WO2005015669A2 - Pile a combustible comportant des collecteurs de courant integres a l’empilement electrode-membrane-electrode - Google Patents

Pile a combustible comportant des collecteurs de courant integres a l’empilement electrode-membrane-electrode Download PDF

Info

Publication number
WO2005015669A2
WO2005015669A2 PCT/FR2004/001548 FR2004001548W WO2005015669A2 WO 2005015669 A2 WO2005015669 A2 WO 2005015669A2 FR 2004001548 W FR2004001548 W FR 2004001548W WO 2005015669 A2 WO2005015669 A2 WO 2005015669A2
Authority
WO
WIPO (PCT)
Prior art keywords
current collectors
electrode
fuel cell
stack
electrolytic membrane
Prior art date
Application number
PCT/FR2004/001548
Other languages
English (en)
Other versions
WO2005015669A3 (fr
Inventor
Jean-Yves Laurent
Didier Marsacq
Christine Nayoze
Christel Roux
Françis CARDOT
Original Assignee
Commissariat à l'Energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'Energie Atomique filed Critical Commissariat à l'Energie Atomique
Priority to US10/559,933 priority Critical patent/US7521147B2/en
Priority to EP04767404.9A priority patent/EP1645004B1/fr
Priority to JP2006518256A priority patent/JP5595631B2/ja
Publication of WO2005015669A2 publication Critical patent/WO2005015669A2/fr
Publication of WO2005015669A3 publication Critical patent/WO2005015669A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell comprising: - a stack comprising a first electrode, an electrolytic membrane provided with front and rear faces and a second electrode, - and first and second current collectors integrated in the stack and corresponding respectively to first and second electrodes, each current collector comprising a metallic deposit and being provided with a plurality of transverse passages for a fluid.
  • Fuel cells of the proton exchange membrane fuel cell type (for example “PEMFC” or Proton Exchange Membrane Fuel Cell ”or generally anion exchange OH) generally include a large number of elementary cells arranged in series and each comprising a stack comprising an anode and a cathode separated by an electrolytic membrane. The stack is placed between two current collector plates and is generally called an “EME” (Electrode-Membrane-Electrode) type stack. All of the elementary cells form a filter press assembly.
  • PEMFC Proton Exchange Membrane Fuel Cell
  • EME Electrode-Membrane-Electrode
  • an elementary cell 1 comprises an anode 2, a cathode 3 and an electrolytic membrane 4 disposed between the two electrodes.
  • the anode 2 is the seat of a reaction whose reagent is hydrogen while a reaction between the H + protons formed at the anode 2 and oxygen occurs at cathode 3 to form water.
  • the electrolytic membrane 4 is intended to allow the protons H + to pass from the anode 2 to the cathode 3.
  • Anode 2 and cathode 3 are respectively supplied with hydrogen and oxygen, via circulation channels 5a and 5b connected to reagent sources which can be, on the one hand, pure hydrogen or reformed or non-reformed hydrocarbons for the source of hydrogen and, on the other hand, pure oxygen or air for the source of oxygen.
  • the circulation channels 5a and 5b are respectively delimited by the external face of the anode and of the cathode and by the internal wall of plates 6a and 6b intended to collect the current.
  • the plates 6a and 6b are generally bipolar plates which enclose the EME stack.
  • Each of the electrodes is constituted by a diffusion layer 2a and 3a and a catalytic layer 2b and 3b.
  • each diffusion layer 2a or 3b allows the passage of fluids, that is to say oxygen, hydrogen and water, between a circulation channel 5a or 5b and the catalytic layer 2a and 3a of the corresponding electrode.
  • the electrochemical reactions take place at the level of the catalytic layers of the anode and the cathode.
  • current collector plates 6a and 6b are essential for the proper functioning of the fuel cell.
  • the current collector plates can significantly alter the accessible mass and volume energy density of the battery.
  • such an assembly is bulky and its volume cannot be easily reduced.
  • fuel cells should be compact while maintaining their performance.
  • Patent application EP-A2-1282185 proposes, then, to produce a fuel cell with cylindrical geometry, from a substrate of which at least one component is intended to be eliminated and serving as a support for successive deposits of a first current collector, a stack comprising a first electrode, an electrolytic membrane and a second electrode and a second current collector.
  • the first and second electrodes each comprise a diffusion layer and a catalyst while the first and second current collectors can optionally be in the form of a mesh of metallic fabric.
  • the production of such a fuel cell is, however, impractical to implement.
  • the object of the invention is to produce a fuel cell overcoming the drawbacks of the prior art and having, in particular, increased energy densities while being able to easily supply at least one of the components of the stack with fluid.
  • electrode-membrane-electrode More particularly, the invention also aims to produce a space-saving fuel cell that can be miniaturized, using in particular the manufacturing techniques of microtechnology.
  • the first and second current collectors are respectively arranged on the front and rear faces of the electrolytic membrane, between the electrolytic membrane and the corresponding electrode.
  • the first and second current collectors are each structured in the form of a grid.
  • the first and second current collectors are each structured in the form of a comb.
  • the first and second current collectors are porous, the transverse passages being formed by the pores of the current collectors.
  • the first and second current collectors each comprise an alternation of porous zones and non-porous zones, the transverse passages being constituted by the pores of the porous zones.
  • Figure 1 is a schematic representation, in section, of an elementary cell of a fuel cell according to the prior art.
  • Figure 2 is a schematic representation, in section, of a particular embodiment of a fuel cell.
  • Figures 3 to 10 illustrate different stages in the production of a fuel cell according to the invention.
  • Figures 11 and 12 show, in top view, first and second embodiments of a current collector of a fuel cell according to the invention.
  • a fuel cell can comprise an EME stack made up of plane layers.
  • the stack thus comprises an electrolytic membrane 4 provided with front and rear faces 4a and 4b. on which are arranged first and second catalytic layers 2b and 3b respectively, respectively covered by a diffusion layer
  • the first catalytic layer 2b and the first diffusion layer 2a form the anode 2 while the second catalytic layer 3b and the second diffusion layer 3a form the cathode 3.
  • First and second current collectors 7 and 8 are integrated into the stack
  • the first and second collectors 7 and 8 are respectively arranged on the external faces of the first and second diffusion layers 2a and 3a of the anode 2 and of the cathode 3. They each consist of a metal deposit comprising a plurality of transverse passages 7a and 8a intended to allow the passage of a fluid towards a diffusion layer.
  • the hydrogen can pass through the transverse passages 7a of the anode current collector 7 to reach the diffusion layer 2a of the anode 2 and the oxygen passes through the transverse passages 8a of the cathode current collector 8 to reach the diffusion layer 3a of the cathode 3.
  • the water produced during the operation of the fuel cell is discharged through the same transverse passages 7a and 8a.
  • This type of integrated structure makes it possible to collect the electrons formed during the electrochemical reactions taking place at the level of the catalytic layers, while promoting the diffusion of the reactive fluids or of the fluids formed, without any external energy supply such as the use of a fan, for example. Thanks to the number and distribution of the transverse passages, the fluid can penetrate the entire diffusion layer and therefore react over a large area of the catalytic layer. This allows, in particular, to improve the yield of the electrochemical reaction.
  • the integration of current collectors on the stack makes it possible to circulate the electrons formed during the reduction of hydrogen over a very short distance between a current collector and the catalytic layer of the corresponding electrode.
  • the distance traveled by the electrons being of the order of a few micrometers, it avoids ohmic losses due to the level of electrical conductivity of the materials constituting the electrodes when the latter are not compressed by a device of the filter press type.
  • the electrical conductivity of the electrodes is generally of the order of 1S / cm to 10S / cm.
  • such integration of current collectors can cause damage to the electrodes and therefore reduce the performance of the fuel cell.
  • the first and second current collectors comprising a metal deposit and provided with transverse passages are respectively arranged on the front and rear faces of the electrolytic membrane, between the electrolytic membrane and the corresponding electrode.
  • the current collectors are preferably constituted by a metal chosen from noble metals and the metal is, more particularly, gold or platinum in the case of an acid fuel cell and nickel in the case of 'a basic fuel cell.
  • the catalytic elements of the electrodes remain in direct contact with the electrolytic membrane of the stack, through the transverse passages formed in the current collectors.
  • an electrolytic membrane 4 is deposited on a substrate 8 (FIG. 3), in the form of a layer of perfluorinated polymer of the National type. ®.
  • a photolithography step is carried out so as to form a mask 10 of photocrosslinkable material on the metal layer (FIG. 5).
  • the mask 10 includes cavities 10a in which a galvanic deposit, for example made of gold or copper, is produced (FIG. 6).
  • the galvanic deposition comprises raised parts 11 corresponding to the complementary part of the cavities 10a.
  • the raised portions 11 of the galvanic deposit are thus respectively superimposed on the edges of the transverse passages 12 of the metal layer 9 and the assembly forms a first current collector 13.
  • a catalytic element 14, forming a first electrode is then deposited. in the form of a thin layer, on the surface of the assembly formed by the electrolytic membrane 4 and the first current collector 13. It then fills the transverse passages 12 of the first current collector 13, so as to be in direct contact with the electrolytic membrane 4, through the transverse passages. In addition, it covers the raised parts 11.
  • the assembly then constitutes a half-fuel cell.
  • the rest of the fuel cell is then formed by removing the substrate 8, so as to release the rear face of the electrolytic membrane.
  • the assembly formed by the electrolytic membrane 4, the first collector 13 and the first electrode 14 is then turned over, after having possibly been covered by a protective layer.
  • a second current collector 15 and a second electrode 16 are formed, on the rear face 4b of the electrolytic membrane 4, in an identical manner to the first current collector 13 and to the first electrode 14.
  • the catalytic element of the second electrode 16 then fills the transverse passages formed in the second current collector 15, so as to be in direct contact with the rear face 4b of the electrolytic membrane 4 and it covers the second current collector 15.
  • a fuel cell comprising current collectors provided with transverse passages and arranged on the front and rear faces of the electrolytic membrane has intrinsic electrochemical characteristics equivalent to those of cells of the filter press type. It has, however, a much higher volume or mass energy density and it is much less bulky.
  • the production of the electrodes on the current collectors also simplifies the manufacturing process of such a fuel cell. Indeed, having the electrodes on the current collectors is advantageous for the manufacture of the fuel cell because, the catalytic element of the electrodes being more fragile than the current collector, it is easier to deposit the fragile elements on the more solid elements than the reverse. This also makes it possible to obtain a more robust fuel cell, the thickness of the catalytic elements no longer being limited by the current collectors.
  • the fuel cell can comprise a plurality of EME stack with integrated current collectors.
  • the fuel cell can be of any shape, for example cylindrical.
  • the current collectors can also be of any shape, with transverse passages of the current collectors arranged so as to ensure the continuity of the passage of the current in the current collectors.
  • the current collectors can be structured in the form of a grid ( Figure 1 1) or in the form of a comb ( Figure 12).
  • the transverse passages 12 are formed between branches 17 of the comb.
  • the number and distribution of cross passages allow maintain a high reaction surface between the catalytic element and the electrolytic membrane.
  • Current collectors are produced by any type of known method for producing thin layers. They can, in particular, be carried out by physical vapor deposition (PVD or “Physical Vapor Deposition), by chemical vapor deposition (CVD or“ Chemical Vapor Deposition), by screen printing or by electrochemical deposition.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • electrochemical deposition by screen printing or by electrochemical deposition.
  • the current collectors can also be uniformly porous or they can comprise an alternation of porous zones and non-porous zones, the pores playing, in both cases, the role of the transverse passages of the current collectors.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Une pile à combustible comporte un empilement comprenant une membrane électrolytique (4) munie de faces avant et arrière (4a, 4b) sur lesquelles sont respectivement disposés des premier et second collecteurs de courant (13, 15) comportant chacun un dépôt métallique et munis d'une pluralité de passages transversaux. Des première et seconde électrodes (14, 16) sont respectivement disposés sur les premier et second collecteurs de courant (13, 15) de manière à être en contact direct avec la membrane électrolytique (4).

Description

Pile à combustible comportant des collecteurs de courant intégrés à l'empilement Electrode-Membrane-Electrode.
Domaine technique de l'invention
L'invention concerne une pile à combustible comportant : - un empilement comprenant une première électrode, une membrane électrolytique munie de faces avant et arrière et une seconde électrode, - et des premier et second collecteurs de courant intégrés à l'empilement et correspondant respectivement aux première et seconde électrodes, chaque collecteur de courant comportant un dépôt métallique et étant muni d'une pluralité de passages transversaux pour un fluide.
Etat de la technique
Les piles à combustible, de type piles à combustible à membrane échangeuse de protons, (par exemple « PEMFC » ou Proton Exchange Membrane Fuel Cell » ou échangeuse d'anions OH ) comportent généralement un grand nombre de cellules élémentaires disposées en série et comportant chacune un empilement comprenant une anode et une cathode séparées par une membrane électrolytique. L'empilement est disposé entre deux plaques collectrices de courant et il est généralement appelé un empilement de type « EME » (Electrode-Membrane-Electrode). L'ensemble des cellules élémentaires forme un assemblage de type filtre-presse.
Ainsi comme représentée à la figure 1 , une cellule élémentaire 1 comporte une anode 2, une cathode 3 et une membrane électrolytique 4 disposée entre les deux électrodes. Dans le cas d'une pile PEMFC, l'anode 2 est le siège d'une réaction dont le réactif est l'hydrogène tandis qu'une réaction entre les protons H+ formés à l'anode 2 et de l'oxygène se produit à la cathode 3 pour former de l'eau. La membrane électrolytique 4 est destinée à laisser passer les protons H+ de l'anode 2 vers la cathode 3.
L'anode 2 et la cathode 3 sont respectivement alimentées en hydrogène et en oxygène, via des canaux de circulation 5a et 5b connectés à des sources de réactif qui peuvent être, d'une part de l'hydrogène pur ou des hydrocarbures reformés ou non pour la source d'hydrogène et, d'autre part de l'oxygène pur ou de l'air pour la source d'oxygène. Les canaux de circulation 5a et 5b sont respectivement délimités par la face externe de l'anode et de la cathode et par la paroi interne de plaques 6a et 6b destinées à collecter le courant. Les plaques 6a et 6b sont généralement des plaques bipolaires qui enserrent l'empilement EME.
Chacune des électrodes est constituée par une couche de diffusion 2a et 3a et une couche catalytique 2b et 3b. Ainsi, chaque couche de diffusion 2a ou 3b permet le passage de fluides, c'est-à-dire de l'oxygène, de l'hydrogène et de l'eau, entre un canal de circulation 5a ou 5b et la couche catalytique 2a et 3a de l'électrode correspondante. Les réactions électrochimiques ont lieu au niveau des couches catalytiques de l'anode et de la cathode.
L'emploi des plaques collectrices de courant 6a et 6b est indispensable au bon fonctionnement de la pile à combustible. Cependant les plaques collectrices de courant peuvent altérer de façon significative la densité d'énergie massique et volumique accessible de la pile. De plus, un tel assemblage est encombrant et son volume ne peut pas être facilement réduit. Or, dans certaines applications telles que celles destinées à fournir de l'énergie à des équipements portables, les piles à combustible doivent être peu encombrantes tout en conservant leurs performances.
La demande de brevet EP-A2-1282185 propose, alors, de réaliser une pile à combustible à géométrie cylindrique, à partir d'un substrat dont au moins un composant est destiné à être éliminé et servant de support aux dépôts successifs d'un premier collecteur de courant, d'un empilement comprenant une première électrode, une membrane électrolytique et une seconde électrode et d'un second collecteur de courant. Les première et seconde électrodes comportent chacune une couche de diffusion et un catalyseur tandis que les premier et second collecteurs de courant peuvent être éventuellement sous forme d'un maillage de tissu métallique. La réalisation d'une telle pile à combustible est, cependant, peu pratique à mettre en œuvre.
Objet de l'invention
L'invention a pour but de réaliser une pile à combustible remédiant aux inconvénients de l'art antérieur et ayant, notamment, des densités d'énergie accrues tout en étant capable d'alimenter facilement en fluide au moins un des composants de l'empilement électrode-membrane-électrode. Plus particulièrement, l'invention a également pour but de réaliser une pile à combustible peu encombrante et pouvant être miniaturisée, en utilisant notamment les techniques de fabrication de la microtechnologie.
Selon l'invention, ce but est atteint par le fait que les premier et second collecteurs de courant sont respectivement disposés sur les faces avant et arrière de la membrane électrolytique, entre la membrane électrolytique et l'électrode correspondante. Selon un premier développement de l'invention, les premier et second collecteurs de courant sont chacun structurés sous la forme d'une grille.
Selon un second développement de l'invention, les premier et second collecteurs de courant sont chacun structurés sous la forme d'un peigne.
Selon un troisième développement de l'invention, les premier et second collecteurs de courant sont poreux, les passages transversaux étant constitués par les pores des collecteurs de courant.
Selon un mode de réalisation préférentiel, les premier et second collecteurs de courant comportent chacun une alternance de zones poreuses et de zones non poreuses, les passages transversaux étant constitués par les pores des zones poreuses.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
La figure 1 est une représentation schématique, en coupe, d'une cellule élémentaire d'une pile à combustible selon l'art antérieur. La figure 2 est une représentation schématique, en coupe, d'un mode particulier de réalisation d'une pile à combustible. Les figures 3 à 10 illustrent différentes étapes de réalisation d'une pile à combustible selon l'invention.
Les figures 11 et 12 représentent, en vue de dessus, des premier et second modes de réalisation d'un collecteur de courant d'une pile à combustible selon l'invention.
Description de modes particuliers de réalisation.
L'enseignement de la demande de brevet EP-A2-1282185 pourrait, éventuellement, être appliqué à des piles à combustible ayant une géométrie non cylindrique, par exemple à une pile à combustible comportant un empilement Electrode-Membrane-Electrode, noté empilement EME et constitué de couches planes.
Ainsi, comme représentée à la figure 2, une pile à combustible peut comporter un empilement EME constitué de couches planes. L'empilement comporte, ainsi, une membrane électrolytique 4 munie de faces avant et arrière 4a et 4b. sur lesquelles sont respectivement disposées des première et seconde couches catalytiques 2b et 3b, respectivement recouvertes par une couche de diffusion
2a et 3a. La première couche catalytique 2b et la première couche de diffusion 2a forment l'anode 2 tandis que la seconde couche catalytique 3b et la seconde couche de diffusion 3a forment la cathode 3.
Des premier et second collecteurs de courant 7 et 8 sont intégrés à l'empilement
EME, c'est-à-dire que l'empilement EME et les premier et second collecteurs de courant 7 et 8 forment un même ensemble intégré. A la figure 2, les premier et second collecteurs 7 et 8 sont respectivement disposés sur les faces externes des première et seconde couches de diffusion 2a et 3a de l'anode 2 et de la cathode 3. Ils sont chacun constitués par un dépôt métallique comportant une pluralité de passages transversaux 7a et 8a destinés à permettre le passage d'un fluide vers une couche de diffusion. Ainsi, l'hydrogène peut passer à travers les passages transversaux 7a du collecteur de courant anodique 7 pour atteindre la couche de diffusion 2a de l'anode 2 et l'oxygène passe à travers les passages transversaux 8a du collecteur de courant cathodique 8 pour atteindre la couche de diffusion 3a de la cathode 3. De même, l'eau produite au cours du fonctionnement de la pile à combustible est évacuée par les mêmes passages transversaux 7a et 8a.
Ce type de structure intégrée permet de collecter les électrons formés lors des réactions électrochimiques ayant lieu au niveau des couches catalytiques, tout en favorisant la diffusion des fluides réactifs ou des fluides formés, sans apport d'énergie extérieure telle que l'emploi d'un ventilateur, par exemple. Grâce au nombre et à la répartition des passages transversaux, le fluide peut pénétrer sur la totalité de la couche de diffusion et donc réagir sur une large surface de la couche catalytique. Ceci permet, notamment, d'améliorer le rendement de la réaction électrochimique.
De plus, l'intégration des collecteurs de courant sur l'empilement permet de faire circuler les électrons formés lors de la réduction de l'hydrogène sur une distance très courte entre un collecteur de courant et la couche catalytique de l'électrode correspondante. La distance parcourue par les électrons étant de l'ordre de quelques micromètres, elle évite des pertes ohmiques dues au niveau de conductivité électrique des matériaux constituant les électrodes lorsque celles-ci ne sont pas comprimées par un dispositif de type filtre-presse. La conductivité électrique des électrodes est généralement de l'ordre de 1S/cm à 10S/cm. Cependant, une telle intégration des collecteurs de courant peut provoquer une altération des électrodes et donc réduire les performances de la pile à combustible. Ainsi, selon l'invention, cet inconvénient est surmonté par le fait que les premier et second collecteurs de courant comportant un dépôt métallique et munis de passages transversaux sont respectivement disposés sur les faces avant et arrière de la membrane électrolytique, entre la membrane électrolytique et l'électrode correspondante. Les collecteurs de courant sont, de préférence, constitués par un métal choisi parmi les métaux nobles et le métal est, plus particulièrement, de l'or ou du platine dans le cas d'une pile à combustible acide et du nickel dans le cas d'une pile à combustible basique. De plus, les éléments catalytiques des électrodes restent en contact direct avec la membrane électrolytique de l'empilement, à travers les passages transversaux formés dans les collecteurs de courant.
Selon un procédé particulier de réalisation d'une pile à combustible, tel que représenté aux figures 3 à 10, une membrane électrolytique 4 est déposée sur un substrat 8 (figure 3), sous la forme d'une couche de polymère perfluoré de type Nation®. Une couche métallique 9, de préférence en or, en alliage chrome- or ou en alliage titane-or, est ensuite déposée sur la face avant 4a de la membrane électrolytique 4 par évaporation (figure 4).
Puis, une étape de photolithographie est réalisée de manière à former un masque 10 en matériau photoréticulable sur la couche métallique (figure 5). Le masque 10 comporte des cavités 10a dans lesquelles est réalisé un dépôt galvanique, par exemple en or ou en cuivre, (figure 6). Ainsi, le dépôt galvanique comporte des parties en relief 11 correspondant à la partie complémentaire des cavités 10a. Une fois le matériau photoréticulable retiré (figure 7), la couche métallique 9 est gravée (figure 8) de sorte qu'elle comporte des passages transversaux 12 et qui sont destinés à permettre le passage des protons de l'anode vers la membrane électrolytique 4 ou de la membrane électrolytique 4 vers la cathode.
Les parties en relief 11 du dépôt galvanique sont, ainsi, respectivement superposées aux bordures des passages transversaux 12 de la couche métallique 9 et l'ensemble forme un premier collecteur de courant 13. Un élément catalytique 14, formant une première électrode, est alors déposé sous forme d'une couche mince, sur la surface de l'ensemble formé par la membrane électrolytique 4 et le premier collecteur de courant 13. Il comble alors les passages transversaux 12 du premier collecteur de courant 13, de manière à être en contact direct avec la membrane électrolytique 4, à travers les passages transversaux. De plus, il recouvre les parties en relief 11. L'ensemble constitue, alors, une demi-pile à combustible.
Le reste de la pile à combustible est, ensuite, formé en retirant le substrat 8, de manière à libérer la face arrière de la membrane électrolytique. L'ensemble formé par la membrane électrolytique 4, le premier collecteur 13 et la première électrode 14 est, ensuite, retourné, après avoir été éventuellement recouvert par une couche de protection. Puis, comme illustré à la figure 10, un second collecteur de courant 15 et une seconde électrode 16 sont formés, sur la face arrière 4b de la membrane électrolytique 4, de manière identique au premier collecteur de courant13 et à la première électrode 14. L'élément catalytique de la seconde électrode 16 comble alors les passages transversaux formés dans le second collecteur de courant 15, de manière à être en contact direct avec la face arrière 4b de la membrane électrolytique 4 et il recouvre le second collecteur de courant 15.
Le fait d'intégrer les collecteurs de courant à un empilement EME permet, notamment, d'utiliser les techniques de dépôt connues dans le domaine de la microtechnologie, et donc de réaliser des piles à combustibles miniatures et de manière plus rapide. Par ailleurs, une pile à combustible comportant des collecteurs de courant munis de passages transversaux et disposés sur les faces avant et arrière de la membrane électrolytique présente des caractéristiques électrochimiques intrinsèques équivalentes à celles des piles du type filtre-presse. Elle a, cependant, une densité d'énergie volumique ou massique beaucoup plus élevée et elle est beaucoup moins encombrante.
La réalisation des électrodes sur les collecteurs de courant simplifie également le procédé de fabrication d'une telle pile à combustible. En effet, le fait de disposer les électrodes sur les collecteurs de courant est avantageux pour la fabrication de la pile à combustible car, l'élément catalytique des électrodes étant plus fragile que le collecteur de courant, il est plus facile de déposer les éléments fragiles sur les éléments plus solides que l'inverse. Cela permet également d'obtenir une pile à combustible plus robuste, l'épaisseur des éléments catalytiques n'étant plus limitée par les collecteurs de courant.
L'invention n'est pas limitée à un mode particulier de réalisation. Ainsi, la pile à combustible peut comporter une pluralité d'empilement EME avec des collecteurs de courant intégrés. La pile à combustible peut être de forme quelconque, par exemple cylindrique. Les collecteurs de courant peuvent également de forme quelconque, avec des passages transversaux des collecteurs de courant disposés de manière à assurer la continuité du passage du courant dans les collecteurs de courant. Ainsi, comme représentés aux figures 11 et 12, les collecteurs de courant peuvent être structurés sous la forme d'une grille (figure 1 1 ) ou sous la forme d'un peigne (figure 12). A titre d'exemple, dans le cas d'un collecteur de courant 13 sous forme de peigne, les passages transversaux 12 sont formés entre des branches 17 du peigne. De plus, le nombre et la répartition des passages transversaux permettent de conserver une surface de réaction élevée entre l'élément catalytique et la membrane électrolytique.
Les collecteurs de courant sont réalisés par tout type de méthodes connues pour réaliser des couches minces. Ils peuvent, notamment, être réalisés par dépôt physique en phase vapeur (PVD ou « Physical Vapour Déposition), par dépôt chimique en phase vapeur (CVD ou « Chemical Vapour Déposition), par sérigraphie ou par dépôt électrochimique. Les collecteurs de courant peuvent également être uniformément poreux ou bien ils peuvent comporter une alternance de zones poreuses et de zones non poreuses, les pores jouant, dans les deux cas, le rôle des passages transversaux des collecteurs de courant.

Claims

Revendications
1. Pile à combustible comportant : - un empilement comprenant une première électrode (14), une membrane électrolytique (4) munie de faces avant et arrière (4a, 4b) et une seconde électrode (16), - et des premier et second collecteurs de courant (13, 15) intégrés à l'empilement et correspondant respectivement aux première et seconde électrodes (14, 16), chaque collecteur de courant comportant un dépôt métallique et étant muni d'une pluralité de passages transversaux pour un fluide, pile caractérisée en ce que les premier et second collecteurs de courant (13, 15) sont respectivement disposés sur les faces avant et arrière (4a, 4b) de la membrane électrolytique (4), entre la membrane électrolytique (4) et l'électrode correspondante (14, 16).
2. Pile à combustible selon la revendication 1 , caractérisée en ce que les premier et second collecteurs de courant (13, 15) sont chacun structurés sous la forme d'une grille.
3. Pile à combustible selon la revendication 1 , caractérisée en ce que les premier et second collecteurs de courant (13, 15) sont chacun structurés sous la forme d'un peigne.
4. Pile à combustible selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les premier et second collecteurs de courant (13, 15) sont poreux, les passages transversaux étant constitués par les pores des collecteurs de courant (13, 15).
5. Pile à combustible selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les premier et second collecteurs de courant (13, 15) comportent chacun une alternance de zones poreuses et de zones non poreuses, les passages transversaux étant constitués par les pores des zones poreuses.
6. Pile à combustible selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le métal des premier et second collecteurs de courant (13, 15) est choisi parmi les métaux nobles.
PCT/FR2004/001548 2003-07-01 2004-06-21 Pile a combustible comportant des collecteurs de courant integres a l’empilement electrode-membrane-electrode WO2005015669A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/559,933 US7521147B2 (en) 2003-07-01 2004-06-21 Fuel cell comprising current collectors integrated in the electrode-membrane-electrode stack
EP04767404.9A EP1645004B1 (fr) 2003-07-01 2004-06-21 Pile a combustible comportant des collecteurs de courant integres a l'empilement electrode-membrane-electrode
JP2006518256A JP5595631B2 (ja) 2003-07-01 2004-06-21 電極−膜−電極の積層体中に集積された集電体を備える燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/07967 2003-07-01
FR0307967A FR2857162B1 (fr) 2003-07-01 2003-07-01 Pile a combustible comportant des collecteurs de courant integres a l'empilement electrode-membrane-electrode.

Publications (2)

Publication Number Publication Date
WO2005015669A2 true WO2005015669A2 (fr) 2005-02-17
WO2005015669A3 WO2005015669A3 (fr) 2005-07-07

Family

ID=33522649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/001548 WO2005015669A2 (fr) 2003-07-01 2004-06-21 Pile a combustible comportant des collecteurs de courant integres a l’empilement electrode-membrane-electrode

Country Status (6)

Country Link
US (1) US7521147B2 (fr)
EP (1) EP1645004B1 (fr)
JP (2) JP5595631B2 (fr)
CN (1) CN100444444C (fr)
FR (1) FR2857162B1 (fr)
WO (1) WO2005015669A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463265C (zh) * 2005-05-24 2009-02-18 三星Sdi株式会社 单极的膜电极组件
US8003275B2 (en) 2005-05-24 2011-08-23 Samsung Sdi Co., Ltd. Monopolar membrane-electrode assembly
US8415072B2 (en) 2005-08-23 2013-04-09 Samsung Sdi Co., Ltd. Membrane electrode assembly for fuel cell
US8771896B2 (en) 2005-12-09 2014-07-08 Commissariat A L'energie Atomique Fuel cell with current collectors integrated with the solid electrolyte and process for manufacturing such a fuel cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004018123D1 (de) 2004-07-06 2009-01-15 Suisse Electronique Microtech Miniatur-Brennstoffzellekern
EP1693338A1 (fr) * 2005-02-17 2006-08-23 CSEM Centre Suisse d'Electronique et de Microtechnique S.A. - Recherche et Développement Procédé de réalisation d'une micro-structure en titane.
KR100723385B1 (ko) * 2005-09-23 2007-05-30 삼성에스디아이 주식회사 연료전지용 막전극 접합체 및 이를 채용한 연료전지 시스템
FR2898731B1 (fr) * 2006-03-17 2015-01-02 Commissariat Energie Atomique Pile a comsbustible comportant un ensemble capable de gerer l'eau produite par ladite pile.
US20080206605A1 (en) * 2007-02-28 2008-08-28 Bloom Energy Corporation Current collector for fuel cell systems
US9337474B1 (en) 2010-05-20 2016-05-10 Halbert P. Fischel Electrodes for electrochemical cells
EP3589443A4 (fr) * 2017-03-01 2021-01-20 Global Energy Science, LLC Outil de fixation amovible de pellicule galvanique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122972A1 (en) * 1999-05-06 2002-09-05 Tom Klitsner Fuel cell and membrane
EP1434297A2 (fr) * 2002-10-29 2004-06-30 Hewlett-Packard Development Company, L.P. Pile à combustible avec collecteur de courant intégré

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067488B2 (ja) * 1985-12-27 1994-01-26 田中貴金属工業株式会社 ガス拡散電極
JP2673584B2 (ja) * 1989-07-31 1997-11-05 工業技術院長 多孔質電極構造の作製方法
JPH04233163A (ja) * 1990-12-28 1992-08-21 Aisin Aw Co Ltd 電極構造体
US5618275A (en) * 1995-10-27 1997-04-08 Sonex International Corporation Ultrasonic method and apparatus for cosmetic and dermatological applications
IT1284072B1 (it) * 1996-06-26 1998-05-08 De Nora Spa Cella elettrochimica a membrana provvista di elettrodi a diffusione gassosa contattati da portacorrente metallici lisci e porosi a
CA2294803A1 (fr) * 1998-05-27 1999-12-02 Toray Industries, Inc. Papier de fibres de carbone pour piles a combustible a polymeres solides
US6261710B1 (en) * 1998-11-25 2001-07-17 Institute Of Gas Technology Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
JP2000182628A (ja) * 1998-12-15 2000-06-30 Matsushita Electric Ind Co Ltd 薄膜固体電解質素子用多孔質電極の製造方法
JP4961626B2 (ja) * 2000-05-24 2012-06-27 ソニー株式会社 電気エネルギー発生装置の装着方法および電気エネルギー発生装置を内蔵したコンピュータ
JP2002216803A (ja) * 2001-01-19 2002-08-02 Sony Corp 燃料電池及びその製法並びに使用方法
JP4691794B2 (ja) * 2001-02-09 2011-06-01 ソニー株式会社 電気化学デバイスの製造方法
JP4061573B2 (ja) * 2001-05-18 2008-03-19 ソニー株式会社 導電性触媒粒子の製造方法及びガス拡散性触媒電極の製造方法、並びに導電性触媒粒子の製造方法に用いる装置
FR2828013B1 (fr) * 2001-07-24 2003-09-12 Commissariat Energie Atomique Pile a combustible miniature a geometrie cylindrique
JP2003077479A (ja) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122972A1 (en) * 1999-05-06 2002-09-05 Tom Klitsner Fuel cell and membrane
EP1434297A2 (fr) * 2002-10-29 2004-06-30 Hewlett-Packard Development Company, L.P. Pile à combustible avec collecteur de courant intégré

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STANLEY K G ET AL: "Fabrication of a micromachined direct methanol fuel cell" 12 mai 2002 (2002-05-12), IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING. CCECE 2002. WINNIPEG, MANITOBA, CANADA, MAY 12 - 15, 2002, CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, NEW YORK, NY : IEEE, US, PAGE(S) 450-454 , XP002271656 ISBN: 0-7803-7514-9 abrégé; figures 3,4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463265C (zh) * 2005-05-24 2009-02-18 三星Sdi株式会社 单极的膜电极组件
US8003275B2 (en) 2005-05-24 2011-08-23 Samsung Sdi Co., Ltd. Monopolar membrane-electrode assembly
US8415072B2 (en) 2005-08-23 2013-04-09 Samsung Sdi Co., Ltd. Membrane electrode assembly for fuel cell
US8771896B2 (en) 2005-12-09 2014-07-08 Commissariat A L'energie Atomique Fuel cell with current collectors integrated with the solid electrolyte and process for manufacturing such a fuel cell

Also Published As

Publication number Publication date
JP2007525792A (ja) 2007-09-06
EP1645004B1 (fr) 2013-07-17
JP5595631B2 (ja) 2014-09-24
WO2005015669A3 (fr) 2005-07-07
US20060134500A1 (en) 2006-06-22
FR2857162B1 (fr) 2014-04-11
CN1816932A (zh) 2006-08-09
CN100444444C (zh) 2008-12-17
JP2014029864A (ja) 2014-02-13
FR2857162A1 (fr) 2005-01-07
EP1645004A2 (fr) 2006-04-12
US7521147B2 (en) 2009-04-21
JP5591990B2 (ja) 2014-09-17

Similar Documents

Publication Publication Date Title
EP3183379B1 (fr) Procédé d'électrolyse ou de co-électrolyse à haute température, procédé de production d'électricité par pile à combustible sofc, interconnecteurs, réacteurs et procédés de fonctionnement associés
EP1941569B1 (fr) Electrode pour pile a combustible alcaline et procede de fabrication d'une pile a combustible comportant au moins une etape de fabrication d'une telle electrode
EP1645004B1 (fr) Pile a combustible comportant des collecteurs de courant integres a l'empilement electrode-membrane-electrode
EP1604420B1 (fr) Pile a combustible planaire et procede de fabrication d une telle pile
EP1749323B1 (fr) Cellule de pile a combustible a electrolyte solide
EP1456902B1 (fr) Pile a combustible et procede de fabrication d'une telle pile a surface active importante et a volume reduit
FR2819107A1 (fr) Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible
WO2015101924A1 (fr) Interconnecteur electrique et fluidique pour electrolyseur eht ou pile a combustible sofc.
EP1982380B1 (fr) Cellule de pile a combustible integree et procede de fabrication
EP2867947B1 (fr) Procédé de fabrication d'un assemblage electrode/membrane échangeuse de protons
WO2019186051A1 (fr) Plaque bipolaire a canaux ondules
FR2846797A1 (fr) Module de base monobloc et a relief de pile a combustible miniature et son procede de fabrication
WO2005015672A2 (fr) Pile a combustible dans laquelle un fluide circule sensiblement parallelement a la membrane electrolytique et procede de fabrication d’une telle pile a combustible
EP2165381B1 (fr) Substrat poreux étanche pour piles à combustible planaires et packaging intégré
EP2301101B1 (fr) Pile à combustible à empilement membrane/électrodes perpendiculaire au substrat de support et procédé de réalisation
EP1763100B1 (fr) Micropile à combustible avec une membrane renforcée par un élément d'ancrage et procédé de fabrication d'une micropile à combustible
FR2894075A1 (fr) Support de pile a combustible integree
EP4016677A1 (fr) Procédé de fabrication d'un guide d'écoulement pour réacteur électrochimique
EP4191714A1 (fr) Guide d'écoulement pour réacteur électrochimique et procédé de fabrication associé
EP4016678A1 (fr) Procédé de fabrication d'un guide d'écoulement à canal structuré pour réacteur électrochimique
WO2012013867A1 (fr) Pile à combustible comportant une pluralité de cellules élémentaires connectées en série et son procédé de réalisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004767404

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006134500

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10559933

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048188104

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006518256

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004767404

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10559933

Country of ref document: US