WO2005007670A1 - Method for the preparation of highly pure 1-androstene derivatives - Google Patents

Method for the preparation of highly pure 1-androstene derivatives Download PDF

Info

Publication number
WO2005007670A1
WO2005007670A1 PCT/KR2004/001786 KR2004001786W WO2005007670A1 WO 2005007670 A1 WO2005007670 A1 WO 2005007670A1 KR 2004001786 W KR2004001786 W KR 2004001786W WO 2005007670 A1 WO2005007670 A1 WO 2005007670A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
oxidizing agent
finasteride
androstene
Prior art date
Application number
PCT/KR2004/001786
Other languages
French (fr)
Inventor
Young Ho Moon
Dong Jun Kim
Chul-Hyun Park
Kyung Ik Lee
Jae Cheol Lee
Gwan Sun Lee
Young-Kil Chang
Original Assignee
Hanmi Pharm. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanmi Pharm. Co., Ltd. filed Critical Hanmi Pharm. Co., Ltd.
Priority to JP2005518333A priority Critical patent/JP4308824B2/en
Priority to US10/526,158 priority patent/US7038050B2/en
Priority to EP04748452A priority patent/EP1646640A4/en
Publication of WO2005007670A1 publication Critical patent/WO2005007670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia

Definitions

  • the present invention relates to a method for preparing highly pure 1- androstene derivatives.
  • 1-androstene derivative is a compound having a double bond between the first and the second carbons of an androstane
  • representative drugs having such chemical structure include f ⁇ nasteride and dutasteride.
  • Finasteride (17 ⁇ -(N-tert-butylcarbamoyl)-5 ⁇ -4-aza-androst-l-en-3-one), the compound of formula (II) having an androstene backbone, is known to be effective in treating benign prostatic hyperplasia and androgenic alopecia:
  • Benign prostatic hyperplasia and androgenic alopecia are caused by binding of excessive 5 ⁇ -dihydrotestosterone (DHT) derived from testosterone to an androgen receptor.
  • DHT 5 ⁇ -dihydrotestosterone
  • the conversion of testosterone into DHT is accomplished by testosterone 5 ⁇ -reductase, which can be inhibited by finasteride.
  • finasteride Such inhibition of testosterone 5 ⁇ -reductase by finasteride results in a decreased DHT concentration in plasma and cells, and thus rapid recovery of prostate and increased hair growth.
  • finasteride has excellent drug tolerance and exhibits light, temporary side effects.
  • finasteride is the only orally administrable product among the two hair-growth agents approved by the United States Food and Drug Administration.
  • a process for preparing finasteride is disclosed in U.S. Patent No. 4,760,071 and Korean Patent Publication No. 1990-0001206.
  • the carboxylic group at the 17 ⁇ -position of 3-oxo-4-aza-5 ⁇ -androstane- 17 ⁇ -carboxylic acid of formula (III) is converted into a pyridylthioester group of formula (IV) using 2,2'-pyridyldisulfide.
  • the above process is advantageous in that the dehydrogenation reaction can be accomplished in one step.
  • it suffers from a high production cost due to the usage of expensive reagents such as 2,2'-pyridyldisulf ⁇ de and bezeneselenic anhydride, and a poor purity, e.g., in the range of 75 to 80%, due to the production of undesired by-products.
  • it is difficult to improve the purity of the obtained finasteride even if it undergoes such purification steps as column chromatography and recrystallization.
  • European Patent No. 298,652, U.S. Patent Nos. 5,084,574 and 5,116,983 and Korean Patent Publication No.
  • 1996-0015038 disclose a process for preparing finasteride, which comprises silylating the 3-oxo group in the above compound of formula (III) using bistrimethylsilyltrifluoroacetamide (BSTFA), followed by introducing a double bond between the first and the second carbon atoms using 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) as an oxidizing agent.
  • BSTFA bistrimethylsilyltrifluoroacetamide
  • DDQ 2,3-dichloro-5,6-dicyano-l,4-benzoquinone
  • 428,366 and 473,225 teach a process for preparing finasteride, which comprises silylating the compound of the above formula (III) in the presence of a base and introducing a halogen such as iodine and bromine into the 2-position of the compound, followed by introducing a double bond between the first and the second carbon atoms using a strong base such as potassium tert-butoxide, l,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and l,5-diazabicyclo[4.3.0]non-5-ene (DBN).
  • a strong base such as potassium tert-butoxide, l,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and l,5-diazabicyclo[4.3.0]non-5-ene (DBN).
  • the compound of formula (VII) is reacted with diphenyldisulfide in the presence of a strong base such as lithium diisopropylamide (LDA) at -78 ° C to produce the compound of formula (VIII) having a phenylsulfide group at the 2- position, and then the amide of the compound of formula (VIII) is deprotected in the presence of a strong acid to obtain the compound of formula (IX).
  • the compound of formula (X) is prepared by using an oxidizing agent and the compound of formula (XI) is obtained by refluxing the compound of formula (X) in toluene.
  • this method employs the unnecessary steps of protecting and deprotecting the amide group, consists of five complicated steps, and uses an inflammable diisopropylamide. Further, it is performed at extremely low temperature, i.e., -78 °C , which is not practically applicable to an industrial scale.
  • the conventional methods for preparing finasteride are disadvantageous in that they employ water-sensitive, expensive or toxic reagents, require extreme reaction conditions or comprise complicated multiple steps, thereby rendering them unsuitable for mass production.
  • finasteride is prepared under a vigorous condition or in the presence of a strong base in a final step, resulting in excessive impurities. There are strict provisions as to the impurities of finasteride.
  • the amount of individual impurity A, B and C identified below may not exceed 0.3% and the total amount of the impurities should not exceed 0.6%.
  • the amount of individual impurity A, B and C should not exceed 0.5% and the total amount thereof should not exceed 1.0%.
  • Impurity A has a structure that the double bond of finasteride is saturated, impurity B has a methylester group at the 17 ⁇ position, instead of the tert- butylamino group of finasteride, and impurity C contains an extra double bond between the fifth and the sixth carbon atoms.
  • finasteride cannot be easily purified using a conventional method such as recrystallization when it is mixed with an excessive amount of the above impurities A to C, since finasteride and impurities A to C have similar structures.
  • a conventional method such as recrystallization when it is mixed with an excessive amount of the above impurities A to C
  • finasteride and impurities A to C have similar structures.
  • loss of yield is inevitably caused, thus it renders the final yield of finasteride only 30 to 40%.
  • impurities A and C cannot be easily removed even using column chromatography. Accordingly, there has been a need to develop a method for preparing highly pure 1-androstene derivatives including finasteride.
  • (XII) 1 9 1 with an oxidizing agent wherein R is -OH, -OR or -NHR , in which R is a straight or branched C ⁇ - 5 alkyl group and R is a straight or branched C 1 - 5 alkyl group or 2,5-bis(trifluoromethyl)phenyl group.
  • 1-androstene derivative of formula (I) is prepared by reacting 2-iodo-androstane derivative of formula (XII) with an oxidizing agent to oxidize an iodo group thereof into an iodoxy group, which is easily removed during the reaction, as shown in Scheme 3.
  • 1- androstene derivatives can be produced in a high purity and yield under mild conditions.
  • the derivative of formula (XII) used as a starting material of the present invention can be prepared by a conventional method disclosed in European Patent
  • R is -OH, -OR 1 or -NHR 2 , in which R 1 is a straight or branched C]. 5 alkyl group and R is a straight or branched C 1 . 5 alkyl group or 2,5-bis(trifluoromethyl)phenyl group.
  • the compound of formula (Xllla) corresponding to the compound of formula (XIII) wherein R is tert-butylamino may be prepared by a method shown in Scheme 4 ⁇ see Korean Patent Application No. 2003- 20671) .
  • the oxidizing agent which may be used in the present invention includes m-chloroperbenzoic acid, peracetic acid, trifluoroperacetic acid, permaleic acid, sodium bromite, sodium hypochloride, hydrogen peroxide, iodosomethylbenzene and iodosobenzene; and m-chloroperbenzoic acid is most preferred.
  • the oxidizing agent may be employed in an amount ranging from 2.0 to 6.0 equivalents, preferably 3.0 to 4.0 equivalents based on 1.0 equivalent of the derivative of formula (XII).
  • the total amount of the oxidizing agent may be added at a time during an early step of the reaction, or in divided amounts, e.g., ranging from 1/4 to 1/2 of the total amount, at intervals of 30 to 60 minutes.
  • the organic solvent which may be used in the present invention includes at least one solvent selected from the group consisting of tetrahydrofuran, dioxane, acetonitrile, dimethylacetamide, dimethylformamide and dimethylsulfoxide; and tetrahydrofuran is most preferred.
  • the method of the present invention can be accomplished by using the oxidizing agent alone.
  • reaction solution may decrease, and thus the reactants, products and reagents may decompose, thereby producing undesired by-products.
  • reaction is conducted at a pH in the range of 5.5 to 7.5, the reaction can be completed with substantially less by-products.
  • the reaction of the present invention may be carried out at a temperature in the range of 0 to 50 °C , preferably 15 to 30 ° C .
  • the time period for completing the present reaction may vary with the reaction temperature or the amount of the oxidizing agent used, about 8 to 24 hours may be sufficient.
  • 1- androstene derivatives can be produced with high purity and yield over 80% under mild conditions.
  • the method of the present invention employs short reaction steps, and, therefore, is suitable for mass production. The present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is not restricted by the specific Examples.
  • the precipitation formed was filtered and the crude product was dissolved in 1.5/ of methylenechloride, washed successively with 1.5 / of 10% sodium sulfite (2 times) and 1.5 / of water.
  • the isolated methylenechloride layer was dried, filtered and the solvent was evaporated off.
  • the resulting residue was refluxed in 435 ml of isopropylacetate for an hour, cooled to room temperature, filtered and washed with ether.
  • the precipitate formed was dispersed in a mixture of 2.25/ of water and 250 ml of acetic acid, stirred at 50 °C for 2 hours, cooled to room temperature, filtered and washed with water. Then, the precipitation was dried at 40 ° C overnight to obtain 148.6g of the title compound (yield: 82%) as an white solid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A method for preparing a 1-androstene derivative which comprises reacting a 2-iodo-androstane derivative with an oxidizing agent while maintaining the pH of the reaction mixture at a specific range gives the 1-androstene derivative with high purity and yield.

Description

METHOD FOR THE PREPARATION OF HIGHLY PURE 1-ANDROSTENE DERIVATIVES
FIELD OF THE INVENTION
The present invention relates to a method for preparing highly pure 1- androstene derivatives.
BACKGROUND OF THE INVENTION
As is well known, 1-androstene derivative is a compound having a double bond between the first and the second carbons of an androstane, and representative drugs having such chemical structure include fϊnasteride and dutasteride. Finasteride (17β-(N-tert-butylcarbamoyl)-5α-4-aza-androst-l-en-3-one), the compound of formula (II) having an androstene backbone, is known to be effective in treating benign prostatic hyperplasia and androgenic alopecia:
Figure imgf000002_0001
Benign prostatic hyperplasia and androgenic alopecia are caused by binding of excessive 5α-dihydrotestosterone (DHT) derived from testosterone to an androgen receptor. The conversion of testosterone into DHT is accomplished by testosterone 5α-reductase, which can be inhibited by finasteride. Such inhibition of testosterone 5α-reductase by finasteride results in a decreased DHT concentration in plasma and cells, and thus rapid recovery of prostate and increased hair growth. In addition to its effectiveness to benign prostatic hyperplasia and androgenic alopecia, finasteride has excellent drug tolerance and exhibits light, temporary side effects. Currently, finasteride is the only orally administrable product among the two hair-growth agents approved by the United States Food and Drug Administration. A process for preparing finasteride is disclosed in U.S. Patent No. 4,760,071 and Korean Patent Publication No. 1990-0001206. As show in Scheme 1, the carboxylic group at the 17β-position of 3-oxo-4-aza-5α-androstane- 17β-carboxylic acid of formula (III) is converted into a pyridylthioester group of formula (IV) using 2,2'-pyridyldisulfide. Next, the compound of formula (IV) is reacted with tert-butylamine to obtain 17β-tert-butylcarbamoyl compound of formula (V), followed by introducing a double bond between the first and the second carbon atoms using bezeneselenic anhydride to obtain finasteride of formula (II).
Scheme 1
Figure imgf000003_0001
formula formula IV
Figure imgf000003_0002
formula V formula II
The above process is advantageous in that the dehydrogenation reaction can be accomplished in one step. However, it suffers from a high production cost due to the usage of expensive reagents such as 2,2'-pyridyldisulfϊde and bezeneselenic anhydride, and a poor purity, e.g., in the range of 75 to 80%, due to the production of undesired by-products. Further, it is difficult to improve the purity of the obtained finasteride even if it undergoes such purification steps as column chromatography and recrystallization. European Patent No. 298,652, U.S. Patent Nos. 5,084,574 and 5,116,983, and Korean Patent Publication No. 1996-0015038 disclose a process for preparing finasteride, which comprises silylating the 3-oxo group in the above compound of formula (III) using bistrimethylsilyltrifluoroacetamide (BSTFA), followed by introducing a double bond between the first and the second carbon atoms using 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) as an oxidizing agent. However, this process, in addition to the usage of expensive reagents, has extra problems in that the reaction should be carried out under a nitrogen gas flow and with an anhydrous solvent due to BSTFA's sensitivity to water, and excessive impurities may be produced due to the use of a quinone as an oxidizing agent under reflux condition for 20 hours in a solvent having a high boiling point, i.e., 1,4-dioxane. Further, substantial losses of the obtained product may occur during a purification step, and, therefore, it is not suitable for mass production. U.S. Patent No. 5,091,534 and European Patent Nos. 428,366 and 473,225 teach a process for preparing finasteride, which comprises silylating the compound of the above formula (III) in the presence of a base and introducing a halogen such as iodine and bromine into the 2-position of the compound, followed by introducing a double bond between the first and the second carbon atoms using a strong base such as potassium tert-butoxide, l,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and l,5-diazabicyclo[4.3.0]non-5-ene (DBN). However, this process also suffers from a poor purity (about 80%) since the reactants and products tend to be decomposed due to the high pH of the reaction solution containing the strong base, and a low yield after several purification steps (about 30%). A method for dehydrogenating a 3-oxo-4-azasteroid compound through a sulfinate intermediate is disclosed in J. Med. Chem. 27(12): 1690 (1984). First, as shown in Scheme 2, the compound of formula (VI) is reacted with dimethylsulfate to obtain the compound of formula (VII) having a protected amide. Next, the compound of formula (VII) is reacted with diphenyldisulfide in the presence of a strong base such as lithium diisopropylamide (LDA) at -78 °C to produce the compound of formula (VIII) having a phenylsulfide group at the 2- position, and then the amide of the compound of formula (VIII) is deprotected in the presence of a strong acid to obtain the compound of formula (IX). Finally, the compound of formula (X) is prepared by using an oxidizing agent and the compound of formula (XI) is obtained by refluxing the compound of formula (X) in toluene.
Scheme 2
Figure imgf000005_0001
formula X formula XI
However, this method employs the unnecessary steps of protecting and deprotecting the amide group, consists of five complicated steps, and uses an inflammable diisopropylamide. Further, it is performed at extremely low temperature, i.e., -78 °C , which is not practically applicable to an industrial scale. As discussed above, the conventional methods for preparing finasteride are disadvantageous in that they employ water-sensitive, expensive or toxic reagents, require extreme reaction conditions or comprise complicated multiple steps, thereby rendering them unsuitable for mass production. Especially, in most conventional methods, finasteride is prepared under a vigorous condition or in the presence of a strong base in a final step, resulting in excessive impurities. There are strict provisions as to the impurities of finasteride. For example, according to the provision of European Pharmacopeia, the amount of individual impurity A, B and C identified below, may not exceed 0.3% and the total amount of the impurities should not exceed 0.6%. Similarly, according to U.S. Pharmacopeia, the amount of individual impurity A, B and C should not exceed 0.5% and the total amount thereof should not exceed 1.0%. Impurity A has a structure that the double bond of finasteride is saturated, impurity B has a methylester group at the 17β position, instead of the tert- butylamino group of finasteride, and impurity C contains an extra double bond between the fifth and the sixth carbon atoms.
Figure imgf000006_0001
<Impurity B>
Figure imgf000006_0002
Figure imgf000007_0001
Further, finasteride cannot be easily purified using a conventional method such as recrystallization when it is mixed with an excessive amount of the above impurities A to C, since finasteride and impurities A to C have similar structures. In particular, during the recrystallization of finasteride to meet the amount of impurity A below 0.3%, loss of yield is inevitably caused, thus it renders the final yield of finasteride only 30 to 40%. Further, impurities A and C cannot be easily removed even using column chromatography. Accordingly, there has been a need to develop a method for preparing highly pure 1-androstene derivatives including finasteride.
SUMMARY OF THE INVENTION It is a primary object of the present invention to provide a method for preparing highly pure 1-androstene derivatives under the mild conditions without using a strong base in a final step.
DETAILED DESCRIPTION OF THE INVENTION
In accordance with one aspect of the present invention, a method for preparing a 1-androstene derivative of formula (I)
Figure imgf000007_0002
comprises reacting a 2-iodo-androstane derivative of formula (XII)
Figure imgf000008_0001
(XII) 1 9 1 with an oxidizing agent, wherein R is -OH, -OR or -NHR , in which R is a straight or branched Cι-5 alkyl group and R is a straight or branched C1-5 alkyl group or 2,5-bis(trifluoromethyl)phenyl group. In the present invention, 1-androstene derivative of formula (I) is prepared by reacting 2-iodo-androstane derivative of formula (XII) with an oxidizing agent to oxidize an iodo group thereof into an iodoxy group, which is easily removed during the reaction, as shown in Scheme 3.
Scheme 3
Figure imgf000008_0002
formula XII
Figure imgf000008_0003
In accordance with the simple method of the present invention, 1- androstene derivatives can be produced in a high purity and yield under mild conditions. The derivative of formula (XII) used as a starting material of the present invention can be prepared by a conventional method disclosed in European Patent
No. 473,225, which comprises reacting an androstane compound, e.g., formula
(XIII) with a silylating agent in the presence of a base, followed by reacting with iodine to obtain the derivative of formula (XII),
Figure imgf000009_0001
wherein
R is -OH, -OR1 or -NHR2, in which R1 is a straight or branched C].5 alkyl group and R is a straight or branched C1.5 alkyl group or 2,5-bis(trifluoromethyl)phenyl group. In the present invention, the compound of formula (Xllla) corresponding to the compound of formula (XIII) wherein R is tert-butylamino may be prepared by a method shown in Scheme 4 {see Korean Patent Application No. 2003- 20671) .
Scheme 4
tert- butylamine
Figure imgf000010_0001
formula XV
Figure imgf000010_0002
formula Xllla The oxidizing agent which may be used in the present invention includes m-chloroperbenzoic acid, peracetic acid, trifluoroperacetic acid, permaleic acid, sodium bromite, sodium hypochloride, hydrogen peroxide, iodosomethylbenzene and iodosobenzene; and m-chloroperbenzoic acid is most preferred. In a preferred embodiment of the present invention, the oxidizing agent may be employed in an amount ranging from 2.0 to 6.0 equivalents, preferably 3.0 to 4.0 equivalents based on 1.0 equivalent of the derivative of formula (XII). In the present invention, the total amount of the oxidizing agent may be added at a time during an early step of the reaction, or in divided amounts, e.g., ranging from 1/4 to 1/2 of the total amount, at intervals of 30 to 60 minutes. The organic solvent which may be used in the present invention includes at least one solvent selected from the group consisting of tetrahydrofuran, dioxane, acetonitrile, dimethylacetamide, dimethylformamide and dimethylsulfoxide; and tetrahydrofuran is most preferred. The method of the present invention can be accomplished by using the oxidizing agent alone. However, if free acids produced during the reaction, i.e., m-chlorobenzoic acid and iodic acid when m-chloroperbenzoic acid is used as an oxidizing agent, remain in the reactant mixture without any neutralizing step, the pH of the reaction solution may decrease, and thus the reactants, products and reagents may decompose, thereby producing undesired by-products. On the other hand, if the reaction is conducted at a pH in the range of 5.5 to 7.5, the reaction can be completed with substantially less by-products. The reaction of the present invention may be carried out at a temperature in the range of 0 to 50 °C , preferably 15 to 30 °C . Although the time period for completing the present reaction may vary with the reaction temperature or the amount of the oxidizing agent used, about 8 to 24 hours may be sufficient. Thus, in accordance with the simple method of the present invention, 1- androstene derivatives can be produced with high purity and yield over 80% under mild conditions. Further, the method of the present invention employs short reaction steps, and, therefore, is suitable for mass production. The present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is not restricted by the specific Examples.
Preparation Example 1 : Preparation of benzothiazolyl 3-oxo-4-aza-5α-androstane- 17β-thiocarboxylate
200g of 3-oxo-4-aza-5α-androstane-17β-carboxylic acid and 250g of bisbenzothiazolylthioester (bis-BTS) were mixed in 3/ of methylenechloride, and stirred at room temperature for 30 minutes. 197g of triphenylphosphine was added thereto, stirred for 30 minutes and 105m£ of triethylamine diluted with 200m£ of methylenechloride was added dropwise thereto over a period of 30 minutes, followed by stirring the mixture at room temperature for 4 hours. The precipitation formed was filtered, washed successively with methylenechloride and diethylether, and dried at 40 °C overnight to obtain 28 lg of the title compound (yield: 96%) as a pale white solid.
m.p.: 245~247°C ; 1H-NMR (300MHz, CDCl3, δ); 8.02 (d, 1H), 7.91 (d, 1H), 7.50 (m, 2H), 5.54 (brs, 1H), 3.06 (dd, 1H), 2.76 (t, 1H), 2.45 (m, 2H), 2.26 (m, 2H), 1.9 (m, 2H), 1.75 (m, 2H), 1.65 (m, 1H), 1.51-1.34 (m, 7H), 1.21 (m, 1H), 1.12 (m, 1H), 0.91 (s, 3H), 0.81 (m, 1H), 0.79 (s, 3H)
Preparation Example 2: Preparation of N-(tert-butyl)-3-oxo-4-aza-5α-androstane- 17β-carboxamide (compound of formula (XHIa))
28 lg of benzothiazolyl 3-oxo-4-aza-5α-androstane-17β-thiocarboxylate obtained in Preparation Example 1 was added to 2.8/ of dimethylformamide and 315 ml of tert-butylamine was added thereto, followed by stirring the mixture at 50 °C for 4 hours. The resultant was cooled to about 10°C , 5.6/ of water was slowly added thereto and stirred at room temperature for an hour. The precipitation formed was filtered, washed successively with water and isopropylether, and dried at 40 °C overnight to obtain 206g of the title compound (yield: 92%) as a pale white solid.
m.p.: 280-284 °C ; 1H-NMR (300MHz, CDCl3, δ); 5.66 (brs, 1H), 5.07 (brs, 1H), 3.07 (dd, 1H), 2.41, (m, 2H), 2.12 (m, 2H), 2.10-1.80 (m, 3H), 1.8-1.52 (m, 4H), 1.51-1.41 (m, 4H), 1.35 (s, 9H), 1.3-1.18 (m, 2H), 1.15-0.92 (m, 2H), 0.91 (s, 3H), 0.90-0.70 (m, 1H), 0.69 (s, 3H)
Preparation Example 3: Preparation of N-(tert-butyl)-2-iodo-3-oxo-4-aza-5α- androstane-17β-carboxamide (compound of formula (XII) wherein R is tert- butylamino)
205g of N-(tert-butyl)-3-oxo-4-aza-5α-androstane- 17β-carboxamide obtained in Preparation Example 2 and 248 mi of tetramethylethylenediamine were added to 2/ of toluene, cooled to 0°C, 138 ml, of trimethylchlorosilane was added dropwise thereto, and stirred for 30 minutes. 208g of iodine was added thereto in 1/4 portions every 30 minute over a period of 2 hours, followed by stirring the mixture for 2 hours. 2/ of 10% sodium thiosulfate was added dropwise to the mixture and stirred overnight. The precipitation formed was filtered, washed successively with water and isopropylether, and dried at 40 °C overnight to obtain 255g of the title compound (yield: 93%) as an white solid.
m.p.: 218-220 °C ; 1H-NMR (300MHz, CDCl3, δ); 5.82 (brs, 1H), 5.06 (brs, 1H), 4.75 (dd, 1H), 3.15 (dd, 1H), 2.56 (dd, 1H), 2.20 ~ 1.88 (m, 4H), 1.80 ~ 1.36 (m, 8H), 1.34 (s, 9H), 1.32 ~ 1.12 (m, 2H), 1.10 ~ 0.90 (m, 2H), 0.88 (s, 3H), 0.85 (m, 1H), 0.67 (s, 3H)
Example 1 : Preparation of N-(tert-butyl)-3-oxo-4-aza-5α-androstene-17β- carboxamide (finasteride: compound of formula (II))
244g of N-(tert-butyl)-2-iodo-3-oxo-4-aza-5α-androstane-17β- carboxamide obtained in Preparation Example 3 was added to a mixture of 2.4/ of tetrahydrofuran and 1.4/ of saturated sodium bicarbonate. 112g of m- chloroperbenzoic acid (content: maximum 75%) was added thereto in 1/4 portions every 1 hour, followed by stirring the mixture overnight. After completion of the reaction, pH of the mixture was adjusted to about 7 using saturated sodium bicarbonate, followed by stirring the mixture for an hour. The precipitation formed was filtered and the crude product was dissolved in 1.5/ of methylenechloride, washed successively with 1.5 / of 10% sodium sulfite (2 times) and 1.5 / of water. The isolated methylenechloride layer was dried, filtered and the solvent was evaporated off. The resulting residue was refluxed in 435 ml of isopropylacetate for an hour, cooled to room temperature, filtered and washed with ether. The precipitate formed was dispersed in a mixture of 2.25/ of water and 250 ml of acetic acid, stirred at 50 °C for 2 hours, cooled to room temperature, filtered and washed with water. Then, the precipitation was dried at 40 °C overnight to obtain 148.6g of the title compound (yield: 82%) as an white solid.
m.p.: 257-259 °C ; purity: 99.8% (HPLC); impurity A: 0.07%, impurity B: 0%, impurity C: 0.05%;
1H-NMR (300MHz, 1H-NMR CDC13) δ6.82(d, 1H), 5.81(d, 1H), 5.49(brs,lH), 5J0(brs, 1H), 3.34(dd,lH), 2.21(t, 1H), 2.01(m, 2H), 1.80~1.60(m, 7H), 1.34(s, 9H), 1.50-1.26(m, 5H), 1.07-1.00(m, 3H), 0.98(s, 3H), 0.7 l(s, 3H)
Example 2: Preparation of N-(tert-butyl)-3-oxo-4-aza-5α-androstene-17β- carboxamide (finasteride: compound of formula (II))
244g of N-(tert-butyl)-2-iodo-3-oxo-4-aza-5α-androstane-17β- carboxamide obtained in Preparation Example 3 was added to a mixture of 2.0/ of tetrahydrofuran and 2.0/ of saturated sodium bicarbonate. 141 g of m- chloroperbenzoic acid (content: maximum 75%) was added thereto in 1/3 portions every 1 hour, followed by stirring the mixture overnight. Thereafter, 145.2g of the title compound (yield: 80%) was obtained as a white solid in accordance with Example 1.
Purity: 99.7% (HPLC); impurity A: 0.09%, impurity B: 0%, impurity C: 0.07%; Η-NMR data was the same as Example 1
Comparative Example 1 : Preparation of N-(tert-butyl)-3-oxo-4-aza-5α- androstene-17β-carboxamide (finasteride: compound of formula (II)) without maintaining pH of the reactant solution in the range of 5.5 to 7.5
244g of N-(tert-butyl)-2-iodo-3-oxo-4-aza-5α-androstane-17β- carboxamide obtained in Preparation Example 3 was dissolved in 2.4/ of tetrahydrofuran. 141g of m-chloroperbenzoic acid (maximum content: 75%) was added thereto in 1/3 portions every 1 hour, followed by monitoring the process of the reaction using thin layer chromatography (TLC). The color of the reactant solution gradually became dark black, pH thereof was drop to below 4, and a large amount of undesired impurities were produced. The reaction was terminated at hour 6 when the reaction was not yet completed. Thereafter, 136Jg of the crude title compound (yield: 75%) was obtained as a yellow solid in accordance with Example 1.
Purity: 52.1% (HPLC); impurities: unreacted compound obtained in Preparation Example 3 = 4.6%, unidentified compound = 39.2%, impurity A = 2.8%, impurity B = 0%, impurity C = 0.65%
Comparative Example 2: Preparation of N-(tert-butyl)-3-oxo-4-aza-5α- androstene-17β-carboxamide (finasteride: compound of formula (II)) in accordance with the prior method disclosed in European Patent Nos. 428,366 and 473,225
8.0g of potassium t-butoxide was dispersed in 20 ml of N,N- dimethylformamide (DMF), cooled to -10°C and 3.5g of N-(t-butyl)-2-iodo-3- oxo-4-aza-5α-androstene-17β-carboxamide dissolved in 15 mi of DMF was added dropwise thereto while maintaining the same temperature. The mixture was stirred vigorously for 10 minutes and the reaction was quenched by the dropwise addition of 7.2 mi, of acetic acid while maintaining the reaction temperature of below 10 °C . After stirring the mixture for 5 minutes, 200 mi of 20% sodium chloride was slowly added thereto at 0°C . The resulting solution was stirred overnight at 0 °C , filtered, washed and dried under a vacuum at 60 °C . The crude product (HPLC purity: 75%) was refluxed in 20 mi of isopropylacetate for an hour, cooled, filtered and washed with ether. The precipitate formed was dispersed in the mixture of 45 ml of water and 5 mi of acetic acid, stirred at 50 °C for 2 hours, cooled to room temperature, filtered and washed with water. Then, the precipitate was dried at 40 °C overnight to obtain 0.96g of the title compound (yield: 37%) as an white solid.
m.p.: 256-159 °C ; purity: 98.1% (HPLC); impurity A = 0.9%, impurity B = 0%, impurity C = 0.45%; 1H-NMR data was the same as Example 1 While the invention has been described with respect to the above specific embodiments, it should be recognized that various modifications and changes may be made to the invention by those skilled in the art which also fall within the scope of the invention as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A method for preparing a 1-androstene derivative of formula (I)
Figure imgf000017_0001
which comprises reacting a 2-iodo-androstane derivative of formula (XII)
Figure imgf000017_0002
1 1 with an oxidizing agent, wherein R is -OH, -OR or -NHR , in which R is a straight or branched C1-5 alkyl group and R is a straight or branched -5 alkyl group or 2,5-bis(trifluoromethyl)phenyl group.
2. The method of claim 1, wherein the oxidizing agent is selected from the group consisting of m-chloroperbenzoic acid, peracetic acid, trifluoroperacetic acid, permaleic acid, sodium bromite, sodium hypochloride, hydrogen peroxide, iodosomethylbenzene and iodosobenzene.
3. The method of claim 1 or 2, wherein the oxidizing agent is m- chloroperbenzoic acid.
4. The method of claim 1, wherein the oxidizing agent is employed in an amount ranging from 2.0 to 6.0 equivalents based on 1.0 equivalent of the derivative of formula (XII).
5. The method of claim 1, wherein the reaction is conducted at a pH ranging from 5.5 to 7.5.
6. The method of claim 1, wherein R is tert-butylamino or 2,5- bis(trifluoromethyl)phenylamino.
PCT/KR2004/001786 2003-07-19 2004-07-19 Method for the preparation of highly pure 1-androstene derivatives WO2005007670A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005518333A JP4308824B2 (en) 2003-07-19 2004-07-19 Method for producing high purity 1-androstene derivative
US10/526,158 US7038050B2 (en) 2003-07-19 2004-07-19 Method for the preparation of highly pure 1-androstene derivatives
EP04748452A EP1646640A4 (en) 2003-07-19 2004-07-19 Method for the preparation of highly pure 1-androstene derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0049529A KR100508019B1 (en) 2003-07-19 2003-07-19 Method for the preparation of highly pure 1-androstene derivatives
KR10-2003-0049529 2003-07-19

Publications (1)

Publication Number Publication Date
WO2005007670A1 true WO2005007670A1 (en) 2005-01-27

Family

ID=36091404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2004/001786 WO2005007670A1 (en) 2003-07-19 2004-07-19 Method for the preparation of highly pure 1-androstene derivatives

Country Status (5)

Country Link
US (1) US7038050B2 (en)
EP (1) EP1646640A4 (en)
JP (1) JP4308824B2 (en)
KR (1) KR100508019B1 (en)
WO (1) WO2005007670A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062506A3 (en) * 2008-10-28 2010-10-07 Lead Therapeutics, Inc. Decahydro-1h-indenoquinolinone and decahydro-3h-cyclopentaphenanthridinone cyp17 inhibitors
CN105646641A (en) * 2016-02-26 2016-06-08 赵建华 Method for forming double bonds between 1-position and 2-position during synthesis of finasteride and dutasteride
CN108203455A (en) * 2016-12-19 2018-06-26 湖南玉新药业有限公司 A kind of double hydrogen Finasteride iodide take off iodine and prepare Finasteride new method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7698289B2 (en) 2003-12-02 2010-04-13 Netapp, Inc. Storage system architecture for striping data container content across volumes of a cluster
EP1945615A2 (en) * 2005-11-10 2008-07-23 Dr. Reddy's Laboratories Ltd. Preparation of dutasteride
HUE052571T2 (en) * 2008-09-27 2021-05-28 Jina Pharmaceuticals Inc Lipid based pharmaceutical preparations for topical application
KR101466245B1 (en) * 2010-01-15 2014-12-01 한미사이언스 주식회사 Method for preparing methanesulfonic acid salt and novel compound used therein
HU230730B1 (en) 2011-06-30 2017-12-28 Richter Gedeon Nyrt Process for the preparation of (5alpha,17beta)-n-[2,5-bis-(trifluoromethyl)-phenyl]-3-oxo-4-aza-5-androst-1-en-17-carboxylic amide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001206B1 (en) * 1984-02-27 1990-02-28 메르크 앤드 캄파니, 인코포레이티드 17b-n-monosubstituted carbamoyl or-17b-acyl-4-aza-5l-androst-1-en-3-ones, and its preparation process
EP0428366A2 (en) * 1989-11-13 1991-05-22 Merck & Co. Inc. Method for introducing a 1,2 double bond into azasteroids
US5091534A (en) * 1990-08-27 1992-02-25 Merck & Co., Inc. Trialkylsilyl trifluoromethanesulfonate mediated α-methylenic carbon functionalization of 4-AZA-5α-androstan-3-one steroids
KR960015038B1 (en) * 1987-06-29 1996-10-24 머크 앤드 캄파니, 인코포레이티드 Dehydrogenation process of 3-oxo-4-azasteroid
EP0473225B1 (en) * 1990-08-27 1997-07-09 Merck & Co. Inc. Process for iodinating or brominating the alpha-methylenic carbon of a 3-oxo-4aza-steroid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760071A (en) 1984-02-27 1988-07-26 Merck & Co., Inc. 17β-N-monosubstituted carbamoyl-4-aza-5α-androst-1-en-3-ones which are active as testosterone 5α-reductase inhibitors
US5116983A (en) 1988-04-18 1992-05-26 Merck & Co., Inc. Dehydrogenation process intermediates
US5084574A (en) 1988-04-18 1992-01-28 Merck & Co., Inc. Dehydrogenation process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001206B1 (en) * 1984-02-27 1990-02-28 메르크 앤드 캄파니, 인코포레이티드 17b-n-monosubstituted carbamoyl or-17b-acyl-4-aza-5l-androst-1-en-3-ones, and its preparation process
KR960015038B1 (en) * 1987-06-29 1996-10-24 머크 앤드 캄파니, 인코포레이티드 Dehydrogenation process of 3-oxo-4-azasteroid
EP0428366A2 (en) * 1989-11-13 1991-05-22 Merck & Co. Inc. Method for introducing a 1,2 double bond into azasteroids
US5091534A (en) * 1990-08-27 1992-02-25 Merck & Co., Inc. Trialkylsilyl trifluoromethanesulfonate mediated α-methylenic carbon functionalization of 4-AZA-5α-androstan-3-one steroids
EP0473225B1 (en) * 1990-08-27 1997-07-09 Merck & Co. Inc. Process for iodinating or brominating the alpha-methylenic carbon of a 3-oxo-4aza-steroid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1646640A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062506A3 (en) * 2008-10-28 2010-10-07 Lead Therapeutics, Inc. Decahydro-1h-indenoquinolinone and decahydro-3h-cyclopentaphenanthridinone cyp17 inhibitors
CN105646641A (en) * 2016-02-26 2016-06-08 赵建华 Method for forming double bonds between 1-position and 2-position during synthesis of finasteride and dutasteride
CN108203455A (en) * 2016-12-19 2018-06-26 湖南玉新药业有限公司 A kind of double hydrogen Finasteride iodide take off iodine and prepare Finasteride new method

Also Published As

Publication number Publication date
EP1646640A1 (en) 2006-04-19
EP1646640A4 (en) 2010-05-05
JP4308824B2 (en) 2009-08-05
US20050245744A1 (en) 2005-11-03
KR20050010320A (en) 2005-01-27
JP2006516552A (en) 2006-07-06
KR100508019B1 (en) 2005-08-17
US7038050B2 (en) 2006-05-02

Similar Documents

Publication Publication Date Title
EP0428366B1 (en) Method for introducing a 1,2 double bond into azasteroids
WO1993023376A1 (en) NEW PROCESS FOR PRODUCING 7β-SUBSTITUTED-4-AZA-5α-ANDROSTAN-3-ONES
US7038050B2 (en) Method for the preparation of highly pure 1-androstene derivatives
EP0473226A2 (en) Trialkysilyl trifluoromethanesulfonate mediated functionalization of 4-aza-5alpha-androstan-3-one steroids
DE69126748T2 (en) Process for iodination or bromination of the alpha-methylenic carbon atom of a 3-oxo-4azasteroid
EP0291290B1 (en) Process for the preparation of 4-amino-androstenedione derivatives
US7531658B2 (en) Process for the preparation of 17-N-substituted-carbamoyl-4-aza-androst-1-en-3-ones
US7164022B2 (en) Process for the preparation of pure Finasteride
KR100415858B1 (en) PROCESS FOR THE PREPARATION OF 17β-(N-TERT-BUTYLCARBAMOYL)-3-ONE STEROID COMPOUND
JPH0699469B2 (en) Novel intermediate for producing 3-oxo-4-aza-androst-1-ene 17β-ketone
JPH0641478B2 (en) New process for producing 3-oxo-4-aza-androst-1-ene 17β-ketone
US5187278A (en) Trialkylsilyl trifluoromethanesulfonate mediated α-methylenic carbon functionalization of 4-aza-5α-androstan-3-one steroids
KR100483136B1 (en) Novel process for preparing high purity finasteride
Vronen et al. The synthesis of 16-dehydropregnenolone acetate (DPA) from potato glycoalkaloids
EP0705273B1 (en) 17-halogeno-4-azaandrostene derivatives and process for the preparation thereof
US4031080A (en) 16-Alpha-methyl-17 alpha-bromo-1,4-pregnadiene-21-ol-3,20-dione-derivatives
RU2109746C1 (en) METHOD FOR PREPARING β-SUBSTITUTED 4-AZAANDROSTENE
Künzer et al. A new, stereoselective approach to C (7)-alkylated estra-1, 3, 5 (10)-triene derivatives
US4257969A (en) 16,17-Dihydroxypregnene-21-carboxylic acids and derivatives
HU203768B (en) New metilating process for producing 16-alpha-methyl-steroides
WO2003010181A1 (en) STEREOSELECTIVE METHOD OF PRODUCING 6α-FLUOROPREGNANES AND INTERMEDIARIES
US4164504A (en) Steroidal[16α,17-b]naphthaleno-21-carboxylic acid esters
WO2008101308A1 (en) Process for the preparation of 17-n-substituted-carbamoyl-4-aza-androst-1 -en-3-ones
WO1994013691A1 (en) Thio- and oxo-azasteroids, processes for the preparation thereof, use thereof as antiandrogens and pharmaceutical compositions containing them
HU210544B (en) 4-aza-androstene derivatives substituted with halogenatom in 17-position and process for their production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10526158

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004748452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005518333

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004748452

Country of ref document: EP