WO2005014185A1 - 1-3 composite structure high frequency sonar antenna - Google Patents

1-3 composite structure high frequency sonar antenna Download PDF

Info

Publication number
WO2005014185A1
WO2005014185A1 PCT/EP2004/051497 EP2004051497W WO2005014185A1 WO 2005014185 A1 WO2005014185 A1 WO 2005014185A1 EP 2004051497 W EP2004051497 W EP 2004051497W WO 2005014185 A1 WO2005014185 A1 WO 2005014185A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sensors
studs
high frequency
pads
Prior art date
Application number
PCT/EP2004/051497
Other languages
French (fr)
Inventor
Sylvie Ponthus
Gérard ROUX
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2004262588A priority Critical patent/AU2004262588A1/en
Priority to EP04766227.5A priority patent/EP1684917B1/en
Publication of WO2005014185A1 publication Critical patent/WO2005014185A1/en
Priority to NO20060952A priority patent/NO337904B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array

Definitions

  • the present invention relates to an antenna structure capable of operating at high frequency, consisting of piezoelectric ceramic studs grouped in subassemblies forming independent sensors.
  • the pads are embedded in a dielectric filling matrix which gives the antenna good mechanical strength and advantageous acoustic properties in terms of decoupling.
  • This antenna can in particular be used in high frequency sonar, of the mine sonar type.
  • FIG. 1 shows such an arrangement.
  • This figure shows a set of studs 10 of piezoelectric ceramic, mounted on a rear plate 11.
  • These studs can be grouped into subassemblies also called sensors.
  • all of the sensor pads are connected together by their upper face 12 and brought into contact by their rear face with the plate 1.
  • the front and rear faces of the pads are metallized.
  • the contact can for example be made by depositing a metallization layer on the face 13 of the rear plate 11 in contact with the studs 10. An arrangement is thus obtained as illustrated in FIG. 2.
  • the antenna thus produced is presented as a set of studs 10 regularly distributed on the rear plate 11 and grouped into sensors 20.
  • the face of the rear plate 11 in contact with the studs has an alternation of elements of metallized surfaces 21 separated from each other by non-metallized strips 22.
  • Each metallized surface is positioned under a group of studs forming the same sensor, the non-metallized strips making it possible to electrically isolate the sensors from each other.
  • the association of the different pads into sensors makes it possible to produce an antenna capable of forming several transmission / reception channels.
  • the studs forming the antenna are of reduced dimensions.
  • the mechanical strength of the antenna constituted by the studs and the rear plate is produced, in known manner, by filling the spaces between pads with a rigid dielectric material also called matrix. In this way, a structure commonly known as composite 1-3 is obtained.
  • the structure thus produced is completed by the installation on the upper faces 12 of adaptation layers and a waterproofing membrane.
  • the front face thus produced constitutes the face of the antenna in contact with the propagation medium, for example the marine environment.
  • adaptation layers is described in particular in French patent application 94 08474 filed by the applicant and published on 12.01.96 under the number 2 722 358.
  • the filling matrix used is commonly made from polyurethane or epoxy resin, these two materials having advantages and disadvantages.
  • the epoxy-based composites 1-3 have the advantage of having a high hydrostatic coefficient dh, which can reach for example a few hundred picocoulombs per newton. Such a hydrostatic coefficient makes it possible in particular to obtain a high electrical mechanical transformation coefficient ⁇ .
  • dh hydrostatic coefficient
  • electrical mechanical transformation coefficient
  • Composites 1-3 based on epoxide also have the advantage of only expanding slightly as a function of temperature variations and of having good adhesion to the ceramic, which avoids the use of specific preparations intended to ensure the adhesion of the matrix to the studs.
  • epoxy-based composites 1-3 have poor acoustic decoupling properties and the use of an epoxy matrix induces crosstalk phenomena between the sensors which significantly reduce the quality of the channels formed.
  • Composites 1-3 based on polyurethane have a good quality of acoustic decoupling and thus allow satisfactory decoupling of the formed channels.
  • polyurethane has a lower hydrostatic coefficient than that of epoxy, of the order of a few tens of picocoulombs per newton, and therefore a lower coefficient ⁇ .
  • the low rigidity of the polyurethane as well as its temperature behavior make it a material little suited to the production of an antenna having satisfactory rigidity and having good insensitivity to temperature variations.
  • the aim of the device according to the invention is to obtain a sonar antenna having satisfactory acoustic properties and good mechanical strength.
  • a sonar antenna comprising piezoelectric ceramic studs grouped in sensors and included in a matrix made of epoxy resin.
  • This matrix can also be made of any other material having equivalent piezoelectric, mechanical and thermal properties.
  • This antenna has the characteristic of comprising intermediate elements, preferably made of polyurethane which isolate the sensors from each other and thus achieve good decoupling between sensors.
  • These blades can also be made of any other material capable of achieving good acoustic decoupling.
  • the antenna according to the invention has the advantage of having the characteristics of an antenna with an epoxy matrix while having decoupling characteristics that a polyurethane matrix makes it possible to obtain. It also has the advantage of being as simple to produce as a conventional antenna with an epoxy matrix.
  • FIG. 3 a perspective view showing an intermediate element of the type of those that comprises the antenna according to the invention
  • - Figure 4 a schematic sectional view of the antenna according to the invention in three stages of its manufacturing
  • - Figure 5 a view similar to Figure 2 schematically showing the appearance of the antenna according to the invention in top view.
  • the antenna according to the invention comprises intermediate elements. These elements are, as shown in FIG. 3, in the form of parallelepipedic blades 30 made of polyurethane material. The thickness of the blades is determined so as to obtain optimal decoupling at the frequency used, without altering the characteristics linked to the epoxy matrix.
  • the blades can for example be produced by molding a thin plate from which the intermediate blades are then cut.
  • FIG. 4 illustrates the three stages of production of the antenna.
  • the figure 4-a illustrates the first stage consisting in spreading epoxy resin in the spaces located between the studs on a thickness appreciably equal to 20% of the height of the studs.
  • the resin layer 40 thus poured spreads over the surface of the rear plate 11.
  • the figure 4-b illustrates the second stage which consists in isolating the sensors from each other by inserting the polyurethane strips 30 in the non-crosslinked epoxy resin.
  • the blades can for example be inserted manually.
  • the blades are positioned substantially opposite the non-metallized strips 22, shown in FIG. 2.
  • the figure 4-c illustrates the last stage of realization.
  • This step consists in spreading epoxy resin again in the spaces between the studs so as to form a layer of resin 41 whose thickness is substantially equal to the height of the studs 10.
  • the resin is then hardened by known methods comprising for example crosslinking operations at ambient temperature and post-crosslinking hot, followed by polishing and metallization operations.
  • FIG. 5 An antenna according to the invention is thus obtained, a diagrammatic representation of which in top view is given in FIG. 5.
  • a structure comprising a rear plate 11 and a set of piezoelectric ceramic studs 10, electrically grouped into subassemblies defining sensors 21.
  • the surface of the plate 11 in contact with the studs alternates with metallized surface elements 21 separated from each other by non-metallized strips 22.
  • the structure of the antenna also includes intermediate blades 30 which constitute separations between the different groups of studs.
  • the structure of the antenna according to the invention offers the advantage of not presenting any difficulty in its production while providing performance significantly better than that of a conventional structure such as that illustrated. by FIG. 2.
  • measurements were carried out by the applicant on an antenna with a surface of 132 mm 2 (6 mm x 22 mm), 5 mm thick and comprising studs grouped into five sensors. These measurements have shown that such an antenna according to the invention comprising 0.85 mm thick polyurethane interlayer blades, has a crosstalk between channels reduced by approximately 15 dB compared to a conventional antenna, notably comprising no blades dividers.
  • This antenna also has similar mechanical and piezoelectric characteristics.

Abstract

The invention relates to an antenna structure which can operate at a high frequency and which is made of ceramic piezoelectric contacts grouped together forming independent sensors. According to the invention, the structure of the antenna consists of a set of contacts disposed on a rear plate. The contacts belonging to one sensor are isolated from the contacts belonging to other sensors by means of interposed sheets which are made of a high acoustic decoupling material such as polyurethane. The entirety thereof is immersed in a dielectric filling matrix made of a dielectric material having good piezoelectric and mechanical properties such as an epoxide resin, for example. Integration of interposed sheets between various sensors makes it possible to significantly improve the acoustic decoupling of the inventive antenna in comparison with currently existing antennae of the same type. The antenna can be used in high frequency sonars.

Description

Antenne sonar HF à structure composite 1-3 La présente invention concerne une structure d'antenne pouvant fonctionnant à haute fréquence, constituée de plots de céramique piézoélectrique regroupés en sous-ensembles formant des capteurs indépendants. Les plots sont noyés dans une matrice de remplissage diélectrique qui confère à l'antenne une bonne tenue mécanique et des propriétés acoustiques avantageuses en terme de découplage. Cette antenne peut notamment être utilisée dans les sonars à haute fréquence, de type sonar de mines. The present invention relates to an antenna structure capable of operating at high frequency, consisting of piezoelectric ceramic studs grouped in subassemblies forming independent sensors. The pads are embedded in a dielectric filling matrix which gives the antenna good mechanical strength and advantageous acoustic properties in terms of decoupling. This antenna can in particular be used in high frequency sonar, of the mine sonar type.
Pour réaliser une antenne sonar à autre fréquence on peut de manière connue utiliser des céramiques piézoélectriques parallélépipédiques formant des plots régulièrement répartis sur une plaque. La figure 1 présente un tel arrangement. Sur cette figure on peut voir figurer un ensemble de plots 10 de céramique piézoélectrique, montés sur une plaque arrière 11. Ces plots peuvent être regroupés en sous-ensembles encore appelés capteurs. Dans un tel montage tous les plots du capteur sont connectés entre eux par leur face supérieure 12 et mis en contact par leur face arrière avec la plaque 1. Les faces avant et arrière des plots sont métallisées. Le contact peut par exemple être réalisé au moyen du dépôt d'une couche de métallisation sur la face 13 de la plaque arrière 11 en contact avec les plots 10. On obtient ainsi un arrangement tel qu'illustré par la figure 2. L'antenne ainsi réalisée se présente comme un ensemble de plots 10 régulièrement répartis sur la plaque arrière 11 et regroupés en capteurs 20. La face de la plaque arrière 11 en contact avec les plots présente une alternance d'éléments de surfaces métallisées 21 séparées les unes des autres par des bandes non métallisées 22. Chaque surface métallisée est positionnée sous un groupe de plots formant un même capteur, les bandes non métallisées permettant d'isoler électriquement les capteurs les uns des autres.To make a sonar antenna at another frequency, it is possible, in known manner, to use piezoelectric parallelepipedal ceramics forming studs regularly distributed on a plate. Figure 1 shows such an arrangement. This figure shows a set of studs 10 of piezoelectric ceramic, mounted on a rear plate 11. These studs can be grouped into subassemblies also called sensors. In such an assembly, all of the sensor pads are connected together by their upper face 12 and brought into contact by their rear face with the plate 1. The front and rear faces of the pads are metallized. The contact can for example be made by depositing a metallization layer on the face 13 of the rear plate 11 in contact with the studs 10. An arrangement is thus obtained as illustrated in FIG. 2. The antenna thus produced is presented as a set of studs 10 regularly distributed on the rear plate 11 and grouped into sensors 20. The face of the rear plate 11 in contact with the studs has an alternation of elements of metallized surfaces 21 separated from each other by non-metallized strips 22. Each metallized surface is positioned under a group of studs forming the same sensor, the non-metallized strips making it possible to electrically isolate the sensors from each other.
L'association des différents plots en capteurs permet de réaliser une antenne capable de former plusieurs voies d'émission / réception. Dans le cas d'une émission acoustique en haute fréquence, typiquement entre 100kHz et quelques MHz, les plots formant l'antenne sont de dimensions réduites. La tenue mécanique de l'antenne constituée par les plots et la plaque arrière est réalisée, de manière connue, en remplissant les espaces entre plots avec un matériau diélectrique rigide encore appelé matrice. On obtient de cette façon une structure communément appelée composite 1-3.The association of the different pads into sensors makes it possible to produce an antenna capable of forming several transmission / reception channels. In the case of a high frequency acoustic emission, typically between 100 kHz and a few MHz, the studs forming the antenna are of reduced dimensions. The mechanical strength of the antenna constituted by the studs and the rear plate is produced, in known manner, by filling the spaces between pads with a rigid dielectric material also called matrix. In this way, a structure commonly known as composite 1-3 is obtained.
La structure ainsi réalisée est complétée par la mise en place sur les faces supérieures 12 de couches d'adaptation et d'une membrane d'étanchéité. La face avant ainsi réalisée constitue la face de l'antenne en contact avec le milieu de propagation, par exemple le milieu marin. L'utilisation de couches d'adaptation est notamment décrite dans la demande de brevet français 94 08474 déposée par la demanderesse et publiée le 12.01.96 sous le numéro 2 722 358.The structure thus produced is completed by the installation on the upper faces 12 of adaptation layers and a waterproofing membrane. The front face thus produced constitutes the face of the antenna in contact with the propagation medium, for example the marine environment. The use of adaptation layers is described in particular in French patent application 94 08474 filed by the applicant and published on 12.01.96 under the number 2 722 358.
La matrice de remplissage utilisée est communément réalisée à base de polyurethane ou de résine époxyde, ces deux matériaux présentant des avantages et des inconvénients. Les composites 1-3 à base d'époxyde ont pour avantage de posséder un coefficient hydrostatique dh élevé, pouvant atteindre par exemple quelques centaines de picocoulombs par newton. Un tel coefficient hydrostatique permet notamment d'obtenir un coefficient de transformation mécanique électrique Φ élevé. On rappelle que le coefficient Φ a pour expression :The filling matrix used is commonly made from polyurethane or epoxy resin, these two materials having advantages and disadvantages. The epoxy-based composites 1-3 have the advantage of having a high hydrostatic coefficient dh, which can reach for example a few hundred picocoulombs per newton. Such a hydrostatic coefficient makes it possible in particular to obtain a high electrical mechanical transformation coefficient Φ. We recall that the coefficient Φ has the expression:
* γ d S Φ = S —* γ d S Φ = S -
où Y est le module de Young du matériau et S et I les dimensions en surface et épaisseur. Les composites 1-3 à base d'époxyde présente également l'avantage de ne se dilater que faiblement en fonction des variations de température et de posséder une bonne adhérence sur la céramique ce qui évite l'emploi de préparations spécifiques destinées à assurer l'adhérence de la matrice aux plots. En revanche, les composites 1-3 à base d'époxyde ont de médiocres propriétés de découplage acoustique et l'utilisation de matrice époxydes induit des phénomènes de diaphonie acoustique entre les capteurs qui réduisent notablement la qualité des voies formées. Les composites 1-3 à base de polyurethane ont quant à eux une bonne qualité de découplage acoustique et permettent ainsi un découplage satisfaisant des voies formées. En revanche, le polyurethane possède un coefficient hydrostatique moindre que celui de l'époxyde, de l'ordre de quelques dizaines de picocoulombs par newton, et donc un coefficient Φ plus faible. En outre, la faible rigidité du polyurethane ainsi que son comportement en température en font un matériau peu adapté à la réalisation d'une antenne ayant une rigidité satisfaisante et présentant une bonne insensibilité aux variations de température.where Y is the Young's modulus of the material and S and I the dimensions in surface and thickness. Composites 1-3 based on epoxide also have the advantage of only expanding slightly as a function of temperature variations and of having good adhesion to the ceramic, which avoids the use of specific preparations intended to ensure the adhesion of the matrix to the studs. On the other hand, epoxy-based composites 1-3 have poor acoustic decoupling properties and the use of an epoxy matrix induces crosstalk phenomena between the sensors which significantly reduce the quality of the channels formed. Composites 1-3 based on polyurethane have a good quality of acoustic decoupling and thus allow satisfactory decoupling of the formed channels. On the other hand, polyurethane has a lower hydrostatic coefficient than that of epoxy, of the order of a few tens of picocoulombs per newton, and therefore a lower coefficient Φ. In addition, the low rigidity of the polyurethane as well as its temperature behavior make it a material little suited to the production of an antenna having satisfactory rigidity and having good insensitivity to temperature variations.
Le dispositif selon l'invention a pour but d'obtenir une antenne sonar ayant des propriétés acoustiques satisfaisantes et une bonne tenue mécanique. A cet effet il consiste en une antenne sonar comportant des plots de céramique piézoélectrique groupés en capteurs et inclus dans une matrice constituée de résine époxyde. Cette matrice peut être également constituée de tout autre matériau ayant des propriétés piézoélectriques, mécaniques et thermiques équivalentes. Cette antenne a pour caractéristique de comporter des éléments intercalaires, de préférence en polyurethane qui isolent les capteurs les uns des autres et réalisent ainsi un bon découplage entre capteurs. Ces lames peuvent également être réalisées en tout autre matériau capable de réaliser un bon découplage acoustique.The aim of the device according to the invention is to obtain a sonar antenna having satisfactory acoustic properties and good mechanical strength. For this purpose it consists of a sonar antenna comprising piezoelectric ceramic studs grouped in sensors and included in a matrix made of epoxy resin. This matrix can also be made of any other material having equivalent piezoelectric, mechanical and thermal properties. This antenna has the characteristic of comprising intermediate elements, preferably made of polyurethane which isolate the sensors from each other and thus achieve good decoupling between sensors. These blades can also be made of any other material capable of achieving good acoustic decoupling.
L'antenne selon l'invention présente l'avantage de posséder les caractéristiques d'une antenne à matrice époxyde tout en possédant des caractéristiques de découplage que permet d'obtenir une matrice en polyurethane. Elle présente également pour avantage d'être aussi simple à réaliser qu'une antenne classique à matrice époxyde.The antenna according to the invention has the advantage of having the characteristics of an antenna with an epoxy matrix while having decoupling characteristics that a polyurethane matrix makes it possible to obtain. It also has the advantage of being as simple to produce as a conventional antenna with an epoxy matrix.
Le principe de réalisation d'une antenne selon l'invention est décrit dans la suite du document avec le soutien des figures 3 à 5 qui représentent :The principle of producing an antenna according to the invention is described in the following document with the support of Figures 3 to 5 which represent:
- La figure 3, une vue en perspective représentant un élément intercalaire du type de ceux que comporte l'antenne selon l'invention, - La figure 4, une vue schématique en coupe de l'antenne selon l'invention à trois étapes de sa fabrication, - La figure 5, une vue similaire à la figure 2 représentant de manière schématique l'aspect de l'antenne selon l'invention en vue de dessus.- Figure 3, a perspective view showing an intermediate element of the type of those that comprises the antenna according to the invention, - Figure 4, a schematic sectional view of the antenna according to the invention in three stages of its manufacturing, - Figure 5, a view similar to Figure 2 schematically showing the appearance of the antenna according to the invention in top view.
Afin de bénéficier des qualités de découplage acoustique offertes par le polyurethane l'antenne selon l'invention comporte des éléments intercalaires. Ces éléments se présentent comme le montre la figure 3, sous la forme de lames parallélépipédiques 30 en matériau polyurethane. L'épaisseur des lames est déterminée de façon à obtenir le découplage optimal à la fréquence utilisée, sans altérer les caractéristiques liées à la matrice époxyde. Les lames peuvent par exemple être réalisées par moulage d'une fine plaque dans laquelle les lames intercalaires sont ensuite découpées.In order to benefit from the acoustic decoupling qualities offered by the polyurethane, the antenna according to the invention comprises intermediate elements. These elements are, as shown in FIG. 3, in the form of parallelepipedic blades 30 made of polyurethane material. The thickness of the blades is determined so as to obtain optimal decoupling at the frequency used, without altering the characteristics linked to the epoxy matrix. The blades can for example be produced by molding a thin plate from which the intermediate blades are then cut.
Les lames intercalaires sont intégrées à la structure de l'antenne selon l'invention, lors de sa réalisation. La figure 4 illustre les trois étapes de réalisation de l'antenne.The intermediate strips are integrated into the structure of the antenna according to the invention, during its production. FIG. 4 illustrates the three stages of production of the antenna.
La figure 4-a illustre la première étape consistant à répandre de la résine époxyde dans les espaces situés entre les plots sur une épaisseur sensiblement égale à 20% de la hauteur des plots. La couche de résine 40 ainsi déversée se répand à la surface de la plaque arrière 11.The figure 4-a illustrates the first stage consisting in spreading epoxy resin in the spaces located between the studs on a thickness appreciably equal to 20% of the height of the studs. The resin layer 40 thus poured spreads over the surface of the rear plate 11.
La figure 4-b illustre la deuxième étape qui consiste à isoler les capteurs les uns des autres en insérant les lames de polyurethane 30 dans la résine époxyde non réticulée. Les lames peuvent être par exemple insérées de façon manuelle. Les lames sont positionnées sensiblement en regard des bandes non métallisées 22, représentées sur la figure 2.The figure 4-b illustrates the second stage which consists in isolating the sensors from each other by inserting the polyurethane strips 30 in the non-crosslinked epoxy resin. The blades can for example be inserted manually. The blades are positioned substantially opposite the non-metallized strips 22, shown in FIG. 2.
La figure 4-c illustre la dernière étape de réalisation. Cette étape consiste à répandre de nouveau de la résine époxyde dans les espaces situés entre les plots de façon à former une couche de résine 41 dont l'épaisseur est sensiblement égale à la hauteur des plots 10. La résine est ensuite durcie par des procédés connus comportant par exemple des opérations de réticulations à température ambiante et de post réticulation à chaud, suivies d'opération de polissage et de métallisation.The figure 4-c illustrates the last stage of realization. This step consists in spreading epoxy resin again in the spaces between the studs so as to form a layer of resin 41 whose thickness is substantially equal to the height of the studs 10. The resin is then hardened by known methods comprising for example crosslinking operations at ambient temperature and post-crosslinking hot, followed by polishing and metallization operations.
On obtient ainsi une antenne selon l'invention dont une représentation schématique en vue de dessus est donnée par la figure 5. Sur cette figure on peut distinguer une structure comportant une plaque arrière 11 et un ensemble de plots en céramique piézoélectrique 10, regroupés électriquement en sous-ensembles définissant des capteurs 21. La surface de la plaque 11 en contact avec les plots présente une alternance d'éléments de surfaces métallisées 21 séparées les unes des autres par des bandes non métallisées 22. La structure de l'antenne comporte également des lames intercalaires 30 qui constituent des séparations entre les différents groupes de plots.An antenna according to the invention is thus obtained, a diagrammatic representation of which in top view is given in FIG. 5. In this figure we can distinguish a structure comprising a rear plate 11 and a set of piezoelectric ceramic studs 10, electrically grouped into subassemblies defining sensors 21. The surface of the plate 11 in contact with the studs alternates with metallized surface elements 21 separated from each other by non-metallized strips 22. The structure of the antenna also includes intermediate blades 30 which constitute separations between the different groups of studs.
Comme on peut le constater sur la figure 5 la structure de l'antenne selon l'invention offre l'avantage de ne pas présenter de difficulté dans sa réalisation tout en fournissant des performances sensiblement meilleures que celle d'une structure classique telle que celle illustrée par la figure 2. Afin de valider ce type de structure, des mesures ont été réalisées par la déposante sur une antenne d'une surface de 132 mm2 (6 mm x 22 mm), de 5 mm d'épaisseur et comportant des plots groupés en cinq capteurs. Ces mesures ont montré qu'une telle antenne selon l'invention comportant des lames intercalaires en polyurethane de 0.85 mm d'épaisseur, présente une diaphonie entre voies réduite d'environ 15 dB par rapport à une antenne classique, ne comportant notamment pas de lames intercalaires. Cette antenne présente par ailleurs des caractéristiques mécaniques et piézoélectriques similaire. As can be seen in FIG. 5, the structure of the antenna according to the invention offers the advantage of not presenting any difficulty in its production while providing performance significantly better than that of a conventional structure such as that illustrated. by FIG. 2. In order to validate this type of structure, measurements were carried out by the applicant on an antenna with a surface of 132 mm 2 (6 mm x 22 mm), 5 mm thick and comprising studs grouped into five sensors. These measurements have shown that such an antenna according to the invention comprising 0.85 mm thick polyurethane interlayer blades, has a crosstalk between channels reduced by approximately 15 dB compared to a conventional antenna, notably comprising no blades dividers. This antenna also has similar mechanical and piezoelectric characteristics.

Claims

REVENDICATIONS
1. Antenne sonar HF comportant au moins un ensemble de plots en céramique piézoélectrique disposés sur une plaque arrière, ces plots étant réunis par groupes pour former des capteurs indépendants, l'espace situé entre les plots étant rempli d'une matrice époxyde, caractérisée en ce qu'elle comporte des lames intercalaires intégrées à la matrice, ces cloisons étant réalisées dans un matériau à fort découplage acoustique et réalisant des séparations entre les différents capteurs1. HF sonar antenna comprising at least one set of piezoelectric ceramic studs arranged on a rear plate, these studs being joined in groups to form independent sensors, the space between the studs being filled with an epoxy matrix, characterized in what it includes intermediate blades integrated into the matrix, these partitions being made of a material with strong acoustic decoupling and making separations between the different sensors
2. Antenne selon la revendication 1 , caractérisée en ce que les lames intercalaires sont réalisées par découpe dans une même plaque de matériau.2. Antenna according to claim 1, characterized in that the intermediate blades are produced by cutting from the same sheet of material.
3. Antenne sonar selon l'une des revendications 1 ou 2, caractérisée en ce que les lames intercalaires sont réalisées en polyurethane.3. Sonar antenna according to one of claims 1 or 2, characterized in that the intermediate blades are made of polyurethane.
4. Procédé de réalisation d'une antenne selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte au moins :4. Method for producing an antenna according to any one of the preceding claims, characterized in that it comprises at least:
- une première étape de remplissage de l'espace situé entre les plots avec un résine époxyde, sur une épaisseur sensiblement égale à 20% de la hauteur des plots, - une étape d'insertion des lames intercalaires dans la résine époxyde, les lames étant positionnées de façon à séparer les capteurs les uns des autres,- a first step of filling the space between the pads with an epoxy resin, over a thickness substantially equal to 20% of the height of the pads, - a step of inserting the intermediate blades in the epoxy resin, the blades being positioned so as to separate the sensors from each other,
- une deuxième étape de remplissage de l'espace situé entre les plots avec la résine époxyde, de façon à remplir cet espace sur une épaisseur sensiblement égale à la hauteur des plots. - A second step of filling the space between the pads with the epoxy resin, so as to fill this space over a thickness substantially equal to the height of the pads.
PCT/EP2004/051497 2003-07-29 2004-07-15 1-3 composite structure high frequency sonar antenna WO2005014185A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2004262588A AU2004262588A1 (en) 2003-07-29 2004-07-15 1-3 composite structure high frequency sonar antenna
EP04766227.5A EP1684917B1 (en) 2003-07-29 2004-07-15 1-3 composite structure high frequency sonar antenna
NO20060952A NO337904B1 (en) 2003-07-29 2006-02-27 1-3 composite structure high frequency sonar antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309332A FR2858467B1 (en) 2003-07-29 2003-07-29 SONAR HF ANTENNA WITH COMPOSITE STRUCTURE 1-3
FR0309332 2003-07-29

Publications (1)

Publication Number Publication Date
WO2005014185A1 true WO2005014185A1 (en) 2005-02-17

Family

ID=34043645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051497 WO2005014185A1 (en) 2003-07-29 2004-07-15 1-3 composite structure high frequency sonar antenna

Country Status (5)

Country Link
EP (1) EP1684917B1 (en)
AU (1) AU2004262588A1 (en)
FR (1) FR2858467B1 (en)
NO (1) NO337904B1 (en)
WO (1) WO2005014185A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572981A (en) * 1983-08-15 1986-02-25 North American Philips Corporation Transducer comprising composite electrical materials
US4801835A (en) * 1986-10-06 1989-01-31 Hitachi Medical Corp. Ultrasonic probe using piezoelectric composite material
EP0376567A2 (en) * 1988-12-27 1990-07-04 General Electric Company Array of ultrasonic transducer
US4963782A (en) * 1988-10-03 1990-10-16 Ausonics Pty. Ltd. Multifrequency composite ultrasonic transducer system
FR2722358A1 (en) * 1994-07-08 1996-01-12 Thomson Csf BROADBAND MULTI-FREQUENCY ACOUSTIC TRANSDUCER
EP1227525A2 (en) * 2001-01-25 2002-07-31 Matsushita Electric Industrial Co., Ltd. Piezocomposite, ultrasonic probe for ultrasonic diagnostic equipment, ultrasonic diagnostic equipment and method for producing piezocomposite
US6441538B1 (en) * 2000-05-19 2002-08-27 Acuson Corporation Ultrasound stacked transducer and method for stacking

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572981A (en) * 1983-08-15 1986-02-25 North American Philips Corporation Transducer comprising composite electrical materials
US4801835A (en) * 1986-10-06 1989-01-31 Hitachi Medical Corp. Ultrasonic probe using piezoelectric composite material
US4963782A (en) * 1988-10-03 1990-10-16 Ausonics Pty. Ltd. Multifrequency composite ultrasonic transducer system
EP0376567A2 (en) * 1988-12-27 1990-07-04 General Electric Company Array of ultrasonic transducer
FR2722358A1 (en) * 1994-07-08 1996-01-12 Thomson Csf BROADBAND MULTI-FREQUENCY ACOUSTIC TRANSDUCER
US6441538B1 (en) * 2000-05-19 2002-08-27 Acuson Corporation Ultrasound stacked transducer and method for stacking
EP1227525A2 (en) * 2001-01-25 2002-07-31 Matsushita Electric Industrial Co., Ltd. Piezocomposite, ultrasonic probe for ultrasonic diagnostic equipment, ultrasonic diagnostic equipment and method for producing piezocomposite

Also Published As

Publication number Publication date
FR2858467B1 (en) 2008-08-01
EP1684917B1 (en) 2017-05-03
AU2004262588A1 (en) 2005-02-17
FR2858467A1 (en) 2005-02-04
NO20060952L (en) 2006-02-27
EP1684917A1 (en) 2006-08-02
NO337904B1 (en) 2016-07-04

Similar Documents

Publication Publication Date Title
EP0851465B1 (en) Method of separation of at least two elements joined by ion implantation
FR2847492A1 (en) Electrical connection formation method for ultrasonic piezoelectric transducer, involves mounting acoustic baking layer on transducer array whose elements are electrically separated for allowing individual electrical connection
EP3230770B1 (en) Perforated piezoelectric hydrophone, antenna comprising a plurality of hydrophones and method for making said hydrophone
EP0287443B1 (en) Method for the compensation of a charge amplifier circuit, in particular for a piezoelectric hydrophone
EP3872839A1 (en) Structure for radiofrequency applications
FR2596206A1 (en) TABLECLOTH ANTENNA
FR2647599A1 (en) CIRCUIT REALIZATION STRUCTURE AND COMPONENTS APPLIED TO HYPERFREQUENCIES
EP0308334A1 (en) Composite magnetic material and process for its production
FR3052592A1 (en) STRUCTURE FOR RADIO FREQUENCY APPLICATIONS
EP1543535B1 (en) Method of manufacture of electrostatically actuated low response time power commutation micro-switches
EP3540853A1 (en) Antenna with broadband transmitter network
EP1913650B1 (en) Method for making an acoustic transducer
EP1684917B1 (en) 1-3 composite structure high frequency sonar antenna
EP1274518B1 (en) Unidirectional acoustic probe and method for making same
WO2019211446A1 (en) Broadband wire antenna
EP1467824B1 (en) High-power transmission acoustic antenna
EP1536439B1 (en) Component comprising a variable capacitor
EP1953778B1 (en) Condenser in a monolithic circuit
WO1999046059A1 (en) Collapsible annular acoustic transmission antenna
EP3776640B1 (en) Substrate for radiofrequency applications and associated manufacturing method
EP0794841B1 (en) Sonar array with sensitivity peaks at at least two frequencies
FR2835972A1 (en) REMOVAL OF MUTUAL COUPLING BETWEEN ANTENNA ELEMENTS OF A NETWORK ANTENNA
EP4282543A1 (en) Cmut transducer and method for producing a cmut transducer
FR3131975A3 (en) ethernet cable with enhanced shielding for automotive applications
FR3091418A1 (en) Protective structure integrating a frequency selective network of electromagnetic waves and methods of prefabrication and manufacturing of such a structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004766227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004766227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004262588

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004262588

Country of ref document: AU

Date of ref document: 20040715

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004262588

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004766227

Country of ref document: EP