WO2005018091A1 - パルス生成回路 - Google Patents

パルス生成回路 Download PDF

Info

Publication number
WO2005018091A1
WO2005018091A1 PCT/JP2003/010295 JP0310295W WO2005018091A1 WO 2005018091 A1 WO2005018091 A1 WO 2005018091A1 JP 0310295 W JP0310295 W JP 0310295W WO 2005018091 A1 WO2005018091 A1 WO 2005018091A1
Authority
WO
WIPO (PCT)
Prior art keywords
mos transistor
type mos
input
pulse
delay circuit
Prior art date
Application number
PCT/JP2003/010295
Other languages
English (en)
French (fr)
Inventor
Kenji Ijitsu
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/010295 priority Critical patent/WO2005018091A1/ja
Priority to JP2005507745A priority patent/JP4173887B2/ja
Publication of WO2005018091A1 publication Critical patent/WO2005018091A1/ja
Priority to US11/319,729 priority patent/US7446589B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/08Clock generators with changeable or programmable clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/10Distribution of clock signals, e.g. skew
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • H03K5/06Shaping pulses by increasing duration; by decreasing duration by the use of delay lines or other analogue delay elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00293Output pulse is a delayed pulse issued after a rising or a falling edge, the length of the output pulse not being in relation with the length of the input triggering pulse

Definitions

  • the present invention relates to a pulse generation circuit applied to clock pulse generation in a circuit such as an LSI.
  • FIG. 18 to FIG. 21 are diagrams showing examples of a conventional pulse generation circuit.
  • the pulse generation circuit shown in FIG. 18 includes a two-input NAND circuit 11, a delay circuit 12 including an odd number of stages of inverters, and an inverter 13.
  • an input pulse signal positive pulse
  • the pulse is input to one input of the NAND circuit 11 and the delay circuit 12 is input to the other input of the NAND circuit 11.
  • a negative pulse having a predetermined delay is input via the input terminal. Therefore, the output of the NAND circuit 11 becomes Lo from the rise of the pulse signal input from the input line CLK to the fall of the output pulse of the delay circuit 12, and this should be inverted by the inverter 13.
  • Generates a pulse c 1 k that is, this pulse generation circuit functions as a so-called chopper that uses an input pulse signal as a pulse width corresponding to the delay.
  • the pulse generation circuit shown in FIG. 19 includes a two-input NOR circuit 14, a delay circuit 16 including even-numbered impellers, and an impeller 13.
  • the pulse is input to one input of the NOR circuit 14 and is input to the other input of the NOR circuit 14 via the delay circuit 12.
  • a pulse having a predetermined delay is input. Therefore, the output of the NOR circuit 14 becomes Lo from the rise of the input pulse signal to the fall of the output pulse of the delay circuit 12, and a pulse is generated by inverting this with the impeller 13. . That is, this pulse generation circuit functions as a so-called extender for increasing the pulse width of the input pulse signal by the delay.
  • the keeper 15 keeps the pulse from the rising edge of the input pulse signal CLK to the rising edge of the output pulse of the delay circuit 21 to generate a dynamic pulse.
  • a type of pulse generation circuit has also been proposed.
  • the pulse generation circuit shown in FIG. 21 has a feedback path, and feeds back an output signal to use for resetting or terminating a pulse (see Patent Document 1).
  • the output may be undefined when the power is turned on. If the pulse generation circuit is configured using SOI (particularly PD-type) CMOS, if the operating cycle fluctuates in the same circuit, the internal timing may be shifted due to the history effect, and a defect may occur. Atsuta.
  • SOI particularly PD-type
  • CMOS complementary metal-oxide-semiconductor
  • the pulse generation circuit of FIG. 20 in the initial state, the input line CLK is Lo, the output of the delay circuit 12 is Hi, the P-type MOS transistor Tr 1 is off, and the second N Since the type MOS transistor Tr 3 is off, the voltage level of the node n 1 is not determined, so that the behavior at power-on becomes unstable. Disclosure of the invention
  • an object of the present invention is to provide a pulse generation circuit with a light input load and capable of self-resetting.
  • the present invention employs the following means in order to achieve the above object.
  • the pulse generation circuit includes: a P-type MOS transistor having a drain electrode connected to the first power supply line;
  • a first N-type MOS transistor having a drain electrode connected to a source electrode of the P-type MOS transistor
  • An input terminal is connected to a source electrode of the P-type MOS transistor and a drain electrode of the first N-type MOS transistor, and a gate electrode of the P-type MOS transistor and a gate of the first N-type MOS transistor are connected.
  • a delay circuit with an output terminal connected to the electrode,
  • An input terminal connected to a source electrode of the P-type MOS transistor and a drain electrode of the second N-type MOS transistor, and an output terminal connected to an output line for outputting a generated pulse;
  • a keeper for maintaining a voltage level of a line to which the input terminal of the input park is connected
  • the pulse generation circuit according to the present invention further includes a P-type MOS transistor having a drain electrode connected to the first power supply line;
  • a first N-type MOS transistor having a drain electrode connected to a source electrode of the P-type MOS transistor and a gate electrode connected to an input line to which an input pulse signal is input;
  • a second N-type MOS transistor having a drain electrode connected to a source electrode of the first N-type MOS transistor and a source electrode connected to a second power supply line; An input terminal is connected to a source electrode of the P-type MOS transistor and a drain electrode of the first N-type MOS transistor, and a gate electrode of the P-type MOS transistor and a second N-type MOS transistor.
  • a delay circuit having an output terminal connected to the gate electrode
  • An impeller having an input terminal connected to a source electrode of the P-type MOS transistor and a drain electrode of the first N-type MOS transistor, and an output terminal connected to an output line for outputting a generated pulse;
  • a keeper for maintaining a voltage level of a line to which an input terminal of the inverter is connected
  • the keeper when the pulse width of the output pulse is shorter than the pulse width of the input pulse signal, the keeper may be a high keeper.
  • the delay circuit connects an input terminal to a source electrode of the P-type MOS transistor and a drain electrode of the first N-type MOS transistor via the inverter, The pulse input from the input terminal may be inverted and output to the gate electrode of the P-type MOS transistor and the gate electrode of the second N-type MOS transistor.
  • the delay circuit may include at least one tap, and may adjust a delay time based on a control signal input via the tap.
  • the delay circuit when the delay circuit receives a stop signal, the voltage levels of the gate electrodes of the P-type MOS transistor and the first N-type MOS transistor are maintained at Hi and the output pulse is output. The output may be stopped.
  • the pulse generation circuit further comprising: a gate circuit between an output terminal of the delay circuit and a good electrode of the first N-type MOS transistor;
  • the gate circuit includes: a chop delay circuit having an input terminal connected to the input line; a NOR circuit having an input terminal connected to an output terminal of the chop delay circuit and an output terminal of the delay circuit, respectively. Pal whose output of the delay circuit is inverted The NOR of the source signal and the pulse signal from the chop delay circuit may be input to the gate electrode of the second N-type MOS transistor.
  • the pulse generation circuit further comprising a gate circuit between an output terminal of the delay circuit and a gate electrode of the second N-type MOS transistor;
  • the gate circuit includes: a delay circuit for a chop in which an input terminal is connected to the input line; and a NOR circuit in which an input terminal is connected to an output terminal of the delay circuit for a chop and an output terminal of the delay circuit.
  • the NOR of the pulse signal obtained by inverting the output of the delay circuit and the pulse signal from the chopping delay circuit may be input to the gate electrode of the first N-type MOS transistor.
  • FIG. 1 is a diagram showing a function block of an LSI I according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a pulse generation circuit according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the operation of the pulse generation circuit.
  • FIG. 4 is a diagram illustrating the operation of the pulse generation circuit.
  • FIG. 5 is a diagram comparing the performance of the present invention and a conventional pulse generation circuit.
  • FIG. 6 is an explanatory diagram of a pulse generation circuit according to the second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a pulse generation circuit according to a third embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of a pulse generation circuit according to a fourth embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a pulse generation circuit according to a fifth embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of a pulse generation circuit according to a sixth embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of a pulse generation circuit according to a seventh embodiment of the present invention.
  • FIG. 12 is an explanatory diagram of a pulse generation circuit according to an eighth embodiment of the present invention.
  • FIG. 13 is an explanatory diagram of a pulse generation circuit according to a ninth embodiment of the present invention.
  • Figure 14 is an explanatory diagram of the operation when the delay period is too short.
  • FIG. 15 is an explanatory diagram of a pulse generation circuit that is Embodiment 10 of the present invention.
  • FIG. 16 is an explanatory diagram of the operation of the pulse generation circuit according to the tenth embodiment.
  • FIG. 17 is an explanatory diagram of a pulse generation circuit according to another embodiment.
  • FIG. 18 is an explanatory diagram of a conventional pulse generation circuit.
  • FIG. 19 is an explanatory diagram of a conventional pulse generation circuit.
  • FIG. 20 is an explanatory diagram of a conventional pulse generation circuit.
  • FIG. 21 is an explanatory diagram of a conventional pulse generation circuit. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing functional blocks in an LSI according to an embodiment of the present invention. As shown in the figure, the LSI is provided with a pulse generation circuit 1, a control block 2, and a function block 3 of the present invention.
  • This pulse generation circuit 1 generates an output pulse c 1 k having a predetermined pulse width based on the input pulse signal CLK.
  • the control block 2 controls the pulse width by inputting the feedback signal to the delay circuit of the pulse generation circuit 1 in accordance with the output pulse c 1 k.
  • the function block 3 is a circuit block that operates using the pulse c 1 k generated by the pulse generation circuit 1.
  • FIG. 2 shows a pulse generation circuit according to the first embodiment of the present invention.
  • the pulse generation circuit 1 of the present embodiment includes a P-type MOS transistor Tr 1, first and second N-type MOS transistors Tr 2, Tr 3, a delay circuit 16, an impeller 13, a keeper 15 It is composed of
  • the P-type MOS transistor Tr 1 has a drain electrode connected to the first power supply line.
  • the first N-type MOS transistor Tr 2 has a drain electrode connected to the source electrode of the P-type MOS transistor Tr 1.
  • the second N-type MOS transistor Tr 3 has a drain electrode connected to a source electrode of the first N-type MOS transistor Tr 2, and a gate electrode connected to an input line CLK to which an input pulse signal is input. Then, the source electrode is connected to the second power supply line.
  • the first power supply line V is a power supply line to which a predetermined positive voltage is supplied
  • the second power supply line E is a ground line.
  • the delay circuit 16 includes an even number of inverters connected in series, and has an input terminal connected to a source electrode of the P-type MOS transistor Tr 1 and a drain electrode of the first N-type MOS transistor Tr 2. An output terminal is connected to a good electrode of the P-type MOS transistor Tr 1 and a gate electrode of the first N-type MOS transistor Tr 2.
  • the inverter 13 connects a source electrode of the P-type MOS transistor Tr1 and a drain electrode input terminal of the second N-type MOS transistor Tr3, inverts an input pulse, and outputs an output line c 1 k Output to
  • the keeper 15 maintains the voltage state of the line (node n 1) to which the input terminal of the inverter 13 is connected.
  • the keeper 15 inverts the voltage level of the output line c 1 k and sets the node n It has the same configuration as the inverter that maintains the voltage level of 1.
  • the node n 1 becomes Hi level, and the P-type MOS transistor Tr 1
  • the MOS transistor Tr1 opens (off) and the first and second N-type MOS transistors Tr2 and r3 close (turns on), the voltage of the node n1 is grounded, and Become.
  • the keeper 15 maintains the node n 1 at Lo, and if the output line c 1 k becomes Lo, the keeper 1 5 5 keeps node nl at Hi.
  • FIG. 3 is a diagram for explaining the operation of the pulse generation circuit 1 of the present embodiment.
  • the pulse generation circuit 1 of the present embodiment self-resets, as described later, so that the P-type MOS transistor Tr 1 is off, the first N-type] IOS transistor has r 2 on, and the second N-type transistor.
  • the type MOS transistor Tr 3 is off, and the node n 1 is at the Hi level.
  • the falling edge of # 2 appears at the node n2 with a delay of the delay period of the delay circuit 16 (# 4).
  • the node n 2 is at the Lo level
  • the P-type MOS transistor Tr 1 is turned on
  • the first N-type MOS transistor Tr 2 is turned off
  • the node n 1 is again at the Hi level.
  • the output line c 1 k becomes Lo level, and a pulse having a pulse width w 2 for the delay period of the delay circuit 16 is generated.
  • the voltage level from the falling edge of the node nl when the input pulse signal is input to the time when the input pulse signal is output from the delay circuit and the node n1 falls is maintained by the keeper. Since this is a dynamic pulse generation circuit that generates pulses for this delay, a pulse of a predetermined width can be generated by arbitrarily setting the delay period of the delay circuit 16 irrespective of the pulse width of the input pulse signal. Therefore, by setting the delay period of the delay circuit 16 to be short, a pulse having a pulse width shorter than the input pulse signal can be generated as shown in FIG.
  • the only element connected to the input line CLK is the second N-type transistor Tr3, and the input load is reduced as compared with the related art. Therefore, speeding up and power saving can be achieved.
  • the pulse generation circuit 1 of the present embodiment adjusts the voltage level on the output side when the power is turned on by the delay circuit 16 using the P-type MOS transistor. By feeding back to the gate electrodes of Tr 1 and the first N-type MOS transistor Tr 2, the voltage level of node II 1 can be determined (self-reset).
  • the pulse generation circuit 1 of this embodiment turns on the P-type MOS transistor Tr 1 and turns on the first N-type MOS transistor Tr 2.
  • the second N-type MOS transistor Tr 3 is off, and when the power is turned on, a voltage is applied from the power supply V through the P-type MOS transistor Tr 1, and the node n 1 is pulled high. i level.
  • the delay circuit 1 6 The voltage level at the gate electrodes of the P-type MOS transistor Tr 1 and the first MOS-type MOS transistor Tr 2 becomes Hi through the P-type MOS transistor Tr 1, and the P-type MOS transistor Tr 1 is turned off and the first N The n-type MOS transistor Tr2 is on, the second N-type MOS transistor Tr3 is off, and the node n1 is fixed at the Hi level.
  • FIG. 5 is a diagram comparing the performance of the pulse generation circuit of the present embodiment with the performance of the conventional pulse generation circuit shown in FIGS.
  • FIG. 5A shows an input pulse signal and an output pulse signal in the conventional pulse generation circuit
  • FIG. 5B shows an input pulse signal and an output pulse signal in the pulse generation circuit of the present embodiment
  • 5 (c) shows the waveforms of (a) and (b) in comparison.
  • the input load is reduced by 34%, so that the pulse rises earlier and the response of the output pulse is reduced by 20%. % Faster.
  • the input pulse signal is input to the second N-type MOS transistor Tr 3, and the output of the delay circuit 16 is connected to the P-type MOS transistor Tr 1 and the first N-type MOS transistor Tr
  • the configuration for inputting to the second transistor is provided (corresponding to claim 1)
  • the configuration shown in FIG. 6 may be adopted by replacing the arrangement of the N-type MOS transistors.
  • the drain of the P-type MOS transistor Tr1 is connected to the first power supply line, and the first N-type MOS transistor Tr4 is connected to the P-type MOS transistor Tr1.
  • the drain electrode is connected to the source electrode of r1, and the gate electrode is connected to the input line to which the input pulse signal is input.
  • the second N-type MOS transistor Tr5 has a drain electrode connected to a source electrode of the first N-type MOS transistor Tr2, and a source electrode connected to a second power supply line (ground line). Are connected.
  • the delay circuit 16 connects an input terminal to a source electrode of the P-type MOS transistor Tr1 and a drain electrode of the first N-type MOS transistor Tr4. An output terminal is connected to a gate electrode of the P-type MOS transistor and a gate electrode of the second N-type MOS transistor Tr5.
  • the inverter 13 connects an input terminal to a source electrode of the P-type MOS transistor Tr1 and a drain electrode of the first N-type MOS transistor Tr4, and connects an output terminal to an output line c 1 k. ing. Keeper 15 maintains the voltage level of node n1 to which the input terminal of inverter 13 is connected.
  • the waveforms appearing at the nodes n 1 and n 2 when the input pulse signal is input to the input line CLK are the same as those in FIGS. The same effect as in the first embodiment can be obtained.
  • the arrangement of the first and second N-type MOS transistors Tr 2 and Tr 3 is changed to the first and second N-type MOS transistors Tr 4 and Tr 5 in the same manner as in the present embodiment. You may change it.
  • the input terminal of the delay circuit is connected to the source electrode of the P-type MOS transistor Tr1 and the drain electrode of the first N-type MOS transistor Tr2, that is, the node n1.
  • the present invention is not limited to this.
  • the input terminal of the delay circuit 12 is connected to the output line c 1 k as shown in FIG.
  • the delay circuit 12 has a configuration in which odd-numbered stages of inverters are connected in series. The other configuration is the same as that of the above-described first embodiment, and the same elements are denoted by the same reference numerals and the description thereof will not be repeated.
  • the voltage level of the node n1 is inverted by the inverter 13 and input to the delay circuit 12, so that this voltage level is inverted and output to the node n2. are doing.
  • the waveforms appearing at the nodes n1 and n2 when the input pulse signal is input to the input line CLK are the same as those in FIGS. The same effect as in the first embodiment can be obtained.
  • the keeper 15 functions as a full keeper that maintains the voltage level of the node n1 at Hi or Lo, but the keeper 15 is shorter than the input pulse signal.
  • a pulse generating circuit a so-called chopper
  • the high keeper 17 is formed of a P-type MOS transistor, and the gate electrode is connected to the output line c 1 k.
  • the output line c 1 k becomes Lo, the voltage from the power supply is applied to maintain the voltage level of the node n 1 at Hi.
  • the waveforms appearing at the nodes nl and n2 when the input pulse signal is input to the input line CLK are the same as those in FIG. Is obtained.
  • This embodiment has a configuration in which a high keeper 1 # is provided instead of the keeper 15 of the pulse generation circuit 1 of the above-described third embodiment (FIG. 7), and the other configurations are the same as those of the third embodiment.
  • FIG. 9 is an explanatory diagram of the present embodiment.
  • the high keeper 17 is formed of a P-type MOS transistor, and the gate electrode is connected to the output line c 1 k.
  • the waveforms appearing at the nodes nl and n2 when an input pulse signal is input to the input line CLK are the same as those in FIG. Is obtained.
  • the present embodiment is different from the first embodiment in that a tap is provided in the delay circuit, and other configurations are the same as those in the first embodiment. For this reason, the same elements as those in the above-described first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 10 is an explanatory diagram of the present embodiment.
  • the delay circuit 18 is provided with ⁇ taps CTl to CTn.
  • the delay circuit 18 changes the delay period depending on which of the taps CT :! to CT n receives the control signal. Therefore, the delay period can be selected by inputting the control signal to the desired taps CT1 to CTn, and from the fall (# 2) of node n1 to the fall (# 4) of node n2 shown in FIG.
  • the output pulse signal with the desired pulse width can be generated by changing the period up to).
  • the pulse width of the output pulse signal can be arbitrarily changed.
  • the present embodiment is different from the above-described first embodiment in that a control block is provided and the delay period of the delay circuit is feedback-controlled, and other configurations are the same as those in the first embodiment. Therefore, the same elements as those in the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 11 is an explanatory diagram of the present embodiment.
  • the pulse generation circuit 1 of the present embodiment includes a control block 2 and inputs a feedback signal to a delay circuit 19.
  • the control block 2 has an input terminal connected to the output line c 1 k, outputs a pulse signal input from the output line c 1 k to an output circuit c 1 k 2 to a subsequent circuit, and outputs the pulse signal It is determined whether or not the pulse width is a predetermined pulse width. If the pulse width is not the predetermined pulse width, a feedback signal is input to the delay circuit 19 so as to have the predetermined pulse width.
  • the delay circuit 19 changes the delay period according to which of the taps CT1 to CTn receives the control signal in accordance with the feed pack signal. That is, when the pulse width required in the subsequent circuit is Wx, the control block 2 increases the delay period when the pulse width of the pulse signal from the output line c 1 k is shorter than the pulse width Wx. Is input to the delay circuit 19. When the pulse width of the pulse signal from the output line c 1 k is longer than the pulse width Wx, a feedback signal for shortening the delay period is input to the delay circuit 19. As a result, the pulse widths of the output pulses of the output lines c 1 k and c 1 k 2 are feedback-controlled to a predetermined pulse width. Thus, according to the pulse generation circuit of the present embodiment, in addition to the effects of the first embodiment, the pulse width of the output pulse signal can be guaranteed.
  • the present embodiment is different from the above-described seventh embodiment in that a tap is provided in the delay circuit, and other configurations are the same as the seventh embodiment. Therefore, the same elements as those in the above-described seventh embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 12 is an explanatory diagram of the present embodiment.
  • the delay circuit 21 is provided with n taps CT :! to CTn.
  • the delay circuit 18 changes the delay period according to which of the taps CT1 to CTn the control signal is input.
  • the control block 2 may receive the information of the changed delay time from a delay circuit or a circuit for transmitting a control signal, and may perform feedback control based on the delay time.
  • the pulse width may be set according to the n delay times selected in the above, and the feedback control may be performed so as to approach the closest pulse width.
  • the pulse width of the output pulse signal can be arbitrarily changed, and the changed pulse width can be guaranteed.
  • the present embodiment is different from the above-described first embodiment in that a delay circuit is provided with a stop input unit, and other configurations are the same as the first embodiment. Therefore, the same elements as those in the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 13 is an explanatory diagram of the present embodiment.
  • the delay circuit 22 of this embodiment changes the output voltage to Lo, that is, the node n2, the P-type MOS transistor Trl, and the gate electrode of the first transistor Tr2. Is set to Lo, and this is maintained until the release signal is input.
  • This embodiment is different from the first embodiment in that a gate circuit is provided between the first N-type MOS transistor Tr 2 and the output of the delay circuit 16. This is the same as Embodiment 1. Therefore, the same elements as those in the first embodiment are given the same reference numerals, and the description thereof will not be repeated.
  • nl may fall and oscillate.
  • the gate circuit 24 is provided between the output terminal of the delay circuit 23 and the gate electrode of the first N-type MOS transistor.
  • the gate circuit 23 includes a chop delay circuit 25 having an input terminal connected to the input line CLK, and an input terminal connected to an output terminal of the chop delay circuit 25 and an output terminal of the delay circuit 23.
  • a NOR circuit 26 connected to each other.
  • the second N-type MO is used to perform a NOR operation on the pulse signal obtained by inverting the output of the delay circuit 23 and the pulse signal from the delay circuit 25 for chops. Input to the gate electrode of S transistor Tr2.
  • the voltage level of the gate electrode of the node n 3 that is, the gate electrode of the first N-type MOS transistor Tr 2 can be kept at Lo while the input line is at Hi. Oscillation is prevented.
  • oscillation can be prevented even when the delay period of the delay circuit is equal to or less than half the pulse width of the input pulse signal.
  • the pulse generation circuit 1 of FIG. 1 is a combination of the eighth and ninth embodiments.
  • the pulse generation circuit of the present invention may be provided at another stage as shown in FIG. 17 so as to obtain various pulse signals.

Abstract

入力負荷が軽く、自己リセットが可能なパルス生成回路を提供する。本発明のパルス生成回路は、ドレイン電極を第1の電源ラインに接続したP型MOSトランジスタと、前記P型MOSトランジスタのソース電極にドレイン電極を接続した第1のN型MOSトランジスタと、前記第1のN型MOSトランジスタのソース電極にドレイン電極を接続し、入力パルス信号が入力される入力ラインにゲート電極を接続し、第2の電源ラインにソース電極を接続した第2のN型MOSトランジスタと、前記P型MOSトランジスタのソース電極及び前記第1のN型MOSトランジスタのドレイン電極に入力端子を接続し、前記P型MOSトランジスタのゲート電極及び第1のN型MOSトランジスタのゲート電極に出力端子を接続した遅延回路と、前記P型MOSトランジスタのソース電極及び前記第2のN型MOSトランジスタのドレイン電極に入力端子を接続し、生成したパルスを出力する出力ラインに出力端子を接続したインバータと、前記インバータの入力端子が接続されるラインの電圧レベルを維持するキーパーとを備えた。

Description

明細書
パルス生成回路 技術分野
本発明は、 LS I等の回路においてクロックのパルス生成等に適用されるパル ス生成回路に関する。 背景技術
図 18〜図 21は、 従来のパルス生成回路の例を示す図である。 図 18に示す パルス生成回路は、 2入力の NAND回路 1 1と、 奇数段のインバータからなる 遅延回路 1 2と、 インバータ 1 3とから構成されている。 このパルス生成回路に 入力パルス信号 (ポジティブパルス) が入力されると、 NAND回路 1 1の一方 の入力に該パルスが入力されると共に、 NAND回路 1 1の他方の入力に遅延回 路 1 2を介して所定のディレイを有したネガティブパルスが入力される。 従って、 入力ライン C LKから入力されたパルス信号の立上がりから遅延回路 1 2の出力 パルスの立ち下がりまでの間 NAND回路 1 1の出力が L oとなるので、 これを インバータ 1 3で反転することでパルス c 1 kを生成する。 即ち、 このパルス生 成回路は、 入力パルス信号を前記ディレイ分のパルス幅とする所謂チヨッパーと して機能する。
また、 図 1 9に示すパルス生成回路は、 2入力の NOR回路 14と、 偶数段の インパータからなる遅延回路 16と、 インパータ 1 3とから構成されている。 こ のパルス生成回路に入力パルス信号 C LKが入力されると、 NOR回路 14の一 方の入力に該パルスが入力されると共に、 NOR回路 14の他方の入力に遅延回 路 1 2を介して所定のディレイを有したパルスが入力される。 従って、 入力パル ス信号の立上がりから遅延回路 1 2の出力パルスの立ち下がりまでの間 NO R回 路 14の出力が L oとなるので、 これをインパータ 1 3で反転することでパルス を生成する。 即ち、 このパルス生成回路は、 入力パルス信号のパルス幅を前記デ ィレイ分長くする所謂ェクステンダとして機能する。 これらのスタティック型のパルス生成回路に限らず、 図 20に示すように、 入 力パルス信号 C LKの立上がりから遅延回路 21の出力パルスの立上がりまでを キーパー 1 5で維持してパルスを生成するダイナミック型のパルス生成回路も提 案されている。
また、 図 2 1に示すパルス生成回路は、 フィードバック経路を備え、 出力信号 をフィードパックしてパルスのリセットまたは終了に利用している (特許文献 1 参照) 。
[特許文献 1 ]
特開 2000— 188528号公報
[特許文献 2]
特開平 1 1一 1 36098号公報
図 1 8, 図 1 9, 図 21のパルス生成回路の場合、 モジュールに対する CLK 負荷が重く、 また、 トランジスタ数も多くなるためタイミング制御部のサイズが 大きくなり高速化の妨げとなる。
また、 図 1 9のパルス生成回路で、 パルス幅を入力パルス信号幅以上に広げる 場合、 2倍近く広げた際に、 パルスが途中で潰れる危険性を伴なう。
さらに、 図 20のダイナミック型パルス生成回路を用いた場合、 電源投入時に 出力が不定となる可能性がある。 そして、 該パルス生成回路を SO I (特に PD 型) CMOSを用いて構成した場合は、 同一回路において動作サイクルが変動し た場合、 ヒス トリ一効果により内部タイミングがずれ、 不具合が発生する可能性 あつた。
また、 図 1 8, 図 1 9, 図 21のパルス生成回路では、 入力パルス信号よりパ ルス幅が広いパルスを生成するのは不可能であった。
更に、 図 20のパルス生成回路では、 初期状態のとき、 入力ライン CLKが L oで、 遅延回路 1 2の出力が H iであり、 P型 MO S トランジスタ T r 1がオフ、 第 2の N型 MOS トランジスタ T r 3がオフであるので、 ノード n 1の電圧レべ ルが定まらない状態となるので、 電源投入時の挙動が不安定になるという問題点 力 Sあつた。 発明の開示
そこで、 本発明は、 入力負荷が軽く、 自己リセットが可能なパルス生成回路の 提供を目的とする。
本発明は前記目的を達成するために、 以下の手段を採用した。
本発明のパルス生成回路は、 ドレイン電極を第 1の電源ラインに接続した P型 MO S トランジスタと、
前記 P型 MO S トランジスタのソース電極にドレイン電極を接続した第 1の N 型 MO Sトランジスタと、
前記第 1の N型 MO Sトランジスタのソース電極にドレイン電極を接続し、 入 力パルス信号が入力される入力ラインにグート電極を接続し、 第 2の電源ライン にソース電極を接続した第 2の N型 MO S トランジスタと、
前記 P型 MO S トランジスタのソース電極及び前記第 1の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 前記 P型 MO S トランジスタのゲート 電極及び第 1の N型 MO S トランジスタのグート電極に出力端子を接続した遅延 回路と、 '
前記 P型 MO S トランジスタのソース電極及び前記第 2の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 生成したパルスを出力する出力ライン に出力端子を接続したィンパークと
前記ィンパークの入力端子が接続されるラインの電圧レベルを維持するキーパ 一とを備え、
前記入力ラインに入力パルス信号が入力された場合に、 前記遅延回路の遅延期 間に応じたパルス幅の出力パルスを生成する。
また、 本発明のパルス生成回路は、 ドレイン電極を第 1の電源ラインに接続し た P型 MO Sトランジスタと、
前記 P型 MO S トランジスタのソース電極にドレイン電極を接続し、 入力パル ス信号が入力される入力ラインにゲート電極を接続した第 1の N型 MO Sトラン ジスタと、
前記第 1の N型 MO S トランジスタのソース電極にドレイン電極を接続し、 第 2の電源ラインにソース電極を接続した第 2の N型 MO Sトランジスタと、 前記 P型 MO S トランジスタのソース電極及ぴ前記第 1の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 前記 P型 MO S トランジスタのゲート 電極及び第 2の N型 MO S トランジスタのゲート電極に出力端子を接続した遅延 回路と、
前記 P型 MO S トランジスタのソース電極及ぴ前記第 1の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 生成したパルスを出力する出力ライン に出力端子を接続したインパータと、 '
前記インバータの入力端子が接続されるラインの電圧レベルを維持するキーパ 一と、 を備え、
前記入力ラインに入力パルス信号が入力された場合に、 前記遅延回路の遅延に 応じたパルス幅の出力パルスを生成する。
前記パルス生成回路において、 前記出力パルスのパルス幅が、 入力パルス信号 のパルス幅よりも短い場合に、 前記キーパーをハイキーパーとしても良い。 また、 前記パルス生成回路において、 前記遅延回路が、 前記インバータを介し て前記 P型 MO S トランジスタのソース電極及び前記第 1の N型 MO S トランジ スタのドレイン電極に入力端子を接続させており、 該入力端子から入力されたパ ルスを反転して前記 P型 MO S トランジスタのゲート電極及び第 2の N型 MO S トランジスタのゲート電極に出力しても良い。
また、 前記パルス生成回路において、 前記遅延回路が、 少なくとも 1つのタツ プを備え、 該タップを介して入力された制御信号に基づいて遅延時間を調整して ち良い。
前記パルス生成回路において、 前記遅延回路が、 停止信号を受信した場合に P 型 MO Sトランジスタと第 1の N型 MO Sトランジスタのゲート電極の電圧レべ ルを H iに維持して出力パルスの出力を停止させても良い。
前記パルス生成回路において、 前記遅延回路の出力端子と前記第 1の N型 MO S トランジスタのグート電極との間にゲート回路を備え、
前記ゲート回路が、 前記入力ラインに入力端子を接続させたチヨップ用遅延回 路と、 該チヨップ用遅延回路の出力端子及び前記遅延回路の出力端子に入力端子 をそれぞれ接続した N O R回路とを備え、 前記遅延回路の出力を反転させたパル ス信号と前記チョップ用遅延回路からのパルス信号との否定論理和を第 2の N型 MO Sトランジスタのゲート電極に入力しても良い。
前記パルス生成回路において、 前記遅延回路の出力端子と前記第 2の N型 MO S トランジスタのゲート電極との間にゲート回路を有し、
前記ゲート回路が、 前記入力ラインに入力端牛を接続させたチヨップ用遅延回 路と、 該チヨップ用遅延回路の出力端子及び前記遅延回路の出力端子に入力端子 をそれぞれ接続した N O R回路とを備え、 前記遅延回路の出力を反転させたパル ス信号と前記チヨップ用遅延回路からのパルス信号との否定論理和を第 1の N型 MO S トランジスタのゲート電極に入力しても良い。 図面の簡単な説明
図 1は、 本発明の一実施形態である L S I內の機能プロックを示す図。
図 2は、 本発明の実施形態 1であるパルス生成回路の説明図。
図 3は、 パルス生成回路の動作を説明する図。
図 4は、 パルス生成回路の動作を説明する図。
図 5は、 本発明と従来のパルス生成回路の性能を比較した図。
図 6は、 本発明の実施形態 2であるパルス生成回路の説明図。
図 7は、 本発明の実施形態 3であるパルス生成回路の説明図。
図 8は、 本発明の実施形態 4であるパルス生成回路の説明図。
図 9は、 本発明の実施形態 5であるパルス生成回路の説明図。
図 1 0は、 本発明の実施形態 6であるパルス生成回路の説明図。
図 1 1は、 本発明の実施形態 7であるパルス生成回路の説明図。
図 1 2は、 本発明の実施形態 8であるパルス生成回路の説明図。
図 1 3は、 本発明の実施形態 9であるパルス生成回路の説明図。
図 1 4は、 遅延期間が短すぎる場合の動作説明図。
図 1 5は、 本発明の実施形態 1 0であるパルス生成回路の説明図。
図 1 6は、 実施形態 1 0のパルス生成回路の動作説明図。
図 1 7は、 他の実施形態であるパルス生成回路の説明図。
図 1 8は、 従来のパルス生成回路の説明図。 図 1 9は、 従来のパルス生成回路の説明図。
図 2 0は、 従来のパルス生成回路の説明図。
図 2 1は、 従来のパルス生成回路の説明図。 発明を実施するための最良の形態
以下、 本発明の実施形態であるパルス回路を図 1から図 1 7の図面に基づいて 説明する。
図 1は本発明の一実施形態である L S I内の機能ブロックを示す図である。 同 図に示すように、 該 L S Iには、 本発明のパルス生成回路 1や、 コントロールブ ロック 2、 ファンクションプロック 3が備えられている。
このパルス生成回路 1は、 入力パルス信号 C L Kに基づいて所定のパルス幅の 出力パルス c 1 kを生成する。 コントロールブロック 2は、 出力パルス c 1 kに 応じてフィードパックシグナルをパルス生成回路 1の遅延回路に入力してパルス 幅の制御を行う。 ファンクションプロック 3は、 このパルス生成回路 1で生成し たパルス c 1 kを用いて動作する回路ブロックである。
〈実施形態 1〉
図 2は、 本発明の実施形態 1であるパルス生成回路を示している。
本実施形態のパルス生成回路 1は、 P型 MO S トランジスタ T r 1や、 第 1, 第 2の N型 MO S トランジスタ T r 2 , T r 3、 遅延回路 1 6、 インパータ 1 3 キーパー 1 5から構成されている。
P型 MO S トランジスタ T r 1は、 ドレイン電極を第 1の電源ラインに接続し ている。 第 1の N型 MO S トランジスタ T r 2は、 前記 P型 MO S トランジスタ T r 1のソース電極にドレイン電極を接続している。
第 2の N型 MO S トランジスタ T r 3は、 前記第 1の N型 MO S トランジスタ T r 2のソース電極にドレイン電極を接続し、 入力パルス信号が入力される入力 ライン C L Kにゲート電極を接続し、 第 2の電源ラインにソース電極を接続して いる。 本例において、 第 1の電源ライン Vは、 +側の所定電圧が供給される電源 ラインであり、 第 2の電源ライン Eは、 グランドラインである。 遅延回路 1 6は、 偶数個のインパータが直列に接続されて構成され、 前記 P型 MOS トランジスタ T r 1のソース電極及び前記第 1の N型 MOS トランジスタ T r 2のドレイン電極に入力端子を接続し、 前記 P型 MOS トランジスタ T r 1 のグート電極及び第 1の N型 MOSトランジスタ T r 2のゲート電極に出力端子 を接続している。
インバータ 1 3は、 前記 P型 MOSトランジスタ T r 1のソース電極及び前記 第 2の N型 MOS トランジスタ T r 3のドレイン電極 入力端子を接続し、 入力 されたパルスを反転して出力ライン c 1 kに出力する。
キーパー 1 5は、 前記インバータ 13の入力端子が接続されるライン (ノード n 1) の電圧状態を維持するものであり、 本実施形態では、 出力ライン c 1 kの 電圧レベルを反転してノード n 1の電圧レベルを維持するインパータと同じ構成 となっている。 本実施形態では、 P型 MOS トランジスタ T r 1のドレインーソ ース間が導通した場合、 第 1の電源ライン Vdからの電圧が印加されてノード n 1が H i レべノレとなり、 また、 P型 MOS トランジスタ T r 1が開き (オフ) 、 第 1, 第 2の N型 MOS トランジスタ T r 2, 丁 r 3が閉じると (オンすると) ノード n 1の電圧がアースされて L oレべノレとなる。 これに伴ってインパータ 1 3の出力である出力ライン c 1 kが H i となればキーパー 1 5は、 ノード n 1を L oに維持し、 出力ライン c 1 kが L oとなればキーパー 1 5は、 ノード n lを H iに維持する。
図 3は、 本実施形態のパルス生成回路 1の動作を説明する図である。
先ず、 本実施形態のパルス生成回路 1は、 後述のように自己リセットして、 P 型 MOS トランジスタ T r 1がオフ、 第 1の N型] IOS トランジスタで r 2がォ ン、 第 2の N型 MOS トランジスタ T r 3がオフで、 ノード n 1が H i レベルと なる。
この初期状態で、 入力ライン CLKから第 2の N型 MOS トランジスタ T r 3 のゲート電極にパルス幅 W1のパルス信号が入力されると (# 1) 、 第 2の N型 MO S トランジスタ T r 3が ONとなり、 第 1の N型 MOS トランジスタ T r 3 も ONであるからノード n 1が L oレベルとなる (# 2) 。 このとき遅延回路 1 6の出力側のノード n 2は H i レベルのままなので、 P型 MOS トランジスタ T r 1と第 1の N型 MO S トランジスタ T r 2も初期状態のままであり、 ノード n 1がキーパー 1 5によって L oレベルに保たれる。 従ってこの電圧レベルがイン バータ 1 3で反転され、 # 2からインパータによって遅れて出力ライン c 1 kが H i レベルとなる ( # 3 ) 。
そして # 2の立下りが遅延回路 1 6の遅延期間分遅れてノード n 2に現れる ( # 4 ) 。 このノード n 2が L oレベルとなることで P型 MO S トランジスタ T r 1がオン、 第 1の N型 MO S トランジスタ T r 2がオフとなり、 ノード n 1が 再ぴ H i レベルとなるので (# 5 ) 、 出力ライン c 1 kが L oレベルとなり、 遅 延回路 1 6の遅延期間分のパルス幅 w 2のパルスが生成される。
このように本実施形態では、 入力パルス信号が入力されたときのノード n lの 立ち下がりから、 この入力パルス信号が遅延回路から出力されてノード n 1が立 ち下がるまでの電圧レベルをキーパーで維持して、 この遅延分のパルス生成する ダイナミック型のパルス生成回路なので、 入力パルス信号のパルス幅に依らず、 遅延回路 1 6の遅延期間を任意に設定することで所定幅のパルスを生成できる。 従って、 遅延回路 1 6の遅延期間を短く設定することによって図 4に示すよう に入力パルス信号よりも短いパルス幅のパルスを生成できる。
また、 本実施形態のパルス生成回路 1では、 入力ライン C L Kに接続される素 子が第 2の N型トランジスタ T r 3だけであり、 従来と比較して入力負荷が軽減 されている。 従って高速化や省電力化が可能となる。
また、 ダイナミック型であると初期状態の挙動が不確定になることがあるが、 本実施形態のパルス生成回路 1は、 電源投入時に出力側の電圧レベルを遅延回路 1 6で P型 MO S トランジスタ T r 1及ぴ第 1の N型 MO S トランジスタ T r 2 のゲート電極にフィードバックすることで、 ノード II 1の電圧レベルを確定 (自 己リセット) できる。
即ち、 本実施形態のパルス生成回路 1は、 入力ライン C L Kが L o、 電源がォ フのとき、 P型 MO S トランジスタ T r 1がオン、 第 1の N型 MO S トランジス タ T r 2がオフ、 第 2の N型 MO S トランジスタ T r 3がオフであり、 電源がォ ンされると、 電源 Vから P型 MO S トランジスタ T r 1を介して電圧が印加され、 ノード n 1が H i レベルとなる。 そしてノード n 1が H iになると遅延回路 1 6 を介して P型 MO S トランジスタ T r 1と第 1の Ν型 MOS トランジスタ T r 2 のゲート電極での電圧レベルが H iとなるので、 P型 MOSトランジスタ T r 1 がオフ、 第 1の N型 MOS トランジスタ T r 2がオン、 第 2の N型 MOS トラン ジスタ T r 3がオフで、 ノード n 1が H i レベルに固定される。
図 5は、 本実施形態のパルス生成回路と、 図 18, 図 21に示した従来のパル ス生成回路の性能を比較した図である。
図 5 (a) は、 従来のパルス生成回路における入力パルス信号と出力パルス信 号を示し、 図 5 (b) は、 本実施形態のパルス生成回路における入力パルス信号 と出力パルス信号を示し、 図 5 (c) は、 (a) , (b) の波形を比較して示し ている。
図 5 (c) に示すように、 本実施形態のパルス生成回路 1は、 入力負荷が 3 4%減少したことにより、 パルスの立ち上がりが早くなつており、 且つ、 出力パ ルスの応答性が 20%高速化されている。
〈実施形態 2〉
前述の実施形態 1は、 第 2の N型 MOS トランジスタ T r 3に入力パルス信号 を入力し、 遅延回路 1 6の出力を P型 MOS トランジスタ T r 1及ぴ第 1の N型 MOS トランジスタ T r 2に入力する構成 (請求項 1に相当) としたが、 この N 型 MOS トランジスタの配置を入れ替えて、 図 6に示す構成 (請求項 2に相当) しても良い。
即ち、 本実施形態のパルス生成回路 1において、 P型 MOS トランジスタ T r 1はドレイン電極を第 1の電源ラインに接続し、 第 1の N型 MOS トランジスタ T r 4は、 この P型 MOS トランジスタ T r 1のソース電極にドレイン電極を接 続し、 入力パルス信号が入力される入力ラインにゲート電極を接続し'ている。 ま た、 第 2の N型 MOS トランジスタ T r 5は、 前記第 1の N型 MOS トランジス タ T r 2のソース電極にドレイン電極を接続し、 第 2の電源ライン (グランドラ イン) にソース電極を接続している。
そして、 遅延回路 1 6は、 前記 P型 MOSトランジスタ T r 1のソース電極及 び前記第 1の N型 MO Sトランジスタ T r 4のドレイン電極に入力端子を接続し 前記 P型 MOS トランジスタのゲート電極及ぴ第 2の N型 MOS トランジスタ T r 5のゲート電極に出力端子を接続している。
インパータ 1 3は、 前記 P型 MOS トランジスタ T r 1のソース電極及ぴ前記 第 1の N型 MOS トランジスタ T r 4のドレイン電極に入力端子を接続し、 出力 ライン c 1 kに出力端子を接続している。 また、 キーパー 1 5は、 このインパー タ 1 3の入力端子が接続されるノード n 1の電圧レベルを維持する。
このように本実施形態の構成であっても、 入力ライン C LKに入力パルス信号 が入力された場合のノード n 1 , n 2に現れる波形は前述の図 3, 4と同じであ り、 前述の実施形態 1と同様の効果が得られる。
なお、 以下の実施形態において、 第 1, 2の N型 MOSトランジスタ T r 2, T r 3の配置を本形態と同様に第 1, 2の N型 MO Sトランジスタ T r 4, T r 5に変更しても良い。
〈実施形態 3 >
前述の実施形態 1では、 遅延回路の入力端子を P型 MOSトランジスタ T r 1 のソース電極及ぴ第 1の N型 MOS トランジスタ T r 2のドレイン電極、 即ちノ ード n 1に接続していたが、 本発明はこれに限定されない。 例えば本実施形態で は、 図 7のように遅延回路 1 2の入力端子を出力ライン c 1 kに接続している。 この遅延回路 1 2は、 奇数段のインパータを直列に接続した構成である。 その他 の構成は、 前述の実施形態 1と同じであるので、 同一の要素に同符号を付すなど して再度の説明を省略している。
即ち、 本実施形態のパルス生成回路 1では、 ノード n 1の電圧レベルがインバ ータ 1 3で反転されて遅延回路 1 2に入力されるので、 この電圧レベルを反転し てノード n 2に出力している。
このように本実施形態の構成であっても、 入力ライン CLKに入力パルス信号 が入力された場合のノード n 1, n 2に現れる波形は前述の図 3, 4と同じであ り、 前述の実施形態 1と同様の効果が得られる。
〈実施形態 4〉
前述の実施形態 1では、 キーパー 1 5がノード n 1の電圧レベルを H i又は L oに維持するフルキーパとして機能しているが、 入力パルス信号よりも短いパル スを生成するパルス生成回路 (所謂チヨッパー) の場合には、 ノード n 1を H i に維持できれば良いので、 ノード n 1を H i状態に維持するハイキーパーとして も良い。
本実施形態では、 図 8に示すように、 ハイキーパー 1 7を P型 MO Sトランジ スタで構成し、 ゲート電極を出力ライン c 1 kに接続している。 これにより出力 ライン c 1 kが L oになった場合に電源からの電圧を印加してノード n 1の電圧 レベルを H iに維持している。
本実施形態の構成であっても、 入力ライン C L Kに入力パルス信号が入力され た場合のノード n l , n 2に現れる波形は前述の図 4と同じであり、 前述の実施 形態 1と同様の効果が得られる。
〈実施形態 5 >
本実施形態は、 前述の実施形態 3 (図 7 ) のパルス生成回路 1のキーパー 1 5 に代えてハイキーパー 1 Ίを設けた構成であり、 その他の構成は実施形態 3と同 じである。
図 9は、 本実施形態の説明図である。 同図に示したように、 本実施形態のパル ス生成回路 1は、 ハイキーパー 1 7を P型 MO Sトランジスタで構成し、 ゲート 電極を出力ライン c 1 kに接続している。
本実施形態の構成であつても、 入力ライン C L Kに入力パルス信号が入力され た場合のノード n l, n 2に現れる波形は前述の図 4と同じであり、 前述の実施 形態 3と同様の効果が得られる。
〈実施形態 6〉
本実施形態は、 前述の実施形態 1と比べて遅延回路にタップを設けた点が異な つており、 その他の構成は実施形 ϋ ιと同じである。 このため前述の実施形態 1 と同一の要素には同符号を付す等して再度の説明を省略する。
図 1 0は、 本実施形態の説明図である。 同図に示したように、 本実施形態のパ ルス生成回路 1は、 遅延回路 1 8に η本のタップ C T l〜C T nを設けている。 該遅延回路 1 8は、 何れのタップ C T:!〜 C T nにコントロール信号を入力さ れたかによって遅延期間を変更する。 従って、 所望のタップ C T 1〜C T nにコントロール信号を入力することで、 遅延期間を選択でき、 図 3に示したノード n 1の立下り (# 2 ) からノード n 2 の立下り (# 4 ) までの期間を変更して、 所望のパルス幅の出力パルス信号を生 成できる。
このように本実施形態のパルス生成回路によれば、 前述の実施形態 1の効果に 加え、 出力パルス信号のパルス幅を任意に変更することができる。
〈実施形態 7〉
本実施形態は、 前述の実施形態 1と比べてコントロールブロックを備えて遅延 回路の遅延期間をフィ一ドバック制御した点が異なっており、 その他の構成は実 施形態 1と同じである。 このため前述の実施形態 1と同一の要素には同符号を付 す等して再度の説明を省略する。
図 1 1は、 本実施形態の説明図である。 同図に示したように、 本実施形態のパ ルス生成回路 1は、 コントロールブロック 2を備え、 遅延回路 1 9にフィードバ ック信号を入力している。
コントロールブロック 2は、 入力端子を前記出力ライン c 1 kに接続しており 出力ライン c 1 kから入力されたパルス信号を出力ライン c 1 k 2から後段の回 路へ出力すると共に、 該パルス信号のパルス幅が所定のパルス幅か否かを判定し 所定のパルス幅でなければ、 この所定のパルス幅となるようにフィードバック信 号を遅延回路 1 9に入力する。
該遅延回路 1 9は、 フィードパック信号に応じて遅延期間を何れのタップ C T 1〜C T nにコントローノレ信号を入力されたかによって遅延期間を変更する。 即ち、 後段の回路で必要なパルス幅が W xであるとき、 コントロールブロック 2は、 出力ライン c 1 kからのパルス信号のパルス幅がパルス幅 W xよりも短い 場合、 遅延期間を長くする旨のフィードバック信号を遅延回路 1 9に入力する。 そして出力ライン c 1 kからのパルス信号のパルス幅がパルス幅 W xよりも長い 場合、 遅延期間を短くする旨のフィードバック信号を遅延回路 1 9に入力する。 これにより出力ライン c 1 k, c 1 k 2の出力パルスのパルス幅が所定のパルス 幅にフィードバック制御される。 このように本実施形態のパルス生成回路によれば、 前述の実施形態 1の効果に 加え、 出力パルス信号のパルス幅を保証することができる。
〈実施形態 8 >
本実施形態は、 前述の実施形態 7と比べて遅延回路にタップを設けた点が異な つており、 その他の構成は実施形態 7と同じである。 このため前述の実施形態 7 と同一の要素には同符号を付す等して再度の説明を省略する。
図 1 2は、 本実施形態の説明図である。 同図に示したように、 本実施形態のパ ルス生成回路 1は、 遅延回路 2 1に n本のタップ C T:!〜 C T nを設けている。 該遅延回路 1 8は、 何れのタップ C T l〜C T nにコントロール信号を入力さ れたかによつて遅延期間を変更する。
コントロールブロック 2は、 この変更した遅延時間の情報を遅延回路或いはコ ントロール信号を送信する回路から受信して該遅延時間に基づいてフィ一ドバッ ク制御を行っても良いし、 予め遅延回路 2 1で選択される n個の遅延時間に応じ たパルス幅を設定しておき、 最も近いパルス幅に近づけるようにフィードパック 制御を行っても良い。
このように本実施形態のパルス生成回路によれば、 前述の実施形態 1の効果に 加え、 出力パルス信号のパルス幅を任意に変更することができ、 この変更したパ ルス幅を保証できる。
〈実施形態 9 >
本実施形態は、 前述の実施形態 1と比べて遅延回路に停止用の入力部を設けた 点が異なっており、 その他の構成は実施形態 1と同じである。 このため前述の実 施形態 1と同一の要素には同符号を付す等して再度の説明を省略する。
図 1 3は、 本実施形態の説明図である。 本実施形態の遅延回路 2 2は、 停止信 号が入力された場合に、 出力電圧を L o、 即ちノード n 2、 P型 MO Sトランジ スタ T r lと第 1のトランジスタ T r 2のゲート電極の電圧レベルを L oとし、 解除信号が入力されるまでこれを維持する。
従って、 ノード n 1が H iに維持され、 出力ライン c 1 kの電圧レベルが L o に固定される。 このように本実施形態のパルス生成回路によれば、 前述の実施形態 1の効果に 加え、 入力ライン C L Kにパルス信号が入力されている場合でも、 出力ラインへ のパルス信号の出力を停止することができる。
〈実施形態 1 0〉
本実施形態は、 前述の実施形態 1と比べて第 1の N型 MO Sトランジスタ T r 2と遅延回路 1 6の出力との間にゲート回路を備えた点が異なっており、 その他 の構成は実施形態 1と同じである。 このため前述の実施形態 1と同一の要素には 同符号を付す等して再度の説明を省略する。
図 1 4に示すように遅延時間が入力パルス信号のパルス幅に対して短すぎると (約 1 Z 2以下) 、 入力ライン C L Kが H iのままノード n 2が再び H iとなる ので、 ノード n lが立下り、 発振することがある。
このため本実施形態では、 図 1 5に示すように遅延回路 2 3の出力端子と第 1 の N型 MO Sトランジスタのゲート電極との間にゲート回路 2 4を備えた。 該ゲ ート回路 2 3は、 前記入力ライン C L Kに入力端子を接続させたチヨップ用遅延 回路 2 5と、 該チヨップ用遅延回路 2 5の出力端子及び前記遅延回路 2 3の出力 端子に入力端子をそれぞれ接続した N O R回路 2 6とを備え、,前記遅延回路 2 3 の出力を反転させたパルス信号と前記チヨップ用遅延回路 2 5からのパルス信号 との否定論理和を第 2の N型 MO S トランジスタ T r 2のゲート電極に入力する。 これにより、 図 1 6に示すようにノード n 3、 即ち第 1の N型 MO Sトランジ スタ T r 2のゲート電極の電圧レベルを入力ラインが H iの間 L oに維持するこ とができ、 発振が防止される。
このように本実施形態のパルス生成回路によれば、 前述の実施形態 1の効果に 加え、 遅延回路の遅延期間が入力パルス信号のパルス幅の半分以下である場合に も発振を防止できる。
〈その他の実施形態〉
上記実施形態は、 適宜組み合わせて実施しても良い。 例えば、 図 1のパルス生 成回路 1は、 実施形態 8と実施形態 9を組み合わせたものである。
また、 本発明のパルス生成回路は、 図 1 7に示すように他段に設けて種々のパ ルス信号が得られるように構成しても良い。 産業上の利用可能性
以上、 説明したように本発明によれば入力負荷が軽く、 自己リセットが可能な パルス生成回路を提供できる。

Claims

請求の範囲
1 . ドレイン電極を第 1の電源ラインに接続した P型] IO S トランジスタと、 前記 P型 M O S トランジスタのソース電極にドレイン電極を接続した第 1の N 型 MO S トランジスタと、
前記第 1の N型 MO S トランジスタのソース電極にドレイン電極を接続し、 入 力パルス信号が入力される入力ラインにグート電極を接続し、 第 2の電源ライン にソース電極を接続した第 2の N型 MO S トランジスタと、
前記 P型 MO S トランジスタのソース電極及び前記第 1の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 前記 P型 MO S トランジスタのゲート 電極及び第 1の N型 MO S トランジスタのゲート電極に出力端子を接続した遅延 回路と、
前記 P型 MO Sトランジスタのソース電極及び前記第 2の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 生成したパルスを出力する出力ライン に出力端子を接続したィンパータと
前記インバータの入力端子が接続されるラインの電圧レベルを維持するキーパ 一とを備え、
前記入力ラインに入力パルス信号が入力された場合に、 前記遅延回路の遅延期 間に応じたパルス幅の出力パルスを生成するパルス生成回路。
2 . ドレイン電極を第 1の電源ラインに接続した P型 MO S トランジスタと、 前記 P型 MO S トランジスタのソース電極にドレイン電極を接続し、 入力パル ス信号が入力される入力ラインにグート電極を接続した第 1の N型 MO S トラン ジスタと、
前記第 1の N型 MO S トランジスタのソース電極にドレイン電極を接続し、 第 2の電源ラインにソース電極を接続した第 2の N型 M O Sトランジスタと、 前記 P型 MO S トランジスタのソース電極及び前記第 1の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 前記 P型 MO S トランジスタのゲート 電極及ぴ第 2の N型 MO S トランジスタのゲート電極に出力端子を接続した遅延 回路と、 前記 P型 MO S トランジスタのソース電極及ぴ前記第 1の N型 MO Sトランジ スタのドレイン電極に入力端子を接続し、 生成したパルスを出力する出力ライン に出力端子を接続したインパータと、
前記ィンバータの入力端子が接続されるラインの電圧レベルを維持するキーパ 一と、 を備え、
前記入力ラインに入力パルス信号が入力された場合に、 前記遅延回路の遅延に 応じたパルス幅の出力パルスを生成するパルス生成回路。
3 . 前記出力パルスのパルス幅が、 入力パルス信号のパルス幅よりも短い場合に 前記キーパーをハイキーパーとした請求項 1又は 2に記載のパルス生成回路。
4 . 前記遅延回路が、 前記インパータを介して前記 P型 MO Sトランジスタのソ ース電極及び前記第 1の N型 MO Sトランジスタのドレイン電極に入力端子を接 続させており、 該入力端子から入力されたパルスを反転して前記 P型 MO S トラ ンジスタのゲ一ト電極及び第 2の N型 MO Sトランジスタのゲート電極に出力す る請求項 1又は 2記載のパルス生成回路。
5 . 前記遅延回路が、 少なくとも 1つのタップを備え、 該タップを介して入力さ れた制御信号に基づいて遅延時間を調整する請求項 1に記載のパルス生成回路。
6 . 前記遅延回路が、 停止信号を受信した場合に P型 MO Sトランジスタと第 1 の N型 MO Sトランジスタのゲート電極の電圧レベルを H iに維持して出力パル スの出力を停止させる請求項 1に記載のパルス生成回路。
7 . 前記遅延回路の出力端子と前記第 1の N型 MO Sトランジスタのゲート電極 との間にゲート回路を備え、
前記ゲート回路が、 前記入力ラインに入力端子を接続させたチヨップ用遅延回 路と、 該チヨップ用遅延回路の出力端子及び前記遅延回路の出力端子に入力端子 をそれぞれ接続した N O R回路とを備え、 前記遅延回路の出力を反転させたパル ス信号と前記チョップ用遅延回路からのパルス信号との否定論理和を第 2の N型 MO S トランジスタのゲート電極に入力する請求項 1に記載のパルス生成回路。
8 . 前記遅延回路の出力端子と前記第 2の N型 MO S トランジスタのゲート電極 との間にゲート回路を有し、
前記ゲート回路が、 前記入力ラインに入力端子を接続させたチヨップ用遅延回路 と、 該チヨップ用遅延回路の出力端子及び前記遅延回路の出力端子に入力端子を それぞれ接続した N O R回路とを備え、 前記遅延回路の出力を反転させたパルス 信号と前記チョップ用遅延回路からのパルス信号との否定論理和を第 1の N型 M O Sトランジスタのゲ一ト電極に入力する請求項 2に記載のパルス生成回路。
PCT/JP2003/010295 2003-08-13 2003-08-13 パルス生成回路 WO2005018091A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/010295 WO2005018091A1 (ja) 2003-08-13 2003-08-13 パルス生成回路
JP2005507745A JP4173887B2 (ja) 2003-08-13 2003-08-13 パルス生成回路
US11/319,729 US7446589B2 (en) 2003-08-13 2005-12-29 Pulse generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/010295 WO2005018091A1 (ja) 2003-08-13 2003-08-13 パルス生成回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/319,729 Continuation US7446589B2 (en) 2003-08-13 2005-12-29 Pulse generation circuit

Publications (1)

Publication Number Publication Date
WO2005018091A1 true WO2005018091A1 (ja) 2005-02-24

Family

ID=34179377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010295 WO2005018091A1 (ja) 2003-08-13 2003-08-13 パルス生成回路

Country Status (3)

Country Link
US (1) US7446589B2 (ja)
JP (1) JP4173887B2 (ja)
WO (1) WO2005018091A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520434A (ja) * 2012-03-29 2015-07-16 クアルコム,インコーポレイテッド 内蔵型レベルシフタならびにプログラム可能立上りエッジおよびパルス幅を有するパルスクロック生成論理

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737061B2 (ja) * 2016-08-15 2020-08-05 富士通株式会社 情報処理装置、情報処理方法及びプログラム
FR3095560B1 (fr) * 2019-04-26 2021-12-03 St Microelectronics Rousset Association de transistors en série

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094404A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 電圧制御遅延回路
JP2003133916A (ja) * 2001-10-23 2003-05-09 Matsushita Electric Ind Co Ltd パルストリガ型ラッチを用いたデータ処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843264A (en) * 1987-11-25 1989-06-27 Visic, Inc. Dynamic sense amplifier for CMOS static RAM
JPH0727717B2 (ja) * 1988-07-13 1995-03-29 株式会社東芝 センス回路
JPH04239810A (ja) 1991-01-23 1992-08-27 Nec Ic Microcomput Syst Ltd 単相スタティックラッチ回路
JPH05218824A (ja) 1992-02-04 1993-08-27 Fujitsu Ltd パルス幅補正回路
KR960027336A (ko) 1994-12-16 1996-07-22 리 패치 누설전하를 감소시킨 동적, 단상 클럭 인버터 래치
JP3672061B2 (ja) 1997-01-30 2005-07-13 三菱電機株式会社 半導体装置
JPH11136098A (ja) 1997-10-30 1999-05-21 Ando Electric Co Ltd パルス生成回路
US5929684A (en) * 1998-03-06 1999-07-27 Siemens Aktiengesellschaft Feedback pulse generators
JP3573687B2 (ja) 2000-06-28 2004-10-06 松下電器産業株式会社 データ一時記憶装置
JP2002300010A (ja) 2001-03-29 2002-10-11 Toshiba Corp 半導体記憶保持装置
JP3855835B2 (ja) * 2001-09-27 2006-12-13 ヤマハ株式会社 信号レベルシフト回路
TWI309831B (en) * 2002-09-25 2009-05-11 Semiconductor Energy Lab Clocked inverter, nand, nor and shift register
DE10349464B4 (de) * 2003-10-23 2009-07-30 Qimonda Ag Pegelumsetz-Einrichtung
KR100608362B1 (ko) * 2004-04-22 2006-08-08 주식회사 하이닉스반도체 펄스 발생기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094404A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 電圧制御遅延回路
JP2003133916A (ja) * 2001-10-23 2003-05-09 Matsushita Electric Ind Co Ltd パルストリガ型ラッチを用いたデータ処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520434A (ja) * 2012-03-29 2015-07-16 クアルコム,インコーポレイテッド 内蔵型レベルシフタならびにプログラム可能立上りエッジおよびパルス幅を有するパルスクロック生成論理

Also Published As

Publication number Publication date
US7446589B2 (en) 2008-11-04
JPWO2005018091A1 (ja) 2006-10-12
US20060097768A1 (en) 2006-05-11
JP4173887B2 (ja) 2008-10-29

Similar Documents

Publication Publication Date Title
JP3141816B2 (ja) 発振回路
JP2004260730A (ja) パルス発生回路及びそれを用いたハイサイドドライバ回路
JP2003347907A (ja) 補正回路、遅延回路およびリングオシレータ回路
JP2008098920A (ja) ドライバ回路
US20060071695A1 (en) Signal driving circuits including inverters
JP2583684B2 (ja) プルダウン抵抗コントロール入力回路及び出力回路
US7446589B2 (en) Pulse generation circuit
JP2004355523A (ja) 定電圧回路
JP2008092271A (ja) 遅延回路
JP2001217706A (ja) バッファ回路及びバッファ回路を備えるドライバ
JPH09172365A (ja) トライステート回路
JP2007235815A (ja) レベル変換回路
JP7240900B2 (ja) パワーオンクリア回路及び半導体装置
JP4086049B2 (ja) パワーオン・リセット回路
JP3757518B2 (ja) パワーオン・リセット回路
JP5130896B2 (ja) 半導体素子の駆動回路
JP2006352726A (ja) 出力バッファ回路
JP2000194432A (ja) Cmosロジック用電源回路
JP3022812B2 (ja) 出力バッファ回路
US7224187B2 (en) CMOS buffer circuits and integrated circuits using the same
JP4724486B2 (ja) 駆動用電源回路
JP2004023195A (ja) 発振回路
JP3671970B2 (ja) 半導体集積回路
JPH11145727A (ja) 発振回路
JP2006120201A (ja) 降圧電圧出力回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2005507745

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11319729

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11319729

Country of ref document: US