WO2005008350A1 - 半導体製造装置及び半導体製造方法 - Google Patents

半導体製造装置及び半導体製造方法 Download PDF

Info

Publication number
WO2005008350A1
WO2005008350A1 PCT/JP2004/010033 JP2004010033W WO2005008350A1 WO 2005008350 A1 WO2005008350 A1 WO 2005008350A1 JP 2004010033 W JP2004010033 W JP 2004010033W WO 2005008350 A1 WO2005008350 A1 WO 2005008350A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
flow rate
mass flow
unit
set voltage
Prior art date
Application number
PCT/JP2004/010033
Other languages
English (en)
French (fr)
Inventor
Tsuneyuki Okabe
Kengo Kaneko
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to EP04747499A priority Critical patent/EP1653312A4/en
Priority to KR1020057007816A priority patent/KR101116979B1/ko
Priority to US10/564,558 priority patent/US7510884B2/en
Publication of WO2005008350A1 publication Critical patent/WO2005008350A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention relates to a semiconductor manufacturing apparatus that processes a substrate, for example, a semiconductor wafer, using a fluid whose flow rate is adjusted by a mass flow controller.
  • a step of performing processing on a substrate using a predetermined gas or liquid there is a step of performing processing on a substrate using a predetermined gas or liquid.
  • the step using a gas include a film formation step using a film formation gas, an oxidation step using an oxidation gas, an etching step using an etching gas, and the like.
  • the step of using a liquid include a step of supplying a resist liquid onto a substrate and a step of applying a chemical liquid containing a precursor of an insulating film.
  • the fluid flowing in the thin tube deprives the heating resistor of the heat in accordance with the flow rate. That is, the flow rate is detected using the fact that the resistance value of the heating resistance wire changes according to the flow rate of the fluid.
  • the mass flow controller includes such a flow rate detection unit, a comparison unit that compares the output voltage (detection voltage corresponding to the flow rate) output from the flow rate detection unit with a set voltage set according to the set flow rate, A flow control valve operated by a comparison output from the section.
  • the actual flow rate may deviate from the set flow rate. For example, even when the actual flow rate is 0, there may be an error in which the output voltage value of the flow rate detection unit is not 0.
  • a change rate (gradient) of the output voltage with respect to the flow rate that is, a span is fluctuated.
  • a span shift is caused by a change in the temperature, that is, a change in the output voltage with respect to a change in the flow rate of the upstream heating resistance wire and the downstream heating resistance wire, which are sensors included in the bridge circuit.
  • One of the factors is that the amount changes from the time of initial calibration.
  • the flow error ratio when the flow rate of the fluid is high and the flow rate error rate when the flow rate is low are less affected by the error when the drift amount is the same and when the flow rate is low. For example, the influence on the film thickness formed on the surface of the semiconductor wafer is large.
  • the allowable range of the film thickness on the surface of a semiconductor wafer during manufacturing has become stricter.
  • the flow rate near the maximum flow rate is used to reduce the degree of flow rate error. ing. For example, when performing multiple processes and there is a large difference in the set flow rate of fluid between each process, connect two or more mass flow controllers with a large flow capacity and a small mass flow controller in parallel. In addition, switching of the mass flow controller according to the set flow rate of the fluid is also performed.
  • Japanese Patent Application Laid-Open No. 7-263350 discloses that a measuring device is provided in a gas flow path separately from a mass flow controller, and based on a measurement result of the measuring device. It describes that the mass flow controller is adjusted by a calibrator.
  • a manufacturer supplies a gas to a sensor coil of a mass flow controller in a state where gas is not flown during initial calibration.
  • the current value is changed stepwise, the temperature difference generated by the current difference between both coils is extracted as the unbalanced voltage of the bridge circuit, and this unbalanced voltage is compared with the unbalanced voltage in use to correct the zero point. Determining the amount and the span correction amount are described.
  • the method of adjusting via an unbalanced voltage disclosed in Japanese Patent Application Laid-Open No. 5-289751 has the following problems.
  • mass flow controllers are sold by various manufacturers.When a mass flow controller of a specific manufacturer is applied to configure a production line, and when the mass flow controller is replaced with another manufacturer's mass flow controller, adjustments are made. Can not do.
  • a mechanism for supplying the current to the bridge circuit while changing the current value stepwise is required, and there is a disadvantage that the device configuration is complicated.
  • the present invention has been made in view of the above problems, and has as its object to provide a semiconductor manufacturing apparatus and a semiconductor manufacturing method capable of setting a flow rate with high accuracy without removing a mass flow controller from a pipe.
  • the present invention provides a processing section for processing a substrate to manufacture a semiconductor device on the substrate, a fluid supply path for supplying a fluid required for processing the substrate to the processing section, A set voltage output unit that outputs a set voltage corresponding to the set flow rate of the fluid; a mass flow controller that is provided in the fluid supply path and adjusts a flow rate of the fluid based on the set voltage; A first shutoff valve provided on the upstream side of the mass flow controller; and a second shutoff valve provided on the downstream side of the mass flow controller in the fluid supply path.
  • a detection unit that detects the flow rate of the fluid and outputs a corresponding detection voltage
  • a comparison unit that compares the set voltage with the detection voltage and outputs an operation signal, and a flow rate of the fluid based on the operation signal.
  • a storage unit for storing a detection voltage output from the detection unit of the mass flow controller when the first shutoff valve and the second shutoff valve are closed.
  • a setting voltage correction unit that corrects the setting voltage so as to compensate for a change in the detection voltage when the actual flow rate of the fluid is zero based on the detection voltage stored in the storage unit.
  • a semiconductor manufacturing apparatus characterized in that: According to the present invention, in compensating for a change in the detection voltage when the flow rate is zero, the set voltage is corrected instead of adjusting the mass flow controller itself. Fine adjustment of the flow control characteristics of the controller can be performed.
  • the first shutoff valve and the second shutoff valve are closed, and the storage unit stores a detection voltage output from the detection unit of the mass flow controller.
  • the apparatus further includes timing setting means for setting timing.
  • the semiconductor manufacturing apparatus of the present invention further includes an alarm generating means for generating an alarm when the detected voltage is outside a predetermined threshold.
  • the present invention provides a processing unit for processing a substrate in a predetermined vacuum atmosphere to manufacture a semiconductor device on the substrate, a vacuum exhaust path connected to the processing unit, and a processing unit for the substrate.
  • a fluid supply path for supplying a required fluid to the processing section, a set voltage output section for outputting a set voltage corresponding to a set flow rate of the fluid, and the set voltage provided in the fluid supply path;
  • a mass flow controller that adjusts the flow rate of the fluid based on: a bypass path from the fluid supply path to the vacuum exhaust path, bypassing the processing unit; and a bypass path sequentially provided from the upstream side to the bypass path.
  • a pressure detection unit and a third shutoff valve and at a predetermined timing, after evacuating the bypass passage, closing the third shutoff valve, setting the mass flow controller to a predetermined flow rate, and supplying the fluid.
  • the mass flow controller in the calibrated state is set to a predetermined flow rate and a fluid is supplied to the bypass passage via the fluid supply passage for a predetermined time period of the pressure detection value by the pressure detection unit.
  • a set voltage correction unit that corrects the set voltage based on the comparison result of the reference rise rate and the reference increase rate.
  • the set voltage is corrected instead of adjusting the mass flow controller itself. Fine adjustment of the flow control characteristics can be performed.
  • the mass flow controller detects an actual flow rate of the fluid and outputs a corresponding detection voltage, and outputs an operation signal by comparing the set voltage with the detection voltage. And a flow rate adjusting section that adjusts the flow rate of the fluid based on the operation signal, the setting voltage correction section adjusts the setting so as to compensate for a change in the span of the detection voltage. It's better to correct the voltage.
  • the set voltage correction unit may include a plurality of rising rates obtained by setting the mass flow controller to a plurality of predetermined flow rates and a plurality of mass flow controllers calibrated to a reference state. It is preferable that the set voltage is corrected based on a result of comparison between a plurality of reference rise rates obtained by setting the flow rate and a reference flow rate.
  • the present invention also provides a processing unit for processing a substrate in a predetermined vacuum atmosphere to manufacture a semiconductor device on the substrate, a vacuum exhaust path connected to the processing unit, and a processing unit for the substrate.
  • a fluid supply path for supplying a required fluid to the processing section, a set voltage output section for outputting a set voltage corresponding to a set flow rate of the fluid, and the set voltage provided in the fluid supply path;
  • a mass flow controller that adjusts the flow rate of the fluid based on: a bypass path from the fluid supply path to the vacuum exhaust path, bypassing the processing unit; and an upstream side of the mass flow controller in the fluid supply path.
  • a first shut-off valve provided in the bypass passage, and a pressure detection unit provided in the bypass passage.
  • the mass flow controller is evacuated to a predetermined flow while evacuating the bypass passage.
  • a decrease rate of a pressure detection value by the pressure detection unit in a predetermined time zone and While the bypass passage is evacuated and the mass flow controller calibrated to the reference state is set to a predetermined flow rate and the fluid is supplied to the bypass passage via the fluid supply passage, (1) a set voltage compensating section for compensating a set voltage based on a comparison result of a pressure detection value detected by the pressure detecting section when the shutoff valve is closed and a reference decrease rate in a predetermined time zone.
  • the set voltage is corrected instead of adjusting the mass flow controller itself. Fine adjustment of the flow control characteristics can be performed.
  • the mass flow controller detects an actual flow rate of the fluid and outputs a corresponding detection voltage, and outputs an operation signal by comparing the set voltage with the detection voltage. And a flow rate adjusting section that adjusts the flow rate of the fluid based on the operation signal, the setting voltage correction section adjusts the setting so as to compensate for a change in the span of the detection voltage. It's better to correct the voltage.
  • the set voltage correction unit may include a plurality of descent rates obtained by setting the mass flow controller to a plurality of predetermined flow rates and a plurality of predetermined mass flow controllers calibrated to a reference state. It is preferable that the set voltage is corrected based on a result of comparison between a plurality of reference descent rates obtained by setting the flow rate and the reference flow rate.
  • the present invention is also realized as a method.
  • the present invention provides a processing unit for processing a substrate to manufacture a semiconductor device on the substrate, a fluid supply path for supplying a fluid required for processing the substrate to the processing unit, A set voltage output unit for outputting a set voltage corresponding to a set flow rate of the fluid; a mass flow controller provided in the fluid supply path, for adjusting a flow rate of the fluid based on the set voltage; A first shut-off valve provided on the upstream side of the mass flow controller in the inside, and a second shut-off valve provided on the downstream side of the mass flow controller in the fluid supply path.
  • a detection unit that detects an actual flow rate of the fluid and outputs a corresponding detection voltage; a comparison unit that compares the set voltage with the detection voltage to output an operation signal; A flow rate adjusting unit that adjusts a flow rate of the fluid, and stores a detection voltage output from the detection unit of the mass flow controller when the first shutoff valve and the second shutoff valve are closed.
  • a storage unit is provided, and based on the detected voltage stored in the storage unit, a set voltage for correcting the set voltage so as to compensate for a change in the detected voltage when the actual flow rate of the fluid is zero.
  • a semiconductor manufacturing method comprising:
  • the present invention provides a processing unit for manufacturing a semiconductor device on a substrate by processing the substrate in a predetermined vacuum atmosphere, a vacuum exhaust path connected to the processing unit, and a fluid required for processing the substrate. And a set voltage output unit for outputting a set voltage corresponding to a set flow rate of the fluid, provided in the fluid supply path, based on the set voltage.
  • a mass flow controller for adjusting the flow rate of the fluid, a bypass path from the fluid supply path to the vacuum exhaust path, bypassing the processing section, and a pressure detector sequentially provided from the upstream side in the bypass path.
  • a third shutoff valve at a predetermined timing, after evacuating the bypass passage, closing the third shutoff valve, setting the mass flow controller to a predetermined flow rate, and supplying the fluid.
  • the third shutoff valve is closed, the mass flow controller in a state calibrated to a reference state is set to a predetermined flow rate, and fluid is supplied to the bypass passage via the fluid supply passage.
  • a semiconductor manufacturing method comprising:
  • the present invention provides a processing unit for manufacturing a semiconductor device on a substrate by processing the substrate in a predetermined vacuum atmosphere, a vacuum exhaust path connected to the processing unit, and a fluid required for processing the substrate. And a set voltage output unit for outputting a set voltage corresponding to a set flow rate of the fluid, provided in the fluid supply path, based on the set voltage.
  • a mass flow controller for adjusting the flow rate of the fluid, a bypass path from the fluid supply path to the vacuum exhaust path bypassing the processing section, and a bypass path provided upstream of the mass flow controller in the fluid supply path.
  • the first shutoff valve provided, the pressure detection unit provided in the bypass passage, and at a predetermined timing, while evacuating the bypass passage, moving the mass flow controller through a predetermined flow.
  • the rate of decrease of the pressure detection value by the pressure detection unit when the first shutoff valve is closed during a predetermined time period is determined.
  • a set voltage compensator for compensating a set voltage based on a comparison result of a pressure detection value detected by the pressure detector when the first shut-off valve is closed and a reference decrease rate in a predetermined time zone.
  • the first shutoff A step of obtaining a reference decrease rate of a pressure detection value by the pressure detection unit when the valve is closed during a predetermined time period;
  • the first shutoff valve is closed in a state where the mass flow controller is set at a predetermined flow rate while the bypass path is evacuated and fluid is supplied to the bypass path via the fluid supply path. Determining the rate of decrease of the pressure detection value by the pressure detection unit during a predetermined time period at the time of
  • a semiconductor manufacturing method comprising:
  • FIG. 1 is a block diagram showing a configuration of a semiconductor manufacturing apparatus according to one embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a processing unit and a relationship between the processing unit and a mass flow controller.
  • FIG. 3 is a block diagram showing a configuration of a mass flow controller.
  • FIG. 4 is a flowchart showing a method of correcting a set voltage of a mass flow controller according to one embodiment of the present invention.
  • FIG. 5 is a graph showing a relationship between a set voltage of a mass flow controller and a flow rate.
  • FIG. 6 is a block diagram showing a configuration of a semiconductor manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 7 is a characteristic diagram showing a state of an increase in a pressure value of a pressure detector provided in a bypass.
  • FIG. 8 is a characteristic diagram showing how a slope of a graph showing a relationship between an actual flow rate and an output voltage of the mass flow controller changes.
  • FIG. 9 is a characteristic diagram showing how the relationship between the actual flow rate and the output voltage of the mass flow controller changes.
  • FIG. 1 is a block diagram illustrating a main configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention.
  • the apparatus includes a heat treatment unit 1 as a processing unit for performing a process for manufacturing a semiconductor integrated circuit on a substrate.
  • a holder 12 for mounting a large number of wafers W as substrates is carried into a vertical reaction tube 11 which is a reaction vessel (processing vessel) of the heat treatment section 1.
  • the wafer W is heated by a heating unit (not shown) provided outside the reaction tube 11.
  • a predetermined gas is introduced into the reaction tube 11 from, for example, a gas supply path 2 including a gas supply pipe.
  • a predetermined heat treatment is performed on the substrate.
  • Reference numeral 15 denotes a bypass path connecting the gas supply path 2 and the exhaust pipe 13 to bypass the reaction tube 11, and reference numerals 21, 22, and 23 denote valves, for example, shut-off valves.
  • the gas supply path 2 is provided with a mass flow controller 3 for adjusting the flow rate of the gas of the gas supply source 40.
  • Shut-off valves 41 and 42 are provided on the upstream and downstream sides of the mass flow controller 3, respectively. By closing both the shutoff valves 41 and 42, the flow of the fluid passing through the mass flow controller 3, in this example, gas, can be shut off (that is, the gas flow rate can be set to 0). I have.
  • the mass flow controller 3 includes a flow detection unit 31, a comparison unit (adjustment unit) 32, and a control vanoleb (flow adjustment valve) 33 as a flow adjustment unit. I have.
  • the gas supply pipe 2 introduced into the mass flow controller 3 is branched into a main flow part 3a and a side flow part 3b.
  • a flow sensor having two heating resistance wires 34 and 35 is provided for measuring a flow rate in the gas supply pipe 2.
  • the main flow section 3a is provided with a bypass section 30 for equally adjusting various conditions such as the flow rate of the side flow path 3b and the main flow path 3a. That is, the no-pass section 30 can adjust the characteristics such as the flow rate, the temperature, and the pressure in the main flow path 3a so as to be similar to those in the side flow path 3b. Thus, it is possible to prevent an error from occurring in the measurement by the sensors 34 and 35.
  • the mass flow controller 3 further includes a bridge circuit 36 that detects a difference between the resistance values of the heating resistance wires 34 and 35 as a voltage signal, and an amplification circuit 37 that amplifies the voltage signal.
  • the heating resistance wires 34 and 35, the bridge circuit 36, and the amplification circuit 37 constitute the flow rate detection unit 31.
  • the comparing unit 32 compares a setting signal (setting voltage) corresponding to a setting flow rate described later with a voltage from the amplifier circuit 37, and adjusts the opening of the control valve 33 according to the comparison result (deviation). To output an operation signal.
  • a control unit 6 is connected to the mass flow controller 3 via a signal conversion unit 5.
  • the signal conversion unit 5 converts an analog signal from the mass flow controller 3 into a digital signal and converts a digital signal from the control unit 6 into an analog signal.
  • the control unit 6 is connected to a display unit 51 composed of, for example, a liquid crystal panel.
  • the display unit 51 also serves as a touch panel type input device.
  • 6a is a data bus
  • 60 is a CPU for controlling the device.
  • Reference numeral 61 denotes a set voltage output unit that outputs a set voltage corresponding to the set flow rate of the mass flow controller 3.
  • the set voltage output unit 61 can set the flow rate of the mass flow controller 3 to 0% 100% by a set voltage of, for example, 0-5V.
  • 62 is a first storage unit.
  • the output voltage (the voltage detection value from the flow detection unit 31) output from the mass flow controller 3 when the shutoff valves 41 and 42 are closed is stored as a drift voltage.
  • 63 is a first set voltage correction unit.
  • the first setting voltage correction unit 63 is provided when the output voltage output from the mass flow controller 3 is different from the reference voltage (0 V in this example) when the shut-off valves 41 and 42 are closed, that is, the earth voltage which is the drift voltage.
  • E0 (V) occurs, the set voltage is corrected.
  • Reference numeral 64 denotes a first timing setting unit.
  • the first timing setting unit 64 sets the timing of closing (turning off) the set voltage for the mass flow controller 3 by closing the shutoff valves 41 and 42.
  • Reference numeral 65 denotes an alarm comparison circuit unit.
  • the alarm comparison circuit unit 65 determines whether the drift voltage exceeds a preset threshold value, and if the drift voltage exceeds the threshold value, causes the alarm generation unit 66 to generate a warning (for example, a warning sound or a warning display). It has become.
  • the threshold value is 0.3 V (300 mV), and when a value separated by more than the threshold value is measured from the mass flow controller 3, it is determined that the mass flow controller 3 has a problem. For example, an alarm is output from the alarm generating unit 66 and an alarm is displayed on the operation panel 51, so that the worker is notified.
  • the mass flow controller 3 used in the present embodiment is designed so that the flow rate and the output voltage are linear, the maximum flow rate is 500 ccZ, and the output voltage at that time is 5V.
  • the output voltage is set to zero in a state where the flow rate is zero.
  • the heat treatment section 1 performs a predetermined heat treatment on the substrate, for example, the wafer W. That is, the set voltage corresponding to the set flow rate of the process to be executed is provided from the control unit 6 to the mass flow controller 3 via the signal processing unit 5.
  • the control valve 33 see FIG.
  • the state of the mass flow controller 3 is checked as follows, for example, during a standby time before and after the heat treatment is performed.
  • the shutoff valves 41 and 42 are both closed to create a situation in which gas does not flow into the mass flow controller 3.
  • the control valve 33 (see FIG. 3) of the mass flow controller 3 is set to an "open" state, for example, a fully open state, and the gas flows before and after the sensors 34 and 35 are in an equilibrium state. (Step S1).
  • the output voltage (E0) output from the mass flow controller 3, that is, the output voltage from the mass flow controller 3 at the time of the flow rate opening is stored in the first storage unit 62 (step S2).
  • ⁇ 0 + 0 ⁇ IV.
  • step S3 it is determined whether or not the output voltage () 0) output from the mass flow controller 3 is within a preset threshold described above (step S3). For example, if the threshold is 30 OmV, EO (+ 0.1V (lOOmV)) is within the threshold, and the process proceeds to step S4. On the other hand, it is assumed that the flow rate force of the mass flow controller 3 is set to OOccZ from the operation panel 51. At this time, the set voltage corresponding to the set flow rate is corrected by the first set voltage correction unit 63.
  • FIG. 5 is a graph showing the relationship between the set voltage of the mass flow controller 3 and the flow rate.
  • the voltage-flow rate characteristics at the time of the initial calibration are shown by a solid line.
  • the set point is at point A.
  • the dotted line indicates the voltage-flow characteristic when the zero point of the mass flow controller 3 drifts (changes) to generate a drift voltage of 0 ⁇ IV (a change in the output voltage).
  • the set point moves to point B. That is, in this state, the flow rate becomes 390 cc / min. Therefore, the set voltage is corrected as described above. As a result, the voltage-flow characteristics do not change, but the set point shifts from point B to point C. As a result, the flow rate set by the mass flow controller 3 becomes 400 cc according to the set flow rate.
  • step S6 When the adjustment of the set voltage of the mass flow controller 3 is completed as described above, the shutoff valves 41 and 42 are opened (step S6). Then, the wafer W is carried into the reaction tube 11, the valve 21 is opened, a gas is supplied to the reaction tube 11 at a set flow rate, and a predetermined heat treatment is performed on the wafer W (Step S7). .
  • the above example describes a case where the zero point is shifted to the + side.
  • step S3 If it is determined in step S3 that the output voltage (E0) output from the mass flow controller 3 is larger than the threshold value, an alarm is output by the alarm generation unit 66, and the display panel At 6, the operator is notified that the mass flow controller 3 is abnormal (step S8). In this case, the operator checks the mass flow controller 3 or requests the manufacturer to repair it.
  • the flow rate is determined based on the output voltage output from the mass flow controller 3 when the shutoff valves 41 and 42 provided on the upstream and downstream sides of the mass flow controller 3 are closed.
  • the set voltage output from the control unit 6 is corrected so as to compensate for the change (drift voltage) of the output voltage at zero.
  • the setting signal is corrected instead of adjusting the mass flow controller 3, there is no need for an operator to enter the maintenance room where the mass flow controller 3 is installed and make adjustments. And there is no need to stop the production line.
  • the operator turns off the power of the device, attaches a tester measurement jig to the mass flow controller 3, turns on the power of the device again, and then inputs the set flow rate zero on the operation screen.
  • (5) After leaving it for several minutes, measure the zero voltage with a tester and adjust the voltage to a value within the specified voltage range. Thereafter, the power of the apparatus is turned off, the jig is removed, the power of the apparatus is turned on again, and the actual is confirmed on the operation screen.
  • the voltage output when gas is not flowing in the calibrated mass flow controller 3 is zero.
  • the voltage output by the calibrated mass flow controller 3 when gas is not flowing is not zero (for example, it is 0.4 V, and the set voltage corresponding to the flow rate of 500 cc / min is set to 5.IV)
  • the present invention is also effective.
  • the set voltage correction unit determines that the mass flow controller 3 drifts by the voltage difference obtained by subtracting the reference voltage (for example, 0.4) from the output voltage from the mass flow controller 3 and sets the voltage. The voltage is corrected by the voltage difference.
  • a pressure detection unit 71 is provided in the bypass 15. Further, a flow rate reference meter 72 is provided which can determine the flow rate flowing through the gas supply path 2 based on the rate of increase in the pressure detection value from the pressure detection section 71 in a predetermined time period. Further, in order to save the processing gas, for example, between the mass flow controller 3 and the shut-off valve 41 on the upstream side thereof, a branch path 43 and a valve such as a shut-off valve are provided so that an inert gas such as a purge gas such as nitrogen gas can be supplied. Via valve 44 A gas supply source 45 is connected.
  • the pressure increase rate means that the shutoff valves 44 and 21 are closed, the gas supply passage 2 and the bypass passage 15 downstream of the shutoff valve 44 are evacuated, and then the shutoff valve 23 of the bypass passage 15 is closed.
  • a pressure rise rate calculating means 72a is provided inside the flow reference meter 72.
  • the pressure rise rate calculation means 72a is configured to write time-series data of the detected pressure value into a work memory (not shown), calculate the pressure rise rate from the data, and send the value to the control unit 6. .
  • control unit 6 has a second storage unit 67 for storing the pressure rise rate, a reference pressure rise rate (initial value) at the time of calibration of the mass flow controller 3, and a measurement after using the mass flow controller 3.
  • the second set voltage correction unit 68 that corrects the set voltage of the mass flow controller 3 based on the measured pressure rise rate, and the timing of checking the state of the mass flow controller 3 (measurement of the pressure rise rate except during calibration).
  • a second timing setting section 69 for setting the timing to perform.
  • the control unit 6 also has the configuration shown in FIG. 1 and has a force capable of adjusting the drift of the zero point as described above. Only the parts are shown.
  • a temperature detecting unit for detecting the temperature of the gas supply path 2 and the bypass path 15 is provided, and when the pressure rise rate is obtained, the temperature is considered and the influence of the temperature change is considered. It is preferable to compensate.
  • the maximum set flow rate of the mass flow controller 3 is 500 ccZ.
  • the output voltage is 5 V
  • the detected flow rate of the mass flow controller 3 is proportional to the output voltage, and there is no zero point drift.
  • the flow reference meter 72 stores time-series data of the pressure detection value of the pressure detection unit 71 at that time in a predetermined time zone, obtains a pressure rise rate based on the data, and obtains the pressure rise rate. Is transmitted to the control unit 6. In the control section 6, this pressure increase rate is stored in the second storage section 67 as an initial value (reference value).
  • FIG. 7 is a diagram showing the pressure change at this time. TO is the time when the shut-off valve 41 is opened, and T3 is the time when the shut-off valve 23 of the bypass 15 is opened.
  • the time period for measuring the detected pressure value is preferably a time period during which the pressure rise is stable, for example, a time period between T1 and T2.
  • the control unit 6 compares the pressure increase rate with the already obtained initial value, and corrects the set voltage based on the comparison result.
  • This method uses the volume of the pipeline on the upstream side of the bypass 15 and, based on the fact that the inflow rate and the pressure rise when gas flows into the pipeline correspond to each other, It measures the actual flow directly as a change in pressure. For example, when the pressure rise rate is 2.5% earlier (increased) than the initial value, it means that the flow rate is faster. In other words, at a set voltage of 4 V corresponding to a set flow rate of 400 cc / min, the flow rate is 2.5% faster than the expected flow rate. Therefore, the second set voltage correction unit 68 in the control unit 6 multiplies the set flow rate of the mass flow controller 3 by 400 ccZ by 2.5% which is the increase in the pressure rise rate (the amount that is increased earlier).
  • FIG. 8 is a diagram showing how the span changes.
  • the solid line (1) is a graph showing the span at calibration (output change with respect to flow change), and the dotted line (2) is a graph showing the span deviated from the span at calibration.
  • the output voltage value when the gas flow rate is zero is 0 V.
  • the set voltage corresponding to the set flow rate of 400 cc is the voltage corrected by the above embodiment. For example, if the change in the output voltage at the zero point is +0.4 IV and the set voltage corresponding to the set flow rate of 400 cc is corrected to 3.9 V by the previous embodiment to compensate for this drift, For example, the setting voltage corresponding to 400cc in the solid line (1) in Fig. 8 is 3.9V.
  • the setting signal is corrected instead of adjusting the mass flow controller 3, it is not necessary for an operator to enter the maintenance room where the mass flow controller 3 is installed and perform the adjustment. Yes, there is no need to stop the production line.
  • the set flow rate and the output voltage value are in a proportional relationship.
  • the pressure rise rate at each set flow rate is different from each reference value, it is preferable to correct the relationship between the flow rate and the output voltage to a curve shown by a dotted line in FIG.
  • the set voltage corresponding to the set flow rate is output from the set voltage output unit 61 based on the curve.
  • the flow rate of the mass flow controller 3 is set again by the set voltage. Find the change in the pressure rise rate from the reference value, and repeat the same loop (the process of finding the pressure rise rate and correcting the set voltage) until the change falls within the specified value (for example, 1.0%).
  • the specified value for example, 1.0%
  • the change in span is compensated based on the pressure increase rate.
  • the pressure drop rate may be used instead of the pressure rise rate.
  • the shutoff valve 44 on the upstream side of the mass flow controller 3 is opened, the shutoff valve 21 is closed, and the shutoff valves 42, 22, and 23 are opened. That is, the purge gas is set to be exhausted from the bypass 15 via the mass flow controller 3. Then, the mass flow controller 3 is set to a predetermined flow rate. In this state, the shut-off valve 44 is closed and the supply of the purge gas is stopped, and the pressure drop rate in a predetermined time zone is obtained from the subsequent time-series data of the pressure value by the pressure detection unit 71. This value can be used in the same manner as the pressure increase rate described above.
  • the cutoff valve 41 may be opened to flow the processing gas.
  • the present invention is not limited to the case where gas flows through the mass flow controller 3, for example, a liquid such as an organic liquid source flows through the mass flow controller 3 and is vaporized by a vaporizer downstream of the mass flow controller 3 to enter the reaction vessel. It is also applicable when supplied.
  • the present invention can be applied to a case where a flow rate of a liquid such as a coating liquid is adjusted by a mass flow controller when a coating liquid such as a resist liquid is applied to a substrate.

Abstract

 本発明の半導体製造装置は、基板を処理して基板上に半導体装置を製造するための処理部と、前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、前記流体供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整するマスフローコントローラと、前記流体供給路中の前記マスフローコントローラの上流側に設けられた第1遮断弁と、前記流体供給路中の前記マスフローコントローラの下流側に設けられた第2遮断弁と、を備える。前記マスフローコントローラは、前記流体の実際の流量を検出して対応する検出電圧を出力する検出部と、前記設定電圧と前記検出電圧とを比較して操作信号を出力する比較部と、前記操作信号に基づいて流体の流量を調整する流量調整部と、を有している。前記第1遮断弁及び前記第2遮断弁が閉じられた時に前記マスフローコントローラの前記検出部から出力される検出電圧を記憶する記憶部が設けられている。前記記憶部に記憶された検出電圧に基づいて、前記流体の実際の流量がゼロである時の検出電圧の変化を補償するように、前記設定電圧を補正する設定電圧補正部が設けられている。

Description

明 細 書
半導体製造装置及び半導体製造方法
技術分野
[0001] 本発明は、マスフローコントローラにより流量が調整された流体を用いて基板例え ば半導体ウェハに対して処理を行う半導体製造装置に関する。
背景技術
[0002] 従来、半導体製造プロセスにおいては、所定のガスや液体を用いて基板に対して 処理を行う工程がある。ガスを用いる工程としては、成膜ガスを用いる成膜工程、酸 化ガスを用いる酸化工程、エッチングガスを用いるエッチング工程などがある。また、 液体を用いる工程としては、基板上にレジスト液を供給する工程、絶縁膜の前駆物 質を含む薬液を塗布する工程などがある。
[0003] 一方、最近において、半導体デバイスのパターンが微細化され、各膜の膜厚も薄く なってきている。このため、ガスや液体の供給流量も高い精度でコントロールされる必 要があり、そのための機器として、マスフローコントローラが用いられている。
[0004] マスフローコントローラでは、細管内を流れる流体が、その流量に応じて発熱抵抗 線力 熱を奪う。すなわち、流体の流量に応じて発熱抵抗線の抵抗値が変わることを 利用して、流量を検出する。マスフローコントローラは、そのような流量検出部と、流 量検出部から出力される出力電圧(流量に対応する検出電圧)と設定流量に応じて 設定される設定電圧とを比較する比較部と、比較部からの比較出力により操作される 流量調整バルブと、を備えている。
[0005] し力 ながら、マスフローコントローラが用いられている場合において、実流量が設 定流量から外れてくることがある。例えば実流量が 0の場合であっても、流量検出部 力 出力される電圧値が 0ではなぐ誤差が存在する場合がある。
[0006] 更に、実流量が設定流量から外れてくる現象として、ゼロ点シフトの他に、流量に対 する出力電圧の変化割合 (傾き)、即ちスパン、が変動することが挙げられる。このよう なスパンシフトは、ブリッジ回路に含まれるセンサである上流側の発熱抵抗線と下流 側の発熱抵抗線とについて、流量変化に対する温度変化量つまり出力電圧の変化 量が初期校正時から変わってくることが要因の一つである。これらの要因としては、メ 一力一出荷時の環境温度とユーザ側の環境温度との相違、コイル状の発熱抵抗線( センサ)のコーティング材の経時劣化や剥離、発熱抵抗線のコイルの緩み、回路部 分の不具合、電源電圧の変動、センサが卷かれている管路の汚れ (腐食や生成物付 着などによる)、等が挙げられる。マスフローコントローラにおいて設定可能な流量の うち、流体の流量が多い場合の流量誤差割合と流量が少ない場合の流量誤差割合 とでは、同じドリフト量である場合、流量が少ない場合の方が誤差の影響は大きぐ例 えば半導体ウェハ表面に生成される膜厚に与える影響も大きい。
[0007] 近年、半導体デバイスの高集積化及び薄膜化に伴い、製造時の半導体ウェハ表 面における膜厚の許容範囲は厳しくなつている。膜厚を許容範囲内に保って製造を 行うために、マスフローコントローラにおいて設定可能な流量のうち、最大流量付近 の流量を使用することにより、流量誤差の程度を小さく抑えるようにすることも行われ ている。例えば、複数の工程を行う場合において各工程の間で流体の設定流量に大 きな差がある場合、流量容量の大きいマスフローコントローラと流量容量の小さいマス フローコントローラとを 2基以上並列接続して、流体の設定流量に応じてマスフローコ ントローラを切り替えることも行われている。
[0008] しかし、複数のマスフローコントローラを用意することは、コスト等において不利であ る。また、出力がドリフトしたとき、即ち、流体流量が 0のときの出力電圧が 0でない場 合には、そのドリフト分が処理に影響を与えるおそれがある。
[0009] 一方、特開平 7— 263350号公報(特に段落 0014及び図 1)には、マスフローコント ローラとは別個に測定器をガス流路に介設し、この測定器の測定結果に基づいて校 正器によりマスフローコントローラを調整すること、が記載されている。
[0010] また、特開平 5— 289751号公報(特に第 9欄第 3行一第 9行)には、予めメーカー 側で初期校正時にガスを流さない状態でマスフローコントローラのセンサコイルに通 じる電流値を段階的に変化させ、両コイルに通じる電流差から生じる温度差をブリツ ジ回路の不平衡電圧として取り出し、この不平衡電圧と使用中の不平衡電圧とを比 較してゼロ点補正量及びスパン補正量を求めること、が記載されている。
[0011] 特開平 7— 263350号公報における測定器を用いる手法は、別途測定器を用意し なければならないため、コスト等において不利である。また、測定器自体に不具合が 生じた場合に対応できない。また、校正器を用いて行う校正は、現実には手動で可 変抵抗値をオペレータが調整することになるため、頻繁に調整しょうとすると作業が 煩わしいという問題がある。
[0012] また、特開平 5— 289751号公報における不平衡電圧を介して調整する手法は、以 下の問題がある。すなわち、マスフローコントローラは種々のメーカーから発売されて いる力 ある特定のメーカーのマスフローコントローラを適用して生産ラインが構成さ れた場合に、マスフローコントローラを他社のものと交換した場合には、その調整を行 うことができない。また、電流値を段階的に変えながらブリッジ回路に供給する機構が 必要となり、装置構成が繁雑であるという不利益もある。
発明の要旨
[0013] 本発明は上記した問題点に鑑みなされるもので、マスフローコントローラを配管から 取り外すことなく高精度に流量を設定できる半導体製造装置及び半導体製造方法を 提供することを目的とする。
[0014] 本発明は、基板を処理して基板上に半導体装置を製造するための処理部と、前記 基板の処理に必要な流体を前記処理部に供給するための流体供給路と、前記流体 の設定流量に対応する設定電圧を出力する設定電圧出力部と、前記流体供給路中 に設けられ、前記設定電圧に基づいて前記流体の流量を調整するマスフローコント ローラと、前記流体供給路中の前記マスフローコントローラの上流側に設けられた第 1遮断弁と、前記流体供給路中の前記マスフローコントローラの下流側に設けられた 第 2遮断弁と、を備え、前記マスフローコントローラは、前記流体の実際の流量を検 出して対応する検出電圧を出力する検出部と、前記設定電圧と前記検出電圧とを比 較して操作信号を出力する比較部と、前記操作信号に基づいて流体の流量を調整 する流量調整部と、を有しており、前記第 1遮断弁及び前記第 2遮断弁が閉じられた 時に前記マスフローコントローラの前記検出部から出力される検出電圧を記憶する記 憶部が設けられ、前記記憶部に記憶された検出電圧に基づいて、前記流体の実際 の流量がゼロである時の検出電圧の変化を補償するように、前記設定電圧を補正す る設定電圧補正部が設けられていることを特徴とする半導体製造装置である。 [0015] 本発明によれば、流量がゼロである時の検出電圧の変化を補償するにあたって、 マスフローコントローラ自体が調整されるのではなく設定電圧が補正されるので、結 果的に簡単にマスフローコントローラの流量制御特性の微調整を行うことができる。
[0016] 好ましくは、本発明の半導体製造装置は、前記第 1遮断弁及び前記第 2遮断弁が 閉じられて、前記記憶部が前記マスフローコントローラの前記検出部から出力される 検出電圧を記憶するタイミングを設定するためのタイミング設定手段を更に備える。
[0017] また、好ましくは、本発明の半導体製造装置は、前記検出電圧が予め定められた 閾値から外れている場合に警報を発する警報発生手段を更に備える。
[0018] また 本発明は、所定の真空雰囲気において基板を処理して基板上に半導体装置 を製造するための処理部と、前記処理部に接続された真空排気路と、前記基板の処 理に必要な流体を前記処理部に供給するための流体供給路と、前記流体の設定流 量に対応する設定電圧を出力する設定電圧出力部と、前記流体供給路中に設けら れ、前記設定電圧に基づいて前記流体の流量を調整するマスフローコントローラと、 前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパス 路と、前記バイパス路に、上流側から順次設けられた圧力検出部及び第 3遮断弁と、 所定のタイミングにおいて、前記バイパス路を真空排気した後に前記第 3遮断弁を閉 じて、前記マスフローコントローラを所定の流量に設定して前記流体供給路を介して 前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の所定時 間帯の上昇率と、前記バイパス路を真空排気した後に前記第 3遮断弁を閉じて、基 準状態に校正された状態の前記マスフローコントローラを所定の流量に設定して前 記流体供給路を介して前記バイパス路に流体を供給した時の前記圧力検出部によ る圧力検出値の所定時間帯の基準上昇率と、の比較結果に基づいて設定電圧を補 正する設定電圧補正部と、を備えたことを特徴とする半導体製造装置である。
[0019] 本発明によれば、設定電圧と流量との対応関係の変化を補償するにあたって、マス フローコントローラ自体が調整されるのではなく設定電圧が補正されるので、結果的 に簡単にマスフローコントローラの流量制御特性の微調整を行うことができる。
[0020] 前記マスフローコントローラが、前記流体の実際の流量を検出して対応する検出電 圧を出力する検出部と、前記設定電圧と前記検出電圧とを比較して操作信号を出力 する比較部と、前記操作信号に基づいて流体の流量を調整する流量調整部と、を有 している場合、前記設定電圧補正部は、検出電圧のスパンの変化を補償するように、 前記設定電圧を補正するようになってレ、ることが好ましレ、。
[0021] また、前記設定電圧補正部は、前記マスフローコントローラを複数の所定の流量に 設定して得られた複数の上昇率と、基準状態に校正された状態の前記マスフローコ ントローラを複数の所定の流量に設定して得られた複数の基準上昇率と、の比較結 果に基づいて設定電圧を補正するようになっていることが好ましい。
[0022] また 本発明は、所定の真空雰囲気において基板を処理して基板上に半導体装置 を製造するための処理部と、前記処理部に接続された真空排気路と、前記基板の処 理に必要な流体を前記処理部に供給するための流体供給路と、前記流体の設定流 量に対応する設定電圧を出力する設定電圧出力部と、前記流体供給路中に設けら れ、前記設定電圧に基づいて前記流体の流量を調整するマスフローコントローラと、 前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパス 路と、前記流体供給路中の前記マスフローコントローラの上流側に設けられた第 1遮 断弁と、前記バイパス路に設けられた圧力検出部と、所定のタイミングにおいて、前 記バイパス路を真空排気しながら前記マスフローコントローラを所定の流量に設定し て前記流体供給路を介して前記バイパス路に流体を供給した状態で、前記第 1遮断 弁を閉じた時の前記圧力検出部による圧力検出値の所定時間帯の下降率と、前記 バイパス路を真空排気しながら基準状態に校正された状態の前記マスフローコント口 ーラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流体を供 給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出値の所 定時間帯の基準下降率と、の比較結果に基づいて設定電圧を補正する設定電圧補 正部と、を備えたことを特徴とする半導体製造装置である。
[0023] 本発明によっても、設定電圧と流量との対応関係の変化を補償するにあたって、マ スフローコントローラ自体が調整されるのではなく設定電圧が補正されるので、結果 的に簡単にマスフローコントローラの流量制御特性の微調整を行うことができる。
[0024] 前記マスフローコントローラが、前記流体の実際の流量を検出して対応する検出電 圧を出力する検出部と、前記設定電圧と前記検出電圧とを比較して操作信号を出力 する比較部と、前記操作信号に基づいて流体の流量を調整する流量調整部と、を有 している場合、前記設定電圧補正部は、検出電圧のスパンの変化を補償するように、 前記設定電圧を補正するようになってレ、ることが好ましレ、。
[0025] また、前記設定電圧補正部は、前記マスフローコントローラを複数の所定の流量に 設定して得られた複数の下降率と、基準状態に校正された状態の前記マスフローコ ントローラを複数の所定の流量に設定して得られた複数の基準下降率と、の比較結 果に基づいて設定電圧を補正するようになっていることが好ましい。
また、本発明は方法としても成立する。
[0026] すなわち、本発明は、基板を処理して基板上に半導体装置を製造するための処理 部と、前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、 前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、前記流体 供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整するマスフ ローコントローラと、前記流体供給路中の前記マスフローコントローラの上流側に設け られた第 1遮断弁と、前記流体供給路中の前記マスフローコントローラの下流側に設 けられた第 2遮断弁と、を備え、前記マスフローコントローラは、前記流体の実際の流 量を検出して対応する検出電圧を出力する検出部と、前記設定電圧と前記検出電 圧とを比較して操作信号を出力する比較部と、前記操作信号に基づいて流体の流 量を調整する流量調整部と、を有しており、前記第 1遮断弁及び前記第 2遮断弁が 閉じられた時に前記マスフローコントローラの前記検出部から出力される検出電圧を 記憶する記憶部が設けられ、前記記憶部に記憶された検出電圧に基づいて、前記 流体の実際の流量がゼロである時の検出電圧の変化を補償するように、前記設定電 圧を補正する設定電圧補正部が設けられていることを特徴とする半導体製造装置を 用いた半導体製造方法であって、
前記第 1遮断弁及び前記第 2遮断弁を閉じる工程と、
前記記憶部によって、前記第 1遮断弁及び前記第 2遮断弁が閉じられた時に前記 マスフローコントローラの前記検出部から出力される検出電圧を記憶する工程と、 前記設定電圧補正部によって、前記記憶部に記憶された検出電圧に基づいて前 記流体の実際の流量がゼロである時の検出電圧の変化を補償するように前記設定 電圧を補正する工程と、
を備えたことを特徴とする半導体製造方法である。
あるいは、本発明は、所定の真空雰囲気において基板を処理して基板上に半導体 装置を製造するための処理部と、前記処理部に接続された真空排気路と、前記基板 の処理に必要な流体を前記処理部に供給するための流体供給路と、前記流体の設 定流量に対応する設定電圧を出力する設定電圧出力部と、前記流体供給路中に設 けられ、前記設定電圧に基づいて前記流体の流量を調整するマスフローコントローラ と、前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパ ス路と、前記バイパス路に、上流側から順次設けられた圧力検出部及び第 3遮断弁と 、所定のタイミングにおいて、前記バイパス路を真空排気した後に前記第 3遮断弁を 閉じて、前記マスフローコントローラを所定の流量に設定して前記流体供給路を介し て前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の所定 時間帯の上昇率と、前記バイパス路を真空排気した後に前記第 3遮断弁を閉じて、 基準状態に校正された状態の前記マスフローコントローラを所定の流量に設定して 前記流体供給路を介して前記バイパス路に流体を供給した時の前記圧力検出部に よる圧力検出値の所定時間帯の基準上昇率と、の比較結果に基づいて設定電圧を 補正する設定電圧補正部と、を備えたことを特徴とする半導体製造装置を用いた半 導体製造方法であって、
前記バイパス路を真空排気した後に前記第 3遮断弁を閉じて、基準状態に校正さ れた状態の前記マスフローコントローラを所定の流量に設定して前記流体供給路を 介して前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の 所定時間帯の基準上昇率を求める工程と、
所定のタイミングにおいて、前記バイパス路を真空排気した後に前記第 3遮断弁を 閉じて、前記マスフローコントローラを所定の流量に設定して前記流体供給路を介し て前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の所定 時間帯の上昇率を求める工程と、
前記基準上昇率と前記上昇率との比較結果に基づいて設定電圧を補正する工程 と、 を備えたことを特徴とする半導体製造方法である。
あるいは、本発明は、所定の真空雰囲気において基板を処理して基板上に半導体 装置を製造するための処理部と、前記処理部に接続された真空排気路と、前記基板 の処理に必要な流体を前記処理部に供給するための流体供給路と、前記流体の設 定流量に対応する設定電圧を出力する設定電圧出力部と、前記流体供給路中に設 けられ、前記設定電圧に基づいて前記流体の流量を調整するマスフローコントローラ と、前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパ ス路と、前記流体供給路中の前記マスフローコントローラの上流側に設けられた第 1 遮断弁と、前記バイパス路に設けられた圧力検出部と、所定のタイミングにおいて、 前記バイパス路を真空排気しながら前記マスフローコントローラを所定の流量に設定 して前記流体供給路を介して前記バイパス路に流体を供給した状態で、前記第 1遮 断弁を閉じた時の前記圧力検出部による圧力検出値の所定時間帯の下降率と、前 記バイパス路を真空排気しながら基準状態に校正された状態の前記マスフローコント ローラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流体を供 給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出値の所 定時間帯の基準下降率と、の比較結果に基づいて設定電圧を補正する設定電圧補 正部と、を備えたことを特徴とする半導体製造装置を用いた半導体製造方法であつ て、
前記バイパス路を真空排気しながら基準状態に校正された状態の前記マスフロー コントローラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流 体を供給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出 値の所定時間帯の基準下降率を求める工程と、
所定のタイミングにおいて、前記バイパス路を真空排気しながら前記マスフローコン トローラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流体を 供給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出値の 所定時間帯の下降率を求める工程と、
前記基準下降率と前記下降率との比較結果に基づいて設定電圧を補正する工程 と、 を備えたことを特徴とする半導体製造方法である。
図面の簡単な説明
[0028] [図 1]は、本発明の一実施の形態における半導体製造装置の構成を示すブロック図 である。
[図 2]は、処理部の構成と、処理部とマスフローコントローラとの関係を示すブロック図 である。
[図 3]は、マスフローコントローラの構成を示すブロック図である。
[図 4]は、本発明の一実施の形態におけるマスフローコントローラの設定電圧の補正 方法を示すフローチャートである。
[図 5]は、マスフローコントローラの設定電圧と流量との関係を示すグラフである。
[図 6]は、本発明の他の実施の形態における半導体製造装置の構成を示すブロック 図である。
[図 7]は、バイパス路に設けられた圧力検出部の圧力値の上昇の様子を示す特性図 である。
[図 8]は、マスフローコントローラの実流量と出力電圧との関係を示すグラフの傾きが 変化する様子を示す特性図である。
[図 9]は、マスフローコントローラの実流量と出力電圧との関係が変化する様子を示す 特性図である。
発明を実施するための最良の形態
[0029] 以下、本発明の実施の形態を図面を参照して説明する。
まず、図 1は、本発明の一実施の形態における半導体製造装置の主な構成を示す ブロック図である。本装置は、基板に対して半導体集積回路を製造するための処理 を行う処理部として、熱処理部 1を備えている。熱処理部 1の反応容器 (処理容器)で ある縦型の反応チューブ 11内には、基板であるウェハ Wを多数枚搭載する保持具 1 2が搬入される。この状態で、ウェハ Wは、反応チューブ 11の外側に設けられた図示 しない加熱手段により加熱される。一方、例えばガス供給管からなるガス供給路 2か ら、反応チューブ 11内に所定のガスが導入される。これにより、基板に対する所定の 熱処理が行われる。図 1において、 13は排気管、 14は真空排気手段である真空ボン プ、 15はガス供給路 2と排気管 13との間を反応チューブ 11を迂回して接続するバイ パス路、 21、 22、 23は各々バルブ例えば遮断弁である。
[0030] ガス供給路 2には、ガス供給源 40力 のガスの流量を調整するマスフローコント口 ーラ 3が設けられている。マスフローコントローラ 3の上流側及び下流側には、夫々遮 断弁 41、 42が設けられている。遮断弁 41、 42の双方を閉じることで、マスフローコン トローラ 3を通過する流体、この例ではガス、の流れを遮断することができる(即ちガス 流量を 0とすることができる)ようになつている。
[0031] マスフローコントローラ 3は、図 2に示すように、流量検出部 31と、比較部(調節部) 3 2と、流量調整部としてのコントロールバノレブ(流量調整バルブ) 33と、を備えている。
[0032] マスフローコントローラ 3のより詳しい構成について、図 3に基づいて説明する。マス フローコントローラ 3の内部に導入される前記ガス供給管 2は、本流部 3aと側流部 3b とに分岐される。側流部 3bには、ガス供給管 2内における流量を計測するために、 2 つの発熱抵抗線 34、 35を有する流量センサが設けられている。本流部 3aには、側 流路 3bと本流路 3aとの流量等の各種条件を同等に調整するバイパス部 30が設けら れている。すなわち、ノくィパス部 30は、本流路 3aにおける流量、温度、圧力などの 特性を、側流路 3bにおけるそれらと同様となるように調整可能である。これにより、セ ンサ 34、 35による測定に誤差が生じることを防止することができる。
[0033] 流量の検出原理について説明する。上流側センサ 34では、流体が流れると熱が奪 われて温度が下降し、逆に下流側センサ 35では、熱が与えられて温度が上昇する。 この結果、上流側センサ 34と下流側センサ 35との間に温度差が生じ、この温度差に 基レ、て流量が検出されるようになってレ、る。
[0034] マスフローコントローラ 3は、更に、発熱抵抗線 34、 35の抵抗値の差を電圧信号と して検出するブリッジ回路 36と、その電圧信号を増幅する増幅回路 37と、を備えて いる。発熱抵抗線 34、 35、ブリッジ回路 36及び増幅回路 37は、前記流量検出部 31 を構成する。前記比較部 32は、後述の設定流量に対応する設定信号 (設定電圧)と 増幅回路 37からの電圧とを比較し、その比較結果 (偏差)に応じてコントロールバル ブ 33の開度を調整するための操作信号を出力するようになっている。
[0035] また、マスフローコントローラ 3には、信号変換部 5を介して制御部 6が接続されてい る。信号変換部 5は、マスフローコントローラ 3からのアナログ信号をディジタル信号に 変換すると共に、制御部 6からのディジタル信号をアナログ信号に変換するようになつ ている。
[0036] 次いで、制御部 6の詳しい構成について、図 2に基づいて説明する。制御部 6には 、例えば液晶パネルなどからなる表示部 51が接続されている。この表示部 51は、タツ チパネル式の入力装置も兼ねている。 6aはデータバス、 60は装置の制御を実施す る CPUである。 61はマスフローコントローラ 3の設定流量に対応する設定電圧を出力 する設定電圧出力部である。設定電圧出力部 61は、例えば 0— 5Vの設定電圧によ りマスフローコントローラ 3の流量を 0% 100%に設定できるようになつている。 62は 第 1の記憶部である。第 1の記憶部 62には、遮断弁 41、 42が閉じられたときにおい てマスフローコントローラ 3から出力される出力電圧(流量検出部 31からの電圧検出 値)がドリフト電圧として記憶される。 63は第 1の設定電圧補正部である。第 1の設定 電圧補正部 63は、遮断弁 41、 42が閉じられたときにおいてマスフローコントローラ 3 力 出力される出力電圧が基準電圧(この例では 0V)と異なる場合、つまりドリフト電 圧である土 E0 (V)が発生している場合に、設定電圧を補正するようになっている。 6 4は第 1のタイミング設定部である。第 1のタイミング設定部 64は、遮断弁 41、 42を閉 じてマスフローコントローラ 3に対する設定電圧を見直す (補正する)タイミングを設定 するようになつている。 65は、アラーム用比較回路部である。アラーム用比較回路部 65は、前記ドリフト電圧が予め設定された閾値を越えているか否か判断し、閾値を越 えていればアラーム発生部 66に警告 (例えば警告音や警告表示)を発生させるよう になっている。なお、本実施の形態では、 0. 3V (300mV)が閾値とされ、この閾値 以上離れた値がマスフローコントローラ 3から計測された場合に、マスフローコント口 ーラ 3に不具合があると判別され、例えばアラーム発生部 66からの警報出力と操作 パネル 51への警報表示とにより作業者に対して通報がなされるようになつている。
[0037] 次に、上述の実施の形態の作用について、図 4のフローチャート及び図 5のグラフ を参照して説明する。本実施の形態において使用されるマスフローコントローラ 3で は、流量と出力電圧とがリニアであって、最大流量は 500ccZ分であり、その際の出 力電圧は 5Vとなるように設計されている。 [0038] 先ず、マスフローコントローラ 3が装置に組み込まれたときには、流量ゼロの状態で 出力電圧がゼロに設定されている。この状態で、熱処理部 1において、基板例えばゥ ェハ Wに対して所定の熱処理が行われる。即ち、実行すべきプロセスの設定流量に 対応する設定電圧が、制御部 6から信号処理部 5を介してマスフローコントローラ 3に 与えられる。マスフローコントローラ 3では、反応チューブ 11に供給される処理ガスが 設定流量となるように、コントロールバルブ 33 (図 2参照)が調整される。例えば設定 流量力 OOccZ分であったとすると、マスフローコントローラ 3には 4Vの電圧が与え られる。マスフローコントローラ 3に対する初期校正の直後(基準状態)であれば、流 量ゼロ時の出力電圧はゼロであるから、 400cc/分の設定値通りの流量で処理ガス が反応チューブ 11に供給される。
[0039] 次いで、タイミング設定部 64にて設定されたタイミングに従って、例えば熱処理が 行われる前後の待機時間において、マスフローコントローラ 3の状態が以下のようにし て調べられる。まず、前記遮断弁 41、 42が両方とも閉じられて、マスフローコントロー ラ 3内にガスが流入しない状況が作られる。この時、例えば制御部 6からの指示により 、マスフローコントローラ 3のコントロールバルブ 33 (図 3参照)が「開」状態例えば全 開状態とされて、センサ 34、 35の前後のガスの流れが平衡状態にされる(ステップ S 1)。このとき、マスフローコントローラ 3から出力される出力電圧(E0)すなわち流量ゼ 口時のマスフローコントローラ 3からの出力電圧力 第 1の記憶部 62内に記憶される( ステップ S2)。なお、この例では、 Ε0= + 0· IVとする。
[0040] 次いで、マスフローコントローラ 3から出力された出力電圧(Ε0)が予め設定されて レ、る前述した閾値以内であるか否カ が判定される(ステップ S3)。例えば閾値が 30 OmVであれば、 EO ( + 0. lV (lOOmV) )は閾値内に収まっており、ステップ S4に進 む。一方、前記操作パネル 51から、マスフローコントローラ 3の流量力 OOccZ分と なるように設定されているとする。このとき、第 1の設定電圧補正部 63により、この設 定流量に対応する設定電圧が補正される。即ち、設定電圧出力部 61から出力される 設定電圧 4Vに、前記記憶部 62に記憶された出力電圧 (EO) O. IVが加算され (補 正され)《4V+ ( + 0. lv) =4. IV》、当該値 (4. IV)が正しい設定電圧(電圧指示 値)としてマスフローコントローラ 3に与えられる(ステップ S5)。 [0041] ここで、図 5は、マスフローコントローラ 3の設定電圧と流量との関係を示すグラフで ある。初期校正時における電圧-流量特性が、実線で表されている。設定ポイントは A点にある。そして、マスフローコントローラ 3のゼロ点がドリフト(変化)して 0· IVのド リフト電圧(出力電圧の変化分)が発生した場合の電圧一流量特性が、点線で表され ている。このとき、設定ポイントは B点に移行する。すなわち、この状態では、流量は 3 90cc/分になってしまう。そこで、設定電圧が既述のように補正される。これにより、 電圧—流量特性は変わらないが、設定ポイントは B点から C点に移行する。これにより 、マスフローコントローラ 3により設定される流量が設定流量通り 400ccとなる。
[0042] 以上のようにマスフローコントローラ 3の設定電圧の調整が終了したところで、遮断 弁 41、 42が開けられる(ステップ S6)。そして、反応チューブ 11内にウェハ Wが搬入 され、バルブ 21が開けられて反応チューブ 11内に設定流量通りのガスが供給され、 前記ウェハ Wに対して所定の熱処理が実施される (ステップ S7)。
[0043] 以上の例では、ゼロ点が +側にずれた場合について説明している。ゼロ点が 側に ずれた場合、例えば E0が- 0. IVである場合にも、設定電圧出力部 61から出力され る設定電圧 4Vに 0. IVが加算され (補正され)《4V+ (— 0. lv) = 3. 9V》、補正さ れた値(3. 9V)が正しレ、設定電圧(電圧指示値)としてマスフローコントローラ 3に与 えられることになる。
[0044] なお、ステップ S3にて、マスフローコントローラ 3から出力された出力電圧(E0)が閾 値よりも大きいと判定された場合には、アラーム発生部 66によりアラームが出力され、 また、表示パネル 6においてマスフローコントローラ 3が異常である旨が作業者に対し て通報される(ステップ S8)。この場合には、作業者がマスフローコントローラ 3を点検 するか、あるいは、メーカ側に修理を依頼することになる。
[0045] 上述の実施の形態によれば、マスフローコントローラ 3の上流側及び下流側に設け られた遮断弁 41、 42が閉じられた状態においてマスフローコントローラ 3から出力さ れる出力電圧に基づいて、流量ゼロ時の出力電圧の変化分 (ドリフト電圧)を補償す るように、制御部 6から出力される設定電圧が補正される。つまり、マスフローコント口 ーラ 3を調整するのではなく設定信号を補正するため、マスフローコントローラ 3が設 置されているメンテナンスルームに作業者が入って調整するという作業は不要である し、製造ラインを止める必要もない。
[0046] ここで、オペレータがマスフローコントローラ 3のゼロ点の調整を行う従来の場合に ついて説明する。従来、オペレータは、装置の電源をオフにして、マスフローコント口 ーラ 3にテスタ測定用の治具を取り付け、装置の電源を再投入した後、操作画面によ り設定流量ゼロの入力を行レ、、数分そのままの状態にしてからテスターでゼロ電圧を 測定し、その電圧を所定電圧の範囲内の値に調整する。しかる後、装置電源をオフ にして、前記治具を外した後、装置電源を再投入して、操作画面でァクチャルを確認 する。
[0047] 上述の実施の形態によれば、装置を止めての面倒な上記調整作業を省くことがで き、装置の運用の効率化を図ることができる。また、半導体製造装置に用いられるガ スには毒性のあるガスが含まれている場合が多いので、ガス供給機器を収納してい るガスボックスを開くことを回避できれば人的な危険性を低減することができる。更に また、装置のダウンタイムに影響するマスフローコントローラ 3の定期点検なども省力 化できる。
[0048] 上述の例では、校正されたマスフローコントローラ 3においてガスが流れていないと きに出力される電圧がゼロである。し力 ながら、校正されたマスフローコントローラ 3 においてガスが流れていないときに出力される電圧がゼロでない場合(例えば 0. IV であり、流量 500cc/分に相当する設定電圧が 5. IVに設定されている場合)にも、 本発明は有効である。この場合、設定電圧補正部は、マスフローコントローラ 3からの 出力電圧から当該基準電圧(例えば 0. IV)を差し引いた電圧差だけマスフローコン トローラ 3がドリフトしてレ、るものと判別して、設定電圧をその電圧差で補正することと なる。
[0049] 次いで、本発明の他の実施の形態を図 6に基づき説明する。この例では、バイパス 路 15に圧力検出部 71が設けられている。更に、圧力検出部 71からの圧力検出値に おける所定時間帯の上昇率に基づいてガス供給路 2を流れる流量を求めることがで きる流量基準計 72が設けられている。また、処理ガスを節約するために、例えばマス フローコントローラ 3とその上流側の遮断弁 41との間に、パージガス例えば窒素ガス などの不活性ガスを供給できるように、分岐路 43及びバルブ例えば遮断弁 44を介し ;ージガス供給源 45が接続されてレヽる。
[0050] ここで、圧力上昇率とは、遮断弁 44、 21を閉じて遮断弁 44の下流側のガス供給路 2及びバイパス路 15を真空排気し、その後バイパス路 15の遮断弁 23を閉じ、遮断弁 44を開いてマスフローコントローラ 3を通じて所定の流量でガスを流したときの圧力上 昇率を指している。なお、この場合、遮断弁 41は閉じているものとする。
[0051] 流量基準計 72内には、圧力上昇率演算手段 72aが設けられている。圧力上昇率 演算手段 72aは、検知した圧力値の時系列データを図示しないワークメモリに書き込 み、そのデータから圧力上昇率を演算し、その値を制御部 6に送るように構成されて いる。
[0052] また、制御部 6は、圧力上昇率を記憶する第 2の記憶部 67と、マスフローコントロー ラ 3の校正時における基準圧力上昇率 (初期値)とマスフローコントローラ 3を使用し た後に測定された圧力上昇率とに基づいてマスフローコントローラ 3の設定電圧を補 正する第 2の設定電圧補正部 68と、マスフローコントローラ 3の状態をチェックするタ イミングつまり校正時以外において圧力上昇率の計測を行うタイミングを設定する第 2のタイミング設定部 69と、を備えている。この制御部 6は、図 1に示した構成をも備え ており、既述のようにしてゼロ点のドリフトの調整をも行うことができる力 図 6では便宜 上スパンのずれを補償するための部位についてのみ図示してある。
[0053] なお、図示していないが、ガス供給路 2及びバイパス路 15の温度を検出する温度 検出部を設けて、圧力上昇率を求めるときにその温度を考慮して、温度変化による 影響を補償することが好ましい。
[0054] 次に、マスフローコントローラ 3のスパンのずれを補償する動作について説明する。
この例では、マスフローコントローラ 3の最大設定流量は、 500ccZ分である。また、 この際の出力電圧は 5Vであり、マスフローコントローラ 3の検出流量と出力電圧とは 比例関係にあり、ゼロ点のドリフトはないものとする。校正した直後のマスフローコント ローラ 3 (例えば新品のマスフローコントローラ 3)が取り付けられた後、その上流側の 遮断弁 44とバルブ 21とが閉じられて、遮断弁 44の下流側のガス供給路 2及びバイ パス路 15が真空ポンプ 14により真空排気される。その後、バイパス路 15の遮断弁 2 3が閉じられる。続いて、マスフローコントローラ 3内が所定の流量 (例えば最大流量 の 80%の流量である 400cc)になるように設定電圧出力部 61から設定電圧が出力さ れて流量が設定され、遮断弁 44が開けられてマスフローコントローラ 3を通じてパー ジガスが流される。
[0055] 流量基準計 72は、そのときの圧力検出部 71による圧力検出値の所定時間帯の時 系列データを記憶し、それらのデータに基づいて圧力上昇率を求めて、当該圧力上 昇率を制御部 6に送信する。制御部 6では、この圧力上昇率が初期値 (基準値)とし て第 2の記憶部 67に記憶される。図 7は、このときの圧力変化を示す図である。 TOは 、遮断弁 41が開けられた時点、 T3は、バイパス路 15の遮断弁 23が開けられた時点 である。圧力検出値を測定する時間帯は、圧力上昇が安定している時間帯であるこ と力好ましく、例えば T1一 T2の時間帯である。
[0056] そして、制御部 6内の第 2のタイミング設定部 69で設定された所定のタイミングで、 例えば既述の実施の形態と同様に熱処理が終了する度毎に、既述の圧力上昇率の 初期値を求めたときと同様にして、同一の設定流量により圧力検出部 71において圧 カを検知し、流量基準計 72により圧力上昇率を求め、制御部 6の第 2の記憶部 67に 送信する。制御部 6は、この圧力上昇率と既に求めた初期値とを比較し、その比較結 果に基づレ、て設定電圧を補正する。
[0057] この手法は、バイパス路 15の上流側の管路の容積を利用し、当該管路内にガスを 流入させたときの流入流量と圧力上昇とが対応していることに基づいて、実流量を圧 力変化として直接測定するものである。圧力上昇率が初期値に比べて例えば 2. 5% 早くなつた(大きくなつた)ときには、それだけ流量が早くなつたということである。言い 換えれば、 400cc/分の設定流量に対応する設定電圧 4Vでは、流量が予定の流 量よりも 2. 5%早くなつているということである。従って、制御部 6内の第 2の設定電圧 補正部 68が、前記マスフローコントローラ 3の設定流量である 400ccZ分に圧力上 昇率の増加分(早くなつた分)である 2. 5%を乗じて、ズレ量を算出する《400cc X 2 . 5% (0. 025) = 10cc》。この演算の結果、ズレ量は lOccと算出される。このズレ量 (lOcc)を設定流量 (400cc)で除した値に当該設定流量に対応する設定電圧 (4V) を乗すれば、ズレ量に対応する分の出力電圧値 Δ Eが求められる《10ccZ400cc X 4V = 0. IV》。 [0058] 図 8は、スパンが変化する様子を示す図である。実線(1)は校正時のスパン (流 変化に対する出力変化)を示すグラフ、点線(2)は校正時のスパンからずれたスパン を示すグラフである。以上の演算により算出された出力電圧値 Δ Ε=0· IVが、マス フローコントローラ 3の設定流量 400ccに対応する設定電圧 4. 0Vから差し引かれ (4 V-0. 1V = 3. 9V)、次回の設定流量力 ¾00ccとなった場合には、出力電圧値が 3. 9Vとされる。これにより、最大流量に対する 80%ポイントでの流量ずれが補正され得 る。従って、流量がズレることなぐ設定流量通りの流量の処理ガスが反応チューブ 1 1内に供給されて、基板に対する処理を行うことができる。
[0059] なお、この例ではガス流量がゼロの時の出力電圧値が 0Vとなっているが、ガス流 量がゼロの時の出力電圧値が 0Vでない場合(つまりゼロ点のドリフトが生じている場 合)には、設定流量 400ccに対応する設定電圧は先の実施の形態によって補正され た電圧となる。例えば、ゼロ点での出力電圧の変化が + 0. IVであって、このドリフト 分を補償するために先の実施の形態により設定流量 400ccに対応する設定電圧が 3. 9Vに補正されるならば、図 8の実線(1)の 400ccに対応する設定電圧は 3· 9Vと なる。このとき、スパン変化によるズレ量に対応する出力電圧値 Δ Εは、 10cc/400c c X 3. 9V=0. 0975Vとなる。
[0060] 本実施の形態によれば、マスフローコントローラ 3を調整するのではなく設定信号を 補正するため、マスフローコントローラ 3が設置されているメンテナンスルームに作業 者が入って調整するという作業は不要であるし、製造ラインを止める必要もない。
[0061] また、前記のマスフローコントローラ 3では、設定流量と出力電圧値とは比例の関係 とされてレ、る。し力し、いくつかの設定流量において(例えば設定流量が 150ccの時 と、 300ccの時と、最大流量の 500ccの時、の 3つのポイントにおいて)前述した方法 により圧力上昇率を把握して、各設定流量における圧力上昇率が夫々の基準値と異 なる場合には、制御部 6内のプログラムにより、流量と出力電圧との関係を例えば図 9 の点線で示す曲線に補正することが好ましい。この場合、当該曲線に基づいて、設 定電圧出力部 61から設定流量に対応する設定電圧が出力される。
[0062] なお、以上のように流量基準計 72を用いる場合においても、初期時と監視時とにお ける圧力上昇率の差異が一定以上になったときには (例えば圧力上昇率の差異から 換算される出力電圧のずれ分が閾値以上になったときには)、警報を発して作業者 にしらせるようにしてもよレ、。
[0063] また、圧力上昇率を用いて既述のようにして設定電圧を補正した後(例えば 4Vを 3 . 9Vに補正した後)、再度その設定電圧によりマスフローコントローラ 3の流量を設定 して圧力上昇率の基準値に対する変化分を求め、その変化分が所定値 (例えば 1. 0%)以内に収まるまで同様のループ (圧力上昇率を求めて設定電圧を補正するェ 程)を繰り返すようにしてもょレ、。
[0064] 以上の説明では、圧力上昇率に基づいて、スパンの変化が補償されている。しかし ながら、圧力上昇率に代えて圧力降下率を用いてもよい。この場合には、マスフロー コントローラ 3の上流側の遮断弁 44が開けられ、遮断弁 21が閉じられ、遮断弁 42、 2 2、 23カ開けられる。つまり、パージガスがマスフローコントローラ 3を介してバイパス 路 15から排気されるように設定される。そして、マスフローコントローラ 3が所定の流 量に設定される。この状態で、遮断弁 44が閉じられてパージガスの供給が止められ、 その後の圧力検出部 71による圧力値の時系列データから所定時間帯の圧力降下 率が求められる。この値が既述の圧力上昇率と同様に活用され得る。
[0065] なお、パージガスを流す代わりに、遮断弁 41を開いて処理ガスを流すようにしても よい。また本発明は、マスフローコントローラ 3内にガスが通流する場合に限らず、例 えば有機液体ソースなどの液体がマスフローコントローラ 3内を流れその下流側にて 気化器により気化されて反応容器内に供給される場合にも適用可能である。更にま た、レジスト液などの塗布液を基板に塗布する場合などにおいて、マスフローコント口 ーラにより塗布液などの液体の流量を調整する場合にも適用できる。

Claims

請求の範囲
[1] 基板を処理して基板上に半導体装置を製造するための処理部と、
前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、 前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、 前記流体供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整 するマスフローコントローラと、
前記流体供給路中の前記マスフローコントローラの上流側に設けられた第 1遮断弁 と、
前記流体供給路中の前記マスフローコントローラの下流側に設けられた第 2遮断弁 と、
を備え、
前記マスフローコントローラは、
前記流体の実際の流量を検出して対応する検出電圧を出力する検出部と、 前記設定電圧と前記検出電圧とを比較して操作信号を出力する比較部と、 前記操作信号に基づいて流体の流量を調整する流量調整部と、
を有しており、
前記第 1遮断弁及び前記第 2遮断弁が閉じられた時に前記マスフローコントローラ の前記検出部から出力される検出電圧を記憶する記憶部が設けられ、
前記記憶部に記憶された検出電圧に基づいて、前記流体の実際の流量がゼロで ある時の検出電圧の変化を補償するように、前記設定電圧を補正する設定電圧補正 部が設けられている
ことを特徴とする半導体製造装置。
[2] 前記第 1遮断弁及び前記第 2遮断弁が閉じられて、前記記憶部が前記マスフロー コントローラの前記検出部から出力される検出電圧を記憶するタイミングを設定する ためのタイミング設定手段
を更に備えたことを特徴とする請求項 1に記載の半導体製造装置。
[3] 前記検出電圧が予め定められた閾値から外れている場合に警報を発する警報発 生手段 を更に備えたことを特徴とする請求項 1または 2に記載の半導体製造装置。
[4] 所定の真空雰囲気において基板を処理して基板上に半導体装置を製造するため の処理部と、
前記処理部に接続された真空排気路と、
前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、 前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、 前記流体供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整 するマスフローコントローラと、
前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパ ス路と、
前記バイパス路に、上流側から順次設けられた圧力検出部及び第 3遮断弁と、 所定のタイミングにおいて、前記バイパス路を真空排気した後に前記第 3遮断弁を 閉じて、前記マスフローコントローラを所定の流量に設定して前記流体供給路を介し て前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の所定 時間帯の上昇率と、前記バイパス路を真空排気した後に前記第 3遮断弁を閉じて、 基準状態に校正された状態の前記マスフローコントローラを所定の流量に設定して 前記流体供給路を介して前記バイパス路に流体を供給した時の前記圧力検出部に よる圧力検出値の所定時間帯の基準上昇率と、の比較結果に基づいて設定電圧を 補正する設定電圧補正部と、
を備えたことを特徴とする半導体製造装置。
[5] 前記マスフローコントローラは、
前記流体の実際の流量を検出して対応する検出電圧を出力する検出部と、 前記設定電圧と前記検出電圧とを比較して操作信号を出力する比較部と、 前記操作信号に基づいて流体の流量を調整する流量調整部と、
を有しており、
前記設定電圧補正部は、検出電圧のスパンの変化を補償するように、前記設定電 圧を補正するようになっている
ことを特徴とする請求項 4に記載の半導体製造装置。
[6] 前記設定電圧補正部は、前記マスフローコントローラを複数の所定の流量に設定し て得られた複数の上昇率と、基準状態に校正された状態の前記マスフローコントロー ラを複数の所定の流量に設定して得られた複数の基準上昇率と、の比較結果に基 づレ、て設定電圧を補正するようになつてレ、る
ことを特徴とする請求項 4に記載の半導体製造装置。
[7] 所定の真空雰囲気において基板を処理して基板上に半導体装置を製造するため の処理部と、
前記処理部に接続された真空排気路と、
前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、 前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、 前記流体供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整 するマスフローコントローラと、
前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパ ス路と、
前記流体供給路中の前記マスフローコントローラの上流側に設けられた第 1遮断弁 と、
前記バイパス路に設けられた圧力検出部と、
所定のタイミングにおいて、前記バイパス路を真空排気しながら前記マスフローコン トローラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流体を 供給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出値の 所定時間帯の下降率と、前記バイパス路を真空排気しながら基準状態に校正された 状態の前記マスフローコントローラを所定の流量に設定して前記流体供給路を介し て前記バイパス路に流体を供給した状態で、前記第 1遮断弁を閉じた時の前記圧力 検出部による圧力検出値の所定時間帯の基準下降率と、の比較結果に基づいて設 定電圧を補正する設定電圧補正部と、
を備えたことを特徴とする半導体製造装置。
[8] 前記マスフローコントローラは、
前記流体の実際の流量を検出して対応する検出電圧を出力する検出部と、 前記設定電圧と前記検出電圧とを比較して操作信号を出力する比較部と、 前記操作信号に基づいて流体の流量を調整する流量調整部と、
を有しており、
前記設定電圧補正部は、検出電圧のスパンの変化を補償するように、前記設定電 圧を補正するようになっている
ことを特徴とする請求項 7に記載の半導体製造装置。
[9] 前記設定電圧補正部は、前記マスフローコントローラを複数の所定の流量に設定し て得られた複数の下降率と、基準状態に校正された状態の前記マスフローコントロー ラを複数の所定の流量に設定して得られた複数の基準下降率と、の比較結果に基 づレ、て設定電圧を補正するようになつてレ、る
ことを特徴とする請求項 7に記載の半導体製造装置。
[10] 基板を処理して基板上に半導体装置を製造するための処理部と、
前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、 前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、 前記流体供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整 するマスフローコントローラと、
前記流体供給路中の前記マスフローコントローラの上流側に設けられた第 1遮断弁 と、
前記流体供給路中の前記マスフローコントローラの下流側に設けられた第 2遮断弁 と、
を備え、
前記マスフローコントローラは、
前記流体の実際の流量を検出して対応する検出電圧を出力する検出部と、 前記設定電圧と前記検出電圧とを比較して操作信号を出力する比較部と、 前記操作信号に基づいて流体の流量を調整する流量調整部と、
を有しており、
前記第 1遮断弁及び前記第 2遮断弁が閉じられた時に前記マスフローコントローラ の前記検出部から出力される検出電圧を記憶する記憶部が設けられ、 前記記憶部に記憶された検出電圧に基づいて、前記流体の実際の流量がゼロで ある時の検出電圧の変化を補償するように、前記設定電圧を補正する設定電圧補正 部が設けられている
ことを特徴とする半導体製造装置を用いた半導体製造方法であって、
前記第 1遮断弁及び前記第 2遮断弁を閉じる工程と、
前記記憶部によって、前記第 1遮断弁及び前記第 2遮断弁が閉じられた時に前記 マスフローコントローラの前記検出部から出力される検出電圧を記憶する工程と、 前記設定電圧補正部によって、前記記憶部に記憶された検出電圧に基づいて前 記流体の実際の流量がゼロである時の検出電圧の変化を補償するように前記設定 電圧を補正する工程と、
を備えたことを特徴とする半導体製造方法。
[11] 前記検出電圧が予め定められた閾値から外れている場合に警報を発する工程 を更に備えたことを特徴とする請求項 10に記載の半導体製造方法。
[12] 所定の真空雰囲気において基板を処理して基板上に半導体装置を製造するため の処理部と、
前記処理部に接続された真空排気路と、
前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、 前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、 前記流体供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整 するマスフローコントローラと、
前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパ ス路と、
前記バイパス路に、上流側から順次設けられた圧力検出部及び第 3遮断弁と、 所定のタイミングにおいて、前記バイパス路を真空排気した後に前記第 3遮断弁を 閉じて、前記マスフローコントローラを所定の流量に設定して前記流体供給路を介し て前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の所定 時間帯の上昇率と、前記バイパス路を真空排気した後に前記第 3遮断弁を閉じて、 基準状態に校正された状態の前記マスフローコントローラを所定の流量に設定して 前記流体供給路を介して前記バイパス路に流体を供給した時の前記圧力検出部に よる圧力検出値の所定時間帯の基準上昇率と、の比較結果に基づいて設定電圧を 補正する設定電圧補正部と、
を備えたことを特徴とする半導体製造装置を用いた半導体製造方法であって、 前記バイパス路を真空排気した後に前記第 3遮断弁を閉じて、基準状態に校正さ れた状態の前記マスフローコントローラを所定の流量に設定して前記流体供給路を 介して前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の 所定時間帯の基準上昇率を求める工程と、
所定のタイミングにおいて、前記バイパス路を真空排気した後に前記第 3遮断弁を 閉じて、前記マスフローコントローラを所定の流量に設定して前記流体供給路を介し て前記バイパス路に流体を供給した時の前記圧力検出部による圧力検出値の所定 時間帯の上昇率を求める工程と、
前記基準上昇率と前記上昇率との比較結果に基づいて設定電圧を補正する工程 と、
を備えたことを特徴とする半導体製造方法。
[13] 前記マスフローコントローラは、
前記流体の実際の流量を検出して対応する検出電圧を出力する検出部と、 前記設定電圧と前記検出電圧とを比較して操作信号を出力する比較部と、 前記操作信号に基づいて流体の流量を調整する流量調整部と、
を有しており、
前記設定電圧を補正する工程は、検出電圧のスパンの変化を補償するように、前 記設定電圧を補正する工程である
ことを特徴とする請求項 12に記載の半導体製造方法。
[14] 前記設定電圧を補正する工程は、前記マスフローコントローラを複数の所定の流量 に設定して得られた複数の上昇率と、基準状態に校正された状態の前記マスフロー コントローラを複数の所定の流量に設定して得られた複数の基準上昇率と、の比較 結果に基づレ、て設定電圧を補正する工程である
ことを特徴とする請求項 12に記載の半導体製造方法。
[15] 所定の真空雰囲気において基板を処理して基板上に半導体装置を製造するため の処理部と、
前記処理部に接続された真空排気路と、
前記基板の処理に必要な流体を前記処理部に供給するための流体供給路と、 前記流体の設定流量に対応する設定電圧を出力する設定電圧出力部と、 前記流体供給路中に設けられ、前記設定電圧に基づいて前記流体の流量を調整 するマスフローコントローラと、
前記流体供給路から、前記処理部をバイパスして、前記真空排気路に至るバイパ ス路と、
前記流体供給路中の前記マスフローコントローラの上流側に設けられた第 1遮断弁 と、
前記バイパス路に設けられた圧力検出部と、
所定のタイミングにおいて、前記バイパス路を真空排気しながら前記マスフローコン トローラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流体を 供給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出値の 所定時間帯の下降率と、前記バイパス路を真空排気しながら基準状態に校正された 状態の前記マスフローコントローラを所定の流量に設定して前記流体供給路を介し て前記バイパス路に流体を供給した状態で、前記第 1遮断弁を閉じた時の前記圧力 検出部による圧力検出値の所定時間帯の基準下降率と、の比較結果に基づいて設 定電圧を補正する設定電圧補正部と、
を備えたことを特徴とする半導体製造装置を用いた半導体製造方法であって、 前記バイパス路を真空排気しながら基準状態に校正された状態の前記マスフロー コントローラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流 体を供給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出 値の所定時間帯の基準下降率を求める工程と、
所定のタイミングにおいて、前記バイパス路を真空排気しながら前記マスフローコン トローラを所定の流量に設定して前記流体供給路を介して前記バイパス路に流体を 供給した状態で、前記第 1遮断弁を閉じた時の前記圧力検出部による圧力検出値の 所定時間帯の下降率を求める工程と、
前記基準下降率と前記下降率との比較結果に基づいて設定電圧を補正する工程 と、
を備えたことを特徴とする半導体製造方法。
[16] 前記マスフローコントローラは、
前記流体の実際の流量を検出して対応する検出電圧を出力する検出部と、 前記設定電圧と前記検出電圧とを比較して操作信号を出力する比較部と、 前記操作信号に基づいて流体の流量を調整する流量調整部と、
を有しており、
前記設定電圧を補正する工程は、検出電圧のスパンの変化を補償するように、前 記設定電圧を補正する工程である
ことを特徴とする請求項 15に記載の半導体製造方法。
[17] 前記設定電圧を補正する工程は、前記マスフローコントローラを複数の所定の流量 に設定して得られた複数の下降率と、基準状態に校正された状態の前記マスフロー コントローラを複数の所定の流量に設定して得られた複数の基準下降率と、の比較 結果に基づレ、て設定電圧を補正する工程である
ことを特徴とする請求項 15に記載の半導体製造方法。
PCT/JP2004/010033 2003-07-16 2004-07-14 半導体製造装置及び半導体製造方法 WO2005008350A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04747499A EP1653312A4 (en) 2003-07-16 2004-07-14 SEMICONDUCTOR PRODUCTION SYSTEM AND SEMICONDUCTOR PRODUCTION METHOD
KR1020057007816A KR101116979B1 (ko) 2003-07-16 2004-07-14 반도체 제조 장치 및 반도체 제조 방법
US10/564,558 US7510884B2 (en) 2003-07-16 2004-07-14 Semiconductor production system and semiconductor production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-197936 2003-07-16
JP2003197936A JP3872776B2 (ja) 2003-07-16 2003-07-16 半導体製造装置及び半導体製造方法

Publications (1)

Publication Number Publication Date
WO2005008350A1 true WO2005008350A1 (ja) 2005-01-27

Family

ID=34074361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010033 WO2005008350A1 (ja) 2003-07-16 2004-07-14 半導体製造装置及び半導体製造方法

Country Status (7)

Country Link
US (1) US7510884B2 (ja)
EP (1) EP1653312A4 (ja)
JP (1) JP3872776B2 (ja)
KR (1) KR101116979B1 (ja)
CN (1) CN100462887C (ja)
TW (1) TW200504822A (ja)
WO (1) WO2005008350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682843B2 (en) 2005-08-25 2010-03-23 Tokyo Electron Limited Semiconductor fabrication system, and flow rate correction method and program for semiconductor fabrication system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214406A (ja) * 2006-02-10 2007-08-23 Hitachi Metals Ltd 流量検定機能付質量流量制御装置を搭載した半導体製造装置
US7869888B2 (en) * 2006-05-31 2011-01-11 Tokyo Electron Limited Information processing apparatus, semiconductor manufacturing system, information processing method, and storage medium
JP5134841B2 (ja) * 2007-03-16 2013-01-30 Ckd株式会社 ガス供給ユニット
JP2009004479A (ja) * 2007-06-20 2009-01-08 Panasonic Corp 装置状態監視方法および装置状態監視装置
JP5459895B2 (ja) * 2007-10-15 2014-04-02 Ckd株式会社 ガス分流供給ユニット
DE102007062977B4 (de) * 2007-12-21 2018-07-19 Schott Ag Verfahren zur Herstellung von Prozessgasen für die Dampfphasenabscheidung
JP2010169657A (ja) * 2008-12-25 2010-08-05 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
JP5558871B2 (ja) * 2010-03-15 2014-07-23 株式会社ダイヘン アーク溶接装置
JP2012033150A (ja) * 2010-06-30 2012-02-16 Toshiba Corp マスフローコントローラ、マスフローコントローラシステム、基板処理装置およびガス流量調整方法
JP6047308B2 (ja) * 2012-05-28 2016-12-21 日精エー・エス・ビー機械株式会社 樹脂容器用コーティング装置
BR112015032001B1 (pt) * 2013-06-19 2022-04-26 Fontem Holdings 4 B.V. Cigarro eletrônico
JP6216601B2 (ja) * 2013-10-09 2017-10-18 旭有機材株式会社 流量制御装置
JP6246606B2 (ja) 2014-01-31 2017-12-13 株式会社Screenホールディングス 基板処理装置
KR20160012302A (ko) * 2014-07-23 2016-02-03 삼성전자주식회사 기판 제조 방법 및 그에 사용되는 기판 제조 장치
KR102628015B1 (ko) * 2017-12-01 2024-01-23 삼성전자주식회사 질량 유량 제어기, 반도체 소자의 제조장치 및 그의 관리방법
KR102066776B1 (ko) * 2017-12-11 2020-01-15 임용일 통합 분석 제어기에 의한 질량 유량 제어기 최적화 통합 시스템
KR102101068B1 (ko) * 2017-12-11 2020-04-14 조북룡 통합 분석기에 의한 질량 유량 최적화 제어 시스템
JP7130524B2 (ja) * 2018-10-26 2022-09-05 東京エレクトロン株式会社 基板処理装置の制御装置および基板処理装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281760A (ja) * 1994-04-12 1995-10-27 Ckd Corp マスフローコントローラ絶対流量検定システム
JPH0916268A (ja) * 1995-06-29 1997-01-17 Hisashi Takahashi 遅れ補償機能付流量制御弁
JP2000122725A (ja) * 1998-10-19 2000-04-28 Ckd Corp ガス供給制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335605A (en) 1980-05-14 1982-06-22 Thermal Instrument Company Mass flow meter
GB2077434B (en) * 1980-05-30 1984-04-26 Millar John Ascertaining flow rate through valves or pumps
US4655089A (en) * 1985-06-07 1987-04-07 Smith Meter Inc. Mass flow meter and signal processing system
US5062446A (en) 1991-01-07 1991-11-05 Sematech, Inc. Intelligent mass flow controller
DE69212129T2 (de) * 1991-12-18 1997-01-23 Pierre Delajoud Massenströmungsmesser mit einschnürendem Element
JPH05289751A (ja) * 1992-04-15 1993-11-05 Hitachi Metals Ltd マスフローコントローラのゼロ点シフト及びスパンシフトを自動補正する方法及びその自動補正機能付きマスフローコントローラ
WO1993025950A1 (en) * 1992-06-12 1993-12-23 Unit Instruments, Inc. Mass flow controller
JP2982003B2 (ja) * 1992-07-28 1999-11-22 コマツ電子金属株式会社 気相成長装置および気相成長装置におけるマスフローコントローラの校正方法
JP2692770B2 (ja) * 1992-09-30 1997-12-17 シーケーディ株式会社 マスフローコントローラ流量検定システム
JPH07263350A (ja) 1994-03-18 1995-10-13 Fujitsu Ltd 半導体製造方法
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
JP3367811B2 (ja) 1996-01-05 2003-01-20 シーケーディ株式会社 ガス配管系の検定システム
US6185469B1 (en) 1997-05-28 2001-02-06 Board Of Regents, The University Of Texas System Method and apparatus for testing and controlling a flexible manufacturing system
JP3932389B2 (ja) * 1998-01-19 2007-06-20 Smc株式会社 マスフローコントローラの自己診断方法
US6339727B1 (en) 1998-12-21 2002-01-15 Recot, Inc. Apparatus and method for controlling distribution of product in manufacturing process
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
JP3513437B2 (ja) 1999-09-01 2004-03-31 キヤノン株式会社 基板管理方法及び半導体露光装置
JP2001077267A (ja) 1999-09-08 2001-03-23 Mitsubishi Electric Corp 半導体製造装置及び半導体装置の製造方法
JP2001197936A (ja) 2000-01-19 2001-07-24 Fuairudo Kk ヘア−スタイリングの改良された方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281760A (ja) * 1994-04-12 1995-10-27 Ckd Corp マスフローコントローラ絶対流量検定システム
JPH0916268A (ja) * 1995-06-29 1997-01-17 Hisashi Takahashi 遅れ補償機能付流量制御弁
JP2000122725A (ja) * 1998-10-19 2000-04-28 Ckd Corp ガス供給制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1653312A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682843B2 (en) 2005-08-25 2010-03-23 Tokyo Electron Limited Semiconductor fabrication system, and flow rate correction method and program for semiconductor fabrication system

Also Published As

Publication number Publication date
US20060172442A1 (en) 2006-08-03
US7510884B2 (en) 2009-03-31
JP3872776B2 (ja) 2007-01-24
EP1653312A4 (en) 2009-05-27
KR20060035575A (ko) 2006-04-26
TW200504822A (en) 2005-02-01
EP1653312A1 (en) 2006-05-03
CN100462887C (zh) 2009-02-18
TWI305372B (ja) 2009-01-11
JP2005038058A (ja) 2005-02-10
CN1751280A (zh) 2006-03-22
KR101116979B1 (ko) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2005008350A1 (ja) 半導体製造装置及び半導体製造方法
US7682843B2 (en) Semiconductor fabrication system, and flow rate correction method and program for semiconductor fabrication system
US9400004B2 (en) Transient measurements of mass flow controllers
US8240324B2 (en) Method and apparatus for in situ testing of gas flow controllers
WO2005123236A1 (ja) 基板処理装置
JP2008039513A (ja) 質量流量制御装置の流量制御補正方法
TW201506567A (zh) 質流控制器及對各流體類型具有改進效能之方法
JP2010216807A (ja) マスフローメータ、マスフローコントローラ、それらを含むマスフローメータシステムおよびマスフローコントローラシステム
JP2005106821A (ja) バイパス・ループの気体の流れ校正システムおよび校正方法
CN109872957A (zh) 质量流量控制器、制造半导体器件的设备及其维护方法
US11550341B2 (en) Mass flow control system, and semiconductor manufacturing equipment and vaporizer including the system
JP4092684B2 (ja) マスフローコントローラの校正方法及びその装置
JPH05289751A (ja) マスフローコントローラのゼロ点シフト及びスパンシフトを自動補正する方法及びその自動補正機能付きマスフローコントローラ
JP2003257878A (ja) 半導体製造装置およびそれを利用した半導体装置の製造方法
JP3311762B2 (ja) マスフローコントローラと半導体装置の製造装置
KR101710105B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP2023018246A (ja) 圧力式流量制御装置
KR20050026393A (ko) 질량 유량 검출 장치를 보정하기 위한 시스템 및 방법
JP2009229091A (ja) 熱式流量計およびその初期調整方法と初期調整装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057007816

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048043393

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006172442

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10564558

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747499

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057007816

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004747499

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10564558

Country of ref document: US