WO2005018045A1 - Antenna arrangement and a module and a radio communications apparatus having such an arrangement - Google Patents
Antenna arrangement and a module and a radio communications apparatus having such an arrangement Download PDFInfo
- Publication number
- WO2005018045A1 WO2005018045A1 PCT/IB2004/002628 IB2004002628W WO2005018045A1 WO 2005018045 A1 WO2005018045 A1 WO 2005018045A1 IB 2004002628 W IB2004002628 W IB 2004002628W WO 2005018045 A1 WO2005018045 A1 WO 2005018045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slot
- antenna
- patch conductor
- connection
- antenna arrangement
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
- H01Q5/364—Creating multiple current paths
- H01Q5/371—Branching current paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
Definitions
- the present invention relates to an antenna arrangement comprising a substantially planar patch conductor, a module and a radio communications apparatus incorporating such an arrangement.
- Modern mobile phone handsets typically incorporate an internal antenna, such as a Planar Inverted-F Antenna (PIFA) or similar.
- PIFAs are popular in mobile phone handset because they exhibit low SAR and they are installed above the phone circuitry and, therefore, make fuller use of the space within the phone casing.
- Such antennas are small (relative to a wavelength) and therefore, owing to the fundamental limits of small antennas, narrowband.
- cellular radio communication systems typically have a fractional bandwidth of 10% or more.
- Such an arrangement provided an antenna having substantially improved impedance characteristics while requiring a smaller volume than a conventional PIFA.
- Our co-pending PCT Patent Application 02/071535 discloses an antenna arrangement comprising a relatively small patch conductor supported substantially parallel to a ground plane.
- the patch conductor includes first and second connection points, for connection to radio circuitry and a ground plane, and further incorporates a slot between the first and second points.
- the antenna can be operated in a plurality of modes by variations in the impedances connected to the first and second points. For example, if signals are fed to the first point then a high frequency antenna is obtained by connecting the second point to ground and a low frequency antenna by leaving the second point open circuit.
- Various other alternative connection arrangements are also disclosed.
- a third connection point is provided together with a second, differential slot between the second and third connection points.
- the second slot which functions to control impedance, has a length of the order of a quarter wavelength and, because the patch conductor is small, it extends close to the edge of the patch conductor. The presence of this second slot enables the low frequency mode to operate as a differentially slotted PIFA with improved impedance characteristics.
- a problem with mounting PIFAs just inside the outer surface of the phone casing is that they are very susceptible to user detuning. Detuning causes the antenna resistance to increase at both the relatively low GSM and the relatively high DCS frequencies of approximately 900MHz and 1.8GHz, respectively. This detuning causes a loss of radiated power and degrades the performance of the radio.
- An object of the present invention is to mitigate user detuning of the planar antenna arrangement.
- an antenna arrangement comprising a substantially planar patch conductor having a first feed connection point for connection to radio circuitry and a second feed connection point for connection to a ground plane, a first, differential slot in the patch conductor between the first and second connection points and a second, dual band slot located in the patch conductor outside the area between the first and second connection points, wherein the length of the first slot is such as to provide an additional resonance.
- a module comprising a printed circuit board (PCB) providing a ground plane, radio circuitry mounted on the PCB, and an antenna arrangement, the antenna arrangement comprising a substantially planar patch conductor having a first feed connection point for connection to the radio circuitry and a second feed connection point for connection to the ground plane, a first, differential slot in the patch conductor between the first and second connection points and a second, dual band slot located in the patch conductor outside the area between the first and second connection points, wherein the length of the first slot is such as to provide an additional resonance.
- PCB printed circuit board
- a radio communications apparatus comprising a casing containing a printed circuit board (PCB) providing a ground plane, radio circuitry mounted on the PCB, and an antenna arrangement, the antenna arrangement comprising a substantially planar patch conductor having a first feed connection point for connection to the radio circuitry and a second feed connection point for connection to the ground plane, a first, differential slot in the patch conductor between the first and second connection points and a second, dual band slot located in the patch conductor outside the area between the first and second connection points, wherein the length of the first slot is such as to provide an additional resonance.
- the first slot also provides impedance control which improves user interaction.
- a low transformation factor, and, hence, a low antenna resistance is produced by providing a differential slot between the feed and shorting pins in the antenna top plate.
- the antenna arrangement disclosed in PCT Patent Application 02/071535 say a length greater than a quarter wavelength, for example a half wavelength, the slot itself resonates and introduces a third resonance which provides the additional advantage of increasing the bandwidth of the antenna.
- the antenna arrangement can have resonances at the GSM, DCS and UMTS frequencies. If the differential slot is extended further the third resonance decreases in frequency so that together with the second resonance, a wide resonant band is created which covers DCS 1800, PCS 1900 and UMTS bands simultaneously.
- Figure 1 is a diagrammatic perspective view of a radio communications apparatus
- Figure 2 is a perspective view of one embodiment of a PIFA arrangement made in accordance with the present invention
- Figure 3 is a S plot of the PIFA arrangement shown in Figure 2
- Figure 4 is a Smith chart relating to the arrangement shown in Figure 2
- Figure 5 is a perspective view of a second embodiment of a PIFA arrangement made in accordance with the present invention
- Figure 6 is a Sn plot of the PIFA arrangement shown in Figure 5.
- the same reference numerals have been used to indicate corresponding features.
- the radio communications apparatus shown in Figure 1 comprises a casing 10, shown in broken lines, which contains a printed circuit board (PCB) 12 carrying radio circuit components (not shown) on both sides and having a ground plane (not shown) covering those areas of the surfaces not having components mounted thereon.
- a planar patch antenna 14, for example, a Planar Inverted F Antenna (PIFA) is mounted inside the casing and is separated from the PCB by a dielectric 16 which in the illustrated embodiment is air.
- a feed pin 18 and a shorting pin 20 are connected between respective connection points on the PCB 12 and the antenna 14. The feed pin 18 is laterally spaced from the shorting pin 20.
- the antenna 14, which may be fabricated in anyone of several known ways, for example from metal sheet or as a metal layer on a substrate, is substantially the width of the PCB 12.
- a differential slot 22 is provided in the patch antenna and opens into the edge of the antenna at a point between the feed and shorting pins.
- the slot 22 which comprises a plurality of intercommunicating rectilinear sections has a length of between a quarter and a half of a wavelength.
- a dual band slot 24 is provided in the antenna 14 and opens into the edge of the antenna at a location beyond the area bounded by the feed and shorting pins.
- the slot 24, which is of similar shape to the slot 22, extends parallel to, and at a constant space from, the slot 22.
- the length of the slot 24 is selected to be greater than a quarter of a wavelength at 1.8GHz and less than a quarter wavelength at 900MHz.
- Figure 2 shows the antenna 14 in slightly greater detail.
- the ratio of the dimensions A and B controls the impedance tranformation.
- the value of B varies along the length of the slot 22, see for example B' and B", and in any impedance calculation the ratio A B used in calculating impedance is averaged over the length of the slot 22.
- A is small the impedance transformation is low.
- the slot 22 between the feed and shorting pins 18, 20 introduces a third resonance that occurs when the slot is between approximately ⁇ /4 and ⁇ /2 long.
- the slot is approximately 40mm long, giving resonance at approximately 2.5GHz. This is shown in Figures 3 and 4.
- the resonances are shown at approximately 900MHz, 1.75 GHz and 2.5GHz.
- markers 1 , 2 and 3 are at 920, 1740 and 2540MHz respectively.
- the high frequency resonance may be used to cover Bluetooth or IEEE 802.11 b at 2.4 to 2.5GHz, TD-SDCMA at 2.3 to 2.4GHz, UMTS future expansion at 2.5 to 2.7GHz and so on.
- Figure 4 also shows that all 3 resonances can be matched simultaneously to a deliberately low impedance, in order to account for the effects of user detuning. If the differential slot 22 was not present the Sn plot on the Smith chart would move inductively.
- the slot 22 counters this effect and reduces the resistance on-axis.
- the effect of a user picking up the phone moves the Sn plot back to the middle, that is to 1.00.
- the second embodiment of the invention shown in Figure 5 differs from that shown in Figure 2 by the slot 22 being extended further.
- the length of the dual band slot 24 remains the same.
- the effect of extending the slot 22 is to combine the second an third resonances to give a wider second resonance. This allows the DCS1800, PCS1900 and UMTS bands to be simultaneously covered.
- the Sn of the configuration shown in Figure 5 is given in Figure 6. Once again the resistance is deliberately low to allow for user interaction. Control over resistance is possible by way of the position of the slot 22. However, it can clearly be seen that the upper frequency band is now very wide.
- the slots 22, 24 could have more meanders and/or have other directions.
- the length of the slot 22 still determines the third resonance and the ratio A/B ( Figure 2) still determines the impedance.
- the word "a” or "an” preceding an element does not exclude the presence of a plurality of such elements.
- the word “comprising” does not exclude the presence of other elements or steps than those listed. From reading the present disclosure, other modifications will be apparent to persons skilled in the art. Such modifications may involve other features which are already known in the design, manufacture and use of planar antenna arrangements and component parts therefor and which may be used instead of or in addition to features already described herein.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Waveguide Aerials (AREA)
- Support Of Aerials (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2004800232554A CN1836350B (en) | 2003-08-15 | 2004-08-04 | Antenna arrangement and a module and a radio communications apparatus having such an arrangement |
US10/568,010 US7443344B2 (en) | 2003-08-15 | 2004-08-04 | Antenna arrangement and a module and a radio communications apparatus having such an arrangement |
EP04744261A EP1656713A1 (en) | 2003-08-15 | 2004-08-04 | Antenna arrangement and a module and a radio communications apparatus having such an arrangement |
JP2006523077A JP2007502562A (en) | 2003-08-15 | 2004-08-04 | ANTENNA DEVICE, MODULE HAVING THE ANTENNA DEVICE, AND RADIO COMMUNICATION DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0319211.9A GB0319211D0 (en) | 2003-08-15 | 2003-08-15 | Antenna arrangement and a module and a radio communications apparatus having such an arrangement |
GB0319211.9 | 2003-08-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005018045A1 true WO2005018045A1 (en) | 2005-02-24 |
Family
ID=28052578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2004/002628 WO2005018045A1 (en) | 2003-08-15 | 2004-08-04 | Antenna arrangement and a module and a radio communications apparatus having such an arrangement |
Country Status (7)
Country | Link |
---|---|
US (1) | US7443344B2 (en) |
EP (1) | EP1656713A1 (en) |
JP (1) | JP2007502562A (en) |
KR (1) | KR20060064634A (en) |
CN (1) | CN1836350B (en) |
GB (1) | GB0319211D0 (en) |
WO (1) | WO2005018045A1 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006114771A1 (en) * | 2005-04-27 | 2006-11-02 | Nxp B.V. | Radio device having antenna arrangement suited for operating over a plurality of bands. |
WO2006129239A1 (en) * | 2005-05-31 | 2006-12-07 | Nxp B.V. | Planar antenna assembly with impedance matching and reduced user interaction, for a rf communication equipment. |
WO2007000483A1 (en) * | 2005-06-28 | 2007-01-04 | Pulse Finland Oy | Internal multiband antenna |
KR100748506B1 (en) | 2005-11-24 | 2007-08-13 | 엘지전자 주식회사 | Broadband antenna and electronic equipment comprising it |
KR100748504B1 (en) | 2005-11-24 | 2007-08-13 | 엘지전자 주식회사 | Broadband antenna and electronic equipment comprising it |
WO2008038892A1 (en) * | 2006-09-29 | 2008-04-03 | Electronics And Telecommunications Research Institute | Pcb type dual band patch antenna and wireless communication module incorporating the same pcb type dual band patch antenna |
EP2063488A1 (en) * | 2007-11-22 | 2009-05-27 | Arcadyan Technology Corp. | Dual band antenna |
US7679565B2 (en) | 2004-06-28 | 2010-03-16 | Pulse Finland Oy | Chip antenna apparatus and methods |
EP2284946A1 (en) * | 2009-07-17 | 2011-02-16 | Research In Motion Limited | Multi-slot antenna and mobile device |
US7916086B2 (en) | 2004-11-11 | 2011-03-29 | Pulse Finland Oy | Antenna component and methods |
US8098202B2 (en) | 2006-05-26 | 2012-01-17 | Pulse Finland Oy | Dual antenna and methods |
US8378892B2 (en) | 2005-03-16 | 2013-02-19 | Pulse Finland Oy | Antenna component and methods |
CN103311649A (en) * | 2012-03-16 | 2013-09-18 | 深圳富泰宏精密工业有限公司 | Antenna assembly |
US8829041B2 (en) | 2006-06-23 | 2014-09-09 | Abbvie Inc. | Cyclopropyl amine derivatives |
US8847833B2 (en) | 2009-12-29 | 2014-09-30 | Pulse Finland Oy | Loop resonator apparatus and methods for enhanced field control |
US8853390B2 (en) | 2010-09-16 | 2014-10-07 | Abbvie Inc. | Processes for preparing 1,2-substituted cyclopropyl derivatives |
US9108948B2 (en) | 2006-06-23 | 2015-08-18 | Abbvie Inc. | Cyclopropyl amine derivatives |
US9147938B2 (en) | 2012-07-20 | 2015-09-29 | Nokia Technologies Oy | Low frequency differential mobile antenna |
US9186353B2 (en) | 2009-04-27 | 2015-11-17 | Abbvie Inc. | Treatment of osteoarthritis pain |
US9397388B2 (en) | 2008-12-23 | 2016-07-19 | Skycross, Inc. | Dual feed antenna |
US9406998B2 (en) | 2010-04-21 | 2016-08-02 | Pulse Finland Oy | Distributed multiband antenna and methods |
US9450291B2 (en) | 2011-07-25 | 2016-09-20 | Pulse Finland Oy | Multiband slot loop antenna apparatus and methods |
US9673507B2 (en) | 2011-02-11 | 2017-06-06 | Pulse Finland Oy | Chassis-excited antenna apparatus and methods |
US9917346B2 (en) | 2011-02-11 | 2018-03-13 | Pulse Finland Oy | Chassis-excited antenna apparatus and methods |
US10211538B2 (en) | 2006-12-28 | 2019-02-19 | Pulse Finland Oy | Directional antenna apparatus and methods |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7372411B2 (en) * | 2004-06-28 | 2008-05-13 | Nokia Corporation | Antenna arrangement and method for making the same |
JP3930015B2 (en) * | 2004-12-09 | 2007-06-13 | 松下電器産業株式会社 | Antenna device for wireless device and portable wireless device including the same |
JP3889423B2 (en) * | 2004-12-16 | 2007-03-07 | 松下電器産業株式会社 | Polarization switching antenna device |
US7202831B2 (en) * | 2005-08-09 | 2007-04-10 | Darts Technologies Corp. | Multi-band frequency loop-slot antenna |
TW200721588A (en) * | 2005-11-30 | 2007-06-01 | Quanta Comp Inc | Portable communication device |
FR2901064A1 (en) * | 2006-05-12 | 2007-11-16 | Thomson Licensing Sas | PORTABLE COMPACT ANTENNA FOR DIGITAL TERRESTRIAL TELEVISION WITH FREQUENCY REJECTION |
US7936307B2 (en) * | 2006-07-24 | 2011-05-03 | Nokia Corporation | Cover antennas |
US7612725B2 (en) * | 2007-06-21 | 2009-11-03 | Apple Inc. | Antennas for handheld electronic devices with conductive bezels |
US8102319B2 (en) * | 2008-04-11 | 2012-01-24 | Apple Inc. | Hybrid antennas for electronic devices |
WO2009130887A1 (en) * | 2008-04-21 | 2009-10-29 | パナソニック株式会社 | Antenna device and wireless communication device |
CN101587983A (en) * | 2008-05-21 | 2009-11-25 | 深圳富泰宏精密工业有限公司 | Multi-frequency antenna and radio communication system having same |
KR101053775B1 (en) * | 2009-09-04 | 2011-08-02 | 인하대학교 산학협력단 | Dual-Strip Microstrip Patch Antenna |
FI20096134A0 (en) | 2009-11-03 | 2009-11-03 | Pulse Finland Oy | Adjustable antenna |
FI20096251A0 (en) | 2009-11-27 | 2009-11-27 | Pulse Finland Oy | MIMO antenna |
FI20105158A (en) | 2010-02-18 | 2011-08-19 | Pulse Finland Oy | SHELL RADIATOR ANTENNA |
KR101148993B1 (en) * | 2010-09-29 | 2012-05-23 | 한양네비콤주식회사 | Multiband antenna appratus |
CN102013569B (en) * | 2010-12-01 | 2013-10-02 | 惠州Tcl移动通信有限公司 | Built-in aerial with five frequency ranges and mobile communication terminal thereof |
KR101379123B1 (en) | 2010-12-17 | 2014-03-31 | 주식회사 케이티 | Wideband Single Resonance Antenna |
KR101446248B1 (en) | 2010-12-29 | 2014-10-01 | 주식회사 케이티 | external Antenna Using Linear Array |
FI20115072A0 (en) | 2011-01-25 | 2011-01-25 | Pulse Finland Oy | Multi-resonance antenna, antenna module and radio unit |
US8698678B2 (en) * | 2011-03-23 | 2014-04-15 | Blackberry Limited | Mobile wireless communications device with slotted antenna and related methods |
TWI489693B (en) * | 2011-03-25 | 2015-06-21 | Wistron Corp | Antenna module |
US8866689B2 (en) | 2011-07-07 | 2014-10-21 | Pulse Finland Oy | Multi-band antenna and methods for long term evolution wireless system |
US9123990B2 (en) | 2011-10-07 | 2015-09-01 | Pulse Finland Oy | Multi-feed antenna apparatus and methods |
US9531058B2 (en) | 2011-12-20 | 2016-12-27 | Pulse Finland Oy | Loosely-coupled radio antenna apparatus and methods |
US9484619B2 (en) | 2011-12-21 | 2016-11-01 | Pulse Finland Oy | Switchable diversity antenna apparatus and methods |
US8988296B2 (en) | 2012-04-04 | 2015-03-24 | Pulse Finland Oy | Compact polarized antenna and methods |
US9979078B2 (en) | 2012-10-25 | 2018-05-22 | Pulse Finland Oy | Modular cell antenna apparatus and methods |
US10069209B2 (en) | 2012-11-06 | 2018-09-04 | Pulse Finland Oy | Capacitively coupled antenna apparatus and methods |
KR101944340B1 (en) * | 2012-12-28 | 2019-01-31 | 엘지디스플레이 주식회사 | Slot antenna and information terminal apparatus using the same |
CN103972634A (en) * | 2013-01-24 | 2014-08-06 | 宏碁股份有限公司 | Electronic device |
US10079428B2 (en) | 2013-03-11 | 2018-09-18 | Pulse Finland Oy | Coupled antenna structure and methods |
US9647338B2 (en) | 2013-03-11 | 2017-05-09 | Pulse Finland Oy | Coupled antenna structure and methods |
US9196952B2 (en) * | 2013-03-15 | 2015-11-24 | Qualcomm Incorporated | Multipurpose antenna |
US9634383B2 (en) | 2013-06-26 | 2017-04-25 | Pulse Finland Oy | Galvanically separated non-interacting antenna sector apparatus and methods |
CN103531888A (en) * | 2013-10-09 | 2014-01-22 | 信维创科通信技术(北京)有限公司 | Multi-frequency noncentral feed type annular antenna for handheld equipment and handheld equipment |
US9680212B2 (en) | 2013-11-20 | 2017-06-13 | Pulse Finland Oy | Capacitive grounding methods and apparatus for mobile devices |
US9590308B2 (en) | 2013-12-03 | 2017-03-07 | Pulse Electronics, Inc. | Reduced surface area antenna apparatus and mobile communications devices incorporating the same |
US9350081B2 (en) | 2014-01-14 | 2016-05-24 | Pulse Finland Oy | Switchable multi-radiator high band antenna apparatus |
US9948002B2 (en) | 2014-08-26 | 2018-04-17 | Pulse Finland Oy | Antenna apparatus with an integrated proximity sensor and methods |
US9973228B2 (en) | 2014-08-26 | 2018-05-15 | Pulse Finland Oy | Antenna apparatus with an integrated proximity sensor and methods |
US9722308B2 (en) | 2014-08-28 | 2017-08-01 | Pulse Finland Oy | Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use |
CN105514569A (en) * | 2014-09-23 | 2016-04-20 | 联想(北京)有限公司 | Electronic device |
US9906260B2 (en) | 2015-07-30 | 2018-02-27 | Pulse Finland Oy | Sensor-based closed loop antenna swapping apparatus and methods |
JP7216577B2 (en) * | 2019-03-05 | 2023-02-01 | 日本航空電子工業株式会社 | antenna |
CN110518336A (en) * | 2019-08-27 | 2019-11-29 | 南京邮电大学 | A kind of omnidirectional radiation car antenna |
CN112751155B (en) * | 2019-10-31 | 2022-04-05 | 华为技术有限公司 | Electronic device |
JP2022127923A (en) * | 2021-02-22 | 2022-09-01 | 日本航空電子工業株式会社 | Double resonant antenna |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128466A2 (en) * | 2000-02-24 | 2001-08-29 | Filtronic LK Oy | Planar antenna structure |
US20020126052A1 (en) * | 2001-03-06 | 2002-09-12 | Koninklijke Philips Electronics N.V. | Antenna arrangement |
EP1304765A2 (en) * | 2001-10-22 | 2003-04-23 | Filtronic LK Oy | Internal multiband antenna |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0101667D0 (en) * | 2001-01-23 | 2001-03-07 | Koninkl Philips Electronics Nv | Antenna arrangement |
-
2003
- 2003-08-15 GB GBGB0319211.9A patent/GB0319211D0/en not_active Ceased
-
2004
- 2004-08-04 KR KR1020067003182A patent/KR20060064634A/en not_active Application Discontinuation
- 2004-08-04 JP JP2006523077A patent/JP2007502562A/en active Pending
- 2004-08-04 CN CN2004800232554A patent/CN1836350B/en not_active Expired - Fee Related
- 2004-08-04 WO PCT/IB2004/002628 patent/WO2005018045A1/en active Application Filing
- 2004-08-04 US US10/568,010 patent/US7443344B2/en not_active Expired - Lifetime
- 2004-08-04 EP EP04744261A patent/EP1656713A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128466A2 (en) * | 2000-02-24 | 2001-08-29 | Filtronic LK Oy | Planar antenna structure |
US20020126052A1 (en) * | 2001-03-06 | 2002-09-12 | Koninklijke Philips Electronics N.V. | Antenna arrangement |
EP1304765A2 (en) * | 2001-10-22 | 2003-04-23 | Filtronic LK Oy | Internal multiband antenna |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7679565B2 (en) | 2004-06-28 | 2010-03-16 | Pulse Finland Oy | Chip antenna apparatus and methods |
US7973720B2 (en) | 2004-06-28 | 2011-07-05 | LKP Pulse Finland OY | Chip antenna apparatus and methods |
US7916086B2 (en) | 2004-11-11 | 2011-03-29 | Pulse Finland Oy | Antenna component and methods |
US8378892B2 (en) | 2005-03-16 | 2013-02-19 | Pulse Finland Oy | Antenna component and methods |
WO2006114771A1 (en) * | 2005-04-27 | 2006-11-02 | Nxp B.V. | Radio device having antenna arrangement suited for operating over a plurality of bands. |
US7990319B2 (en) | 2005-04-27 | 2011-08-02 | Epcos Ag | Radio device having antenna arrangement suited for operating over a plurality of bands |
WO2006129239A1 (en) * | 2005-05-31 | 2006-12-07 | Nxp B.V. | Planar antenna assembly with impedance matching and reduced user interaction, for a rf communication equipment. |
US7884769B2 (en) | 2005-05-31 | 2011-02-08 | Epcos Ag | Planar antenna assembly with impedance matching and reduced user interaction for a RF communication equipment |
WO2007000483A1 (en) * | 2005-06-28 | 2007-01-04 | Pulse Finland Oy | Internal multiband antenna |
KR100748506B1 (en) | 2005-11-24 | 2007-08-13 | 엘지전자 주식회사 | Broadband antenna and electronic equipment comprising it |
KR100748504B1 (en) | 2005-11-24 | 2007-08-13 | 엘지전자 주식회사 | Broadband antenna and electronic equipment comprising it |
US8098202B2 (en) | 2006-05-26 | 2012-01-17 | Pulse Finland Oy | Dual antenna and methods |
US8829041B2 (en) | 2006-06-23 | 2014-09-09 | Abbvie Inc. | Cyclopropyl amine derivatives |
US9108948B2 (en) | 2006-06-23 | 2015-08-18 | Abbvie Inc. | Cyclopropyl amine derivatives |
US8044868B2 (en) | 2006-09-29 | 2011-10-25 | Electronics And Telecommunications Research Institute | PCB type dual band patch antenna and wireless communication module incorporating the same PCB type dual band patch antennna |
KR100847144B1 (en) * | 2006-09-29 | 2008-07-18 | 한국전자통신연구원 | PCB printed typed dual band antenna and Wireless communication module bodied with the PCB printed typed dual band antenna on PCB |
WO2008038892A1 (en) * | 2006-09-29 | 2008-04-03 | Electronics And Telecommunications Research Institute | Pcb type dual band patch antenna and wireless communication module incorporating the same pcb type dual band patch antenna |
US10211538B2 (en) | 2006-12-28 | 2019-02-19 | Pulse Finland Oy | Directional antenna apparatus and methods |
EP2063488A1 (en) * | 2007-11-22 | 2009-05-27 | Arcadyan Technology Corp. | Dual band antenna |
US7952529B2 (en) | 2007-11-22 | 2011-05-31 | Arcadyan Technology Corporation | Dual band antenna |
US9397388B2 (en) | 2008-12-23 | 2016-07-19 | Skycross, Inc. | Dual feed antenna |
US9186353B2 (en) | 2009-04-27 | 2015-11-17 | Abbvie Inc. | Treatment of osteoarthritis pain |
US8884825B2 (en) | 2009-07-17 | 2014-11-11 | Blackberry Limited | Multi-slot antenna and mobile device |
US8587491B2 (en) | 2009-07-17 | 2013-11-19 | Blackberry Limited | Antenna with a C-shaped slot nested within an L-shaped slot and mobile device employing the antenna |
EP2284946A1 (en) * | 2009-07-17 | 2011-02-16 | Research In Motion Limited | Multi-slot antenna and mobile device |
US8847833B2 (en) | 2009-12-29 | 2014-09-30 | Pulse Finland Oy | Loop resonator apparatus and methods for enhanced field control |
US9406998B2 (en) | 2010-04-21 | 2016-08-02 | Pulse Finland Oy | Distributed multiband antenna and methods |
US8853390B2 (en) | 2010-09-16 | 2014-10-07 | Abbvie Inc. | Processes for preparing 1,2-substituted cyclopropyl derivatives |
US9673507B2 (en) | 2011-02-11 | 2017-06-06 | Pulse Finland Oy | Chassis-excited antenna apparatus and methods |
US9917346B2 (en) | 2011-02-11 | 2018-03-13 | Pulse Finland Oy | Chassis-excited antenna apparatus and methods |
US9450291B2 (en) | 2011-07-25 | 2016-09-20 | Pulse Finland Oy | Multiband slot loop antenna apparatus and methods |
CN103311649A (en) * | 2012-03-16 | 2013-09-18 | 深圳富泰宏精密工业有限公司 | Antenna assembly |
US9147938B2 (en) | 2012-07-20 | 2015-09-29 | Nokia Technologies Oy | Low frequency differential mobile antenna |
Also Published As
Publication number | Publication date |
---|---|
KR20060064634A (en) | 2006-06-13 |
JP2007502562A (en) | 2007-02-08 |
US20060290569A1 (en) | 2006-12-28 |
EP1656713A1 (en) | 2006-05-17 |
CN1836350B (en) | 2011-10-05 |
GB0319211D0 (en) | 2003-09-17 |
CN1836350A (en) | 2006-09-20 |
US7443344B2 (en) | 2008-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7443344B2 (en) | Antenna arrangement and a module and a radio communications apparatus having such an arrangement | |
EP1368855B1 (en) | Antenna arrangement | |
US7889143B2 (en) | Multiband antenna system and methods | |
US6747601B2 (en) | Antenna arrangement | |
EP1869726B1 (en) | An antenna having a plurality of resonant frequencies | |
EP1506594B1 (en) | Antenna arrangement and module including the arrangement | |
US7193565B2 (en) | Meanderline coupled quadband antenna for wireless handsets | |
EP1113524B1 (en) | Antenna structure, method for coupling a signal to the antenna structure, antenna unit and mobile station with such an antenna structure | |
US9406998B2 (en) | Distributed multiband antenna and methods | |
KR101054713B1 (en) | Multiband Multimode Compact Antenna System | |
EP1750323A1 (en) | Multi-band antenna device for radio communication terminal and radio communication terminal comprising the multi-band antenna device | |
US6225951B1 (en) | Antenna systems having capacitively coupled internal and retractable antennas and wireless communicators incorporating same | |
KR20040108759A (en) | Antenna arrangement | |
Hall et al. | Planar inverted-F antennas | |
US20020177416A1 (en) | Radio communications device | |
Lai et al. | Capacitively FED hybrid monopole/slot chip antenna for 2.5/3.5/5.5 GHz WiMAX operation in the mobile phone | |
KR20020087139A (en) | Wireless terminal | |
CN100414769C (en) | Multifrequency antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480023255.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004744261 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006523077 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006290569 Country of ref document: US Ref document number: 10568010 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067003182 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004744261 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067003182 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 10568010 Country of ref document: US |