100 parts by weight of a conjugated diene rubber (A) and 0 to 150 parts by weight of carbon black per 100 parts by weight of a conjugated diene rubber (B) are used.
  • the rubber composition is mixed with a partially filled rubber composition.
  • the rubber composition of the present invention may further comprise a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an antioxidant, an activator, a process oil, a plasticizer, a lubricant, Compounding agents such as fillers can be compounded in required amounts.
  • Crosslinking agents include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Which sulfur; halogenated sulfur such as monochloride and sulfur; organic peroxides such as dicumyl peroxide and di-tert-butyl peroxide; p_quinone dioxime; p, p'-di Quinonedioximes such as benzoylquinonedioxime; organic polyvalent amine conjugates such as triethylenetetramine, hexanemethylenediamine rubbamate, and 4,4′-methylenebis-o-chloroaniline; alkylphenyls having a methylol group And powdered sulfur, of which sulfur is preferred. These cross-linking agents are used alone or in combination of two or more.
  • the compounding amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the whole rubber.
  • crosslinking accelerator examples include N-cyclohexyl 2_benzothiazylsulfenamide, N_t-butynole_2_benzothiazolesulfenamide, N-oxyethylene_2_benzothiazolesulfenamide, N-oxyethylene_2_benzothiazolesulfenamide, N, N'-diisopropinolee2_benzothiazolesulfenamide, etc., sulfenamide-based cross-linking promoting IJ; diphenyldananidin, dioltotriluguanidine, orthotrirubiguanidine, etc.
  • Guanidine-based cross-linking accelerators Guanidine-based cross-linking accelerators; thiourea-based cross-linking accelerators such as getylthioperia; thiazole-based cross-linking accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulphide, and 2-mercaptobenzothiazole zinc salt; Ulam monosulfide, tetramethi Thiuram-based crosslinking accelerators such as rutiuram disulphide; dithi-talented rubamic acid-based crosslinking accelerators such as sodium dimethyldithiocarbamate and zinc getyldithiocarbamate; sodium isopropylxanthate, zinc isopropylxanthate, A xanthic acid-based cross-linking accelerator such as zinc butyl xanthogenate; Among them, those containing a sulfenamide-based crosslinking accelerator are particularly preferred. These crosslinking accelerators may be used
  • the compounding amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.55 parts by weight, based on 100 parts by weight of the whole rubber.
  • crosslinking activator for example, higher fatty acids such as stearic acid, zinc oxide and the like can be used.
  • Zinc oxide with high surface activity and particle size of 5 xm or less is preferred
  • activated zinc white having a particle size of 0.05-0.2 / im or zinc white having a particle size of 0.3-1 ⁇ m is used.
  • zinc oxide a zinc oxide surface-treated with an amine dispersant or a wetting agent can be used.
  • the amount of the cross-linking activator is appropriately selected, but the higher fatty acid is preferably 0.0515 parts by weight, more preferably 0.5-5 parts by weight, based on 100 parts by weight of the total rubber.
  • the amount of zinc oxide is preferably 0.0510 parts by weight, more preferably 0.5-3 parts by weight.
  • the process oil those commonly used in the rubber industry can be used, and examples thereof include paraffinic, aromatic, and naphthenic petroleum softeners, vegetable softeners, and fatty acids.
  • petroleum-based softeners those having a polycyclic aromatic content of less than 3% are preferred. This content is measured by the method of IP346 (test method of THE INSTITUTE PETROLEUM in the UK).
  • Other compounding agents include activators such as diethylene glycol, polyethylene render glycol, and silicone oil; fillers such as calcium carbonate, tanolek, clay, aluminum hydroxide, and corn starch; tackifiers such as petroleum resins and coumarone resins; waxes Is mentioned.
  • the conjugated diene rubber composition of the present invention can be obtained by kneading each component according to a conventional method.
  • a rubber composition can be obtained by kneading a compounding agent excluding a crosslinking agent and a crosslinking accelerator and rubber, and then mixing the kneaded product with a crosslinking agent and a crosslinking accelerator.
  • the kneading temperature of the compounding agent and the rubber excluding the crosslinking agent and the crosslinking accelerator is preferably 80 to 200 ° C, more preferably 120 to 180 ° C, and the kneading time is preferably 30 seconds to 30 minutes. is there.
  • the mixing of the crosslinking agent and the crosslinking accelerator is usually performed after cooling to 100 ° C or less, preferably 80 ° C or less.
  • the conjugated diene rubber composition of the present invention is usually used after being crosslinked.
  • the crosslinking method is not particularly limited, and may be appropriately selected depending on the shape, size, and the like of the crosslinked product.
  • a rubber composition containing a crosslinking agent which can be crosslinked at the same time as molding by filling a rubber composition containing a crosslinking agent into a mold and heating, is preliminarily molded, and then heated to be crosslinked.
  • the crosslinking temperature is preferably between 120 and 200. C, more preferably 140 to 180 ° C, and the crosslinking time is usually about 1 to 120 minutes.
  • the cross-linked rubber obtained by cross-linking the conjugated rubber composition of the present invention has low heat build-up, Because of its excellent grip and abrasion resistance, it can be used for various applications that take advantage of its properties, such as tires, carcass, sidewalls, inner liners, bead sections, etc .; or hoses, window frames, belts, It can be used for rubber products such as shoe soles, anti-vibration rubber, and automotive parts; it can also be used as resin-reinforced rubber such as impact-resistant polystyrene and ABS resin. It is particularly suitable as a tread material for fuel-efficient tires.
  • the content of the branched conjugated polymer is determined by mixing the conjugated polymer before the reaction with the polyorganosiloxane and the conjugated rubber finally obtained under the following conditions: It was measured by gel permeation chromatography.
  • the molecular weight that is 3 times or 4 times or more of the molecular weight peak of the conjugated gen-based polymer before the reaction with the polyorganosiloxane with respect to the total amount of the conjugated gen-based rubber finally obtained is obtained.
  • the weight fraction of the polymer molecules having the polymer was determined, and the results are shown as the amount of a polymer having three branches and the amount of a polymer having four or more branches, respectively.
  • the total amount of the amount of the polymer having three branches and the amount of the polymer having four or more branches is indicated as the amount of the polymer having three or more branches.
  • the weight average molecular weight of the (3-1) conjugated diene polymer was measured by gel 'permeation' chromatography under the same conditions as described above.
  • the rubber composition covers the roll surface. : 4 points
  • tan ⁇ at 60 ° C. was measured using RDA-II manufactured by Rheometrics Inc. under the conditions of 4.0% twist and 1 Hz. This property is indicated by an index. The smaller the index, the better the low heat buildup.
  • the wet grip property was measured by using RDA-II manufactured by Rheometrics Co., Ltd., tan ⁇ at 0 ° C. under the conditions of 0.5% twist and 20 Hz. This characteristic is indicated by an index. The larger the index, the better the wet grip.
  • Abrasion resistance was measured using a Lambourn abrasion tester according to JIS No. 6264. This property was expressed as an index (wear resistance index). The larger the value, the better the wear resistance.
  • n-butyllithium is removed from impurities not involved in polymerization. 8.7 millimoles as a total amount of the sum and the amount of the polymerization reaction were added, and polymerization was started at 50 ° C. Ten minutes after the initiation of the polymerization, a mixture of 40 g of styrene and 360 g of 1,3-butadiene was continuously added over 60 minutes. The highest temperature during the polymerization reaction was 65 ° C.
  • the polymerization reaction was continued for another 20 minutes, 312 g of 1,3-butadiene was added, the polymerization reaction was continued for 10 minutes, and it was confirmed that the polymerization conversion reached 100%.
  • the polymerization solution was sampled. A small amount of the sampled polymerization solution was added with an excess of methanol to stop the reaction, and then air-dried to obtain a polymer, which was used as a sample for gel permeation / chromatographic analysis.
  • the uncrosslinked rubber composition I was press-crosslinked at 160 ° C. for 30 minutes to prepare a test piece, and the low heat build-up, wet grip properties, wear resistance and tensile strength were measured. The results are shown in Table 2 as an index with Comparative Example 1 being 100.
  • a conjugated gen-based rubber composition was prepared in the same manner as in Example 1 except that tin tetrachloride (0.3 mm) was used instead of 4,4-bis (getylamino) benzophenone (EAB). Table 1 shows the analysis results of this conjugated rubber composition. Further, a compounding agent was added to the conjugated gen-based rubber composition ii by the same method as in Example 1 to prepare a conjugated gen-based rubber composition II. Were evaluated. Table 2 shows the evaluation results.
  • a solid conjugated rubber m was produced in the same manner as in Example 1, except that the addition ratio of polyorganosiloxane A to n-butyllithium was 0.5 mol. Table 1 shows the analysis results of this conjugated rubber composition m.
  • a solid conjugated rubber composition V was prepared in the same manner as in Example 1, except that methanol was used instead of EAB. Table 1 shows the analysis results of the conjugated rubber composition V.
  • the rubber component in the rubber composition I is the rubber composition i
  • the rubber component in the rubber composition II is a rubber composition ii.
  • the rubber component in the rubber composition ill is a rubber composition m
  • the rubber component in the rubber composition IV is a rubber composition iv
  • the rubber component in the rubber composition V is a rubber composition V
  • n-butyllithium is removed from impurities not involved in polymerization. 8.3 millimoles were added as a total amount of the sum and the polymerization reaction, and polymerization was started at 40 ° C. Ten minutes after the initiation of the polymerization, a mixture of 40 g of styrene and 360 g of 1,3-butadiene was continuously added over 60 minutes. The highest temperature during the polymerization reaction was 60 ° C.
  • n-butyllithium is removed from impurities not involved in polymerization. 9.3 millimoles of the sum total and the amount of the polymerization reaction were added, and polymerization was started at 45 ° C. Ten minutes after the start of the polymerization, a mixture of 40 g of styrene and 360 g of 1,3-butadiene was continuously added over 50 minutes. The highest temperature during the polymerization reaction was 75 ° C.
  • the polymerization solution containing the conjugated diene rubber vi-1 and the polymerization solution containing the conjugated diene rubber vi-2 were mixed such that the conjugated diene rubbers vi-1 and vi-2 were respectively 2: 1. After mixing and stirring for 30 minutes, a polymerization solution vi was obtained.
  • Example 2 The same operation as in Example 1 was performed from the polymerization solution vi to obtain a solid conjugated diene rubber composition vi.
  • a conjugated diene rubber composition vi 85 parts of a conjugated diene rubber composition vi and 15 parts of a high cis-polybutadiene rubber (Nipol BR1220N, manufactured by Zeon Corporation) are masticated for 30 seconds, and then silica ( (Nipsil AQ, manufactured by Nippon Silica Kogyo Co., Ltd.) 45 parts and 4.5 parts of a silane coupling agent (Si69) were added, and kneaded at 110 ° C for 1.5 minutes.
  • silica (Nipsil AQ, manufactured by Nippon Silica Kogyo Co., Ltd.) 45 parts and 4.5 parts of a silane coupling agent (Si69) were added, and kneaded at 110 ° C for 1.5 minutes.
  • a conjugated diene rubber vi-3 was obtained in the same manner as in the production example of the conjugated diene rubber vi-1 of Example 3, except that the addition ratio of the polyorganosiloxane B was changed to 0.5 mol. Also, N
  • a conjugated diene rubber vi-4 was obtained in the same manner as in the production example of the conjugated diene rubber vi-2 in Example 3, except that MP was replaced with methanol. Table 3 shows the results of analysis of the conjugated rubbers vi-3 and vi-4.
  • the solid conjugated rubber composition vii was obtained from the conjugated rubbers vi-3 and vi-4 via the polymerization solution vii. Got.
  • the rubber component in the rubber composition VI is the rubber composition vi (conjugated diene rubber vi_l + conjugated diene rubber vi_2) + high cis' polybutadiene rubber
  • the rubber component in the rubber composition VII is a rubber composition vii (conjugated diene rubber vi-3 + conjugated diene rubber vi-4) + high cis' polybutadiene rubber
  • n-butyllithium was removed from impurities not involved in polymerization. 8.6 millimoles as a total amount of the sum and the polymerization reaction were added, and polymerization was started at 50 ° C. Ten minutes after the start of the polymerization, a mixture of 50 g of styrene and 450 g of 1,3-butadiene was continuously added over 60 minutes. The highest temperature during the polymerization reaction was 70 ° C.
  • Example 2 The same operation as in Example 1 was performed from the obtained polymerization solution to obtain a solid conjugated rubber viii-1.
  • Table 5 shows the results of the analysis.
  • n-butyllithium is removed from impurities not involved in polymerization. 8.6 millimoles as a total amount of the sum and the polymerization reaction were added, and polymerization was started at 40 ° C. Ten minutes after the initiation of the polymerization, a mixture of 40 g of styrene and 360 g of 1,3-butadiene was continuously added over 60 minutes. The highest temperature during the polymerization reaction was 60 ° C.
  • Example 2 The same operation as in Example 1 was performed from the obtained polymerization solution to obtain a solid conjugated rubber viii-2.
  • Table 5 shows the results of the analysis.
  • Abrasion resistance (number of measures) 1 11 100
  • the rubber component in the rubber composition VIII is a conjugated diene rubber viii-1
  • the rubber component in the rubber composition IX is a conjugated diene rubber viii-2
  • n-butyllithium is not involved in the polymerization. 5.7 mmol as a total amount of the neutralized impurities and the polymerization reaction were added, and polymerization was started at 45 ° C. Twenty minutes after the start of the polymerization, a mixture of 80 g of styrene and 320 g of 1,3-butadiene was added for 60 minutes to continuously add calories. The maximum temperature during the polymerization reaction was 65 ° C.
  • Example 7 shows the results.
  • the procedure was the same as in the production of the conjugated rubber x-1, except that tetramethoxysilane was used instead of the polyorganosiloxane and the addition ratio was 0.3 times the mole. -4.
  • the solid conjugated rubber x-4 was obtained in the same manner as the solid conjugated rubber x-1.
  • Polymers with 3 or more branches (Polymer (A)) shu (%) 37 28-25
  • the rubber component in the rubber composition X is conjugated rubber x-1 + conjugated rubber x-3 + SBR
  • the rubber component in the rubber composition XII is composed of a conjugated rubber composition XI (a conjugated rubber) x-1 + conjugated rubber x-2) + conjugated rubber x-3 + SBR
  • the rubber component in the rubber composition xm is composed of a conjugated diene rubber x-4 + a cis'polybutadiene rubber + SBR
  • Comparative Example 1 Conjugated rubber set obtained by adding a large amount of polyorganosiloxane A The product III is inferior in the processability of an uncrosslinked rubber composition in which the amount of a polymer having three or more branches is extremely small, and the crosslinked rubber has low heat build-up, wet grip properties, abrasion resistance and tensile strength. Comparative Example 2: When the functional group-containing compound (EAB) was not reacted and tetramethoxysilane was reacted in place of the polyorganosiloxane, the uncrosslinked rubber composition contained a considerable amount of a polymer having three or more branches. The processability of the product and the low heat build-up, wet gripping properties and abrasion resistance of the crosslinked rubber are extremely poor.
  • EAB functional group-containing compound
  • Comparative Example 3 When methanol was used in place of the functional group-containing compound (EAB), a large amount of a polymer having three or more branches was formed, but the processability of the uncrosslinked rubber composition was good. Inferior in heat generation, wet grip, abrasion resistance and tensile strength of rubber.
  • EAB functional group-containing compound
  • the conjugated rubber compositions of Examples 1 and 2 which were produced within the range specified in the present invention and contained a large amount of a polymer having three or more branches were the uncrosslinked rubber compositions It has excellent workability, and the crosslinked rubber has excellent low heat build-up, wet grip properties and abrasion resistance.
  • the conjugated diene rubber composition of the present invention exhibits excellent processability when silica is compounded, and the crosslinked rubber is excellent in low heat build-up, wet grip properties and abrasion resistance. Therefore, the rubber cross-linked product can be used for various applications that take advantage of its properties, such as treads, carcass, sidewalls, inner liners, bead portions, and other tire components, or hoses, window frames, belts, shoe soles, and tires. It can be used for rubber products such as vibration rubber and automotive parts, and as resin-reinforced rubber such as impact-resistant polystyrene and ABS resin. It is particularly suitable as a tread material for fuel-efficient tires.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Silicon Polymers (AREA)

Abstract

 3以上の共役ジエン系重合体鎖が、アルキレングリコールの繰返し単位を含有する基を有する特定のポリオルガノシロキサンを介して結合された構造を有している共役ジエン系ゴム(A)5~95重量%、および、分子内に>C=O基、>C=S基、アミノ基、イミノ基、エポキシ基、ピリジル基、アルコキシル基、ハロゲンからなる群より選ばれる官能基を有する化合物と反応した共役ジエン系ゴム(B)95~5重量%を含む共役ジエン系ゴム組成物。このゴム組成物にシリカを配合した未架橋ゴム組成物は加工性に優れ、さらに、その架橋物は低発熱性、ウェットグリップ性および耐摩耗性に優れる。

Description

明 細 書
共役ジェン系ゴム組成物、その製造方法およびゴム架橋物
技術分野
[0001] 本発明は、共役ジェン系ゴム組成物、その製造方法およびゴム架橋物に関する。
より詳しくは、シリカを配合したときに加工性に優れた未架橋ゴム組成物が得られ、さ らに、低発熱性、ウエットグリップ性および耐摩耗性に優れるゴム架橋物を与え得る共 役ジェン系ゴム組成物、およびその製造方法、ならびにそれを架橋してなるゴム架橋 物に関する。
背景技術
[0002] 近年、環境問題や資源問題から、自動車用のタイヤにも低燃費性が強く求められ ており、さらに安全性の面からはすぐれたウエットグリップ性、耐久性の面からはすぐ れた耐摩耗性が求められている。
シリカを配合したゴム組成物は、通常使用されるカーボンブラックを配合したゴム組成 物に比べ低発熱性に優れるので、これを用いることにより低燃費のタイヤが製造でき る。
[0003] しかし、通常使用されるゴムにシリカを配合しても、シリカとの親和性に劣るため、得ら れる未架橋ゴム組成物は加工性が劣り、低発熱性ゃ耐摩耗性が不十分となるので、 シランカップリング剤を併用することが多い。し力、しながら、シランカップリング剤を併 用しても、カーボンブラック配合ゴム組成物に比べ、耐摩耗性が不十分である場合が あり、さらに、シランカップリング剤は高価であり、配合量が多いとコストが高くなる問題 力 Sある。
そこで、ゴム重合体を変性して、シリカとの親和性を向上させる検討がされている。
[0004] 例えば、ジェン系ゴム重合体を有機リチウム化合物でリチウム化した後、ケィ素含有 化合物を反応させて得られたゴム状重合体のシリカ配合ゴム組成物が提案され (特 許文献 1参照)、また、シラノール基を含有するジェン系重合体と表面にシリカが固定 されている特殊なカーボンブラックとからなるゴム組成物が提案されている(特許文献 上記のようなゴム組成物は、低発熱性は改善されるものの、未架橋のシリカ配合ゴム 組成物は加工性に劣り、また、その架橋物はウエットグリップ性と耐摩耗性のバランス に劣る場合があった。
[0005] さらに、アルカリ金属重合開始剤を用レ、、重合して得られるアルカリ金属活性末端 を有するジェン系重合体に特定の官能基を有するポリオルガノシロキサンを、アル力 リ金属重合開始剤 1モルに対して、該ポリオルガノシロキサンが 0. 1— 2モルの量で、 反応させて得られるポリオノレガノシロキサン変性ジェン系重合体のシリカ配合ゴム組 成物が提案されてレ、る(特許文献 3参照)。
さらに、アルカリ金属重合開始剤を用い、重合して得られるアルカリ金属活性末端を 有するジェン系重合体に多面体構造を有するシルセスキォキサンィ匕合物を、アル力 リ金属重合開始剤 1モルに対して、該シノレセスキォキサン化合物が 0. 1- 1. 5モル の量で反応させて得られるシルセスキォキサン変性ジェン系重合体を含有するゴム 組成物が提案されてレ、る(特許文献 4参照)。
[0006] し力しながら、上記のようなポリオルガノシロキサン変性ジェン系重合体およびシル セスキォキサン変性ジェン系重合体は、低発熱性とウエットグリップ性のバランスに優 れているものの、未架橋のシリカ配合ゴム組成物は加工性に劣り、また、その架橋物 は耐摩耗性に劣る場合があった。
さらに、帯電防止性、耐摩耗性、タイヤとしての操縦安定性などを付与するために、 シリカに加えてカーボンブラックを充填して用いる場合、低発熱性とウエットグリップ性 のバランスが期待するほど向上しないという問題があった。
[0007] 特許文献 1 :特開平 10— 7702号公報
特許文献 2:特開平 10 - 316800号公報
特許文献 3:特開平 9 - 110904号公報
特許文献 4 :特開 2002— 80534号公報
発明の開示
発明が解決しょうとする課題
[0008] 上記のような背景技術に鑑み、本発明の目的は、シリカを配合したときに加工性に 優れた未架橋ゴム組成物が得られ、低発熱性、ウエットグリップ性、耐摩耗性および 引張強度に優れる架橋物を与え得る共役ジェン系ゴム組成物、およびその製造方 法、ならびにゴム架橋物を提供することにある。
課題を解決するための手段
[0009] 本発明者らは、上記目的を達成するために鋭意努力した結果、少なくとも 3以上の 共役ジェン系重合体鎖がポリオノレガノシロキサンを介して結合された構造を有してい る分岐状共役ジェン系ゴムと、分子内に特定の官能基を有する化合物を反応せしめ た共役ジェン系ゴムとを特定量含む共役ジェン系ゴム組成物にシリカを配合すると、 加工性に優れた未架橋ゴム組成物が得られ、その架橋物は低発熱性、ウエットグリツ プ性、耐摩耗性および引張強度に優れることを見出し、この知見に基づき、本発明を 完成するに至った。
[0010] 力べして、本発明によれば、少なくとも 3以上の共役ジェン系重合体鎖が下記一般 式(1)、(2)、(3)で表されるポリオルガノシロキサンの中から選ばれる少なくとも一種 を介して結合された構造を有している重量平均分子量が 1 , 000— 3, 000, 000の 共役ジェン系ゴム(A) 5— 95重量%、および、分子内に >C = 0基、 > C = S基、アミ ノ基、イミノ基、エポキシ基、ピリジノレ基、アルコキシル基、ハロゲンからなる群より選ば れる少なくとも一種の官能基を有する化合物と反応した重量平均分子量が 1, 000— 3, 000, 000の共役ジェン系ゴム(B) 95— 5重量%を含んでなる共役ジェン系ゴム 組成物が提供される。
一般式 (1) :
[0011] [化 1]
-a i— O- -S i—ひ -S〖一 f¾ ¾
m
X X ' X
(一般式(1)において、 R1— R8は、炭素数 1一 6のアルキル基または炭素数 6— 12の ァリール基であり、これらは互いに同一であっても相違してもよい。 X1および X4は、 (i) その一部が活性共役ジェン系重合体鎖末端の活性金属と反応する官能基であって 、残部が該官能基から導かれる基または単結合である力 \または、 (ii)炭素数 1一 6 のアルキル基もしくは炭素数 6— 12のァリール基であり、 X1および X4は互いに同一 であっても相違してもよい。 X2は、その一部が活性共役ジェン系重合体鎖末端の活 性金属と反応する官能基であって、残部が、該官能基から導かれる基もしくは単結合 である。 X3は、 2 20のアルキレングリコールの繰返し単位を含有する基であり、 X3 の一部は 2— 20のアルキレングリコールの繰返し単位を含有する基から導かれる基 であってもよい。 mは 3— 200の整数、 nは 0— 200の整数、 kは 0 200の整数である 。 )
一般式 (2) :
[化 2]
S
Figure imgf000005_0001
X S i一 O— S X
R o R s
(一般式(2)において、 R9— R16は、炭素数 1一 6のアルキル基または炭素数 6— 12の ァリール基であり、これらは互いに同一であっても相違してもよい。 X5— X8は、その 一部が活性共役ジェン系重合体鎖末端の活性金属と反応する官能基であって、残 部が該官能基から導かれる基または単結合である。 )
一般式 (3) : [0015] [化 3]
Figure imgf000006_0001
[0016] (一般式(3)において、 R1 Riyは、炭素数 1一 6のアルキル基または炭素数 6— 12 のァリール基であり、これらは互いに同一であっても相違してもよレ、。 X9— X11は、そ の一部が活性共役ジェン系重合体鎖末端の活性金属と反応する官能基であって、 残部が該官能基から導かれる基または単結合である。 sは 1一 18の整数である。 ) (以下、 一般式(1)、(2)および(3)において、 X1— X11が、上記のように定義される ポリオルガノシロキサンを「反応後のポリオルガノシロキサン」とレ、うことがある)
[0017] さらに、本発明によれば、上記共役ジェン系ゴム組成物の製造方法、すなわち、下 記 (I)および (II)の製造方法が提供される。
製造方法 (I): 不活性溶媒中で、共役ジェン単量体または共役ジェン単量体および 芳香族ビニル単量体を有機活性金属を用いて重合して得られた、重合体鎖末端に 活性金属を有する活性共役ジェン系重合体鎖に、重合に使用した有機活性金属 1 モル当たり、 0. 001モノレを超え、 0. 1モル未満の量の、該活性共役ジェン系重合体 鎖末端の活性金属と反応しうる官能基を有する前記一般式(1)、(2)、(3)で表され るポリオノレガノシロキサンの中から選ばれる少なくとも一種を反応させた重量平均分 子量が 1, 000— 3, 000, 000の共役ジェン系ゴム(A)の重合体溶液と、分子内に >C = 0基、 > C = S基、アミノ基、イミノ基、エポキシ基、ピリジル基、アルコキシノレ基 、ハロゲンからなる群より選ばれる少なくとも一種の官能基を有する化合物と反応した 重量平均分子量が 1, 000— 3, 000, 000の共役ジェン系ゴム(B)の重合体溶液と を混合し、次いで、混合液から溶媒を分離してゴムを回収することを特徴とする上記 共役ジェン系ゴム組成物の製造方法。
[0018] ただし、一般式(1)において、 X1および X4は、活性共役ジェン系重合体鎖末端の活 性金属と反応する官能基である力 \または、 炭素数 1一 6のアルキル基もしくは炭素 数 6— 12のァリール基であり、 X2は、活性共役ジェン系重合体鎖末端の活性金属と 反応する官能基であり、 X3は、 2— 20のアルキレングリコールの繰返し単位を含有す る基である。一般式 (2)において、 X5— X8は、活性共役ジェン系重合体鎖末端の活 性金属と反応する官能基である。一般式 (3)において、 X9— X11は、活性共役ジェン 系重合体鎖末端の活性金属と反応する官能基である。 (以下、 一般式(1)、(2)およ び(3)において、 X1— X11が、このように定義されるポリオルガノシロキサンを「反応前 のポリオルガノシロキサン」とレ、うことがある)
[0019] 製造方法 (Π): 不活性溶媒中で、共役ジェン単量体または共役ジェン単量体およ び芳香族ビュル単量体を有機活性金属を用いて重合して得られた、重合体鎖末端 に活性金属を有する活性共役ジェン系重合体鎖の 5— 95%に、分子内に〉 C = 0 基、 >C = S基、アミノ基、イミノ基、エポキシ基、ピリジル基、アルコキシノレ基、ハロゲ ンからなる群より選ばれる少なくとも一種の官能基を有する化合物を反応せしめ、次 いで、残部の活性共役ジェン系重合体鎖の 10— 100重量%に、残部の有機活性金 属 1モル当たり、 0. 001モノレを超え、 0. 1モル未満の量の、該活性共役ジェン系重 合体鎖末端の活性金属と反応しうる官能基を有する前記一般式(1)、(2)、(3)で表 されるポリオルガノシロキサン(反応前のポリオルガノシロキサン)の中力 選ばれる少 なくとも一種を反応させることを特徴とする上記共役ジェン系ゴム組成物の製造方法
[0020] さらに、本発明によれば、前記共役ジェン系ゴム組成物を架橋してなるゴム架橋物 が提供される。
発明の効果
[0021] 少なくとも 3以上の共役ジェン系重合体鎖がポリオノレガノシロキサンを介して結合さ れた構造を有している分岐状共役ジェン系ゴムと、分子内に特定の官能基を導入せ しめた共役ジェン系ゴムとを含む本発明の共役ジェン系ゴム組成物は、シリカを配合 したときに優れた力卩ェ性を示し、そのゴム架橋物は低発熱性、ウエットグリップ性、耐 摩耗性および弓 [張強度に優れる。
発明を実施するための最良の形態
[0022] 以下、本発明について詳細に説明する。
共役ジェン系ゴム (A)
本発明の共役ジェン系ゴム組成物に含まれる共役ジェン系ゴム (A)は、少なくとも 3 以上の共役ジェン系重合体鎖が前記一般式ひ)、(2)、(3)で表されるポリオルガノ シロキサン(反応後のポリオルガノシロキサン)の中から選ばれる少なくとも一種を介し て結合された構造を有している重量平均分子量が 1, 000— 3, 000, 000の共役ジ ェン系ゴムである。
[0023] 共役ジェン系ゴムを構成する重合体鎖は、共役ジェン単量体の単独重合体鎖また は共役ジェン単量体と芳香族ビュル単量体との共重合体鎖であることが好ましぐ共 役ジェン単量体単位 50— 100重量%および芳香族ビニル単量体単位 50— 0重量 %からなるものがより好ましい。
強度特性に優れる点で、前記の共役ジェン系重合体鎖は共役ジェン単量体と芳 香族ビュル単量体との共重合体鎖であることが特に好ましぐその組成は、共役ジェ ン単量体単位 50— 95重量%、好ましくは 55— 90重量%、より好ましくは 60 85重 量%および芳香族ビュル単量体単位 50— 5重量%、好ましくは 45— 10重量%、より 好ましくは 40 15重量%の範囲である。
[0024] 共役ジェン単量体単位と芳香族ビニル単量体単位の結合様式は、例えば、ブロッ ク状、テーパー状、ランダム状など種々の結合様式とすることができる。
結合様式がテーパー状、ランダム状の共役ジェン系ゴムを用いる場合、共役ジェン 単量体と共重合した芳香族ビニル単量体の連鎖分布については特に制限はされな いが、芳香族ビニル単量体の全連鎖中における芳香族ビニル単量体の単連鎖が、 好ましくは 40— 100重量%、より好ましくは 60— 90重量%であると、低発熱性に優 れる架橋物が得られる。また、芳香族ビュル単量体単位が 8個以上連なっている長 連鎖の含有量は、好ましくは 10重量%以下、より好ましくは 3重量%以下である。
[0025] 共役ジェン単量体単位中のビュル結合含有量は、特に限定されず、通常、 5— 95 量%、好ましくは 20— 80重量%、より好ましくは 30— 70重量%、特に好ましくは 35 一 65重量%である。 ビュル結合含有量を比較的高くすると、より低発熱性とウエット グリップ性のバランスに優れる架橋物が得られる。また、ビニル結合量を比較的中位 にすると、ウエットグリップ性と耐摩耗性のバランスに優れる架橋物が得られる。
[0026] 共役ジェン系ゴム (A)のガラス転移温度は、特に限定されず、通常、—120 20°C 、好ましくは— 100—— 10°C、より好ましくは、 -90一— 20。Cである。ガラス転移温度を 比較的高くすると、低発熱性、引張強度及びウエットグリップ性に優れる架橋物が得 られる。また、ガラス転移温度を比較的低くすると、低発熱性、引張強度及び耐摩耗 性に優れる架橋物が得られる。
[0027] 共役ジェン単量体としては、例えば、 1, 3—ブタジエン、 2—メチルー 1, 3—ブタジェ ン、 2, 3—ジメチノレー 1, 3—ブタジエン、 1, 3_ペンタジェンなどが挙げられる。これら の中でも、 1, 3_ブタジエンおよび 2—メチルー 1, 3_ブタジエンが好ましぐ 1, 3—ブタ ジェンが特に好ましい。これらは、それぞれ単独で、または 2種以上を組み合わせて 用いることができる。
芳香族ビエル単量体としては、例えば、スチレン、 α—メチルスチレン、 2—メチルスチ レン、 3—メチルスチレン、 4ーメチルスチレン、 2, 4—ジイソプロピルスチレン、 2, 4—ジ メチルスチレン、 4_tーブチルスチレン、 5— tーブチルー 2—メチルスチレン、 4_t—ブトキ シスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレンなどが挙げ られる。これらの中でも、スチレンが好ましい。これらは、それぞれ単独で、または 2種 以上を組み合わせて用いることができる。
[0028] 前記の共役ジェン系重合体鎖は、本発明の効果を本質的に損なわない範囲で、 共役ジェン単量体単位および芳香族ビニル単量体単位以外の、その他の単量体単 位を含んでいてもよい。
その他の単量体としては、例えば、イソプロピル(メタ)アタリレート、 n-ブチル(メタ) アタリレート、ジメチルァミノプロピル (メタ)アタリレートなどのエチレン性不飽和カルボ ン酸エステル単量体;エチレン、プロピレン、イソブチレン、ビュルシクロへキサンなど のォレフイン単量体; 1, 4_ペンタジェン、 1, 4_へキサジェンなどの非共役ジェン単 量体;などが挙げられる。これらの単量体単位量は、 10重量%以下が好ましぐ 5重 量%以下がより好ましい。
[0029] 共役ジェン系ゴム (A)は、少なくとも 3以上の上記共役ジェン系重合体鎖が前記一 般式(1)、(2)、(3)で表される反応後のポリオノレガノシロキサンの中から選ばれる少 なくとも一種を介して結合された構造を有している。
一般式(1)において、 R1— R8は、炭素数 1一 6のアルキル基または炭素数 6— 12 のァリール基であり、これらは互いに同一であっても相違してもよレ、。 X1および X4は 、 (i)その一部が活性共役ジェン系重合体鎖末端の活性金属と反応する官能基であ つて、残部が該官能基から導かれる基または単結合であるカ または、 (ii)炭素数 1 一 6のアルキル基もしくは炭素数 6 12のァリール基であり、 X1および X4は同一であ つても相違してもよい。 X2は、その一部が活性共役ジェン系重合体鎖末端の活性金 属と反応する官能基であって、残部が、該官能基から導かれる基または単結合であ る。 X3は、 2— 20のアルキレングリコールの繰返し単位を含有する基であり、 X3の一 部は 2— 20のアルキレングリコールの繰返し単位を含有する基から導かれる基であ つてもよレヽ。 miま 3— 200の整数、 ηίま 0— 200の整数、 kiま 0— 200の整数である。
[0030] X1および X4を構成する炭素数 1一 6のアルキル基としては、例えば、メチ ル基、ェチル基、 n—プロピル基、イソプロピル基、ブチル基、ペンチル基、へキシル 基、シクロへキシノレ基などが挙げられる。炭素数 6— 12のァリール基としては、例えば 、フエニル基、メチルフエニル基などが挙げられる。これらのアルキル基およびァリー ル基の中では、メチル基が特に好ましい。
x x2および X4を構成する活性共役ジェン系重合体鎖末端の活性金属と反応す る官能基としては、炭素数 1一 5のアルコキシノレ基、 2_ピロリドニル基を含有する炭化 水素基、およびエポキシ基を含有する炭素数 4一 12の基が好ましレ、。
X1、 X2および X4において、「該官能基 (活性共役ジェン系重合体鎖末端の活性金 属と反応する官能基)から導かれる基」とは、重合体鎖末端に活性金属を有する活性 共役ジェン系重合体鎖に、該官能基を有するポリオルガノシロキサンを反応させた際 に、それぞれ、重合体鎖末端に活性金属を有する共役ジェン系重合体鎖とポリオノレ ガノシロキサン中の該官能基とが反応して、共役ジェン系重合体鎖とポリオルガノシ ロキサンとの結合が生成した後の、これらの官能基の残基をいう。 [0031] 炭素数 1一 5のアルコキシノレ基としては、例えば、メトキシ基、エトキシ基、プロポキ シ基、イソプロポキシ基、ブトキシ基などが挙げられる。なかでも、メトキシ基が好まし レ、。
2_ピロリドニル基を有する炭化水素基としては、下記一般式 (4)で表される基が好 ましく挙げられる。
一般式 (4) :
[0032] [化 4]
Figure imgf000011_0001
\ / 式中、 jは 2— 10の整数である。特に j力 ¾であるものが好ましい。
[0033] エポキシ基を有する炭素数 4一 12の基は、下記一般式(5)で表される。
一般式 (5) :
Z Y E
式中、 Zは炭素数 1一 10のアルキレン基またはアルキルァリーレン基であり、 Yはメチ レン基、硫黄原子または酸素原子であり、 Eはエポキシ基を有する炭素数 2— 10の 炭化水素基である。これらの中でも、 Yが酸素原子であるものが好ましぐ Yが酸素原 子、かつ、 Eがグリシジル基であるものがより好ましぐ Zが炭素数 3のアルキレン基、 Y が酸素原子、かつ、 Eがグリシジノレ基であるものが特に好ましい。
[0034] 一般式(1)において、 X1および/または X4の一部が炭素数 1一 5のアルコキシル基 、 2—ピロリドニル基を含有する炭化水素基、およびエポキシ基を含有する炭素数 4一 12の基から選ばれる基であるときは、その残部は、該官能基から導かれる基または 単結合である。 X2は、その一部が炭素数 1一 5のアルコキシル基、 2_ピロリドニル基 を含有する炭化水素基、およびエポキシ基を含有する炭素数 4一 12の基から選ばれ る基であって、残部は、該官能基から導かれる基または単結合である。
[0035] 一般式(1)で表されるポリオルガノシロキサンの反応前のものにおいて、 X1、 X2およ び X4の少なくとも一部が炭素数 1一 5のアルコキシル基の場合、活性共役ジェン系重 合体鎖にポリオノレガノシロキサンを反応させると、珪素原子と該アルコキシル基の酸 素原子との結合が開裂して、その珪素原子に共役ジェン系重合体鎖が直接結合し て単結合を形成する。 (すなわち、反応後の一般式(1)で表されるポリオノレガノシロキ サンにおいて、 X1、 X2および X4の一部は単結合である)
[0036] 一般式(1)で表されるポリオルガノシロキサンの反応前のものにおいて、 X1、 X2およ び X4の少なくとも一部が 2—ピロリドニル基を含有する炭化水素基の場合、活性共役 ジェン系重合体鎖にポリオノレガノシロキサンを反応させると、 2_ピロリドニル基を構成 するカルボニル基の炭素一酸素結合が開裂して、その炭素原子に共役ジェン系重合 体鎖が直接結合した構造を形成する。
さらに、 X1、 X2および X4の少なくとも一部がエポキシ基を含有する炭素数 4一 12の 基の場合、活性共役ジェン系重合体鎖にポリオルガノシロキサンを反応させると、ェ ポキシ環を構成する酸素一炭素結合が開裂して、その炭素原子に共役ジェン系重合 体鎖が結合した構造を形成する。
[0037] 一般式(1)で表されるポリオルガノシロキサンにおいて、 X1および X4としては、上記 の中でも、エポキシ基を含有する炭素数 4一 12の基およびこれ力 誘導された基ま たは炭素数 1一 6のアルキル基が好ましぐまた、 X2としては、上記の中でも、ェポキ シ基を含有する炭素数 4一 12の基およびこれらから誘導された基が好ましい。
一般式(1)で表されるポリオルガノシロキサンにおいて、 X3、すなわち 2— 20のアル キレングリコールの繰返し単位を含有する基としては、下記一般式 (6)で表される基 が好ましい。
一般式 (6) :
[0038] [化 5]
Figure imgf000012_0001
[0039] 式中、 tは 2— 20の整数であり、 Pは炭素数 2— 10のアルキレン基またはアルキルァ リーレン基であり、 Rは水素原子またはメチル基であり、 Qは炭素数 1一 10のアルコキ シル基またはァリーロキシ基である。 Qの一部は単結合であってもよレ、。これらの中で も tが 2— 8の範囲であり、 Pが炭素数 3のアルキレン基であり、 Rが水素原子であり、 かつ Qがメトキシ基であるものが好ましい。
また、一般式(1)で表されるポリオルガノシロキサンにおいて、 mは 3— 200、好まし くは 20 150、より好ましくは 30— 120の整数である。この数が少ないと、共役ジェン 系ゴムにシリカを配合した未架橋ゴム配合物の加工性が低下したり、耐摩耗性と低発 熱性とのバランスに劣ったりする。この数が多いと、該当するポリオルガノシロキサン の製造が困難になると共に、ポリオルガノシロキサンの粘度が高くなりすぎて、取り扱 い難くなる。
[0040] nは 0— 200の整数、好ましくは 0 150の整数、より好ましくは 0 120の整数であ る。 kfま 0 200の整数、好ましく fま 0— 150の整数、より好ましく fま 0— 120の整数で ある。
m、 nおよび kの合計数は、 400以下であることが好ましぐ 300以下であることがより 好ましぐ 250以下であることが特に好ましい。この合計数が多すぎると、ポリオルガノ シロキサンの製造が困難になると共に、ポリオルガノシロキサンの粘度が高くなりすぎ て、取り扱い困難となる。
[0041] 前記一般式(2)で表される反応後のポリオルガノシロキサンにぉレ、て、 R9— R16は、炭 素数 1一 6のアルキル基または炭素数 6— 12のァリール基であり、これらは互いに同 一であっても相違してもよい。 X5— X8は、その一部が活性共役ジェン系重合体鎖末 端の活性金属と反応する官能基であって、残部が該官能基から導かれる基または単 結合である。
[0042] 前記一般式(3)で表される反応後のポリオルガノシロキサンにぉレ、て、 R17— R19は、 炭素数 1一 6のアルキル基または炭素数 6— 12のァリール基であり、これらは互いに 同一であっても相違してもよい。 X9— X11は、その一部が活性共役ジェン系重合体 鎖末端の活性金属と反応する官能基であって、残部が該官能基から導かれる基また は単結合である。 sは 1一 18の整数である。
一般式(2)および一般式(3)で表される反応後のポリオルガノシロキサンにおいて 、炭素数 1一 6のアルキル基、炭素数 6— 12のァリール基、ならびに、活性共役ジェ ン系重合体鎖末端の活性金属と反応する官能基および該官能基から導かれる基は 、一般式(1)で表される反応後のポリオルガノシロキサンについて説明したものと同 様である。
[0043] 共役ジェン系ゴム (A)を構成する分岐状共役ジェン系重合体としては、少なくとも 4 以上の共役ジェン系重合体鎖がポリオルガノシロキサンを介して結合された構造を 有しているものが好ましい。少なくとも 4以上の共役ジェン系重合体鎖がポリオルガノ シロキサンを介して結合された構造を有する共役ジェン系ゴムが、共役ジェン系ゴム (A)の 2 90重量%、特に 5 80重量%を占めるものが好ましい。
分岐状共役ジェン系重合体として、少なくとも 4以上の共役ジェン系重合体鎖がポ リオルガノシロキサンを介して結合された構造を有する重合体を含有する共役ジェン 系ゴムは、組成物の製造時における凝固性、乾燥性を良好にし、さらには、シリカを 配合したときに、より加工性に優れる未架橋ゴム組成物を与え、低発熱性、ウエットグ リップ性および耐摩耗性のバランスがより向上したゴム架橋物を与える。
[0044] 共役ジェン系ゴム(A)の重量平均分子量は、 1,000— 3, 000, 000、好ましくは 10 , 000— 2, 000, 000、より好まし <は 300, 000—1, 200, 000の範囲で適宜選択 される。分子量が高すぎると、シリカの配合が困難となったり、シリカを配合した未架 橋ゴム組成物の加工性が低下したりする傾向がある。逆に、分子量が低すぎると低 発熱性が低下したり、コスト増を招いたりする傾向がある。
特に、共役ジェン系ゴム (A)を固形ゴムとしてゴム組成物中に含有させる場合、共 役ジェン系ゴム(A)の重量平均分子量は、通常、 100, 000— 3, 000, 000、好まし <は 150, 000— 2, 000, 000、より好まし <は 200, 000 1, 500, 000の範囲で選 ばれる。また、共役ジェン系ゴム (A)を液状ゴムとして他の固形ゴムとともにゴム組成 物中に含有させて、組成物の混練粘度、充填剤の分散性およびグリップ性を改良す ることも可能であり、その場合、共役ジェン系ゴム (A)の重量平均分子量は、通常、 3 , 000— 100, 000、好ましく ίま 10, 000— 80, 000、より好ましく ίま 30, 000— 70, 0 00の範囲で選ばれる。
[0045] 本発明の共役ジェン系ゴム組成物中に含まれる共役ジェン系ゴム (Α)の量は、共 役ジェン系ゴム組成物全量の 5— 95重量%、好ましくは 7— 80重量%、より好ましく は 10— 75重量%である。共役ジェン系ゴム (A)の含有量が少ないと、これにシリカを 配合して得られる未架橋ゴム組成物は加工性に劣り、また得られるゴム架橋物の低 発熱性が十分でなぐその他の物性にも劣る。また、共役ジェン系重合体 (A)を多量 に含む共役ジェン系ゴム組成物は、通常、製造するのが困難である。
[0046] 共役ジェン系ゴム(B)
本発明の共役ジェン系ゴム組成物に含まれる共役ジェン系ゴム(B)は、分子内に >C =〇基、 > C = S基、アミノ基、イミノ基、エポキシ基、ピリジノレ基、アルコキシル基 、ハロゲンからなる群より選ばれる少なくとも一種の官能基を有する化合物と反応した 重量平均分子量が 1, 000 3, 000, 000の共役ジェン系ゴムである。共役ジェン 系ゴム (B)には、 2つの共役ジェン系重合体鎖が上記官能基を介して結合した構造 を有する共役ジェン系ゴム、および共役ジェン系重合体鎖末端に上記官能基が結 合した構造を有する共役ジェン系ゴムの少なくとも一種が含まれる。
[0047] 分子内に > C = 0基を有する化合物の具体例としては、 N—メチルー 2—ピロリドン、 N—ビニノレー 2—ピロリドン、 N—フエニノレー 2—ピロリドン、 N—メチノレー ε一力プロラタタム などの Ν—置換環状アミド類; 1,3—ジメチルエチレン尿素、 1,3—ジェチルー 2—イミダ ゾリジノンなどの Ν—置換環状尿素類; 4,4 '—ビス(ジメチルァミノ)ベンゾフエノン、 4,4 ,—ビス(ジェチルァミノ)ベンゾフエノンなどの Ν—置換アミノケトン類;およびジフエ二 ルメタンジイソシァネート、 2,4_トリレンジイソシァネートなどの芳香族イソシァネート 類などが挙げられる。
これらの中でも、 Ν—置換環状アミド類、 Ν—置換環状尿素類および Ν—置換アミノケ トン類が好ましレ、。具体的には、 Ν—ビュル _2_ピロリドン、 Ν—フヱニルー 2_ピロリドン 、 Ν—メチノレー ε—力プロラタタム、 1,3—ジェチルー 2—イミダゾリジノン、 4,4' _ビス(ジ ェチルァミノ)ベンゾフエノンが特に好ましレ、。
[0048] >C = S基を有する化合物の具体例としては、 N, N, N', N',ーテトラメチルチオ尿素 などが挙げられる。
アミノ基を有する化合物の具体例としては、 N,N—ジメチルァミノプロピルメタクリルァ ミドなどの N,N_ジ置換アミノアルキルメタクリルアミド化合物;および 4_N,N_ジメチ ルァミノべンズアルデヒドなどの N—置換ァミノアルデヒド類が挙げられる。
イミノ基を有する化合物の具体例としては、ジシクロへキシルカルポジイミドなどの N_ 置換カルボジイミド類;および N—ェチルェチリデンィミン、 N—メチルベンジリデンイミ ンなどのシッフ塩基類などが挙げられる。
[0049] エポキシ基を含む化合物の具体例としては、プロピレンオキサイド、テトラグリシジル —1,3—ビスアミノメチルシクロへキサン、エポキシ化ポリブタジエンなどが挙げられる。 ピリジル基を有する化合物の具体例としては、 4一ビュルピリジンなどのピリジル基を 有するビュルィ匕合物が挙げられる。
アルコキシル基を含む化合物の具体例としては、ビス(トリエトキシシリルプロピル)テ トラサルファイド、ビス(トリブトキシシリルプロピル)テトラサルファイド、 γ—グリシドキシ 挙げられる。
ハロゲンを含む化合物の具体例としては、四塩化錫、四塩化ケィ素、トリフエニルモノ クロル錫、トリフエノキシクロロシラン、メチルトリフエノキシシランおよびジフエノキシジ クロロシランが挙げられる。
[0050] 共役ジェン系ゴム(Β)を構成する共役ジェン系重合体鎖は、前述の共役ジェン系 ゴム (Α)を構成する共役ジェン系重合体鎖と同様に、共役ジェン単量体の単独重合 体鎖または共役ジェン単量体と芳香族ビュル単量体との共重合体鎖であることが好 ましぐ共役ジェン単量体単位 50— 100重量%および芳香族ビュル単量体単位 50 一 0重量%からなるものであることがより好ましい。さらに、所望により、共役ジェン系 重合体鎖は、共役ジェン単量体単位および芳香族ビュル単量体単位以外の、その 他の単量体単位を含んでいてもよレ、。共役ジェン単量体、芳香族ビュル単量体およ びその他の単量体の種類、量比などは、前述の共役ジェン系ゴム (Α)を構成する共 役ジェン系重合体鎖の場合と同様に選択することができる。
[0051] 共役ジェン系ゴム(Β)の重量平均分子量は、前述の共役ジェン系ゴム (Α)と同様 に、 1,000— 3, 000, 000、好ましく ίま 10, 000— 2, 000, 000、より好ましく fま 300 , 000—1, 200, 000の範囲で適宜選択される。分子量が高すぎると、シリカの配合 が困難となったり、シリカを配合した未架橋ゴム組成物の加工性が低下したりする傾 向がある。逆に、分子量が低すぎると低発熱性が低下したり、コスト増を招いたりする ί頃向がある。
共役ジェン系ゴム(Β)を固形ゴムとしてゴム組成物中に含有させる場合、共役ジェ ン系ゴム(Β)の重量平均分子量 fま、通常、 100, 000— 3, 000, 000、好ましく ίま 15 0, 000 2, 000, 000、より好まし <は 200, 000 1, 500, 000の範囲で選ばれる 。また、共役ジェン系ゴム(Β)を液状ゴムとして他の固形ゴムとともにゴム組成物中に 含有させて、組成物の混練粘度、充填剤の分散性およびグリップ性を改良することも 可能であり、その場合、共役ジェン系ゴム(Β)の重量平均分子量は、通常、 3, 000 一 100, 000、好ましく ίま 10, 000 80, 000、より好ましく ίま 30, 000 70, 000の 範囲で選ばれる。
[0052] 共役ジェン系ゴム(Β)の含有量は、共役ジェン系ゴム組成物全量の 5— 95重量0 /0 、好ましくは 7— 80重量0んより好ましくは 10— 60重量%である。共役ジェン系ゴム( Β)の含有量が少ないと、これにシリカを配合して得られる未架橋ゴム組成物は加工 性に劣り、また得られるゴム架橋物の低発熱性が十分でなぐその他の物性にも劣る 。逆に、共役ジェン系ゴム(Β)の含有量が多いと得られる架橋物の低発熱性ゃ耐摩 耗性等が劣る。
[0053] 共役ジェン系ゴム (Α)および共役ジェン系ゴム (Β)の製造方法、ならびに共役ジェ ン系ゴム組成物の製造方法
共役ジェン系ゴム (Α)は、不活性溶媒中で、共役ジェン単量体または共役ジェン 単量体および芳香族ビュル単量体を有機活性金属を用いて重合して得られた、重 合体鎖末端に活性金属を有する活性共役ジェン系重合体鎖に、該活性共役ジェン 系重合体鎖末端の活性金属と反応しうる官能基を有する前記一般式(1)、(2)、 (3) で表されるポリオルガノシロキサン(反応前のポリオルガノシロキサン)の中から選ば れる少なくとも一種を反応させることにより得られる。
共役ジェン系ゴム(Β)は、不活性溶媒中で、共役ジェン単量体または共役ジェン 単量体および芳香族ビニル単量体を有機活性金属を用いて重合して得られた、重 合体鎖末端に活性金属を有する活性共役ジェン系重合体鎖に、分子内に > C =〇 基、 >C = S基、アミノ基、イミノ基、エポキシ基、ピリジノレ基、アルコキシル基、ハロゲ ンからなる群より選ばれる少なくとも一種の官能基を有する化合物を反応せしめること により得られる。
[0054] 本発明の共役ジェン系ゴム組成物は、それぞれ、上記のように別個に製造した共 役ジェン系ゴム (A)と共役ジェン系ゴム (B)の両者を混合することによって調製するこ とができる(共役ジェン系ゴム組成物の第 1の製法)。
別法として、本発明の共役ジェン系ゴム組成物は、重合体鎖末端に活性金属を有 する活性共役ジェン系重合体鎖に、 0)該重合体鎖末端の活性金属と反応しうる官 能基を有する前記一般式(1)、(2)、(3)で表される反応前のポリオノレガノシロキサン 中から選ばれる少なくとも一種、または (ii)分子内に >C =〇基、 > C = S基、アミノ基 、イミノ基、エポキシ基、ピリジノレ基、アルコキシル基、ハロゲンからなる群より選ばれ る少なくとも一種の官能基を有する化合物のいずれか一方を反応せしめ、次いで、 残部の未反応活性共役ジェン系重合体鎖に、他方を反応させることによって、共役 ジェン系ゴム (A)と共役ジェン系ゴム(B)とを含む本発明の共役ジェン系ゴム組成物 とすることができる(共役ジェン系ゴム組成物の第 2の製法)。
[0055] 共役ジェン系ゴム組成物の第 2の製法において、使用するポリオルガノシロキサン が一般式(1)において m/k=0. 2以上のもの、または一般式(2)もしくは(3)で表さ れるものである場合は、重合体鎖末端に活性金属を有する活性共役ジェン系重合 体鎖に、先ず、(ii)分子内に > C = 0基、 > C = S基、アミノ基、イミノ基、エポキシ基、 ピリジル基、アルコキシル基、ハロゲンからなる群より選ばれる少なくとも一種の官能 基を有する化合物を反応せしめ、次いで、 G)該重合体鎖末端の活性金属と反応しう る官能基を有する前記一般式(1)、(2)、(3)で表されるポリオルガノシロキサン中か ら選ばれる少なくとも一種を反応させることが好ましい。この反応順序を逆にすると、 ゴム架橋物の低発熱性および耐摩耗性の向上効果が十分でなくなる。
[0056] 重合に使用する共役ジェン単量体または共役ジェン単量体および芳香族ビュル 単量体の量は、最終的に得られる共役ジェン系ゴムの各単量体単位量が所望の値 になるように適宜設定すればよい。
有機活性金属を用いて重合するに際し用いる不活性溶媒としては、溶液重合にお いて、通常使用され、重合反応を阻害しなレ、ものであれば、特に制限されなレ、。その 具体例としては、ブタン、ペンタン、へキサン、 2-ブテンなどの脂肪族炭化水素;シク 口ペンタン、シクロへキサン、シクロへキセンなどの脂環式炭化水素;およびベンゼン 、トルエン、キシレンなどの芳香族炭化水素が挙げられる。不活性溶媒の使用量は、 単量体濃度が、通常、 1一 50重量%、好ましくは 10— 40重量%となるような量である
[0057] 有機活性金属としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、 有機遷移金属化合物などが挙げられる。中でも有機アルカリ金属化合物が好ましく 使用され、その具体例としては、 n—ブチルリチウム、 sec—ブチルリチウム、 tーブチルリ チウム、へキシルリチウム、フヱニルリチウム、スチルベンリチウムなどの有機モノリチ ゥム化合物;ジリチオメタン、 1 , 4ージリチォブタン、 1, 4—ジリチォー 2_ェチルシクロ へキサン、 1 , 3, 5_トリリチォベンゼンなどの有機多価リチウム化合物;ナトリウムナフ タレンなどの有機ナトリウム化合物;およびカリウムナフタレンなどの有機カリウム化合 物が挙げられる。なかでも、有機リチウム化合物、特に有機モノリチウム化合物が好ま しレ、。有機アルカリ金属化合物は、予め、ジブチルァミン、ジへキシルァミン、ジベン ジノレアミン、ピロリジンなどの第 2級ァミンと反応させて、有機アルカリ金属アミド化合 物として使用してもよい。これらの有機活性金属は、それぞれ単独で、または 2種以 上を組み合わせて用いることができる。
有機活性金属の使用量は、単量体混合物 1 , OOOg当り、好ましくは 1一 50ミリモル 、より好ましくは 2— 20ミリモルの範囲である。
[0058] 重合に際して、共役ジェン単量体単位中のビニル結合量を所望の値とするために 、極性化合物を添加することが好ましい。極性化合物としては、例えば、ジブチルェ 一テル、テトラヒドロフランなどのエーテル化合物;テトラメチルエチレンジァミンなどの 三級ァミン;アルカリ金属アルコキシド;ホスフィン化合物などが挙げられる。なかでも 、エーテル化合物、三級ァミンが好ましぐ三級ァミンがより好ましぐテトラメチルェチ レンジァミンが特に好ましい。極性化合物の使用量は、有機活性金属 1モルに対して 、好ましくは 0. 01— 100モノレ、より好ましくは 0. 3 30モルの範囲である。極性化合 物の使用によって、共役ジェン単量体単位中のビュル結合量の調節が容易となり、 力、つ触媒の失活による不具合も発生し難くなる。 [0059] 重合温度は、通常、 _78— 150°C、好ましくは 0— 100°C、より好ましくは 30— 90°C の範囲である。
重合様式は、回分式、連続式などいずれの様式も採用できる。ビニル結合量を比 較的高くする場合、回分式が有利であり、ビニル結合量を低位から中位とする場合に は、連続式が有利である。
共役ジェン単量体と芳香族ビニル単量体とを共重合させる場合は、共役ジェン単 量体単位と芳香族ビニル単量体単位の結合のランダム性を向上させるため、重合系 内の芳香族ビニル単量体と共役ジェン単量体の組成比における芳香族ビニル単量 体の比率が特定範囲を維持するように、共役ジェン単量体または共役ジェン単量体 と芳香族ビニル単量体との混合物を、重合反応系に連続的または断続的に供給して 重合することが好ましい。
[0060] 共役ジェン系ゴム (A)の製造に際しては、上記のようにして得られた、末端に活性 金属を有する活性共役ジェン系重合体鎖に、該末端の活性金属と反応しうる官能基 を有するポリオルガノシロキサンを反応させる。
使用するポリオノレガノシロキサンは、一般式(1)、 (2)、 (3)で表されるポリオノレガノ シロキサン (ただし、一般式(1)において、 X1および X4が、活性共役ジェン系重合体 鎖末端の活性金属と反応する官能基であるか、または、 炭素数 1一 6のアルキル基 もしくは炭素数 6— 12のァリール基であり、 X2が、活性共役ジェン系重合体鎖末端 の活性金属と反応する官能基であり、 X3が、 2— 20のアルキレングリコールの繰返し 単位を含有する基である。一般式(2)で表されるポリオノレガノシロキサンにぉレ、ては、 X5— X8は、活性共役ジェン系重合体鎖末端の活性金属と反応する官能基である。 一般式(3)で表されるポリオノレガノシロキサンにおいては、 X9 X11は活性共役ジェ ン系重合体鎖末端の活性金属と反応する官能基である。)の中から選ばれる少なくと も一種である。
[0061] 上記のポリオノレガノシロキサンは、例えば, 日本化学会編、第 4版、実験化学講座、 28卷およびその参考文献に記載されている方法により得ることができる。また、市販 品を入手して使用することもできる。
ポリオルガノシロキサンの使用量は、重合に使用した有機活性金属 1モル量に対し て、 0. 001モノレを超え、 0. 1モノレ未満、好ましく ίま 0. 005モノレを超え、 0. 09モノレ未 満、より好ましくは 0. 01モルを超え、 0. 08モル未満の範囲となる量である。この使用 量が少なくても、多くても、分岐状共役ジェン系重合体が生成し難ぐ本発明の効果 が得られない。
[0062] ポリオルガノシロキサンは、重合系内に添加すると、重合で使用する不活性溶媒に 溶解して、活性共役ジェン系重合体鎖末端の活性金属とポリオルガノシロキサンが 均一に反応しやすくなるので好ましい。その溶液濃度は、 1一 50重量%が好ましい。 活性共役ジェン系重合体鎖にポリオルガノシロキサンを反応させる時期は、重合反 応がほぼ完結した時点が好ましぐ重合反応がほぼ完結した後、活性共役ジェン系 重合体鎖が副反応でゲル化したり、重合系中の不純物による連鎖移動反応を受けた りする前であることがより好ましい。
なお、活性共役ジェン系重合体鎖にポリオルガノシロキサンを反応させる前に、本 発明の効果を阻害しない範囲で、ァニオン重合において通常使用される重合停止 剤、重合末端変性剤およびカップリング剤などを重合系内に添加して、活性共役ジ ェン系重合体鎖末端の活性金属の一部を不活性化してもよい。
[0063] 活性共役ジェン系重合体鎖にポリオルガノシロキサンを反応させるときの条件は、 反応温度が、通常、 0— 100°C、好ましくは 30— 90°Cの範囲で、反応時間が、通常、 1一 120分、好ましくは 2— 60分の範囲である。
活性共役ジェン系重合体鎖にポリオルガノシロキサンを反応させた後、重合停止 剤として、メタノール、イソプロパノールなどのアルコールまたは水を添加して反応を 停止して重合溶液を得る。
なお、活性共役ジェン系重合体鎖にポリオルガノシロキサンを反応させた後にぉレヽ ても、活性共役ジェン系重合体鎖が残存している場合、重合停止剤を添加する前に 、所望により、ァニオン重合において通常使用される、重合末端変性剤およびカップ リング剤などを重合系内に添加して反応させてもょレ、。
[0064] 共役ジェン系ゴム(B)は、上記共役ジェン系ゴム(A)の製造におけるポリオルガノシ ロキサンに変えて、分子内に > C = 0基、 > C = S基、アミノ基、イミノ基、エポキシ基、 ピリジル基、アルコキシル基、ハロゲンからなる群より選ばれる官能基を有する化合物 を用いる他は、共役ジェン系ゴム (A)の製造と実質的に同様な方法により得られる。 これらの官能基含有化合物は、それぞれ単独で、または二種以上を組み合わせて使 用すること力 Sできる。
[0065] 不活性溶媒中で、共役ジェン単量体または共役ジェン単量体および芳香族ビニル 単量体を有機活性金属を用いて重合して得られた、重合体鎖末端に活性金属を有 する活性共役ジェン系重合体鎖に、前記ポリオノレガノシロキサンおよび活性共役ジ ェン系重合体鎖末端の活性金属と反応しうる上記の官能基を有する化合物を順次 反応させて、本発明の共役ジェン系ゴム組成物を製造する方法 (前記第 2の製造方 法)において、用いるポリオルガノシロキサンが、重合体鎖末端の活性金属と反応す る官能基を比較的多く含む場合 (すなわち、オルガノシロキサンが一般式(1)におい て mZk=0. 2以上のもの、または一般式(2)もしくは(3)で表されるものである場合) は、重合体鎖末端に活性金属を有する活性共役ジェン系重合体鎖に、先に、上記 の官能基を有する化合物を反応せしめて共役ジェン系ゴム(B)を生成し、次レ、で、 残部の活性共役ジェン系重合体鎖に、前記ポリオルガノシロキサンを反応させて共 役ジェン系ゴム (A)を生成せしめることが好ましい。この工程順とは逆に、先に、ポリ オルガノシロキサンを反応させて共役ジェン系ゴム(A)を生成せしめ、次いで、上記 の官能基を有する化合物を反応せしめた場合には、所望量の共役ジェン系ゴム(B) を生成せしめるのが困難となり、低発熱性および耐摩耗性に優れたゴム架橋物を得 難い。
[0066] 上記の官能基を有する化合物を反応せしめて共役ジェン系ゴム(B)を得るに際し、 変性率 (すなわち、活性末端を有する共役ジェン系重合体分子に対する上記官能 基が導入された重合体分子の割合)は、好ましくは、反応前に存在する重合活性末 端に対し 5— 95モル%である。末端変性による変性率が大きいほど、一般的に、ゥ工 ットグリップ性、低発熱性が改善される。変性率は、 GPCの示差屈折計で測定した示 差屈折率 (RI)に対する紫外可視分光光度計で測定した吸収強度 (UV)の割合 (U V/RI)を求め、予め作成した検量線によって決定することができる。
共役ジェン系ゴム (B)は、上記の官能基を有する化合物で変性される際に、その一 部または全部がカップリングする場合がある。その場合のカップリング率は、カツプリ ング反応の前後に GPCにより示差屈折計で測定したピークについて、カップリング反 応前のピークと同一位置のカップリング反応後のピークの面積と、それよりも高分子 量のカップリング反応後のピークの面積との比率から求めることができる。
[0067] 共役ジェン系ゴム (A)および/または共役ジェン系ゴム(B)を生成せしめた後、所 望により、フヱノール系安定剤、リン系安定剤、ィォゥ系安定剤などの老化防止剤、ク ラム化剤、スケール防止剤などを重合溶液に添加した後、直接乾燥やスチームストリ ッビングにより重合溶液から重合溶媒を分離して、 目的のゴムを回収する。なお、重 合溶液から重合溶媒を分離する前に、重合溶液に伸展油を混合し、油展ゴムとして 回収することちできる。
伸展油としては、後述するプロセス油などを使用することができ、その使用量は、共 役ジェン系ゴム (A)および/または共役ジェン系ゴム(B)の総量 100重量部に対し て、通常 5— 100重量部、好ましくは 10 60重量部、より好ましくは 20 50重量部 である。
[0068] 共役ジェン系ゴム組成物
本発明の共役ジェン系ゴム組成物は、共役ジェン系ゴム (A) 5— 95重量%および 共役ジェン系ゴム(B) 95— 5重量%を含有してなる。
共役ジェン系ゴム (A)と共役ジェン系ゴム (B)との割合 (A) / (B) (重量比)は、通 常、 5/95— 95/5、好ましくは 7/93— 93/7、より好ましくは 10/90— 85/15 の範囲で選ばれる。この範囲を外れると、 目的とする低発熱性、ウエットグリップ性、耐 摩耗性および引張強度に優れる架橋物が得難くなる。特に、シリカとカーボンブラッ クを併用したときの低発熱性向上効果が乏しくなる。
[0069] 共役ジェン系ゴム (A)および共役ジェン系ゴム (B)を製造するに際し、一般に、共 役ジェン系ゴム(A)および共役ジェン系ゴム(B)の他に、 2つの共役ジェン系重合体 鎖がポリオノレガノシロキサンを介して結合したカップリング体、共役ジェン系重合体鎖 末端に 1つのポリオルガノシロキサンが結合したポリオノレガノシロキサン変性共役ジェ ン系重合体、ポリオルガノシロキサンが結合していない共役ジェン系重合体、ァニォ ン重合において通常使用される重合末端変性剤で変性された変性共役ジェン系重 合体、およびァニオン重合において通常使用されるカップリング剤でカップリングされ たカップリング体などが生成する力 本発明の共役ジェン系ゴム組成物には、これら の共役ジェン系重合体が含まれてもよレ、。
[0070] さらに、本発明の共役ジェン系ゴム組成物には、ガラス転移温度が- 120°C— 200 °Cであり、かつ、重量平均分子量が 1 , 000 3, 000, 000である重合体を配合する こと力 Sできる。
配合する重合体は、重量平均分子量が上記範囲、好ましくは 300, 000— 2, 000 , 000、より好まし <は 100, 000—1 , 200, 000である樹脂状重合体およびゴム状 重合体、好ましくはゴム状重合体の中から選ばれる。ゴム状重合体は、共役ジェン系 重合体であってもよぐその場合、ガラス転移温度が、通常- 110°C 100°C、好まし くは— 110°C—— 10°C、より好ましくは— 110°C—— 25°Cのものが選ばれる。ガラス転 移温度が高すぎるとゴム架橋物の低発熱性および耐摩耗性が十分でないことがある
[0071] 配合するゴム状重合体の具体例としては、天然ゴム、ポリイソプレンゴム、乳化重合 スチレン一ブタジエン共重合ゴム、溶液重合スチレン一ブタジエン共重合ゴム(例えば 、結合スチレン量が 5— 50重量%で、 1 , 3—ブタジエン単位中の 1 , 2—結合含有量 が 10— 80重量%の範囲にあるもの)、 1, 3-ブタジエン単位中のトランス結合含有量 力 S70— 95重量0 /0である高トランス含有量のスチレン一ブタジエン共重合ゴムまたは ポリブタジエンゴム、低シス結合含有量のポリブタジエンゴム、高シス結合含有量の ポリブタジエンゴム、スチレン一イソプレン共重合ゴム、ブタジエン一イソプレン共重合 ゴム、スチレン一イソプレン一ブタジエン共重合ゴム、スチレン一アクリロニトリル一ブタジ ェン共重合ゴム、アクリロニトリル一ブタジエン共重合ゴム、ポリスチレンーポリブタジェ ン一ポリスチレンブロック共重合体、アクリルゴム、ェピクロロヒドリンゴム、フッ素ゴム、 シリコンゴム、エチレン一プロピレンゴム、ウレタンゴムなどが挙げられる。なかでも、天 然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、スチレン一ブタジエン共重合ゴムが 好ましく用いられる。これらのゴム状重合体は、それぞれ単独で、または 2種以上を組 み合わせて使用することができる。
[0072] これら重合体の配合量は、共役ジェン系ゴム (A)と共役ジェン系ゴム(B)との合計 100重量部に対し、通常 900重量部以下、好ましくは 700重量部以下、より好ましく は 500重量部以下である。重合体の配合量が多すぎると、未架橋組成物の加工性、 ゴム架橋物の低発熱性、ウエットグリップ性および耐摩耗性に優れる架橋物が得難く なる。
[0073] 本発明のゴム組成物は、シリカおよびカーボンブラックの中から選ばれる少なくとも 一種の充填剤を含むことが好ましい。特に、充填剤として、シリカ、またはシリカとカー ボンブラックの両者を含むことが好ましい。
シリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダ ルシリカなどが挙げられる。これらの中でも、含水ケィ酸を主成分とする湿式法ホワイ トカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボンーシ リカデュアル 'フェイズ'フイラ一を用いてもよレ、。これらのシリカは、それぞれ単独で、 または 2種以上を組み合わせて用いることができる。シリカの窒素吸着比表面積 (AS TM D3037—81に準じ BET法で測定される。 )は、好ましくは 50— 400m2/g、より 好ましくは 100— 220m2/gである。この範囲であると、より耐摩耗性および低発熱性 に優れる。
[0074] シリカを配合した場合、さらにシランカップリング剤を配合することにより低発熱性お よび耐摩耗性をさらに改善できる。
シランカップリング剤としては、例えば、ビエルトリエトキシシラン、 β -(3 , 4-ェポキ シシクロへキシル)ェチルトリメトキシシラン、 N— ( j3—アミノエチル)—γ—ァミノプロピ ルトリメトキシシラン、 3—ォクタチォ— 1_プロピルトリエトキシシラン、ビス(3— (トリェトキ ド、 γ—トリメトキシシリノレプロピルジメチルチオ力ルバミノレテトラスルフイド、 γ—トリメト キシシリルプロピルべンゾチアジルテトラスルフイドなどを挙げることができる。なかで も、一分子中に含有される硫黄原子が 4個以下のスルフイド類が、混練時のスコーチ が防止できて好ましい。これらのシランカップリング剤は、それぞれ単独で、または 2 種以上を組み合わせて使用することができる。
シランカップリング剤の配合量は、シリカ 100重量部に対して、好ましくは 0. 1— 30 重量部、より好ましくは 1一 15重量部である。
[0075] カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラッ ク、チャンネルブラック、グラフアイト、グラフアイト繊維、フラーレンなどが挙げられる。 これらの中でも、ファーネスブラックが好ましぐその具体例としては、 SAF、 ISAF、 I SAF— HS、 ISAF_LS、 IISAF_HS、 HAF、 HAF_HS、 HAF— LS、 FEFなどが 挙げられる。これらのカーボンブラックは、それぞれ単独で、または 2種以上を組み合 わせて用いることができる。
[0076] カーボンブラックの窒素吸着比表面積 (N SA)は、好ましくは 5— 200m2/g、より
2
好ましくは 80 130m2Zgであり、ジブチルフタレート(DBP)吸着量は、好ましくは 5 一 300mlZl00g、より好ましくは 80 160ml/l00gである。この範囲であると機械 的特性および耐摩耗性に優れる。
さらに、カーボンブラックとして、特開平 5—230290号公報に開示されているセチル トリメチルアンモニゥムブロマイド(CTAB)の吸着比表面積が 110— 170m2/gであ り、 165MPaの圧力で 4回繰り返し圧縮を加えた後の DBP (24M4DBP)吸油量が 1 10— 130ml/100gであるハイストラクチャーカーボンブラックを用いると、耐摩耗性 力 Sさらに改善される。
[0077] 充填剤の配合量は、全ゴム 100重量部に対して、好ましくは 5— 150重量部、より好 ましくは 20— 120重量部、特に好ましくは 40— 100重量部である。充填剤の配合量 が少なすぎると補強性改善効果が乏しぐゴム架橋物は耐摩耗性が十分でない。逆 に、多すぎると未架橋ゴム組成物の加工性およびゴム架橋物の低発熱性が十分でな レ、。
充填剤は、固形ゴムに対し乾式混練法により充填してもよぐまたは、湿式混練法、 すなわち重合体溶液にそれぞれの充填剤を配合し、凝固'乾燥させてもよい。
一つの好ましい方法においては、共役ジェン系ゴム (A) 100重量部あたりシリカを 0 一 150重量部充填したゴム組成物と、共役ジェン系ゴム(B) 100重量部あたりカーボ ンブラックを 0 150重量部充填したゴム組成物とを混合する。
[0078] 本発明のゴム組成物には、上記成分以外に、常法に従って、架橋剤、架橋促進剤 、架橋活性化剤、老化防止剤、活性剤、プロセス油、可塑剤、滑剤、他の充填剤など の配合剤をそれぞれ必要量配合できる。
架橋剤としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄な どの硫黄;一塩ィ匕硫黄、二塩ィ匕硫黄などのハロゲン化硫黄;ジクミルパーォキシド、ジ ターシヤリブチルパーォキシドなどの有機過酸化物; p_キノンジォキシム、 p, p'—ジ ベンゾィルキノンジォキシムなどのキノンジォキシム;トリエチレンテトラミン、へキサメ チレンジァミン力ルバメート、 4, 4 'ーメチレンビス— o—クロロア二リンなどの有機多価ァ ミンィ匕合物;メチロール基をもったアルキルフヱノール樹脂;などが挙げられ、これらの 中でも、硫黄が好ましぐ粉末硫黄がより好ましい。これらの架橋剤は、それぞれ単独 で、または 2種以上を組み合わせて用いられる。
架橋剤の配合量は、全ゴム 100重量部に対して、好ましくは 0. 1— 15重量部、より 好ましくは 0. 5— 5重量部である。
[0079] 架橋促進剤としては、例えば、 N—シクロへキシルー 2_ベンゾチアジルスルフェンァ ミド、 N_t—ブチノレ _2_ベンゾチアゾールスルフェンアミド、 N—ォキシエチレン _2_ベ ンゾチアゾールスルフェンアミド、 N—ォキシエチレン _2_ベンゾチアゾールスルフエ ンアミド、 N, N'—ジイソプロピノレー 2_ベンゾチアゾールスルフェンアミドなどのスルフ ェンアミド系架橋促進斉 IJ ;ジフエニルダァニジン、ジオルトトリルグァニジン、オルトトリ ルビグァニジンなどのグァニジン系架橋促進剤;ジェチルチオゥレアなどのチォウレ ァ系架橋促進剤; 2—メルカプトべンゾチアゾール、ジベンゾチアジルジスルフイド、 2 一メルカプトべンゾチアゾール亜鉛塩などのチアゾール系架橋促進剤;テトラメチルチ ウラムモノスルフイド、テトラメチルチウラムジスルフイドなどのチウラム系架橋促進剤; ジメチルジチォカルバミン酸ナトリウム、ジェチルジチォカルバミン酸亜鉛などのジチ 才力ルバミン酸系架橋促進剤;イソプロピルキサントゲン酸ナトリウム、イソプロピルキ サントゲン酸亜鉛、プチルキサントゲン酸亜鉛などのキサントゲン酸系架橋促進剤; などの架橋促進剤が挙げられる。なかでも、スルフェンアミド系架橋促進剤を含むも のが特に好ましい。これらの架橋促進剤は、それぞれ単独で、または 2種以上を組み 合わせて用いられる。
架橋促進剤の配合量は、全ゴム 100重量部に対して、好ましくは 0. 1— 15重量部 、より好ましくは 0. 5 5重量部である。
[0080] 架橋活性化剤としては、例えば、ステアリン酸などの高級脂肪酸や酸化亜鉛などを 用いることができる。酸化亜鉛は、表面活性の高い粒度 5 x m以下のものが好ましぐ 例えば、粒度が 0. 05-0. 2 /i mの活性亜鉛華や 0. 3— 1 μ mの亜鉛華などが用い られる。また、酸化亜鉛としては、ァミン系の分散剤や湿潤剤で表面処理したものな どを用いることができる。
架橋活性化剤の配合量は適宜選択されるが、全ゴム 100重量部に対して、高級脂 肪酸は、好ましくは 0. 05 15重量部、より好ましくは 0. 5— 5重量部であり、また酸 化亜鉛は、好ましくは 0. 05 10重量部、より好ましくは 0. 5— 3重量部である。
[0081] プロセス油としては、ゴム工業において通常使用されるものが使用でき、パラフィン 系、芳香族系、ナフテン系の石油系軟化剤、植物系軟化剤、脂肪酸などが挙げられ る。石油系軟化剤の場合には、多環芳香族の含有量が 3%未満のものが好ましい。 この含有量は、 IP346の方法(英国の THE INSTITUTE PETROLEUMの検 查方法)により測定される。その他の配合剤としては、ジエチレングリコール、ポリェチ レンダリコール、シリコーンオイルなどの活性剤;炭酸カルシウム、タノレク、クレー、水 酸化アルミニウム、コーンスターチなどの充填剤;石油樹脂、クマロン樹脂などの粘着 付与剤;ワックスなどが挙げられる。
[0082] 本発明の共役ジェン系ゴム組成物は、常法に従って各成分を混練することにより得 ること力 Sできる。例えば、架橋剤と架橋促進剤を除く配合剤とゴムを混練後、その混 練物に架橋剤と架橋促進剤を混合してゴム組成物を得ることができる。
架橋剤と架橋促進剤を除く配合剤とゴムの混練温度は、好ましくは 80— 200°C、よ り好ましくは 120— 180°Cであり、その混練時間は、好ましくは 30秒一 30分である。 架橋剤と架橋促進剤の混合は、通常 100°C以下、好ましくは 80°C以下まで冷却後 に行われる。
[0083] 本発明の共役ジェン系ゴム組成物は、通常、架橋させて使用される。架橋方法は、 特に限定されず、架橋物の形状、大きさなどに応じて適宜選択すればよい。金型中 に架橋剤を配合したゴム組成物を充填して加熱することにより成形と同時に架橋して もよぐ架橋剤を配合したゴム組成物を予め成形した後、それを加熱して架橋してもよ レ、。架橋温度は、好ましくは 120— 200。C、より好ましくは 140 180°Cであり、架橋 時間は、通常、 1一 120分程度である。
[0084] 本発明の共役ジェン系ゴム組成物を架橋してなるゴム架橋物は、低発熱性、ゥエツ トグリップ性および耐摩耗性に優れるので、その特性を生かす各種用途、例えばトレ ッド、カーカス、サイドウォール、インナーライナ一、ビード部などのタイヤ各部位への 利用;またはホース、窓枠、ベルト、靴底、防振ゴム、 自動車部品などのゴム製品への 利用;さらには耐衝撃性ポリスチレン、 ABS樹脂などの樹脂強化ゴムとして利用でき る。特に低燃費タイヤのトレッド用材料として好適である。
実施例
[0085] 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。
なお、実施例および比較例における部おょび%は、特に断りのない限り、重量基準 である。
各種の物性の測定は、下記の方法に従って行った。
(1)共役ジェン系ゴムの結合スチレン単位量と 1 , 3—ブタジエン単位中のビュル結合 単位含量は、 — NMRで測定した。
[0086] (2)分岐状共役ジェン系重合体の含有量は、ポリオルガノシロキサンと反応させる前 の共役ジェン系重合体と最終的に得られた共役ジェン系ゴムとを、以下の条件で、 ゲル.パーミエーシヨン.クロマトグラフィーで測定した。
測定器 : HLC-8020 (東ソ一社製)
カラム : GMH— HR— Η (東ソ一社製)二本を直列に連結したカラムを用いた。 検出器 :示差屈折計 RI_8020 (東ソ一社製)
溶離液 :テトラヒドロフラン
カラム温度: 40°C
[0087] 得られた分析チャートから、最終的に得られた共役ジェン系ゴムの全量に対する、 ポリオルガノシロキサンと反応させる前の共役ジェン系重合体の分子量ピークの 3倍 および 4倍以上の分子量を有する重合体分子の重量分率を求め、それぞれ、 3分岐 の重合体量、 4分岐以上の重合体量として示す。また、 3分岐の重合体量と 4分岐以 上の重合体量の合計量を、 3分岐以上の重合体量として示す。
(3 - 1)共役ジェン系重合体の重量平均分子量は、上記と同様の条件で、ゲル'パー ミエーシヨン'クロマトグラフィーで測定した。
(3-2)ムーニー粘度(ML , 100°C)は、 JIS K6300に準じて測定した。 [0088] (4)未加硫ゴム組成物の加工性は、以下のように評価した。
(4一 1)バンバリ一混練後に取り出したゴム組成物の形態を、以下に示す基準で、 点数をつけた。
大小のいくつもの塊がある。 :1点
大きな塊といくつかの小さな塊がある :2点
ほぼ大きな塊になっている :3点
きれいで、大きな塊になっている :4点
(4-2)ロールで混練する際のゴム組成物のロールへの卷きつき状態を、以下に示 す基準で、点数をつけた。
ロールに卷きつき難い :1点
何とかロールに卷きつく :2点
ロールに卷きつく :3点
ロールに卷きつき易い :4点
[0089] (4一 3)ゴム組成物をロールに卷きつけて混練している際の、ゴム組成物の状態を、 以下に示す基準で、点数をつけた。
大きな穴ができている。 :1点
小さな穴ができている。 :2点
時々、穴ができる。 : 3点
ゴム組成物がロール表面を覆っている。 :4点
(4一 4)ロールからシート状に取り出したゴム組成物の、シート表面の状態を、以下 に示す基準で、点数をつけた。
大きい凹凸がある。 :1点
小さい凹凸がある。 :2点
ほぼ平滑である。 : 3点
平滑で、艷がある。 :4点
(4一 1)一(4一 4)の点数の合計点を、さらに、以下の基準で点数をつけた。この点 数が高いほど、未加硫ゴム組成物の加工性に優れている。
合計点 4一 5 : 1点 合計点 6— 8 : 2点
合計点 9一 10 : 3点
合計点 11一 13 : 4点
合計点 14一 16 : 5点
[0090] (5)低発熱性は、レオメトリックス社製造 RDA—IIを用レ、、 4. 0%ねじれ、 1Hzの条件 で 60°Cにおける tan δを測定した。この特性は、指数で表示した。この指数が小さい ほど低発熱性に優れる。
(6)ウエットグリップ性は、レオメトリックス社製造 RDA—IIを用レ、、 0. 5%ねじれ、 20H zの条件で 0°Cにおける tan δを測定した。この特性は指数で表示した。この指数が 大きいほど、ウエットグリップ性に優れる。
(7)耐摩耗性は、 JIS Κ6264に従レ、、ランボーン摩耗試験機を用いて測定した。こ の特性は、指数 (耐摩耗指数)で表示した。この値は大きいほど耐摩耗性に優れる。
(8)引張強度は、 JIS K6301に従って、引張試験を行ない、 300%伸張時の応力 を測定した。この特性は、指数で表示した。この指数が大きいほど、引張強度に優れ る。
[0091] 実施例 1
(共役ジェン系ゴム組成物 iの製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、スチレン 162g、 1 , 3—ブタジ ェン 438gおよびテトラメチルエチレンジァミン 5. 0ミリモルを仕込んだ後、 n—ブチル リチウムを、重合に関与しない不純物の中和分と重合反応分の総量として 8. 7ミリモ ノレ加え、 50°Cで重合を開始した。重合を開始してから 10分経過後、スチレン 40gと 1 , 3_ブタジエン 360gの混合物を 60分間かけて連続的に添カ卩した。重合反応中の最 高温度は 65°Cであった。
連続添加終了後、さらに 20分間重合反応を継続し、 1, 3—ブタジエン 312g添加し 、 10分間重合反応を継続し、重合転化率が 100%になったことを確認してから、少 量の重合溶液をサンプリングした。サンプリングした少量の重合溶液は、過剰のメタノ ールを添加して、反応停止した後、風乾して、重合体を取得し、ゲル'パーミエーショ ン.クロマトグラフ分析の試料とした。 [0092] 少量の重合溶液をサンプリングした直後に、 10%キシレン溶液とした 4, 4'一ビス(ジ ェチルァミノ)ベンゾフエノン(EAB)を 2. 3ミリモノレカロえ、 15分間反応させ、次いで、 使用した n—ブチルリチウムの 0. 015倍モルに相当する量のポリオルガノシロキサン Aを 10。/oキシレン溶液の状態で添加し、 15分間反応させた後、重合停止剤として、 使用した n—ブチルリチウムの 2倍モルに相当する量のメタノールを添カ卩して、共役ジ ェン系ゴム (A)および共役ジェン系ゴム (B)を含有する重合溶液を得た。なお、以降、 本発明で用いる共役ジェン系ゴム (A)および共役ジェン系ゴム (B)を、それぞれ、「重 合体 (A)」および「重合体 (B)」と略記することがある。
[0093] ゴム分 100部に対して、老化防止剤として、ィルガノックス 1520 (チバガイギ一社製 ) 0. 1部を、上記の重合溶液に添加した後、スチームストリツビングにより、重合溶媒 を除去し、 60°Cで 24時間真空乾燥して、固形状の共役ジェン系ゴム組成物 iを得た 。この共役ジェン系ゴム組成物 iの分析結果を表 1に示す。重合体 (A)のゲルパーミエ ーシヨン'クロマトグラフィ(以下 GPC)による分析結果は、最終的に得られた重合体 組成物の GPC分析結果から、重合体 (B)の GPC分析結果を差し引くことで求めた。
[0094] (共役ジェン系ゴム組成物 Iの調製)
容量 250mlのブラベンダータイプミキサー中で、 100部の共役ジェン系ゴム組成物 iを 30秒素練りし、次いでシリカ(Zeosil 1165MP、 ローディア社製) 30部とシラン力 ップリング剤(Si69、デグッサ社製) 2. 4部を添加して、 110°Cを開始温度として 1. 5 分間混練後、プロセスオイル(Enerthenel849A、ブリティッシュペトロリアム社製) 1 0部、カーボンブラック(シースト KH、東海カーボン社製) 20部、酸化亜鉛 3部、ステ アリン酸 2部、および老化防止剤(ノクラック 6C、大内新興社製) 2部を添加し、さらに 2分間混練し、ミキサーからゴム混練物を排出させた。混鍊終了時のゴム混練物の温 度は 150°Cであった。
ゴム混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、 110°C を開始温度として 2分間混練した後、ミキサーからゴム混練物を排出させた。
[0095] 50°Cのオープンロールで、上記の混練物と、硫黄 1. 5部および架橋促進剤(N—シ クロへキシルー 2_ベンゾチアジルスルフェンアミド 1. 5部とジフエニルダァニジン 0. 5 部の混合物)とを混練した後、シート状の共役ジェン系ゴム組成物 Iを取り出した。 また、この未架橋ゴム組成物 Iの加工性を評価した。結果を表 2に示す。
未架橋ゴム組成物 Iを、 160°Cで 30分間プレス架橋して試験片を作製し、低発熱性 、ウエットグリップ性、耐摩耗性および引張強度の測定を行なった。結果を、表 2に、 比較例 1を 100とする指数で示す。
[0096] 実施例 2
(共役ジェン系ゴム組成物 iiおよび共役ジェン系ゴム組成物 IIの調製)
4, 4しビス(ジェチルァミノ)ベンゾフエノン(EAB)に代えて四塩化錫 0. 3ミリモノレ を用いた他は、実施例 1と同様な手法により共役ジェン系ゴム組成物 Πを調製した。こ の共役ジェン系ゴム組成物 Πの分析結果を表 1に示す。さらに、実施例 1と同様な手 法により共役ジェン系ゴム組成物 iiに配合剤を加えて共役ジェン系ゴム組成物 IIを調 製し、この未架橋ゴム組成物 IIの加工性およびその架橋物の特性を評価した。評価 結果を表 2に示す。
[0097] 比較例 1
(共役ジェン系ゴム組成物 mおよび共役ジェン系ゴム組成物 mの調製)
ポリオルガノシロキサン Aの n—ブチルリチウムに対する添加比率を 0. 5倍モルとし た他は、実施例 1と同様な手法により固形状の共役ジェン系ゴム mを製造した。この 共役ジェン系ゴム組成物 mの分析結果を表 1に示す。
さらに、実施例 1と同様な手法により共役ジェン系ゴム組成物 mに配合剤をカ卩えて 共役ジェン系ゴム組成物 mを製造し、この未架橋ゴム組成物 mの加工性およびその 架橋物の特性を評価した。評価結果を表 2に示す。
[0098] 比較例 2
(共役ジェン系ゴム組成物 ivおよび共役ジェン系ゴム組成物 IVの調製)
EABを添加せずに、ポリオルガノシロキサンに代えてテトラメトキシシランを用レ、、か つその n—ブチルリチウムに対する添加比率を 0. 3倍モルとした他は、実施例 1と同 様な手法により固形状の共役ジェン系ゴム組成物 iv調製した。この共役ジェン系ゴム 組成物 ivの分析結果を表 1に示す。
さらに、実施例 1と同様な手法により共役ジェン系ゴム組成物 ivに配合剤を加えて 共役ジェン系ゴム組成物 IVを調製し、この未架橋ゴム組成物 IVの加工性およびその 架橋物の特性を評価した。評価結果を表 2に示す。
[0099] 比較例 3
(共役ジェン系ゴム組成物 Vおよび共役ジェン系ゴム組成物 Vの調製)
EABに代えてメタノールを用いた他は、実施例 1と同様な手法により固形状の共役 ジェン系ゴム組成物 Vを調製した。この共役ジェン系ゴム組成物 Vの分析結果を表 1 に示す。
さらに、実施例 1と同様な手法により共役ジェン系ゴム組成物 Vに配合剤を加えて共 役ジェン系ゴム組成物 Vを調製し、この未架橋ゴム組成物 Vの加工性およびその架 橋物の特性を評価した。評価結果を表 2に示す。
[表 1]
Figure imgf000034_0001
[0101] [表 2] 実施例 比較例
1 2 1 1 3 共役ジェン系ゴム組成物 1 If if! IV V コ'ム β成物の特性
未架橋ゴムの加工性 (点) 5 5 3 4 5
«¾熱性 (措数) 67 72 100 114 92 ウエットダリップ性 (攢数) 1 1 9 118 100 89 103 耐摩耗性 (措数) 131 133 100 93 104 引張強度特性 (指数》 135 130 100 89 102
[0102] 注: ゴム組成物 I中のゴム成分は、ゴム組成物 i
ゴム組成物 II中のゴム成分は、ゴム組成物 ii
ゴム組成物 ill中のゴム成分は、ゴム組成物 m
ゴム組成物 IV中のゴム成分は、ゴム組成物 iv
ゴム組成物 V中のゴム成分は、ゴム組成物 V
[0103] 実施例 3
(共役ジェン系ゴム vi-1の製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、スチレン 171g、 1 , 3—ブタジ ェン 429gおよびテトラメチルエチレンジァミン 6. 5ミリモルを仕込んだ後、 n—ブチル リチウムを、重合に関与しない不純物の中和分と重合反応分の総量として 8. 3ミリモ ノレ加え、 40°Cで重合を開始した。重合を開始してから 10分経過後、スチレン 40gと 1 , 3_ブタジエン 360gの混合物を 60分間かけて連続的に添カ卩した。重合反応中の最 高温度は 60°Cであった。
連続添加終了後、さらに 20分間重合反応を継続し、重合転化率が 100%になった ことを確認してから、実施例 1と同様にゲル'パーミエーシヨン'クロマトグラフ分析の試 料を得た。
[0104] 少量の重合溶液をサンプリングした直後に、使用した n—ブチルリチウムの 0. 02倍 モルに相当する量のポリオノレガノシロキサン Bを 10%キシレン溶液の状態で添カロし、 15分間反応させた後、重合停止剤として、使用した n—ブチルリチウムの 2倍モルに 相当する量のメタノールを添加して共役ジェン系ゴム vi-1を含有する重合溶液を得 た。得られた重合溶液から少量の重合溶液をサンプリングした。サンプリングした少 量の重合溶液は、風乾して、重合体を取得し、ゲル'パーミエーシヨン'クロマトグラフ 分析の試料とした。共役ジェン系ゴム vi-1の分析結果を表 3に示す。
[0105] (共役ジェン系ゴム vi-2の製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、スチレン 196g、 1 , 3—ブタジ ェン 404gおよびテトラメチルエチレンジァミン 2. 2ミリモルを仕込んだ後、 n—ブチル リチウムを、重合に関与しない不純物の中和分と重合反応分の総量として 9. 3ミリモ ノレ加え、 45°Cで重合を開始した。重合を開始してから 10分経過後、スチレン 40gと 1 , 3_ブタジエン 360gの混合物を 50分間かけて連続的に添カ卩した。重合反応中の最 高温度は 75°Cであった。
連続添加終了後、さらに 20分間重合反応を継続し、 1, 3—ブタジエン 312g添加し 、 10分間重合反応を継続し、重合転化率が 100%になったことを確認してから、 10 %シクロへキサン溶液とした N_メチルピロリドン(NMP)を 7. 5ミリモノレカロえ、 15分間 反応させた後、使用した n—ブチルリチウムの 2倍モルに相当する量のメタノールを添 カロして共役ジェン系ゴム vi-2を含有する重合溶液を得た。この共役ジェン系ゴム vi-2 を分析した結果を表 3に示す。
[0106] (共役ジェン系ゴム組成物 viおよび共役ジェン系ゴム組成物 VIの調製)
共役ジェン系ゴム vi-1を含有する重合溶液と、共役ジェン系ゴム vi-2を含有する重 合溶液を、共役ジェン系ゴム vi-1と vi-2がそれぞれ 2 : 1となるように、 30分間、混合、 攪拌し、重合溶液 viを得た。
重合溶液 viから、実施例 1と同様の操作を行って、固形状の共役ジェン系ゴム組成 物 viを得た。
[0107] 容量 250mlのブラベンダータイプミキサー中で、 85部の共役ジェン系ゴム組成物 viと 15部のハイシス—ポリブタジエンゴム(Nipol BR1220N, 日本ゼオン社製)を 30 秒素練りし、次いでシリカ(Nipsil AQ、 日本シリカ工業社製) 45部とシランカツプリ ング剤(Si69) 4. 5部を添加して、 110°Cを開始温度として 1. 5分間混練後、プロセ スオイル(Enerthenel849A) 15部、カーボンブラック(シースト 6、東海カーボン社 製) 20部、酸化亜鉛 3部、ステアリン酸 2部、および老化防止剤(ノクラック 6C) 2部を 添加し、さらに 2分間混練し、ミキサーからゴム混練物を排出させた。混鍊終了時のゴ ム混練物の温度は 150°Cであつた。 ゴム混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、 110°C を開始温度として 2分間混練した後、ミキサーからゴム混練物を排出させた。
[0108] 50°Cのオープンロールで、上記の混練物と、硫黄 1. 5部および架橋促進剤(N—シ クロへキシルー 2_ベンゾチアジルスルフェンアミド 1. 5部とジフエニルダァニジン 0. 9 部の混合物)とを混練した後、シート状の共役ジェン系ゴム組成物 VIを取り出した。こ の未架橋共役ジェン系ゴム組成物 VIの加工性を評価した。結果を、表 4に示す。 上記未架橋ゴム組成物 VIを 160°Cで 30分間プレス架橋して試験片を作製し、実施 例 1と同様にその特性を評価した。結果を、表 4に、比較例 4を 100とする指数で示す
[0109] 比較例 4
(共役ジェン系ゴム vi_3および vi_4の製造)
ポリオルガノシロキサン Bの添加比率を 0. 5倍モルに変えた他は、実施例 3の共役 ジェン系ゴム vi-1の製造例と同様な手法により共役ジェン系ゴム vi-3を得た。また、 N
MPをメタノールに代えた他は、実施例 3の共役ジェン系ゴム vi-2の製造例と同様な 手法により共役ジェン系ゴム vi-4を得た。共役ジェン系ゴム vi-3および vi-4を分析し た結果を表 3に示す。
[0110] (共役ジェン系ゴム組成物 viiおよび共役ジェン系ゴム組成物 VIIの調製)
実施例 3の重合溶液 viおよび共役ジェン系ゴム組成物 viと同様な手法により、共役 ジェン系ゴム vi-3および vi-4から、重合溶液 viiを経て固形状の共役ジェン系ゴム組 成物 viiを得た。
さらに、実施例 1と同様な手法により共役ジェン系ゴム組成物 viiに配合剤をカ卩えて 共役ジェン系ゴム組成物 VIIを調製し、この未架橋ゴム組成物 VIIの加工性およびそ の架橋物の特性を評価した。評価結果を表 4に示す。
[0111] [表 3] 比較例 4 重合体 (A)
ポリオルガノシロキサン B ― B - ポリオルガノシロキサンの使用量
( ιι·'·ブチルリチウム 1 モルに対するモル比) 0.02 0.5 - シラン化合物の使用璗 ― ― - ( π-プチルリチウム 1 モルに対するモル比)
重合体 ω
反応化合犊 隱 ― eOH 共 sジェン系ゴム ¥ i-1 ¥ !-3 v i-4 反応前のピーク分子量 250000 240000 250000 240000 重量平均分子量 560000 210000 300000 210000 重合体 (A>の重釁平均分子量 1070000 970000 重合体(B)の重量平均分子量 ― 210000 ― 210000 スチレン単位量 ( % ) 21 23.5 23.5 ビニル結合含有量 (%) 63 33 63 33
3分岐の重合体鼉 { % ) 20 一 1 -
4分岐以上の重合体釁 (? ί ) 13 - 1 -
3分岐以上の重合体 (重合体(Α) ) 釁 (¾) 33 - 2
[0112] [表' 4] 実施例 赚例
3 4
共役ジェン系ゴム «成物 VI VII
ゴム β成物の特性
朱架橋ゴムの加工性 (点) 5 2
\ »A (»数》 60 100
ゥェツ卜グリップ性 (續数) 118 100
爾摩耗性 (指数》 148 100
引 ¾強度特性 (»数) 191 100
[0113] 注: ゴム組成物 VI中のゴム成分は、ゴム組成物 vi (共役ジェン系ゴム vi_l +共役ジ ェン系ゴム vi_2) +ハイシス'ポリブタジエンゴム
ゴム組成物 VII中のゴム成分は、ゴム組成物 vii (共役ジェン系ゴム vi-3 +共役ジ ェン系ゴム vi-4) +ハイシス'ポリブタジエンゴム
[0114] m (共役ジェン系ゴム vm-iの製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、スチレン 120g、 1 , 3—ブタジ ェン 380gおよびテトラメチルエチレンジァミン 4. 5ミリモルを仕込んだ後、 n—ブチル リチウムを、重合に関与しない不純物の中和分と重合反応分の総量として 8. 6ミリモ ノレ加え、 50°Cで重合を開始した。重合を開始してから 10分経過後、スチレン 50gと 1 , 3_ブタジエン 450gの混合物を 60分間かけて連続的に添カ卩した。重合反応中の最 高温度は 70°Cであった。
連続添加終了後、さらに 15分間重合反応を継続し、重合転化率が 100%になった ことを確認してから、実施例 1と同様にゲル'パーミエーシヨン'クロマトグラフ分析の試 料を得た。
[0115] 少量の重合溶液をサンプリングした直後に、使用した n—ブチルリチウムの 0. 03倍 モルに相当する量のポリオノレガノシロキサン Cを 10%キシレン溶液の状態で添カロし、 15分間反応させた後、重合停止剤として、使用した n—ブチルリチウムの 2倍モルに 相当する量のメタノールを添加して共役ジェン系ゴム viii-1を含有する重合溶液を得 た。
得られた重合溶液から、実施例 1と同様の操作を行って、固形状の共役ジェン系ゴ ム viii-1を得た。その分析結果を表 5に示す。
[0116] (共役ジェン系ゴム viii-2の製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、スチレン 171g、 1 , 3—ブタジ ェン 429gおよびテトラメチルエチレンジァミン 8. 0ミリモルを仕込んだ後、 n—ブチル リチウムを、重合に関与しない不純物の中和分と重合反応分の総量として 8. 6ミリモ ノレ加え、 40°Cで重合を開始した。重合を開始してから 10分経過後、スチレン 40gと 1 , 3_ブタジエン 360gの混合物を 60分間かけて連続的に添カ卩した。重合反応中の最 高温度は 60°Cであった。
[0117] 連続添加終了後、さらに 20分間重合反応を継続し、 1, 3_ブタジエン 12g添加し、
10分間重合反応を継続し、重合転化率が 100%になったことを確認してから、 20% シクロへキサン溶液とした四塩化錫を 0. 6ミリモルカ卩え、 15分間反応させた。次いで 、 10%キシレン溶液とした N—フエニルピロリドン(NPP)を 4. 3ミリモル加え、 15分間 反応させた後、使用した n—ブチルリチウムの 2倍モルに相当する量のメタノールを添 加して共役ジェン系ゴム viii-2を含有する重合溶液を得た。
得られた重合溶液から、実施例 1と同様の操作を行って、固形状の共役ジェン系ゴ ム viii-2を得た。その分析結果を表 5に示す。
[0118] (共役ジェン系ゴム組成物 VIIIの調製)
容量 250mlのブラベンダータイプミキサー中で、 35部の共役ジェン系ゴム viii_lと 3 5部の共役ジェン系ゴム viH-2と 30部の天然ゴムを 30秒素練りし、次いでシリカ(Zeo sill l35MP、 ローディア社製) 30部とシランカップリング剤(Si69) l . 9部を添加して 、 110。Cを開始温度として 1. 5分間混練後、プロセスオイル (Enerthenel849A) l 0部、カーボンブラック(シースト 7HM) 30部、酸化亜鉛 3部、ステアリン酸 2部、およ び老化防止剤(ノクラック 6C) 2部を添加し、さらに 2分間混練し、ミキサーからゴム混 練物を排出させた。混鍊終了時のゴム混練物の温度は 150°Cであった。
ゴム混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、 110°C を開始温度として 2分間混練した後、ミキサーからゴム混練物を排出させた。
[0119] 50°Cのオープンロールで、上記の混練物と、硫黄 1. 5部および架橋促進剤(N—シ クロへキシルー 2_ベンゾチアジルスルフェンアミド 1 · 5部とジフエニルダァニジン 0. 4 部の混合物)とを混練した後、シート状の共役ジェン系ゴム組成物 VIIIを取り出した。 この未架橋共役ジェン系ゴム組成物 VIIIの加工性を評価した。結果を表 6に示す。 未架橋共役ジェン系ゴム組成物 VIIIを、 160°Cで 30分間プレス架橋して試験片を 作製し、低発熱性、ウエットグリップ性、耐摩耗性および引張強度の測定を行なった。 結果を、表 6に、比較例 6を 100とする指数で示す。
[0120] 比較例 5
(共役ジェン系ゴム viii_3の製造)
ポリオルガノシロキサン Cに代えて、テトラメトキシシランを用い、かつ、その n-プチ ノレリチウムに対する添カ卩比率を 0. 3倍モルとした他は、共役ジェン系ゴム viii-lの製 造と同様な手法により固形状の共役ジェン系ゴム viii-3を得た。その分析結果を表 5 に示す。
[0121] (共役ジェン系ゴム組成物 IXの調製) 共役ジェン系ゴム viii-1に代えて共役ジェン系ゴム viii-3を用いた他は、実施例 4と 同様な手法により、共役ジェン系ゴム viii-2および共役ジェン系ゴム viii-3から、共役 ジェン系ゴム組成物 IXを製造し、この未架橋ゴム組成物 IXの加工性およびその架橋 物の特性を評価した。評価結果を表 6に示す。
[表 5]
Figure imgf000041_0001
[表 6] 実施例 比較例
4 5
共役ジェン系ゴム組成犓 V!il IX
ゴム組成物の特性
未架橘ゴムの加工性 (点) 5 5
ffi発熱性 (措数) 86 100
ウエットダリップ性 (措数) 108 100
耐摩耗性 (措数) 1 11 100
引張強度特性 (指数) 1 15 100
[0124] 注: ゴム組成物 VIII中のゴム成分は、共役ジェン系ゴム viii-1
+共役ジェン系ゴム viii-2 +天然ゴム
ゴム組成物 IX中のゴム成分は、共役ジェン系ゴム viii-2
+共役ジェン系ゴム viii-3 +天然ゴム
[0125] 実施例 5
(共役ジェン系ゴム x-1の製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、スチレン 270g、 1 , 3—ブタジ ェン 300g、イソプレン 30gおよびテトラメチルエチレンジァミン 2. 9ミリモルを仕込ん だ後、 n -ブチルリチウムを、重合に関与しない不純物の中和分と重合反応分の総量 として 5. 7ミリモル加え、 45°Cで重合を開始した。重合を開始してから 20分経過後、 スチレン 80gと 1 , 3—ブタジエン 320gの混合物を 60分間力けて連続的に添カロした。 重合反応中の最高温度は 65°Cであった。
連続添加終了後、さらに 60分間重合反応を継続し、イソプレン 8gを添加し、 10分 間反応を継続し、重合転化率が 100%になったことを確認してから、実施例 1と同様 にゲル ·パーミエーシヨン'クロマトグラフ分析の試料を得た。
[0126] 少量の重合溶液をサンプリングした直後に、使用した n—ブチルリチウムの 0. 02倍 モルに相当する量のポリオノレガノシロキサン Dを 10%キシレン溶液の状態で添カロし、 30分間反応させた後、重合停止剤として、使用した n—ブチルリチウムの 2倍モルに 相当する量のメタノールを添加して共役ジェン系ゴム x_lを含有する重合溶液を得た 。共役ジェン系ゴム x-1の分析結果を表 7に示す。 ゴム分 100部に対して、老化防止剤として、ィルガノックス 1520 0. 14部およびプ ロセスオイル(Enerthenel849A) 37. 5部を上記の重合溶液に添加した後、スチー ムストリツビングにより、重合溶媒を除去し、 60°Cで 24時間真空乾燥して、固形状の 共役ジェン系ゴム x-1を得た。
[0127] (共役ジェン系ゴム x-2の製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、テトラメチルエチレンジァミン 8. 6ミリモルおよび n—ブチルリチウムを重合に関与しなレ、不純物の中和分と重合反 応分の 量として 29. 0ミリモノレを仕込んだ'後、スチレン 350g、 1, 3_ブタジエン 650 gを 90分間かけて連続的に添加した。 45°Cで重合を開始し、重合反応中の最高温 度は 50°Cであった。
連続添加終了後、さらに 30分間重合反応を継続し、重合転化率が 100%になった ことを確認してから、実施例 1と同様にゲル'パーミエーシヨン'クロマトグラフ分析の試 料を得た。
少量の重合溶液をサンプリングした直後に、使用した n—ブチルリチウムの 0. 008 倍モルに相当する量のポリオノレガノシロキサン Cを 10%キシレン溶液の状態で添カロ し、 15分間反応させた後、重合停止剤として、使用した n-ブチルリチウムの 1. 5倍モ ルに相当する量のメタノールを添加して共役ジェン系ゴム x-2を含有する重合溶液を 得た。共役ジェン系ゴム x-1と同様に、共役ジェン系ゴム x-2を分析した結果を表 7に 示す。
[0128] (共役ジェン系ゴム x-3の製造)
攪拌機付きオートクレーブに、シクロへキサン 4000g、 1 , 3_ブタジエン 500gおよ びテトラメチルエチレンジァミン 0. 2ミリモルを仕込んだ後、 n—ブチルリチウムを、重 合に関与しない不純物の中和分と重合反応分の総量として 8. 9ミリモルカ卩え、 50°C で重合を開始した。重合を開始してから 20分経過後、 1, 3_ブタジエン 500gの混合 物を 30分間かけて連続的に添加した。重合反応中の最高温度は 80°Cであった。 連続添加終了後、さらに 20分間重合反応を継続し、重合転化率が 100%になった ことを確認してから、 20%シクロへキサン溶液とした四塩化錫を 0. 7ミリモル加え、 15 分間反応させた。次いで 10%キシレン溶液とした N—メチルー ε—力プロラタタム(ΝΜ C)を 4· 5ミリモル加え、 15分間反応させた後、使用した η—ブチルリチウムの 2倍モル に相当する量のメタノールを添加して共役ジェン系ゴム χ-3を含有する重合溶液を得 た。
得られた重合溶液から、実施例 1と同様の操作を行って、固形状の共役ジェン系ゴ ム Χ-3を得た。結果を表 7に示す。
[0129] (共役ジェンゴム組成物 Xの調製)
容量 250mlのブラベンダータイプミキサー中で、 110部の固形状共役ジェン系ゴム X— 1と 27. 5部の?しィ匕重合 SBR(Nipol 1712、 日本ゼ才ン社製)を 30禾少素練りし、 次いでシリカ(Zeosill65GR、ローディア社製) 55部とシランカップリング剤(Si69) 6 . 8部を添加して、 110°Cを開始温度として 1. 5分間混練後、プロセスオイル (Enert henel849A) 12. 5部、シリカ(Zeosill65GR) 30. 7部、酸ィ匕亜鉛 2部、ステアリン 酸 2部、および老化防止剤(ノクラック 6C) 2部を添加し、さらに 2分間混練し、ミキサ 一からゴム混練物(χ-a)を排出させた。混鍊終了時のゴム混練物の温度は 150°Cで あった。
[0130] 別途、容量 250mlのブラベンダータイプミキサー中で、 67部の共役ジェン系ゴム x-3と 45. 5部の乳化重合 SBR(Nipol 1712)を 30秒素練りし、次いでカーボンブラ ック(シースト 7ΗΜ)66· 7部、プロセスオイル(Enerthenel849A)4部、酸化亜鉛 5 部、ステアリン酸 2部、および老化防止剤(ノクラック 6C) 2部を添加し、 110°Cを開始 温度として 2. 5分間混練し、ミキサーからゴム混練物 (x-b)を排出させた。混鍊終了 時のゴム混練物の温度は 150°Cであつた。
ゴム混練物を、室温まで冷却した後、ゴム混練物(x-a) 174部とゴム混練物(x-b) 5 7. 7部をブラベンダータイプミキサー中で、 110°Cを開始温度として 2分間混練した 後、ミキサーからゴム混練物 (x_c)を排出させた。
[0131] 50°Cのオープンロールで、上記の混練物 (x_c)と、硫黄 1. 5部および架橋促進剤( N—シクロへキシルー 2_ベンゾチアジルスルフェンアミド 1. 7部とジフエニルダァニジ ン 1. 5部の混合物)とを混練した後、シート状の共役ジェン系ゴム組成物 Xを取り出し た。未架橋共役ジェン系ゴム組成物 Xの加工性を評価し、表 8に示す。
未架橋共役ジェン系ゴム組成物 Xを、 160°Cで 30分間プレス架橋して試験片を作 製し、低発熱性、ウエットグリップ性、耐摩耗性および引張強度の測定を行なった。結 果を、表 8に、比較例 6を 100とする指数で示す。
[0132] 実施例 6
(共役ジェン系ゴム組成物 XIの調製)
共役ジェン系ゴム x-1を含有する重合体溶液および共役ジェン系ゴム x_2を含有す る重合体溶液を、共役ジェン系ゴム x_lと x-2がそれぞれ 4 : 1となるように、 30分間、 混合、攪拌し、重合体溶液を得た。得られたゴム分 100部に対して、老化防止剤とし て、イノレガノックス 1520 0. 14部およびプロセスオイル(Enerthenel849A) 37. 5 部を上記の重合溶液に添加した後、スチームストリッピングにより、重合溶媒を除去し 、 60°Cで 24時間真空乾燥して、固形状の共役ジェン系ゴム組成物 XIを得た。
[0133] (共役ジェン系ゴム組成物 XIIの調製)
固形状の共役ジェン系ゴム x_lに代えて共役ジェン系ゴム組成物 XIを用いた他は 、実施例 5と同様に混練し、共役ジェン系ゴム組成物 XIIを調製した。共役ジェン系ゴ ム組成物 XIIの評価結果を表 8に示す。
[0134] 比較例 6
(共役ジェン系ゴム x-4の製造)
ポリオルガノシロキサンに代えて、テトラメトキシシランとし、その添加比率を 0· 3倍 モルとした他は、共役ジェン系ゴム x-1の製造条件と同様に行なレ、、共役ジェン系ゴ ム x-4を得た。固形状の共役ジェン系ゴム x-1と同様に行なレ、、固形状の共役ジェン 系ゴム x-4を得た。
[0135] (共役ジェン系ゴム組成物 XIIIの調製)
共役ジェン系ゴム x-1に代えて固形状共役ジェン系ゴム x_4を用レ、、共役ジェン系 ゴム X-3に代えてローシス—ポリブタジエンゴム(Nipol BR1242, 日本ゼオン社製) を用いた他は、実施例 5と同様に混練し、共役ジェン系ゴム組成物 ΧΠΙを調製した。 共役ジェン系ゴム組成物 ΧΙΠの評価結果を表 8に示す。
[0136] [表 7] 製造倒
X- 1 X- 2 X - 3 x-4 重合体 (A)
ポリオルガノシロキサン D C 一 - ポリオルガノシロキサンの使用量
( π-ブチルリチウム 1 モルに対するモル比) 0. 02 0.008 - シラン化合物の使用量 - - - ( π -プチルリチウム 1 モルに対するモル比) 0. 3 重合体 (B)
反応化合襖 - ― ―
SnC I 4
共役ジェン系ゴム X- 1 x-2 x-3 X - 4 反応前のピーク分子量 400000 60000 250000 400000 重量平均分子量 960000 140000 410000 730000 重合体 (A)の重量平均分子量 1390000 240000 - 1250000 重合体 (8)の重量平均分子量 410000 - スチレン単位量 (. ) 35 35 0 35 ビニル結合含有量 ( ) 40 40 n 40
3分岐の靈合体量 ( 》 21 18 - 20
4分岐以上の重合体量 ( % ) 17 10 - 5
3分岐以上の重合体 (重合体 (A) ) 釁 (%) 37 28 - 25
[表 8]
Figure imgf000046_0001
注: ゴム組成物 X中のゴム成分は、共役ジェン系ゴム x-1 +共役ジェン系ゴム x-3 + SBR
ゴム組成物 XII中のゴム成分は、共役ジェン系ゴム組成物 XI (共役ジェン系ゴム x-1 +共役ジェン系ゴム x-2) +共役ジェン系ゴム x-3 +SBR
ゴム組成物 xm中のゴム成分は、共役ジェン系ゴム x-4 +ローシス'ポリブタジ ェンゴム +SBR
[0139] なお、上記実施例および一部の比較例で用いたポリオルガノシロキサン A Dとし ては、前記一般式(1) (反応前のもの)において、それぞれ以下に示す構造の化合 物を用いた。
[0140] [化 6]
Figure imgf000047_0001
ポリオルガノシ αキサン A (m=80, n = 0, k=120)
X2: -C3H6-0-CH2-CH--CH2
Q
X1, X4, R,〜R3, R5 R8: - CH3 ポリオルガノシロキサン B (m=60, n = 0, k = 30)
X :一し 3 H - C H 2— H -"; CH 2
O
X1, X4, 〜 , R5〜R8:— CH3 ポリオルガノシ Cキサン C (m=40, n = 0, k = 80)
X : - G 3 H g~0~CH 2 -~CH~—CH
O
X1, X4 R R3 R5 R8:— CH, ポリ才ルガノシロキサン D (m=60, n = 0, k = 0)
2: -C3H6-0-CH2-CH--CH2
O
X1, X4, R1~R3, R ', R8:-CH3
[0141] 上記実施例から、以下のようなことがわかる。表 1、表 2において、
比較例 1:ポリオルガノシロキサン Aを多量に添加して得られた共役ジェン系ゴム組 成物 IIIは、 3分枝以上の重合体の量が極めて少なぐ未架橋ゴム組成物の加工性、 および架橋ゴムの低発熱性、ウエットグリップ性、耐摩耗性および引張り強度に劣る。 比較例 2:官能基含有化合物(EAB)を反応させず、かつポリオルガノシロキサンに 代えてテトラメトキシシランを反応させた場合は、 3分枝以上の重合体を相当量含む ものの、未架橋ゴム組成物の加工性、および架橋ゴムの低発熱性、ウエットグリップ性 および耐摩耗性は著しく劣る。
比較例 3:官能基含有化合物 (EAB)に代えてメタノールを用いた場合は、 3分枝以 上の重合体が多量に生成するものの、未架橋ゴム組成物の加工性は良好である力 架橋ゴムの低発熱性、ウエットグリップ性、耐摩耗性および引張強度に劣る。
[0142] これらの比較例に比べ、本発明で規定する範囲内で製造し、 3分岐以上の重合体 を多量に含む実施例 1、 2の共役ジェン系ゴム組成物は、未架橋ゴム組成物の加工 性に優れ、かつ、架橋ゴムは低発熱性、ウエットグリップ性および耐摩耗性に優れて いる。
ポリオルガノシロキサンと官能基含有化合物(NMP、 NPP、 NMC、 SnCl )とをそ
4 れぞれ別個に反応させた共役ジェン重合体をブレンドすることによつても、加工性に 優れた未架橋ゴム組成物、および低発熱性、ウエットグリップ性および耐摩耗性に優 れた架橋ゴム組成物が得られる(実施例 3と比較例 4との比較 (表 3、表 4);実施例 4と 比較例 5との比較(表 5、表 6);実施例 5, 6と比較例 6との比較 (表 7、表 8) )。
産業上の利用可能性
[0143] 本発明の共役ジェン系ゴム組成物は、シリカを配合したときに優れた加工性を示し 、そのゴム架橋物は、低発熱性、ウエットグリップ性および耐摩耗性に優れている。 従って、そのゴム架橋物は、その特性を生かす各種用途、例えばトレッド、カーカス 、サイドウォール、インナーライナ一、ビード部などのタイヤ各部位への利用、または ホース、窓枠、ベルト、靴底、防振ゴム、 自動車部品などのゴム製品への利用、さらに は耐衝撃性ポリスチレン、 ABS樹脂などの樹脂強化ゴムとして利用できる。特に低燃 費タイヤのトレッド用材料として好適である。

Claims

請求の範囲 少なくとも 3以上の共役ジェン系重合体鎖が下記一般式(1)、(2)、(3)で表されるポ リオルガノシロキサンの中から選ばれる少なくとも一種を介して結合された構造を有し ている重量平均分子量が 1, 000— 3, 000, 000の共役ジェン系ゴム(A) 5— 95重 量0 /0、および、分子内に >C =〇基、 > C = S基、アミノ基、イミノ基、エポキシ基、ピリ ジノレ基、アルコキシル基、ハロゲンからなる群より選ばれる少なくとも一種の官能基を 有する化合物と反応した重量平均分子量が 1 , 000— 3, 000, 000の共役ジェン系 ゴム(B) 95— 5重量%を含んでなる共役ジェン系ゴム,組成物。 一般式 (1) :
[化 1]
' - S i—— 0- •S i -O- — S i— O -S i— - o- -S i ~ R j
m
X X ' X ' R 1 X
(上式において、 R1 R8は、炭素数 1一 6のアルキル基または炭素数 6— 12のァリー ル基であり、これらは互いに同一であっても相違してもよレ、。 X1および X4は、 (i)その 一部が活性共役ジェン系重合体鎖末端の活性金属と反応する官能基であって、残 部が該官能基から導かれる基または単結合である力、または、 (ii)炭素数 1一 6のァ ルキル基もしくは炭素数 6— 12のァリール基であり、 X1および X4は互いに同一であ つても相違してもよい。 X2は、その一部が活性共役ジェン系重合体鎖末端の活性金 属と反応する官能基であって、残部が、該官能基から導かれる基もしくは単結合であ る。 X3は、 2— 20のアルキレングリコールの繰返し単位を含有する基であり、 X3の一 部は 2— 20のアルキレングリコールの繰返し単位を含有する基から導かれる基であ つてもよレヽ。 miま 3— 200の整数、 ηίま 0— 200の整数、 kiま 0— 200の整数である。 ) 一般式 (2) :
[化 2]
(式中、 R9— R16は、炭素数 1一 6のアルキル基または炭素数 6— 12のァリール基であ り、これらは互いに同一であっても相違してもよい。 X5— X8は、その一部が活性共役 ジェン系重合体鎖末端の活性金属と反応する官能基であって、残部が該官能基か ら導かれる基または単結合である。 )
一般式 (3) :
[化 3]
Figure imgf000050_0001
(式中、 R17 R19は、炭素数 1一 6のアルキル基または炭素数 6— 12のァリール基で あり、これらは互いに同一であっても相違してもよい。 X9— X11は、その一部が活性共 役ジェン系重合体鎖末端の活性金属と反応する官能基であって、残部が該官能基 から導かれる基または単結合である。 sは 1一 18の整数である。 )
[2] 共役ジェン系ゴム (A)および共役ジェン系ゴム (B)を構成する重合体鎖が、共役ジ ェン単量体単位 50— 100重量%および芳香族ビニル単量体単位 50— 0重量%か らなる請求項 1に記載の共役ジェン系ゴム組成物。
[3] 共役ジェン系ゴム(A)および共役ジェン系ゴム(B)の共役ジェン単量体単位中のビ ニル結合含有量が 5— 95量%である請求項 1に記載の共役ジェン系ゴム組成物。
[4] 一般式(1)において、 X1、 X2および X4を構成する活性共役ジェン系重合体鎖末端 の活性金属と反応する官能基が、炭素数 1一 5のアルコキシル基、 2—ピロリドニル基 を含有する炭化水素基、およびエポキシ基を含有する炭素数 4一 12の基の中から選 ばれる基である請求項 1に記載の共役ジェン系ゴム組成物。
[5] 一般式(1)において、 X1、 X2および X4を構成する活性共役ジェン系重合体鎖末端 の活性金属と反応する官能基が、下記一般式 (4):
Figure imgf000051_0001
\ /
(式中、 jは 2— 10の整数である。)で表される、 2_ピロリドニル基を有する炭化水素基 である請求項 4に記載の共役ジェン系ゴム組成物。
[6] 一般式(1)において、 X1、 X2および X4を構成する活性共役ジェン系重合体鎖末端 の活性金属と反応する官能基が、下記一般式 (5):
Z Y E
(式中、 Zは炭素数 1一 10のアルキレン基またはアルキルァリーレン基であり、 Yはメ チレン基、硫黄原子または酸素原子であり、 Eはエポキシ基を有する炭素数 2 10の 炭化水素基である。)で表される、エポキシ基を有する炭素数 4一 12の基である請求 項 4に記載の共役ジェン系ゴム組成物。
[7] 一般式(1)において、 X3を構成する 2— 20のアルキレングリコールの繰返し単位を含 有する基が、下記一般式 (6) :
Figure imgf000052_0001
R J
(式中、 tは 2— 20の整数であり、 Pは炭素数 2— 10のアルキレン基またはアルキルァ リーレン基であり、 Rは水素原子またはメチル基であり、 Qは炭素数 1一 10のアルコキ シル基またはァリーロキシ基であって、 Qの一部は単結合であってもよレ、。)で表され る基である請求項 1に記載の共役ジェン系ゴム組成物。
[8] 少なくとも 4以上の共役ジェン系重合体鎖が一般式(1)、(2)、 (3)で表されるポリオ ルガノシロキサンの少なくとも一種を介して結合された構造を有する共役ジェン系ゴ ムカ 共役ジェン系ゴム (A)の 2— 90重量%を占める請求項 1に記載の共役ジェン 系ゴム組成物。
[9] さらに、シリカおよびカーボンブラックの中から選ばれる少なくとも一種の充填剤を、 共役ジェン系ゴム組成物中の共役ジェン系ゴム合計量 100重量部に基づき、 5— 15 0重量部含有する請求項 1に記載の共役ジェン系ゴム組成物。
[10] 充填剤として、シリカ、または、シリカとカーボンブラックの両者を含む請求項 9に記載 の共役ジェン系ゴム組成物。
[11] さらに、ガラス転移温度が— 120°C— 200°Cであり、かつ、重量平均分子量が 1 , 000 一 3, 000, 000である重合体を、共役ジェン系ゴム組成物中の共役ジェン系ゴム合 計量 100重量部に基づき、 900重量部以下含有する請求項 1に記載の共役ジェン 系ゴム組成物。
[12] 請求項 1に記載の共役ジェン系ゴム組成物を製造する方法であって、不活性溶媒中 で、共役ジェン単量体または共役ジェン単量体および芳香族ビュル単量体を有機 活性金属を用いて重合して得られた、末端に活性金属を有する活性共役ジェン系 重合体鎖に、重合に使用した有機活性金属 1モル当たり、 0. 001モルを超え、 0. 1 モル未満の量の、該活性共役ジェン系重合体鎖末端の活性金属と反応しうる官能 基を有する一般式(1)、(2)、(3)で表されるポリオルガノシロキサン [ただし、一般式 (1)において、 X1および X4は、活性共役ジェン系重合体鎖末端の活性金属と反応 する官能基であるカ または、炭素数 1一 6のアルキル基もしくは炭素数 6— 12のァリ ール基であり、 X2は、活性共役ジェン系重合体鎖末端の活性金属と反応する官能 基であり、 X3は、 2— 20のアルキレングリコールの繰返し単位を含有する基である。 一般式 (2)において、 X5 X8は、活性共役ジェン系重合体鎖末端の活性金属と反 応する官能基である。一般式 (3)において、 X9— X11は、活性共役ジェン系重合体鎖 末端の活性金属と反応する官能基である。 ]の中から選ばれる少なくとも一種を反応 させた重量平均分子量が 1, 000 3, 000, 000の共役ジェン系ゴム(A)の重合体 溶液と、分子内に > C = 0基、 >C = S基、アミノ基、イミノ基、エポキシ基、ピリジノレ基 、アルコキシル基、ハロゲンからなる群より選ばれる少なくとも一種の官能基を有する 化合物と反応した重量平均分子量が 1, 000— 3, 000, 000の共役ジェン系ゴム(B )の重合体溶液とを混合し、次いで、混合液から溶媒を分離してゴムを回収することを 特徴とする共役ジェン系ゴム組成物の製造方法。
請求項 1に記載の共役ジェン系ゴム組成物を製造する方法であって、不活性溶媒中 で、共役ジェン単量体または共役ジェン単量体および芳香族ビュル単量体を有機 活性金属を用いて重合して得られた、重合体鎖末端に活性金属を有する活性共役 ジェン系重合体鎖の 5— 95重量%に、分子内に >C = 0基、 >C = S基、アミノ基、ィ ミノ基、エポキシ基、ピリジノレ基、アルコキシル基、ハロゲンからなる群より選ばれる少 なくとも一種の官能基を有する化合物を反応せしめ、次いで、残部の活性共役ジェ ン系重合体鎖の 10— 100重量%に、残部の有機活性金属 1モル当たり、 0. 001モ ルを超え、 0. 1モル未満の量の、該活性共役ジェン系重合体鎖末端の活性金属と 反応しうる官能基を有する一般式(1)、 (2)、 (3)で表されるポリオルガノシロキサン [ ただし、一般式(1)において、 X1および X4は、活性共役ジェン系重合体鎖末端の活 性金属と反応する官能基である力 \または、炭素数 1一 6のアルキル基もしくは炭素 数 6— 12のァリール基であり、 X2は、活性共役ジェン系重合体鎖末端の活性金属と 反応する官能基であり、 X3は、 2— 20のアルキレングリコールの繰返し単位を含有す る基である。一般式 (2)において、 X5— X8は、活性共役ジェン系重合体鎖末端の活 性金属と反応する官能基である。一般式 (3)において、 X9— X11は、活性共役ジェン 系重合体鎖末端の活性金属と反応する官能基である。 ]の中から選ばれる少なくとも 一種を反応させることを特徴とする共役ジェン系ゴム組成物の製造方法。
[14] 一般式(1)で表されるポリオルガノシロキサンであって、一般式(1)の X1、 X2および X 4を構成する活性共役ジェン系重合体鎖末端の活性金属と反応する官能基が、炭素 数 1一 5のアルコキシノレ基、 2_ピロリドニル基を含有する炭化水素基、およびェポキ シ基を含有する炭素数 4一 12の基の中から選ばれる基であるポリオノレガノシロキサン を用いる請求項 12または 13に記載の共役ジェン系ゴム組成物の製造方法。
[15] 重合体鎖末端に活性金属を有する活性共役ジェン系重合体鎖が、共役ジェン単量 体、または、共役ジェン単量体と芳香族ビニル単量体の両者を有機活性金属を用い 、かつ、極性化合物の共存下に重合して得られたものである請求項 12または 13に記 載の共役ジェン系ゴム組成物の製造方法。
[16] 共役ジェン系ゴム (A) 100重量部あたりシリカを 0 150重量部充填したゴム組成物 と、共役ジェン系ゴム(B) 100重量部あたりカーボンブラックを 0— 150重量部充填し たゴム組成物とを混合することを特徴とする請求項 9に記載の共役ジェン系ゴム組成 物の製造方法。
[17] 請求項 1に記載の共役ジェン系ゴム組成物を架橋してなるゴム架橋物。
[18] タイヤである請求項 17に記載のゴム架橋物。
PCT/JP2004/012660 2003-09-01 2004-09-01 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物 WO2005021637A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2004800327516A CN1878830B (zh) 2003-09-01 2004-09-01 共轭二烯类橡胶组合物、其制造方法及橡胶交联物
JP2005513524A JP4670639B2 (ja) 2003-09-01 2004-09-01 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物
US10/570,025 US7700693B2 (en) 2003-09-01 2004-09-01 Conjugated diene rubber compostion, process for producing the same and rubber vulcanizate
KR1020067004210A KR101113618B1 (ko) 2003-09-01 2004-09-01 공액 디엔계 고무 조성물, 그 제조방법 및 고무 가교물
EP04772616A EP1661946B1 (en) 2003-09-01 2004-09-01 Conjugated diene rubber compositions, process for production of the same and products of crosslinking thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003308391 2003-09-01
JP2003-308391 2003-09-01

Publications (1)

Publication Number Publication Date
WO2005021637A1 true WO2005021637A1 (ja) 2005-03-10

Family

ID=34269512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012660 WO2005021637A1 (ja) 2003-09-01 2004-09-01 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物

Country Status (6)

Country Link
US (1) US7700693B2 (ja)
EP (1) EP1661946B1 (ja)
JP (1) JP4670639B2 (ja)
KR (1) KR101113618B1 (ja)
CN (1) CN1878830B (ja)
WO (1) WO2005021637A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270020A (ja) * 2006-03-31 2007-10-18 Nippon Zeon Co Ltd シロキサン構造含有重合体、変性基体重合体組成物、基材重合体組成物、補強性重合体組成物及び加硫性ゴム組成物
JP2009084413A (ja) * 2007-09-28 2009-04-23 Nippon Zeon Co Ltd ポリブタジエンゴム、タイヤ用ゴム組成物、およびタイヤ
JP2009179754A (ja) * 2008-01-31 2009-08-13 Nippon Zeon Co Ltd ベーストレッド用ゴム組成物
WO2010061802A1 (ja) * 2008-11-25 2010-06-03 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP2010126656A (ja) * 2008-11-28 2010-06-10 Nippon Zeon Co Ltd ランフラットタイヤ用ゴム組成物、及びランフラットタイヤ用架橋成形体
KR20120138752A (ko) * 2010-02-26 2012-12-26 제온 코포레이션 공액 디엔계 고무, 고무 조성물, 고무 가교물, 및 타이어, 그리고 공액 디엔계 고무의 제조 방법
JP5240410B2 (ja) * 2010-12-03 2013-07-17 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5240409B2 (ja) * 2010-12-03 2013-07-17 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2013122237A1 (ja) * 2012-02-15 2013-08-22 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
DE112011103992T5 (de) 2010-12-03 2013-08-29 The Yokohama Rubber Co., Ltd. Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen
JP2016037601A (ja) * 2014-08-07 2016-03-22 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
JP2016037602A (ja) * 2014-08-07 2016-03-22 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
JP2020007532A (ja) * 2018-06-28 2020-01-16 旭化成株式会社 変性共役ジエン系重合体混合物の製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4097688B2 (ja) * 2005-08-08 2008-06-11 横浜ゴム株式会社 変性共役ジエン系重合体ゴム及びそれを含むゴム組成物
US7932316B2 (en) * 2006-12-30 2011-04-26 Bridgestone Corporation Processable rubber composition
KR20100015402A (ko) * 2007-03-21 2010-02-12 바스프 에스이 고무 배합용 가공 안정화제
SG159473A1 (en) 2008-08-27 2010-03-30 Sumitomo Chemical Co Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer
JP5691623B2 (ja) * 2010-02-26 2015-04-01 住友化学株式会社 共役ジエン系重合体ゴム、及び、共役ジエン系重合体ゴム組成物
US9006328B2 (en) 2010-08-25 2015-04-14 Daikin Industries, Ltd. Fluororubber composition
US8754161B2 (en) 2010-08-25 2014-06-17 Daikin Industries, Ltd. Complex-shaped fluororubber formed product
US9068653B2 (en) 2010-08-25 2015-06-30 Daikin Industries, Ltd. Sealing material
US11054066B2 (en) 2010-08-25 2021-07-06 Daikin Industries, Ltd. Hose
JP6132552B2 (ja) * 2010-08-25 2017-05-24 ダイキン工業株式会社 ベルト材
US9045614B2 (en) 2010-08-25 2015-06-02 Daikin Industries, Ltd. Fluororubber composition
JP5247852B2 (ja) 2010-11-05 2013-07-24 住友ゴム工業株式会社 空気入りタイヤの製造方法
JP5225431B2 (ja) * 2010-12-06 2013-07-03 住友ゴム工業株式会社 ストリップ、その製造方法および空気入りタイヤの製造方法
PL2495267T3 (pl) 2011-03-04 2017-08-31 Trinseo Europe Gmbh Wysokostyrenowy wysokowinylowy kauczuk styrenowo-butadienowy i metody jego uzyskiwania
US20140018479A1 (en) * 2011-03-24 2014-01-16 Jsr Corporation Rubber composition and manufacturing process therefor, and tire
ES2695042T3 (es) 2011-06-22 2018-12-28 Trinseo Europe Gmbh Caucho estireno-butadieno con alto contenido de estireno y vinilo con distribución de peso molecular estrecha y procedimientos para su preparación
JP5376027B2 (ja) 2012-03-08 2013-12-25 横浜ゴム株式会社 タイヤ用ゴム組成物
EP2845867B1 (en) * 2012-09-28 2017-04-05 Zeon Corporation Method for producing conjugated diene rubber
TWI486366B (zh) 2012-12-20 2015-06-01 Chi Mei Corp 改質的共軛二烯聚合物及其合成方法
WO2015029909A1 (ja) * 2013-08-30 2015-03-05 横浜ゴム株式会社 タイヤ用ゴム組成物及びこれを用いる空気入りタイヤ
KR101704862B1 (ko) * 2013-09-30 2017-02-08 주식회사 엘지화학 개질 공액 디엔계 중합체, 그 제조방법 및 고무 조성물
KR20180022821A (ko) * 2015-06-26 2018-03-06 니폰 제온 가부시키가이샤 공액 디엔계 고무의 제조 방법
TWI716512B (zh) * 2016-12-16 2021-01-21 奇美實業股份有限公司 末端改質的共軛二烯-乙烯基芳香烴共聚物及其合成方法、橡膠組合物及輪胎
US11566094B2 (en) * 2017-10-13 2023-01-31 Zeon Corporation Modified conjugated diene rubber
JP2023535653A (ja) * 2020-08-07 2023-08-18 ブリヂストン ヨーロッパ エヌブイ/エスエイ ボディプライスキムコンパウンド

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110904A (ja) 1995-10-19 1997-04-28 Sumitomo Chem Co Ltd 変性ジエン系重合体ゴムの製造方法
JPH107702A (ja) 1996-03-20 1998-01-13 Goodyear Tire & Rubber Co:The シリカとの相互作用性が向上したゴム
JPH10316800A (ja) 1997-05-07 1998-12-02 Michelin & Cie ゴム組成物
US5929149A (en) 1996-12-17 1999-07-27 Sumitomo Rubber Industries, Ltd. Rubber composition for tire tread
JP2002080534A (ja) 2000-09-07 2002-03-19 Asahi Kasei Corp 変性ジエン系重合体及びその製造方法
WO2003102053A1 (fr) * 2002-05-31 2003-12-11 Zeon Corporation Caoutchouc dienique conjugue, procede de fabrication et composition de caoutchouc

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1486807A (en) 1973-06-20 1977-09-28 Mobil Oil Corp Organic reinforcing fillers for silicone rubber
US4657965A (en) * 1984-10-22 1987-04-14 Toshiba Silicone Co., Ltd. Silicone elastomer composition
JP2000273177A (ja) 1999-03-18 2000-10-03 Tokai Rubber Ind Ltd ジエン系ポリマー用硬化剤およびそれを用いたジエン系ポリマー組成物
KR20020027628A (ko) * 2000-07-11 2002-04-13 나까니시 히로유끼 고무 조성물 및 그 용도
AU2002210913A1 (en) * 2000-10-25 2002-05-06 Asahi Kasei Kabushiki Kaisha Hydrogenated polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110904A (ja) 1995-10-19 1997-04-28 Sumitomo Chem Co Ltd 変性ジエン系重合体ゴムの製造方法
JPH107702A (ja) 1996-03-20 1998-01-13 Goodyear Tire & Rubber Co:The シリカとの相互作用性が向上したゴム
US5929149A (en) 1996-12-17 1999-07-27 Sumitomo Rubber Industries, Ltd. Rubber composition for tire tread
JPH10316800A (ja) 1997-05-07 1998-12-02 Michelin & Cie ゴム組成物
JP2002080534A (ja) 2000-09-07 2002-03-19 Asahi Kasei Corp 変性ジエン系重合体及びその製造方法
WO2003102053A1 (fr) * 2002-05-31 2003-12-11 Zeon Corporation Caoutchouc dienique conjugue, procede de fabrication et composition de caoutchouc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1661946A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270020A (ja) * 2006-03-31 2007-10-18 Nippon Zeon Co Ltd シロキサン構造含有重合体、変性基体重合体組成物、基材重合体組成物、補強性重合体組成物及び加硫性ゴム組成物
JP2009084413A (ja) * 2007-09-28 2009-04-23 Nippon Zeon Co Ltd ポリブタジエンゴム、タイヤ用ゴム組成物、およびタイヤ
JP2009179754A (ja) * 2008-01-31 2009-08-13 Nippon Zeon Co Ltd ベーストレッド用ゴム組成物
WO2010061802A1 (ja) * 2008-11-25 2010-06-03 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP2010126656A (ja) * 2008-11-28 2010-06-10 Nippon Zeon Co Ltd ランフラットタイヤ用ゴム組成物、及びランフラットタイヤ用架橋成形体
KR20120138752A (ko) * 2010-02-26 2012-12-26 제온 코포레이션 공액 디엔계 고무, 고무 조성물, 고무 가교물, 및 타이어, 그리고 공액 디엔계 고무의 제조 방법
JPWO2011105362A1 (ja) * 2010-02-26 2013-06-20 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
JP5716736B2 (ja) * 2010-02-26 2015-05-13 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
KR101702697B1 (ko) * 2010-02-26 2017-02-06 제온 코포레이션 공액 디엔계 고무, 고무 조성물, 고무 가교물, 및 타이어, 그리고 공액 디엔계 고무의 제조 방법
JP5240409B2 (ja) * 2010-12-03 2013-07-17 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
DE112011103992B9 (de) 2010-12-03 2018-04-12 The Yokohama Rubber Co., Ltd. Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen, vulkanisiertes Produkt davon und dessen Verwendung in einer Reifenlauffläche eines Luftreifens
DE112011104012T5 (de) 2010-12-03 2013-08-29 The Yokohama Rubber Co., Ltd. Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen
DE112011103992T5 (de) 2010-12-03 2013-08-29 The Yokohama Rubber Co., Ltd. Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen
JPWO2012073838A1 (ja) * 2010-12-03 2014-05-19 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5240410B2 (ja) * 2010-12-03 2013-07-17 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
DE112011104012B9 (de) 2010-12-03 2017-08-03 The Yokohama Rubber Co., Ltd. Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen, vulkanisiertes Produkt davon und dessen Verwendung in einer Reifenlauffläche eines Luftreifens
JP2013166864A (ja) * 2012-02-15 2013-08-29 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
US9139721B2 (en) 2012-02-15 2015-09-22 The Yokohama Rubber Co., Ltd. Rubber composition for tire treads
WO2013122237A1 (ja) * 2012-02-15 2013-08-22 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP2016037602A (ja) * 2014-08-07 2016-03-22 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
JP2016037601A (ja) * 2014-08-07 2016-03-22 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
JP2020007532A (ja) * 2018-06-28 2020-01-16 旭化成株式会社 変性共役ジエン系重合体混合物の製造方法
JP7280115B2 (ja) 2018-06-28 2023-05-23 旭化成株式会社 変性共役ジエン系重合体混合物の製造方法

Also Published As

Publication number Publication date
CN1878830A (zh) 2006-12-13
KR20060133951A (ko) 2006-12-27
US20080275184A1 (en) 2008-11-06
KR101113618B1 (ko) 2012-02-17
US7700693B2 (en) 2010-04-20
CN1878830B (zh) 2012-07-04
EP1661946A1 (en) 2006-05-31
JPWO2005021637A1 (ja) 2007-11-01
EP1661946B1 (en) 2012-12-26
JP4670639B2 (ja) 2011-04-13
EP1661946A4 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2005021637A1 (ja) 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物
JP4367338B2 (ja) 共役ジエン系ゴム、その製造方法、ゴム組成物およびゴム架橋物
KR101702697B1 (ko) 공액 디엔계 고무, 고무 조성물, 고무 가교물, 및 타이어, 그리고 공액 디엔계 고무의 제조 방법
JP4000874B2 (ja) 油展ゴムおよびゴム組成物
JP5245346B2 (ja) 共役ジエン重合体組成物の製造方法
JP5194846B2 (ja) ベーストレッド用ゴム組成物
WO2007114203A1 (ja) 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ
KR101845375B1 (ko) 공액 디엔계 고무, 고무 조성물, 고무 가교물, 및 타이어
JP4492788B2 (ja) 共役ジエン系ゴム組成物およびゴム架橋物
JP5515206B2 (ja) ポリブタジエンゴムの製造方法、タイヤ用ゴム組成物、およびタイヤ
JPWO2012073841A1 (ja) タイヤトレッド用ゴム組成物
JP2013001795A (ja) タイヤトレッド用ゴム組成物
WO2000058397A1 (fr) Caoutchouc synthetique etendu a l&#39;huile, son procede de production, composition de caoutchouc, et objet reticule
JP6421521B2 (ja) 共役ジエン系重合体およびゴム組成物
JP6432319B2 (ja) 共役ジエン系重合体およびゴム組成物
WO2015098264A1 (ja) 共役ジエン系重合体および共役ジエン系重合体の製造方法
WO2015152039A1 (ja) 共役ジエン系ゴムの製造方法
JP4131513B2 (ja) 共役ジエン系ゴムの製造方法
JP2004107384A (ja) 共役ジエン系ゴム、ゴム組成物、及び共役ジエン系ゴムの製造方法
JP6155667B2 (ja) ゴム組成物
JP6477226B2 (ja) 共役ジエン系ゴム組成物の製造方法
JP6511872B2 (ja) 共役ジエン系重合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032751.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513524

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067004210

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10570025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004772616

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004772616

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067004210

Country of ref document: KR