WO2005016382A1 - Antibodies to c-met - Google Patents

Antibodies to c-met Download PDF

Info

Publication number
WO2005016382A1
WO2005016382A1 PCT/US2004/025107 US2004025107W WO2005016382A1 WO 2005016382 A1 WO2005016382 A1 WO 2005016382A1 US 2004025107 W US2004025107 W US 2004025107W WO 2005016382 A1 WO2005016382 A1 WO 2005016382A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
met
seq
amino acid
human
Prior art date
Application number
PCT/US2004/025107
Other languages
French (fr)
Inventor
Neil R. Michaud
Shama Kajiji
Gary Borzillo
Vahe Bedian
Kevin Coleman
Larry L. Green
Xiao-Chi Jia
Original Assignee
Pfizer Products Inc.
Abgenix, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer Products Inc., Abgenix, Inc. filed Critical Pfizer Products Inc.
Priority to JP2006522679A priority Critical patent/JP2007501013A/en
Priority to BRPI0413272-6A priority patent/BRPI0413272A/en
Priority to EP04780015A priority patent/EP1660127A4/en
Priority to CA002534563A priority patent/CA2534563A1/en
Publication of WO2005016382A1 publication Critical patent/WO2005016382A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/74Inducing cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • Hepatocyte growth factor also known as scatter factor
  • HGF is a multifunctional growth factor that enhances transformation and tumor development by inducing mitogenesis and cell motility. Further, HGF promotes metastasis by stimulating cell motility and invasion through various signaling pathways.
  • HGF In order to produce cellular effects, HGF must bind to its receptor, c-Met, a receptor tyrosine kinase.
  • c-Met is a widely expressed heterodimeric protein comprising of a 50 kilodalton (kDa) ⁇ -subunit and a 145 kDa ⁇ -subunit (Maggiora et al., J. Cell Physiol, 173:183-186 (1997)).
  • the c-Met ⁇ -subunit comprises the tyrosine kinase domain and two autophosphorylation sites, Y1349 and Y1356, that are critical for transmission of the HGF signal (Maggiora et al., J. Cell Physiol, 173:183-186 (1997); Ponzetto et al., Cell, 77:2610271 (1994); Maina et al consume Cell, 87:531-542 (1996)).
  • HGF binding to c-Met results in activation of a number of signaling pathways that result in various cellular activities associated with diseases like cancer.
  • HGF and c-Met expression or over-expression also promote mitogenesis and anchorage independent growth (Rubin et al., Proc. NatlAcad. Sci. USA, 88:514-419 (1991); Kan et al., Biochem. Biophys. Res. Commun., 174:331-337 (1991).
  • invasion of the ECM has been reported when activation of c- Met causes the expression of proteases, such as urokinase-like plasminogen activator and collegenase, allowing cells to degrade and locally invade tissue (Jeffers et al., J.Mol.Med, 74:505-513 (1996).
  • tumors that express or over-express only c-Met, and not HGF utilize a paracrine rather than an autocrine signaling mechanism to support tumorigenesis (Beviglio et al., Int. J. Cancer, 74:301-309 (1997).
  • HGF and c-Met also have been implicated in the etiology of many human cancers. Concomitant expression or over-expression of HGF and c-Met has been observed in breast carcinoma (Nagy et al., Surg. Oncol, 5:15-21 (1996); Tuck et al., Am. J.
  • c-Met may be important in the development of other tumors in which a role for HGF has yet to be substantiated.
  • cancers include hepatocellular carcinoma (Suzuki et al. Hepatology, 20:1231-1236 (1996), renal cell carcinoma (Natali et al., Intl. J. Cancer, 69:212-217 (1996), lung carcinoma (Harvey et al., J. Pathol, 180:389-394 (1996), ovarian cancer (Nagy et al., J. Surg.
  • C-Met function may attenuate c-Met activation and/or HGF-induced biological responses (Date et al., FEBS Letters, 420:1-6 (1997); (Kaji et al, Cancer Gene Ther., 3:393-404 (1996); (Li et al., Clin. Exp.
  • the present invention provides an isolated antibody or antigen-binding portion thereof that specifically binds c-Met and acts predominantly as a c-Met antagonist, and, in some instances, as a c-Met agonist antibody and compositions comprising said antibody or portion.
  • the invention provides a composition comprising the heavy and/or light chain, the variable domains thereof, or antigen-binding portions thereof an anti-c- Met antibody, or nucleic acid molecules encoding an antibody, antibody chain or variable domain thereof of the invention and a pharmaceutically acceptable carrier.
  • Compositions of the invention may further comprise another component, such as a therapeutic agent or a diagnostic agent. Diagnostic and therapeutic methods are also provided by the invention.
  • the invention further provides an isolated cell line, that produces an antic-Met antibody or antigen-binding portion thereof.
  • the invention also provides nucleic acid molecules encoding the heavy and/or light chain of an anti-c-Met antibody, the variable domains thereof or antigen-binding portions thereof. [0010]
  • the invention provides vectors and host cells comprising the nucleic acid molecules, as well as methods of recombinantly producing the polypeptides encoded by the nucleic acid molecules.
  • Non-human transgenic animals or plants that express the heavy and/or light chain, or antigen-binding portions thereof, of an anti-c-Met antibody are also provided.
  • Figures 1A and IB show that the anti-c-Met antibodies inhibit ligand binding to an isolated c-Met ECD/Fc protein and inhibits c-Met phosphorylation in cells after stimulation with HGF.
  • Figure 1 A is a graph illustrating inhibition of ligand binding with anti-c- Met monoclonal antibodies of the invention.
  • Anti-c-Met monoclonal antibodies 13.3.2L-A91T, H-E42K, S97T and 13.3.2 bind to the c-Met receptor and inhibit HGF binding.
  • Figure IB is a graph illustrating inhibition in a c-Met phosphorylation ELISA.
  • Anti-c-Met monoclonal antibodies 13.3.2L-A91T, H-E42K, S97T and 13.3.2 inhibit c-Met tyrosine phosphorylation, as measured by a c-Met phosphorylation ELISA, in cells after stimulation with HGF.
  • Figure 2 is a graph illustrating anti-c-Met monoclonal antibody specificity.
  • Anti-IGF-IR monoclonal antibodies 2.13.2 and 2.12.1 bind to IGF-IR and cause a decrease in tyrosine phosphorylation of the IGF-IR following treatment with IGF-1.
  • Anti-c-Met antibodies 9.1.2 and 13.3.2 do not bind to IGF- IR, even at high concentrations of antibody, and do not cause a decrease in tyrosine phosphorylation of the IGF-IR.
  • Figure 3A-3H are sequence alignments of the predicted amino acid sequences of light and heavy chain variable domains from four anti-c-Met antibodies compared with the germline amino acid sequences of the corresponding human genes.
  • Figure 3 A shows an alignment of the predicted amino acid sequence of the light chain for antibody 13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine) and the 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine) variant to the germline L5V ⁇ l, J ⁇ 4 sequence (SEQ ID NO: 17).
  • Figure 3B shows an alignment of the predicted amino acid sequence of the light chain for antibody 9.1.2 (SEQ ID NO: 8) to the germline A27V ⁇ 3, J/c2 sequence (SEQ ID NO: 18).
  • Figure 3C shows an alignment of the predicted amino acid sequence of the light chain for antibody 8.70.2 (SEQ ID NO: 12) to the germline L5V ⁇ 1, J ⁇ 3 sequence (SEQ ID NO : 19) .
  • Figure 3D shows an alignment of the predicted amino acid sequence of the light chain for antibody 8.90.3 (SEQ ID NO: 16) to the germline L5V ⁇ l, J l sequence (SEQ ID NO: 20).
  • Figure 3E shows an alignment of the predicted amino acid sequence of the heavy chain of antibody 13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine and X 6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine and X 6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X is threonine and X 6 is alanine); 13.3.2H-A14P (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine and X 6 is proline); 13.3.2H-A14P, E42K (SEQ ID NO:
  • Figure 3G shows the alignment of the predicted amino acid sequence of the heavy chain for antibody 8.70.2 (SEQ ID NO: 10) to the germline V H 4-39, D2- 2, J H 4b sequence (SEQ ID NO: 23).
  • Figure 3H shows an alignment of the predicted amino acid sequence of the heavy chain for antibody 8.90.3 (SEQ ID NO: 14) to the germline V H 3-48, 4- 17, J H 4b sequence (SEQ ID NO: 24).
  • Figure 4A-4E show that anti-c-Met antibodies inhibit tumor growth in vivo. The arrows along the x-axis represent anti-c-Met antibody doses administered.
  • Figure 4A shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of 3T3-S114 tumors.
  • Figure 4B shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of U87 tumors.
  • Figure 4C shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of A549 tumors.
  • Figure 4D shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of GTL-16 tumors.
  • Figure 4E shows the results of an experiment demonstrating that anti-c- Met antibody 13.3.2L-A91T, H-E42K, S97T inhibits the growth of U87 tumors in a dose-dependent manner.
  • Figure 5 shows the relationship between anti-c-Met antibody 13.3.2L- A91T, H-E42K, S97T serum levels and inhibition of c-Met activity.
  • Figure 5 also shows the relationship between anti-c-Met antibody 13.3.2L-A91T, H-E42K, S97T serum levels and c-Met downregulation in U87 tumors.
  • Figures 6A-6P are full length heavy and light chain nucleotide and predicted amino acid sequences from four anti-c-Met antibodies.
  • the signal peptide for each heavy or light chain sequence is designated by underlined lower case type letters.
  • the CDR1, CDR2 and CDR3 sequences for each heavy or light sequence are designated by underlined upper case type letters.
  • the variable domain for each sequence are designated by upper case letters.
  • the constant region for each sequence are designated by lower case type letters.
  • Figure 6A shows the 13.3.2 Heavy Chain DNA sequence (SEQ ID NO:
  • Figure 6B shows the 13.3.2 Heavy Chain protein sequence (SEQ ID NO:
  • Figure 6C shows the 13.3.2 Light Chain [Kappa chain] DNA sequence (SEQ ID NO: 3).
  • Figure 6D shows the 13.3.2 Light Chain [Kappa chain] protein sequence
  • Figure 6E shows the 9.1.2 Heavy Chain DNA sequence (SEQ ID NO: 5).
  • Figure 6F shows the 9.1.2 Heavy Chain protein sequence (SEQ ID NO: 6).
  • Figure 6G shows the 9.1.2 Light Chain [Kappa] DNA sequence (SEQ ID NO: 1
  • Figure 6H shows the 9.1.2 Light Chain [Kappa] protein sequence (SEQ ID NO: 1
  • Figure 61 shows the 8.70.2 Heavy Chain DNA sequence (SEQ ID NO: 9).
  • FIG. 6J shows the 8.70.2 Heavy Chain protein sequence (SEQ ID NO:
  • Figure 6K shows the 8.70.2 Light Chain [Kappa] DNA sequence (SEQ ID NO: 1
  • Figure 6L shows the 8.70.2 Light Chain [Kappa] protein sequence (SEQ ID NO: 11).
  • Figure 6M shows the 8.90.3 Heavy Chain DNA sequence (SEQ ID NO:
  • Figure 6N shows the 8.90.3 Heavy Chain protein sequence (SEQ ID NO: 14).
  • Figure 6O shows the 8.90.3 Light Chain [Kappa] DNA sequence (SEQ ID NO: 1
  • Figure 6P shows the 8.90.3 Light Chain [Kappa] protein sequence (SEQ
  • polypeptide encompasses native or artificial proteins, protein fragments and polypeptide analogs of a protein sequence.
  • a polypeptide may be monomeric or polymeric.
  • isolated protein is a protein, polypeptide or antibody that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature.
  • a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be “isolated” from its naturally associated components.
  • a protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well known in the art.
  • Examples of isolated antibodies include an anti-c-Met antibody that has been affinity purified using c-Met, an anti-c-Met antibody that has been synthesized by a hybridoma or other cell line in vitro, and a human anti-c-Met antibody derived from a transgenic mouse.
  • a protein or polypeptide is "substantially pure,” “substantially homogeneous,” or “substantially purified” when at least about 60 to 75% of a sample exhibits a single species of polypeptide.
  • the polypeptide or protein may be monomeric or multimeric.
  • a substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and preferably will be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well known in the art.
  • polypeptide fragment refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the naturally-occurring sequence.
  • fragments are at least 5, 6, 8 or 10 amino acids long.
  • the fragments are at least 14, at least 20, at least 50, or at least 70, 80, 90, 100, 150 or 200 amino acids long.
  • polypeptide analog refers to a polypeptide that comprises a segment that has substantial identity to a portion of an amino acid sequence and that has at least one of the following properties: (1) specific binding to c-Met under suitable binding conditions, (2) ability to inhibit or activate c-Met.
  • polypeptide analogs comprise a conservative amino acid substitution (or insertion or deletion) with respect to the native sequence.
  • Analogs typically are at least 20 or 25 amino acids long, preferably at least 50, 60, 70, 80, 90, 100, 150 or 200 amino acids long or longer, and can often be as long as a full-length polypeptide.
  • amino acid substitutions to an anti-c-Met antibody or antigen-binding portion thereof are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, and (4) confer or modify other physicochemical or functional properties of such analogs, but still retain specific binding to c-Met.
  • Analogs can include various muteins of a sequence other than the normally-occurring peptide sequence.
  • single or multiple amino acid substitutions may be made in the normally-occurring sequence, preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts.
  • a conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence; e.g., a replacement amino acid should not alter the anti-parallel ⁇ - sheet that makes up the immunoglobulin binding domain that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence.
  • glycine and proline would not be used in an anti-parallel ⁇ - sheet.
  • Non-peptide analogs are commonly used in the pharmaceutical industry as drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics.” Fauchere, J. Adv. Drug Res.
  • a paradigm polypeptide i.e., a polypeptide that has a desired biochemical property or pharmacological activity
  • Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type may also be used to generate more stable peptides.
  • constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch, Ann. Rev. Biochem. 61 :387 (1992), incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulf ⁇ de bridges which cyclize the peptide.
  • an antigen-binding portion thereof may also be used.
  • An antigen-binding portion competes with the intact antibody for specific binding. See generally, Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989)) (incorporated by reference in its entirety for all purposes).
  • Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies.
  • antigen-binding portions include Fab, Fab', F(ab') 2> Fd, Fv, dAb, and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of an antibody that is sufficient to confer specific antigen binding to the polypeptide.
  • CDR complementarity determining region
  • both the mature light and heavy chain variable domains comprise the regions FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.
  • the assignment of amino acids to each domain herein is in accordance with the definitions of Kabat, Sequences of Proteins of Immunological Interest
  • an antibody that is referred to by number is the same as a monoclonal antibody that is obtained from the hybridoma of the same number.
  • monoclonal antibody 13.3.2 is the same antibody as one obtained from hybridoma 13.3.2, or a subclone thereof.
  • a Fd fragment means an antibody fragment that consists of the V H and C H I domains; an Fv fragment consists of the V ( and V H domains of a single arm of an antibody; and a dAb fragment (Ward et al., Nature 341 :544-546 (1989)) consists of a V H domain.
  • the antibody is a single-chain antibody (scFv) in which a V and V H domains are paired to form a monovalent molecules via a synthetic linker that enables them to be made as a single protein chain. (Bird et al., Science 242:423-426 (1988) and Huston et al., Proc.
  • the antibodies are diabodies, i.e., are bivalent antibodies in which V H and V L domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites.
  • diabodies i.e., are bivalent antibodies in which V H and V L domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites.
  • one or more CDRs from an antibody of the invention may be incorporated into a molecule either covalently or noncovalently to make it an immunoadhesin that specifically binds to c-Met.
  • the CDR(s) may be incorporated as part of a larger polypeptide chain, may be covalently linked to another polypeptide chain, or may be incorporated noncovalently.
  • the binding sites may be identical to one another or may be different.
  • human antibody means any antibody in which the variable and constant domain sequences are human sequences.
  • the term encompasses antibodies with sequences derived from human genes, but which have been changed, e.g. to decrease possible immunogenicity, increase affinity, eliminate cysteines that might cause undesirable folding, etc.
  • the term encompasses such antibodies produced recombinantly in non-human cells, which might impart glycosylation not typical of human cells. These antibodies may be prepared in a variety of ways, as described below.
  • chimeric antibody as used herein means an antibody that comprises regions from two or more different antibodies.
  • one or more of the CDRs of the chimeric antibody are derived from a human anti-c- Met antibody.
  • all of the CDRs are derived from a human anti-c-Met antibodies.
  • the CDRs from more than one human anti-c-Met antibodies are combined in a chimeric antibody.
  • a chimeric antibody may comprise a CDR1 from the light chain of a first human anti-c-Met antibody, a CDR2 from the light chain of a second human anti-c-Met antibody and a CDR3 from the light chain of a third human anti-c-Met antibody, and CDRs from the heavy chain may be derived from one or more other anti-c-Met antibodies.
  • the framework regions may be derived from one of the anti-c- Met antibodies from which one or more of the CDRs are taken or from one or more different human antibodies.
  • a chimeric antibody of the invention is a humanized anti-c-Met antibody.
  • a humanized anti-c-Met antibody of the invention comprises the amino acid sequence of one or more framework regions and/or the amino acid sequence from at least a portion of the constant region of one or more human anti-c-Met antibodies of the invention and CDRs derived from a non-human anti-c-Met antibody.
  • an "activating antibody” (also referred to herein as an "agonist antibody” as used herein means an antibody that increases one or more c-Met activities by at least about 40% when added to a cell, tissue or organism expressing c-Met. In some embodiments, the antibody activates c-Met activity by at least 50%, 60%, 70%, 80%., 85%o, 90%, 95%, 100% or greater than 100%. In some embodiments, the activating antibody is added in the presence of HGF. In some embodiments, an agonist antibody of the invention increases at least one activity of c-Met by 10- fold. [0070] Fragments or analogs of antibodies or immunoglobulm molecules can be readily prepared by those of ordinary skill in the art following the teachings of this specification.
  • Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains.
  • Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases.
  • computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. See Bowie et al., Science 253:164 (1991).
  • surface plasmon resonance refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORETM system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).
  • BIACORETM system Pulacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.
  • Jonsson U. et al. Ann. Biol Clin. 51:19-26 (1993); Jonsson U. et al., Biotechniques 11:620-627 (1991); Jonsson B. et al., J. Mol. Recognit. 8:125-131 (1995); and Johnsson B. et al., Anal. Biochem. 198:268-277 (1991).
  • K D refers to the equilibrium dissociation constant of a particular antibody- antigen interaction.
  • epitope includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor or otherwise interacting with a molecule.
  • Epitopic determinants generally consist of chemically active surface groupings of molecules such as amino acids or carbohydrate or sugar side chains and generally have specific three dimensional structural characteristics, as well as specific charge characteristics.
  • An epitope may be "linear” or “conformational.” In a linear epitope, all of the points of interaction between the protein and the interacting molecule (such as an antibody) occur linearally along the primary amino acid sequence of the protein. In a conformational epitope, the points of interaction occur across amino acid residues on the protein that are separated from one another.
  • an antibody is said to specifically bind an antigen when the dissociation constant is ⁇ 1 mM, preferably ⁇ 100 nM and most preferably ⁇ 10 nM.
  • the K D is 1 pM to 500 pM. In other embodiments, the K D is between 500 pM to 1 ⁇ M. In other embodiments, the K D is between 1 ⁇ M to 100 nM. In other embodiments, the K D is between 100 mM to 10 nM.
  • polynucleofide as referred to herein means a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms.
  • isolated polynucleotide as used herein means a polynucleofide of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the "isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotides with which the "isolated polynucleotide” is found in nature, (2) is operably linked to a polynucleotide to which it is not linked in nature, or (3) does not occur in nature as part of a larger sequence.
  • naturally occurring nucleotides as used herein includes deoxyribonucleotides and ribonucleotides.
  • modified nucleotides includes nucleotides with modified or substituted sugar groups and the like.
  • oligonucleotide linkages referred to herein includes oligonucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroamlothioate, phoshoranil- adate, phosphoroamidate, and the like. See e.g., LaPlanche et al., Nucl Acids Res. 14:9081 (1986); Stec et al., J. Am. Chem. Soc.
  • An oligonucleotide can include a label for detection, if desired.
  • operably linked sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest.
  • expression control sequence means polynucleotide sequences that are necessary to effect the expression and processing of coding sequences to which they are ligated.
  • Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion.
  • control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence; in eukaryotes, generally, such control sequences include promoters and transcription termination sequence.
  • control sequences is intended to include, at a minimum, all components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
  • the term "vector”, as used herein, means a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • the vector is a plasmid, i.e., a circular double stranded piece of DNA into which additional DNA segments may be ligated.
  • the vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome.
  • the vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • the vectors e.g., non-episomal mammalian vectors
  • the vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
  • certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, “expression vectors").
  • recombinant host cell means a cell into which a recombinant expression vector has been introduced. It should be understood that "recombinant host cell” and “host cell” mean not only the particular subject cell but also the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein.
  • the term “selectively hybridize” referred to herein means to detectably and specifically bind.
  • Polynucleotides, oligonucleotides and fragments thereof in accordance with the invention selectively hybridize to nucleic acid strands under hybridization and wash conditions that minimize appreciable amounts of detectable binding to nonspecific nucleic acids.
  • “High stringency” or “highly stringent” conditions can be used to achieve selective hybridization conditions as known in the art and discussed herein.
  • high stringency or “highly stringent” conditions is the incubation of a polynucleotide with another polynucleotide, wherein one polynucleotide may be affixed to a solid surface such as a membrane, in a hybridization buffer of 6X SSPE or SSC, 50% formamide, 5X Denhardt's reagent, 0.5% SDS, 100 ⁇ g/ml denatured, fragmented salmon sperm DNA at a hybridization temperature of 42°C for 12-16 hours, followed by twice washing at 55°C using a wash buffer of IX SSC, 0.5% SDS. See also Sambrook et al., supra, pp. 9.50-9.55.
  • sequence identity in the context of nucleic acid sequences means the residues in two sequences that are the same when aligned for maximum correspondence.
  • the length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 18 - lo -
  • nucleotides more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36, 48 or more nucleotides.
  • FASTA Altschul et al.
  • Gap or Bestfit programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin.
  • FASTA which includes, e.g., the programs FASTA2 and FAST A3, provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, Methods Enzymol 183:63-98 (1990); Pearson, Methods Mol. Biol 132:185-219 (2000); Pearson, Methods Enzymol. 266:227-258 (1996); Pearson, J. Mol. Biol. 276:71-84 (1998); incorporated herein by reference). Unless otherwise specified, default parameters for a particular program or algorithm are used.
  • percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOP AM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, incorporated herein by reference.
  • a reference to a nucleotide sequence encompasses its complement unless otherwise specified.
  • a reference to a nucleic acid having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence.
  • nucleic acid or fragment thereof when referring to a nucleic acid or fragment thereof, means that when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 85%, preferably at least about 90%, and more preferably at least about 95%, 96%, 97%o, 98%o or 99%> of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above.
  • the term "substantial identity” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights as supplied with the programs, share at least 70%o, 75%> or 80%) sequence identity, preferably at least 90% or 95%o sequence identity, and more preferably at least 97% 0 , 98% or 99%> sequence identity.
  • residue positions that are not identical differ by conservative amino acid substitutions.
  • a "conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain R group with similar chemical properties (e.g., charge or hydrophobicity).
  • a conservative amino acid substitution will not substantially change the functional properties of a protein.
  • the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson, Methods Mol. Biol. 243:307-31 (1994).
  • Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine, and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartic acid and glutamic acid; and 7) sulfur-containing side chains: cysteine and methionine.
  • Conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine.
  • a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al., Science 256:1443-45 (1992), incorporated herein by reference.
  • a “moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.
  • Sequence identity for polypeptides is typically measured using sequence analysis software.
  • GCG contains programs such as "Gap” and "Bestfit” which can be used with default parameters as specified by the programs to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1 (University of Wisconsin, WI). Polypeptide sequences also can be compared using FASTA using default or recommended parameters, see GCG Version 6.1.
  • FASTA e.g., FASTA2 and FASTA3
  • FASTA2 and FASTA3 provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, Methods Enzymol. 183:63-98 (1990); Pearson, Methods Mol. Biol. 132:185-219 (2000)).
  • Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially blastp or tblastn, using default parameters as supplied with the programs.. See, e.g., Altschul et al., J. Mol. Biol. 215:403-410 (1990); Altschul et al., Nucleic Acids Res. 25:3389-402 (1997).
  • the length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues.
  • searching a database containing sequences from a large number of different organisms it is preferable to compare amino acid sequences.
  • the terms “label” or “labeled” refers to incorporation of another molecule in the antibody.
  • the label is a detectable marker, e.g., incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods).
  • the label or marker can be therapeutic, e.g., a drug conjugate or toxin.
  • Various methods of labeling polypeptides and glycoproteins are known in the art and may be used.
  • labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, ⁇ n In, 125 1, 131 I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, -galactosidase, luciferase, alkaline phosphatase), chemiluminescent markers, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags), magnetic agents, such as gadolinium chelates, toxins such as pertussis toxin, taxol, cytochalasin B, gramicidin D, ethidium bromide,
  • labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
  • the invention provides humanized anti-c-Met antibodies. In another embodiment, the invention provides human anti-c-Met antibodies. In some embodiments, human anti-c-Met antibodies are produced by immunizing a non-human transgenic animal, e.g., a rodent, whose genome comprises human immunoglobulin genes so that the transgenic animal produces human antibodies.
  • An anti-c-Met antibody of the invention can comprise a human kappa or a human lambda light chain or an amino acid sequence derived therefrom. In some embodiments comprising a kappa light chain, the light chain variable domain (V L ) is encoded in part by a human L5 V ⁇ or A27 V ⁇ 3 gene.
  • the V L of the c-Met antibody comprises one or more amino acid substitutions relative to the germline amino acid sequence.
  • the V L of the anti-c-Met antibody comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid substitutions relative to the germline amino acid sequence.
  • one or more of those substitutions from germline is in the CDR regions of the light chain.
  • the amino acid substitutions relative to germline are at one or more of the same positions as the substitutions relative to germline in any one or more of the V L of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T.
  • the V L of the anti-c-Met antibody may contain one or more amino acid substitutions compared to germline found in the V L of antibody 9.1.2. or there may be one or more amino acid substitutions compared to germline found in the V L of antibody 13.3.2, which utilizes the same V ⁇ gene as antibody 8.70.2.
  • the amino acid changes are at one or more of the same positions, but involve a different substitution than in the reference antibody.
  • amino acid changes relative to germline occur at one or more of the same positions as in any of the V L of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T, but the changes may represent conservative amino acid substitutions at such position(s) relative to the amino acid in the reference antibody. For example, if a particular position in one of these antibodies is changed relative to germline and is glutamate, one may substitute aspartate at that position. Similarly, if an amino acid substitution compared to germline is serine, one may conservatively substitute threonine for serine at that position. Conservative amino acid substitutions are discussed supra.
  • the light chain of the human anti-c-Met antibody comprises the V L amino acid sequence of antibody 13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine); 9.1.2 (SEQ ID NO: 8); 8.70.2 (SEQ ID NO: 12); or 8.90.3 (SEQ ID NO: 16) or said amino acid sequence having up to 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitutions and/or a total of up to 3 non-conservative amino acid substitutions.
  • the light chain comprises the amino acid sequence from the beginning of the CDRl to the end of the CDR3 of any one of the foregoing antibodies.
  • the light chain may comprise CDRl , CDR2 and CDR3 regions independently selected from the light chain CDRl, CDR2 and CDR3, respectively of the light chain antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T, or CDR regions each having less than 4 or less than 3 conservative amino acid substitutions and/or a total of three or fewer non-conservative amino acid substitutions.
  • the light chain of the anti-c-Met antibody comprises a light chain CDRl, CDR2, and CDR3, each of which are independently selected from the light chain CDRl, CDR2 and CDR3 regions of monoclonal antibody 13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine; SEQ ID NO: 3 wherein X 7 is guanosine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine; SEQ ID NO: 3, wherein X 7 is adenosine); 9.1.2.
  • the light chain of the anti-c-Met antibody comprises the light chain CDRl, CDR2 and CDR3 regions of an antibody comprising the amino acid sequence of the V L region of an antibody selected from 13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 9.1.2.
  • variable domain is encoded in part by a human V H 1-18, V H 4-31, V H 4-39, or VH 3-48 gene.
  • V H sequence of the anti-c-Met antibody contains one or more amino acid substitutions, deletions or insertions (additions) relative to the germline amino acid sequence.
  • variable domain of the heavy chain comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 mutations from the germline amino acid sequence.
  • the mutation(s) are non-conservative substitutions compared to the germline amino acid sequence.
  • the mutations are in the CDR regions of the heavy chain.
  • the amino acid changes are made at one or more of the same positions as the mutations from germline in any one or more of the V H of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; or 13.3.2H-
  • amino acid changes are at one or more of the same positions but involve a different mutation than in the reference antibody.
  • the heavy chain comprises the V H amino acid sequence of antibody 13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is threonine); ; 9.1.2 (SEQ ID NO: 6); 8.70.2 (SEQ ID NO: 10) or 8.90.3 (SEQ ID NO: 14); or said V H amino acid sequence having up to 1, 2, 3, 4, 6, 8, or 10 conservative amino acid substitutions and/or a total of up to 3 non-conservative amino acid substitutions.
  • the heavy chain comprises the amino acid sequence from the beginning of the CDRl to the end of the CDR3 of any one of the foregoing antibodies.
  • the heavy chain comprises the heavy chain CDRl, CDR2 and CDR3 regions of antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; or
  • the heavy chain CDR regions are independently selected from the CDR regions of two or more antibodies of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T or 13.3.2H-A14P,E42K,S97T.
  • the heavy chain comprises CDR regions independently selected from two or more V H regions selected from 13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine);
  • the antibody comprises a light chain as disclosed above and a heavy chain as disclosed above.
  • the light chain CDRs and the heavy chain CDRs are from the same antibody.
  • One type of amino acid substitution that may be made is to change one or more cysteines in the antibody, which may be chemically reactive, to another residue, such as, without limitation, alanine or serine.
  • the substitution can be made in a CDR or framework region of a variable domain or in the constant domain of an antibody.
  • the cysteine is canonical.
  • Another type of amino acid substitution that may be made is to change any potential proteolytic sites in the antibody. Such sites may occur in a CDR or framework region of a variable domain or in the constant domain of an antibody.
  • substitution of cysteine residues and removal of proteolytic sites may decrease the risk of any heterogeneity in the antibody product and thus increase its homogeneity.
  • Another type of amino acid substitution is to eliminate asparagine- glycine pairs, which form potential deamidation sites, by altering one or both of the residues.
  • the C-terminal lysine of the heavy chain of the anti c-Met antibody of the invention is cleaved.
  • the heavy and light chains of the anti-c-Met antibodies may optionally include a signal sequence.
  • the invention relates to four inhibitory human anti-c-Met monoclonal antibodies and the hybridoma cell lines that produce them.
  • Table 1 lists the sequence identifiers (SEQ ID NOs:) of the nucleic acids encoding the full- length heavy and light chains (including leader sequence), and the corresponding full-length deduced amino acid sequences.
  • the invention further provides heavy and or light chain variants of certain of the above-listed human anti-c-Met antibodies, comprising one or more amino acid substitutions.
  • the first letter is the one letter symbol for the amino acid of the naturally-occurring antibody chain, the number refers to the position of the amino acid (wherein position one is the N-terminal amino acid), and the second letter is the one letter symbol for the variant amino acid.
  • the invention provides heavy chain variant of monoclonal antibody 13.3.2.
  • One 13.3.2 heavy chain variant is E42K, which has a lysine at position X 2 of SEQ ID NO: 2.
  • the DNA sequence encoding the E42K 13.3.2 variant has an adenosine at Xj of SEQ ID NO: 1.
  • a second 13.3.2 heavy chain variant is S97T, which has a threonine residue at position X .
  • the DNA sequence encoding the S97T 13.3.2 variant has an adenosine at X 3 of SEQ ID NO: 1.
  • a third 13.3.2 heavy chain variant is A14P, which has a proline residue at X 6 of SEQ ID NO: 2. In the DNA sequence, the
  • A14P 13.3.2 variant is encoded by SEQ ID NO:l, in which X 5 is an cytosine.
  • the invention also provides a variant light chain of monoclonal antibody 13.3.2.
  • A91T is 13.3.2 light chain variant, represented by SEQ ED NO: 4, in which X 8 is a threonine residue.
  • the A91T 13.3.2 variant is encoded by SEQ ID NO: 3, in which X 7 is an adenosine.
  • Antibodies comprising a variant heavy or light chain and a wild type chain are designated by the variant chain.
  • an antibody containing a wild type light chain of antibody 13.3.2 and the E42K heavy chain variant is designated as 13.3.2H-E42K.
  • antibodies containing combinations of amino acid variants can be produced, e.g., 13.3.2H-E42K,S97T. Further combinations of a variant heavy chain and the variant light chain of 13.3.2 are included.
  • the anti-c-Met antibody is 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H- E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2H-S97T; 13.3.2L-A91T; 13.3.2L- A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L- A91T,H-A14P,E42K; 13.3.2L- A91T,H-A14P,E42K; 13.3.2L- A91T,
  • the invention includes antibodies comprising variable domain amino acid sequences with more than 80%>, more than 85%, more than 90%o, more than 95%o, more than 96%, more than 97%>, more than 98%> or more than 99% sequence identity to an variable domain amino acid sequence of any of the above-listed human anti-c-Met antibodies.
  • the class and subclass of anti-c-Met antibodies may be determined by any method known in the art.
  • the class and subclass of an antibody may be determined using antibodies that are specific for a particular class and subclass of antibody. Such antibodies are commercially available.
  • the class and subclass can be determined by ELISA, or Western Blot as well as other techniques.
  • the class and subclass may be determined by sequencing all or a portion of the constant domains of the heavy and/or light chains of the antibodies, comparing their amino acid sequences to the known amino acid sequences of various class and subclasses of immunoglobulins, and determining the class and subclass of the antibodies.
  • the anti-c-Met antibody is a monoclonal antibody.
  • the anti-c-Met antibody can be an IgG, an IgM, an IgE, an IgA, or an IgD molecule.
  • the anti-c-Met antibody is an IgG and is an IgGl, IgG2, IgG3, IgG4 subclass. In another preferred embodiment, the antibody is subclass IgG2.
  • the anti-c-Met antibodies bind to c-Met with high affinity. In some embodiments, the anti-c-Met antibody binds to c-Met with a K D of 2 x 10 "7 M or less. In other preferred embodiments, the antibody binds to c-Met with a K D of 2 x 10 "8 M, 2 x 10 ⁇ 9 M , or 5 x 10 " '° M or less.
  • the antibody binds to c-Met with substantially the same Ko as an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L- A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L- A91T,H-A14P,E42K; 13.3.2L- A91T,H-E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T.
  • the antibody binds to c-Met with substantially the same K D as an antibody that comprises a heavy chain variable domain having the amino acid sequence of a V H region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is threonine)], 6, 10, or 14, a light chain variable domain having the amino acid sequence of a V L region of SEQ ID NO: 4 [13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine)], 8, 12, or 16 or both.
  • SEQ ID NO: 2 amino acid sequence of a V H region of SEQ ID NO: 2 [13
  • the antibody binds to c-Met with substantially the same K D as an antibody that comprises the CDR regions of a light chain variable domain having the amino acid sequence of a V L region of SEQ ID NO: 4 [13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ LO NO: 4, wherein X 8 is threonine)], 8, 12, or 16 or that comprises the CDR regions of a heavy chain variable domain having the amino acid sequence a V H region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine);
  • the anti-c-Met antibody has a low dissociation rate constant (k 0ff ) In some embodiments, the anti-c-Met antibody has a k 0 f of 1.0 x 10 "3 s-1 or lower or a k off of 5.0 x 10 "4 s "1 or lower.
  • the antibody binds to c-Met with a k 0 of 2 x 10 "4 s "1 or lower.
  • the k 0ff is substantially the same as an antibody described herein, including an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H- A14P; 13.3.2H-S97T; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-A14P; 13.3.2L- A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H-E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T.
  • the antibody binds to c-Met with substantially the same k 0ff as an antibody that comprises the CDR regions of a heavy chain; or the CDR regions of a light chain from an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T.
  • the antibody binds to c-Met with substantially the same k 0 ff as an antibody that comprises a heavy chain variable domain having the amino acid sequence of a V H region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is threonine)], 6, 10, or 14, a light chain variable domain having the amino acid sequence of a V L region of SEQ ID NO: 4 [13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine)], 8, 12, or 16 or both.
  • SEQ ID NO: 2 amino acid sequence of a V H region of SEQ
  • the antibody binds to c-Met with substantially the same k off as an antibody that comprises the CDR regions of a light chain variable domain having the amino acid sequence of a V L region of SEQ ID NO: 4 [13.3.2 (SEQ ED NO: 4, wherein X 8 is alanine) and the 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine)], 8, 12, or 16; or the CDR regions of a heavy chain variable domain having the amino acid sequence of a V H region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine); 13.3.2H- E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is threonine)], 6, 10, or 14.
  • SEQ ID NO: 4 amino acid sequence of
  • the binding affinity and dissociation rate of an anti-c-Met antibody to c- Met can be determined by methods known in the art.
  • the binding affinity can be measured by ELIS As, RIAs, flow cytometry, surface plasmon resonance, such as BIACORETM.
  • the dissociate rate can be measured by surface plasmon resonance.
  • the binding affinity and dissociation rate is measured by surface plasmon resonance. More preferably, the binding affinity and dissociation rate are measured using BIACORE TM.
  • Example VIII exemplifies a method for determining affinity constants of anti-c-Met monoclonal antibodies by BIACORETM.
  • the invention provides a human anti-c-Met monoclonal antibody that binds to c-Met and competes or cross-competes with and/or binds the same epitope as: (a) an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; 13.3.2H-
  • test antibody if the test antibody is not able to bind to c-Met at the same time, then the test antibody binds to the same epitope, an overlapping epitope, or an epitope that is in close proximity to the epitope bound by the human anti-c-Met antibody.
  • This experiment can be performed using ELISA, RIA, BIACORETM, or flow cytometry. In a preferred embodiment, the experiment is performed using ELISA. Methods of determining K D are discussed further below.
  • the invention provides an anti-c-Met antibody that inhibits the binding of HGF to the c-Met receptor.
  • the c-Met receptor is human.
  • the anti-c-Met antibody is a human antibody.
  • the IC 50 can be measured in a ligand binding assay by ELISA, RIA, or other assays and cell-based assays such as scattering assay, soft agar growth and tubulomorphogenesis assay.
  • the antibody or portion thereof inhibits ligand binding between HGF and c-Met with an IC 5 oof no more than 5 ⁇ g/ml, preferably no more than 1 ⁇ g/ml, more preferably than 0.5 ⁇ g/ml, even more preferably no more than 0.20 ⁇ g/ml as measured by an ELISA assay.
  • Example III exemplifies this type of assay.
  • the invention provides an anti-c-Met antibody that prevents activation of c-Met in the presence of HGF.
  • the anti-c-Met antibody inhibits HGF-induced tyrosine phosphorylation that occurs upon binding to c-Met.
  • the IC 50 measured using an ELISA assay, is no more than 5 ⁇ g/ml, preferably no more than 1 ⁇ g/ml, more preferably than 0.5 ⁇ g/ml, even more preferably no more than 0.20 ⁇ g/ml.
  • Example TV exemplifies one type of assay that measures inhibition of c-Met activation by an anti-c-Met antibody in the presence of HGF (See Figure IB).
  • the antibody may cause a downregulation of cell surface c-Met levels after an incubation with the antibody.
  • the incubation can be a short time period (e.g., 4 hours) or a longer time period (e.g., 24 hours).
  • a downregulation of cell surface c-Met levels can be measured using western blotting or ELISA.
  • the antibody may cause preferably a 6% downregulation of cell surface c-Met levels, preferably a 10% downregulation, or more preferably a 20% downregulation, more preferably a 50%> downregulation or even more preferably at least 50%) downregulation of cell surface c-Met levels as measured by western blotting or ELISA.
  • Example V exemplifies one type of an ELISA measuring downregulation of cell surface c-Met levels after a short incubation with the antibody.
  • the invention provides an anti-c-Met antibody that inhibits colony formation in soft agar.
  • the IC 50 as measured by a soft agar growth assay, is no more than 25 ⁇ g/ml, preferably no more than 20 ⁇ g/ml, more preferably no more than 5 ⁇ g/ml, even more preferably no more than 1 ⁇ g/ml.
  • a tubular morphogenesis assay can be used to measure the percent of inhibition of c-Met dependent morphological changes in cells grown in the presence of HGF and treated with antibodies of the invention.
  • the percent of inhibition measured with the tubular morphogenesis assay is no less than 20%>, preferably no less than 60%o, or even more preferably is no less than 80%>. Examples VI and VII exemplify various types of assays.
  • the invention provides an anti-c-Met antibody that inhibits the proliferation of tumor cells in vivo.
  • the tumor cell may be derived from any cell type including, without limitation, epidermal, epithelial, endothelial or mesodermal cells.
  • the tumor cells may be derived from solid or non-solid tumors including, but not limited to, leukemia, sarcoma, multiple myeloma, glioblastoma, choriocarcinoma, Kaposi or cervical intraepithelial neoplasia.
  • the anti-c-Met antibody inhibits prostate, colon, breast, ovarian, gastric, lung and glioblastoma tumor growth in an animal.
  • an antic-Met antibody of the invention is used to treat lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynecologic tumors (e.g., uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (e.g., cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphocytic lymphomas, cancer of the bladder, cancer of the
  • the antibody inhibits tumor cell growth as compared to the growth of the tumor in an untreated animal.
  • the anti-c-Met antibody inhibits tumor cell growth by at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100%).
  • the inhibition of tumor cell growth is measured at least 7 days after the animals have started treatment with the antibody.
  • the inhibition of tumor cell growth is measured at least 14 days after the animals have started treatment with the antibody. See Example IX.
  • the anti-c-Met antibody result in tumor regression of at least 10%> to 100%.
  • an anti-c-Met antibody that is an activating antibody, i.e., a c-Met agonist.
  • An activating antibody amplifies or substitutes for the effects of HGF on c-Met.
  • the activating antibody is essentially a mimic of HGF, and competes with HGF for binding to c-Met.
  • the antibody does not compete with HGF for binding to c-Met, but amplifies the effect of HGF binding to c-Met.
  • the anti-c-Met antibody activates c-Met in the presence or absence of HGF.
  • the anti-c-Met antibody agonist activity can be measured using a c-Met activation ELISA assay. In some embodiments of the invention, agonist activity is 2 to 3-fold stimulation over cells not stimulated with HGF. In other embodiments, the agonist activity is at least 6-fold.
  • Example X describes an example a of c-Met activation assay.
  • the anti-c-Met antibody agonist activity can be measured using a tubular morphogenesis assay.
  • weak agonist activity may be measured by using a tubular morphogenesis assay that measures c- Met agonist activity.
  • Example X exemplifies one type of a tubular morphogenesis assay that measures c-Met agonist activity.
  • the anti-c-Met antibodies demonstrate both species and molecular selectivity.
  • the anti-c-Met antibody binds to human and cynomologus and rhesus monkey c-Met.
  • the anti-c-Met antibody additionally binds to rat c-Met.
  • the anti-c-Met antibody does not bind to mouse or dog c-Met.
  • the anti-c-Met antibody has a selectivity for c- Met that is more than 100 times greater than its selectivity for IGF-IR (Insulin-like Growth Factor 1 Receptor) (See Figure 2).
  • the anti-c-Met antibody does not exhibit any appreciable specific binding to any other protein other than c-Met.
  • human antibodies are produced by immunizing a non-human, transgenic animal comprising within its genome some or all of human immunoglobulm heavy chain and light chain loci with a c-Met antigen.
  • the non-human animal is a XENOMOUSETM animal. (Abgenix, Inc., Fremont, CA).
  • XENOMOUSETM mice are engineered mouse strains that comprise large fragments of human immunoglobulin heavy chain and light chain loci and are deficient in mouse antibody production. See, e.g., Green et al., Nature Genetics 7:13-21 (1994) and U.S. Patents 5,916,771, 5,939,598, 5,985,615, 5,998,209, 6,075,181, 6,091,001, 6,114,598, 6,130,364, 6,162,963 and 6,150,584.
  • the invention provides a method for making anti-c-Met antibodies from non-human, non-mouse animals by immunizing non-human transgenic animals that comprise human immunoglobulin loci with a c-Met antigen.
  • Patent 5,994,619 which is hereby incorporated by reference.
  • U.S. Patent 5,994,619 describes methods for producing novel cultured inner cell mass (CICM) cells and cell lines, derived from pigs and cows, and transgenic CICM cells into which heterologous DNA has been inserted.
  • CICM transgenic cells can be used to produce cloned transgenic embryos, fetuses, and offspring.
  • the '619 patent also describes methods of producing transgenic animals that are capable of transmitting the heterologous DNA to their progeny.
  • the non-human animals are mammals, particularly rats, sheep, pigs, goats, cattle or horses.
  • XENOMOUSETM mice produce an adult-like human repertoire of fully human antibodies and generate antigen-specific human antibodies.
  • the XENOMOUSETM mice contain approximately 80%> of the human antibody V gene repertoire through introduction of megabase sized, germline configuration fragments of the human heavy chain loci and kappa light chain loci in yeast artificial chromosome (YAC).
  • YAC yeast artificial chromosome
  • XENOMOUSETM mice further contain approximately all of the human lambda light chain locus. See Mendez et al., Nature Genetics 15:146-156 (1997), Green and Jakobovits, J. Exp. Med.
  • the non -human animal comprising human immunoglobulin genes are animals that have a human immunoglobulin "minilocus".
  • minilocus an exogenous Ig locus is mimicked through the inclusion of individual genes from the Ig locus.
  • V H genes, one or more D H genes, one or more J H genes, a mu constant domain, and a second constant domain (preferably a gamma constant domain) are formed into a construct for insertion into an animal. This approach is described, ter alia, in U.S. Patent Nos.
  • the invention provides a method for making humanized anti-c-Met antibodies.
  • non-human animals are immunized with a c-Met antigen as described below under conditions that permit antibody production.
  • Antibody-producing cells are isolated from the animals, fused with myelomas to produce hybridomas, and nucleic acids encoding the heavy and light chains of an anti-c-Met antibody of interest are isolated. These nucleic acids are subsequently engineered using techniques known to those of skill in the art and as described further below to reduce the amount of non-human sequence, i.e., to humanize the antibody to reduce the immune response in humans [0131]
  • the c-Met antigen is isolated and/or purified c- Met.
  • the c-Met antigen is human c-Met.
  • the c-Met antigen is a fragment of c-Met.
  • the c-Met fragment is the extracellular domain of c-Met. In some embodiments, the c-Met fragment comprises at least one epitope of c-Met. In other embodiments, the c-Met antigen is a cell that expresses or overexpresses c-Met or an immunogenic fragment thereof on its surface. In some embodiments, the c-Met antigen is a c-Met fusion protein. In some embodiments, the c-Met is a synthetic peptide immunogen. [0132] Immunization of animals can be by any method known in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Press, 1990.
  • the c-Met antigen is administered with an adjuvant to stimulate the immune response.
  • adjuvants include complete or incomplete Freund's adjuvant, RIBI (muramyl dipeptides) or ISCOM (immunostimulating complexes).
  • RIBI muramyl dipeptides
  • ISCOM immunocomplementary metal-oxide-semiconductor
  • the immunization schedule will involve two or more administrations of the polypeptide, spread out over several weeks.
  • Example I exemplifies a method for producing anti-c-Met monoclonal antibodies in XenoMouseTM mice.
  • antibodies and/or antibody-producing cells can be obtained from the animal.
  • anti-c-Met antibody-containing serum is obtained from the animal by bleeding or sacrificing the animal.
  • the serum may be used as it is obtained from the animal, an immunoglobulin fraction may be obtained from the serum, or the anti-c-Met antibodies may be purified from the serum.
  • antibody-producing immortalized cell lines are prepared from cells isolated from the immunized animal. After immunization, the animal is sacrificed and lymph node and or splenic B cells are immortalized by any means known in the art.
  • Methods of immortalizing cells include, but are not limited to, transfecting them with oncogenes, infecting them with an oncogenic virus and cultivating them under conditions that select for immortalized cells, subjecting them to carcinogenic or mutating compounds, fusing them with an immortalized cell, e.g., a myeloma cell, and inactivating a tumor suppressor gene. See, e.g., Harlow and Lane, supra. If fusion with myeloma cells is used, the myeloma cells preferably do not secrete immunoglobulin polypeptides (a non- secretory cell line). Immortalized cells are screened using c-Met, a portion thereof, or a cell expressing c-Met.
  • the initial screening is performed using an enzyme-linked immunoassay (ELISA) or a radioimmunoassay.
  • ELISA enzyme-linked immunoassay
  • An example of ELISA screening is provided in WO 00/37504, incorporated herein by reference.
  • Anti-c-Met antibody-producing cells e.g., hybridomas
  • Hybridomas can be expanded in vivo in syngeneic animals, in animals that lack an immune system, e.g., nude mice, or in cell culture in vitro. Methods of selecting, cloning and expanding hybridomas are well known to those of ordinary skill in the art.
  • the immunized animal is a non-human animal that expresses human immunoglobulin genes and the splenic B cells are fused to a myeloma cell line from the same species as the non-human animal.
  • the immunized animal is a XENOMOUSE mouse and the myeloma cell line is a non-secretory mouse myeloma.
  • the myeloma cell line is P3-X63-Ag8.653 (American Type Culture Collection. See, e.g., Example I.
  • the invention provides methods for producing a cell line that produces a human monoclonal antibody or a fragment thereof directed to c-Met comprising (a) immunizing a non-human transgenic animal described herein with c-Met, a portion of c-Met or a cell or tissue expressing c-Met; (b) allowing the transgenic animal to mount an immune response to c-Met; (c) isolating antibody-producing cells from transgenic animal; (d) immortalizing the antibody-producing cells; (e) creating individual monoclonal populations of the immortalized antibody-producing cells; and (f) screening the immortalized antibody-producing cells to identify an antibody directed to c-Met.
  • the invention provides hybridomas that produce a human anti-c-Met antibody.
  • the hybridomas are mouse hybridomas, as described above.
  • the hybridomas are produced in a non-human, non-mouse species such as rats, sheep, pigs, goats, cattle or horses.
  • the hybridomas are human hybridomas.
  • antibody-producing cells are isolated and expressed in a host cell, for example myeloma cells.
  • a transgenic animal is immunized with c-Met
  • primary cells e.g., spleen or peripheral blood cells
  • individual cells producing antibodies specific for the desired antigen are identified.
  • Polyadenylated mRNA from each individual cell is isolated and reverse transcription poiymerase chain reaction (RT-PCR) is performed using sense primers that anneal to variable region sequences, e.g., degenerate primers that recognize most or all of the FRl regions of human heavy and light chain variable region genes and anti-sense primers that anneal to constant or joining region sequences.
  • RT-PCR reverse transcription poiymerase chain reaction
  • cDNAs of the heavy and light chain variable domains are then cloned and expressed in any suitable host cell, e.g., a myeloma cell, as chimeric antibodies with respective immunoglobulin constant regions, such as the heavy chain and K or ⁇ constant domains.
  • a suitable host cell e.g., a myeloma cell
  • immunoglobulin constant regions such as the heavy chain and K or ⁇ constant domains.
  • phage display techniques can be used to provide libraries containing a repertoire of antibodies with varying affinities for c-Met. For production of such repertoires, it is unnecessary to immortalize the B cells from the immunized animal. Rather, the primary B cells can be used directly as a source of DNA. The mixture of cDNAs obtained from B cell, e.g., derived from spleens, is used to prepare an expression library, for example, a phage display library transfected into E.coli. The resulting cells are tested for immunoreactivity to c- Met.
  • the cDNAs encoding heavy and light chains are independently supplied or linked to form Fv analogs for production in the phage library.
  • the phage library is then screened for the antibodies with the highest affinities for c-Met and the genetic material recovered from the appropriate clone. Further rounds of screening can increase affinity of the original antibody isolated.
  • the present invention also encompasses nucleic acid molecules encoding anti-c-Met antibodies.
  • different nucleic acid molecules encode a heavy chain and a light chain of an anti-c-Met immunoglobulin.
  • the same nucleic acid molecule encodes a heavy chain and a light chain of an anti-c-Met immunoglobulin.
  • the nucleic acid encodes a c-Met antibody of the invention.
  • the nucleic acid molecule encoding the variable domain of the light chain (V L ) comprises a human L5V 1 or A27V ⁇ 3 gene, and a J/ l, J ⁇ 2, J ⁇ 3, or J ⁇ 4 gene.
  • the nucleic acid molecule encoding the light chain encodes an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 substitutions from the germline amino acid sequence(s).
  • the nucleic acid molecule comprises a nucleotide sequence that encodes a V L amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitutions and/or 1, 2, or 3 non-conservative substitutions compared to germline V L and J K sequences. Substitutions may be in the CDR regions, the framework regions, or in the constant domain.
  • the nucleic acid molecule encodes a V L amino acid sequence comprising one or more variants compared to germline sequence that are identical to the variations found in the V L of one of the antibodies 13.3.2, 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T. [0146] In some embodiments, the nucleic acid molecule encodes at least three amino acid substitutions compared to the germline sequence found in the V L of one of the antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T.
  • the nucleic acid molecule comprises a nucleotide sequence that encodes the V L amino acid sequence of monoclonal antibody 13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine); 9.1.2 (SEQ ID NO: 8); 8.70.2 (SEQ ID NO: 12); or 8.90.3 (SEQ ID NO: 16), or a variant or portion thereof.
  • the nucleic acid encodes an amino acid sequence comprising the light chain CDRs of one of said above-listed antibodies.
  • said portion is a contiguous portion comprising CDR1-CDR3.
  • the nucleic acid molecule comprises a nucleotide sequence that encodes the amino acid sequence of one of SEQ ID NOs: 4[13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine)], 8, 12, or 16, or said sequence lacking the signal sequence.
  • the nucleic acid molecule comprises the nucleotide sequence of SEQ ID NOs: 3 [13.3.2 (SEQ ID NO: 3 wherein X 7 is guanosine); 13.3.2L-A91T (SEQ ID NO: 3, wherein X 7 is adenosine)], 7, 11, or 15, or a portion thereof, said sequences optionally lacking the signal sequence.
  • the nucleic acid encodes the amino acid sequence of the light chain CDRs of said antibody. In some embodiments, said portion encodes a contiguous region from CDR1-CDR3 of the light chain of an anti-c-Met antibody. [0150] In some embodiments, the nucleic acid molecule encodes a V L amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to a V L amino acid sequences shown in Fig.
  • Nucleic acid molecules of the invention include nucleic acids that hybridize under highly stringent conditions, such as those described above, to a nucleic acid sequence encoding the amino acid sequence of a nucleic acid molecule encoding a V L region of SEQ ID NOs: 4 [13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X is threonine)], 8, 12, or 16, or that has the nucleic acid sequence of a nucleic acid molecule encoding a V L region of SEQ ID NOs: 3 [13.3.2 (SEQ ID NO: 3 wherein X 7 is guanosine); 13.3.2L-A91T (SEQ ID NO: 3, wherein X 7 is adenosine)], 7, 11, or 15.
  • the nucleic acid encodes a full-length light chain of an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T, or a light chain comprising the amino acid sequence of SEQ ID NOs: 4[13.3.2 (SEQ ID NO: 4, wherein X 8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X 8 is threonine)], 8, 12, or 16, or a light chain comprising a mutation, such as one disclosed herein.
  • the nucleic acid may comprise the nucleotide sequence of SEQ ID NOs: 3 [13.3.2 (SEQ ID NO: 3 wherein X 7 is guanosine); 13.3.2L- A91T (SEQ ID NO: 3, wherein X 7 is adenosine)], 7, 11, or 15, or a nucleic acid molecule encoding a light chain comprise a mutation, such as one disclosed herein.
  • the nucleic acid molecule encodes the variable domain of the heavy chain (V H ) that comprises a human 1-18, 4-31, 4-39 or 3-48 V H gene sequence or a sequence derived therefrom.
  • the nucleic acid molecule comprises a human 1-18 V H gene, a D2-15 gene and a human J H 4b gene; a human 4-31 V H gene, a human D2-2 and D7-27 genes and a J ⁇ 6b gene; a human 4-31 VH gene, a human D2-2 gene and a human J H 6b gene; a human 4-31 V H gene, a human D7-27 gene and a human J H 6b gene; a human 4-39 V H gene, a human D2-2 gene and a human J H 4b gene; a human 3-48 V H gene, a human D4-17 gene and a human J H 4b gene, or sequence derived from the human genes.
  • the nucleic acid molecule encodes an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 mutations compared to the germline amino acid sequence of the human V, D or J genes.
  • said mutations are in the V H region.
  • said mutations are in the CDR regions.
  • the nucleic acid molecule encodes one or more amino acid mutations compared to the germline sequence that are identical to amino acid mutations found in the V H of monoclonal antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H- A14P,E42K; 13.3.2H-E42K,S97T or 13.3.2H-A14P,E42K,S97T.
  • the nucleic acid encodes at least three amino acid mutations compared to the germline sequences that are identical to at least three amino acid mutations found in one of the above-listed monoclonal antibodies.
  • the nucleic acid molecule comprises a nucleotide sequence that encodes at least a portion of the V H amino acid sequence of a monoclonal antibody selected from 13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate and X is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine and X 4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine and X 4 is threonine); 9.1.2 (SEQ ID NO: 6); 8.70.2 (SEQ ID NO: 10); or 8.90.3 (SEQ ID NO: 14), a variant thereof, or said sequence having conservative amino acid mutations and/or a total of three or fewer non-conservative amino acid substitutions.
  • a monoclonal antibody selected from 13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate and X is serine); 13.3.2H-E42K (SEQ ID NO:
  • the sequence encodes one or more CDR regions, preferably a CDR3 region, all three CDR regions, a contiguous portion including CDR1-CDR3, or the entire V H region, with or without a signal sequence.
  • the nucleic acid molecule comprises a nucleotide sequence that encodes the amino acid sequence of one of SEQ ID NOs: 2, 6, 10, or 14, or said sequence lacking the signal sequence.
  • the nucleic acid molecule comprises at least a portion of the nucleotide sequence of SEQ ID NO: 1 [13.3.2 (SEQ ID NO: 1, wherein X, is guanosine, X 3 is threonine and X 5 is guanosine); 13.3.2H-E42K (SEQ ID NO: 1, wherein Xi is adenosine, X 3 is threonine and X 5 is guanosine); 13.3.2H-E42K, S97T (SEQ ID NO: 1, wherein Xi is adenosine, X 3 is adenosine and X 5 is guanosine); 13.3.2H-A14P (SEQ ID NO: 1, wherein Xi is guanosine, X 3 is threonine and X 5 is cytosine); 13.3.2H- A14P, E42K (SEQ ID NO: 1, wherein Xi is adenosine, X 3
  • said portion encodes the V H region (with or without a signal sequence), a CDR3 region, all three CDR regions, or a contiguous region including CDR1-CDR3.
  • the nucleic acid molecule encodes a V H amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to the V H amino acid sequences shown in FIGS.
  • Nucleic acid molecules of the invention include nucleic acids that hybridize under highly stringent conditions, such as those described above, to a nucleic acid sequence encoding the amino acid sequence of SEQ ID NOs: 2 [13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine and X 6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X is serine and X 6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is threonine and X 6 is alanine); 13.3.2H-A14P (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine and X 6 is proline); 13.3.2H-A14P, E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine and X 5 is
  • the nucleic acid encodes a full-length heavy chain of an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T or 13.3.2H-A14P,E42K,S97T, or a heavy chain having the amino acid sequence of SEQ ID NOs: 2 [13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine and X 6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine and X 6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is threonine and X 6 is alanine); 13.3.2H-A14
  • the nucleic acid may comprise the nucleotide sequence of SEQ ID NOs: 1 [13.3.2 (SEQ ID NO: 1, wherein Xi is guanosine, X 3 is threonine and X 5 is guanosine); 13.3.2H-E42K (SEQ ID NO: 1, wherein Xi is adenosine, X 3 is threonine and X 5 is guanosine); 13.3.2H-E42K, S97T (SEQ ID NO: 1, wherein X, is adenosine, X 3 is adenosine and X 5 is guanosine); 13.3.2H-A14P (SEQ ID NO: 1, wherein Xi is guanosine, X 3 is threonine and X 5 is cytosine); 13.3.2H-A14P, E42K (SEQ ID NO: 1, wherein X, is adenosine, X 3 is threonine and X 5 is
  • a nucleic acid molecule encoding the heavy or light chain of an anti-c- Met antibody or portions thereof can be isolated from any source that produces such antibody.
  • the nucleic acid molecules are isolated from a B cell isolated from an animal immunized with c-Met or from an immortalized cell derived from such a B cell that expresses an anti-c-Met antibody.
  • Methods of isolating mRNA encoding an antibody are well-known in the art. See, e.g., Sambrook et al. The mRNA may be used to produce cDNA for use in the polymerase chain reaction (PCR) or cDNA cloning of antibody genes.
  • the nucleic acid molecule is isolated from a hybridoma that has as one of its fusion partners a human immunoglobulin-producing cell from a non-human transgenic animal.
  • the human immunoglobulin producing cell is isolated from a XENOMOUSE animal.
  • the human immunoglobulin-producing cell is from a non- human, non-mouse transgenic animal, as described above.
  • the nucleic acid is isolated from a non-human, non-transgenic animal.
  • the nucleic acid molecules isolated from a non-human, non-transgenic animal may be used, e.g., for humanized antibodies.
  • a nucleic acid encoding a heavy chain of an anti-c- Met antibody of the invention can comprise a nucleotide sequence encoding a V H domain of the invention joined in- frame to a nucleotide sequence encoding a heavy chain constant domain from any source.
  • a nucleic acid molecule encoding a light chain of an anti-c-Met antibody of the invention can comprise a nucleotide sequence encoding a V L domain of the invention joined in-frame to a nucleotide sequence encoding a light chain constant domain from any source.
  • nucleic acid molecules encoding the variable domain of the heavy (V H ) and/or light (V L ) chains are "converted" to full- length antibody genes.
  • nucleic acid molecules encoding the V H or V L domains are converted to full-length antibody genes by insertion into an expression vector already encoding heavy chain constant (C H ) or light chain constant (C L ) domains, respectively, such that the V H segment is operatively linked to the C H segment(s) within the vector, and or the V segment is operatively linked to the C L segment within the vector.
  • nucleic acid molecules encoding the V H and or V L domains are converted into full-length antibody genes by linking, e.g., ligating, a nucleic acid molecule encoding a V H and or V L domains to a nucleic acid molecule encoding a C H and or C L domain using standard molecular biological techniques.
  • Nucleic acid sequences of human heavy and light chain immunoglobulin constant domain genes are known in the art. See, e.g., Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed., NIH Publ. No. 91-3242, 1991.
  • Nucleic acid molecules encoding the full-length heavy and/or light chains may then be expressed from a cell into which they have been introduced and the anti-c-Met antibody isolated.
  • the nucleic acid molecules may be used to recombinantly express large quantities of anti-c-Met antibodies.
  • the nucleic acid molecules also may be used to produce chimeric antibodies, bispecific antibodies, single chain antibodies, immunoadhesins, diabodies, mutated antibodies and antibody derivatives, as described further below. If the nucleic acid molecules are derived from a non- human, non-transgenic animal, the nucleic acid molecules may be used for antibody humanization, also as described below.
  • a nucleic acid molecule of the invention is used as a probe or PCR primer for a specific antibody sequence.
  • the nucleic acid can be used as a probe in diagnostic methods or as a PCR primer to amplify regions of DNA that could be used, inter alia, to isolate additional nucleic acid molecules encoding variable domains of anti-c-Met antibodies.
  • the nucleic acid molecules are oligonucleo tides.
  • the oligonucleotides are from highly variable domains of the heavy and light chains of the antibody of interest.
  • the oligonucleotides encode all or a part of one or more of the CDRs of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or variants thereof as described herein.
  • the invention provides vectors comprising nucleic acid molecules that encode the heavy chain of an anti-c-Met antibody of the invention or an antigen- binding portion thereof.
  • the invention also provides vectors comprising nucleic acid molecules that encode the light chain of such antibodies or antigen-binding portion thereof.
  • the invention further provides vectors comprising nucleic acid molecules encoding fusion proteins, modified antibodies, antibody fragments, and probes thereof.
  • the anti-c-Met antibodies or antigen-binding portions of the invention are expressed by inserting DNAs encoding partial or full-length light and heavy chains, obtained as described above, into expression vectors such that the genes are operatively linked to necessary expression control sequences such as transcriptional and translational control sequences.
  • Expression vectors include plasmids, retroviruses, adenoviruses, adeno-associated viruses (AAV), plant viruses such as cauliflower mosaic virus, tobacco mosaic virus, cosmids, YACs, EBV derived episomes, and the like.
  • the antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene.
  • the expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
  • the antibody light chain gene and the antibody heavy chain gene can be inserted into separate vectors. In a preferred embodiment, both genes are inserted into the same expression vector.
  • the antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present).
  • a convenient vector is one that encodes a functionally complete human C H or C immunoglobulin sequence, with appropriate restriction sites engineered so that any V H or V L sequence can easily be inserted and expressed, as described above.
  • splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C domain, and also at the splice regions that occur within the human C H exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions.
  • the recombinant expression vector also can encode a signal peptide that facilitates secretion of the antibody chain from a host cell.
  • the antibody chain gene may be cloned into the vector such that the signal peptide is linked in-frame to the amino terminus of the immunoglobulin chain.
  • the signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein).
  • the recombinant expression vectors of the invention carry regulatory sequences that control the expression of the antibody chain genes in a host cell. It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • Preferred regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from retroviral LTRs, cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)), polyoma and strong mammalian promoters such as native immunoglobulin and actin promoters.
  • CMV cytomegalovirus
  • SV40 Simian Virus 40
  • AdMLP adenovirus major late promoter
  • polyoma such as native immunoglobulin and actin promoters.
  • Methods for expressing antibodies in plants, including a description of promoters and vectors, as well as transformation of plants is known in the art. See, e.g., United States Patent
  • the recombinant expression vectors of the invention may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes.
  • the selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Patent Nos. 4,399,216, 4,634,665 and 5,179,017, incorporated herein by reference).
  • the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced.
  • Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr-host cells with methotrexate selection/amplification), the neo gene (for G418 selection), and the glutamate synthetase gene.
  • DHFR dihydrofolate reductase
  • Nucleic acid molecules encoding anti-c-Met antibodies and vectors comprising these nucleic acid molecules can be used for transfection of a suitable mammalian, plant, bacterial or yeast host cell. Transformation can be by any known method for introducing polynucleo tides into a host cell. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, electroporation, encapsulation of the ⁇ olynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
  • nucleic acid molecules may be introduced into mammalian cells by viral vectors.
  • Methods of transforming cells are well known in the art. See, e.g., U.S. Patent Nos. 4,399,216, 4,912,040, 4,740,461, and 4,959,455, incorporated herein by reference).
  • Methods of transforming plant cells are well known in the art, including, e.g., Agrobacterium-mediated transformation, biolistic transformation, direct injection, electroporation and viral transformation.
  • Methods of transforming bacterial and yeast cells are also well known in the art.
  • Mammalian cell lines available as hosts for expression are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC).
  • ATCC American Type Culture Collection
  • CHO Chinese hamster ovary
  • SP2 cells SP2 cells
  • HEK-293T cells NL ⁇ -3T3 cells
  • HeLa cells HeLa cells
  • BHK baby hamster kidney
  • COS African green monkey kidney cells
  • Hep G2 human hepatocellular carcinoma cells
  • A549 cells a number of other cell lines.
  • Cell lines of particular preference are selected through determining which cell lines have high expression levels.
  • Other cell lines that may be used are insect cell lines, such as Sf9 or Sf21 cells.
  • the antibodies When recombinant expression vectors encoding antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more preferably, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.
  • Plant host cells include, e.g., Nicotiana, Arabidopsis, duckweed, corn, wheat, potato, etc.
  • Bacterial host cells include E. coli and Streptomyces species.
  • Yeast host cells include Schizosaccharomyces pombe, Saccharomyces cerevisiae and Pichia pastoris.
  • GS system glutamine synthetase gene expression system
  • Anti-c-Met antibodies of the invention also can be produced transgenically through the generation of a mammal or plant that is transgenic for the immunoglobulin heavy and light chain sequences of interest and production of the antibody in a recoverable form therefrom.
  • anti-c-Met antibodies can be produced in, and recovered from, the milk of goats, cows, or other mammals. See, e.g., U.S. Patent Nos. 5,827,690, 5,756,687, 5,750,172, and 5,741,957, incorporated herein by reference.
  • non-human transgenic animals that comprise human immunoglobulin loci are immunized with c-Met or an immunogenic portion thereof, as described above.
  • non-human transgenic animals or plants are produced by introducing one or more nucleic acid molecules encoding an anti-c- Met antibody of the invention into the animal or plant by standard transgenic techniques. See Hogan and United States Patent 6,417,429, supra.
  • the transgenic cells used for making the transgenic animal can be embryonic stem cells or somatic cells or a fertilized egg.
  • the transgenic non-human organisms can be chimeric, nonchimeric heterozygotes, and nonchimeric homozygotes.
  • the transgenic non-human animals have a targeted disruption and replacement by a targeting construct that encodes a heavy chain and/or a light chain of interest.
  • the transgenic animals comprise and express nucleic acid molecules encoding heavy and light chains that specifically bind to c-Met, preferably human c-Met.
  • the transgenic animals comprise nucleic acid molecules encoding a modified antibody such as a single-chain antibody, a chimeric antibody or a humanized antibody.
  • the anti-c-Met antibodies may be made in any transgenic animal.
  • the non-human animals are mice, rats, sheep, pigs, goats, cattle or horses.
  • the non-human transgenic animal expresses said encoded polypeptides in blood, milk, urine, saliva, tears, mucus and other bodily fluids.
  • the invention provides a method for producing an anti-c-Met antibody or antigen-binding portion thereof comprising the steps of synthesizing a library of human antibodies on phage, screening the library with c-Met or a portion thereof, isolating phage that bind c-Met, and obtaining the antibody from the phage.
  • one method for preparing the library of antibodies for use in phage display techniques comprises the steps of immunizing a non-human animal comprising human immunoglobulin loci with c-Met or an antigenic portion thereof to create an immune response, extracting antibody-producing cells from the immunized animal; isolating RNA encoding heavy and light chains of antibodies of the invention from the extracted cells, reverse transcribing the RNA to produce cDNA, amplifying the cDNA using primers, and inserting the cDNA into a phage display vector such that antibodies are expressed on the phage.
  • Recombinant antic-Met antibodies of the invention may be obtained in this way.
  • Recombinant anti-c-Met human antibodies of the invention can be isolated by screening a recombinant combinatorial antibody library.
  • the library is a scFv phage display library, generated using human V and V H cDNAs prepared from mRNA isolated from B cells. Methods for preparing and screening such libraries are known in the art. Kits for generating phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, catalog no. 27-9400-01; and the Stratagene SurfZAP TM phage display kit, catalog no. 240612). There also are other methods and reagents that can be used in generating and screening antibody display libraries (see, e.g., U.S.
  • Patent No. 5,223,409 PCT Publication Nos. WO 92/18619, WO 91/17271 , WO 92/20791 , WO 92/15679, WO 93/01288, WO 92/01047, WO 92/09690; Fuchs et al., Bio/Technology 9:1370-1372 (1991); Hay et al, Hum. Antibod. Hybridomas 3:81-85 (1992); Huse et al, Science 246:1275-1281 (1989); McCafferty et al.,
  • a human anti-c-Met antibody as described herein is first used to select human heavy and light chain sequences having similar binding activity toward c-Met, using the epitope imprinting methods described in PCT Publication No. WO 93/06213, incorporated herein by reference.
  • the antibody libraries used in this method are preferably scFv libraries prepared and screened as described in PCT Publication No. WO 92/01047, McCafferty et al., Nature 348:552-554 (1990); and Griffiths et al., EMBO J. 12:725-734 (1993), all incorporated herein by reference.
  • the scFv antibody libraries preferably are screened using human c-Met as the antigen.
  • “mix and match” experiments are performed, in which different pairs of the initially selected V L and V H segments are screened for c-Met binding to select preferred W Y pair combinations.
  • the V and V H segments of the preferred V L /V H ⁇ air(s) can be randomly mutated, preferably within the CDR3 region of V H and/or V L , in a process analogous to the in vivo somatic mutation process responsible for affinity maturation of antibodies during a natural immune response.
  • This in vitro affinity maturation can be accomplished by amplifying V H and V L domains using PCR primers complimentary to the V H CDR3 or V L CDR3, respectively, which primers have been "spiked” with a random mixture of the four nucleotide bases at certain positions such that the resultant PCR products encode V H and V L segments into which random mutations have been introduced into the V H and/or V L CDR3 regions. These randomly mutated V H and V L segments can be re-screened for binding to c-Met.
  • nucleic acids encoding the selected antibody can be recovered from the display package (e.g., from the phage genome) and subcloned into other expression vectors by standard recombinant DNA techniques. If desired, the nucleic acid can further be manipulated to create other antibody forms of the invention, as described below.
  • the DNA encoding the antibody is cloned into a recombinant expression vector and introduced into a mammalian host cells, as described above.
  • Another aspect of the invention provides a method for converting the class or subclass of an anti-c-Met antibody to another class or subclass.
  • a nucleic acid molecule encoding a V L or V H that does not include sequences encoding C L or C H is isolated using methods well-known in the art.
  • the nucleic acid molecule then is operatively linked to a nucleic acid sequence encoding a C L or C H from a desired immunoglobulin class or subclass. This can be achieved using a vector or nucleic acid molecule that comprises a C L or C H chain, as described above.
  • an anti-c-Met antibody that was originally IgM can be class switched to an IgG.
  • Another method for producing an antibody of the invention comprising a desired isotype comprises the steps of isolating a nucleic acid encoding a heavy chain of an anti-c-Met antibody and a nucleic acid encoding a light chain of an anti-c-Met antibody, isolating the sequence encoding the V H region, ligating the V H sequence to a sequence encoding a heavy chain constant domain of the desired isotype, expressing the light chain gene and the heavy chain construct in a cell, and collecting the anti-c-Met antibody with the desired isotype.
  • the antibody may be deimmunized to reduce its immunogenicity using the techniques described in, e.g., PCT Publication Nos. WO98/52976 and WO00/34317 (incorporated herein by reference).
  • the nucleic acid molecules, vectors and host cells may be used to make mutated anti-c-Met antibodies.
  • the antibodies may be mutated in the variable domains of the heavy and/or light chains, e.g., to alter a binding property of the antibody.
  • a mutation may be made in one or more of the CDR regions to increase or decrease the K D of the antibody for c-Met, to increase or decrease k 0ff , or to alter the binding specificity of the antibody.
  • Techniques in site-directed mutagenesis are well-known in the art. See, e.g., Sambrook et al. and Ausubel et al., supra.
  • one or more mutations are made at an amino acid residue that is known to be changed compared to the germline in monoclonal antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H- E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H- E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T.
  • the mutations may be made in a CDR region or framework region of a variable domain, or in a constant domain. In a preferred embodiment, the mutations are made in a variable domain. In some embodiments, one or more mutations are made at an amino acid residue that is known to be changed compared to the germline in a CDR region or framework region of a variable domain of an amino acid sequence selected from SEQ ID NOs: 2 [13.3.2 (SEQ ID NO: 2, wherein X 2 is glutamate, X 4 is serine and X 6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is serine and X 6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X 2 is lysine, X 4 is threonine and X 6 is alanine); 13.3.2H-A14P (SEQ ID NO: 2, wherein X 2 is glutamate, X
  • the framework region is mutated so that the resulting framework region(s) have the amino acid sequence of the corresponding germline gene.
  • a mutation may be made in a framework region or constant domain to increase the half-life of the anti-c-Met antibody. See, e.g., PCT Publication No. WO 00/09560, incorporated herein by reference.
  • a mutation in a framework region or constant domain also can be made to alter the immunogenicity of the antibody, to provide a site for covalent or non-covalent binding to another molecule, or to alter such properties as complement fixation, FcR binding and antibody-dependent cell-mediated cytotoxicity (ADCC).
  • a single antibody may have mutations in any one or more of the CDRs or framework regions of the variable domain or in the constant domain.
  • amino acid mutations there are from 1 to 8, including any number in between, amino acid mutations in either the V H or V domains of the mutated anti- c-Met antibody compared to the anti-c-Met antibody prior to mutation.
  • the mutations may occur in one or more CDR regions.
  • any of the mutations can be conservative amino acid substitutions.
  • a fusion antibody or immunoadhesin may be made that comprises all or a portion of an anti-c-Met antibody of the invention linked to another polypeptide.
  • a fusion antibody or immunoadhesin may be made that comprises all or a portion of an anti-c-Met antibody of the invention linked to another polypeptide.
  • only the variable domains of the anti-c-Met antibody are linked to the polypeptide.
  • the V H domain of an anti-c-Met antibody is linked to a first polypeptide
  • the V L domain of an anti-c-Met antibody is linked to a second polypeptide that associates with the first polypeptide in a manner such that the VH and V L domains can interact with one another to form an antigen binding site
  • the V H domain is separated from the V L domain by a linker such that the V H and V L domains can interact with one another (see below under Single Chain Antibodies).
  • the V H -linker-V L antibody is then linked to the polypeptide of interest.
  • the fusion antibody is useful for directing a polypeptide to a c-Met-expressing cell or tissue.
  • the polypeptide may be a therapeutic agent, such as a toxin, growth factor or other regulatory protein, or may be a diagnostic agent, such as an enzyme that may be easily visualized, such as horseradish peroxidase.
  • fusion antibodies can be created in which two (or more) single-chain antibodies are linked to one another. This is useful if one wants to create a divalent or polyvalent antibody on a single polypeptide chain, or if one wants to create a bispecific antibody.
  • V H - and V L -encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly 4 -Ser) 3 , such that the V H and V L sequences can be expressed as a contiguous single-chain protein, with the V L and V H domains joined by the flexible linker.
  • a flexible linker e.g., encoding the amino acid sequence (Gly 4 -Ser) 3 , such that the V H and V L sequences can be expressed as a contiguous single-chain protein, with the V L and V H domains joined by the flexible linker.
  • the single chain antibody may be monovalent, if only a single V H and V L are used, bivalent, if two V H and V L are used, or polyvalent, if more than two V H and V L are used. Bispecific or polyvalent antibodies may be generated that bind specifically to c-Met and to another molecule.
  • other modified antibodies may be prepared using anti-c-Met antibody encoding nucleic acid molecules.
  • “Kappa bodies” 111 et al., Protein Eng. 10: 949-57 (1997)
  • “Minibodies” Martin et al., EMBOJ. 13: 5303-9 (1994)
  • “Diabodies” Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993)
  • Janusins (Traunecker et al., EMBOJ. 10:3655- 3659 (1991) and Traunecker et al., Int. J. Cancer (Suppl.) 7:51-52 (1992)) may be prepared using standard molecular biological techniques following the teachings of the specification.
  • Bispecific antibodies or antigen-binding fragments can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79: 315-321 (1990), Kostelny et al., J. Immunol. 148:1547-1553 (1992).
  • bispecific antibodies may be formed as "diabodies" or "Janusins.” In some embodiments, the bispecific antibody binds to two different epitopes of c-Met.
  • the bispecific antibody has a first heavy chain and a first light chain from monoclonal antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H- E42K; 13.3.2H-A14P,E42K; 13.3.2H-S97T; 13.3.2H-E42K,S97T; 13.3.2H- A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T H-A14P; 13.3.2L-A91T,H- E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H-E42K,S97T or 13.3.2L- A91T,H-A14P,E42K,S97T and an additional antibody heavy chain and light chain.
  • the additional light chain and heavy chain also are from one of the above-identified monoclonal antibodies, but are different from the first heavy and light chains.
  • the modified antibodies described above are prepared using one or more of the variable domains or CDR regions from a human anti-c-Met monoclonal antibody provided herein.
  • An anti-c-Met antibody or antigen-binding portion of the invention can be derivatized or linked to another molecule (e.g., another peptide or protein).
  • another molecule e.g., another peptide or protein.
  • the antibodies or portion thereof are derivatized such that the c-Met binding is not affected adversely by the derivatization or labeling. Accordingly, the antibodies and antibody portions of the invention are intended to include both intact and modified forms of the human anti-c-Met antibodies described herein.
  • an antibody or antibody portion of the invention can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detection agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
  • another antibody e.g., a bispecific antibody or a diabody
  • a detection agent e.g., a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
  • One type of derivatized antibody is produced by crosslinking two or more antibodies (of the same type or of different types, e.g., to create bispecific antibodies).
  • Suitable crosslinkers include those that are heterobi functional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (e.g., disuccinimidyl suberate).
  • an appropriate spacer e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester
  • homobifunctional e.g., disuccinimidyl suberate
  • Another type of derivatized antibody is a labeled antibody.
  • Useful detection agents with which an antibody or antigen-binding portion of the invention may be derivatized include fluorescent compounds, including fluorescein, fluorescein isothiocyanate, rhodamine, 5-dimethylamine-l-napthalenesulfonyl chloride, phycoerythrin, lanthanide phosphors and the like.
  • An antibody can also be labeled with enzymes that are useful for detection, such as horseradish peroxidase, /3-galactosidase, luciferase, alkaline phosphatase, glucose oxidase and the like.
  • an antibody When an antibody is labeled with a detectable enzyme, it is detected by adding additional reagents that the enzyme uses to produce a reaction product that can be discerned. For example, when the agent horseradish peroxidase is present, the addition of hydrogen peroxide and diaminobenzidine leads to a colored reaction product, which is detectable.
  • An antibody can also be labeled with biotin, and detected through indirect measurement of avidin or streptavidin binding.
  • An antibody can also be labeled with a predetermined polypeptide epitope recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
  • An anti-c-Met antibody can also be labeled with a radiolabeled amino acid.
  • the radiolabel can be used for both diagnostic and therapeutic purposes. For instance, the radiolabel can be used to detect c-Met-expressing tumors by x-ray or other diagnostic techniques. Further, the radiolabel can be used therapeutically as a toxin for cancerous cells or tumors. Examples of labels for polypeptides include, but are not limited to, the following radioisotopes or radionuclides - 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, n ⁇ In, 125 I, and I 131 .
  • An anti-c-Met antibody can also be derivatized with a chemical group such as polyethylene glycol (PEG), a methyl or ethyl group, or a carbohydrate group. These groups are useful to improve the biological characteristics of the antibody, e.g., to increase serum half-life or to increase tissue binding.
  • the invention relates to compositions comprising a human anti-c-Met antibody with agonist properties for the treatment of patients in need of a therapeutic procedure including, but not limited to, tissue regeneration or wound healing.
  • the subject of treatment is a human.
  • the subject is a veterinary subject.
  • tissues, in need of tissue regeneration include but are not limited to liver tissue (as in the case of acute, chronic or alcoholic hepatitis or cirrhosis), lung tissue, stomach tissue (as in the case of gastric ulcers) and kidney tissue (as in the case of acute renal failure).
  • Agonist anti-c-Met antibodies of the invention and compositions comprising them can be administered in combination with one or more other therapeutic, diagnostic, or prophylactic agents.
  • one or more agonist c-Met antibodies of the invention can be used as a vaccine or as adjuvants to a vaccine. Treatment may involve administration of one or more agonist anti-c-Met monoclonal antibodies of the invention, or antigen-binding fragments thereof, alone or with a pharmaceutically acceptable carrier.
  • an anti-c-Met antibody of the invention that has inhibitory properties can involve any tissue or organ including but not limited to brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, liver, renal, ovarian, prostate, colorectal, esophageal, gynecological, nasopharynx, or thyroid cancers, melanomas, lymphomas, leukemias, multiple myelomas, choriocarcinoma, Kaposi or cervical intraepithelial neoplasia.
  • anti-c-Met antibodies of the invention that has inhibitory properties include, but are not limited to, proliferative vitreoretinopathy, proliferative diabetic retinopathy, endometriosis and arthritis.
  • anti-c-Met antibodies can be used to inhibit plaque formation in Alzheimer's disease and to inhibit cellular mitogenic responses.
  • Antic-Met antibodies of the invention could be used to inhibit embryo implantation by inclusion in an injectable contraceptive.
  • Anti-c-Met antibodies can be used to treat tumor growth by inhibiting proliferation, treat/inhibit tumor angiogenesis, or treat metatstatic spread/dissemination of metastases.
  • human anti- c-Met antibodies of the invention with inhibitory properties are useful to treat glioblastoma, sarcomas, or carcinomas, for example, of the breast, ovary, prostate, colon, or lung.
  • Treatment may involve administration of one or more inhibitory anti-c- Met monoclonal antibodies of the invention, or antigen-binding fragments thereof, alone or with a pharmaceutically acceptable carrier.
  • Inhibitory anti-c-Met antibodies of the invention and compositions comprising them can be administered in combination with one or more other therapeutic, diagnostic or prophylactic agents. Additional therapeutic agents include other anti-neoplastic, anti-tumor, anti-angiogenic or chemotherapeutic agents. Such additional agents may be included in the same composition or administered separately.
  • one or more inhibitory anti-c-Met antibodies of the invention can be used as a vaccine or as adjuvants to a vaccine.
  • vaccines useful in combination with the antibody include, without limitation, GM- CSF DNA and cell-based vaccines, dendritic cell vaccines, recombinant viral (e.g. vaccinia virus) vaccines, and heat shock protein (HSP) vaccines.
  • Useful vaccines also include tumor vaccines, such as those formed of melanoma cells; and may be autologous or allogeneic.
  • the vaccines may be, e.g., peptide, DNA or cell based.
  • pharmaceutically acceptable carrier means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
  • pharmaceutically acceptable carriers are water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof.
  • isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
  • compositions of this invention may be in a variety of forms, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories.
  • liquid solutions e.g., injectable and infusible solutions
  • dispersions or suspensions tablets, pills, powders, liposomes and suppositories.
  • the preferred form depends on the intended mode of administration and therapeutic application.
  • Typical preferred compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for passive immunization of humans.
  • compositions typically must be sterile and stable under the conditions of manufacture and storage.
  • the composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration.
  • Sterile injectable solutions can be prepared by inco ⁇ orating the anti-c-Met antibody in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • the proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prolonged abso ⁇ tion of injectable compositions can be brought about by including in the composition an agent that delays abso ⁇ tion, for example, monostearate salts and gelatin.
  • the antibodies of the present invention can be administered by a variety of methods known in the art, although for many therapeutic applications, the preferred route/mode of administration is subcutaneous, intramuscular, or intravenous infusion. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results.
  • the antibody compositions active compound may be prepared with a carrier that will protect the antibody against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems (J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978).
  • an anti-c-Met antibody of the invention can be orally administered, for example, with an inert diluent or an assimilable edible carrier.
  • the compound (and other ingredients, if desired) can also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or inco ⁇ orated directly into the subject's diet.
  • the anti-c-Met antibodies can be inco ⁇ orated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
  • To administer a compound of the invention by other than parenteral administration it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation.
  • an inhibitory anti-c-Met antibody of the invention is co-formulated with and/or co-administered with one or more additional therapeutic agents.
  • additional therapeutic agents include, without limitation, antibodies that bind other targets, antineoplastic agents, antitumor agents, chemotherapeutic agents, peptide analogues that inhibit c-Met, or antibodies or other molecules that bind to HGF and prevent its binding to or activation of c-Met.
  • Such combination therapies may require lower dosages of the inhibitory anti-c-met antibody as well as the co-administered agents, thus avoiding possible toxicities or complications associated with the various monotherapies.
  • Inhibitory anti-c-Met antibodies of the invention and compositions comprising them also may be administered in combination with other therapeutic regimens, in particular in combination with radiation treatment.
  • an activating or inhibiting anti-c-Met antibody of the invention is co-formulated with and/or co-administered with one or more additional therapeutic agents.
  • these agents include, without limitation, one or more chemical agents that activate c-Met and/or other agents known in the art to enhance a therapeutic procedure such as tissue regeneration or wound healing.
  • these agents include those that inhibit c-Met.
  • compositions of the invention may include a "therapeutically effective amount” or a "prophylactically effective amount” of an antibody or antigen-binding portion of the invention.
  • a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result.
  • a therapeutically effective amount of the antibody or antibody portion may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual.
  • a therapeutically effective amount is also one in which any toxic or detrimental effects of the antibody or antibody portion are outweighed by the therapeutically beneficial effects.
  • a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount may be less than the therapeutically effective amount.
  • Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
  • Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • An exemplary, non-limiting range for a therapeutically or prophylactically effective amount of an antibody or antibody portion of the invention is 0.025 to 50 mg/kg, more preferably 0.1 to 50 mg/kg, more preferably 0.1-25, 0.1 to 10 or 0.1 to 3 mg/kg.
  • a formulation contains 5 mg/ml of antibody in a buffer of 20mM sodium citrate, pH 5.5, 140mM NaCl, and 0.2mg/ml polysorbate 80. It is to be noted that dosage values may vary with the type and severity of the condition to be alleviated.
  • kits comprising an antic-Met antibody or antibody portion of the invention or a composition comprising such an antibody.
  • a kit may include, in addition to the antibody or composition, diagnostic or therapeutic agents.
  • a kit can also include instructions for use in a diagnostic or therapeutic method.
  • the kit includes the antibody or a composition comprising it and a diagnostic agent that can be used in a method described below.
  • the kit includes the antibody or a composition comprising it and one or more therapeutic agents that can be used in a method described below.
  • This invention also relates to compositions for inhibiting abnormal cell growth in a mammal comprising an amount of an antibody of the invention in combination with an amount of a chemotherapeutic agent, wherein the amounts of the compound, salt, solvate, or prodrug, and of the chemotherapeutic agent are together effective in inhibiting abnormal cell growth.
  • Many chemotherapeutic agents are presently known in the art.
  • the chemotherapeutic agent is selected from the group consisting of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti- hormones, e.g., anti-androgens, and anti-angiogenesis agents.
  • Anti-angiogenic agents such as MMP-2 (matrix-metalloproteinase 2) inhibitors, MMP-9 (matrix-metalloproteinase 9) inhibitors, and COX-II (cyclooxygenase II) inhibitors, can be used in conjunction with an anti-c-Met antibody of the invention.
  • COX-II inhibitors examples include CELEBREXTM (celecoxib), valdecoxib, and rofecoxib.
  • useful matrix metalloproteinase inhibitors are described in WO 96/33172 (published October 24, 1996), WO 96/27583 (published March 7, 1996), European Patent Application No. 97304971.1 (filed July 8, 1997), European Patent Application No.
  • Preferred MMP inhibitors are those that do not demonstrate arthralgia. More preferred, are those that selectively inhibit MMP-2 and/or MMP-9 relative to the other matrix-metalloproteinases (i.e. MMP-1, MMP-3, MMP-4, MMP-5, MMP-6, MMP-7, MMP-8, MMP-10, MMP-11, MMP-12, and MMP-13).
  • MMP-1, MMP-3, MMP-4, MMP-5, MMP-6, MMP-7, MMP-8, MMP-10, MMP-11, MMP-12, and MMP-13 matrix-metalloproteinases
  • MMP inhibitors useful in the present invention are AG-3340, RO 32-3555, RS 13-0830, and the compounds recited in the following list: 3-[[4- (4-fluoro-phenoxy)-benzenesulfonyl]-(l-hydroxycarbamoyl-cyclopentyl)-amino]- propionic acid; 3-exo-3-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-8-oxa- bicyclo[3.2.1]octane-3-carboxylic acid hydroxyamide; (2R, 3R) l-[4-(2-chloro-4- fluoro-benzyloxy)-benzenesulfonyl]-3-hydroxy-3-methyl-piperidine-2-carboxylic acid hydroxyamide; 4-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-tetrahydro- pyran-4-car
  • An anti-c-Met antibody of the invention also can be used with signal transduction inhibitors, such as agents that can inhibit EGF-R (epidermal growth factor receptor) responses, including but not limited to EGF-R antibodies, EGF antibodies, and molecules that are EGF-R inhibitors; VEGF (vascular endothelial growth factor) and VEGF receptor (VEGF-R) inhibitors; and erbB2 receptor inhibitors, such as organic molecules or antibodies that bind to the erbB2 receptor, for example, HERCEPTINTM (Genentech, Inc.).
  • EGF-R inhibitors are described in, for example, in WO 95/19970 (published July 27, 1995), WO 98/14451 (published April 9, 1998), WO 98/02434 (published January 22, 1998), and United States Patent 5,747,498 (issued May 5, 1998), all inco ⁇ orated herein by reference, and such substances can be used in the present invention as described herein.
  • EGF-R-inhibiting agents include, but are not limited to, the monoclonal antibodies C225 and anti-EGF-R 22Mab (ImClone Systems Inco ⁇ orated), ABX- EGF (Abgenix/Cell Genesys), EMD-7200 (Merck KgaA), EMD-5590 (Merck KgaA), MDX-447/H-477 (Medarex Inc.
  • EGF-R-inhibiting agents can be used in the present invention.
  • VEGF-R and VEGF inhibitors for example SU-5416, SU-11248 and SU- 6668 (Sugen Inc.), SH-268 (Schering), and NX-1838 (NeXstar) can also be combined with the compound of the present invention.
  • VEGF and VEGF-R inhibitors are described in, for example in WO 99/24440 (published May 20, 1999), PCT International Application PCT/LB99/00797 (filed May 3, 1999), in WO 95/21613 (published August 17, 1995), WO 99/61422 (published December 2, 1999), United States Patent 5,834,504 (issued November 10, 1998), WO 98/50356 (published November 12, 1998), United States Patent 5,883,113 (issued March 16, 1999), United States Patent 5,886,020 (issued March 23, 1999), United States Patent 5,792,783 (issued August 11, 1998), WO 99/10349 (published March 4, 1999), WO 97/32856 (published September 12, 1997), WO 97/22596 (published June 26, 1997), WO 98/54093 (published December 3, 1998), WO 98/02438 (published January 22, 1998), WO 99/16755 (published April 8, 1999), and WO 98/02437 (published January 22, 1998), all of which are inco ⁇ o
  • VEGF-R and VEGF inhibitors useful in the present invention are IM862 (Cytran Inc.); AvastinTM; and angiozyme, a synthetic ribozyme from Ribozyme and Chiron. These and other VEGF and VEGF-R inhibitors can be used in the present invention as described herein.
  • ErbB2 receptor inhibitors such as GW-282974 (Glaxo Wellcome pic), and the monoclonal antibodies AR-209 (Aronex Pharmaceuticals Inc.) and 2B-1 (Chiron), can furthermore be combined with the compound of the invention, for example those indicated in WO 98/02434 (published January 22, 1998), WO 99/35146 (published July 15, 1999), WO 99/35132 (published July 15, 1999), WO 98/02437 (published January 22, 1998), WO 97/13760 (published April 17, 1997), WO 95/19970 (published July 27, 1995), United States Patent 5,587,458 (issued December 24, 1996), and United States Patent 5,877,305 (issued March 2, 1999), which are all hereby inco ⁇ orated herein in their entireties by reference.
  • ErbB2 receptor inhibitors useful in the present invention are also described in United States Patent 6,465,449 (issued October 15, 2002), and in United States Patent 6,284,764 (issued September 4, 2001), inco ⁇ orated herein by reference.
  • the erbB2 receptor inhibitor compounds and substances described in the aforementioned patent documents, as well as other compounds and substances that inhibit the erbB2 receptor, can be used with the compound of the present invention in accordance with the present invention.
  • An anti-c-Met antibody of the invention also can be used with inhibitors of PDGFR, BCR-ABL or c-kit such as GleevecTM (Novaritis).
  • An anti-c-Met antibody of the invention also can be used with anti-IGF- IR antibodies such as those described in WO 02053596 (published July 1 1, 2002), for example an antibody having the sequence of antibody 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2 or 4.17.3.
  • the antibody of the invention can also be used with CTLA- 4 antibodies, such as those described in United States patent 6,682,736, including an antibody having the sequence of antibody 3.1.1, 4.1.1 , 4.8.1, 4.10.2, 4.13.1, 4.14.3, 6.1.1, 11.2.1, 11.6.1, 11.7.1, 12.3.1.1, or 12.9.1.1.
  • the antibody can also be used with CD40 antibodies, such as those described in WO03040170 published May 15, 2003, including one having the sequence of antibody 3.1. 1, 3. 1.1H- A78T, 3.1. 1H-A78T-V88A-V97A, 7.1. 2, 10.8.3, 15.1. 1, 21. 4.1, 21.2. 1, 22. 1.1, 22.1.1H-C109A, 23.5. 1, 23. 25.1, 23.28. 1,23. 28.1H-D16E, 23.29. 1 or 24.2.
  • the antibodies can also be combined with anti-integrin agents, such as anti-integrin antibodies.
  • agents that the antibody may be combined with include the following: (1) the alkylating agents nitrogen mustard N-oxide, cyclophosphamide, ifosfamide, melphalan, busulfanmitobronitol, carboquone, thiotepa, ranimustine, nimustine, and temozolomide; (2) the anti-metabolites methotrexate, 6-mercaptopurine, riboside, mercaptopurine, 5-FU, tegafur, doxifluridine, carmofur, cytarabine, cytarabine, ocfosfate, enocitabine, S-l, Gemcitabine, Fludarabine, and Capecitabine; (3) the antibiotics actinomycin D, doxorubicin, daunorubicin, neocarzinostatin, bleomycin, peplomycin, mitomycin C, aclarubicin, pirarubicin
  • the invention provides diagnostic methods.
  • the anti-c- Met antibodies can be used to detect c-Met in a biological sample in vitro or in vivo.
  • the invention provides a method for diagnosing the presence or location of an c-Met-expressing tumor in a subject in need thereof, comprising the steps of injecting the antibody into the subject, determining the expression of c-Met in the subject by localizing where the antibody has bound, comparing the expression in the subject with that of a normal reference subject or standard, and diagnosing the presence or location of the tumor.
  • the anti-c-Met antibodies can be used in a conventional immunoassay, including, without limitation, an ELISA, an RIA, flow cytometry, tissue immunohistochemistry, Western blot or immunoprecipitation.
  • the anti-c-Met antibodies of the invention can be used to detect c-Met from humans.
  • the anti- c-Met antibodies can be used to detect c-Met from cynomolgus monkeys or rhesus monkeys.
  • the anti-c-Met antibodies can be used to detect c-Met from rats.
  • the invention provides a method for detecting c-Met in a biological sample comprising contacting the biological sample with an anti-c-Met antibody of the invention and detecting the bound antibody.
  • the anti-c- Met antibody is directly labeled with a detectable label.
  • the anti-c-Met antibody (the first antibody) is unlabeled and a second antibody or other molecule that can bind the anti-c-Met antibody is labeled.
  • a second antibody is chosen that is able to specifically bind the particular species and class of the first antibody.
  • the antic-Met antibody is a human IgG
  • the secondary antibody could be an anti- human-IgG.
  • Other molecules that can bind to antibodies include, without limitation, Protein A and Protein G, both of which are available commercially, e.g., from Pierce Chemical Co.
  • Suitable labels for the antibody or secondary antibody have been disclosed supra, and include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, /3-galactosidase, or acetylcholinesterase
  • suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin
  • suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin
  • an example of a luminescent material includes luminol
  • suitable radioactive material include 125 !, 131 1, 35 S or 3 H.
  • c-Met can be assayed in a biological sample by a competition immunoassay utilizing c-Met standards labeled with a detectable substance and an unlabeled anti-c-Met antibody.
  • a competition immunoassay utilizing c-Met standards labeled with a detectable substance and an unlabeled anti-c-Met antibody.
  • the biological sample, the labeled c-Met standards and the anti-c-Met antibody are combined and the amount of labeled c-Met standard bound to the unlabeled antibody is determined.
  • the amount of c-Met in the biological sample is inversely proportional to the amount of labeled c-Met standard bound to the anti-c-Met antibody.
  • the anti-c-Met antibodies can be used to detect c-Met in cultured cells.
  • the anti-c-Met antibodies are used to determine the amount of c-Met on the surface of cells that have been treated with various compounds.
  • This method can be used to identify compounds that modulate c-Met protein levels. According to this method, one sample of cells is treated with a test compound for a period of time while another sample is left untreated. If the total level of c-Met is to be measured, the cells are lysed and the total c-Met level is measured using one of the immunoassays described above. The total level of c- Met in the treated versus the untreated cells is compared to determine the effect of the test compound.
  • a preferred immunoassay for measuring total c-Met levels is flow cytometry or immunohistochemistry. If the cell surface level of c-Met is to be measured, the cells are not lysed, and the cell surface levels of c-Met are measured using one of the immunoassays described above.
  • a preferred immunoassay for determining cell surface levels of c-Met includes the steps of labeling the cell surface proteins with a detectable label, such as biotin or 125 I, immunoprecipitating the c-Met with an anti-c-Met antibody and then detecting the labeled c-Met.
  • Another preferred immunoassay for determining the localization of c- Met, e.g., cell surface levels is by using immunohistochemistry.
  • a preferred immunoassay to detect cell surface levels of c-Met includes binding of an anti-c- Met antibody labeled with an appropriate fluorophore, such as fluorescein or phycoerythrin, and detecting the primary antibody using flow cytometry.
  • the anti-c-Met antibody is unlabeled and a second antibody or other molecule that can bind the anti-c-Met antibody is labeled
  • Methods such as ELISA, RIA, flow cytometry, Western blot, immunohistochemistry, cell surface labeling of integral membrane proteins and immunoprecipitation are well known in the art. See, e.g., Harlow and Lane, supra.
  • the immunoassays can be scaled up for high throughput screening in order to test a large number of compounds for either activation or inhibition of c-Met.
  • the anti-c-Met antibodies of the invention also can be used to determine the levels of c-Met in a tissue or in cells derived from the tissue.
  • the tissue is a diseased tissue.
  • the tissue is a tumor or a biopsy thereof.
  • a tissue or a biopsy thereof is excised from a patient. The tissue or biopsy is then used in an immunoassay to determine, e.g., total c-Met levels, cell surface levels of c-Met or localization of c-Met by the methods discussed above.
  • the above-described diagnostic method can be used to determine whether a tumor expresses high levels of c-Met, which could be indicative that the tumor is a target for treatment with anti-c-Met antibody.
  • the diagnostic method can also be used to determine whether a tissue or cell expresses insufficient levels of c-Met or activated c-Met, and thus is a candidate for treatment with activating anti-c-Met antibodies, HGF and/or other therapeutic agents for increasing c-Met levels or activity.
  • the antibodies of the present invention also can be used in vivo to identify tissues and organs that express c-Met.
  • the anti-c-Met antibodies are used to identify c-Met-expressing tumors.
  • One advantage of using the human anti-c-Met antibodies of the present invention is that they may safely be used in vivo without eliciting a substantial immune response to the antibody upon administration, unlike antibodies of non-human origin or with humanized or chimeric antibodies.
  • the method comprises the steps of administering a detectably labeled anti-c-Met antibody or a composition comprising them to a patient in need of such a diagnostic test and subjecting the patient to imaging analysis to determine the location of the c-Met-expressing tissues.
  • Imaging analysis is well known in the medical art, and includes, without limitation, x-ray analysis, magnetic resonance imaging (MRI) or computed tomography (CT).
  • MRI magnetic resonance imaging
  • CT computed tomography
  • the antibody can be labeled with any agent suitable for in vivo imaging, for example a contrast agent, such as barium, which can be used for x-ray analysis, or a magnetic contrast agent, such as a gadolinium chelate, which can be used for MRI or CT.
  • labeling agents include, without limitation, radioisotopes, such as 99 Tc.
  • the anti-c-Met antibody will be unlabeled and will be imaged by administering a second antibody or other molecule that is detectable and that can bind the anti-c- Met antibody.
  • a biopsy is obtained from the patient to determine whether the tissue of interest expresses c-Met.
  • the invention provides a method for inhibiting c- Met activity by administering an anti-c-Met antibody to a patient in need thereof.
  • the invention provides a method for activating c-Met activity by administering an anti-c-Met antibody to a patient in need thereof.
  • the anti-c-Met antibody is a human, chimeric or humanized antibody.
  • the c-Met is human and the patient is a human patient.
  • the patient may be a mammal that expresses a c- Met that the anti-c-Met antibody cross-reacts with.
  • the antibody may be administered to a non-human mammal expressing c-Met with which the antibody cross-reacts (i.e. a rat, or a cynomologus monkey) for veterinary pu ⁇ oses or as an animal model of human disease.
  • a non-human mammal expressing c-Met with which the antibody cross-reacts i.e. a rat, or a cynomologus monkey
  • Such animal models may be useful for evaluating the therapeutic efficacy of antibodies of this invention.
  • the term "a disorder in which c-Met activity is detrimental” is intended to include diseases and other disorders in which the presence of high levels of c-Met in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder.
  • Such disorders may be evidenced, for example, by an increase in the levels of c-Met on the cell surface or in increased tyrosine autophosphorylation of c-Met in the affected cells or tissues of a subject suffering from the disorder.
  • the increase in c- Met levels may be detected, for example, using an anti-c-Met antibody as described above.
  • an anti-c-Met antibody may be administered to a patient who has an c-Met-expressing tumor.
  • a tumor may be a solid tumor or may be a non-solid tumor, such as a lymphoma.
  • an anti-c-Met antibody may be administered to a patient who has an c-Met-expressing tumor that is cancerous.
  • the anti-c-Met antibody is administered to a patient who has a c-Met-expressing tumor of the lung, breast, prostate, or colon.
  • the anti-c-Met antibody is administered to a patient who has a glioblastoma tumor that expresses c-Met.
  • the method causes the tumor not to increase in weight or volume or to decrease in weight or volume. In another embodiment, the method prevents HGF binding to c-Met on the surface of the tumor cells or results in a down-regulation of c-Met cell surface protein.
  • the antibody is selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H-S97T; 13.3.2H- E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T.H- E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T, or comprises a heavy chain, light chain or antigen-binding region thereof.
  • an anti-c-Met antibody may be administered to a patient who expresses inappropriately high levels of c-Met. It is known in the art that high-level expression of c-Met can lead to a variety of common cancers.
  • said method relates to the treatment of cancer such as brain, squamous cell, bladder, gastric, pancreatic, breast, head and neck, esophageal, prostate, colorectal, lung, renal, kidney, ovarian, gynecological or thyroid cancer.
  • Patients that can be treated with a compounds of the invention according to the methods of this invention include, for example, patients that have been diagnosed as having lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynecologic tumors (e.g., uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (e.g., cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphocy
  • the anti-c-Met antibody is administered to a patient with breast cancer, prostate cancer, lung cancer, colon cancer or a glioblastoma.
  • the method causes the cancer to stop proliferating abnormally, or not to increase in weight or volume or to decrease in weight or volume.
  • the antibody may be administered once, but more preferably is administered multiple times.
  • the antibody may be administered from three times daily to once every six months or longer.
  • the administering may be on a schedule such as three times daily, twice daily, once daily, once every two days, once every three days, once weekly, once every two weeks, once every month, once every two months, once every three months and once every six months.
  • the antibody may also be administered continuously via a minipump.
  • the antibody may be administered via an oral, mucosal, buccal, intranasal, inhalable, intravenous, subcutaneous, intramuscular, parenteral, intratumor or topical route.
  • the antibody may be administered at the site of the tumor, into the tumor, or at a site distant from the site of the tumor.
  • the antibody may be administered once, at least twice or for at least the period of time until the condition is treated, palliated or cured.
  • the antibody generally will be administered for as long as the tumor is present provided that the antibody causes the tumor or cancer to stop growing or to decrease in weight or volume.
  • the antibody will generally be administered as part of a pharmaceutical composition as described supra.
  • the dosage of antibody will generally be in the range of 0.1-100 mg/kg, more preferably 0.5-50 mg/kg, more preferably 1-20 mg/kg, and even more preferably 1-10 mg/kg.
  • the serum concentration of the antibody may be measured by any method known in the art.
  • the anti-c-Met antibody may be co-administered with other therapeutic agents, such as anti-neoplastic drugs or molecules, to a patient who has a hype ⁇ roliferative disorder, such as cancer or a tumor.
  • other therapeutic agents such as anti-neoplastic drugs or molecules
  • the invention relates to a method for the treatment of the hype ⁇ roliferative disorder in a mammal comprising administering to said mammal a therapeutically effective amount of a compound of the invention in combination with an antitumor agent selected from the group consisting of, but not limited to, mitotic inhibitors, alkylating agents, anti-metabolites, intercalating agents, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, kinase inhibitors, matrix metalloprotease inhibitors, genetic therapeutics and anti-androgens.
  • an antitumor agent selected from the group consisting of, but not limited to, mitotic inhibitors, alkylating agents, anti-metabolites, intercalating agents, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, kinase inhibitors, matrix metalloprotease inhibitors, genetic therapeutics and anti-androgens.
  • the antibody or combination therapy is administered along with radiotherapy, chemotherapy, photodynamic therapy, surgery or other immunotherapy.
  • the antibody will be administered with another antibody.
  • the anti-c-Met antibody may be administered with an antibody or other agent that is known to inhibit tumor or cancer cell proliferation, e.g., an antibody or agent that inhibits erbB2 receptor, EGF-R, CD20 or VEGF.
  • Co-administration of the antibody with an additional therapeutic agent encompasses administering a pharmaceutical composition comprising the anti-c-Met antibody and the additional therapeutic agent as well as administering two or more separate pharmaceutical compositions, one comprising the anti-c-Met antibody and the other(s) comprising the additional therapeutic agent(s).
  • co-administration or combination therapy generally means that the antibody and additional therapeutic agents are administered at the same time as one another, it also encompasses instances in which the antibody and additional therapeutic agents are administered at different times.
  • the antibody may be administered once every three days, while the additional therapeutic agent is administered once daily.
  • the antibody may be administered prior to or subsequent to treatment of the disorder with the additional therapeutic agent, for example after a patient has failed therapy with the additional agent.
  • administration of the anti-c-Met antibody may be administered prior to or subsequent to other therapy, such as radiotherapy, chemotherapy, photodynamic therapy, surgery or other immunotherapy
  • the antibody and one or more additional therapeutic agents may be administered once, twice or at least the period of time until the condition is treated, palliated or cured.
  • the combination therapy is administered multiple times.
  • the combination therapy may be administered from three times daily to once every six months.
  • the administering may be on a schedule such as three times daily, twice daily, once daily, once every two days, once every three days, once weekly, once every two weeks, once every month, once every two months, once every three months and once every six months, or may be administered continuously via a minipump.
  • the combination therapy may be administered via an oral, mucosal, buccal, intranasal, inhalable, intravenous, subcutaneous, intramuscular, parenteral, intratumor or topical route.
  • the combination therapy may be administered at a site distant from the site of the tumor.
  • the combination therapy generally will be administered for as long as the tumor is present provided that the antibody causes the tumor or cancer to stop growing or to decrease in weight or volume.
  • the anti-c-Met antibody is labeled with a radiolabel, an immunotoxin or a toxin, or is a fusion protein comprising a toxic peptide.
  • the anti-c-Met antibody or anti-c-Met antibody fusion protein directs the radiolabel, immunotoxin, toxin or toxic peptide to the c-Met-expressing tumor or cancer cell.
  • the radiolabel, immunotoxin, toxin or toxic peptide is internalized after the anti-c-Met antibody binds to the c-Met on the surface of the tumor or cancer cell.
  • the anti-c-Met antibody may be used to treat non- cancerous diseases or conditions that are associated with c-Met.
  • the method comprises the step of administering an anti-c-Met antibody to a patient who has a non-cancerous pathological state caused or exacerbated by c-Met activity.
  • the anti-c-Met antibody slows the progress of the non-cancerous pathological state.
  • the anti-c-Met antibody stops or reverses, at least in part, the non-cancerous pathological state.
  • the invention provides a method of administering an activating anti-c-Met antibody to a patient in need thereof.
  • the activating antibody or a pharmaceutical composition comprising it is administered to a patient in need thereof an amount effective to increase c-Met activity.
  • the activating antibody is able to restore normal c-Met activity.
  • the activating antibody may be administered to a patient who is need of tissue regeneration.
  • the activating antibody may be administered to a patient to treat renal or tubulointerstitial fibrosis.
  • the activating anti-c-Met antibody may be administered to a patient to treat problems associated with transplant surgery, for example, to treat ischemia associated with kidney transplant rejection.
  • the activating antibody can be used to attenuate toxicity associated with cyclosporin treatment after transplant surgery.
  • the activating anti-c-Met antibody may be administered to treat myocardial infarction, cardiac ischemia due to reperfusion injury, restenosis after angioplasty, or vascular diseases such as arteriosclerosis obliterans.
  • the activating antibody may be administered to heal a wound, for example, refractory skin ulcers or to treat gastic ulcers.
  • the activating antibody may be administered with one or more other factors that enhances a therapeutic procedure such as tissue regeneration or increase c-Met activity. Such factors include growth factors such as HGF, and/or analogues of HGF that activate c-Met.
  • the antibody is selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3, variants thereof or comprises a heavy chain, light chain or antigen-binding portion thereof.
  • the nucleic acid molecules of the present invention can be administered to a patient in need thereof via gene therapy.
  • the therapy may be either in vivo or ex vivo.
  • nucleic acid molecules encoding both a heavy chain and a light chain are administered to a patient.
  • the nucleic acid molecules are administered such that they are stably integrated into chromosomes of B cells because these cells are specialized for producing antibodies.
  • precursor B cells are transfected or infected ex vivo and re-transplanted into a patient in need thereof.
  • precursor B cells or other cells are infected in vivo using a virus known to infect the cell type of interest.
  • Typical vectors used for gene therapy include liposomes, plasmids and viral vectors.
  • Exemplary viral vectors are retroviruses, adenoviruses and adeno-associated viruses. After infection either in vivo or ex vivo, levels of antibody expression can be monitored by taking a sample from the treated patient and using any immunoassay known in the art or discussed herein.
  • the gene therapy method comprises the steps of administering an isolated nucleic acid molecule encoding the heavy chain or an antigen-binding portion thereof of an anti-c-Met antibody and expressing the nucleic acid molecule.
  • the gene therapy method comprises the steps of administering an isolated nucleic acid molecule encoding the light chain or an antigen-binding portion thereof of an anti-c-Met antibody and expressing the nucleic acid molecule.
  • the gene therapy method comprises the steps of administering of an isolated nucleic acid molecule encoding the heavy chain or an antigen-binding portion thereof and an isolated nucleic acid molecule encoding the light chain or the anti gen -binding portion thereof of an anti-c-Met antibody of the invention and expressing the nucleic acid molecules.
  • the gene therapy method may also comprise the step of administering another anti-cancer agent, such as taxol or adriamycin.
  • Antibodies of the invention were prepared, selected, and assayed as follows: Eight to ten week old XenoMouse mice were immunized intraperitoneally or in their hind footpads with either a c-Met extracellular domain fusion protein (10 ⁇ g/dose/mouse) (R&D Systems, Catalog #358MT) or with a NIH-3T3 transfected cell line that express human c-Met on its plasma membrane (10 x 10 6 cells/dose/mouse). This dose was repeated five to seven times over a three to eight week period.
  • mice Four days before fusion, the mice were given a final injection of the extracellular domain fusion protein of human c-Met in PBS.
  • the spleen and lymph node lymphocytes from immunized mice were fused with the non-secretory myeloma P3-X63-Ag8.653 cell line, and these fused cells were subjected to HAT selection as previously described (Galfre and Milstein, Methods Enzymol. 73:3-46, 1981).
  • a panel of hybridomas was recovered that all secrete c-Met specific human IgG2 antibodies.
  • Four hybridomas were selected for further study and were designated 13.3.2; 9.1.2; 8.70.2 and 8.90.3.
  • the hybridomas were deposited under terms in accordance with the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard., Manassas, VA 201 10-2209 on March
  • hybridomas have been assigned the following accession numbers: Hybridoma 13.3.2 (LN 15883) PTA-5026 Hybridoma 9.1.2 (LN 15884) PTA-5027 Hybridoma 8.70.2 (LN 15885) PTA-5028 Hybridoma 6.90.3 (LN 15886) PTA-5029 EXAMPLE II Sequences of Anti-c-Met- Antibodies Prepared in Accordance with the Invention [0250] To analyze the structure of antibodies produced in accordance with the invention, nucleic acids were cloned that encode heavy and light chain fragments from hybridomas producing anti-c-Met monoclonal antibodies 13.3.2; 9.1.2; 8.70.2 and 8.90.3.
  • PCR products were cloned into pCRII (Invitrogen) using a TA cloning kit (Invitrogen) and both strands were sequenced using Prism dye-terminator sequencing kits (Applied Biosystems Inc) and an ABI 377 sequencing machine (Applied Biosystems Inc). All sequences were analyzed by alignments to the "V BASE sequence directory" (Tomlinson et al., MRC Centre for Protein Engineering, Cambridge, UK) using Mac Vector and Geneworks software programs.
  • the same method was used to design a primer to include the 3 ' coding sequences, the stop codon of the IgG2 constant region [5'-TTCTCTGATCAGAATTCC TATCATTTACCCGGAGACAGGGAGAG-3' (SEQ ID NO:27)] and restriction sites.
  • blocking buffer 3%> bovine serum albumin (BSA) in TBS-T
  • BSA bovine serum albumin
  • DMEM Dulbecco's Modified Eagle medium
  • FBS Dulbecco's Modified Eagle medium
  • FBS fetal bovine serum
  • 140 mM NaCl at various concentrations (e.g., 10, 3, 1, 0.3, 0.1, 0.03, and 0.01 ⁇ g/ml, based on human IgG2 concentrations in the supernatants) was added to each well.
  • Anti-c-Met antibody was not added to the control wells of the experiment.
  • the samples were mixed for 4 hours (hrs) at room temperature.
  • 10 ⁇ l of 100 ng/ml HGF in serum-free DMEM was added to each well.
  • the samples were mixed for 15 minutes at room temperature.
  • the wells were washed 4 times with 300 ⁇ l/well/wash TBS-T.
  • 100 ⁇ l of a 1:2000 dilution of lOO ⁇ g/ml anti-HGF biotinylated antibody in blocking buffer was added.
  • the solutions were incubated in the wells for 30 min at room temperature.
  • the wells were washed 5 times with 300 ⁇ l/well TBS-T.
  • 100 ⁇ l/well of a 1.25 mg/ml streptavidin-horseradish peroxidase (HRP) at a 1:5000 dilution in blocking buffer was added.
  • the samples were incubated for 30 min at room temperature.
  • Anti-c-Met antibodies of the invention were used to measure inhibition of 15 c-Met phosphorylation in cells after stimulation with HGF.
  • A549 cells were plated at a density of lxl 0 5 cells per well in a total volume of 200 ⁇ l/well DMEM supplemented with 10% FBS in 96-well U-bottom tissue culture treated plates (Falcon, #3077). The plates were incubated at 37°C in a 10%) CO2 atmosphere for 24 hrs. The media was gently aspirated from each well of the plates. Hybridoma supernatants to be tested were micro-centrifuged at
  • the plates were incubated for 15 min at 37°C, then the media was gently aspirated from the wells of the plates.
  • the cells were washed with cold PBS containing 1 mM Na 3 VO 4 and the solution was gently aspirated from the plates.
  • the plates were shaken at room temperature for 10 minutes. The plates could then be stored at - 20°C until needed for ELISA.
  • TMB peroxidase substrate solution (Kirkegaard & Perry Laboratories, #50-76-04) was added and was developed while gently shaking for 4-5 min at room temperature. The reactions were stopped with 100 ⁇ l/well of TMB stop solution (Kirkegaard & Perry Laboratories, #50-85-04). The plates were read at a wavelength of 450 nm using a 96-well plate reader.
  • EXAMPLE V Downregulation of c-Met with Anti-c-Met Antibodies in Cells following Stimulation with HGF
  • An assay was conducted to measure the inhibitory effect of anti-c-Met antibodies on c-Met expression levels in cells stimulated with HGF.
  • A549 cells lysates were prepared as described in Example TV. To determine c-Met levels, an ELISA was performed.
  • the ELISA was performed essentially as described in Example IV with the following changes: instead of using an anti-phospho-tyrosine antibody, 100 ⁇ l UBl 05-237 antibody (ascites) (Anti-Met, ECD, clone DO24 Upstate Biotechnology, #21601) diluted 1:1000 in 3%o BSA-TBS-T (with 1 mM Na 3 VO 4 ) was added to each well. The incubation and wash steps were the same as in Example IV.
  • SI 14 tumor cells NIH-3T3 cells engineered to express human HGF and human c-Met, were maintained in DMEM supplemented with 10% Calf Serum, 1,000 units/ml penicillin, 1,000 ⁇ g/ml streptomycin and 2 mM L-glutamine (growth medium). The cell cultures were trypsinized and washed in serum-free DMEM and adjusted the concentration to 50,000 cells/ml.
  • the bottom layer consisted of growth medium containing 0.5%> agar in a total volume of 2 ml.
  • the top layer consisted of growth media containing 0.35%) agar, 5,000 SI 14 cells, and the antibody treatment at a final concentration of between 0.625 - 50 ⁇ g/ml in a 1 ml total volume, which was plated on top of the bottom agar layer.
  • This solution was allowed to solidify at room temperature and incubated overnight at 37°C in a 10% CO 2 atmosphere. 24 hrs later, 0.5 ml media was added with an appropriate antibody treatment to keep it moist and the dishes were incubated at 37°C in a 10%> CO 2 atmosphere for an additional 7-10 days.
  • the media was removed and replaced with 0.5 ml of 1 mg/ml p-Iodonitrotetrazolium violet in PBS for 48 hrs.
  • the number of colonies was counted with ROBOT (Ludel Electronics, Ltd.) using ETC3000 software (Engineering Technology Center).
  • HepG2 cells which express c-Met, form tubular structures when grown in MATRIGELTM (Becton-Dickinson), an extracellular matrix material containing components of the basement membrane, in the presence of HGF. Assays were conducted using HepG2 cells to measure tube formation (tubular mo ⁇ hogenesis) and its inhibition when cells are grown in the presence of HGF and treated with anti-c-Met antibodies.
  • MATRIGELTM Becton-Dickinson
  • the cells were grown for 4 days at 37°C in a 10%> CO 2 atmosphere. At the end of the 4 days, the top medium was removed and 0.5 ml of 1 mg/ml p-Iodonitrotetrazolium violet in PBS was added for 48 hrs. Pictures were taken of the stained 35 mm plates and analyzed using ImagePro (Media Cybernetics, Silver Spring, MD).
  • Antibody samples were prepared at 0.69 ⁇ M for 13.3.2; 8.70.2 and 8.90.3 and at 0.23 ⁇ M for 9.1.2. These samples were diluted 3-fold serially to 8.5 nM or 2.8 nM for roughly a 100-fold range in concentrations. For each concentration, samples were injected in duplicate at 5 ⁇ l/min flow for 4 min. The dissociation was monitored for 2000 seconds. The data were fit globally to a simple 1 : 1 binding model using BIACORE Biavel software. In addition, to determine the k 0f ⁇ independent of any potential error in the active concentration or fitting model, the dissociation data were fit globally and independently from association data to a simple dissociation model.
  • the collected cells were washed in PBS wash buffer containing 0.025% sodium azide and 2 % heat inactivated serum, pelleted and 5 x 10 5 cells and resuspended in 500 ⁇ l of the same 15 buffer.
  • the time required to achieve equilibrium binding at room temperature for each antibody was determined independently to be between six and eight hours by incubating subsaturating concentrations of each antibody with cells.
  • half- maximal binding (K D ) of each antibody was determined from the geometric mean of fluorescence intensity for antibody concentrations ranging from 0.1 ng/ml to 3 20 ⁇ g/ml. Each antibody was incubated with detached cells for 6 to 8 hours at room temperature depending on the time required to reach equilibrium.
  • EXAMPLE X Inhibition of Tumor Growth In Vivo with Anti-c-Met Antibodies [0279] In vivo assays were conducted to measure tumor growth inhibition of 10 solid tumors after treatment with anti-c-Met antibodies. [0280] SI 14, U87 (human glioblastoma cells), GTL-16 (human gastric tumor cells) and A549 (human lung carcinoma epithelial cells) were maintained in DMEM (Invitrogen) supplemented with 10 % heat inactivated FBS (Invitrogen), 2 mM L-Glutamine (Invitrogen), and 1% [volume/volume] penicillin (1,000 15 units/ml)-streptomycin (1,000 ⁇ g/ml)(Invitrogen) in a 37°C/10%> CO2 tissue culture incubator.
  • DMEM Invitrogen
  • FBS Invitrogen
  • 2 mM L-Glutamine Invitrogen
  • penicillin 1,000 15 units/ml
  • Streptomycin 1,000 ⁇ g
  • the antibodies were stored in 20 mM sodium acetate, pH 5.5, 140 mM sodium chloride and were diluted with sterile phosphate buffered saline to the desired antibody concentration. Either 100 ⁇ g or 200 ⁇ g antibody were injected into the intraperitoneal (IP) cavity of each experimental animal subject. Vehicle solutions were administered to control animals. Tumor sizes were measured in the mice using calipers every two to three days following IP delivery of the antibody solution until the termination of the experiments.
  • IP intraperitoneal
  • Activation of c-Met by Anti-c-Met Antibodies in the absence of HGF stimulation [0282] The activation of c-Met in cells incubated with anti-c-Met antibodies in the absence of HGF was measured to determine the agonist activity of the c-Met antibodies of the invention. An ELISA was used to determine whether c-Met was activated in the cells by measuring phosphorylation of c-Met. Between 0.01 - 10 ⁇ g/ml of antibody was added to A549 cells plated as described in Example IV, except the cells were not stimulated with HGF. The A549 cell lysates were prepared as described in Example IV. An ELISA was conducted as described in Example IV.
  • Tubular mo ⁇ hogenesis assays were conducted to measure anti-c-Met antibody agonist activity.
  • the assays were conducted as described in Example VII, except that the cells are grown in the absence of HGF and treated with anti-c- Met antibodies (1, 10 and 50 ⁇ g/ml).
  • the amount of tubular mo ⁇ hogenesis was determined as described in Example VII.
  • the assay shows that three anti-c-Met antibodies tested have weak to moderate agonist activity.
  • Table 4 shows the amount of agonist activity as measured by tubular mo ⁇ hogenesis for antibodies 9.1.2; 8.70.2 and 8.90.3
  • Lysates containing two milligrams of protein were immunoprecipitated with 25 ⁇ l of sc-10 agarose beads (Santa Cruz) specific for c-Met for 2 hours at 4°C.
  • the beads were washed and bound protein was eluted by boiling in Laemmli sample buffer for 5 min and separated by SDS-PAGE using 4-12%) gradient NovexTM gels.
  • Immunocaptured proteins were then electroblotted to 0.45 ⁇ M PVDF membranes (Invitrogen). The membranes were blocked in 3%.
  • Figure 5 shows the serum 13.3.2L-A91T, H-E42K, S97T antibody levels, phospho c-Met levels and total c-Met protein levels over time. The experiment demonstrates that the decreased phospho c-Met and total c-Met protein levels are related to the antibody and that the degree of c-Met inhibition is dose proportional to the serum concentration of the antibody.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Dermatology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to antibodies including human antibodies and antigen-binding portions thereof that specifically bind to c-Met, preferably human c-Met, and that function to inhibit c-Met. The invention also relates to human anti-c-Met antibodies and antigen-binding portions thereof. The invention also relates to antibodies that are chimeric, bispecific, derivatized, single chain antibodies or portions of fusion proteins. The invention also relates to isolated heavy and light chain immunoglobulins derived from human anti-c-Met antibodies and nucleic acid molecules encoding such immunoglobulins. The present invention also relates to methods of making human anti-c-Met antibodies, compositions comprising these antibodies and methods of using the antibodies and compositions for diagnosis and treatment. The invention also provides gene therapy methods using nucleic acid molecules encoding the heavy and/or light immunoglobulin molecules that comprise the human anti-c-Met antibodies. The invention also relates to transgenic animals or plants comprising nucleic acid molecules of the present invention.

Description

ANTIBODIES TO c-MET
BACKGROUND OF THE INVENTION
[0001] Hepatocyte growth factor (HGF), also known as scatter factor, is a multifunctional growth factor that enhances transformation and tumor development by inducing mitogenesis and cell motility. Further, HGF promotes metastasis by stimulating cell motility and invasion through various signaling pathways. [0002] In order to produce cellular effects, HGF must bind to its receptor, c-Met, a receptor tyrosine kinase. c-Met is a widely expressed heterodimeric protein comprising of a 50 kilodalton (kDa) α-subunit and a 145 kDa β-subunit (Maggiora et al., J. Cell Physiol, 173:183-186 (1997)). The c-Met β-subunit comprises the tyrosine kinase domain and two autophosphorylation sites, Y1349 and Y1356, that are critical for transmission of the HGF signal (Maggiora et al., J. Cell Physiol, 173:183-186 (1997); Ponzetto et al., Cell, 77:2610271 (1994); Maina et al„ Cell, 87:531-542 (1996)). [0003] HGF binding to c-Met results in activation of a number of signaling pathways that result in various cellular activities associated with diseases like cancer. These include promoting mitogenesis, cell survival, cell motility, invasion of the extracellular matrix (ECM), angiogenesis and metastasis, all of which are activities that promote transformation and disease progression (Jeffers et al., J. Mol. Med., 74:505-513 (1996); Amicone et al., EMBOJ., 16:495-503 (1997); Matsumoto and Nakamura, Biochem. Biophys. Res.Comm., 239: 639-644 (1997); Corps et al., Int. J. Cancer, 73:151-155 (1997)). Expression or over-expression of both HGF and c-Met can result in morphological transformation and tumorigenicity of several cell types (Jeffers et al., J. Mol. Med., 74:505-513 (1996). HGF and c-Met expression or over-expression also promote mitogenesis and anchorage independent growth (Rubin et al., Proc. NatlAcad. Sci. USA, 88:514-419 (1991); Kan et al., Biochem. Biophys. Res. Commun., 174:331-337 (1991). In particular, invasion of the ECM has been reported when activation of c- Met causes the expression of proteases, such as urokinase-like plasminogen activator and collegenase, allowing cells to degrade and locally invade tissue (Jeffers et al., J.Mol.Med, 74:505-513 (1996). Further, several tumors that express or over-express only c-Met, and not HGF, utilize a paracrine rather than an autocrine signaling mechanism to support tumorigenesis (Beviglio et al., Int. J. Cancer, 74:301-309 (1997).
[0004] HGF and c-Met also have been implicated in the etiology of many human cancers. Concomitant expression or over-expression of HGF and c-Met has been observed in breast carcinoma (Nagy et al., Surg. Oncol, 5:15-21 (1996); Tuck et al., Am. J. Pathol, 148:225-232 (1996), pancreatic carcinoma (Ebert et al., Cancer Res., 54:5775-5778 (1994), oral squamous cell carcinoma (Marshall and Kornberg, Laryngoscope, 108:1413-1417 (1998), gliomas (Koochekpour et al., Cancer Res., 57:5391-5398 (1997), and malignant pleural mesotheliomas (Tolpay et al., J. Cancer Res. Clin. Oncol, 124:291-296 (1998); Klominek et al. Intl. J. Cancer, 76:240-249 (1998)). In addition, over-production of c-Met may be important in the development of other tumors in which a role for HGF has yet to be substantiated. These cancers include hepatocellular carcinoma (Suzuki et al. Hepatology, 20:1231-1236 (1996), renal cell carcinoma (Natali et al., Intl. J. Cancer, 69:212-217 (1996), lung carcinoma (Harvey et al., J. Pathol, 180:389-394 (1996), ovarian cancer (Nagy et al., J. Surg. Oncol, 60:95-99 (1995), gastric carcinoma (Taniguchi et al., Cancer, 82:21 12-2122 (1998), and colorectal carcinoma (Hiscox et al., Cancer Invest., 15:513-521 (1997). In addition, germline and somatic mutations that activate the c-Met receptor in the absence of HGF in individuals with papillary renal carcinomas have been reported (Schmidt et al., Nat. Genet, 16:68-73 (1997); Jeffers et al., Proc. NatlAcad. Sci. USA, 94:11445- 11450 (1997)). Other carcinomas, including those of the stomach, rectum, lung, pancreas, breast, and bile duct have been detected in individuals with c-Met containing activating mutations (Zbar et al., J. Uro , 151:561-566 (1994). [0005] A strategy for inhibiting c Met binding is needed to prevent activation of pathways leading to diseases such as cancer. C-Met function may attenuate c-Met activation and/or HGF-induced biological responses (Date et al., FEBS Letters, 420:1-6 (1997); (Kaji et al, Cancer Gene Ther., 3:393-404 (1996); (Li et al., Clin. Exp. Metastasis, 16:74-82 (1998)) and therefore inhibit tumor progression. Although mouse anti-c-Met monoclonal antibodies having anti-mitogenic activity in cell culture have been reported (US 5646036, US 6207152, US 6214344), a mouse antibody cannot easily be used to treat human patients. Thus, there is a need for improved compositions that will bind c-Met, and that can be used, e.g., to inhibit HGF- and c-Met-dependent tumor growth by inhibiting mitogenesis, invasion, metastasis, and/or survival.
SUMMARY OF THE INVENTION [0006] The present invention provides an isolated antibody or antigen-binding portion thereof that specifically binds c-Met and acts predominantly as a c-Met antagonist, and, in some instances, as a c-Met agonist antibody and compositions comprising said antibody or portion. [0007] The invention provides a composition comprising the heavy and/or light chain, the variable domains thereof, or antigen-binding portions thereof an anti-c- Met antibody, or nucleic acid molecules encoding an antibody, antibody chain or variable domain thereof of the invention and a pharmaceutically acceptable carrier. Compositions of the invention may further comprise another component, such as a therapeutic agent or a diagnostic agent. Diagnostic and therapeutic methods are also provided by the invention.
[0008] The invention further provides an isolated cell line, that produces an antic-Met antibody or antigen-binding portion thereof.
[0009] The invention also provides nucleic acid molecules encoding the heavy and/or light chain of an anti-c-Met antibody, the variable domains thereof or antigen-binding portions thereof. [0010] The invention provides vectors and host cells comprising the nucleic acid molecules, as well as methods of recombinantly producing the polypeptides encoded by the nucleic acid molecules.
[0011] Non-human transgenic animals or plants that express the heavy and/or light chain, or antigen-binding portions thereof, of an anti-c-Met antibody are also provided.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] Figures 1A and IB show that the anti-c-Met antibodies inhibit ligand binding to an isolated c-Met ECD/Fc protein and inhibits c-Met phosphorylation in cells after stimulation with HGF.
[0013] Figure 1 A is a graph illustrating inhibition of ligand binding with anti-c- Met monoclonal antibodies of the invention. Anti-c-Met monoclonal antibodies 13.3.2L-A91T, H-E42K, S97T and 13.3.2 bind to the c-Met receptor and inhibit HGF binding. [0014] Figure IB is a graph illustrating inhibition in a c-Met phosphorylation ELISA. Anti-c-Met monoclonal antibodies 13.3.2L-A91T, H-E42K, S97T and 13.3.2 inhibit c-Met tyrosine phosphorylation, as measured by a c-Met phosphorylation ELISA, in cells after stimulation with HGF. [0015] Figure 2 is a graph illustrating anti-c-Met monoclonal antibody specificity. Anti-IGF-IR monoclonal antibodies 2.13.2 and 2.12.1 bind to IGF-IR and cause a decrease in tyrosine phosphorylation of the IGF-IR following treatment with IGF-1. Anti-c-Met antibodies 9.1.2 and 13.3.2 do not bind to IGF- IR, even at high concentrations of antibody, and do not cause a decrease in tyrosine phosphorylation of the IGF-IR. [0016] Figure 3A-3H are sequence alignments of the predicted amino acid sequences of light and heavy chain variable domains from four anti-c-Met antibodies compared with the germline amino acid sequences of the corresponding human genes. Differences between the antibody sequences and the germline sequence are indicated by shading of the antibody sequences. The underlined sequences in each alignment represent, from left to right, the germline signal peptide, CDR1, CDR2, and CDR3 sequences. [0017] Figure 3 A shows an alignment of the predicted amino acid sequence of the light chain for antibody 13.3.2 (SEQ ID NO: 4, wherein X8 is alanine) and the 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine) variant to the germline L5Vκl, Jκ4 sequence (SEQ ID NO: 17). [0018] Figure 3B shows an alignment of the predicted amino acid sequence of the light chain for antibody 9.1.2 (SEQ ID NO: 8) to the germline A27Vκ3, J/c2 sequence (SEQ ID NO: 18).
[0019] Figure 3C shows an alignment of the predicted amino acid sequence of the light chain for antibody 8.70.2 (SEQ ID NO: 12) to the germline L5Vκ 1, Jκ3 sequence (SEQ ID NO : 19) .
[0020] Figure 3D shows an alignment of the predicted amino acid sequence of the light chain for antibody 8.90.3 (SEQ ID NO: 16) to the germline L5Vκl, J l sequence (SEQ ID NO: 20). [0021] Figure 3E shows an alignment of the predicted amino acid sequence of the heavy chain of antibody 13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine and X6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X is threonine and X6 is alanine); 13.3.2H-A14P (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is proline); 13.3.2H-A14P, E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine and X6 is proline); and 13.3.2H-A14P, E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine and X6 is proline) to the germline Vπ 1-18, D2-15, JH4b sequence (SEQ ID NO: 21). 10022] Figure 3F shows an alignment of the predicted amino acid sequence of the heavy chain for antibody 9.1.2 (SEQ ID NO: 6) to the germline VH 4-31 , D2-2, D7-27, JH6b sequence (SEQ ID NO: 22).
[0023] Figure 3G shows the alignment of the predicted amino acid sequence of the heavy chain for antibody 8.70.2 (SEQ ID NO: 10) to the germline VH 4-39, D2- 2, JH4b sequence (SEQ ID NO: 23). [0024] Figure 3H shows an alignment of the predicted amino acid sequence of the heavy chain for antibody 8.90.3 (SEQ ID NO: 14) to the germline VH 3-48, 4- 17, JH4b sequence (SEQ ID NO: 24). [0025] Figure 4A-4E show that anti-c-Met antibodies inhibit tumor growth in vivo. The arrows along the x-axis represent anti-c-Met antibody doses administered.
[0026] Figure 4A shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of 3T3-S114 tumors.
[0027] Figure 4B shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of U87 tumors.
[0028] Figure 4C shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of A549 tumors. [0029] Figure 4D shows the results of an experiment demonstrating that anti-c- Met antibodies inhibit the growth of GTL-16 tumors.
[0030] Figure 4E shows the results of an experiment demonstrating that anti-c- Met antibody 13.3.2L-A91T, H-E42K, S97T inhibits the growth of U87 tumors in a dose-dependent manner. [0031] Figure 5 shows the relationship between anti-c-Met antibody 13.3.2L- A91T, H-E42K, S97T serum levels and inhibition of c-Met activity. Figure 5 also shows the relationship between anti-c-Met antibody 13.3.2L-A91T, H-E42K, S97T serum levels and c-Met downregulation in U87 tumors. [0032] Figures 6A-6P are full length heavy and light chain nucleotide and predicted amino acid sequences from four anti-c-Met antibodies. The signal peptide for each heavy or light chain sequence is designated by underlined lower case type letters. The CDR1, CDR2 and CDR3 sequences for each heavy or light sequence are designated by underlined upper case type letters. The variable domain for each sequence are designated by upper case letters. The constant region for each sequence are designated by lower case type letters.
[0033] Figure 6A shows the 13.3.2 Heavy Chain DNA sequence (SEQ ID NO:
1).
[0034] Figure 6B shows the 13.3.2 Heavy Chain protein sequence (SEQ ID NO:
2). [0035] Figure 6C shows the 13.3.2 Light Chain [Kappa chain] DNA sequence (SEQ ID NO: 3). [0036] Figure 6D shows the 13.3.2 Light Chain [Kappa chain] protein sequence
(SEQ ID NO: 4).
[0037] Figure 6E shows the 9.1.2 Heavy Chain DNA sequence (SEQ ID NO: 5).
[0038] Figure 6F shows the 9.1.2 Heavy Chain protein sequence (SEQ ID NO: 6).
[0039] Figure 6G shows the 9.1.2 Light Chain [Kappa] DNA sequence (SEQ ID
NO: 7).
[0040] Figure 6H shows the 9.1.2 Light Chain [Kappa] protein sequence (SEQ
ID NO: 8). [0041] Figure 61 shows the 8.70.2 Heavy Chain DNA sequence (SEQ ID NO: 9).
[0042] Figure 6J shows the 8.70.2 Heavy Chain protein sequence (SEQ ID NO:
10).
[0043] Figure 6K shows the 8.70.2 Light Chain [Kappa] DNA sequence (SEQ ID
NO: 11). [0044] Figure 6L shows the 8.70.2 Light Chain [Kappa] protein sequence (SEQ
ID NO: 12).
[0045] Figure 6M shows the 8.90.3 Heavy Chain DNA sequence (SEQ ID NO:
13).
[0046] Figure 6N shows the 8.90.3 Heavy Chain protein sequence (SEQ ID NO: 14).
[0047] Figure 6O shows the 8.90.3 Light Chain [Kappa] DNA sequence (SEQ ID
NO: 15).
[0048] Figure 6P shows the 8.90.3 Light Chain [Kappa] protein sequence (SEQ
ID NO: 16). DETAILED DESCRIPTION OF THE INVENTION
Definitions and General Techniques
[0049] Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art.
[0050] The methods and techniques of the present invention are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow and Lane Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990), incorporated herein by reference. Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclature used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.
[0051] The following terms, unless otherwise indicated, shall be understood to have the following meanings:
[0052] The term "polypeptide" encompasses native or artificial proteins, protein fragments and polypeptide analogs of a protein sequence. A polypeptide may be monomeric or polymeric.
[0053] The term "isolated protein", "isolated polypeptide" or "isolated antibody" is a protein, polypeptide or antibody that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature. Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well known in the art.
[0054] Examples of isolated antibodies include an anti-c-Met antibody that has been affinity purified using c-Met, an anti-c-Met antibody that has been synthesized by a hybridoma or other cell line in vitro, and a human anti-c-Met antibody derived from a transgenic mouse.
[0055] A protein or polypeptide is "substantially pure," "substantially homogeneous," or "substantially purified" when at least about 60 to 75% of a sample exhibits a single species of polypeptide. The polypeptide or protein may be monomeric or multimeric. A substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and preferably will be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well known in the art for purification. [0056] The term "polypeptide fragment" as used herein refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the naturally-occurring sequence. In some embodiments, fragments are at least 5, 6, 8 or 10 amino acids long. In other embodiments, the fragments are at least 14, at least 20, at least 50, or at least 70, 80, 90, 100, 150 or 200 amino acids long. [0057] The term "polypeptide analog" as used herein refers to a polypeptide that comprises a segment that has substantial identity to a portion of an amino acid sequence and that has at least one of the following properties: (1) specific binding to c-Met under suitable binding conditions, (2) ability to inhibit or activate c-Met. Typically, polypeptide analogs comprise a conservative amino acid substitution (or insertion or deletion) with respect to the native sequence. Analogs typically are at least 20 or 25 amino acids long, preferably at least 50, 60, 70, 80, 90, 100, 150 or 200 amino acids long or longer, and can often be as long as a full-length polypeptide. Some embodiments of the invention include polypeptide fragments or polypeptide analog antibodies with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 substitutions from the germline amino acid sequence. [0058] In certain embodiments, amino acid substitutions to an anti-c-Met antibody or antigen-binding portion thereof are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, and (4) confer or modify other physicochemical or functional properties of such analogs, but still retain specific binding to c-Met. Analogs can include various muteins of a sequence other than the normally-occurring peptide sequence. For example, single or multiple amino acid substitutions, preferably conservative amino acid substitutions, may be made in the normally-occurring sequence, preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence; e.g., a replacement amino acid should not alter the anti-parallel β- sheet that makes up the immunoglobulin binding domain that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence. In general, glycine and proline would not be used in an anti-parallel β- sheet. Examples of art-recognized polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed., W. H. Freeman and Company, New York (1984)); Introduction to Protein Structure (C. Branden and J. Tooze, eds., Garland Publishing, New York, N.Y. (1991)); and Thornton et al., Nature 354:105 (1991), incorporated herein by reference. [0059] Non-peptide analogs are commonly used in the pharmaceutical industry as drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics." Fauchere, J. Adv. Drug Res. 15:29 (1986); Veber and Freidinger, TINS p.392 (1985); and Evans et al., J. Med. Chem. 30:1229 (1987), incorporated herein by reference. Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a desired biochemical property or pharmacological activity), such as a human antibody, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: -CH2NH-, -CH2S-, -CH2-CH2-, -CH=CH-(cis and trans), -COCH2-, -CH(OH)CH2~, and -CH2SO-, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may also be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch, Ann. Rev. Biochem. 61 :387 (1992), incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulfϊde bridges which cyclize the peptide. [0060] Where an "antibody" is referred to herein with respect to the invention, it is normally understood that an antigen-binding portion thereof may also be used. An antigen-binding portion competes with the intact antibody for specific binding. See generally, Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989)) (incorporated by reference in its entirety for all purposes). Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. In some embodiments, antigen-binding portions include Fab, Fab', F(ab')2> Fd, Fv, dAb, and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of an antibody that is sufficient to confer specific antigen binding to the polypeptide.
[0061] From N-terminus to C-terminus, both the mature light and heavy chain variable domains comprise the regions FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain herein is in accordance with the definitions of Kabat, Sequences of Proteins of Immunological Interest
(National Institutes of Health, Bethesda, Md. (1987 and 1991)), Chothia & Lesk, J. Mol. Biol. 196:901-917 (1987) or Chothia et al., Nature 342:878-883 (1989). [0062] As used herein, an antibody that is referred to by number is the same as a monoclonal antibody that is obtained from the hybridoma of the same number. For example, monoclonal antibody 13.3.2 is the same antibody as one obtained from hybridoma 13.3.2, or a subclone thereof. [0063] As used herein, a Fd fragment means an antibody fragment that consists of the VH and CHI domains; an Fv fragment consists of the V( and VH domains of a single arm of an antibody; and a dAb fragment (Ward et al., Nature 341 :544-546 (1989)) consists of a VH domain. [0064] In some embodiments, the antibody is a single-chain antibody (scFv) in which a V and VH domains are paired to form a monovalent molecules via a synthetic linker that enables them to be made as a single protein chain. (Bird et al., Science 242:423-426 (1988) and Huston et al., Proc. Natl Acad. Sci. USA 85:5879-5883 (1988).) In some embodiments, the antibodies are diabodies, i.e., are bivalent antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites. (See e.g., Holliger P. et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993), and Poljak R. J. et a\., Structure 2: 1121-1123 (1994).) In some embodiments, one or more CDRs from an antibody of the invention may be incorporated into a molecule either covalently or noncovalently to make it an immunoadhesin that specifically binds to c-Met. In such embodiments, the CDR(s) may be incorporated as part of a larger polypeptide chain, may be covalently linked to another polypeptide chain, or may be incorporated noncovalently. [0065] In embodiments having one or more binding sites, the binding sites may be identical to one another or may be different.
[0066] As used herein, the term "human antibody" means any antibody in which the variable and constant domain sequences are human sequences. The term encompasses antibodies with sequences derived from human genes, but which have been changed, e.g. to decrease possible immunogenicity, increase affinity, eliminate cysteines that might cause undesirable folding, etc. The term encompasses such antibodies produced recombinantly in non-human cells, which might impart glycosylation not typical of human cells. These antibodies may be prepared in a variety of ways, as described below.
[0067] The term "chimeric antibody" as used herein means an antibody that comprises regions from two or more different antibodies. In one embodiment, one or more of the CDRs of the chimeric antibody are derived from a human anti-c- Met antibody. In another embodiment, all of the CDRs are derived from a human anti-c-Met antibodies. In another embodiment, the CDRs from more than one human anti-c-Met antibodies are combined in a chimeric antibody. For instance, a chimeric antibody may comprise a CDR1 from the light chain of a first human anti-c-Met antibody, a CDR2 from the light chain of a second human anti-c-Met antibody and a CDR3 from the light chain of a third human anti-c-Met antibody, and CDRs from the heavy chain may be derived from one or more other anti-c-Met antibodies. Further, the framework regions may be derived from one of the anti-c- Met antibodies from which one or more of the CDRs are taken or from one or more different human antibodies.
[0068] In some embodiments, a chimeric antibody of the invention is a humanized anti-c-Met antibody. A humanized anti-c-Met antibody of the invention comprises the amino acid sequence of one or more framework regions and/or the amino acid sequence from at least a portion of the constant region of one or more human anti-c-Met antibodies of the invention and CDRs derived from a non-human anti-c-Met antibody.
[0069] An "activating antibody" (also referred to herein as an "agonist antibody" as used herein means an antibody that increases one or more c-Met activities by at least about 40% when added to a cell, tissue or organism expressing c-Met. In some embodiments, the antibody activates c-Met activity by at least 50%, 60%, 70%, 80%., 85%o, 90%, 95%, 100% or greater than 100%. In some embodiments, the activating antibody is added in the presence of HGF. In some embodiments, an agonist antibody of the invention increases at least one activity of c-Met by 10- fold. [0070] Fragments or analogs of antibodies or immunoglobulm molecules can be readily prepared by those of ordinary skill in the art following the teachings of this specification. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. See Bowie et al., Science 253:164 (1991).
[0071] The term "surface plasmon resonance", as used herein, refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE™ system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.). For further descriptions, see Jonsson U. et al., Ann. Biol Clin. 51:19-26 (1993); Jonsson U. et al., Biotechniques 11:620-627 (1991); Jonsson B. et al., J. Mol. Recognit. 8:125-131 (1995); and Johnsson B. et al., Anal. Biochem. 198:268-277 (1991).
[0072] The term "KD" refers to the equilibrium dissociation constant of a particular antibody- antigen interaction.
[0073] The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor or otherwise interacting with a molecule. Epitopic determinants generally consist of chemically active surface groupings of molecules such as amino acids or carbohydrate or sugar side chains and generally have specific three dimensional structural characteristics, as well as specific charge characteristics. An epitope may be "linear" or "conformational." In a linear epitope, all of the points of interaction between the protein and the interacting molecule (such as an antibody) occur linearally along the primary amino acid sequence of the protein. In a conformational epitope, the points of interaction occur across amino acid residues on the protein that are separated from one another. An antibody is said to specifically bind an antigen when the dissociation constant is <1 mM, preferably <100 nM and most preferably <10 nM. In certain embodiments, the KD is 1 pM to 500 pM. In other embodiments, the KD is between 500 pM to 1 μM. In other embodiments, the KD is between 1 μM to 100 nM. In other embodiments, the KD is between 100 mM to 10 nM. Once a desired epitope on an antigen is determined, it is possible to generate antibodies to that epitope, e.g., using the techniques described in the present invention. Alternatively, during the discovery process, the generation and characterization of antibodies may elucidate information about desirable epitopes. From this information, it is then possible to competitively screen antibodies for binding to the same epitope. An approach to achieve this is to conduct cross- competition studies to find antibodies that competitively bind with one another, e.g., the antibodies compete for binding to the antigen. A high throughput process for "binning" antibodies based upon their cross-competition is described in International Patent Application No. WO 03/48731.
[0074] As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology - A Synthesis (2nd Edition, E.S. Golub and D.R. Gren, Eds., Sinauer Associates, Sunderland, Mass. (1991)), incorporated herein by reference. [0075] The term "polynucleofide" as referred to herein means a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms. [0076] The term "isolated polynucleotide" as used herein means a polynucleofide of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the "isolated polynucleotide" (1) is not associated with all or a portion of a polynucleotides with which the "isolated polynucleotide" is found in nature, (2) is operably linked to a polynucleotide to which it is not linked in nature, or (3) does not occur in nature as part of a larger sequence. [0077] The term "naturally occurring nucleotides" as used herein includes deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" as used herein includes nucleotides with modified or substituted sugar groups and the like. The term "oligonucleotide linkages" referred to herein includes oligonucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroamlothioate, phoshoranil- adate, phosphoroamidate, and the like. See e.g., LaPlanche et al., Nucl Acids Res. 14:9081 (1986); Stec et al., J. Am. Chem. Soc. 106:6077 (1984); Stein et al„ Nucl. Acids Res. 16:3209 (1988); Zon et al., Anti-Cancer Drug Design 6:539 (1991); Zon et al., Oligonucleotides and Analogues: A Practical Approach, pp. 87-108 (F. Eckstein, Ed., Oxford University Press, Oxford England (1991)); U.S. Patent No. 5,151,510; Uhlmann and Peyman, Chemical Reviews 90:543 (1990), the disclosures of which are hereby incorporated by reference. An oligonucleotide can include a label for detection, if desired.
[0078] "Operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest. The term "expression control sequence" as used herein means polynucleotide sequences that are necessary to effect the expression and processing of coding sequences to which they are ligated. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence; in eukaryotes, generally, such control sequences include promoters and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
[0079] The term "vector", as used herein, means a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. In some embodiments, the vector is a plasmid, i.e., a circular double stranded piece of DNA into which additional DNA segments may be ligated. In some embodiments, the vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. In some embodiments, the vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). In other embodiments, the vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors").
[0080] The term "recombinant host cell" (or simply "host cell"), as used herein, means a cell into which a recombinant expression vector has been introduced. It should be understood that "recombinant host cell" and "host cell" mean not only the particular subject cell but also the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein. [0081] The term "selectively hybridize" referred to herein means to detectably and specifically bind. Polynucleotides, oligonucleotides and fragments thereof in accordance with the invention selectively hybridize to nucleic acid strands under hybridization and wash conditions that minimize appreciable amounts of detectable binding to nonspecific nucleic acids. "High stringency" or "highly stringent" conditions can be used to achieve selective hybridization conditions as known in the art and discussed herein. One example of "high stringency" or "highly stringent" conditions is the incubation of a polynucleotide with another polynucleotide, wherein one polynucleotide may be affixed to a solid surface such as a membrane, in a hybridization buffer of 6X SSPE or SSC, 50% formamide, 5X Denhardt's reagent, 0.5% SDS, 100 μg/ml denatured, fragmented salmon sperm DNA at a hybridization temperature of 42°C for 12-16 hours, followed by twice washing at 55°C using a wash buffer of IX SSC, 0.5% SDS. See also Sambrook et al., supra, pp. 9.50-9.55. [0082] The term "percent sequence identity" in the context of nucleic acid sequences means the residues in two sequences that are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 18 - lo -
nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36, 48 or more nucleotides. There are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin. FASTA, which includes, e.g., the programs FASTA2 and FAST A3, provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, Methods Enzymol 183:63-98 (1990); Pearson, Methods Mol. Biol 132:185-219 (2000); Pearson, Methods Enzymol. 266:227-258 (1996); Pearson, J. Mol. Biol. 276:71-84 (1998); incorporated herein by reference). Unless otherwise specified, default parameters for a particular program or algorithm are used. For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOP AM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, incorporated herein by reference.
[0083] A reference to a nucleotide sequence encompasses its complement unless otherwise specified. Thus, a reference to a nucleic acid having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence.
[0084] As used herein, the terms "percent sequence identity" and "percent sequence homology" are used interchangeably. [0085] The term "substantial similarity" or "substantial sequence similarity," when referring to a nucleic acid or fragment thereof, means that when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 85%, preferably at least about 90%, and more preferably at least about 95%, 96%, 97%o, 98%o or 99%> of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above. [0086] As applied to polypeptides, the term "substantial identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights as supplied with the programs, share at least 70%o, 75%> or 80%) sequence identity, preferably at least 90% or 95%o sequence identity, and more preferably at least 97%0, 98% or 99%> sequence identity. In certain embodiments, residue positions that are not identical differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain R group with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson, Methods Mol. Biol. 243:307-31 (1994).
Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine, and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartic acid and glutamic acid; and 7) sulfur-containing side chains: cysteine and methionine. Conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine. [0087] Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al., Science 256:1443-45 (1992), incorporated herein by reference. A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix. [0088] Sequence identity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters as specified by the programs to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1 (University of Wisconsin, WI). Polypeptide sequences also can be compared using FASTA using default or recommended parameters, see GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, Methods Enzymol. 183:63-98 (1990); Pearson, Methods Mol. Biol. 132:185-219 (2000)). Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially blastp or tblastn, using default parameters as supplied with the programs.. See, e.g., Altschul et al., J. Mol. Biol. 215:403-410 (1990); Altschul et al., Nucleic Acids Res. 25:3389-402 (1997).
[0089] The length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues. When searching a database containing sequences from a large number of different organisms, it is preferable to compare amino acid sequences.
[0090] As used herein, the terms "label" or "labeled" refers to incorporation of another molecule in the antibody. In one embodiment, the label is a detectable marker, e.g., incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods). In another embodiment, the label or marker can be therapeutic, e.g., a drug conjugate or toxin. Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, ι nIn, 1251, 131I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, -galactosidase, luciferase, alkaline phosphatase), chemiluminescent markers, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags), magnetic agents, such as gadolinium chelates, toxins such as pertussis toxin, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance. [0091] Throughout this specification and claims, the word "comprise," or variations such as "comprises" or "comprising," will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
Human Anti-c-Met Antibodies and Characterization Thereof
[0092] In one embodiment, the invention provides humanized anti-c-Met antibodies. In another embodiment, the invention provides human anti-c-Met antibodies. In some embodiments, human anti-c-Met antibodies are produced by immunizing a non-human transgenic animal, e.g., a rodent, whose genome comprises human immunoglobulin genes so that the transgenic animal produces human antibodies. [0093] An anti-c-Met antibody of the invention can comprise a human kappa or a human lambda light chain or an amino acid sequence derived therefrom. In some embodiments comprising a kappa light chain, the light chain variable domain (VL) is encoded in part by a human L5 Vκ\ or A27 Vκ3 gene. [0094] In some embodiments, the VL of the c-Met antibody comprises one or more amino acid substitutions relative to the germline amino acid sequence. In some embodiments, the VL of the anti-c-Met antibody comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid substitutions relative to the germline amino acid sequence. In some embodiments, one or more of those substitutions from germline is in the CDR regions of the light chain. In some embodiments, the amino acid substitutions relative to germline are at one or more of the same positions as the substitutions relative to germline in any one or more of the VL of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T. For example, the VL of the anti-c-Met antibody may contain one or more amino acid substitutions compared to germline found in the VL of antibody 9.1.2. or there may be one or more amino acid substitutions compared to germline found in the VL of antibody 13.3.2, which utilizes the same Vκ gene as antibody 8.70.2. In some embodiments, the amino acid changes are at one or more of the same positions, but involve a different substitution than in the reference antibody.
[0095] In some embodiments, amino acid changes relative to germline occur at one or more of the same positions as in any of the VL of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T, but the changes may represent conservative amino acid substitutions at such position(s) relative to the amino acid in the reference antibody. For example, if a particular position in one of these antibodies is changed relative to germline and is glutamate, one may substitute aspartate at that position. Similarly, if an amino acid substitution compared to germline is serine, one may conservatively substitute threonine for serine at that position. Conservative amino acid substitutions are discussed supra.
[0096] In some embodiments, the light chain of the human anti-c-Met antibody comprises the VL amino acid sequence of antibody 13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine); 9.1.2 (SEQ ID NO: 8); 8.70.2 (SEQ ID NO: 12); or 8.90.3 (SEQ ID NO: 16) or said amino acid sequence having up to 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitutions and/or a total of up to 3 non-conservative amino acid substitutions. In some embodiments, the light chain comprises the amino acid sequence from the beginning of the CDRl to the end of the CDR3 of any one of the foregoing antibodies. [0097] In some embodiments, the light chain may comprise CDRl , CDR2 and CDR3 regions independently selected from the light chain CDRl, CDR2 and CDR3, respectively of the light chain antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T, or CDR regions each having less than 4 or less than 3 conservative amino acid substitutions and/or a total of three or fewer non-conservative amino acid substitutions. In some embodiments, the light chain of the anti-c-Met antibody comprises a light chain CDRl, CDR2, and CDR3, each of which are independently selected from the light chain CDRl, CDR2 and CDR3 regions of monoclonal antibody 13.3.2 (SEQ ID NO: 4, wherein X8 is alanine; SEQ ID NO: 3 wherein X7 is guanosine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine; SEQ ID NO: 3, wherein X7 is adenosine); 9.1.2. (SEQ ID NO: 8; SEQ ID NO: 7); 8.70.2 (SEQ LD NO: 12; SEQ ID NO: 11); or 8.90.3 (SEQ ID NO: 16; SEQ ID NO: 15). In certain embodiments, the light chain of the anti-c-Met antibody comprises the light chain CDRl, CDR2 and CDR3 regions of an antibody comprising the amino acid sequence of the VL region of an antibody selected from 13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 9.1.2. (SEQ ID NO: 8); 8.70.2 (SEQ ID NO: 12); 8.90.3 (SEQ ID NO: 16) or 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine) or said CDR regions each having less than 4 or less than 3 conservative amino acid substitutions and/or a total of three or fewer non- conservative amino acid substitutions.
[0098] With regard to the heavy chain, in some embodiments, the variable domain (VH) is encoded in part by a human VH 1-18, VH 4-31, VH 4-39, or VH 3-48 gene. In some embodiments, the VH sequence of the anti-c-Met antibody contains one or more amino acid substitutions, deletions or insertions (additions) relative to the germline amino acid sequence. In some embodiments, the variable domain of the heavy chain comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 mutations from the germline amino acid sequence. In some embodiments, the mutation(s) are non-conservative substitutions compared to the germline amino acid sequence. In some embodiments, the mutations are in the CDR regions of the heavy chain. In some embodiments, the amino acid changes are made at one or more of the same positions as the mutations from germline in any one or more of the VH of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; or 13.3.2H-
A14P,E42K,S97T. In other embodiments, the amino acid changes are at one or more of the same positions but involve a different mutation than in the reference antibody.
[0099] In some embodiments, the heavy chain comprises the VH amino acid sequence of antibody 13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine); ; 9.1.2 (SEQ ID NO: 6); 8.70.2 (SEQ ID NO: 10) or 8.90.3 (SEQ ID NO: 14); or said VH amino acid sequence having up to 1, 2, 3, 4, 6, 8, or 10 conservative amino acid substitutions and/or a total of up to 3 non-conservative amino acid substitutions. In some embodiments, the heavy chain comprises the amino acid sequence from the beginning of the CDRl to the end of the CDR3 of any one of the foregoing antibodies.
[0100] In some embodiments, the heavy chain comprises the heavy chain CDRl, CDR2 and CDR3 regions of antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; or
13.3.2H-A14P,E42K,S97T or said CDR regions each having less than 8, less than 6, less than 4, or less than 3 conservative amino acid substitutions and/or a total of three or fewer non-conservative amino acid substitutions. [0101] In some embodiments, the heavy chain CDR regions are independently selected from the CDR regions of two or more antibodies of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T or 13.3.2H-A14P,E42K,S97T. In another embodiment, the heavy chain comprises CDR regions independently selected from two or more VH regions selected from 13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine);
13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine); ; 9.1.2 (SEQ ID NO: 6); 8.70.2 (SEQ ID NO: 10) or 8.90.3 (SEQ ID NO: 14). In another embodiment, the antibody comprises a light chain as disclosed above and a heavy chain as disclosed above. In a further embodiment, the light chain CDRs and the heavy chain CDRs are from the same antibody.
[0102] One type of amino acid substitution that may be made is to change one or more cysteines in the antibody, which may be chemically reactive, to another residue, such as, without limitation, alanine or serine. In one embodiment, there is a substitution of a non-canonical cysteine. The substitution can be made in a CDR or framework region of a variable domain or in the constant domain of an antibody. In some embodiments, the cysteine is canonical. [0103] Another type of amino acid substitution that may be made is to change any potential proteolytic sites in the antibody. Such sites may occur in a CDR or framework region of a variable domain or in the constant domain of an antibody. Substitution of cysteine residues and removal of proteolytic sites may decrease the risk of any heterogeneity in the antibody product and thus increase its homogeneity. Another type of amino acid substitution is to eliminate asparagine- glycine pairs, which form potential deamidation sites, by altering one or both of the residues.
[0104] In some embodiments, the C-terminal lysine of the heavy chain of the anti c-Met antibody of the invention is cleaved. In various embodiments of the invention, the heavy and light chains of the anti-c-Met antibodies may optionally include a signal sequence.
[0105] In one aspect, the invention relates to four inhibitory human anti-c-Met monoclonal antibodies and the hybridoma cell lines that produce them. Table 1 lists the sequence identifiers (SEQ ID NOs:) of the nucleic acids encoding the full- length heavy and light chains (including leader sequence), and the corresponding full-length deduced amino acid sequences.
Table 1
Figure imgf000026_0001
[0106] The invention further provides heavy and or light chain variants of certain of the above-listed human anti-c-Met antibodies, comprising one or more amino acid substitutions. To designate the variants, the first letter is the one letter symbol for the amino acid of the naturally-occurring antibody chain, the number refers to the position of the amino acid (wherein position one is the N-terminal amino acid), and the second letter is the one letter symbol for the variant amino acid. In some embodiments, the invention provides heavy chain variant of monoclonal antibody 13.3.2. One 13.3.2 heavy chain variant is E42K, which has a lysine at position X2 of SEQ ID NO: 2. The DNA sequence encoding the E42K 13.3.2 variant has an adenosine at Xj of SEQ ID NO: 1.
[0107] A second 13.3.2 heavy chain variant is S97T, which has a threonine residue at position X . The DNA sequence encoding the S97T 13.3.2 variant has an adenosine at X3 of SEQ ID NO: 1. A third 13.3.2 heavy chain variant is A14P, which has a proline residue at X6 of SEQ ID NO: 2. In the DNA sequence, the
A14P 13.3.2 variant is encoded by SEQ ID NO:l, in which X5 is an cytosine. The invention also provides a variant light chain of monoclonal antibody 13.3.2. A91T is 13.3.2 light chain variant, represented by SEQ ED NO: 4, in which X8 is a threonine residue. In the DNA sequence, the A91T 13.3.2 variant is encoded by SEQ ID NO: 3, in which X7 is an adenosine. Antibodies comprising a variant heavy or light chain and a wild type chain, are designated by the variant chain. Thus, an antibody containing a wild type light chain of antibody 13.3.2 and the E42K heavy chain variant is designated as 13.3.2H-E42K. [0108] In other embodiments of the invention, antibodies containing combinations of amino acid variants can be produced, e.g., 13.3.2H-E42K,S97T. Further combinations of a variant heavy chain and the variant light chain of 13.3.2 are included. In a preferred embodiment, the anti-c-Met antibody is 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H- E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2H-S97T; 13.3.2L-A91T; 13.3.2L- A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L- A91T,H-E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T. In still further embodiments, the invention includes antibodies comprising variable domain amino acid sequences with more than 80%>, more than 85%, more than 90%o, more than 95%o, more than 96%, more than 97%>, more than 98%> or more than 99% sequence identity to an variable domain amino acid sequence of any of the above-listed human anti-c-Met antibodies.
Class and Subclass of Anti-c-Met Antibodies
[0109] The class and subclass of anti-c-Met antibodies may be determined by any method known in the art. In general, the class and subclass of an antibody may be determined using antibodies that are specific for a particular class and subclass of antibody. Such antibodies are commercially available. The class and subclass can be determined by ELISA, or Western Blot as well as other techniques. Alternatively, the class and subclass may be determined by sequencing all or a portion of the constant domains of the heavy and/or light chains of the antibodies, comparing their amino acid sequences to the known amino acid sequences of various class and subclasses of immunoglobulins, and determining the class and subclass of the antibodies.
[0110] In some embodiments, the anti-c-Met antibody is a monoclonal antibody. The anti-c-Met antibody can be an IgG, an IgM, an IgE, an IgA, or an IgD molecule. In a preferred embodiment, the anti-c-Met antibody is an IgG and is an IgGl, IgG2, IgG3, IgG4 subclass. In another preferred embodiment, the antibody is subclass IgG2.
Binding Affinity of Anti-c-Met Antibodies to c-Met
[0111] In some embodiments of the invention, the anti-c-Met antibodies bind to c-Met with high affinity. In some embodiments, the anti-c-Met antibody binds to c-Met with a KD of 2 x 10"7 M or less. In other preferred embodiments, the antibody binds to c-Met with a KDof 2 x 10"8 M, 2 x 10~9 M , or 5 x 10"'° M or less. In an even more preferred embodiment, the antibody binds to c-Met with substantially the same Ko as an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L- A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L- A91T,H-E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T. In still another preferred embodiment, the antibody binds to c-Met with substantially the same KD as an antibody that comprises a heavy chain variable domain having the amino acid sequence of a VH region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine)], 6, 10, or 14, a light chain variable domain having the amino acid sequence of a VL region of SEQ ID NO: 4 [13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine)], 8, 12, or 16 or both. In another preferred embodiment, the antibody binds to c-Met with substantially the same KD as an antibody that comprises the CDR regions of a light chain variable domain having the amino acid sequence of a VL region of SEQ ID NO: 4 [13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ LO NO: 4, wherein X8 is threonine)], 8, 12, or 16 or that comprises the CDR regions of a heavy chain variable domain having the amino acid sequence a VH region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine);
13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine)], 6, 10, or 14. [0112] In some embodiments, the anti-c-Met antibody has a low dissociation rate constant (k0ff) In some embodiments, the anti-c-Met antibody has a k0f of 1.0 x 10"3 s-1 or lower or a koff of 5.0 x 10"4 s"1 or lower. In other preferred embodiments, the antibody binds to c-Met with a k0 of 2 x 10"4 s"1 or lower. In some embodiments, the k0ff is substantially the same as an antibody described herein, including an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H- A14P; 13.3.2H-S97T; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-A14P; 13.3.2L- A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H-E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T. In some embodiments, the antibody binds to c-Met with substantially the same k0ff as an antibody that comprises the CDR regions of a heavy chain; or the CDR regions of a light chain from an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T. In some embodiments, the antibody binds to c-Met with substantially the same k0ff as an antibody that comprises a heavy chain variable domain having the amino acid sequence of a VH region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine)], 6, 10, or 14, a light chain variable domain having the amino acid sequence of a VL region of SEQ ID NO: 4 [13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine)], 8, 12, or 16 or both. In another preferred embodiment, the antibody binds to c-Met with substantially the same koff as an antibody that comprises the CDR regions of a light chain variable domain having the amino acid sequence of a VL region of SEQ ID NO: 4 [13.3.2 (SEQ ED NO: 4, wherein X8 is alanine) and the 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine)], 8, 12, or 16; or the CDR regions of a heavy chain variable domain having the amino acid sequence of a VH region of SEQ ID NO: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine); 13.3.2H- E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine)], 6, 10, or 14.
[0113] The binding affinity and dissociation rate of an anti-c-Met antibody to c- Met can be determined by methods known in the art. The binding affinity can be measured by ELIS As, RIAs, flow cytometry, surface plasmon resonance, such as BIACORE™. The dissociate rate can be measured by surface plasmon resonance. Preferably, the binding affinity and dissociation rate is measured by surface plasmon resonance. More preferably, the binding affinity and dissociation rate are measured using BIACORE ™. One can determine whether an antibody has substantially the same KD as an anti-c-Met antibody by using methods known in the art. Example VIII exemplifies a method for determining affinity constants of anti-c-Met monoclonal antibodies by BIACORE™.
Identification of c-Met Epitopes Recognized by Anti-c-Met Antibodies
[0114] The invention provides a human anti-c-Met monoclonal antibody that binds to c-Met and competes or cross-competes with and/or binds the same epitope as: (a) an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T; 13.3.2H-
A14P,E42K,S97T; 13.3.2H-S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H- E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T; (b) an antibody that comprises a heavy chain variable domain having an amino acid sequence of SEQ ID NO: 2, 6, 10 or 14, (c) an antibody that comprises a light chain variable domain having an amino acid sequence of SEQ ID NO: 4, 8, 12, or 16, or (d) an antibody that comprises both a heavy chain variable domain as defined in (b) and a light chain variable domain as defined in (c).
[0115] One can determine whether an antibody binds to the same epitope or cross competes for binding with an anti-c-Met antibody by using methods known in the art. In one embodiment, one allows the anti-c-Met antibody of the invention to bind to c-Met under saturating conditions and then measures the ability of the test antibody to bind to c-Met. If the test antibody is able to bind to c-Met at the same time as the anti-c-Met antibody, then the test antibody binds to a different epitope as the anti-c-Met antibody. However, if the test antibody is not able to bind to c-Met at the same time, then the test antibody binds to the same epitope, an overlapping epitope, or an epitope that is in close proximity to the epitope bound by the human anti-c-Met antibody. This experiment can be performed using ELISA, RIA, BIACORE™, or flow cytometry. In a preferred embodiment, the experiment is performed using ELISA. Methods of determining KD are discussed further below.
Inhibition of c-Met Activity by Anti-c-Met Antibody
[0116] In another embodiment, the invention provides an anti-c-Met antibody that inhibits the binding of HGF to the c-Met receptor. In a preferred embodiment, the c-Met receptor is human. In another preferred embodiment, the anti-c-Met antibody is a human antibody. The IC50 can be measured in a ligand binding assay by ELISA, RIA, or other assays and cell-based assays such as scattering assay, soft agar growth and tubulomorphogenesis assay. In one embodiment, the antibody or portion thereof inhibits ligand binding between HGF and c-Met with an IC5oof no more than 5 μg/ml, preferably no more than 1 μg/ml, more preferably than 0.5 μg/ml, even more preferably no more than 0.20 μg/ml as measured by an ELISA assay. (See Figure 1 A) Example III exemplifies this type of assay. [0117] In another embodiment, the invention provides an anti-c-Met antibody that prevents activation of c-Met in the presence of HGF. In a preferred embodiment, the anti-c-Met antibody inhibits HGF-induced tyrosine phosphorylation that occurs upon binding to c-Met. One can determine whether an anti-c-Met antibody can prevent activation of c-Met in the presence of HGF by determining the levels of autophosphorylation for c-Met by Western blotting or an ELISA assay. In a preferred embodiment, one would determine the levels of autophosphorylation of c-Met using an ELISA assay. In another preferred embodiment, the IC50, measured using an ELISA assay, is no more than 5 μg/ml, preferably no more than 1 μg/ml, more preferably than 0.5 μg/ml, even more preferably no more than 0.20 μg/ml. Example TV exemplifies one type of assay that measures inhibition of c-Met activation by an anti-c-Met antibody in the presence of HGF (See Figure IB). [0118] In another aspect of the invention, the antibody may cause a downregulation of cell surface c-Met levels after an incubation with the antibody. In some embodiments, the incubation can be a short time period (e.g., 4 hours) or a longer time period (e.g., 24 hours). A downregulation of cell surface c-Met levels can be measured using western blotting or ELISA. In particular embodiments of the invention, the antibody may cause preferably a 6% downregulation of cell surface c-Met levels, preferably a 10% downregulation, or more preferably a 20% downregulation, more preferably a 50%> downregulation or even more preferably at least 50%) downregulation of cell surface c-Met levels as measured by western blotting or ELISA. Example V exemplifies one type of an ELISA measuring downregulation of cell surface c-Met levels after a short incubation with the antibody.
[0119] In another embodiment, the invention provides an anti-c-Met antibody that inhibits colony formation in soft agar. In various embodiments, the IC50, as measured by a soft agar growth assay, is no more than 25 μg/ml, preferably no more than 20μg/ml, more preferably no more than 5 μg/ml, even more preferably no more than 1 μg/ml. In another embodiment, a tubular morphogenesis assay can be used to measure the percent of inhibition of c-Met dependent morphological changes in cells grown in the presence of HGF and treated with antibodies of the invention. Preferably, the percent of inhibition measured with the tubular morphogenesis assay is no less than 20%>, preferably no less than 60%o, or even more preferably is no less than 80%>. Examples VI and VII exemplify various types of assays.
Inhibition of Tumor Cell Growth In Vivo with Anti-c-Met Antibodies
[0120] According to some embodiments, the invention provides an anti-c-Met antibody that inhibits the proliferation of tumor cells in vivo. The tumor cell may be derived from any cell type including, without limitation, epidermal, epithelial, endothelial or mesodermal cells. The tumor cells may be derived from solid or non-solid tumors including, but not limited to, leukemia, sarcoma, multiple myeloma, glioblastoma, choriocarcinoma, Kaposi or cervical intraepithelial neoplasia. In another embodiment, the anti-c-Met antibody inhibits prostate, colon, breast, ovarian, gastric, lung and glioblastoma tumor growth in an animal. Examples of cells that the c-Met antibodies inhibit SI 14, an NIH-3T3 cell line engineered to express human HGF and human c-Met (Rong et al., Mol. Cell. Biol, 12(11):5152-5158; (1992); U.S. Patent 4,405,712). h some embodiments, an antic-Met antibody of the invention is used to treat lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynecologic tumors (e.g., uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (e.g., cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphocytic lymphomas, cancer of the bladder, cancer of the kidney or ureter (e.g., renal cell carcinoma, carcinoma of the renal pelvis), or neoplasms of the central nervous system (e.g., primary CNS lymphoma, spinal axis tumors, brain stem gliomas or pituitary adenomas).
[0121] In a preferred embodiment, the antibody inhibits tumor cell growth as compared to the growth of the tumor in an untreated animal. In a more preferred embodiment, the anti-c-Met antibody inhibits tumor cell growth by at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100%). In one embodiment, the inhibition of tumor cell growth is measured at least 7 days after the animals have started treatment with the antibody. In another embodiment, the inhibition of tumor cell growth is measured at least 14 days after the animals have started treatment with the antibody. See Example IX. In another embodiment, the anti-c-Met antibody result in tumor regression of at least 10%> to 100%.
Activation of c-Met by Anti-c-Met Antibody [0122] Another aspect of the present invention involves an anti-c-Met antibody that is an activating antibody, i.e., a c-Met agonist. An activating antibody amplifies or substitutes for the effects of HGF on c-Met. In some embodiments, the activating antibody is essentially a mimic of HGF, and competes with HGF for binding to c-Met. In some embodiments, the antibody does not compete with HGF for binding to c-Met, but amplifies the effect of HGF binding to c-Met. In some embodiments, the anti-c-Met antibody activates c-Met in the presence or absence of HGF. The anti-c-Met antibody agonist activity can be measured using a c-Met activation ELISA assay. In some embodiments of the invention, agonist activity is 2 to 3-fold stimulation over cells not stimulated with HGF. In other embodiments, the agonist activity is at least 6-fold. Example X describes an example a of c-Met activation assay. The anti-c-Met antibody agonist activity can be measured using a tubular morphogenesis assay. In one embodiment of the invention, weak agonist activity may be measured by using a tubular morphogenesis assay that measures c- Met agonist activity. Example X exemplifies one type of a tubular morphogenesis assay that measures c-Met agonist activity.
Species and Molecular Selectivity
[0123] In another aspect of the invention, the anti-c-Met antibodies demonstrate both species and molecular selectivity. In some embodiments, the anti-c-Met antibody binds to human and cynomologus and rhesus monkey c-Met. In another embodiment, the anti-c-Met antibody additionally binds to rat c-Met. In another embodiment, the anti-c-Met antibody does not bind to mouse or dog c-Met. Following the teachings of the specification, one may determine the species selectivity for the anti-c-Met antibody using methods well known in the art. For instance, one may determine the species selectivity using Western blot, flow cytometry, ELISA, immunoprecipitation or RIA. In a preferred embodiment, one may determine the species selectivity using flow cytometry.
[0124] In another embodiment, the anti-c-Met antibody has a selectivity for c- Met that is more than 100 times greater than its selectivity for IGF-IR (Insulin-like Growth Factor 1 Receptor) (See Figure 2). In some embodiments, the anti-c-Met antibody does not exhibit any appreciable specific binding to any other protein other than c-Met. One can determine the selectivity of the anti-c-Met antibody for c-Met using methods well known in the art following the teachings of the specification. For instance one can determine the selectivity using Western blot, flow cytometry, ELISA, immunoprecipitation or RIA.
Methods of Producing Antibodies and Antibody Producing Cell Lines Immunization
[0125] In some embodiments, human antibodies are produced by immunizing a non-human, transgenic animal comprising within its genome some or all of human immunoglobulm heavy chain and light chain loci with a c-Met antigen. In a preferred embodiment, the non-human animal is a XENOMOUSE™ animal. (Abgenix, Inc., Fremont, CA).
[0126] XENOMOUSE™ mice are engineered mouse strains that comprise large fragments of human immunoglobulin heavy chain and light chain loci and are deficient in mouse antibody production. See, e.g., Green et al., Nature Genetics 7:13-21 (1994) and U.S. Patents 5,916,771, 5,939,598, 5,985,615, 5,998,209, 6,075,181, 6,091,001, 6,114,598, 6,130,364, 6,162,963 and 6,150,584. See also WO 91/10741, WO 94/02602, WO 96/34096, WO 96/33735, WO 98/16654, WO 98/24893, WO 98/50433, WO 99/45031, WO 99/53049, WO 00/09560, and WO 00/037504. [0127] In another aspect, the invention provides a method for making anti-c-Met antibodies from non-human, non-mouse animals by immunizing non-human transgenic animals that comprise human immunoglobulin loci with a c-Met antigen. One can produce such animals using the methods described in the above- cited documents. The methods disclosed in these documents can be modified as described in U.S. Patent 5,994,619, which is hereby incorporated by reference. U.S. Patent 5,994,619 describes methods for producing novel cultured inner cell mass (CICM) cells and cell lines, derived from pigs and cows, and transgenic CICM cells into which heterologous DNA has been inserted. CICM transgenic cells can be used to produce cloned transgenic embryos, fetuses, and offspring. The '619 patent also describes methods of producing transgenic animals that are capable of transmitting the heterologous DNA to their progeny. In preferred embodiments of the current invention, the non-human animals are mammals, particularly rats, sheep, pigs, goats, cattle or horses.
[0128] XENOMOUSE™ mice produce an adult-like human repertoire of fully human antibodies and generate antigen-specific human antibodies. In some embodiments, the XENOMOUSE™ mice contain approximately 80%> of the human antibody V gene repertoire through introduction of megabase sized, germline configuration fragments of the human heavy chain loci and kappa light chain loci in yeast artificial chromosome (YAC). In other embodiments, XENOMOUSE™ mice further contain approximately all of the human lambda light chain locus. See Mendez et al., Nature Genetics 15:146-156 (1997), Green and Jakobovits, J. Exp. Med. 188:483-495 (1998), and WO 98/24893, the disclosures of which are hereby incorporated by reference. [0129] In some embodiments, the non -human animal comprising human immunoglobulin genes are animals that have a human immunoglobulin "minilocus". In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of individual genes from the Ig locus. Thus, one or more VH genes, one or more DH genes, one or more JH genes, a mu constant domain, and a second constant domain (preferably a gamma constant domain) are formed into a construct for insertion into an animal. This approach is described, ter alia, in U.S. Patent Nos. 5,545,807, 5,545,806, 5,569,825, 5,625,126, 5,633,425, 5,661,016, 5,770,429, 5,789,650, 5,814,318, 5,591,669, 5,612,205, 5,721,367, 5,789,215, and 5,643,763, hereby incorporated by reference. [0130] In another aspect, the invention provides a method for making humanized anti-c-Met antibodies. In some embodiments, non-human animals are immunized with a c-Met antigen as described below under conditions that permit antibody production. Antibody-producing cells are isolated from the animals, fused with myelomas to produce hybridomas, and nucleic acids encoding the heavy and light chains of an anti-c-Met antibody of interest are isolated. These nucleic acids are subsequently engineered using techniques known to those of skill in the art and as described further below to reduce the amount of non-human sequence, i.e., to humanize the antibody to reduce the immune response in humans [0131] In some embodiments, the c-Met antigen is isolated and/or purified c- Met. In a preferred embodiment, the c-Met antigen is human c-Met. In some embodiments, the c-Met antigen is a fragment of c-Met. In some embodiments, the c-Met fragment is the extracellular domain of c-Met. In some embodiments, the c-Met fragment comprises at least one epitope of c-Met. In other embodiments, the c-Met antigen is a cell that expresses or overexpresses c-Met or an immunogenic fragment thereof on its surface. In some embodiments, the c-Met antigen is a c-Met fusion protein. In some embodiments, the c-Met is a synthetic peptide immunogen. [0132] Immunization of animals can be by any method known in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Press, 1990. Methods for immunizing non-human animals such as mice, rats, sheep, goats, pigs, cattle and horses are well known in the art. See, e.g., Harlow and Lane, supra, and U.S. Patent 5,994,619. In a preferred embodiment, the c-Met antigen is administered with an adjuvant to stimulate the immune response. Exemplary adjuvants include complete or incomplete Freund's adjuvant, RIBI (muramyl dipeptides) or ISCOM (immunostimulating complexes). Such adjuvants may protect the polypeptide from rapid dispersal by sequestering it in a local deposit, or they may contain substances that stimulate the host to secrete factors that are chemotactic for macrophages and other components of the immune system. Preferably, if a polypeptide is being administered, the immunization schedule will involve two or more administrations of the polypeptide, spread out over several weeks. Example I exemplifies a method for producing anti-c-Met monoclonal antibodies in XenoMouse™ mice.
Production of Antibodies and Antibody-Producing Cell Lines
[0133] After immunization of an animal with a c-Met antigen, antibodies and/or antibody-producing cells can be obtained from the animal. In some embodiments, anti-c-Met antibody-containing serum is obtained from the animal by bleeding or sacrificing the animal. The serum may be used as it is obtained from the animal, an immunoglobulin fraction may be obtained from the serum, or the anti-c-Met antibodies may be purified from the serum. [0134] In some embodiments, antibody-producing immortalized cell lines are prepared from cells isolated from the immunized animal. After immunization, the animal is sacrificed and lymph node and or splenic B cells are immortalized by any means known in the art. Methods of immortalizing cells include, but are not limited to, transfecting them with oncogenes, infecting them with an oncogenic virus and cultivating them under conditions that select for immortalized cells, subjecting them to carcinogenic or mutating compounds, fusing them with an immortalized cell, e.g., a myeloma cell, and inactivating a tumor suppressor gene. See, e.g., Harlow and Lane, supra. If fusion with myeloma cells is used, the myeloma cells preferably do not secrete immunoglobulin polypeptides (a non- secretory cell line). Immortalized cells are screened using c-Met, a portion thereof, or a cell expressing c-Met. In a preferred embodiment, the initial screening is performed using an enzyme-linked immunoassay (ELISA) or a radioimmunoassay. An example of ELISA screening is provided in WO 00/37504, incorporated herein by reference. [0135] Anti-c-Met antibody-producing cells, e.g., hybridomas, are selected, cloned and further screened for desirable characteristics, including robust growth, high antibody production and desirable antibody characteristics, as discussed further below. Hybridomas can be expanded in vivo in syngeneic animals, in animals that lack an immune system, e.g., nude mice, or in cell culture in vitro. Methods of selecting, cloning and expanding hybridomas are well known to those of ordinary skill in the art. [0136] In a preferred embodiment, the immunized animal is a non-human animal that expresses human immunoglobulin genes and the splenic B cells are fused to a myeloma cell line from the same species as the non-human animal. In a more preferred embodiment, the immunized animal is a XENOMOUSE mouse and the myeloma cell line is a non-secretory mouse myeloma. In an even more preferred embodiment, the myeloma cell line is P3-X63-Ag8.653 (American Type Culture Collection. See, e.g., Example I.
[0137] Thus, in one embodiment, the invention provides methods for producing a cell line that produces a human monoclonal antibody or a fragment thereof directed to c-Met comprising (a) immunizing a non-human transgenic animal described herein with c-Met, a portion of c-Met or a cell or tissue expressing c-Met; (b) allowing the transgenic animal to mount an immune response to c-Met; (c) isolating antibody-producing cells from transgenic animal; (d) immortalizing the antibody-producing cells; (e) creating individual monoclonal populations of the immortalized antibody-producing cells; and (f) screening the immortalized antibody-producing cells to identify an antibody directed to c-Met. [0138] In another aspect, the invention provides hybridomas that produce a human anti-c-Met antibody. In a preferred embodiment, the hybridomas are mouse hybridomas, as described above. In other embodiments, the hybridomas are produced in a non-human, non-mouse species such as rats, sheep, pigs, goats, cattle or horses. In another embodiment, the hybridomas are human hybridomas. [0139] In one embodiment of the invention, antibody-producing cells are isolated and expressed in a host cell, for example myeloma cells. In another preferred embodiment, a transgenic animal is immunized with c-Met, primary cells, e.g., spleen or peripheral blood cells, are isolated from an immunized transgenic animal and individual cells producing antibodies specific for the desired antigen are identified. Polyadenylated mRNA from each individual cell is isolated and reverse transcription poiymerase chain reaction (RT-PCR) is performed using sense primers that anneal to variable region sequences, e.g., degenerate primers that recognize most or all of the FRl regions of human heavy and light chain variable region genes and anti-sense primers that anneal to constant or joining region sequences. cDNAs of the heavy and light chain variable domains are then cloned and expressed in any suitable host cell, e.g., a myeloma cell, as chimeric antibodies with respective immunoglobulin constant regions, such as the heavy chain and K or λ constant domains. See Babcook, J.S. et al., Proc. Natl. Acad. Sci. USA 93:7843- 48, 1996, incorporated herein by reference. Anti c-Met antibodies may then be identified and isolated as described herein.
[0140] In another embodiment, phage display techniques can be used to provide libraries containing a repertoire of antibodies with varying affinities for c-Met. For production of such repertoires, it is unnecessary to immortalize the B cells from the immunized animal. Rather, the primary B cells can be used directly as a source of DNA. The mixture of cDNAs obtained from B cell, e.g., derived from spleens, is used to prepare an expression library, for example, a phage display library transfected into E.coli. The resulting cells are tested for immunoreactivity to c- Met. Techniques for the identification of high affinity human antibodies from such libraries are described by Griffiths et al, EMBO J, 13:3245-3260 (1994); Nissim et al., ibid, pp. 692-698 and by Griffiths et al, ibid, 12:725-734, which are incorporated by reference. Ultimately, clones from the library are identified that produce binding affinities of a desired magnitude for the antigen and the DNA encoding the product responsible for such binding is recovered and manipulated for standard recombinant expression. Phage display libraries may also be constructed using previously manipulated nucleotide sequences and screened in a similar fashion. In general, the cDNAs encoding heavy and light chains are independently supplied or linked to form Fv analogs for production in the phage library. [0141] The phage library is then screened for the antibodies with the highest affinities for c-Met and the genetic material recovered from the appropriate clone. Further rounds of screening can increase affinity of the original antibody isolated.
Nucleic Acids, Vectors, Host Cells, and Recombinant Methods of Making Antibodies
Nucleic Acids [0142] The present invention also encompasses nucleic acid molecules encoding anti-c-Met antibodies. In some embodiments, different nucleic acid molecules encode a heavy chain and a light chain of an anti-c-Met immunoglobulin. In other embodiments, the same nucleic acid molecule encodes a heavy chain and a light chain of an anti-c-Met immunoglobulin. In one embodiment, the nucleic acid encodes a c-Met antibody of the invention.
[0143] In some embodiments, the nucleic acid molecule encoding the variable domain of the light chain (VL) comprises a human L5V 1 or A27Vκ3 gene, and a J/ l, Jκ2, Jκ3, or Jκ4 gene.
[0144] In some embodiments, the nucleic acid molecule encoding the light chain, encodes an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 substitutions from the germline amino acid sequence(s). In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes a VL amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitutions and/or 1, 2, or 3 non-conservative substitutions compared to germline VL and JK sequences. Substitutions may be in the CDR regions, the framework regions, or in the constant domain. [0145] In some embodiments, the nucleic acid molecule encodes a VL amino acid sequence comprising one or more variants compared to germline sequence that are identical to the variations found in the VLof one of the antibodies 13.3.2, 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T. [0146] In some embodiments, the nucleic acid molecule encodes at least three amino acid substitutions compared to the germline sequence found in the VL of one of the antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T. [0147] In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes the VL amino acid sequence of monoclonal antibody 13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine); 9.1.2 (SEQ ID NO: 8); 8.70.2 (SEQ ID NO: 12); or 8.90.3 (SEQ ID NO: 16), or a variant or portion thereof. In some embodiments, the nucleic acid encodes an amino acid sequence comprising the light chain CDRs of one of said above-listed antibodies. In some embodiments, said portion is a contiguous portion comprising CDR1-CDR3. [0148] In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes the amino acid sequence of one of SEQ ID NOs: 4[13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine)], 8, 12, or 16, or said sequence lacking the signal sequence. In some preferred embodiments, the nucleic acid molecule comprises the nucleotide sequence of SEQ ID NOs: 3 [13.3.2 (SEQ ID NO: 3 wherein X7 is guanosine); 13.3.2L-A91T (SEQ ID NO: 3, wherein X7 is adenosine)], 7, 11, or 15, or a portion thereof, said sequences optionally lacking the signal sequence.
[0149] In some embodiments, the nucleic acid encodes the amino acid sequence of the light chain CDRs of said antibody. In some embodiments, said portion encodes a contiguous region from CDR1-CDR3 of the light chain of an anti-c-Met antibody. [0150] In some embodiments, the nucleic acid molecule encodes a VL amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to a VL amino acid sequences shown in Fig. 3A-3D or to a VL amino acid sequence of any one of a VL region of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T, or an amino acid sequence of a VL region of any one of SEQ ID NOs: 4 [13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine)], 8, 12, or 16. Nucleic acid molecules of the invention include nucleic acids that hybridize under highly stringent conditions, such as those described above, to a nucleic acid sequence encoding the amino acid sequence of a nucleic acid molecule encoding a VL region of SEQ ID NOs: 4 [13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X is threonine)], 8, 12, or 16, or that has the nucleic acid sequence of a nucleic acid molecule encoding a VL region of SEQ ID NOs: 3 [13.3.2 (SEQ ID NO: 3 wherein X7 is guanosine); 13.3.2L-A91T (SEQ ID NO: 3, wherein X7 is adenosine)], 7, 11, or 15. [0151] In another embodiment, the nucleic acid encodes a full-length light chain of an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3 or 13.3.2L-A91T, or a light chain comprising the amino acid sequence of SEQ ID NOs: 4[13.3.2 (SEQ ID NO: 4, wherein X8 is alanine); 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine)], 8, 12, or 16, or a light chain comprising a mutation, such as one disclosed herein. Further, the nucleic acid may comprise the nucleotide sequence of SEQ ID NOs: 3 [13.3.2 (SEQ ID NO: 3 wherein X7 is guanosine); 13.3.2L- A91T (SEQ ID NO: 3, wherein X7 is adenosine)], 7, 11, or 15, or a nucleic acid molecule encoding a light chain comprise a mutation, such as one disclosed herein. [0152] In another preferred embodiment, the nucleic acid molecule encodes the variable domain of the heavy chain (VH) that comprises a human 1-18, 4-31, 4-39 or 3-48 VH gene sequence or a sequence derived therefrom. In various embodiments, the nucleic acid molecule comprises a human 1-18 VH gene, a D2-15 gene and a human JH4b gene; a human 4-31 VH gene, a human D2-2 and D7-27 genes and a Jκ6b gene; a human 4-31 VH gene, a human D2-2 gene and a human JH6b gene; a human 4-31 VH gene, a human D7-27 gene and a human JH6b gene; a human 4-39 VH gene, a human D2-2 gene and a human JH4b gene; a human 3-48 VH gene, a human D4-17 gene and a human JH4b gene, or sequence derived from the human genes.
[0153] In some embodiments, the nucleic acid molecule encodes an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 mutations compared to the germline amino acid sequence of the human V, D or J genes. In some embodiments, said mutations are in the VH region. In some embodiments, said mutations are in the CDR regions.
[0154] In some embodiments, the nucleic acid molecule encodes one or more amino acid mutations compared to the germline sequence that are identical to amino acid mutations found in the VH of monoclonal antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H- A14P,E42K; 13.3.2H-E42K,S97T or 13.3.2H-A14P,E42K,S97T. In some embodiments, the nucleic acid encodes at least three amino acid mutations compared to the germline sequences that are identical to at least three amino acid mutations found in one of the above-listed monoclonal antibodies.
[0155] In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes at least a portion of the VH amino acid sequence of a monoclonal antibody selected from 13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate and X is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine and X4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine and X4 is threonine); 9.1.2 (SEQ ID NO: 6); 8.70.2 (SEQ ID NO: 10); or 8.90.3 (SEQ ID NO: 14), a variant thereof, or said sequence having conservative amino acid mutations and/or a total of three or fewer non-conservative amino acid substitutions. In various embodiments the sequence encodes one or more CDR regions, preferably a CDR3 region, all three CDR regions, a contiguous portion including CDR1-CDR3, or the entire VH region, with or without a signal sequence. [0156] In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes the amino acid sequence of one of SEQ ID NOs: 2, 6, 10, or 14, or said sequence lacking the signal sequence. In some preferred embodiments, the nucleic acid molecule comprises at least a portion of the nucleotide sequence of SEQ ID NO: 1 [13.3.2 (SEQ ID NO: 1, wherein X, is guanosine, X3 is threonine and X5 is guanosine); 13.3.2H-E42K (SEQ ID NO: 1, wherein Xi is adenosine, X3 is threonine and X5 is guanosine); 13.3.2H-E42K, S97T (SEQ ID NO: 1, wherein Xi is adenosine, X3 is adenosine and X5 is guanosine); 13.3.2H-A14P (SEQ ID NO: 1, wherein Xi is guanosine, X3 is threonine and X5 is cytosine); 13.3.2H- A14P, E42K (SEQ ID NO: 1, wherein Xi is adenosine, X3 is threonine and X5 is cytosine); 13.3.2H-A14P, E42K, S97T (SEQ ID NO: 1 , wherein X, is adenosine, X3 is adenosine and X5 is cytosine)], 5, 9, or 13, or said sequence lacking the signal sequence. In some embodiments, said portion encodes the VH region (with or without a signal sequence), a CDR3 region, all three CDR regions, or a contiguous region including CDR1-CDR3. [0157] In some embodiments, the nucleic acid molecule encodes a VH amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to the VH amino acid sequences shown in FIGS. 3E-3H or to a VH amino acid sequence of any one of SEQ ID NOs: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate and X4 is serine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine and X4 is serine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine and X4 is threonine)], 6, 10, or 14. Nucleic acid molecules of the invention include nucleic acids that hybridize under highly stringent conditions, such as those described above, to a nucleic acid sequence encoding the amino acid sequence of SEQ ID NOs: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X is serine and X6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine and X6 is alanine); 13.3.2H-A14P (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is proline); 13.3.2H-A14P, E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine and X5 is proline); 13.3.2H-A14P, E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X is threonine and X6 is proline)], 6, 10, or 14, or to a VH region thereof, or that has the nucleic acid sequence of SEQ ID NOs: 1 [13.3.2 (SEQ ID NO: 1, wherein X] is guanosine, X3 is threonine and X5 is guanosine); 13.3.2H-E42K (SEQ ID NO: 1, wherein Xi is adenosine, X3 is threonine and X5 is guanosine); 13.3.2H-E42K, S97T (SEQ ID NO: 1, wherein Xi is adenosine, X3 is adenosine and X is guanosine); 13.3.2H-A14P (SEQ ID NO: 1, wherein X] is guanosine, X3 is threonine and X5 is cytosine); 13.3.2H-A14P, E42K (SEQ ID NO: 1, wherein Xi is adenosine, X3 is threonine and X5 is cytosine); 13.3.2H-A14P, E42K, S97T (SEQ ID NO: 1, wherein X, is adenosine, X3 is adenosine and X5 is cytosine)], 5, 9, or 13 or that encodes a VH region thereof. [0158] In another embodiment, the nucleic acid encodes a full-length heavy chain of an antibody selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H-E42K,S97T or 13.3.2H-A14P,E42K,S97T, or a heavy chain having the amino acid sequence of SEQ ID NOs: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine and X6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine and X6 is alanine); 13.3.2H-A14P (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is proline); 13.3.2H-A14P, E42K (SEQ ID NO: 2, wherein X2 is lysine, X is serine and X6 is proline); 13.3.2H-A14P, E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X is threonine and X6 is proline)], 6, 10, or 14, with or without a signal sequence, or a heavy chain comprising a mutation, such as one of the variants discussed herein. Further, the nucleic acid may comprise the nucleotide sequence of SEQ ID NOs: 1 [13.3.2 (SEQ ID NO: 1, wherein Xi is guanosine, X3 is threonine and X5 is guanosine); 13.3.2H-E42K (SEQ ID NO: 1, wherein Xi is adenosine, X3 is threonine and X5 is guanosine); 13.3.2H-E42K, S97T (SEQ ID NO: 1, wherein X, is adenosine, X3 is adenosine and X5 is guanosine); 13.3.2H-A14P (SEQ ID NO: 1, wherein Xi is guanosine, X3 is threonine and X5 is cytosine); 13.3.2H-A14P, E42K (SEQ ID NO: 1, wherein X, is adenosine, X3 is threonine and X5 is cytosine); 13.3.2H-A14P, E42K, S97T (SEQ ED NO: 1, wherein X] is adenosine, X3 is adenosine and X5 is cytosine)], 5, 9, or 13, with or without a signal sequence, or a nucleic acid molecule encoding a heavy chain comprising a mutation, such as one of the variants discussed herein. [0159] A nucleic acid molecule encoding the heavy or light chain of an anti-c- Met antibody or portions thereof can be isolated from any source that produces such antibody. In various embodiments, the nucleic acid molecules are isolated from a B cell isolated from an animal immunized with c-Met or from an immortalized cell derived from such a B cell that expresses an anti-c-Met antibody. Methods of isolating mRNA encoding an antibody are well-known in the art. See, e.g., Sambrook et al. The mRNA may be used to produce cDNA for use in the polymerase chain reaction (PCR) or cDNA cloning of antibody genes. In a preferred embodiment, the nucleic acid molecule is isolated from a hybridoma that has as one of its fusion partners a human immunoglobulin-producing cell from a non-human transgenic animal. In an even more preferred embodiment, the human immunoglobulin producing cell is isolated from a XENOMOUSE animal. In another embodiment, the human immunoglobulin-producing cell is from a non- human, non-mouse transgenic animal, as described above. In another embodiment, the nucleic acid is isolated from a non-human, non-transgenic animal. The nucleic acid molecules isolated from a non-human, non-transgenic animal may be used, e.g., for humanized antibodies.
[0160] In some embodiments, a nucleic acid encoding a heavy chain of an anti-c- Met antibody of the invention can comprise a nucleotide sequence encoding a VH domain of the invention joined in- frame to a nucleotide sequence encoding a heavy chain constant domain from any source. Similarly, a nucleic acid molecule encoding a light chain of an anti-c-Met antibody of the invention can comprise a nucleotide sequence encoding a VL domain of the invention joined in-frame to a nucleotide sequence encoding a light chain constant domain from any source. [0161] In a further aspect of the invention, nucleic acid molecules encoding the variable domain of the heavy (VH) and/or light (VL) chains are "converted" to full- length antibody genes. In one embodiment, nucleic acid molecules encoding the VH or VL domains are converted to full-length antibody genes by insertion into an expression vector already encoding heavy chain constant (CH) or light chain constant (CL) domains, respectively, such that the VH segment is operatively linked to the CH segment(s) within the vector, and or the V segment is operatively linked to the CL segment within the vector. In another embodiment, nucleic acid molecules encoding the VH and or VL domains are converted into full-length antibody genes by linking, e.g., ligating, a nucleic acid molecule encoding a VH and or VL domains to a nucleic acid molecule encoding a CH and or CL domain using standard molecular biological techniques. Nucleic acid sequences of human heavy and light chain immunoglobulin constant domain genes are known in the art. See, e.g., Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed., NIH Publ. No. 91-3242, 1991. Nucleic acid molecules encoding the full-length heavy and/or light chains may then be expressed from a cell into which they have been introduced and the anti-c-Met antibody isolated.
[0162] The nucleic acid molecules may be used to recombinantly express large quantities of anti-c-Met antibodies. The nucleic acid molecules also may be used to produce chimeric antibodies, bispecific antibodies, single chain antibodies, immunoadhesins, diabodies, mutated antibodies and antibody derivatives, as described further below. If the nucleic acid molecules are derived from a non- human, non-transgenic animal, the nucleic acid molecules may be used for antibody humanization, also as described below. [0163] In another embodiment, a nucleic acid molecule of the invention is used as a probe or PCR primer for a specific antibody sequence. For instance, the nucleic acid can be used as a probe in diagnostic methods or as a PCR primer to amplify regions of DNA that could be used, inter alia, to isolate additional nucleic acid molecules encoding variable domains of anti-c-Met antibodies. In some embodiments, the nucleic acid molecules are oligonucleo tides. In some embodiments, the oligonucleotides are from highly variable domains of the heavy and light chains of the antibody of interest. In some embodiments, the oligonucleotides encode all or a part of one or more of the CDRs of antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3 or variants thereof as described herein.
Vectors
[0164] The invention provides vectors comprising nucleic acid molecules that encode the heavy chain of an anti-c-Met antibody of the invention or an antigen- binding portion thereof. The invention also provides vectors comprising nucleic acid molecules that encode the light chain of such antibodies or antigen-binding portion thereof. The invention further provides vectors comprising nucleic acid molecules encoding fusion proteins, modified antibodies, antibody fragments, and probes thereof.
[0165] In some embodiments, the anti-c-Met antibodies or antigen-binding portions of the invention are expressed by inserting DNAs encoding partial or full-length light and heavy chains, obtained as described above, into expression vectors such that the genes are operatively linked to necessary expression control sequences such as transcriptional and translational control sequences. Expression vectors include plasmids, retroviruses, adenoviruses, adeno-associated viruses (AAV), plant viruses such as cauliflower mosaic virus, tobacco mosaic virus, cosmids, YACs, EBV derived episomes, and the like. The antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene. The expression vector and expression control sequences are chosen to be compatible with the expression host cell used. The antibody light chain gene and the antibody heavy chain gene can be inserted into separate vectors. In a preferred embodiment, both genes are inserted into the same expression vector. The antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present). [0166] A convenient vector is one that encodes a functionally complete human CH or C immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can easily be inserted and expressed, as described above. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C domain, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The recombinant expression vector also can encode a signal peptide that facilitates secretion of the antibody chain from a host cell. The antibody chain gene may be cloned into the vector such that the signal peptide is linked in-frame to the amino terminus of the immunoglobulin chain. The signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein). [0167] In addition to the antibody chain genes, the recombinant expression vectors of the invention carry regulatory sequences that control the expression of the antibody chain genes in a host cell. It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. Preferred regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from retroviral LTRs, cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)), polyoma and strong mammalian promoters such as native immunoglobulin and actin promoters. For further description of viral regulatory elements, and sequences thereof, see e.g., U.S. Patent No. 5,168,062, U.S. Patent No. 4,510,245 and U.S. Patent No. 4,968,615. Methods for expressing antibodies in plants, including a description of promoters and vectors, as well as transformation of plants is known in the art. See, e.g., United States Patent
6,517,529, incorporated herein by reference. Methods of expressing polypeptides in bacterial cells or fungal cells, e.g., yeast cells, are also well known in the art. [0168] In addition to the antibody chain genes and regulatory sequences, the recombinant expression vectors of the invention may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes. The selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Patent Nos. 4,399,216, 4,634,665 and 5,179,017, incorporated herein by reference). For example, typically the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced. Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr-host cells with methotrexate selection/amplification), the neo gene (for G418 selection), and the glutamate synthetase gene.
Non-Hybridoma Host Cells and Methods of Recombinantly Producing Protein
[0169] Nucleic acid molecules encoding anti-c-Met antibodies and vectors comprising these nucleic acid molecules can be used for transfection of a suitable mammalian, plant, bacterial or yeast host cell. Transformation can be by any known method for introducing polynucleo tides into a host cell. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, electroporation, encapsulation of the ρolynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei. In addition, nucleic acid molecules may be introduced into mammalian cells by viral vectors. Methods of transforming cells are well known in the art. See, e.g., U.S. Patent Nos. 4,399,216, 4,912,040, 4,740,461, and 4,959,455, incorporated herein by reference). Methods of transforming plant cells are well known in the art, including, e.g., Agrobacterium-mediated transformation, biolistic transformation, direct injection, electroporation and viral transformation. Methods of transforming bacterial and yeast cells are also well known in the art. [0170] Mammalian cell lines available as hosts for expression are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC). These include, inter alia, Chinese hamster ovary (CHO) cells, NSO cells, SP2 cells, HEK-293T cells, NLΗ-3T3 cells, HeLa cells, baby hamster kidney (BHK) cells, African green monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), A549 cells, and a number of other cell lines. Cell lines of particular preference are selected through determining which cell lines have high expression levels. Other cell lines that may be used are insect cell lines, such as Sf9 or Sf21 cells. When recombinant expression vectors encoding antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more preferably, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods. Plant host cells include, e.g., Nicotiana, Arabidopsis, duckweed, corn, wheat, potato, etc. Bacterial host cells include E. coli and Streptomyces species. Yeast host cells include Schizosaccharomyces pombe, Saccharomyces cerevisiae and Pichia pastoris. [0171] Further, expression of antibodies of the invention from production cell lines can be enhanced using a number of known techniques. For example, the glutamine synthetase gene expression system (the GS system) is a common approach for enhancing expression under certain conditions. The GS system is discussed in whole or part in connection with European Patent Nos. 0 216 846, 0 256 055, 0 323 997 and 0 338 841.
[0172] It is likely that antibodies expressed by different cell lines or in transgenic animals will have different glycosylation from each other. However, all antibodies encoded by the nucleic acid molecules provided herein, or comprising the amino acid sequences provided herein are part of the instant invention, regardless of the glycosylation of the antibodies.
Transgenic Animals and Plants
[0173] Anti-c-Met antibodies of the invention also can be produced transgenically through the generation of a mammal or plant that is transgenic for the immunoglobulin heavy and light chain sequences of interest and production of the antibody in a recoverable form therefrom. In connection with the transgenic production in mammals, anti-c-Met antibodies can be produced in, and recovered from, the milk of goats, cows, or other mammals. See, e.g., U.S. Patent Nos. 5,827,690, 5,756,687, 5,750,172, and 5,741,957, incorporated herein by reference. In some embodiments, non-human transgenic animals that comprise human immunoglobulin loci are immunized with c-Met or an immunogenic portion thereof, as described above. Methods for making antibodies in plants are described, e.g., in U.S. patents 6,046,037 and 5,959,177, incorporated herein by reference. [0174] In some embodiments, non-human transgenic animals or plants are produced by introducing one or more nucleic acid molecules encoding an anti-c- Met antibody of the invention into the animal or plant by standard transgenic techniques. See Hogan and United States Patent 6,417,429, supra. The transgenic cells used for making the transgenic animal can be embryonic stem cells or somatic cells or a fertilized egg. The transgenic non-human organisms can be chimeric, nonchimeric heterozygotes, and nonchimeric homozygotes. See, e.g., Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual 2nd ed., Cold Spring Harbor Press (1999); Jackson et al., Mouse Genetics and Transgenics: A Practical Approach, Oxford University Press (2000); and Pinkert, Transgenic Animal Technology: A Laboratory Handbook, Academic Press (1999), all incorporated herein by reference. In some embodiments, the transgenic non-human animals have a targeted disruption and replacement by a targeting construct that encodes a heavy chain and/or a light chain of interest. In a preferred embodiment, the transgenic animals comprise and express nucleic acid molecules encoding heavy and light chains that specifically bind to c-Met, preferably human c-Met. In some embodiments, the transgenic animals comprise nucleic acid molecules encoding a modified antibody such as a single-chain antibody, a chimeric antibody or a humanized antibody. The anti-c-Met antibodies may be made in any transgenic animal. In a preferred embodiment, the non-human animals are mice, rats, sheep, pigs, goats, cattle or horses. The non-human transgenic animal expresses said encoded polypeptides in blood, milk, urine, saliva, tears, mucus and other bodily fluids.
Phage Display Libraries
[0175] The invention provides a method for producing an anti-c-Met antibody or antigen-binding portion thereof comprising the steps of synthesizing a library of human antibodies on phage, screening the library with c-Met or a portion thereof, isolating phage that bind c-Met, and obtaining the antibody from the phage. By way of example, one method for preparing the library of antibodies for use in phage display techniques comprises the steps of immunizing a non-human animal comprising human immunoglobulin loci with c-Met or an antigenic portion thereof to create an immune response, extracting antibody-producing cells from the immunized animal; isolating RNA encoding heavy and light chains of antibodies of the invention from the extracted cells, reverse transcribing the RNA to produce cDNA, amplifying the cDNA using primers, and inserting the cDNA into a phage display vector such that antibodies are expressed on the phage. Recombinant antic-Met antibodies of the invention may be obtained in this way. [0176] Recombinant anti-c-Met human antibodies of the invention can be isolated by screening a recombinant combinatorial antibody library. Preferably the library is a scFv phage display library, generated using human V and VH cDNAs prepared from mRNA isolated from B cells. Methods for preparing and screening such libraries are known in the art. Kits for generating phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, catalog no. 27-9400-01; and the Stratagene SurfZAP phage display kit, catalog no. 240612). There also are other methods and reagents that can be used in generating and screening antibody display libraries (see, e.g., U.S. Patent No. 5,223,409; PCT Publication Nos. WO 92/18619, WO 91/17271 , WO 92/20791 , WO 92/15679, WO 93/01288, WO 92/01047, WO 92/09690; Fuchs et al., Bio/Technology 9:1370-1372 (1991); Hay et al, Hum. Antibod. Hybridomas 3:81-85 (1992); Huse et al, Science 246:1275-1281 (1989); McCafferty et al.,
Nature 348:552-554 (1990); Griffiths et al., EMBO J. 12:725-734 (1993); Hawkins et al., J. Mol. Biol. 226:889-896 (1992); Clackson et al., Nature 352:624-628 (1991); Gram et al., Proc. Natl. Acad. Sci. USA 89:3576-3580 (1992); Garrad et al, Bio/Technology 9:1373-1377 (1991); Hoogenboom et al., Nuc. Acid Res. 19:4133-4137 (1991); and Barbas et al., Proc. Natl. Acad. Sci. USA 88:7978-7982 (1991), all incorporated herein by reference.
[0177] In one embodiment, to isolate and produce human anti-c-Met antibodies with the desired characteristics, a human anti-c-Met antibody as described herein is first used to select human heavy and light chain sequences having similar binding activity toward c-Met, using the epitope imprinting methods described in PCT Publication No. WO 93/06213, incorporated herein by reference. The antibody libraries used in this method are preferably scFv libraries prepared and screened as described in PCT Publication No. WO 92/01047, McCafferty et al., Nature 348:552-554 (1990); and Griffiths et al., EMBO J. 12:725-734 (1993), all incorporated herein by reference. The scFv antibody libraries preferably are screened using human c-Met as the antigen. [0178] Once initial human VL and VH domains are selected, "mix and match" experiments are performed, in which different pairs of the initially selected VL and VH segments are screened for c-Met binding to select preferred W Y pair combinations. Additionally, to further improve the quality of the antibody, the V and VH segments of the preferred VL/VH ρair(s) can be randomly mutated, preferably within the CDR3 region of VH and/or VL, in a process analogous to the in vivo somatic mutation process responsible for affinity maturation of antibodies during a natural immune response. This in vitro affinity maturation can be accomplished by amplifying VH and VL domains using PCR primers complimentary to the VH CDR3 or VL CDR3, respectively, which primers have been "spiked" with a random mixture of the four nucleotide bases at certain positions such that the resultant PCR products encode VH and VL segments into which random mutations have been introduced into the VH and/or VL CDR3 regions. These randomly mutated VH and VL segments can be re-screened for binding to c-Met.
[0179] Following screening and isolation of an aiiti-c-Met antibody of the invention from a recombinant immunoglobulin display library, nucleic acids encoding the selected antibody can be recovered from the display package (e.g., from the phage genome) and subcloned into other expression vectors by standard recombinant DNA techniques. If desired, the nucleic acid can further be manipulated to create other antibody forms of the invention, as described below. To express a recombinant human antibody isolated by screening of a combinatorial library, the DNA encoding the antibody is cloned into a recombinant expression vector and introduced into a mammalian host cells, as described above.
Class switching
[0180] Another aspect of the invention provides a method for converting the class or subclass of an anti-c-Met antibody to another class or subclass. In some embodiments, a nucleic acid molecule encoding a VL or VH that does not include sequences encoding CL or CH is isolated using methods well-known in the art. The nucleic acid molecule then is operatively linked to a nucleic acid sequence encoding a CL or CH from a desired immunoglobulin class or subclass. This can be achieved using a vector or nucleic acid molecule that comprises a CL or CH chain, as described above. For example, an anti-c-Met antibody that was originally IgM can be class switched to an IgG. Further, the class switching may be used to convert one IgG subclass to another, e.g., from IgGl to IgG2. Another method for producing an antibody of the invention comprising a desired isotype comprises the steps of isolating a nucleic acid encoding a heavy chain of an anti-c-Met antibody and a nucleic acid encoding a light chain of an anti-c-Met antibody, isolating the sequence encoding the VH region, ligating the VH sequence to a sequence encoding a heavy chain constant domain of the desired isotype, expressing the light chain gene and the heavy chain construct in a cell, and collecting the anti-c-Met antibody with the desired isotype.
Deimmunized Antibodies
[0181] In another aspect of the invention, the antibody may be deimmunized to reduce its immunogenicity using the techniques described in, e.g., PCT Publication Nos. WO98/52976 and WO00/34317 (incorporated herein by reference).
Mutated Antibodies
[0182] In another embodiment, the nucleic acid molecules, vectors and host cells may be used to make mutated anti-c-Met antibodies. The antibodies may be mutated in the variable domains of the heavy and/or light chains, e.g., to alter a binding property of the antibody. For example, a mutation may be made in one or more of the CDR regions to increase or decrease the KD of the antibody for c-Met, to increase or decrease k0ff, or to alter the binding specificity of the antibody. Techniques in site-directed mutagenesis are well-known in the art. See, e.g., Sambrook et al. and Ausubel et al., supra. In another embodiment, one or more mutations are made at an amino acid residue that is known to be changed compared to the germline in monoclonal antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-A14P,E42K; 13.3.2H- E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H- E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T. The mutations may be made in a CDR region or framework region of a variable domain, or in a constant domain. In a preferred embodiment, the mutations are made in a variable domain. In some embodiments, one or more mutations are made at an amino acid residue that is known to be changed compared to the germline in a CDR region or framework region of a variable domain of an amino acid sequence selected from SEQ ID NOs: 2 [13.3.2 (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is alanine); 13.3.2H-E42K (SEQ ID NO: 2, wherein X2 is lysine, X4 is serine and X6 is alanine); 13.3.2H-E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine and X6 is alanine); 13.3.2H-A14P (SEQ ID NO: 2, wherein X2 is glutamate, X4 is serine and X6 is proline); 13.3.2H-A14P, E42K (SEQ ID NO: 2, wherein X is lysine, X is serine and X6 is proline); 13.3.2H-A14P, E42K, S97T (SEQ ID NO: 2, wherein X2 is lysine, X4 is threonine and X6 is proline)], 4 [13.3.2 (SEQ ID NO: 4, wherein X8 is alanine) and the 13.3.2L-A91T (SEQ ID NO: 4, wherein X8 is threonine)], 6, 8, 10, 12, 14 or 16 or whose nucleic acid sequence is presented in SEQ ID NOs: 1 [13.3.2 (SEQ ID NO: 1, wherein Xi is guanosine, X3 is threonine and X5 is guanosine); 13.3.2H-E42K (SEQ ID NO: 1, wherein X] is adenosine, X3 is threonine and X is guanosine); 13.3.2H-E42K, S97T (SEQ ID NO: 1, wherein X] is adenosine, X3 is adenosine and X5 is guanosine); 13.3.2H- A14P (SEQ ID NO: 1, wherein Xi is guanosine, X3 is threonine and X5 is cytosine); 13.3.2H-A14P, E42K (SEQ ID NO: 1, wherein X, is adenosine, X3 is threonine and X5 is cytosine); 13.3.2H-A14P, E42K, S97T (SEQ ID NO: 1, wherein Xi is adenosine, X3 is adenosine and X5 is cytosine)], 3 [13.3.2 (SEQ ID NO: 3 wherein X7 is guanosine); 13.3.2L-A91T (SEQ ID NO: 3, wherein X7 is adenosine)], 5, 1, 9, 11, 13 or 15.
[0183] In another embodiment, the framework region is mutated so that the resulting framework region(s) have the amino acid sequence of the corresponding germline gene. A mutation may be made in a framework region or constant domain to increase the half-life of the anti-c-Met antibody. See, e.g., PCT Publication No. WO 00/09560, incorporated herein by reference. A mutation in a framework region or constant domain also can be made to alter the immunogenicity of the antibody, to provide a site for covalent or non-covalent binding to another molecule, or to alter such properties as complement fixation, FcR binding and antibody-dependent cell-mediated cytotoxicity (ADCC). According to the invention, a single antibody may have mutations in any one or more of the CDRs or framework regions of the variable domain or in the constant domain.
[0184] In some embodiments, there are from 1 to 8, including any number in between, amino acid mutations in either the VH or V domains of the mutated anti- c-Met antibody compared to the anti-c-Met antibody prior to mutation. In any of the above, the mutations may occur in one or more CDR regions. Further, any of the mutations can be conservative amino acid substitutions. In some embodiments, there are no more than 5, 4, 3, 2, or 1 amino acid changes in the constant domains.
Modified Antibodies [0185] In another embodiment, a fusion antibody or immunoadhesin may be made that comprises all or a portion of an anti-c-Met antibody of the invention linked to another polypeptide. In a preferred embodiment, only the variable domains of the anti-c-Met antibody are linked to the polypeptide. In another preferred embodiment, the VH domain of an anti-c-Met antibody is linked to a first polypeptide, while the VL domain of an anti-c-Met antibody is linked to a second polypeptide that associates with the first polypeptide in a manner such that the VH and VL domains can interact with one another to form an antigen binding site, h another preferred embodiment, the VH domain is separated from the VL domain by a linker such that the VH and VL domains can interact with one another (see below under Single Chain Antibodies). The VH-linker-VL antibody is then linked to the polypeptide of interest. The fusion antibody is useful for directing a polypeptide to a c-Met-expressing cell or tissue. The polypeptide may be a therapeutic agent, such as a toxin, growth factor or other regulatory protein, or may be a diagnostic agent, such as an enzyme that may be easily visualized, such as horseradish peroxidase. In addition, fusion antibodies can be created in which two (or more) single-chain antibodies are linked to one another. This is useful if one wants to create a divalent or polyvalent antibody on a single polypeptide chain, or if one wants to create a bispecific antibody. [0186] To create a single chain antibody, (scFv) the VH- and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly4 -Ser)3, such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH domains joined by the flexible linker. See, e.g., Bird et al., Science 242:423-426 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988); McCafferty et al., Nature 348:552-554 (1990). The single chain antibody may be monovalent, if only a single VH and VL are used, bivalent, if two VH and VL are used, or polyvalent, if more than two VH and VL are used. Bispecific or polyvalent antibodies may be generated that bind specifically to c-Met and to another molecule.
[0187] In other embodiments, other modified antibodies may be prepared using anti-c-Met antibody encoding nucleic acid molecules. For instance, "Kappa bodies" (111 et al., Protein Eng. 10: 949-57 (1997)), "Minibodies" (Martin et al., EMBOJ. 13: 5303-9 (1994)), "Diabodies" (Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993)), or "Janusins" (Traunecker et al., EMBOJ. 10:3655- 3659 (1991) and Traunecker et al., Int. J. Cancer (Suppl.) 7:51-52 (1992)) may be prepared using standard molecular biological techniques following the teachings of the specification.
[0188] Bispecific antibodies or antigen-binding fragments can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79: 315-321 (1990), Kostelny et al., J. Immunol. 148:1547-1553 (1992). In addition, bispecific antibodies may be formed as "diabodies" or "Janusins." In some embodiments, the bispecific antibody binds to two different epitopes of c-Met. In some embodiments, the bispecific antibody has a first heavy chain and a first light chain from monoclonal antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H- E42K; 13.3.2H-A14P,E42K; 13.3.2H-S97T; 13.3.2H-E42K,S97T; 13.3.2H- A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T H-A14P; 13.3.2L-A91T,H- E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T,H-E42K,S97T or 13.3.2L- A91T,H-A14P,E42K,S97T and an additional antibody heavy chain and light chain. In some embodiments, the additional light chain and heavy chain also are from one of the above-identified monoclonal antibodies, but are different from the first heavy and light chains. [0189] In some embodiments, the modified antibodies described above are prepared using one or more of the variable domains or CDR regions from a human anti-c-Met monoclonal antibody provided herein.
Derivatized and Labeled Antibodies [0190] An anti-c-Met antibody or antigen-binding portion of the invention can be derivatized or linked to another molecule (e.g., another peptide or protein). In general, the antibodies or portion thereof are derivatized such that the c-Met binding is not affected adversely by the derivatization or labeling. Accordingly, the antibodies and antibody portions of the invention are intended to include both intact and modified forms of the human anti-c-Met antibodies described herein. For example, an antibody or antibody portion of the invention can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detection agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
[0191] One type of derivatized antibody is produced by crosslinking two or more antibodies (of the same type or of different types, e.g., to create bispecific antibodies). Suitable crosslinkers include those that are heterobi functional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (e.g., disuccinimidyl suberate). Such linkers are available from Pierce Chemical Company, Rockford, II. [0192] Another type of derivatized antibody is a labeled antibody. Useful detection agents with which an antibody or antigen-binding portion of the invention may be derivatized include fluorescent compounds, including fluorescein, fluorescein isothiocyanate, rhodamine, 5-dimethylamine-l-napthalenesulfonyl chloride, phycoerythrin, lanthanide phosphors and the like. An antibody can also be labeled with enzymes that are useful for detection, such as horseradish peroxidase, /3-galactosidase, luciferase, alkaline phosphatase, glucose oxidase and the like. When an antibody is labeled with a detectable enzyme, it is detected by adding additional reagents that the enzyme uses to produce a reaction product that can be discerned. For example, when the agent horseradish peroxidase is present, the addition of hydrogen peroxide and diaminobenzidine leads to a colored reaction product, which is detectable. An antibody can also be labeled with biotin, and detected through indirect measurement of avidin or streptavidin binding. An antibody can also be labeled with a predetermined polypeptide epitope recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
[0193] An anti-c-Met antibody can also be labeled with a radiolabeled amino acid. The radiolabel can be used for both diagnostic and therapeutic purposes. For instance, the radiolabel can be used to detect c-Met-expressing tumors by x-ray or other diagnostic techniques. Further, the radiolabel can be used therapeutically as a toxin for cancerous cells or tumors. Examples of labels for polypeptides include, but are not limited to, the following radioisotopes or radionuclides - 3H, 14C, 15N, 35S, 90Y, 99Tc, n ιIn, 125I, and I 131.
[0194] An anti-c-Met antibody can also be derivatized with a chemical group such as polyethylene glycol (PEG), a methyl or ethyl group, or a carbohydrate group. These groups are useful to improve the biological characteristics of the antibody, e.g., to increase serum half-life or to increase tissue binding.
Pharmaceutical Compositions and Kits
[0195] The invention relates to compositions comprising a human anti-c-Met antibody with agonist properties for the treatment of patients in need of a therapeutic procedure including, but not limited to, tissue regeneration or wound healing. In some embodiments, the subject of treatment is a human. In other embodiments, the subject is a veterinary subject. Examples of tissues, in need of tissue regeneration include but are not limited to liver tissue (as in the case of acute, chronic or alcoholic hepatitis or cirrhosis), lung tissue, stomach tissue (as in the case of gastric ulcers) and kidney tissue (as in the case of acute renal failure). Agonist anti-c-Met antibodies of the invention and compositions comprising them, can be administered in combination with one or more other therapeutic, diagnostic, or prophylactic agents. In some embodiments, one or more agonist c-Met antibodies of the invention can be used as a vaccine or as adjuvants to a vaccine. Treatment may involve administration of one or more agonist anti-c-Met monoclonal antibodies of the invention, or antigen-binding fragments thereof, alone or with a pharmaceutically acceptable carrier.
[0196] In a further aspect, an anti-c-Met antibody of the invention that has inhibitory properties can involve any tissue or organ including but not limited to brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, liver, renal, ovarian, prostate, colorectal, esophageal, gynecological, nasopharynx, or thyroid cancers, melanomas, lymphomas, leukemias, multiple myelomas, choriocarcinoma, Kaposi or cervical intraepithelial neoplasia. Other disorders that may be treated or prevented by an anti-c-Met antibody of the invention that has inhibitory properties include, but are not limited to, proliferative vitreoretinopathy, proliferative diabetic retinopathy, endometriosis and arthritis. In other embodiments of the invention, anti-c-Met antibodies can be used to inhibit plaque formation in Alzheimer's disease and to inhibit cellular mitogenic responses. Antic-Met antibodies of the invention could be used to inhibit embryo implantation by inclusion in an injectable contraceptive. Anti-c-Met antibodies can be used to treat tumor growth by inhibiting proliferation, treat/inhibit tumor angiogenesis, or treat metatstatic spread/dissemination of metastases. In particular, human anti- c-Met antibodies of the invention with inhibitory properties are useful to treat glioblastoma, sarcomas, or carcinomas, for example, of the breast, ovary, prostate, colon, or lung. [0197] Treatment may involve administration of one or more inhibitory anti-c- Met monoclonal antibodies of the invention, or antigen-binding fragments thereof, alone or with a pharmaceutically acceptable carrier. Inhibitory anti-c-Met antibodies of the invention and compositions comprising them, can be administered in combination with one or more other therapeutic, diagnostic or prophylactic agents. Additional therapeutic agents include other anti-neoplastic, anti-tumor, anti-angiogenic or chemotherapeutic agents. Such additional agents may be included in the same composition or administered separately. In some embodiments, one or more inhibitory anti-c-Met antibodies of the invention can be used as a vaccine or as adjuvants to a vaccine.
[0198] In addition to cancer vaccines comprised of cancer-associated antigens, vaccines useful in combination with the antibody include, without limitation, GM- CSF DNA and cell-based vaccines, dendritic cell vaccines, recombinant viral (e.g. vaccinia virus) vaccines, and heat shock protein (HSP) vaccines. Useful vaccines also include tumor vaccines, such as those formed of melanoma cells; and may be autologous or allogeneic. The vaccines may be, e.g., peptide, DNA or cell based. [0199] As used herein, "pharmaceutically acceptable carrier" means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Some examples of pharmaceutically acceptable carriers are water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Additional examples of pharmaceutically acceptable substances are wetting agents or minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the antibody. [0200] The compositions of this invention may be in a variety of forms, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories. The preferred form depends on the intended mode of administration and therapeutic application. Typical preferred compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for passive immunization of humans. The preferred mode of administration is parenteral (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular). In a preferred embodiment, the antibody is administered by intravenous infusion or injection. In another preferred embodiment, the antibody is administered by intramuscular or subcutaneous injection. [0201] Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incoφorating the anti-c-Met antibody in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incoφorating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absoφtion of injectable compositions can be brought about by including in the composition an agent that delays absoφtion, for example, monostearate salts and gelatin. [0202] The antibodies of the present invention can be administered by a variety of methods known in the art, although for many therapeutic applications, the preferred route/mode of administration is subcutaneous, intramuscular, or intravenous infusion. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. [0203] In certain embodiments, the antibody compositions active compound may be prepared with a carrier that will protect the antibody against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems (J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978). [0204] In certain embodiments, an anti-c-Met antibody of the invention can be orally administered, for example, with an inert diluent or an assimilable edible carrier. The compound (and other ingredients, if desired) can also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incoφorated directly into the subject's diet. For oral therapeutic administration, the anti-c-Met antibodies can be incoφorated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. To administer a compound of the invention by other than parenteral administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation.
[0205] Additional active compounds also can be incoφorated into the compositions. In certain embodiments, an inhibitory anti-c-Met antibody of the invention is co-formulated with and/or co-administered with one or more additional therapeutic agents. These agents include, without limitation, antibodies that bind other targets, antineoplastic agents, antitumor agents, chemotherapeutic agents, peptide analogues that inhibit c-Met, or antibodies or other molecules that bind to HGF and prevent its binding to or activation of c-Met. Such combination therapies may require lower dosages of the inhibitory anti-c-met antibody as well as the co-administered agents, thus avoiding possible toxicities or complications associated with the various monotherapies.
[0206] Inhibitory anti-c-Met antibodies of the invention and compositions comprising them also may be administered in combination with other therapeutic regimens, in particular in combination with radiation treatment. [0207] In certain embodiments, an activating or inhibiting anti-c-Met antibody of the invention is co-formulated with and/or co-administered with one or more additional therapeutic agents. In the case of an activating c-Met antibody, these agents include, without limitation, one or more chemical agents that activate c-Met and/or other agents known in the art to enhance a therapeutic procedure such as tissue regeneration or wound healing. In the case of an inhibitory antibody, these agents include those that inhibit c-Met. Further, such combination therapies may also be used to treat diseases like arteriosclerosis obliterans, renal tubulointerstitial fibrosis, refractory skin ulcers, gastric ulcers or problems associated with transplant. Such combination therapies may require lower dosages of the inhibitory or agonist anti-c-met antibody as well as the co-administered agents, thus avoiding possible toxicities or complications associated with the various monotherapies. [0208] The compositions of the invention may include a "therapeutically effective amount" or a "prophylactically effective amount" of an antibody or antigen-binding portion of the invention. A "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of the antibody or antibody portion may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the antibody or antibody portion are outweighed by the therapeutically beneficial effects. A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount may be less than the therapeutically effective amount. [0209] Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the anti-c-Met antibody or portion thereof and the particular therapeutic or prophylactic effect to be achieved, and (b) the limitations inherent in the art of compounding such an antibody for the treatment of sensitivity in individuals.
[0210] An exemplary, non-limiting range for a therapeutically or prophylactically effective amount of an antibody or antibody portion of the invention is 0.025 to 50 mg/kg, more preferably 0.1 to 50 mg/kg, more preferably 0.1-25, 0.1 to 10 or 0.1 to 3 mg/kg. In some embodiments, a formulation contains 5 mg/ml of antibody in a buffer of 20mM sodium citrate, pH 5.5, 140mM NaCl, and 0.2mg/ml polysorbate 80. It is to be noted that dosage values may vary with the type and severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. [0211] Another aspect of the present invention provides kits comprising an antic-Met antibody or antibody portion of the invention or a composition comprising such an antibody. A kit may include, in addition to the antibody or composition, diagnostic or therapeutic agents. A kit can also include instructions for use in a diagnostic or therapeutic method. In a preferred embodiment, the kit includes the antibody or a composition comprising it and a diagnostic agent that can be used in a method described below. In another preferred embodiment, the kit includes the antibody or a composition comprising it and one or more therapeutic agents that can be used in a method described below. [0212] This invention also relates to compositions for inhibiting abnormal cell growth in a mammal comprising an amount of an antibody of the invention in combination with an amount of a chemotherapeutic agent, wherein the amounts of the compound, salt, solvate, or prodrug, and of the chemotherapeutic agent are together effective in inhibiting abnormal cell growth. Many chemotherapeutic agents are presently known in the art. In some embodiments, the chemotherapeutic agent is selected from the group consisting of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti- hormones, e.g., anti-androgens, and anti-angiogenesis agents. [0213] Anti-angiogenic agents, such as MMP-2 (matrix-metalloproteinase 2) inhibitors, MMP-9 (matrix-metalloproteinase 9) inhibitors, and COX-II (cyclooxygenase II) inhibitors, can be used in conjunction with an anti-c-Met antibody of the invention. Examples of useful COX-II inhibitors include CELEBREX™ (celecoxib), valdecoxib, and rofecoxib. Examples of useful matrix metalloproteinase inhibitors are described in WO 96/33172 (published October 24, 1996), WO 96/27583 (published March 7, 1996), European Patent Application No. 97304971.1 (filed July 8, 1997), European Patent Application No. 99308617.2 (filed October 29, 1999), WO 98/07697 (published February 26, 1998), WO 98/03516 (published January 29, 1998), WO 98/34918 (published August 13, 1998), WO 98/34915 (published August 13, 1998), WO 98/33768 (published August 6, 1998), WO 98/30566 (published July 16, 1998), European Patent Publication 606,046 (published July 13, 1994), European Patent Publication
931,788 (published July 28, 1999), WO 90/05719 (published May 31 , 1990), WO 99/52910 (published October 21, 1999), WO 99/52889 (published October 21, 1999), WO 99/29667 (published June 17, 1999), PCT International Application No. PCT/B98/01113 (filed July 21, 1998), European Patent Application No. 99302232.1 (filed March 25, 1999), Great Britain patent application number
9912961.1 (filed June 3, 1999), U.S. Provisional Application No. 60/148,464 (filed August 12, 1999), U.S. Patent 5,863,949 (issued January 26, 1999), U.S. Patent 5,861,510 (issued January 19, 1999), and European Patent Publication 780,386 (published June 25, 1997), all of which are incoφorated herein in their entireties by reference.
[0214] Preferred MMP inhibitors are those that do not demonstrate arthralgia. More preferred, are those that selectively inhibit MMP-2 and/or MMP-9 relative to the other matrix-metalloproteinases (i.e. MMP-1, MMP-3, MMP-4, MMP-5, MMP-6, MMP-7, MMP-8, MMP-10, MMP-11, MMP-12, and MMP-13). Some specific examples of MMP inhibitors useful in the present invention are AG-3340, RO 32-3555, RS 13-0830, and the compounds recited in the following list: 3-[[4- (4-fluoro-phenoxy)-benzenesulfonyl]-(l-hydroxycarbamoyl-cyclopentyl)-amino]- propionic acid; 3-exo-3-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-8-oxa- bicyclo[3.2.1]octane-3-carboxylic acid hydroxyamide; (2R, 3R) l-[4-(2-chloro-4- fluoro-benzyloxy)-benzenesulfonyl]-3-hydroxy-3-methyl-piperidine-2-carboxylic acid hydroxyamide; 4-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-tetrahydro- pyran-4-carboxylic acid hydroxyamide; 3-[[4-(4-fluoro-phenoxy)- benzenesulfonyl]-(l-hydroxycarbamoyl-cyclobutyl)-amino]-propionic acid; 4-[4- (4-chloro-phenoxy)-benzenesulfonylamino]-tetrahydro-pyran-4-carboxylic acid hydroxyamide; (R) 3-[4-(4-chloro-phenoxy)-benzenesulfonylamino]-tetrahydro- pyran-3-carboxylic acid hydroxyamide; (2R, 3R) l-[4-(4-fluoro-2-methyl- benzyloxy)-benzenesulfonyl]-3-hydroxy-3-methyl-piperidine-2-carboxylic acid hydroxyamide; 3-[[4-(4-fluoro-phenoxy)-benzenesulfonyl]-(l-hydroxycarbamoyl- l-methyl-ethyl)-amino]-propionic acid; 3-[[4-(4-fluoro-phenoxy)- benzenesulfonyl]-(4-hydroxycarbamoyl-tetrahydro-pyran-4-yl)-amino]-propionic acid; 3-exo-3-[4-(4-chloro-phenoxy)-benzenesulfonylamino]-8-oxa- bicyclo[3.2.1]octane-3-carboxylic acid hydroxyamide; 3-endo-3-[4-(4-fluoro- phenoxy)-benzenesulfonylamino]-8-oxa-bicyclo[3.2.1 ]octane-3-carboxylic acid hydroxyamide; and (R) 3-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]- tetrahydro-furan-3-carboxylic acid hydroxyamide; and pharmaceutically acceptable salts and solvates of said compounds. [0215] An anti-c-Met antibody of the invention also can be used with signal transduction inhibitors, such as agents that can inhibit EGF-R (epidermal growth factor receptor) responses, including but not limited to EGF-R antibodies, EGF antibodies, and molecules that are EGF-R inhibitors; VEGF (vascular endothelial growth factor) and VEGF receptor (VEGF-R) inhibitors; and erbB2 receptor inhibitors, such as organic molecules or antibodies that bind to the erbB2 receptor, for example, HERCEPTIN™ (Genentech, Inc.). EGF-R inhibitors are described in, for example, in WO 95/19970 (published July 27, 1995), WO 98/14451 (published April 9, 1998), WO 98/02434 (published January 22, 1998), and United States Patent 5,747,498 (issued May 5, 1998), all incoφorated herein by reference, and such substances can be used in the present invention as described herein.
[0216] EGF-R-inhibiting agents include, but are not limited to, the monoclonal antibodies C225 and anti-EGF-R 22Mab (ImClone Systems Incoφorated), ABX- EGF (Abgenix/Cell Genesys), EMD-7200 (Merck KgaA), EMD-5590 (Merck KgaA), MDX-447/H-477 (Medarex Inc. and Merck KgaA), and the compounds ZD-1834, ZD-1838 and IRESSA™ (ZD-1839) (AstraZeneca), PKI-166 (Novartis), PKI-166/CGP-75166 (Novartis), PTK 787 (Novartis), CP 701 (Cephalon), leflunomide (Pharmacia/Sugen), Tarceva™ (OSI, Roche and Genetech), CI-1033 (Warner Lambert Parke Davis), CI-1033/PD 183,805 (Warner Lambert Parke Davis), CL-387,785 (Wyeth-Ayerst), BBR-1611 (Boehringer Mannheim GmbH/Roche), Naamidine A (Bristol Myers Squibb), RC-3940-II (Pharmacia), BIBX-1382 (Boehringer Ingelheim), OLX-103 (Merck & Co.), VRCTC-310 (Ventech Research), EGF fusion toxin (Seragen Inc.), DAB-389
(Seragen/Lilgand), ZM-252808 (Imperial Cancer Research Fund), RG-50864 (INSERM), LFM-A12 (Parker Hughes Cancer Center), WHI-P97 (Parker Hughes Cancer Center), GW-282974 (Glaxo), KT-8391 (Kyowa Hakko) and EGF-R Vaccine (York Medical/Centro de Immunologia Molecular (CIM)). These and other EGF-R-inhibiting agents can be used in the present invention.
[0217] VEGF-R and VEGF inhibitors, for example SU-5416, SU-11248 and SU- 6668 (Sugen Inc.), SH-268 (Schering), and NX-1838 (NeXstar) can also be combined with the compound of the present invention. VEGF and VEGF-R inhibitors are described in, for example in WO 99/24440 (published May 20, 1999), PCT International Application PCT/LB99/00797 (filed May 3, 1999), in WO 95/21613 (published August 17, 1995), WO 99/61422 (published December 2, 1999), United States Patent 5,834,504 (issued November 10, 1998), WO 98/50356 (published November 12, 1998), United States Patent 5,883,113 (issued March 16, 1999), United States Patent 5,886,020 (issued March 23, 1999), United States Patent 5,792,783 (issued August 11, 1998), WO 99/10349 (published March 4, 1999), WO 97/32856 (published September 12, 1997), WO 97/22596 (published June 26, 1997), WO 98/54093 (published December 3, 1998), WO 98/02438 (published January 22, 1998), WO 99/16755 (published April 8, 1999), and WO 98/02437 (published January 22, 1998), all of which are incoφorated herein in their entireties by reference.
[0218] Other examples of some specific VEGF-R and VEGF inhibitors useful in the present invention are IM862 (Cytran Inc.); Avastin™; and angiozyme, a synthetic ribozyme from Ribozyme and Chiron. These and other VEGF and VEGF-R inhibitors can be used in the present invention as described herein. [0219] ErbB2 receptor inhibitors, such as GW-282974 (Glaxo Wellcome pic), and the monoclonal antibodies AR-209 (Aronex Pharmaceuticals Inc.) and 2B-1 (Chiron), can furthermore be combined with the compound of the invention, for example those indicated in WO 98/02434 (published January 22, 1998), WO 99/35146 (published July 15, 1999), WO 99/35132 (published July 15, 1999), WO 98/02437 (published January 22, 1998), WO 97/13760 (published April 17, 1997), WO 95/19970 (published July 27, 1995), United States Patent 5,587,458 (issued December 24, 1996), and United States Patent 5,877,305 (issued March 2, 1999), which are all hereby incoφorated herein in their entireties by reference. ErbB2 receptor inhibitors useful in the present invention are also described in United States Patent 6,465,449 (issued October 15, 2002), and in United States Patent 6,284,764 (issued September 4, 2001), incoφorated herein by reference. The erbB2 receptor inhibitor compounds and substances described in the aforementioned patent documents, as well as other compounds and substances that inhibit the erbB2 receptor, can be used with the compound of the present invention in accordance with the present invention. [0220] An anti-c-Met antibody of the invention also can be used with inhibitors of PDGFR, BCR-ABL or c-kit such as Gleevec™ (Novaritis).
[0221] An anti-c-Met antibody of the invention also can be used with anti-IGF- IR antibodies such as those described in WO 02053596 (published July 1 1, 2002), for example an antibody having the sequence of antibody 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2 or 4.17.3. The antibody of the invention can also be used with CTLA- 4 antibodies, such as those described in United States patent 6,682,736, including an antibody having the sequence of antibody 3.1.1, 4.1.1 , 4.8.1, 4.10.2, 4.13.1, 4.14.3, 6.1.1, 11.2.1, 11.6.1, 11.7.1, 12.3.1.1, or 12.9.1.1. The antibody can also be used with CD40 antibodies, such as those described in WO03040170 published May 15, 2003, including one having the sequence of antibody 3.1. 1, 3. 1.1H- A78T, 3.1. 1H-A78T-V88A-V97A, 7.1. 2, 10.8.3, 15.1. 1, 21. 4.1, 21.2. 1, 22. 1.1, 22.1.1H-C109A, 23.5. 1, 23. 25.1, 23.28. 1,23. 28.1H-D16E, 23.29. 1 or 24.2. The antibodies can also be combined with anti-integrin agents, such as anti-integrin antibodies.
[0222] Some specific examples of agents that the antibody may be combined with include the following: (1) the alkylating agents nitrogen mustard N-oxide, cyclophosphamide, ifosfamide, melphalan, busulfanmitobronitol, carboquone, thiotepa, ranimustine, nimustine, and temozolomide; (2) the anti-metabolites methotrexate, 6-mercaptopurine, riboside, mercaptopurine, 5-FU, tegafur, doxifluridine, carmofur, cytarabine, cytarabine, ocfosfate, enocitabine, S-l, Gemcitabine, Fludarabine, and Capecitabine; (3) the antibiotics actinomycin D, doxorubicin, daunorubicin, neocarzinostatin, bleomycin, peplomycin, mitomycin C, aclarubicin, pirarubicin, epirubicin, zinostatin, stimalamer, and idarubicin; (4) the plant-derived antitumor agents vincristine, vinblastine, vindeshine, etoposide, sobuzoxane, docetaxel, paclitaxel, and vinorelbine; (5) the platinum-coordinated compounds cisplatin, carboplatin, nedaplatin, and oxaliplatin; (6) camptothecin derivates irinotecan , topotecan and campthotecin; (7) tyrosine kinase inhibitors Iressa™ (gefitinib) and SU5416; (8) anti-CD20 agents such as Rituxan™ (Rituximab) Bexxar (tositumomab), and Zevalin™ (Ibritumomab tiuxetan); (9) interferons interferon alpha, interferon alpha-2a, interferon alpha- 2b, interferon beta, interferon gamma- la and interferon gamma- nl ; (10) biological response modifiers krestin, lentinan, sizofiran, picibanil and ubenimex; or (11) other antitumor agents mitoxantrone, 1-asparaginase, procarbazine, dacarbazine, hydroxycarbamide, pentostatin, and Tretinoin. In addition, the antibody of the invention can be combined with anti-cancer agents such as exemestane, Edotecarin™ (J-107088), and SU11248.
Diagnostic Methods of Use
[0223] In another aspect, the invention provides diagnostic methods. The anti-c- Met antibodies can be used to detect c-Met in a biological sample in vitro or in vivo. In one embodiment, the invention provides a method for diagnosing the presence or location of an c-Met-expressing tumor in a subject in need thereof, comprising the steps of injecting the antibody into the subject, determining the expression of c-Met in the subject by localizing where the antibody has bound, comparing the expression in the subject with that of a normal reference subject or standard, and diagnosing the presence or location of the tumor. [0224] The anti-c-Met antibodies can be used in a conventional immunoassay, including, without limitation, an ELISA, an RIA, flow cytometry, tissue immunohistochemistry, Western blot or immunoprecipitation. The anti-c-Met antibodies of the invention can be used to detect c-Met from humans. In another embodiment, the anti- c-Met antibodies can be used to detect c-Met from cynomolgus monkeys or rhesus monkeys. In another embodiment, the anti-c-Met antibodies can be used to detect c-Met from rats. [0225] The invention provides a method for detecting c-Met in a biological sample comprising contacting the biological sample with an anti-c-Met antibody of the invention and detecting the bound antibody. In one embodiment, the anti-c- Met antibody is directly labeled with a detectable label. In another embodiment, the anti-c-Met antibody (the first antibody) is unlabeled and a second antibody or other molecule that can bind the anti-c-Met antibody is labeled. As is well known to one of skill in the art, a second antibody is chosen that is able to specifically bind the particular species and class of the first antibody. For example, if the antic-Met antibody is a human IgG, then the secondary antibody could be an anti- human-IgG. Other molecules that can bind to antibodies include, without limitation, Protein A and Protein G, both of which are available commercially, e.g., from Pierce Chemical Co.
[0226] Suitable labels for the antibody or secondary antibody have been disclosed supra, and include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, /3-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include125!, 1311, 35S or 3H. [0227] In other embodiments, c-Met can be assayed in a biological sample by a competition immunoassay utilizing c-Met standards labeled with a detectable substance and an unlabeled anti-c-Met antibody. In this assay, the biological sample, the labeled c-Met standards and the anti-c-Met antibody are combined and the amount of labeled c-Met standard bound to the unlabeled antibody is determined. The amount of c-Met in the biological sample is inversely proportional to the amount of labeled c-Met standard bound to the anti-c-Met antibody. [0228] One can use the immunoassays disclosed above for a number of puφoses. For example, the anti-c-Met antibodies can be used to detect c-Met in cultured cells. In a preferred embodiment, the anti-c-Met antibodies are used to determine the amount of c-Met on the surface of cells that have been treated with various compounds. This method can be used to identify compounds that modulate c-Met protein levels. According to this method, one sample of cells is treated with a test compound for a period of time while another sample is left untreated. If the total level of c-Met is to be measured, the cells are lysed and the total c-Met level is measured using one of the immunoassays described above. The total level of c- Met in the treated versus the untreated cells is compared to determine the effect of the test compound. [0229] A preferred immunoassay for measuring total c-Met levels is flow cytometry or immunohistochemistry. If the cell surface level of c-Met is to be measured, the cells are not lysed, and the cell surface levels of c-Met are measured using one of the immunoassays described above. A preferred immunoassay for determining cell surface levels of c-Met includes the steps of labeling the cell surface proteins with a detectable label, such as biotin or 125I, immunoprecipitating the c-Met with an anti-c-Met antibody and then detecting the labeled c-Met. [0230] Another preferred immunoassay for determining the localization of c- Met, e.g., cell surface levels, is by using immunohistochemistry. A preferred immunoassay to detect cell surface levels of c-Met includes binding of an anti-c- Met antibody labeled with an appropriate fluorophore, such as fluorescein or phycoerythrin, and detecting the primary antibody using flow cytometry. In another embodiment, the anti-c-Met antibody is unlabeled and a second antibody or other molecule that can bind the anti-c-Met antibody is labeled Methods such as ELISA, RIA, flow cytometry, Western blot, immunohistochemistry, cell surface labeling of integral membrane proteins and immunoprecipitation are well known in the art. See, e.g., Harlow and Lane, supra. In addition, the immunoassays can be scaled up for high throughput screening in order to test a large number of compounds for either activation or inhibition of c-Met.
[0231] The anti-c-Met antibodies of the invention also can be used to determine the levels of c-Met in a tissue or in cells derived from the tissue. In some embodiments, the tissue is a diseased tissue. In some embodiments, the tissue is a tumor or a biopsy thereof. In some embodiments of the method, a tissue or a biopsy thereof is excised from a patient. The tissue or biopsy is then used in an immunoassay to determine, e.g., total c-Met levels, cell surface levels of c-Met or localization of c-Met by the methods discussed above. [0232] The above-described diagnostic method can be used to determine whether a tumor expresses high levels of c-Met, which could be indicative that the tumor is a target for treatment with anti-c-Met antibody. The diagnostic method can also be used to determine whether a tissue or cell expresses insufficient levels of c-Met or activated c-Met, and thus is a candidate for treatment with activating anti-c-Met antibodies, HGF and/or other therapeutic agents for increasing c-Met levels or activity.
[0233] The antibodies of the present invention also can be used in vivo to identify tissues and organs that express c-Met. In some embodiments, the anti-c-Met antibodies are used to identify c-Met-expressing tumors. One advantage of using the human anti-c-Met antibodies of the present invention is that they may safely be used in vivo without eliciting a substantial immune response to the antibody upon administration, unlike antibodies of non-human origin or with humanized or chimeric antibodies.
[0234] The method comprises the steps of administering a detectably labeled anti-c-Met antibody or a composition comprising them to a patient in need of such a diagnostic test and subjecting the patient to imaging analysis to determine the location of the c-Met-expressing tissues. Imaging analysis is well known in the medical art, and includes, without limitation, x-ray analysis, magnetic resonance imaging (MRI) or computed tomography (CT). The antibody can be labeled with any agent suitable for in vivo imaging, for example a contrast agent, such as barium, which can be used for x-ray analysis, or a magnetic contrast agent, such as a gadolinium chelate, which can be used for MRI or CT. Other labeling agents include, without limitation, radioisotopes, such as 99Tc. In another embodiment, the anti-c-Met antibody will be unlabeled and will be imaged by administering a second antibody or other molecule that is detectable and that can bind the anti-c- Met antibody. In embodiment, a biopsy is obtained from the patient to determine whether the tissue of interest expresses c-Met.
Therapeutic Methods of Use
[0235] In another embodiment, the invention provides a method for inhibiting c- Met activity by administering an anti-c-Met antibody to a patient in need thereof. In another embodiment, the invention provides a method for activating c-Met activity by administering an anti-c-Met antibody to a patient in need thereof. Any of the types of antibodies described herein may be used therapeutically. In a preferred embodiment, the anti-c-Met antibody is a human, chimeric or humanized antibody. In another preferred embodiment, the c-Met is human and the patient is a human patient. Alternatively, the patient may be a mammal that expresses a c- Met that the anti-c-Met antibody cross-reacts with. The antibody may be administered to a non-human mammal expressing c-Met with which the antibody cross-reacts (i.e. a rat, or a cynomologus monkey) for veterinary puφoses or as an animal model of human disease. Such animal models may be useful for evaluating the therapeutic efficacy of antibodies of this invention. [0236] As used herein, the term "a disorder in which c-Met activity is detrimental" is intended to include diseases and other disorders in which the presence of high levels of c-Met in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Such disorders may be evidenced, for example, by an increase in the levels of c-Met on the cell surface or in increased tyrosine autophosphorylation of c-Met in the affected cells or tissues of a subject suffering from the disorder. The increase in c- Met levels may be detected, for example, using an anti-c-Met antibody as described above.
[0237] In one embodiment, an anti-c-Met antibody may be administered to a patient who has an c-Met-expressing tumor. A tumor may be a solid tumor or may be a non-solid tumor, such as a lymphoma. In a more preferred embodiment, an anti-c-Met antibody may be administered to a patient who has an c-Met-expressing tumor that is cancerous. In an even more preferred embodiment, the anti-c-Met antibody is administered to a patient who has a c-Met-expressing tumor of the lung, breast, prostate, or colon. In another preferred embodiment, the anti-c-Met antibody is administered to a patient who has a glioblastoma tumor that expresses c-Met. In a highly preferred embodiment, the method causes the tumor not to increase in weight or volume or to decrease in weight or volume. In another embodiment, the method prevents HGF binding to c-Met on the surface of the tumor cells or results in a down-regulation of c-Met cell surface protein. In a preferred embodiment, the antibody is selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-A14P; 13.3.2H-E42K; 13.3.2H-A14P,E42K; 13.3.2H-S97T; 13.3.2H- E42K,S97T; 13.3.2H-A14P,E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-A14P; 13.3.2L-A91T,H-E42K; 13.3.2L-A91T,H-A14P,E42K; 13.3.2L-A91T.H- E42K,S97T or 13.3.2L-A91T,H-A14P,E42K,S97T, or comprises a heavy chain, light chain or antigen-binding region thereof.
[0238] In another preferred embodiment, an anti-c-Met antibody may be administered to a patient who expresses inappropriately high levels of c-Met. It is known in the art that high-level expression of c-Met can lead to a variety of common cancers. In one embodiment, said method relates to the treatment of cancer such as brain, squamous cell, bladder, gastric, pancreatic, breast, head and neck, esophageal, prostate, colorectal, lung, renal, kidney, ovarian, gynecological or thyroid cancer. Patients that can be treated with a compounds of the invention according to the methods of this invention include, for example, patients that have been diagnosed as having lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynecologic tumors (e.g., uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (e.g., cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphocytic lymphomas, cancer of the bladder, cancer of the kidney or ureter (e.g., renal cell carcinoma, especially hereditary and sporadic papillary renal cell carcinomas that have activating mutations in the c-Met kinase domain, carcinoma of the renal pelvis), or neoplasms of the central nervous system (e.g., primary CNS lymphoma, spinal axis tumors, brain stem gliomas or pituitary adenomas). In a more preferred embodiment, the anti-c-Met antibody is administered to a patient with breast cancer, prostate cancer, lung cancer, colon cancer or a glioblastoma. In an even more preferred embodiment, the method causes the cancer to stop proliferating abnormally, or not to increase in weight or volume or to decrease in weight or volume.
[0239] The antibody may be administered once, but more preferably is administered multiple times. The antibody may be administered from three times daily to once every six months or longer. The administering may be on a schedule such as three times daily, twice daily, once daily, once every two days, once every three days, once weekly, once every two weeks, once every month, once every two months, once every three months and once every six months. The antibody may also be administered continuously via a minipump. The antibody may be administered via an oral, mucosal, buccal, intranasal, inhalable, intravenous, subcutaneous, intramuscular, parenteral, intratumor or topical route. The antibody may be administered at the site of the tumor, into the tumor, or at a site distant from the site of the tumor. The antibody may be administered once, at least twice or for at least the period of time until the condition is treated, palliated or cured. The antibody generally will be administered for as long as the tumor is present provided that the antibody causes the tumor or cancer to stop growing or to decrease in weight or volume. The antibody will generally be administered as part of a pharmaceutical composition as described supra. The dosage of antibody will generally be in the range of 0.1-100 mg/kg, more preferably 0.5-50 mg/kg, more preferably 1-20 mg/kg, and even more preferably 1-10 mg/kg. The serum concentration of the antibody may be measured by any method known in the art. [0240] In another aspect, the anti-c-Met antibody may be co-administered with other therapeutic agents, such as anti-neoplastic drugs or molecules, to a patient who has a hypeφroliferative disorder, such as cancer or a tumor. In one aspect, the invention relates to a method for the treatment of the hypeφroliferative disorder in a mammal comprising administering to said mammal a therapeutically effective amount of a compound of the invention in combination with an antitumor agent selected from the group consisting of, but not limited to, mitotic inhibitors, alkylating agents, anti-metabolites, intercalating agents, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, kinase inhibitors, matrix metalloprotease inhibitors, genetic therapeutics and anti-androgens. In a more preferred embodiment, the antibody may be administered with an antineoplastic agent, such as adriamycin or taxol. In another preferred embodiment, the antibody or combination therapy is administered along with radiotherapy, chemotherapy, photodynamic therapy, surgery or other immunotherapy. In yet another preferred embodiment, the antibody will be administered with another antibody. For example, the anti-c-Met antibody may be administered with an antibody or other agent that is known to inhibit tumor or cancer cell proliferation, e.g., an antibody or agent that inhibits erbB2 receptor, EGF-R, CD20 or VEGF. [0241] Co-administration of the antibody with an additional therapeutic agent (combination therapy) encompasses administering a pharmaceutical composition comprising the anti-c-Met antibody and the additional therapeutic agent as well as administering two or more separate pharmaceutical compositions, one comprising the anti-c-Met antibody and the other(s) comprising the additional therapeutic agent(s). Further, although co-administration or combination therapy generally means that the antibody and additional therapeutic agents are administered at the same time as one another, it also encompasses instances in which the antibody and additional therapeutic agents are administered at different times. For instance, the antibody may be administered once every three days, while the additional therapeutic agent is administered once daily. Alternatively, the antibody may be administered prior to or subsequent to treatment of the disorder with the additional therapeutic agent, for example after a patient has failed therapy with the additional agent. Similarly, administration of the anti-c-Met antibody may be administered prior to or subsequent to other therapy, such as radiotherapy, chemotherapy, photodynamic therapy, surgery or other immunotherapy
[0242] The antibody and one or more additional therapeutic agents (the combination therapy) may be administered once, twice or at least the period of time until the condition is treated, palliated or cured. Preferably, the combination therapy is administered multiple times. The combination therapy may be administered from three times daily to once every six months. The administering may be on a schedule such as three times daily, twice daily, once daily, once every two days, once every three days, once weekly, once every two weeks, once every month, once every two months, once every three months and once every six months, or may be administered continuously via a minipump. The combination therapy may be administered via an oral, mucosal, buccal, intranasal, inhalable, intravenous, subcutaneous, intramuscular, parenteral, intratumor or topical route. The combination therapy may be administered at a site distant from the site of the tumor. The combination therapy generally will be administered for as long as the tumor is present provided that the antibody causes the tumor or cancer to stop growing or to decrease in weight or volume.
[0243] In a still further embodiment, the anti-c-Met antibody is labeled with a radiolabel, an immunotoxin or a toxin, or is a fusion protein comprising a toxic peptide. The anti-c-Met antibody or anti-c-Met antibody fusion protein directs the radiolabel, immunotoxin, toxin or toxic peptide to the c-Met-expressing tumor or cancer cell. In a preferred embodiment, the radiolabel, immunotoxin, toxin or toxic peptide is internalized after the anti-c-Met antibody binds to the c-Met on the surface of the tumor or cancer cell.
[0244] In another aspect, the anti-c-Met antibody may be used to treat non- cancerous diseases or conditions that are associated with c-Met. In one embodiment, the method comprises the step of administering an anti-c-Met antibody to a patient who has a non-cancerous pathological state caused or exacerbated by c-Met activity. In a more preferred embodiment, the anti-c-Met antibody slows the progress of the non-cancerous pathological state. In a more preferred embodiment, the anti-c-Met antibody stops or reverses, at least in part, the non-cancerous pathological state.
[0245] In another aspect, the invention provides a method of administering an activating anti-c-Met antibody to a patient in need thereof. In some embodiments, the activating antibody or a pharmaceutical composition comprising it is administered to a patient in need thereof an amount effective to increase c-Met activity. In a preferred embodiment, the activating antibody is able to restore normal c-Met activity. In another preferred embodiment, the activating antibody may be administered to a patient who is need of tissue regeneration. In another embodiment, the activating antibody may be administered to a patient to treat renal or tubulointerstitial fibrosis. In another embodiment, the activating anti-c-Met antibody may be administered to a patient to treat problems associated with transplant surgery, for example, to treat ischemia associated with kidney transplant rejection. In another embodiment, the activating antibody can be used to attenuate toxicity associated with cyclosporin treatment after transplant surgery. In another embodiment, the activating anti-c-Met antibody may be administered to treat myocardial infarction, cardiac ischemia due to reperfusion injury, restenosis after angioplasty, or vascular diseases such as arteriosclerosis obliterans. In another embodiment, the activating antibody may be administered to heal a wound, for example, refractory skin ulcers or to treat gastic ulcers. In another preferred embodiment, the activating antibody may be administered with one or more other factors that enhances a therapeutic procedure such as tissue regeneration or increase c-Met activity. Such factors include growth factors such as HGF, and/or analogues of HGF that activate c-Met. In a preferred embodiment, the antibody is selected from 13.3.2; 9.1.2; 8.70.2; 8.90.3, variants thereof or comprises a heavy chain, light chain or antigen-binding portion thereof.
Gene Therapy
[0246] The nucleic acid molecules of the present invention can be administered to a patient in need thereof via gene therapy. The therapy may be either in vivo or ex vivo. In a preferred embodiment, nucleic acid molecules encoding both a heavy chain and a light chain are administered to a patient. In a more preferred embodiment, the nucleic acid molecules are administered such that they are stably integrated into chromosomes of B cells because these cells are specialized for producing antibodies. In a preferred embodiment, precursor B cells are transfected or infected ex vivo and re-transplanted into a patient in need thereof. In another embodiment, precursor B cells or other cells are infected in vivo using a virus known to infect the cell type of interest. Typical vectors used for gene therapy include liposomes, plasmids and viral vectors. Exemplary viral vectors are retroviruses, adenoviruses and adeno-associated viruses. After infection either in vivo or ex vivo, levels of antibody expression can be monitored by taking a sample from the treated patient and using any immunoassay known in the art or discussed herein.
[0247] In a preferred embodiment, the gene therapy method comprises the steps of administering an isolated nucleic acid molecule encoding the heavy chain or an antigen-binding portion thereof of an anti-c-Met antibody and expressing the nucleic acid molecule. In another embodiment, the gene therapy method comprises the steps of administering an isolated nucleic acid molecule encoding the light chain or an antigen-binding portion thereof of an anti-c-Met antibody and expressing the nucleic acid molecule. In a more preferred method, the gene therapy method comprises the steps of administering of an isolated nucleic acid molecule encoding the heavy chain or an antigen-binding portion thereof and an isolated nucleic acid molecule encoding the light chain or the anti gen -binding portion thereof of an anti-c-Met antibody of the invention and expressing the nucleic acid molecules. The gene therapy method may also comprise the step of administering another anti-cancer agent, such as taxol or adriamycin. [0248] In order that this invention may be better understood, the following examples are set forth. These examples are for puφoses of illustration only and are not to be construed as limiting the scope of the invention in any manner.
EXAMPLE I Generation of Hybridomas Producing Anti-c-Met Antibody [0249] Antibodies of the invention were prepared, selected, and assayed as follows: Eight to ten week old XenoMouse mice were immunized intraperitoneally or in their hind footpads with either a c-Met extracellular domain fusion protein (10 μg/dose/mouse) (R&D Systems, Catalog #358MT) or with a NIH-3T3 transfected cell line that express human c-Met on its plasma membrane (10 x 106 cells/dose/mouse). This dose was repeated five to seven times over a three to eight week period. Four days before fusion, the mice were given a final injection of the extracellular domain fusion protein of human c-Met in PBS. The spleen and lymph node lymphocytes from immunized mice were fused with the non-secretory myeloma P3-X63-Ag8.653 cell line, and these fused cells were subjected to HAT selection as previously described (Galfre and Milstein, Methods Enzymol. 73:3-46, 1981). A panel of hybridomas was recovered that all secrete c-Met specific human IgG2 antibodies. Four hybridomas were selected for further study and were designated 13.3.2; 9.1.2; 8.70.2 and 8.90.3. The hybridomas were deposited under terms in accordance with the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 201 10-2209 on March
4, 2003. The hybridomas have been assigned the following accession numbers: Hybridoma 13.3.2 (LN 15883) PTA-5026 Hybridoma 9.1.2 (LN 15884) PTA-5027 Hybridoma 8.70.2 (LN 15885) PTA-5028 Hybridoma 6.90.3 (LN 15886) PTA-5029 EXAMPLE II Sequences of Anti-c-Met- Antibodies Prepared in Accordance with the Invention [0250] To analyze the structure of antibodies produced in accordance with the invention, nucleic acids were cloned that encode heavy and light chain fragments from hybridomas producing anti-c-Met monoclonal antibodies 13.3.2; 9.1.2; 8.70.2 and 8.90.3. Cloning and sequencing was accomplished as follows: [0251] Poly(A)+ mRNA was isolated using a Fast-Track kit (Invitrogen) from approximately 2 X 105 hybridoma cells derived from XenoMouse™ mice immunized with human c-Met. cDNA was synthesized from the mRNA by using random primers. The random primed cDNA was amplified using human VH or human V/c family specific variable domain primers (Marks et al, "Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes." Eur. J. Immunol. 21:985-991 (1991)) or a universal human VH primer [MG-30, 5'- CAGGTGCAGCTGGAGCAGTCIGG-3'] (SEQ ID NO: 25)], in conjunction with primers specific for the human C"y2 constant region, MG-40d [5'-GCTGAGGGAGTAGAGTCCTGAGGA-3' (SEQ ID NO: 26)] or a CK constant region [h/cP2; as previously described in Green et al., 1994]. Nucleic acid molecules were obtained that encode human heavy and kappa light chain transcripts from the anti-c-Met producing hybridomas by direct sequencing of PCR products generated from poly(A+) RNA using the primers described above. The PCR products were cloned into pCRII (Invitrogen) using a TA cloning kit (Invitrogen) and both strands were sequenced using Prism dye-terminator sequencing kits (Applied Biosystems Inc) and an ABI 377 sequencing machine (Applied Biosystems Inc). All sequences were analyzed by alignments to the "V BASE sequence directory" (Tomlinson et al., MRC Centre for Protein Engineering, Cambridge, UK) using Mac Vector and Geneworks software programs.
[0252] Monoclonal antibodies 13.3.2; 9.1.2; 8.70.2 and 8.90.3 were subjected to full length DNA cloning and sequencing. For such sequencing, RNA was isolated from approximately 2 X 106 hybridoma cells using QIAGEN RNeasy RNA isolation kit (QIAGEN). The mRNA was reverse transcribed using random hexamers (Roche Applied Science) and the Superscript II RNase H- reverse transcriptase kit (Invitrogen). V Base was used to design forward amplification primers that included restriction sites, optimal Kozak sequence, the ATG start site and part of the signal sequence of the heavy chain. Table 2 lists the forward amplification primers used to obtain the antibody clones. TABLE 2
Figure imgf000084_0001
The same method was used to design a primer to include the 3 ' coding sequences, the stop codon of the IgG2 constant region [5'-TTCTCTGATCAGAATTCC TATCATTTACCCGGAGACAGGGAGAG-3' (SEQ ID NO:27)] and restriction sites.
[0253] The same method was used to design a primer around the ATG start site of the kappa chain [5'- TATCTAAGCTTCTAGACGCCACCATGGACATGAGGGTCCCCGCT-3'(SEQ ID NO:28)] An optimal Kozak sequence (CCGCCACC) was added 5' to the ATG start site. This primer was used to PCR clone the light chains of antibody clones 13.3.2; 8.70.2 and 8.90.3. A second forward primer [5'- TATCTAAGCTTCTAGACGCCACCATGGAAACCCCAGCGCAGCTTC-3' (SEQ ID NO:29)] was used to clone the light chain of clone 9.1.2. The same method also was used to design a primer around the stop codon of the kappa constant region [5'-
TTCTTTGATCAGAATTCTCACTAACACTCTCCCCTGTTGAAGC-3 ' (SEQ ID NO:30)]. Platinum Pfx DNA Polymerase (Invitrogen) was used with the primer pairs to amplify the cDNAs. The PCR product was cloned into pCR-Blunt-II- TOPO (Invitrogen) to obtain the sequence of three to five clones for each kappa chain gene using standard techniques (e.g., primer walking) which employed dye- terminator sequencing kits and an ABI PRISM 3700 DNA Analyzer (Applied Biosystems Inc). The PCR product was cloned into a mammalian expression vector and clones were sequenced to confirm somatic mutations. For each clone, the sequence was verified on both strands in at least three reactions.
Gene Utilization Analysis
[0254] From the nucleic acid sequence and predicted amino acid sequence of the antibodies, the gene usage was identified for each antibody chain. Table 3 sets forth the gene utilization of selected hybridoma clones of antibodies in accordance with the invention:
Table 3 Heavy and Light Chain Gene Utilization
Figure imgf000085_0001
[0255] Mutagenesis of specific residues of the heavy and light chains was carried out by designing primers and using the QuickChange Site Directed Mutagenesis Kit from Stratagene, according to the manufacturer's instructions. Mutations were confirmed by automated sequencing, and mutagenized inserts were subcloned into expression vectors. These expression vectors were transfected into NSO (ECACC # 851 10503) and HEK-293T cells (American Type Culture Collection) to express recombinant antibodies of the invention. EXAMPLE III Human Anti-c-Met Antibodies Block Binding of HGF to c-Met
[0256] In vitro assays to measure HGF binding to c-Met in the presence of anti- c-Met antibodies were conducted to determine if the anti-c-Met antibodies were capable of inhibiting HGF binding to c-Met and their degree of inhibition. [0257] Wells of a 96-well tissue culture plate were coated with 100 μl of a 5 μg/ml solution comprising c-Met ECD/Fc (R&D Systems #358 MT) in phosphate buffered saline (PBS) overnight at room temperature. The plates were kept at 4°C until needed for experiments. The wells were washed four times with Tris- buffered saline (pH=8.0) with .05% TWEEN-20 (TBS-T). Next, 200 μl/well of blocking buffer (3%> bovine serum albumin (BSA) in TBS-T) was added for 60 minutes (min) at room temperature to block non-specific binding sites. The wells were washed 4 times with 300 μl/well TBS-T. Next, 100 μl of Dulbecco's Modified Eagle medium (DMEM) supplemented with 10%> FBS containing anti-c- Met antibodies from hybridoma supernatants or purified antibodies in either PBS or 20mM sodium acetate (pH=5.5), 140 mM NaCl at various concentrations (e.g., 10, 3, 1, 0.3, 0.1, 0.03, and 0.01 μg/ml, based on human IgG2 concentrations in the supernatants) was added to each well. Anti-c-Met antibody was not added to the control wells of the experiment. The samples were mixed for 4 hours (hrs) at room temperature. Next, 10 μl of 100 ng/ml HGF in serum-free DMEM was added to each well. The samples were mixed for 15 minutes at room temperature. The wells were washed 4 times with 300 μl/well/wash TBS-T. Next, 100 μl of a 1:2000 dilution of lOOμg/ml anti-HGF biotinylated antibody in blocking buffer was added. The solutions were incubated in the wells for 30 min at room temperature. The wells were washed 5 times with 300 μl/well TBS-T. Next, 100 μl/well of a 1.25 mg/ml streptavidin-horseradish peroxidase (HRP) at a 1:5000 dilution in blocking buffer was added. The samples were incubated for 30 min at room temperature. The wells were washed 5 times with TBS-T, about 300 μl/well/wash. Next, 100 μl/well of 3, 3', 5, 5' -tetramethylbenzidine (TMB) peroxidase substrate (Kirkegaard & Perry Laboratories) was added and developed for 1-2 min at room temperature. To stop the reaction, 100 μl/well of TMB stop solution (Kirkegaard & Perry Laboratories, #50-85-04) was added. The samples were read at a wavelength of 450 nanometers (nm) on a 96-well plate reader and no background was subtracted. [0258] These experiments demonstrate that the anti-c-Met antibodies inhibited the binding of HGF compared to control samples. Ligand Binding Assay (Table 4) shows the IC5o for inhibition of ligand binding for antibodies 13.3.2; 9.1.2; 8.70.2 and 8.90.3.
Table 4
Figure imgf000087_0001
ND: Not Done
10 EXAMPLE IV Inhibition of c-Met Phosphorylation by Anti-c-Met Antibodies [0259] Anti-c-Met antibodies of the invention were used to measure inhibition of 15 c-Met phosphorylation in cells after stimulation with HGF. [0260] A549 cells were plated at a density of lxl 05 cells per well in a total volume of 200 μl/well DMEM supplemented with 10% FBS in 96-well U-bottom tissue culture treated plates (Falcon, #3077). The plates were incubated at 37°C in a 10%) CO2 atmosphere for 24 hrs. The media was gently aspirated from each well of the plates. Hybridoma supernatants to be tested were micro-centrifuged at
14,000 φm for 5-10 min and cells were treated with 200 μl/well of the hybridoma supernatant or a dilution thereof, or purified antibodies in either PBS or 20mM sodium acetate (pH=5.5), 140 mM NaCl. An irrelevant hybridoma supernatant was added to negative control wells. The cells were incubated at 37°C for a short time period (e.g., 4 hours) or a longer time period (e.g., 24 hours) and then stimulated by the addition of 22 μl/well of a 2 μg/ml solution of HGF in serum-free DMEM media or Hank's buffer to give a final concentration 44 ng/well of HGF. The plates were incubated for 15 min at 37°C, then the media was gently aspirated from the wells of the plates. The cells were washed with cold PBS containing 1 mM Na3VO4 and the solution was gently aspirated from the plates. The cells were lysed with 50 μl lysis buffer (NP-40 Lysis buffer: 150 mM NaCl, 20 mM Tris-HCl pH=8.0, 1% NP-40, 10 mM EDTA, 10% glycerol), with freshly added 1 mM Na3VO and protease inhibitors (Complete tablet, Roche #1-873-580, used according to manufacturer's directions). The plates were shaken at room temperature for 10 minutes. The plates could then be stored at - 20°C until needed for ELISA.
[0261] An ELISA was used to detennine c-Met phosphorylation levels. For ELISA plate preparation, Reacti-Bind Goat anti-rabbit coated plates were washed three times with wash buffer (TBS-T Sigma #T-9039). Next, 100 μl of c-Met polyclonal capture antibody (Santa Cruz, sc-10) in dilution buffer (10%>
SuperBlock from Pierce in TBS-T) (final concentration of 5 μg/ml) was added. The plates were incubated at room temperature with shaking for 2 hrs and then the plates were washed five times with TBS-T. Non-specific binding sites were blocked with 200 μl/well Superblock in TBS-T for 30 min at room temperature, while shaking. Just before use, the blocking solution from Reacti-Bind plates, was aspirated. [0262] Cell lysates were prepared by adding 100 μl of dilution buffer containing 1 mM Na3VO4 and pipetting the lysates up and down and scraping the wells with the tips. Next, 100 μl/well of cell lysates diluted 1:3 were added to the Reacti-Bind plates and the plates were incubated at room temperature for 60 min while shaking. The plates were washed five times with TBS-T. Next, 100 μl/well of 1 μg/ml anti- phosphotyrosine antibody PY20-HRP (Transduction Labs, #P11625) in 3% bovine serum albumin-TBS-T containing 1 mM Na3VO was added. The plates were incubated for 2 hrs at room temperature while shaking. The plates were washed five times with TBS-T, with the washes removed by aspiration. The plates were blotted on paper towels to remove excess liquid. Next, 100 μl/well of TMB peroxidase substrate solution (Kirkegaard & Perry Laboratories, #50-76-04) was added and was developed while gently shaking for 4-5 min at room temperature. The reactions were stopped with 100 μl/well of TMB stop solution (Kirkegaard & Perry Laboratories, #50-85-04). The plates were read at a wavelength of 450 nm using a 96-well plate reader.
[0263] These experiments demonstrate that the anti-c-Met antibodies inhibited c- Met phosphorylation in cells stimulated with HGF compared to control cells. Cellular phospo-Tyrosine Assay (Table 4) shows the IC50 for inhibition of cellular c-Met phosphorylation for antibodies 13.3.2; 9.1.2; 8.70.2 and 8.90.3 (Cellular pTyr Assay).
EXAMPLE V Downregulation of c-Met with Anti-c-Met Antibodies in Cells following Stimulation with HGF [0264] An assay was conducted to measure the inhibitory effect of anti-c-Met antibodies on c-Met expression levels in cells stimulated with HGF. [0265] A549 cells lysates were prepared as described in Example TV. To determine c-Met levels, an ELISA was performed. The ELISA was performed essentially as described in Example IV with the following changes: instead of using an anti-phospho-tyrosine antibody, 100 μl UBl 05-237 antibody (ascites) (Anti-Met, ECD, clone DO24 Upstate Biotechnology, #21601) diluted 1:1000 in 3%o BSA-TBS-T (with 1 mM Na3VO4) was added to each well. The incubation and wash steps were the same as in Example IV. Next, 100 μl/well of 0.8 mg/ml Goat Anti-Mouse IgG conjugated to (H+L)-HRP (Jackson ImmunoResearch Labs, #115-035-146 reconstituted in 750 μl water + 750 μl glycerol), diluted 1:5000 in 3%o BSA-TBS-T, was added. The plates were incubated for 60 min at room temperature while shaking. The wash and detection steps were the same as in Example IV.
[0266] These experiments demonstrate that c-Met levels are somewhat downregulated in cells after stimulation with HGF in the presence of the anti-c- Met antibodies, compared to control cells stimulated with HGF (Cellular Met Levels Downregulation, See Cellular Met Levels Table 4). EXAMPLE VI Anti-Proliferative Effects of Anti-c-Met Antibodies on Cells Grown in Soft Agar
[0267] Soft agar growth assays were conducted to measure the anti-proliferative effects of anti-c-Met antibodies.
[0268] SI 14 tumor cells, NIH-3T3 cells engineered to express human HGF and human c-Met, were maintained in DMEM supplemented with 10% Calf Serum, 1,000 units/ml penicillin, 1,000 μg/ml streptomycin and 2 mM L-glutamine (growth medium). The cell cultures were trypsinized and washed in serum-free DMEM and adjusted the concentration to 50,000 cells/ml. The purified antibodies in either PBS or 20mM sodium acetate (pH=5.5), 140 mM NaCl were prepared in 15 ml tubes at 10 times the various final concentrations used. Two agar layers of 0.5 (bottom) and 035% (top) diluted in cell growth media in 35 mm petri dishes were prepared. The bottom layer consisted of growth medium containing 0.5%> agar in a total volume of 2 ml. The top layer consisted of growth media containing 0.35%) agar, 5,000 SI 14 cells, and the antibody treatment at a final concentration of between 0.625 - 50 μg/ml in a 1 ml total volume, which was plated on top of the bottom agar layer. This solution was allowed to solidify at room temperature and incubated overnight at 37°C in a 10% CO2 atmosphere. 24 hrs later, 0.5 ml media was added with an appropriate antibody treatment to keep it moist and the dishes were incubated at 37°C in a 10%> CO2 atmosphere for an additional 7-10 days. The media was removed and replaced with 0.5 ml of 1 mg/ml p-Iodonitrotetrazolium violet in PBS for 48 hrs. The number of colonies was counted with ROBOT (Ludel Electronics, Ltd.) using ETC3000 software (Engineering Technology Center).
[0269] These experiments demonstrate that the anti-c-Met antibodies inhibited proliferation of cells grown in soft agar. Soft Agar Growth (Table 4) shows the IC50 for inhibition of proliferation of the cells in soft agar for antibodies 13.3.2; 9.1.2; 8.70.2 and 8.90.3.
EXAMPLE VII Inhibition of c-Met-dependent Cellular Moφhological Changes in Cells with Anti-c-Met Antibodies
[0270] HepG2 cells, which express c-Met, form tubular structures when grown in MATRIGEL™ (Becton-Dickinson), an extracellular matrix material containing components of the basement membrane, in the presence of HGF. Assays were conducted using HepG2 cells to measure tube formation (tubular moφhogenesis) and its inhibition when cells are grown in the presence of HGF and treated with anti-c-Met antibodies.
[0271 ] Two ml of a media-MATRIGEL™ solution (MATRIGEL1 M (Becton- Dickinson) diluted in Opti-MEM I (Invitrogen), 10% heat inactivated FBS, 2 mM L-glutamine, and IX penicillin streptomycin)) was plated in 35 millimeter (mm) tissue culture plates. After the media-MATRIGEL™ solution solidified, 1 ml medium supplemented with 10%o serum and 40,000 HepG2 cells was added. Next, HGF (final concentration 50 ng/ml) and/or c-Met antibodies (final concentration of 1, 5 or 10 μg/ml) were added to the medium. The cells were grown for 4 days at 37°C in a 10%> CO2 atmosphere. At the end of the 4 days, the top medium was removed and 0.5 ml of 1 mg/ml p-Iodonitrotetrazolium violet in PBS was added for 48 hrs. Pictures were taken of the stained 35 mm plates and analyzed using ImagePro (Media Cybernetics, Silver Spring, MD).
[0272] These experiments demonstrate that the anti-c-Met antibodies inhibit c-Met-dependent tubular moφhologenic changes when cells expressing c-Met are grown in the presence of HGF compared to control samples. Table 4 shows inhibition of tubular moφhogenesis for antibodies 9.1.2; 8.70.2 and 8.90.3 at 1 μg/ml concentration. EXAMPLE VIII Determination of Affinity Constants (Kp) of Anti-c-Met Monoclonal Antibodies by BIACORE™ [0273] The binding affinity of purified antibodies was determined using surface plasmon resonance using the BIACORE™ 3000 instrument (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.), following the manufacturer's protocols. [0274] Experiments were performed in a BIACORE™ 3000 instrument at 25 °C in Dulbecco's phosphate buffered saline containing 0.0005% Tween-20. Protein concentrations were obtained from sedimentation velocity experiments or by measuring the wavelength of the sample at 280 nm using theoretical extinction coefficients derived from amino acid sequences. For experiments measuring the binding of antibody to immobilized antigens, 220 RU (resonance units) of c-Met ECD-Fc (human or cynomologus) was immobilized on a Bl chip (BIACORE ) by standard direct amine coupling procedures. Antibody samples were prepared at 0.69 μM for 13.3.2; 8.70.2 and 8.90.3 and at 0.23 μM for 9.1.2. These samples were diluted 3-fold serially to 8.5 nM or 2.8 nM for roughly a 100-fold range in concentrations. For each concentration, samples were injected in duplicate at 5 μl/min flow for 4 min. The dissociation was monitored for 2000 seconds. The data were fit globally to a simple 1 : 1 binding model using BIACORE Biavel software. In addition, to determine the k0fτ independent of any potential error in the active concentration or fitting model, the dissociation data were fit globally and independently from association data to a simple dissociation model. In all cases, this method was used to obtain k0ff and found that they compared well to data obtained from global fit of association and dissociation data. [0275] Table 5 displays KD and ko f data generated with antibodies 13.3.2; 8.70.2; 8.90.3 and 9.1.2. Table 5
Figure imgf000093_0001
EXAMPLE IX 5 Determination of Affinity Constants (Kn) of Anti-c-Met Monoclonal Antibodies with flow cytometry [0276] The binding affinity of purified antibodies for c-Met expressed on the surface of human A549 lung carcinoma cells and cynomolgus kidney cells was determined by flow cytometry using the BD™ Biosciences LSR flow cytometer 10 according to manufacturer' s protocols. [0277] Cells grown in culture were washed with PBS, briefly incubated in the presence of 0.25%> trypsin-EDTA (Invitrogen) and collected. The collected cells were washed in PBS wash buffer containing 0.025% sodium azide and 2 % heat inactivated serum, pelleted and 5 x 105 cells and resuspended in 500 μl of the same 15 buffer. The time required to achieve equilibrium binding at room temperature for each antibody was determined independently to be between six and eight hours by incubating subsaturating concentrations of each antibody with cells. Next, half- maximal binding (KD) of each antibody was determined from the geometric mean of fluorescence intensity for antibody concentrations ranging from 0.1 ng/ml to 3 20 μg/ml. Each antibody was incubated with detached cells for 6 to 8 hours at room temperature depending on the time required to reach equilibrium. Cells were washed, resuspended and incubated in 500 μl of a 1 :500 dilution of biotinylated mouse anti-human IgG (Jackson Labs) in PBS wash buffer for 45 minutes on ice. Next, cells were washed, resuspended and incubated with 10 μg/ml streptavidin R- 25 phycoerythrin conjugate (Caltag) in 200 μl PBS wash buffer for 15 min on ice protected from light. Cells were washed and signal was detected with a BD Biosciences LSR flow cytometer according to manufacturer's protocols. [0278] These experiments demonstrate that each of the described anti-c-Met antibodies bind to human and cynomologus c-Met expressed on the cell surface with comparable affinities (see Table 6).
Table 6
Figure imgf000094_0001
EXAMPLE X Inhibition of Tumor Growth In Vivo with Anti-c-Met Antibodies [0279] In vivo assays were conducted to measure tumor growth inhibition of 10 solid tumors after treatment with anti-c-Met antibodies. [0280] SI 14, U87 (human glioblastoma cells), GTL-16 (human gastric tumor cells) and A549 (human lung carcinoma epithelial cells) were maintained in DMEM (Invitrogen) supplemented with 10 % heat inactivated FBS (Invitrogen), 2 mM L-Glutamine (Invitrogen), and 1% [volume/volume] penicillin (1,000 15 units/ml)-streptomycin (1,000 μg/ml)(Invitrogen) in a 37°C/10%> CO2 tissue culture incubator. To inoculate athymic (nu/nu) mice with tumor cells, 0.25% trypsin in 1 mM EDTA was used to remove tumor cells from their tissue culture flasks. The cells were counted and diluted with Hank's Buffered Saline Solution. Using 1.0- 5.0 x 106 tumor cells in a final volume of 0.2 ml Hank's Buffered Saline Solution, 20 the tumor cells were inoculated subcutaneously into each animal subject. Once tumors had reached 100-200 mm3 in size (day 5 post-inoculation for SI 14 and U87 tumors, about 15-20 days for A549 tumors and about 6 days for GTL-16 tumors), 200 μl of antibody solution was injected. The antibodies were stored in 20 mM sodium acetate, pH 5.5, 140 mM sodium chloride and were diluted with sterile phosphate buffered saline to the desired antibody concentration. Either 100 μg or 200 μg antibody were injected into the intraperitoneal (IP) cavity of each experimental animal subject. Vehicle solutions were administered to control animals. Tumor sizes were measured in the mice using calipers every two to three days following IP delivery of the antibody solution until the termination of the experiments.
[0281] These experiments demonstrate that all of the anti-c-Met antibodies inhibit the growth of solid tumors in vivo compared to control animals. Further, by using various concentrations of antibodies, the percent of tumor growth inhibition by antibodies 13.3.2; 9.1.2; 8.70.2,8.90.3 and 13.3.2L-A91T, H-E42K, S97T(See Table 7) was determined. In the experiment summarized in Table 7, all antibodies were administered at a single intraperitoneal dose, except for the 41 -day experiment with A549 tumor-bearing animals, which involved four doses of antibody and the 21 day experiment with GTL-16 tumor-bearing animals, which involved two doses of antibody. Doses used were 200 μg for the SI 14 tumors, 100 μg for the U87 tumors, 200 μg for the A549 tumors and 200 μg for the GTL-16 tumors. The value in parentheses corresponds to a 200 μg dose of 13.3.2 in the U87 model. ND, not done in the experiment shown.
Table 7
Figure imgf000095_0001
EXAMPLE XI Agonist Activity with Anti-c-Met Antibodies
Activation of c-Met by Anti-c-Met Antibodies in the absence of HGF stimulation [0282] The activation of c-Met in cells incubated with anti-c-Met antibodies in the absence of HGF was measured to determine the agonist activity of the c-Met antibodies of the invention. An ELISA was used to determine whether c-Met was activated in the cells by measuring phosphorylation of c-Met. Between 0.01 - 10 μg/ml of antibody was added to A549 cells plated as described in Example IV, except the cells were not stimulated with HGF. The A549 cell lysates were prepared as described in Example IV. An ELISA was conducted as described in Example IV.
[0283] These experiments demonstrate that three of the antibodies tested show a weak, approximately 2-3 fold activation of c-Met, in the absence of HGF compared to cells not incubated with anti-c-Met antibody or HGF (See Table 4); however, antibody 9.1.2 showed a higher fold activation.
c-Met-dependent Cellular Morphological Changes in Cells Treated with Anti-c- Met Antibodies In the Absence of HGF
[0284] Tubular moφhogenesis assays were conducted to measure anti-c-Met antibody agonist activity. The assays were conducted as described in Example VII, except that the cells are grown in the absence of HGF and treated with anti-c- Met antibodies (1, 10 and 50 μg/ml). The amount of tubular moφhogenesis was determined as described in Example VII. The assay shows that three anti-c-Met antibodies tested have weak to moderate agonist activity. Table 4 shows the amount of agonist activity as measured by tubular moφhogenesis for antibodies 9.1.2; 8.70.2 and 8.90.3
EXAMPLE XII
Inhibition of c-Met Phosphorylation and Induction of c-Met degradation by Anti-c- Met Antibodies in vivo
[0285] We determined the effects of the anti-c-Met antibodies on the phosphorylation state and protein levels of c-Met in vivo. Human tumor cells were introduced into athymic mice resulting in the formation of xenograft tumors according to the methods of V.A. Pollack et al., ("Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP- 358,774: Dynamics of receptor inhibition in situ and antitumor effects in athymic mice," J. Pharmacol. Exp. Ther. 291 :739-748 (1999)).
[0286] U87 human glioblastoma cells (5 xlO6) were injected subcutaneously into 3-4 week-old athymic (nu/nu) mice, and subsequently an anti-c-Met antibody of the present invention was injected intraperitoneally into mice harboring established tumors (approximately 300 mm3). Tumors were extracted at various times (1, 3, 6, 12, 24, 48, 72, 96, 168, and 216 hours) after antibody injection and homogenates were produced (1 ml lysis buffer/100 mg tumor weight) in order to assess c-Met phosphorylation and protein levels. Lysates containing two milligrams of protein were immunoprecipitated with 25 μl of sc-10 agarose beads (Santa Cruz) specific for c-Met for 2 hours at 4°C. The beads were washed and bound protein was eluted by boiling in Laemmli sample buffer for 5 min and separated by SDS-PAGE using 4-12%) gradient Novex™ gels. Immunocaptured proteins were then electroblotted to 0.45 μM PVDF membranes (Invitrogen). The membranes were blocked in 3%. BSA in PBS-T (0.5%o Tween 20) for 1 hour at room temperature and probed with the anti-phosphotyrosine-specific antibody PY100 (Cell Signaling Technology) followed by anti-mouse IgG-HRP to detect phosphoMet or sc-10- HRP (Invitrogen) to detect total Met protein. Signal was developed with ECL reagent (Amersham Biosciences) and detected by exposure of radiographic film (Kodak).
[0287] Figure 5 shows the serum 13.3.2L-A91T, H-E42K, S97T antibody levels, phospho c-Met levels and total c-Met protein levels over time. The experiment demonstrates that the decreased phospho c-Met and total c-Met protein levels are related to the antibody and that the degree of c-Met inhibition is dose proportional to the serum concentration of the antibody.
EXAMPLE XIII Epitope Mapping Studies [0288] Competition experiments using an ELISA format were performed to define epitope classes recognized by the antibodies of the invention. [0289] Wells of a 96-well plate were coated with 50 μl/well of a 0.5 μg/ml stock of human Met ECD-Fc in 0.1 M NaHCO3 buffer, pH 9.6 overnight at 4°C or for 2 hours at 37°C. The plates were washed in PBS, 0.05% Tween-20 (PBS-T) and blocked with 200 μl/well of blocking buffer (PBS containing 0.5% BSA, 0.1% Tween-20, and 0.01% thimerosal) at room temperature for one hour. After washing, 100 μl of antibody at various concentrations (15, 5, 1.7, and 0.6 μg/ml) in blocking buffer was added and the plates were incubated at room temperature for 1 hour. Next, 100 μl of a 83 pg/ml solution of biotinylated antibody (~ 4 biotins/molecule) in blocking buffer was added and the plates were incubated at room temperature for 1 hour. After washing, streptavidin-HRP was added and the plates were incubated at room temperature for 15 minutes. Binding was indicated by color development following the addition of 100 μl/well undilulted TMB peroxidase solution (BioFX Labs). Color development was terminated with 100 μl/well undiluted Stop solution (BioFX Labs) and quantitated by measurement at OD 5onm. [0290] These experiments demonstrate that monoclonal antibodies 13.3.2,
13.3.2L-A91T, H-E42K, S97T, 8.70.2, and 8.90.3 bind to a common epitope (bin 1 ) on the extracellular domain of c-Met and that monoclonal antibody 9.1.2 binds to a distinct epitope (bin 2). [0291] All publications and patent applications cited in this specification are incoφorated herein by reference as if each individual publication or patent application were specifically and individually indicated to be incoφorated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for puφoses of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Claims

What is Claimed Is:
1. A human monoclonal antibody or an antigen-binding portion thereof that specifically binds to c-Met.
2. The human monoclonal antibody or antigen-binding portion according to claim 1, wherein said antibody or portion possesses at least one of the following properties: (a) binds to human cells; (b) has a selectivity for c-Met that is at least 100 times greater than its selectivity for insulin-like growth factor 1 receptor; (c) binds to c-Met with a KD of 2.0 x 10"7 M or less; (d) has an off rate (koff) for c-Met 1.0 x 10"3 s"' or smaller; (e) binds human c-Met in the presence of human HGF.
3. The human monoclonal antibody or portion according to claim 2, wherein said antibody or portion binds c-Met with a KD of 2.0 x 10"7 M or less and inhibits HGF binding to c-Met.
4. A humanized, chimeric or human monoclonal antibody or antigen-binding portion thereof, that binds specifically to and inhibits human c- Met, wherein the antibody or portion thereof has at least one property selected from the group consisting of: (a) cross-competes for binding to c-Met with an antibody selected from the group consisting of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; 13.3.2L-A91T; and 13.3.2L-A91T,H-E42K; 13.3.2L- A91 T,H-E42K,S97T; (b) competes for binding to c-Met with an antibody selected from the group consisting of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; 13.3.2L-A91T; and 13.3.2L-A91T,H-E42K; 13.3.2L- A91T,H-E42K; (c) binds to the same epitope of c-Met as an antibody selected from the group consisting of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-E42K; and 13.3.2L- A91T,H-E42K; (d) binds to c-Met with substantially the same KD as an antibody selected from the group consisting of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-E42K; and 13.3.2L-A91T,H-E42K,S97T; and (e) binds to c-Met with substantially the same off rate as an antibody selected from the group consisting of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; 13.3.2L-A91T; 13.3.2L-A91T,H-E42K; and 13.3.2L-A91T,H-E42K.
5. A monoclonal antibody that specifically binds c-Met, wherein said antibody comprises: (a) a heavy chain comprising the amino acid sequence set forth in SEQ ID NO: 2 without a signal sequence, wherein X2 is lysine and X is threonine, and (b) a light chain comprising the amino acid sequence set forth in SEQ ID NO: 4 without a signal sequence, wherein X8 is threonine.
6. A monoclonal antibody that specifically binds c-Met, wherein the antibody is selected from the group consisting of: (a) an antibody comprising a heavy chain having the amino acid sequences set forth in SEQ ID NO: 2 where X2 is glutamate and X4 is serine and a light chain having the amino acid sequence set forth in SEQ ID NO: 4 where X is alanine, without the signal sequences; (b) an antibody comprising a heavy chain having the amino acid sequences set forth in SEQ ID NO: 6 and a light chain having the amino acid sequence set forth in SEQ ID NO: 8, without the signal sequences; (c) an antibody comprising a heavy chain having the amino acid sequences set forth in SEQ ID NO: 10 and a light chain having the amino acid sequence set forth in SEQ ID NO: 12, without the signal sequences; and (d) an antibody comprising a heavy chain having the amino acid sequences set forth in SEQ ID NO: 14 and a light chain having the amino acid sequence set forth in SEQ ID NO: 16, without the signal sequences. [
7. The human monoclonal antibody or antigen-binding portion according to claim 1, wherein said antibody or antigen-binding portion comprises: (a) a heavy chain CDRl , CDR2 and CDR3 independently selected from the heavy chain of an antibody selected from the group consisting of monoclonal antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H- E42K; and 13.3.2H-E42K,S97T; or (b) a light chain CDRl , CDR2 and CDR3 independently selected from the light chain of an antibody selected from the light chain of an antibody selected from the group consisting of monoclonal antibodies 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2L-A91T.
8. The human monoclonal antibody or antigen-binding portion according to claim 1 , wherein said antibody or portion comprises a heavy chain that utilizes a human VH 4-31 gene, human VH 4-39 gene, human VH 3-7 gene, human VH 1-18 gene or a human VH 3-33 gene.
9. The human monoclonal antibody or an antigen-binding portion thereof according to claim 8, wherein said antibody or portion comprises a light chain that utilizes a human VK L5 gene or a human VK A27 gene.
10. The human monoclonal antibody according to claim 1 wherein the VL and VH domains are at least 90% identical in amino acid sequence to the VL and VH domains, respectively, of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H- E42K; 13.3.2H-E42K,S97T; and 13.3.2L-A91T.
11. A monoclonal antibody or an antigen-binding portion thereof that specifically binds c-Met, wherein: (a) the heavy chain comprises the heavy chain CDRl , CDR2 and CDR3 amino acid sequences of an antibody selected from the group consisting of: 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; and 13.3.2H-S97T; (b) the light chain comprises the light chain CDRl, CDR2 and CDR3 amino acid sequences of an antibody selected from the group consisting of 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2L-A91T. (c) the antibody comprises a heavy chain of (a) and a light chain of (b); or (d) the antibody of (c) wherein the heavy chain and light chain CDR amino acid sequences are selected from the same antibody selected from the group consisting of: 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; 13.3.2H-S97T; and 13.3.2L-A91T.
12. The human monoclonal antibody or portion according to claim 11 : (a) wherein said heavy chain comprises the amino acid sequence of the variable domain of the heavy chain of an antibody selected from the group consisting of: 13.3.2 (SEQ ID NO:2, where X2 is glutamate and X4 is serine); 9.1.2 (SEQ ID NO:6); 8.70.2 (SEQ ID NO: 10); 8.90.3 (SEQ ID NO:14); 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H-E42K,S97T; , all without a signal sequence; (b) wherein said light chain comprises the amino acid sequence of the variable domain of the light chain of an antibody selected from the group consisting of 13.3.2 (SEQ ID NO:4, where X8 is alanine ); 9.1.2 (SEQ ID NO:8); 8.70.2 (SEQ ID NO: 12); 8.90.3 (SEQ ID NO:16); 13.3.2L-A91T, all without a signal sequence; (c) wherein said antibody or portion comprises both of said variable domains; or (d) wherein said antibody or portion comprises variable domain sequences from the same antibody selected from the group consisting of: 13.3.2 (SEQ ID NO:2, where X2 is glutamate and X4 is serine and SEQ ID NO:4, where X8 is alanine); 9.1.2 (SEQ ID NOS:6 and 8); 8.70.2 (SEQ ID NOS: 10 and 12); 8.90.3 (SEQ ID NOS: 14 and 16); 13.3.2H-E42K; 13.3.2H-S97T; 13.3.2H- E42K,S97T; and 13.3.2L-A91T, all without signal sequences.
13. The human monoclonal antibody according to claim 1 that specifically binds c-Met, wherein the antibody is selected from the group consisting of: (a) an antibody comprising the amino acid sequences set forth in SEQ ID NO: 4 wherein X8 is threonine and SEQ ID NO: 2 wherein X2 is lysine, X is serine. (b) an antibody comprising the amino acid sequences set forth in SEQ ID NO: 4 wherein X8 is threonine and SEQ ID NO: 2 wherein X4 is threonine and X2 is lysine; (c) an antibody comprising the amino acid sequences set forth in SEQ ID NO: 4 wherein X8 is threonine and SEQ ED NO: 2 wherein X2 is glutamate, X is serine; (d) an antibody comprising the amino acid sequences set forth in SEQ ID NO: 4 wherein X8 is alanine and SEQ ID NO: 2 wherein X2 is glutamate, X4 is threonine; (e) an antibody comprising the amino acid sequences set forth in SEQ ID NO: 4 wherein X8 is alanine and SEQ ID NO: 2 wherein X2 is lysine, X4 is serine; and (f) an antibody comprising the amino acid sequences set forth in SEQ ID NO: 4 wherein X8 is alanine and SEQ ID NO: 2 wherein X2 is lysine, X4 is threonine, all sequences without signal sequences.;
14. A pharmaceutical composition comprising the antibody or antigen-binding portion according to any one of claims 1 to 13 and a pharmaceutically acceptable carrier.
15. A method for treating a hypeφroliferative disorder in a subject in need thereof, comprising the step of administering to said subject an antibody or antigen-binding portion according to any one of claims 1 to 13 or the pharmaceutical composition according to claim 14, wherein said antibody or portion inhibits c-Met.
16. A method for promoting wound healing or tissue regeneration in a subject in need thereof, comprising the step of administering to the subject an antibody or antigen-binding portion according to any one of claims 1 to 13 or the pharmaceutical composition of claim 14, wherein said antibody, antigen-binding portion or pharmaceutical composition activates c-Met.
17. An isolated cell line that produces the antibody or antigen- binding portion according to any one of claims 1- to 13 or the heavy chain or light chain of said antibody or said portion.
18. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes the heavy chain or an antigen-binding portion thereof or the light chain or an antigen-binding portion thereof of an antibody according to any one of claims 1 to 13.
19. A vector comprising the nucleic acid molecule according to claim 18, wherein the vector optionally comprises an expression control sequence operably linked to the nucleic acid molecule.
20. A host cell comprising the vector according to claim 19 or the nucleic acid molecule according to claim 18.
21. A method for producing an anti-c-Met antibody or antigen- binding portion thereof, comprising culturing the host cell according to claim 20 or the cell line according to either of claim 17 under suitable conditions and recovering said antibody or antigen-binding portion.
22. A non-human transgenic animal or transgenic plant comprising the nucleic acid according to claim 18, wherein the non-human transgenic animal or transgenic plant expresses said nucleic acid.
23. A method for isolating an antibody or antigen-binding portion thereof that specifically binds to human c-Met, comprising the step of isolating the antibody from the non-human transgenic animal or transgenic plant according to claim 22.
24. A method for treating a subject in need thereof with an antibody or antigen-binding portion thereof that specifically binds to c-Met comprising the steps of (a) administering an effective amount of an isolated nucleic acid molecule encoding the heavy chain or the antigen-binding portion thereof, an isolated nucleic acid molecule encoding the light chain or the antigen- binding portion thereof, or both the nucleic acid molecules encoding the light chain and the heavy chain or antigen-binding portions thereof; and (b) expressing the nucleic acid molecule.
25. A method for making a human monoclonal antibody that specifically binds to c-Met, comprising the steps of: (a) immunizing a non-human transgenic animal that is capable of producing human antibodies with c-Met, an immunogenic portion of c- Met or a cell or tissue expressing c-Met; (b) allowing the transgenic animal to mount an immune response to c-Met; and (c) isolating B lymphocytes from transgenic animal.
26. An isolated antibody produced by the method according to claim 25.
27. A method for inhibiting HGF binding to cells expressing c- Met comprising contacting the cells with an antibody or antigen-binding portion according to any or claims 1 to 13.
28. A method for inhibiting monocyte proliferation comprising contacting the monocytes with an antibody or antigen-binding portion according to any one of claims 1 to 13.
29. The antibody or antigen-binding portion according to claim 1 selected from the group consisting of: (a) an antibody comprising the heavy chain amino acid sequence of antibody 13.3.2H-E42K and the light chain amino acid sequence set forth in SEQ ID NO: 4 where X8 is alanine, without the signal sequences; (b) an antibody comprising the heavy chain amino acid sequence of antibody 13.3.2H-E42K,S97T and the light chain amino acid sequence set forth in SEQ ID NO: 4 where X8 is alanine, without the signal sequences; (c) an antibody comprising the amino acid sequence of SEQ ID NO: 2 where X2 is glutamate and X is serine and the light chain amino acid sequence of antibody 13.3.2L-A91T, without the signal sequences; (d) an antibody comprising the heavy chain amino acid sequence of antibody 13.3.2H-E42K and the light chain amino acid sequence of antibody 13.3.2L-A91T, without the signal sequences; and (e) an antibody comprising the heavy chain amino acid sequence of antibody 13.3.2H-E42K,S97T and the light chain amino acid sequence of antibody 13.3.2L-A91T, without the signal sequences.
30. A monoclonal antibody or an antigen-binding portion thereof that specifically binds c-Met , wherein the antibody comprises one or more of an FRl, FR2, FR3 or FR4 amino acid sequence of an antibody selected from the group consisting of: antibody 13.3.2; 9.1.2; 8.70.2; 8.90.3; 13.3.2H-E42K; 13.3.2H-E42K,S97T; and 13.3.2L-A91T.
31. The human monoclonal antibody according to claim 1 , wherein the antibody comprises: (a) a heavy chain amino acid sequence that is at least 90% identical to the heavy chain amino acid sequence of monoclonal antibody 13.3.2, 9.1.2, 8.70.2 or 8.90.3, without the signal sequence; (b) a light chain amino acid sequence that is at least 90%> identical to the light chain amino acid sequence of monoclonal antibody 13.3.2, 9.1.2, 8.70.2 or 8.90.3, without the signal sequence; or (c) both (a) and (b).
PCT/US2004/025107 2003-08-04 2004-08-03 Antibodies to c-met WO2005016382A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006522679A JP2007501013A (en) 2003-08-04 2004-08-03 Antibody to c-Met
BRPI0413272-6A BRPI0413272A (en) 2003-08-04 2004-08-03 antibodies to c-met
EP04780015A EP1660127A4 (en) 2003-08-04 2004-08-03 Antibodies to c-met
CA002534563A CA2534563A1 (en) 2003-08-04 2004-08-03 Antibodies to c-met

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49243203P 2003-08-04 2003-08-04
US60/492,432 2003-08-04

Publications (1)

Publication Number Publication Date
WO2005016382A1 true WO2005016382A1 (en) 2005-02-24

Family

ID=32991033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/025107 WO2005016382A1 (en) 2003-08-04 2004-08-03 Antibodies to c-met

Country Status (15)

Country Link
US (4) US7498420B2 (en)
EP (1) EP1660127A4 (en)
JP (1) JP2007501013A (en)
AR (1) AR047717A1 (en)
BR (1) BRPI0413272A (en)
CA (1) CA2534563A1 (en)
GB (1) GB2404660A (en)
GT (1) GT200400149A (en)
HN (1) HN2004000285A (en)
NL (1) NL1026776C2 (en)
PA (1) PA8608401A1 (en)
PE (1) PE20050727A1 (en)
TW (1) TW200523269A (en)
UY (1) UY28453A1 (en)
WO (1) WO2005016382A1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015371A3 (en) * 2004-08-05 2006-08-03 Genentech Inc Humanized anti-cmet antagonists
WO2006104911A3 (en) * 2005-03-25 2007-02-22 Genentech Inc Methods and compositions for modulating hyperstabilized c-met
WO2007090807A1 (en) 2006-02-06 2007-08-16 Metheresis Translational Research S.A. Anti-met monoclonal antibody, fragments and vectors thereof, for the treatment of tumors and corresponding products
WO2007110698A2 (en) * 2005-11-16 2007-10-04 Fariba Nayeri Methods for inhibiting carcinogenesis and/or metastasis in an individual with endogenous c-met ligands and inhibitors
WO2007126799A3 (en) * 2006-03-30 2008-04-03 Novartis Ag Compositions and methods of use for antibodies of c-met
WO2009111691A2 (en) * 2008-03-06 2009-09-11 Genentech, Inc. Combination therapy with c-met and egfr antagonists
EP2143441A1 (en) 2008-07-08 2010-01-13 Pierre Fabre Medicament Combination of a c-Met antagonist and an aminoheteroaryl compound for the treatment of cancer
WO2010059654A1 (en) * 2008-11-21 2010-05-27 Eli Lilly And Company c-MET ANTIBODIES
WO2010115552A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Bispecific anti-erbb-3/anti-c-met antibodies
WO2010115551A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Bispecific anti-erbb-1/anti-c-met antibodies
WO2011110642A2 (en) 2010-03-10 2011-09-15 Genmab A/S Monoclonal antibodies against c-met
WO2011151412A1 (en) 2010-06-01 2011-12-08 Pierre Fabre Medicament Novel anti-cmet antibody
EP2415784A1 (en) 2007-07-12 2012-02-08 Pierre Fabre Medicament Novel antibodies inhibiting C-Met dimerization, and uses thereof
WO2012031027A1 (en) 2010-08-31 2012-03-08 Genentech, Inc. Biomarkers and methods of treatment
WO2011067189A3 (en) * 2009-12-03 2012-04-19 Bayer Pharma Aktiengesellschaft Cmet inhibitors for treating endometriosis
WO2012059562A1 (en) * 2010-11-03 2012-05-10 Argen-X-Bv C-met antibody combinations
EP2500036A1 (en) * 2011-03-18 2012-09-19 Metheresis Translational Research SA MET inhibitors for enhancing radiotherapy efficacy
AU2011203499B2 (en) * 2006-03-30 2013-01-31 Novartis Ag Compositions and methods of use for antibodies of c-Met
WO2013033008A2 (en) 2011-08-26 2013-03-07 Merrimack Pharmaceuticals, Inc. Tandem fc bispecific antibodies
WO2013043715A1 (en) 2011-09-19 2013-03-28 Genentech, Inc. Combination treatments comprising c-met antagonists and b-raf antagonists
WO2013078170A1 (en) 2011-11-21 2013-05-30 Genentech, Inc. Purification of anti-c-met antibodies
WO2013079973A1 (en) * 2011-12-02 2013-06-06 Di Cara Danielle Marie Antibodies against hgf - receptor and uses
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
EP2727941A1 (en) 2012-11-05 2014-05-07 MAB Discovery GmbH Method for the production of multispecific antibodies
WO2014067642A1 (en) 2012-11-05 2014-05-08 Mab Discovery Gmbh Method for the production of multispecific antibodies
US8729249B2 (en) 2008-12-02 2014-05-20 Pierre Fabre Medicament Anti-cMET antibody
WO2014081954A1 (en) 2012-11-21 2014-05-30 Janssen Biotech, Inc. BISPECIFIC EGFR/c-Met ANTIBODIES
WO2014128235A1 (en) 2013-02-22 2014-08-28 F. Hoffmann-La Roche Ag Methods of treating cancer and preventing drug resistance
WO2014138449A1 (en) 2013-03-06 2014-09-12 Merrimack Pharmaceuticals, Inc. Anti-c-met tandem fc bispecific antibodies
EP2808344A1 (en) * 2010-06-01 2014-12-03 Monash University Antibodies directed to the receptor tyrosine kinase c-Met
EP2832748A1 (en) * 2013-07-29 2015-02-04 Samsung Electronics Co., Ltd Anti-EGFR antibody and Anti-C-Met/Anti-EGFR bispecific antibodies comprising the same
WO2015148531A1 (en) 2014-03-24 2015-10-01 Genentech, Inc. Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
WO2015179835A2 (en) 2014-05-23 2015-11-26 Genentech, Inc. Mit biomarkers and methods using the same
US9201074B2 (en) 2011-09-20 2015-12-01 Eli Lilly And Company Anti-c-Met antibodies
WO2016091891A1 (en) 2014-12-09 2016-06-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies against axl
WO2016135066A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
US9469691B2 (en) 2008-12-02 2016-10-18 Pierre Fabre Medicament Anti-cMET antibody
US9487589B2 (en) 2011-06-30 2016-11-08 Genentech, Inc. Anti-c-met-antibody formulations
EP3196211A4 (en) * 2014-08-07 2018-01-03 Pharmabcine Inc. Human antibody specific to c-met and preparation method therefor
WO2018001909A1 (en) * 2016-06-27 2018-01-04 Agomab Therapeutics Bvba Anti-met antibodies and uses thereof
US9926364B2 (en) 2011-11-03 2018-03-27 Argen-X N.V. Chimeric human-llama antigens and methods of use
WO2018129029A1 (en) 2017-01-04 2018-07-12 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
CN109195993A (en) * 2016-02-06 2019-01-11 岸迈生物科技有限公司 Series connection FAB immunoglobulin and application thereof
WO2019134927A1 (en) * 2018-01-03 2019-07-11 Agomab Therapeutics Bvba Hgf-met agonist for use in the treatment of cancer and colorectal fibrosis
US10377827B2 (en) 2012-06-21 2019-08-13 Sorrento Therapeutics, Inc. Antigen binding proteins that bind c-met
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
US11142578B2 (en) 2016-11-16 2021-10-12 Regeneron Pharmaceuticals, Inc. Anti-MET antibodies, bispecific antigen binding molecules that bind MET, and methods of use thereof
US11896682B2 (en) 2019-09-16 2024-02-13 Regeneron Pharmaceuticals, Inc. Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof
US12060425B2 (en) 2018-05-03 2024-08-13 Shanghai Epimab Biotherapeutics Co., Ltd. High affinity antibodies to PD-1 and LAG-3 and bispecific binding proteins made therefrom

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141970A1 (en) * 2001-03-05 2002-10-03 Pettit Dean K. Stable aqueous solutions of granulocyte macrophage colony-stimulating factor
DK1629088T3 (en) * 2003-05-30 2012-05-07 Agensys Inc VARIABLES OF THE PROSTATASTIC CELL ANTIGEN (PSCA) AND ITS SEQUENCES
AR045563A1 (en) 2003-09-10 2005-11-02 Warner Lambert Co ANTIBODIES DIRECTED TO M-CSF
US20050136055A1 (en) * 2003-12-22 2005-06-23 Pfizer Inc CD40 antibody formulation and methods
WO2007015128A1 (en) * 2005-08-02 2007-02-08 Xbiotech Inc. DIAGNOSIS, TREATMENT, AND PREVENTION OF VASCULAR DISORDERS USING IL-1α AUTOANTIBODIES
EA201300320A1 (en) * 2005-09-07 2014-02-28 Эмджен Фримонт Инк. HUMAN MONOCLONAL ANTIBODIES TO KINASE-1, SIMILAR ACTIVIN RECEPTOR
ES2369739T3 (en) * 2006-03-20 2011-12-05 Seikagaku Corporation THERAPEUTIC AGENT FOR REUMATOID ARTHRITIS.
TWI390034B (en) * 2006-04-06 2013-03-21 Kyowa Hakko Kirin Co Ltd Novel anti-CD98 antibody
US20110008282A1 (en) * 2006-05-15 2011-01-13 Xbiotech, Inc. IL-1alpha immunization induces autoantibodies protective against atherosclerosis
CN101448528A (en) * 2006-05-15 2009-06-03 埃克斯生物科技公司 Il-1alpha immunization induces autoantibodies protective against atherosclerosis
SI2109623T1 (en) * 2006-05-22 2012-05-31 Xbiotech Inc Treatment of cancer with anti-il-1 antibodies
CA2665239A1 (en) 2006-10-02 2008-05-22 Medarex, Inc. Human antibodies that bind cxcr4 and uses thereof
AU2008298904B2 (en) * 2007-09-14 2014-10-16 Amgen Inc. Homogeneous antibody populations
MX2010003581A (en) * 2007-10-01 2010-08-02 Bristol Myers Squibb Co Human antibodies that bind mesothelin, and uses thereof.
SG10201405835TA (en) * 2007-11-12 2014-10-30 U3 Pharma Gmbh Axl antibodies
US20110092452A1 (en) * 2008-03-05 2011-04-21 The Regents Of The University Of Michigan Compositions and methods for diagnosing and treating pancreatic cancer
TW200942552A (en) * 2008-03-06 2009-10-16 Genentech Inc Combination therapy with c-Met and HER antagonists
WO2009154995A2 (en) * 2008-05-27 2009-12-23 Kyowa Hakko Kirin Co., Ltd. Interleukin 10 receptor (il-10r) antibodies and methods of use
RU2498998C2 (en) * 2008-05-30 2013-11-20 ИксБиотеч, Инк. ANTIBODIES TO INTERLEUKIN-1α, AND ITS APPLICATION METHODS
CA2737056C (en) * 2008-09-12 2018-10-30 Xbiotech Inc. Targeting pathogenic monocytes
US20120003235A1 (en) * 2008-12-31 2012-01-05 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
RU2571224C2 (en) 2009-05-11 2015-12-20 УЗ ФАРМА ГмбХ Humanised anti-axl antibodies
KR101671378B1 (en) * 2009-10-30 2016-11-01 삼성전자 주식회사 c-Met specific antibodies and uses thereof
ES2602971T3 (en) 2010-03-02 2017-02-23 Kyowa Hakko Kirin Co., Ltd. Modified Antibody Composition
US9175084B2 (en) 2010-04-02 2015-11-03 Fujirebio Inc. Diagnostic marker for effect of anticancer agent
CA2796633C (en) 2010-04-23 2020-10-27 Genentech, Inc. Production of heteromultimeric proteins
AU2011268229B2 (en) 2010-06-18 2015-04-16 Xbiotech Inc. Arthritis treatment
NZ607472A (en) 2010-08-23 2014-09-26 Xbiotech Inc Treatment for neoplastic diseases
CN103649117B (en) 2011-02-04 2016-09-14 霍夫曼-拉罗奇有限公司 Fc variant and the method for generation thereof
US10689447B2 (en) 2011-02-04 2020-06-23 Genentech, Inc. Fc variants and methods for their production
WO2012123755A1 (en) 2011-03-17 2012-09-20 The University Of Birmingham Re-directed immunotherapy
US9724409B2 (en) 2011-04-01 2017-08-08 Xbiotech, Inc. Treatment of inflammatory skin disease
KR101444837B1 (en) 2011-06-03 2014-09-30 한국생명공학연구원 c-Met-targeting full agonist human antibody with HGF activity and usage thereof
CN108404127A (en) 2011-09-23 2018-08-17 埃克斯生物科技公司 Cachexia is treated
KR20130037153A (en) * 2011-10-05 2013-04-15 삼성전자주식회사 Anti c-met antibody and uses thereof
KR101844479B1 (en) * 2011-11-17 2018-04-03 삼성전자주식회사 Anti c-Met antibody and uses thereof
US9545441B2 (en) 2012-09-18 2017-01-17 Xbiotech, Inc. Treatment of diabetes
KR101819404B1 (en) 2012-10-12 2018-02-28 메디뮨 리미티드 Pyrrolobenzodiazepines and conjugates thereof
UY35148A (en) 2012-11-21 2014-05-30 Amgen Inc HETERODIMERIC IMMUNOGLOBULINS
US10407503B2 (en) * 2012-11-30 2019-09-10 The Regents Of The University Of California Fully human antibodies and fragments recognizing human c-Met
JP6444902B2 (en) 2013-03-13 2018-12-26 メドイミューン・リミテッドMedImmune Limited Pyrrolobenzodiazepine and its conjugates
US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof
US9708375B2 (en) 2013-03-15 2017-07-18 Amgen Inc. Inhibitory polypeptides specific to WNT inhibitors
KR20140119396A (en) 2013-03-29 2014-10-10 삼성전자주식회사 Liquid formulation containing a protein drug
JP6491642B2 (en) 2013-04-30 2019-03-27 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ mAb2 anti-Met antibody
US11427627B2 (en) 2013-09-05 2022-08-30 Amgen Inc. Fc-containing molecules exhibiting predictable, consistent, and reproducible glycoform profiles
US9717715B2 (en) 2013-11-15 2017-08-01 Samsung Electronics Co., Ltd. Method of combination therapy using an anti-C-Met antibody
ES2824108T3 (en) 2014-03-12 2021-05-11 Icahn School Med Mount Sinai Method to identify kidney allograft recipients at risk for chronic injury
CN106471117A (en) 2014-05-06 2017-03-01 豪夫迈·罗氏有限公司 Produce heteromultimeric albumen using mammalian cell
CA2949237C (en) 2014-05-16 2022-08-23 Amgen Inc. Assay for detecting th1 and th2 cell populations
EP3161165B1 (en) 2014-06-26 2020-11-18 Icahn School of Medicine at Mount Sinai Method for diagnosing subclinical and clinical acute rejection by analysis of predictive gene sets, therapeutic agent for use in the treatment and kits for determining the expression
CN106687141A (en) 2014-09-10 2017-05-17 麦迪穆有限责任公司 Pyrrolobenzodiazepines and conjugates thereof
KR102200274B1 (en) 2014-09-16 2021-01-08 심포젠 에이/에스 Anti-met antibodies and compositions
KR102390359B1 (en) 2014-09-29 2022-04-22 삼성전자주식회사 Polypeptide, Anti-VEGF Antibody, and Anti-c-Met/Anti-VEGF Bispecific Antibodies Comprising the Same
WO2016149265A1 (en) 2015-03-16 2016-09-22 Kolltan Pharmaceuticals, Inc. Anti-met antibodies and methods of use thereof
CN108368510B (en) * 2015-09-30 2023-09-01 詹森生物科技公司 Agonistic antibodies that specifically bind to human CD40 and methods of use
US20200023072A1 (en) 2016-10-11 2020-01-23 Medimmune Limited Antibody-drug conjugates with immune-mediated therapy agents
AU2018219887B2 (en) 2017-02-08 2024-08-15 Dragonfly Therapeutics, Inc. Multi-specific binding proteins for activation of natural killer cells and therapeutic uses thereof to treat cancer
EP3579866A4 (en) * 2017-02-08 2020-12-09 Dragonfly Therapeutics, Inc. Antibody heavy chain variable domains targeting the nkg2d receptor
MX2019009798A (en) 2017-02-16 2020-01-30 Xbiotech Inc Treatment of hidradenitis suppurativa.
EP4273258A3 (en) 2017-02-20 2024-01-17 Dragonfly Therapeutics, Inc. Proteins binding her2, nkg2d and cd16
MA47775A (en) 2017-03-14 2020-01-22 Amgen Inc CONTROL OF TOTAL AFUCOSYLATED GLYCOFORMS OF ANTIBODIES PRODUCED IN CELL CULTURE
AU2019218136A1 (en) 2018-02-08 2020-08-13 Dragonfly Therapeutics, Inc. Antibody variable domains targeting the NKG2D receptor
IL313983A (en) 2018-03-26 2024-08-01 Amgen Inc Total afucosylated glycoforms of antibodies produced in cell culture
JP7464279B2 (en) 2018-04-16 2024-04-09 アイカーン スクール オブ メディスン アット マウント シナイ Methods and kits for prediction of acute rejection and kidney allograft loss using pre-transplant transcriptome signatures in recipient blood
EP3796942A1 (en) 2018-05-23 2021-03-31 ADC Therapeutics SA Molecular adjuvant
CN108707198A (en) * 2018-06-28 2018-10-26 李永海 Identify human single chain variable fragments antibody, diagnostic reagent and its CAR-T cell preparations of people's c-Met albumen
CN109541221B (en) * 2018-10-24 2022-03-22 益善生物技术股份有限公司 c-Met specific antibody, composition and kit
WO2020099674A2 (en) * 2018-11-16 2020-05-22 R.G.C.C. Holdings AG Novel c-met and tmx2 antibodies
KR102433184B1 (en) * 2018-12-07 2022-08-17 서울대학교 산학협력단 Anti c-Met agonist antibody and uses thereof
KR102396194B1 (en) * 2018-12-07 2022-05-10 서울대학교 산학협력단 Anti c-Met agonist antibody and uses thereof
CA3120800A1 (en) 2018-12-17 2020-06-25 Revitope Limited Twin immune cell engager
BR112021016149A2 (en) 2019-02-26 2021-10-13 Janssen Biotech, Inc. COMBINATION THERAPIES AND STRATIFICATION OF PATIENTS WITH B-SPECIFIC ANTI-EGFR/C-MET ANTIBODIES
WO2020230091A1 (en) 2019-05-14 2020-11-19 Janssen Biotech, Inc. Combination therapies with bispecific anti-egfr/c-met antibodies and third generation egfr tyrosine kinase inhibitors
CA3152547A1 (en) 2019-09-26 2021-04-01 Amgen Inc. Methods of producing antibody compositions
US20230273126A1 (en) 2020-06-04 2023-08-31 Amgen Inc. Assessment of cleaning procedures of a biotherapeutic manufacturing process
EP4229080A1 (en) 2020-10-15 2023-08-23 Amgen Inc. Relative unpaired glycans in antibody production methods
US20230372528A1 (en) 2020-10-16 2023-11-23 University Of Georgia Research Foundation, Inc. Glycoconjugates
GB202102396D0 (en) 2021-02-19 2021-04-07 Adc Therapeutics Sa Molecular adjuvant
AR126089A1 (en) 2021-06-07 2023-09-13 Amgen Inc USE OF FUCOSIDASE TO CONTROL THE LEVEL OF AFFUCOSYLATION OF GLUCOSYLATED PROTEINS
TW202328188A (en) * 2021-09-03 2023-07-16 美商Go治療公司 Anti-glyco-cmet antibodies and their uses
CA3233279A1 (en) 2021-10-05 2023-04-13 Amgen Inc. Fc-gamma receptor ii binding and glycan content
WO2023078391A1 (en) * 2021-11-05 2023-05-11 正大天晴药业集团股份有限公司 Antibody binding to c-met and use thereof
WO2023186078A1 (en) * 2022-04-02 2023-10-05 普米斯生物技术(珠海)有限公司 Antibody against c-met and use thereof
WO2023186092A1 (en) * 2022-04-02 2023-10-05 普米斯生物技术(珠海)有限公司 Monoclonal antibody and bispecific antibody against c-met
WO2023215725A1 (en) 2022-05-02 2023-11-09 Fred Hutchinson Cancer Center Compositions and methods for cellular immunotherapy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207152B1 (en) * 1995-06-02 2001-03-27 Genentech, Inc. Hepatocyte growth factor receptor antagonists and uses thereof

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4405712A (en) 1981-07-01 1983-09-20 The United States Of America As Represented By The Department Of Health And Human Services LTR-Vectors
US4510245A (en) 1982-11-18 1985-04-09 Chiron Corporation Adenovirus promoter system
US4740461A (en) 1983-12-27 1988-04-26 Genetics Institute, Inc. Vectors and methods for transformation of eucaryotic cells
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
GB2183662B (en) 1985-04-01 1989-01-25 Celltech Ltd Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same
US4968615A (en) 1985-12-18 1990-11-06 Ciba-Geigy Corporation Deoxyribonucleic acid segment from a virus
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
US4959455A (en) 1986-07-14 1990-09-25 Genetics Institute, Inc. Primate hematopoietic growth factors IL-3 and pharmaceutical compositions
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
US5750172A (en) 1987-06-23 1998-05-12 Pharming B.V. Transgenic non human mammal milk
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
GB8809129D0 (en) 1988-04-18 1988-05-18 Celltech Ltd Recombinant dna methods vectors and host cells
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
GB8827305D0 (en) 1988-11-23 1988-12-29 British Bio Technology Compounds
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US5633076A (en) 1989-12-01 1997-05-27 Pharming Bv Method of producing a transgenic bovine or transgenic bovine embryo
US5648273A (en) 1989-12-27 1997-07-15 The United States Of America, As Represented By The Department Of Health And Human Services Hepatic growth factor receptor is the MET proto-oncogene
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
JP3068180B2 (en) 1990-01-12 2000-07-24 アブジェニックス インコーポレイテッド Generation of heterologous antibodies
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US5151510A (en) 1990-04-20 1992-09-29 Applied Biosystems, Inc. Method of synethesizing sulfurized oligonucleotide analogs
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
AU665190B2 (en) 1990-07-10 1995-12-21 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
ATE158021T1 (en) 1990-08-29 1997-09-15 Genpharm Int PRODUCTION AND USE OF NON-HUMAN TRANSGENT ANIMALS FOR THE PRODUCTION OF HETEROLOGUE ANTIBODIES
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
ATE352612T1 (en) 1990-08-29 2007-02-15 Pharming Intellectual Pty Bv HOMOLOGOUS RECOMBINATION IN MAMMAL CELLS
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US6566098B1 (en) 1990-09-14 2003-05-20 The United States Of America As Represented By The Department Of Health And Human Services DNA encoding truncated hepatocyte growth factor variants
DK0564531T3 (en) 1990-12-03 1998-09-28 Genentech Inc Enrichment procedure for variant proteins with altered binding properties
US5693767A (en) 1991-01-22 1997-12-02 Harrier Inc. Glycoside derivatives of acetaminophen
ATE363532T1 (en) 1991-03-01 2007-06-15 Dyax Corp METHOD FOR PRODUCING BINDING MINIPROTEINS
ES2315612T3 (en) 1991-04-10 2009-04-01 The Scripps Research Institute GENOTECAS OF HETERODYMERIC RECEPTORS USING PHAGEMIDS.
DE4122599C2 (en) 1991-07-08 1993-11-11 Deutsches Krebsforsch Phagemid for screening antibodies
AU2515992A (en) 1991-08-20 1993-03-16 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
CA2372813A1 (en) 1992-02-06 1993-08-19 L.L. Houston Biosynthetic binding protein for cancer marker
ES2301158T3 (en) 1992-07-24 2008-06-16 Amgen Fremont Inc. XENOGENIC ANTIBODY PRODUCTION.
DE69334159D1 (en) 1992-09-18 2007-09-13 Us Gov Health & Human Serv Medical use of an antibody or an antibody fragment against the extracellular domain of Met for the prevention of metastases
US6177401B1 (en) 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
US5455258A (en) 1993-01-06 1995-10-03 Ciba-Geigy Corporation Arylsulfonamido-substituted hydroxamic acids
JP3801196B2 (en) 1993-03-09 2006-07-26 ジェンザイム・コーポレイション Isolation of the target compound from milk
US5827690A (en) 1993-12-20 1998-10-27 Genzyme Transgenics Corporatiion Transgenic production of antibodies in milk
IL112248A0 (en) 1994-01-25 1995-03-30 Warner Lambert Co Tricyclic heteroaromatic compounds and pharmaceutical compositions containing them
US5643763A (en) 1994-11-04 1997-07-01 Genpharm International, Inc. Method for making recombinant yeast artificial chromosomes by minimizing diploid doubling during mating
US6046037A (en) 1994-12-30 2000-04-04 Hiatt; Andrew C. Method for producing immunoglobulins containing protection proteins in plants and their use
US5863949A (en) 1995-03-08 1999-01-26 Pfizer Inc Arylsulfonylamino hydroxamic acid derivatives
US6130364A (en) 1995-03-29 2000-10-10 Abgenix, Inc. Production of antibodies using Cre-mediated site-specific recombination
US6091001A (en) 1995-03-29 2000-07-18 Abgenix, Inc. Production of antibodies using Cre-mediated site-specific recombination
EP0821671B1 (en) 1995-04-20 2000-12-27 Pfizer Inc. Arylsulfonyl hydroxamic acid derivatives as mmp and tnf inhibitors
WO1996033266A1 (en) 1995-04-21 1996-10-24 Cell Genesys, Inc. Generation of large genomic dna deletions
DE69637481T2 (en) 1995-04-27 2009-04-09 Amgen Fremont Inc. Human antibodies to IL-8 derived from immunized Xenomae
AU2466895A (en) 1995-04-28 1996-11-18 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5646036A (en) 1995-06-02 1997-07-08 Genentech, Inc. Nucleic acids encoding hepatocyte growth factor receptor antagonist antibodies
US6214344B1 (en) 1995-06-02 2001-04-10 Genetech, Inc. Hepatocyte growth factor receptor antagonists and uses thereof
US5747498A (en) 1996-05-28 1998-05-05 Pfizer Inc. Alkynyl and azido-substituted 4-anilinoquinazolines
US5880141A (en) 1995-06-07 1999-03-09 Sugen, Inc. Benzylidene-Z-indoline compounds for the treatment of disease
CA2229043C (en) * 1995-08-18 2016-06-07 Morphosys Gesellschaft Fur Proteinoptimierung Mbh Protein/(poly)peptide libraries
GB9520822D0 (en) 1995-10-11 1995-12-13 Wellcome Found Therapeutically active compounds
GB9624482D0 (en) 1995-12-18 1997-01-15 Zeneca Phaema S A Chemical compounds
DK0780386T3 (en) 1995-12-20 2003-02-03 Hoffmann La Roche matrix metalloprotease
CN1116286C (en) 1996-03-05 2003-07-30 曾尼卡有限公司 4-anilinoquinazoline derivatives
US5714352A (en) 1996-03-20 1998-02-03 Xenotech Incorporated Directed switch-mediated DNA recombination
US5994619A (en) 1996-04-01 1999-11-30 University Of Massachusetts, A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus Production of chimeric bovine or porcine animals using cultured inner cell mass cells
JP2000515735A (en) 1996-07-03 2000-11-28 ジェネンテック インコーポレーテッド Hepatocyte growth factor receptor agonist
EP0818442A3 (en) 1996-07-12 1998-12-30 Pfizer Inc. Cyclic sulphone derivatives as inhibitors of metalloproteinases and of the production of tumour necrosis factor
US5916771A (en) 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
GB9801690D0 (en) 1998-01-27 1998-03-25 Pfizer Ltd Therapeutic agents
US20020136721A1 (en) 1998-02-17 2002-09-26 Schwall Ralph H. Hepatocyte growth factor receptor antagonists and uses thereof
JP4462654B2 (en) 1998-03-26 2010-05-12 ソニー株式会社 Video material selection device and video material selection method
US6114361A (en) 1998-11-05 2000-09-05 Pfizer Inc. 5-oxo-pyrrolidine-2-carboxylic acid hydroxamide derivatives
EE05627B1 (en) 1998-12-23 2013-02-15 Pfizer Inc. Human monoclonal antibodies to CTLA-4
UA71945C2 (en) 1999-01-27 2005-01-17 Pfizer Prod Inc Substituted bicyclic derivatives being used as anticancer agents
JP3270834B2 (en) 1999-01-27 2002-04-02 ファイザー・プロダクツ・インク Heteroaromatic bicyclic derivatives useful as anticancer agents
US6517529B1 (en) 1999-11-24 2003-02-11 Radius International Limited Partnership Hemodialysis catheter
JP3597140B2 (en) * 2000-05-18 2004-12-02 日本たばこ産業株式会社 Human monoclonal antibody against costimulatory molecule AILIM and pharmaceutical use thereof
PL228041B1 (en) * 2001-01-05 2018-02-28 Amgen Fremont Inc Antibody against the receptor of insulin-like growth factor I, pharmaceutical composition containing it, method for producing it, applications, cell line, isolated molecule of nucleic acid, vector, host cell and transgenic animal
AR039067A1 (en) * 2001-11-09 2005-02-09 Pfizer Prod Inc ANTIBODIES FOR CD40
MXPA05008521A (en) * 2003-02-13 2005-10-20 Pharmacia Corp Antibodies to c-met for the treatment of cancers.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207152B1 (en) * 1995-06-02 2001-03-27 Genentech, Inc. Hepatocyte growth factor receptor antagonists and uses thereof

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476724B2 (en) 2004-08-05 2009-01-13 Genentech, Inc. Humanized anti-cmet antibodies
US7892550B2 (en) 2004-08-05 2011-02-22 Genentech, Inc. Anti-cmet antibodies
WO2006015371A3 (en) * 2004-08-05 2006-08-03 Genentech Inc Humanized anti-cmet antagonists
AU2006229989B2 (en) * 2005-03-25 2012-02-02 Genentech, Inc. Methods and compositions for modulating hyperstabilized c-met
WO2006104911A3 (en) * 2005-03-25 2007-02-22 Genentech Inc Methods and compositions for modulating hyperstabilized c-met
JP2008535821A (en) * 2005-03-25 2008-09-04 ジェネンテック・インコーポレーテッド Methods and compositions for modulating over-stabilized C-MET
US8536118B2 (en) 2005-03-25 2013-09-17 Genentech, Inc. Methods and compositions for modulating hyperstabilized c-met
EP1868648B1 (en) 2005-03-25 2015-04-15 Genentech, Inc. Methods and compositions for modulating hyperstabilized c-met
US7615529B2 (en) 2005-03-25 2009-11-10 Genentech, Inc. Methods and compositions for modulating hyperstabilized c-met
JP2012232979A (en) * 2005-03-25 2012-11-29 Genentech Inc Method and composition for modulating hyperstabilized c-met
WO2007110698A3 (en) * 2005-11-16 2008-02-21 Fariba Nayeri Methods for inhibiting carcinogenesis and/or metastasis in an individual with endogenous c-met ligands and inhibitors
WO2007110698A2 (en) * 2005-11-16 2007-10-04 Fariba Nayeri Methods for inhibiting carcinogenesis and/or metastasis in an individual with endogenous c-met ligands and inhibitors
EP2192188A1 (en) * 2006-02-06 2010-06-02 Metheresis Translational Research SA Anti-met monoclonal antibody, fragments and vectors thereof, for the treatment of tumors and corresponding products
US8729043B2 (en) 2006-02-06 2014-05-20 Metheresis Translational Research S.A. Anti-Met monoclonal antibody, fragments and vectors thereof, for the treatment of tumors and corresponding products
AU2007213804B2 (en) * 2006-02-06 2012-12-13 Vertical Bio Ag Anti-met monoclonal antibody, fragments and vectors thereof, for the treatment of tumors and corresponding products
KR101429297B1 (en) 2006-02-06 2014-08-12 메테레시스 트랜스레이셔날 리서치 에스.에이. Anti-Met monoclonal antibody, fragments and vectors thereof for the treatment of tumors and corresponding products
WO2007090807A1 (en) 2006-02-06 2007-08-16 Metheresis Translational Research S.A. Anti-met monoclonal antibody, fragments and vectors thereof, for the treatment of tumors and corresponding products
EA015580B1 (en) * 2006-02-06 2011-10-31 Метерезис Транслейшнл Ресерч С.А. Anti-met monoclonal antibody, fragments and vectors thereof, for the treatment of tumors and corresponding products
US8388958B2 (en) 2006-02-06 2013-03-05 Metheresis Translational Research Sa Anti-MET monoclonal antibody, fragments and vectors thereof, for the treatment of tumors and corresponding products
CN101415730B (en) * 2006-03-30 2013-04-10 诺瓦提斯公司 Compositions and methods of use for antibodies of c-Met
CN103183738B (en) * 2006-03-30 2014-08-06 诺瓦提斯公司 Compositions and methods of use for antibodies of c-MET
AU2011203499B2 (en) * 2006-03-30 2013-01-31 Novartis Ag Compositions and methods of use for antibodies of c-Met
AU2013201789B2 (en) * 2006-03-30 2015-12-24 Novartis Ag Compositions and methods of use for antibodies of c-Met
US8101727B2 (en) 2006-03-30 2012-01-24 Novartis Ag Compositions and methods of use for antibodies of c-Met
JP2009532026A (en) * 2006-03-30 2009-09-10 ノバルティス アクチエンゲゼルシャフト Composition of c-Met antibody and method of use thereof
WO2007126799A3 (en) * 2006-03-30 2008-04-03 Novartis Ag Compositions and methods of use for antibodies of c-met
EP2415784A1 (en) 2007-07-12 2012-02-08 Pierre Fabre Medicament Novel antibodies inhibiting C-Met dimerization, and uses thereof
EP2415785A1 (en) 2007-07-12 2012-02-08 Pierre Fabre Medicament Novel antibodies inhibiting C-Met dimerization, and uses thereof
EP2535356A1 (en) 2007-07-12 2012-12-19 Pierre Fabre Medicament Novel antibodies inhibiting C-MET dimerization, and uses thereof
US8329173B2 (en) 2007-07-12 2012-12-11 Pierre Fabre Medicament Antibodies inhibiting c-Met dimerization and uses thereof
EP2535357A1 (en) 2007-07-12 2012-12-19 Pierre Fabre Medicament Novel antibodies inhibiting C-MET dimerization, and uses thereof
RU2552161C2 (en) * 2007-07-12 2015-06-10 Пьер Фабр Медикамент New antibodies inhibiting c-met dimerisation and using them
US9107907B2 (en) 2007-07-12 2015-08-18 Pierre Fabre Medicament Antibodies inhibiting c-Met dimerization, and uses thereof
WO2009111691A2 (en) * 2008-03-06 2009-09-11 Genentech, Inc. Combination therapy with c-met and egfr antagonists
WO2009111691A3 (en) * 2008-03-06 2009-11-12 Genentech, Inc. Combination therapy with c-met and egfr antagonists
US20110117098A1 (en) * 2008-07-08 2011-05-19 Pierre Fabre Medicament Combination of a c-met antagonist and an aminoheteroaryl compound for the treatment of cancer
US8623359B2 (en) * 2008-07-08 2014-01-07 Pierre Fabre Medicament Combination of a c-Met antagonist and an aminoheteroaryl compound for the treatment of cancer
EP2143441A1 (en) 2008-07-08 2010-01-13 Pierre Fabre Medicament Combination of a c-Met antagonist and an aminoheteroaryl compound for the treatment of cancer
US9011865B2 (en) 2008-07-08 2015-04-21 Pierre Gabre Medicament Combination of a c-Met antagonist and an aminoheteroaryl compound for the treatment of cancer
RU2526171C2 (en) * 2008-07-08 2014-08-20 Пьер Фабр Медикамент C-met antagonist and aminoheteroaryl combination for treating cancer
US8217148B2 (en) 2008-11-21 2012-07-10 Eli Lilly And Company c-Met antibodies
WO2010059654A1 (en) * 2008-11-21 2010-05-27 Eli Lilly And Company c-MET ANTIBODIES
US8398974B2 (en) 2008-11-21 2013-03-19 Eli Lilly And Company c-Met antibodies
EA020398B1 (en) * 2008-11-21 2014-10-30 Эли Лилли Энд Компани c-Met ANTIBODIES
EP2963058A1 (en) 2008-11-21 2016-01-06 Eli Lilly and Company C-met antibodies
US9469691B2 (en) 2008-12-02 2016-10-18 Pierre Fabre Medicament Anti-cMET antibody
US8741290B2 (en) 2008-12-02 2014-06-03 Pierre Fabre Medicament Anti-cMet antibody
EP3757132A1 (en) 2008-12-02 2020-12-30 Pierre Fabre Medicament Anti-cmet antibody
US8545839B2 (en) 2008-12-02 2013-10-01 Pierre Fabre Medicament Anti-c-Met antibody
US8765128B2 (en) 2008-12-02 2014-07-01 Pierre Fabre Medicament Anti-cMET antibody
US8747850B2 (en) 2008-12-02 2014-06-10 Pierre Fabre Medicament Anti-cMET antibody
US8729249B2 (en) 2008-12-02 2014-05-20 Pierre Fabre Medicament Anti-cMET antibody
EP3135691A1 (en) 2008-12-02 2017-03-01 Pierre Fabre Medicament Anti-cmet antibody
WO2010115553A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Bispecific anti-erbb-2/anti-c-met antibodies
WO2010115552A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Bispecific anti-erbb-3/anti-c-met antibodies
WO2010115551A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Bispecific anti-erbb-1/anti-c-met antibodies
WO2011067189A3 (en) * 2009-12-03 2012-04-19 Bayer Pharma Aktiengesellschaft Cmet inhibitors for treating endometriosis
JP2013529059A (en) * 2010-03-10 2013-07-18 ゲンマブ エー/エス Monoclonal antibody against C-MET
AU2011226103B2 (en) * 2010-03-10 2016-01-28 Genmab A/S Monoclonal antibodies against c-Met
US9657107B2 (en) 2010-03-10 2017-05-23 Genmab A/S Monoclonal antibodies against c-Met
JP2018174937A (en) * 2010-03-10 2018-11-15 ゲンマブ エー/エス Monoclonal antibody against c-met
WO2011110642A2 (en) 2010-03-10 2011-09-15 Genmab A/S Monoclonal antibodies against c-met
AU2011226103C1 (en) * 2010-03-10 2016-04-28 Genmab A/S Monoclonal antibodies against c-Met
AU2017265061B2 (en) * 2010-03-10 2019-09-19 Genmab A/S Monoclonal antibodies against c-Met
JP2017008041A (en) * 2010-03-10 2017-01-12 ゲンマブ エー/エス Monoclonal antibody against C-MET
EP3511342A1 (en) 2010-03-10 2019-07-17 Genmab A/S Monoclonal antibodies against c-met
JP2020198874A (en) * 2010-03-10 2020-12-17 ゲンマブ エー/エス Monoclonal antibody against C-MET
US11512140B2 (en) 2010-03-10 2022-11-29 Genmab A/S Monoclonal antibodies against c-Met
EP3904391A1 (en) 2010-03-10 2021-11-03 Genmab A/S Monoclonal antibodies against c-met
JP7034204B2 (en) 2010-03-10 2022-03-11 ゲンマブ エー/エス Monoclonal antibody against C-MET
AU2019283925B2 (en) * 2010-03-10 2021-12-02 Genmab A/S Monoclonal antibodies against c-Met
WO2011110642A3 (en) * 2010-03-10 2012-07-05 Genmab A/S Monoclonal antibodies against c-met
US9068011B2 (en) 2010-03-10 2015-06-30 Genmab A+S Monoclonal antibodies against c-Met
EP2808344A1 (en) * 2010-06-01 2014-12-03 Monash University Antibodies directed to the receptor tyrosine kinase c-Met
US9169329B2 (en) 2010-06-01 2015-10-27 Ludwig Institute For Cancer Research Antibodies directed to the receptor tyrosine kinase c-Met
WO2011151412A1 (en) 2010-06-01 2011-12-08 Pierre Fabre Medicament Novel anti-cmet antibody
WO2012031027A1 (en) 2010-08-31 2012-03-08 Genentech, Inc. Biomarkers and methods of treatment
EP3264089A1 (en) 2010-08-31 2018-01-03 Genentech, Inc. Biomarkers and methods of treatment
US10676535B2 (en) 2010-11-03 2020-06-09 Argenx Bvba Anti c-Met antibodies
US8637027B2 (en) 2010-11-03 2014-01-28 Argen-X B.V. Anti c-Met antibodies
US9884917B2 (en) 2010-11-03 2018-02-06 Argen-X N.V. Anti c-Met antibodies
WO2012059562A1 (en) * 2010-11-03 2012-05-10 Argen-X-Bv C-met antibody combinations
US9688774B2 (en) 2010-11-03 2017-06-27 Argen-X N.V. Anti c-Met antibodies
US9688773B2 (en) 2010-11-03 2017-06-27 Argen-X N.V. C-Met antibody combinations
US9631027B2 (en) 2010-11-03 2017-04-25 Argen-X N.V. Anti c-Met antibodies
EP2500036A1 (en) * 2011-03-18 2012-09-19 Metheresis Translational Research SA MET inhibitors for enhancing radiotherapy efficacy
AU2012201303B2 (en) * 2011-03-18 2013-11-07 Vertical Bio Ag Met inhibitors for enhancing radiotherapy efficacy
US9487589B2 (en) 2011-06-30 2016-11-08 Genentech, Inc. Anti-c-met-antibody formulations
WO2013033008A2 (en) 2011-08-26 2013-03-07 Merrimack Pharmaceuticals, Inc. Tandem fc bispecific antibodies
WO2013043715A1 (en) 2011-09-19 2013-03-28 Genentech, Inc. Combination treatments comprising c-met antagonists and b-raf antagonists
US9201074B2 (en) 2011-09-20 2015-12-01 Eli Lilly And Company Anti-c-Met antibodies
US9926364B2 (en) 2011-11-03 2018-03-27 Argen-X N.V. Chimeric human-llama antigens and methods of use
WO2013078170A1 (en) 2011-11-21 2013-05-30 Genentech, Inc. Purification of anti-c-met antibodies
WO2013079973A1 (en) * 2011-12-02 2013-06-06 Di Cara Danielle Marie Antibodies against hgf - receptor and uses
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
US10377827B2 (en) 2012-06-21 2019-08-13 Sorrento Therapeutics, Inc. Antigen binding proteins that bind c-met
US11155628B2 (en) 2012-06-21 2021-10-26 Sorrento Therapeutics, Inc. Antigen binding proteins that bind c-Met
EP2727941A1 (en) 2012-11-05 2014-05-07 MAB Discovery GmbH Method for the production of multispecific antibodies
WO2014067642A1 (en) 2012-11-05 2014-05-08 Mab Discovery Gmbh Method for the production of multispecific antibodies
US9580508B2 (en) 2012-11-21 2017-02-28 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
US9695242B2 (en) 2012-11-21 2017-07-04 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
US9593164B2 (en) 2012-11-21 2017-03-14 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
WO2014081954A1 (en) 2012-11-21 2014-05-30 Janssen Biotech, Inc. BISPECIFIC EGFR/c-Met ANTIBODIES
WO2014128235A1 (en) 2013-02-22 2014-08-28 F. Hoffmann-La Roche Ag Methods of treating cancer and preventing drug resistance
WO2014138449A1 (en) 2013-03-06 2014-09-12 Merrimack Pharmaceuticals, Inc. Anti-c-met tandem fc bispecific antibodies
US9458245B2 (en) 2013-03-06 2016-10-04 Merrimack Pharmaceuticals, Inc. ANTI-C-MET tandem Fc bispecific antibodies
EP2832748A1 (en) * 2013-07-29 2015-02-04 Samsung Electronics Co., Ltd Anti-EGFR antibody and Anti-C-Met/Anti-EGFR bispecific antibodies comprising the same
US9902776B2 (en) 2013-07-29 2018-02-27 Samsung Electronics Co., Ltd. Anti-EGFR antibody and anti-c-Met/anti-EGFR bispecific antibodies comprising the same
US10240207B2 (en) 2014-03-24 2019-03-26 Genentech, Inc. Cancer treatment with c-met antagonists and correlation of the latter with HGF expression
WO2015148531A1 (en) 2014-03-24 2015-10-01 Genentech, Inc. Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
WO2015179835A2 (en) 2014-05-23 2015-11-26 Genentech, Inc. Mit biomarkers and methods using the same
EP3196211A4 (en) * 2014-08-07 2018-01-03 Pharmabcine Inc. Human antibody specific to c-met and preparation method therefor
US10106622B2 (en) 2014-08-07 2018-10-23 Pharmabcine Inc. Human antibody specific to c-Met and preparation method thereof
WO2016091891A1 (en) 2014-12-09 2016-06-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies against axl
WO2016135066A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
US11421028B2 (en) 2016-02-06 2022-08-23 Epimab Biotherapeutics, Inc. Fabs-in-tandem immunoglobulin and uses thereof
AU2017214692B2 (en) * 2016-02-06 2021-11-04 Epimab Biotherapeutics, Inc. Fabs-in-tandem immunoglobulin and uses thereof
IL260937B2 (en) * 2016-02-06 2024-07-01 Epimab Biotherapeutics Inc Fabs-in-tandem immunoglobulin and uses thereof
IL260937B1 (en) * 2016-02-06 2024-03-01 Epimab Biotherapeutics Inc Fabs-in-tandem immunoglobulin and uses thereof
CN109195993A (en) * 2016-02-06 2019-01-11 岸迈生物科技有限公司 Series connection FAB immunoglobulin and application thereof
EP3411412A4 (en) * 2016-02-06 2020-03-18 Epimab Biotherapeutics, Inc. Fabs-in-tandem immunoglobulin and uses thereof
WO2018001909A1 (en) * 2016-06-27 2018-01-04 Agomab Therapeutics Bvba Anti-met antibodies and uses thereof
EP3674321A3 (en) * 2016-06-27 2020-09-30 AgomAb Therapeutics Anti-met antibodies and uses thereof
US11098126B2 (en) 2016-06-27 2021-08-24 Agomab Therapeutics Bvba Anti-MET antibodies and uses thereof
US12084504B2 (en) 2016-06-27 2024-09-10 Agomab Therapeutics Anti-MET antibodies and uses thereof
US11142578B2 (en) 2016-11-16 2021-10-12 Regeneron Pharmaceuticals, Inc. Anti-MET antibodies, bispecific antigen binding molecules that bind MET, and methods of use thereof
WO2018129029A1 (en) 2017-01-04 2018-07-12 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
WO2019134927A1 (en) * 2018-01-03 2019-07-11 Agomab Therapeutics Bvba Hgf-met agonist for use in the treatment of cancer and colorectal fibrosis
US11834507B2 (en) 2018-01-03 2023-12-05 Agomab Therapeutics Anti-MET agonist antibody for use in the treatment of colorectal cancer
US12060425B2 (en) 2018-05-03 2024-08-13 Shanghai Epimab Biotherapeutics Co., Ltd. High affinity antibodies to PD-1 and LAG-3 and bispecific binding proteins made therefrom
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
US11896682B2 (en) 2019-09-16 2024-02-13 Regeneron Pharmaceuticals, Inc. Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof

Also Published As

Publication number Publication date
UY28453A1 (en) 2005-02-28
HN2004000285A (en) 2006-04-27
US8562985B2 (en) 2013-10-22
GB2404660A (en) 2005-02-09
US7498420B2 (en) 2009-03-03
PA8608401A1 (en) 2005-03-03
GB0417384D0 (en) 2004-09-08
AR047717A1 (en) 2006-02-15
GT200400149A (en) 2005-02-22
EP1660127A1 (en) 2006-05-31
US8163280B2 (en) 2012-04-24
US20140086914A1 (en) 2014-03-27
EP1660127A4 (en) 2007-08-01
US20100040629A1 (en) 2010-02-18
PE20050727A1 (en) 2005-10-01
US8821869B2 (en) 2014-09-02
TW200523269A (en) 2005-07-16
JP2007501013A (en) 2007-01-25
NL1026776C2 (en) 2005-08-02
BRPI0413272A (en) 2006-10-10
CA2534563A1 (en) 2005-02-24
NL1026776A1 (en) 2005-02-07
US20050054019A1 (en) 2005-03-10
US20120321614A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
US8821869B2 (en) Treatment methods using c-Met antibodies
JP5848232B2 (en) Antibody against CD40
AU2002356926A1 (en) Antibodies to CD40
AU2004275700A1 (en) Antibodies to M-CSF
MXPA06001496A (en) Antibodies to c-met

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2534563

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006522679

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/001496

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004780015

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004780015

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0413272

Country of ref document: BR