WO2005006016A1 - Laser rangefinder and method thereof - Google Patents

Laser rangefinder and method thereof Download PDF

Info

Publication number
WO2005006016A1
WO2005006016A1 PCT/KR2003/001681 KR0301681W WO2005006016A1 WO 2005006016 A1 WO2005006016 A1 WO 2005006016A1 KR 0301681 W KR0301681 W KR 0301681W WO 2005006016 A1 WO2005006016 A1 WO 2005006016A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
signal
target
finding
laser
Prior art date
Application number
PCT/KR2003/001681
Other languages
French (fr)
Inventor
Seok-Hwan Lee
Jae-Young Lee
Ki-Choul Nam
Kyung-Mok Kang
Geun-Sik Yoo
Original Assignee
Eosystem Co., Ltd.
A & D Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eosystem Co., Ltd., A & D Engineering Co., Ltd. filed Critical Eosystem Co., Ltd.
Priority to AU2003253455A priority Critical patent/AU2003253455A1/en
Priority to EP03817439.7A priority patent/EP1651982B1/en
Priority to US10/564,207 priority patent/US7499829B2/en
Publication of WO2005006016A1 publication Critical patent/WO2005006016A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4873Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value

Abstract

Disclosed is a laser rangefinder and method thereof. By using characteristics that noise has non-correlation and signals have correlation, laser beams are output to a target to find a range to the target with iteration rates of thousands of times per second, signals for each range-finding are binary-quantized using a sampling frequency corresponding to a range-finding resolving power, and data are accumulated. After this, the accumulated data are processed in a statistical manner to detect a target signal and produce a target range based on the target signal. According to the present invention, the rangefinder for outputting low-power laser beams, using the laser beams reflected from the target, and detecting a range to the target, easily and accurately detects target signals in the noise.

Description

LASER RANGEFINDER AND METHOD THEREOF
BACKGROUND OF THE INVENTION
(a) Field of the Invention The present invention relates to a rangefinder. More specifically, the present invention relates to a laser rangefinder and method thereof.
(b) Description of the Related Art Conventional laser rangefinders generally use high-power lasers of several megawatts, and intensities of signals reflected from a target (target signals) are much higher than those of system noise including optical noise, detector noise, and amplifier noise, and accordingly, the laser rangefinders easily detect the target signals through a simple threshold detection method. However, since the high-power lasers may damage human eyes, the laser outputs have recently been regulated, and a need for rangefinders that use low-power laser diodes that are safe for the eyes has been raised. Thus, new signal processing technology studies for increasing the ranges have actively progressed. A representative laser diode rangefinder for eyesight protection is an electro-optical system for geodetic surveys, which is currently sold in the commercial market. However, since the electro-optical system shoots modulated laser beams toward a retroreflector installed on a target location, and detects a phase of the signal reflected from the retroreflector to find a range, it is far different from the electro-optical system that uses a pulse detection method without the retroreflector in the principle of signal
processing techniques.
Since an output of the target signal reflected from the target is less
than the system noise including optical noise, detector noise, and amplifier
noise in the electro-optical system using low-power laser diodes and the
pulse detection method, it is not easy to detect the target signal. Accordingly,
signal processing techniques for accurately detecting a target signal in a rangefinder that uses low-power laser diodes for eyesight protection are
required.
SUMMARY OF THE INVENTION
It is an advantage of the present invention to use low-power laser
diodes, and to accurately detect a target signal from a rangefinder according to a pulse detection method. It is an advantage of the present invention to detect a target signal
hidden in noise to improve range-finding performance of the rangefinder. To achieve the advantages, a rangefinder for eyesight protection
using a pulse detection method without a retroreflector according to the
present invention uses characteristics that noise has non-correlation and
signals have correlation to find a range to a target in the repetition rate of
several thousand times per second, execute binary-quantization on the
signal for each finding into a sampling frequency matched with range-finding
resolving power, and accumulate data. After this, the rangefinder processes the accumulated data statistically (i.e., performs a cumulative binary
detection method) to detect a target signal (a signal corresponding to a laser
beam reflected from the target, and noise is canceled from the signal), and
calculates a target range (a range to the target) based on the detected target
signal. In one aspect of the present invention, a method for finding a range
comprises: (a) receiving laser beams reflected from a target and input, and
outputting a corresponding electrical signal; (b) converting the electrical signal into range-finding data; (c) sequentially storing the range-finding data;
(d) adding the stored range-finding data and previously processed and stored accumulated data, and storing results as accumulated data; (e)
detecting data exceeding a threshold value from among the accumulated data as target signals; and (f) reading a target range based on the detected target signals, wherein (a) through (d) are repeated N times, and the
accumulated data in (e) are obtained by repeating (a) through (d) N times.
The (a) comprises: receiving the laser beams, converting the same
into a corresponding photocurrent signal, and converting the signal into a
voltage signal, and (b) comprises: differentiating the voltage signal to cancel
a voltage component superimposed on the voltage signal and caused by
background scattering of laser beams exponentially decreasing according to
ranges.
The method further comprises: filtering the differentiated signal with
a predetermined frequency bandwidth identical to a frequency band of the target signal, wherein the bandwidth satisfies 0.35/tr (tr is a rising time of a laser pulse), and a cut-off frequency satisfies 1/2r (r is a full width at half the maximum). The target range in (f) is an address of a memory storing accumulated data greater than the threshold value. In another aspect of the present invention, a laser rangefinder for finding a range to a target using laser beams comprises: a laser receiver for receiving laser beams reflected from the target to output an electrical signal, canceling a noise component provided in the electrical signal, and outputting binary range-finding data; a data accumulator, including a frame memory, for adding the range-finding data output by the laser receiver and previously accumulated data stored in the frame RAM, storing the added results in the frame memory, and repeating the adding and storing operations for an established time; and a range detector for producing a target range to the target based on the accumulated data stored in the frame memory. The laser receiver comprises: a photodetector for receiving the laser beams and outputting a corresponding photocurrent signal; an amplifier for amplifying the photocurrent signal and converting it into a voltage signal; a differentiator for differentiating the voltage signal and canceling a noise voltage component superimposed on the voltage signal; a filter for filtering the differentiated signal; and a signal converter for converting the filtered signal into binary range-finding data, and outputting the range-finding data for each frame. The data accumulator further comprises: a shift register for
sequentially storing the range-finding data; an adder for adding the range-
finding data stored in the shift register and previously accumulated data
stored in the frame memory, and storing the added results in the frame
memory; a counter for counting range-finding time; and a timing controller for
operating the shifter register and the adder until the range-finding time
exceeds the established time, and repeating the storing, operating, and accumulating process of the range-finding data N times.
The range detector comprises: a target signal detector for detecting
the data exceeding the established threshold value as a target signal from among the accumulated data stored in the frame memory; and a range
reader for reading an address of the frame memory storing the detected
target signal as a target range. In still another aspect of the present invention, a signal receiver of a
laser rangefinder for finding a range to a target using laser beams is provided,
and the signal receiver for receiving laser beams reflected from the target
and generating corresponding range-finding data comprises: a photodetector for receiving the laser beams and outputting a corresponding photocurrent
signal; an amplifier for amplifying the photocurrent signal and converting it
into a voltage signal; a differentiator for differentiating the voltage signal to
cancel a noise voltage component superimposed on the voltage signal; a
filter for filtering the differentiated signal; and a zero voltage detector for
comparing the filtered signal with a zero voltage, outputting 1 when the signal is a positive voltage, and 0 when the signal is a negative voltage to generate
and output binary range-finding data.
In still yet another aspect of the present invention, a range detecting
device of a laser rangefinder for finding a range to a target using laser
beams is provided, and the range detecting device for detecting a target
range based on range-finding data corresponding to the laser beams
reflected and received from the target comprises a data accumulator including: a shift register for sequentially storing the range-finding data; a
frame memory for storing previously accumulated data; an adder for adding
the range-finding data stored in the shift register and the previously accumulated data stored in the frame memory, and storing the added results
in the frame memory; a counter for counting range-finding time; and a timing controller for operating the shifter register and the adder until the range- finding time exceeds the established time, and repeating the storing,
operating, and accumulating process of the range-finding data N times; and a range detector including: a target signal detector for detecting data
exceeding an established threshold value as target signals from among accumulated data stored in the frame memory; and a range reader for
reading an address of the frame memory storing the detected target signal
as a target range.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the
invention, and, together with the description, serve to explain the principles of
the invention:
FIG. 1 shows a block diagram of a laser rangefinder according to a
preferred embodiment of the present invention;
FIG. 2 shows a detailed configuration diagram of a laser receiver
shown in FIG. 1 ;
FIG. 3 shows a detailed configuration diagram of a range detector shown in FIG. 1 ; FIG. 4 shows an exemplified cumulative binary detection probability
distribution according to a preferred embodiment of the present invention;
FIG. 5 shows an operation flowchart of a laser rangefinder according to a preferred embodiment of the present invention; FIG. 6 shows exemplified analog signal waveforms and binary
detection signal outputs according to a preferred embodiment of the present
invention; FIG. 7 shows pulse detection errors following a conventional
threshold detection method; and FIG. 8 shows pulse detection errors according to a preferred
embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following detailed description, only the preferred embodiment of the invention has been shown and described, simply by way of illustration
of the best mode contemplated by the inventor(s) of carrying out the
invention. As will be realized, the invention is capable of modification in
various obvious respects, all without departing from the invention.
Accordingly, the drawings and description are to be regarded as illustrative in
nature, and not restrictive.
FIG. 1 shows a block diagram of a laser rangefinder according to a
preferred embodiment of the present invention. As shown, the laser rangefinder comprises a laser output unit 100
for outputting laser beams to a target, a laser receiver 200 receiving the laser
beams reflected from the target and outputting corresponding electrical signals, a rangefinder 300 for finding a range up to the target based on the received signals, and a display 400 for displaying the found range.
The laser output unit 100 comprises a laser diode for outputting
laser beams in the near infrared ray band. The laser receiver 200 comprises a first receiver 210 for receiving
the laser beams (referred to as first laser beams hereinafter) output by the
laser output unit 100, processing the first laser beams, and outputting laser
oscillation signals; and a second receiver 220 for receiving the laser beams
(referred to as second laser beams hereinafter) output by the laser output
unit 100 and reflected from the target, processing the second laser beams,
and outputting range-finding data.
FIG. 2 shows a detailed configuration diagram of a laser receiver 200 shown in FIG. 1. The first receiver 210 comprises a first photodetector 211 for receiving the first laser beam to output a corresponding photocurrent signal, a first amplifier 212 for amplifying the photocurrent signal output by the first photodetector 211 to output a corresponding voltage signal, and a filter 213 for filtering the voltage signal to output a laser oscillation signal. The second receiver 220 can be referred to as an analog signal processor for finding target signals. As shown in FIG. 2, the second receiver
220 comprises: a second photodetector 221 for receiving the second laser beam to output a corresponding photocurrent signal; a second amplifier 222 for amplifying the photocurrent signal output by the second photodetector
221 to output a voltage signal; a differentiator 223 for differentiating the voltage signal to minimize detection errors caused by signal intensities and pulse width variations, and canceling DC components superimposed on the voltage signal; a matched filter 224 for filtering differential signals with a predetermined frequency bandwidth identical with the frequency band of the differentiated signal to maximize the SNR (signal to noise ratio); and a zero voltage detector 225, a signal converter for converting filtered signals into range-finding data that are binary detection signals, for comparing the filtered voltage with a zero voltage to convert a positive voltage into 1 , and a negative voltage into 0 (here, 1 and 0 are respectively range-finding data that are 1-bit binary signals), and outputting the data. In this instance, the zero voltage detector is used as the signal converter, and without being restricted to this, other types of signal converters such as an A/D converter can also be
used.
FIG. 3 shows a detailed configuration of the rangefinder 300 for
finding a range to a target based on the laser oscillation signal output by the
laser receiver 200 and the range-finding data.
As shown in FIGs. 1 and 3, the rangefinder 300 comprises: a data
accumulator 310 for accumulating a detection signal, that is, range-finding
data N times, and storing the same; a range detector 320 for detecting a target signal based on the accumulated data, and finding the range up to the
target based on the target signal; and an oscillator 330 for outputting oscillation signals.
The data accumulator 310 comprises a shift register 31 1 for sequentially storing range-finding data output by the second receiver 220; a
frame RAM (random access memory) 313 for storing previously accumulated data; an adder 312 for adding the range-finding data stored in the shift
register 31 1 and the previously accumulated data stored in the frame RAM
313 to store added data in the frame RAM 313; a timing controller 314 for
generating a plurality of control signals needed for signal processing
according to oscillation signals output by the oscillator 330; a range counter
315 for counting finding time according to control by the timing controller
314; and an address controller 316 for controlling data storage into the shift
register 311 and the frame RAM 313 according to control by the timing
controller 314. In this instance, the timing controller 314 outputs a laser start pulse according to a laser oscillation signal output by the first receiver 210. The range counter 315 starts to count the range-finding time according to the laser start pulse, and outputs a laser stop pulse to terminate the counting operation when an established time elapses. The timing controller 314 outputs a laser start pulse and concurrently drives the shift register 311 and the address controller 316 to perform a data accumulation operation for storing, adding, and accumulating the range-finding data output by the second receiver 220, and terminates the data accumulation operation according to the laser stop pulse output by the range counter 315. The data accumulator 310 can be realized into an FPGA (field programming gate array). The range detector 320, for detecting a target signal based on the data accumulated by the data accumulator 310, and detecting a range to the target based on the target signal, comprises: a target signal detector 321 for finding a target signal from the accumulated data stored in the frame RAM 321 by using a cumulative binary detection algorithm; a range reader 322 for reading the detected target signal by a predetermined resolving power to generate range information; an operation controller 323 for controlling the above-noted range information generation process; and an interface/communicator 324 for outputting finding range information to the display 400 and linking with an external device. Here, the target signal corresponds to the second laser beams output by the laser output unit 100, reflected from the target, and then input,
and it is a noise-cancelled pure laser beams. The range detector 320 can be
realized with a DSP (digital signal processor).
An operation of the above-configured laser rangefinder will now be
described.
First, the cumulative binary detection algorithm according to the
preferred embodiment will be described. FIG. 4 shows distribution
characteristics of noise and signals processed by the cumulative binary detection algorithm. The cumulative binary detection algorithm accumulates the range- finding data that are binary detection signals to increase the SNR on the
assumption that the signal and noise maintain non-correlation and occur at the same time, and the noise follows the Gaussian distribution with a mean
value of 0. Based on this assumption, when the positive voltage is detected N
times to 1 and the negative voltage is detected N times to 0 through the zero
voltage detector and they are accumulated in the Gaussian distribution noise with the mean value of 0, the mean of the accumulated noise distribution
becomes 0.5N, and the standard deviation becomes 0.5 N . When a target signal is superimposed on the Gaussian distribution
noise, its probability distribution horizontally moves by the intensity of the
superimposed signal as shown in FIG. 4(a). Therefore, the mean of N-times
accumulated cumulative probability distributions becomes pN, the standard deviation becomes -N/p(l-p)N , and the SNR is improved by N times. In
this instance, 'p' is a probability that the output of the zero voltage detector is
1 when a signal is provided.
Hence, a false alarm rate (a probability of falsely detecting a signal
as a target signal) and a detection probability PD in the cumulative binary
detection algorithm can be given as Equation 1 according to the TNR
(threshold to noise ratio) and the SNR. Equation 1
Figure imgf000014_0001
Equation 2 (χ-pN)2 „„„. ,•„ .-,,„ Λ y2 SNR(N)-TNR P = ~Jl e 2p{1-p)Ndx = 0.5 + dy κjlpp((ll--pp))NN 22ππ JO \2π where FAR is a false alarm rate, Ns is a number of range finding samples = maximum finding range/range finding resolving power, N is
accumulated times, Lτ is a threshold value =
Figure imgf000014_0002
TNR is a
threshold-to-noise ratio, SNR(1 ) is a signal-to-noise ratio of the system, and
SNR(N) is the SNR when accumulated N times = ^N(SNR(1)) .
Effects of the cumulative binary detection algorithm given in
Equations 1 and 2 will now be exemplarily described.
As an example, it is assumed that the FAR is less than 0.1%, a
detection probability is greater than 99.9%, the maximum finding range is
3,000m, a range finding resolving power is 1 m, and a number of accumulations is 1 ,024. Since Ns=3,000 according to the above-given
Equations, Lτ=592, TNR=5, SNR(1024)=8.1 , and SNR(1)=0.253. These
results show that the target signal which is 1/4 times of the system noise,
that is, a signal in the noise can be detected, and this represents that a
system having the same range finding performance as that of the
conventional rangefinder can be realized with the power which is 1/32 times
less than that of the laser beams used by the conventional rangefinder.
FIG. 5 shows an operational flowchart of the laser rangefinder according to the preferred embodiment of the present invention. When the laser output unit 100 outputs low-power laser beams to find a range to a target, the first receiver 210 of the laser receiver 200
detects the output laser beams to output a laser oscillation signal in step
S100. The first photodetector 21 1 of the first receiver 210 receives the laser beams output by the laser output unit 100 to output corresponding
photocurrent signals, the first amplifier 21 amplifies the photocurrent signals
and converts them into voltage signals, and the filter 213 filters the voltage
signals to output a laser oscillation signal.
When receiving the laser oscillation signal from the first receiver 210,
that is, when receiving a signal for representing that laser beams have been
output to the target from the laser output unit 100, the timing controller 314 of
the data accumulator 310 generates a laser start pulse to output it to the
range counter 315. The range counter 315 starts counting for receiving, operating, and storing data used for finding a range in step S1 10.
The laser beams output by the laser output unit 100 are reflected
from the target A, and input to the second receiver 220 of the laser receiver
200, and in this instance, noise is superposed on the input laser beams in
step S120. Therefore, in the preferred embodiment, the beams to be
described below are processed so as to detect the low-power laser beams
(the laser beams reflected from the target) input together with the noise. FIG. 6 shows analog signal waveforms and binary detection signal
outputs processed and output by the second receiver according to the
preferred embodiment of the present invention. In detail, the second photodetector 221 of the second receiver 220
outputs photocurrent signals corresponding to the input beams, and the second amplifier 222 amplifies the photocurrent signals, converts them into
voltage signals, and outputs the voltage signals. In this instance, the outputs of the second amplifiers include a target
signal and system noise superimposed on the target signal as shown in FIG.
6(a). Among these noise components, since the noise caused by the
scattered light generated when laser beams are passed through the
atmosphere is very big in the near range and exponentially decreases
according to the range, the above-noted noise becomes a factor of
increasing false range-finding rates for falsely finding a range to the target.
Conventional signal processing following the threshold detection method
uses a time-varying gain controller to control the total amplification gain and solve the problem, but it still fails to remove pulse detection errors caused by
intensity variations of the target signal. FIG. 7 shows conventional pulse
detection errors caused by the range finding. When using the conventional
method, the case of a very short pulse width and a range finding resolving
power greater than 10m (meters) does not give rise to much influence in the
finding of errors, but the case of finding the range with the resolving power
below 1 m generates large errors. In the preferred embodiment, the differentiator 223 differentiates the
voltage component superimposed on the voltage signal and caused by
background scattering of the laser beams, to exponentially decrease it according to ranges to remove the voltage component. The matched filter 224 filters the differentiated signal with a predetermined frequency bandwidth
identical with the frequency band of the target signal to remove RF noise of the differentiated signal and optimize the SNR. In this instance, the cut-off
frequency fc of the filter is established as 1/2 τ when the full width at half the
maximum of the laser pulse (laser beams output by the laser output unit) is
defined as r . That is, fc=1/2τ =25MHz when τ =20ns.
Following the operations of the differentiator and the filter, provided
is the effect of cutting off the DC-component scattered light with a
predetermined frequency bandwidth identical to the frequency band (e.g., the
bandwidth satisfies 0.35/tr when a rising time of a laser pulse is set to be tr,
and here, the rising time is a time until the power of the laser diode of the
laser output unit rises and laser beams are generated, and the bandwidth is designed to be 0.35/tr=35MHz if tr=10ns.) of the target signal from among the received, processed, and output voltage signals. Also, the false range-finding rates are minimized and the pulse detection errors are effectively removed. FIG. 8 shows pulse detection errors according to the preferred embodiment of the present invention. According to the above-described differentiation operation, peak values of the target signals are detected at a predetermined position as shown in FIG. 8, thereby effectively removing the pulse detection errors. Next, the zero voltage detector 225 processes the noise-cancelled signals into binary digital signals, and outputs them to the range detector 320. The zero voltage detector 225 compares an output voltage of the matched filter 224 with the zero voltage to output as 1 when the output voltage is a positive voltage, and as 0 when it is a negative voltage, and as shown in FIG. 6(b), these binary detection signals are output per frame in step S130. In this instance, a single frame includes Ns(=3,000) bits, and a single bit corresponds to 1 m of range-finding resolving power. As described above, when the second receiver 220 cancels the noise of the laser beams reflected from the target and then input, and generates binary detection signals, that is, range-finding data, the range detector 320 calculates the range to the target on the basis of the range- finding data as described below. The range-finding data output by the second receiver 220 are provided to the data accumulator 310 of the range detector 320 to be accumulated for a range-finding time. In detail, the shift register 311
sequentially stores the range-finding data in frames output by the second
receiver 220 in high storage rates according to control signals output by the
timing controller 314 of the data accumulator 310 in step S140. The adder
312 adds, bit by bit, the range-finding data currently input and stored in the
shift register 31 1 and the previously accumulated data stored in the frame
RAM 313, and accumulates added results in the frame RAM 313 in step
S150. In this instance, the address controller 316 controls the storage operation of the data in the shift register 31 1 and the frame RAM 313, and in
particular, controls the accumulated data to be stored in the accurate
addresses. The process for operating and accumulating the range-finding data is repeated N times until the range-finding time counted by the range counter
315 exceeds an established time, and the above-noted process is repeated 1 ,024 times in the preferred embodiment of the present invention.
The range counter 315 starts to count the range-finding time
according to the laser start pulse applied by the timing controller 314, and
terminates the counting operation and outputs a laser stop pulse to the
timing controller 314 when the range-finding time exceeds the established
time. Accordingly, the range counter 315 counts a time difference between
the laser start pulse and the laser stop pulse with the range-finding resolving
power of 1 m.
The timing controller 314 stops the operations of the shift register 31 1 , the adder 312, the frame RAM 313, and the address controller 316, and
terminates the process of operating and accumulating the range-finding data
when the range-finding time from the range counter 315 exceeds the
established time to output a laser stop pulse in step S160. When the process of operating and accumulating the range-finding
data is terminated, respective components of the range detector 320 operate
according to control by the operation controller 323 based on the accumulated data to detect a range to the target.
In detail, the target signal detector 321 reads the final accumulated
data stored in the frame RAM 313, and detects data having a threshold value
(e.g., greater than Lτ=592) as target signals from among the final
accumulated data in step S170. Next, the range reader 322 reads target ranges based on the range- finding data, that is, the target signals in step S180. The detected target
signals are plural when other objects exist near the desired target. Therefore, the range detector 322 sorts the detected target signals in the ascending
order according to the addresses of the target signals stored in the frame
RAM 313 when the target signals are plural, and the range detector 322
reads the respective addresses as the target ranges of the respective targets.
In this instance, the range of the desired target becomes an address value
that has the largest value from among the sorted addresses.
When the target signal greater than the threshold value is singular,
the address of the frame RAM 313 storing the corresponding target signal becomes the target range. The target range (range information) detected as described above is output to the display 400 through the interface/communicator 32D, and the range to the target is displayed through the display 400. According to the present invention, the rangefinder for outputting low-power laser beams and using the laser beams reflected from a target to detect the range to the target, can easily and accurately detect the target signal hidden in the noise, thereby increasing the range-finding performance of a low-power vision protection laser diode rangefinder. While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1 . A method for finding a range, comprising: (a) receiving laser beams reflected from a target and input, and
outputting a corresponding electrical signal; (b) converting the electrical signal into range-finding data;
(c) sequentially storing the range-finding data;
(d) adding the stored range-finding data and previously processed
and stored accumulated data, and storing results as accumulated data; (e) detecting data exceeding a threshold value from among the
accumulated data as target signals; and (f) reading a target range based on the detected target signals,
wherein (a) through (d) are repeated N times, and the accumulated data in (e) are obtained by repeating (a) through (d) N times.
2. The method of claim 1 , wherein (b) comprises: canceling a noise component from the electrical signal and converting the noise-cancelled signal into range-finding data.
3. The method of claim 2, wherein (a) comprises: receiving the laser beams, converting the same into a corresponding photocurrent signal, and converting the signal into a voltage signal, and
(b) comprises: differentiating the voltage signal to cancel a voltage
component superimposed on the voltage signal and caused by background
scattering of laser beams, exponentially decreasing according to ranges.
4. The method of claim 3, further comprising: filtering the differentiated signal with a predetermined frequency bandwidth identical to a frequency band of the target signal, wherein the bandwidth satisfies 0.35/tr (tr is a rising time of a laser pulse), and a cut-off frequency satisfies 1/2r (r is a full width at half the maximum). 5. The method of claim 1 , wherein (e) comprises: establishing a threshold value to satisfy the following conditions:
Figure imgf000023_0001
and
Figure imgf000023_0002
where PD is a detection probability, FAR is a false alarm rate, Νs is a number of range finding samples = maximum finding range/range finding resolving power, Ν is accumulated times, LT is a threshold value =
0.
5 /Ν(TΝR) +0.5Ν, TNR is a threshold-to-noise ratio, SNR(1) is a signal-to-
noise ratio of the system, and SNR(N) is the SNR when accumulated N
times = JN(SNR(1)) .
6. The method of claim 1 , wherein the target range in (f) is an address of a memory storing accumulated data greater than the threshold value.
7. A laser rangefinder for finding a range to a target using laser beams, comprising: a laser receiver for receiving laser beams reflected from the target to
output an electrical signal, canceling a noise component provided in the
electrical signal, and outputting binary range-finding data; a data accumulator, including a frame memory, for adding the
range-finding data output by the laser receiver and previously accumulated
data stored in the frame RAM, storing the added results in the frame memory,
and repeating the adding and storing operations for an established time; and a range detector for producing a target range to the target based on
the accumulated data stored in the frame memory.
8. The laser rangefinder of claim 7, wherein the laser receiver
comprises: a photodetector for receiving the laser beams and outputting a
corresponding photocurrent signal; an amplifier for amplifying the photocurrent signal and converting it
into a voltage signal; a differentiator for differentiating the voltage signal and canceling a
noise voltage component superimposed on the voltage signal; a filter for filtering the differentiated signal; and a signal converter for converting the filtered signal into binary range-
finding data, and outputting the range-finding data for each frame.
9. The laser rangefinder of claim 8, wherein the signal converter
comprises a zero voltage detector for comparing the filtered signal with a
zero voltage, and outputting 1 when the signal is a positive voltage, and 0 when the signal is a negative voltage.
10. The laser rangefinder of claim 7, wherein the data accumulator further comprises: a shift register for sequentially storing the range-finding data; an adder for adding the range-finding data stored in the shift register and previously accumulated data stored in the frame memory, and storing the added results in the frame memory; a counter for counting range-finding time; and a timing controller for operating the shifter register and the adder until the range-finding time exceeds the established time, and repeating the storing, operating, and accumulating process of the range-finding data N times.
11. The laser rangefinder of claim 7, wherein the range detector comprises: a target signal detector for detecting the data exceeding the established threshold value as a target signal from among the accumulated data stored in the frame memory; and a range reader for reading an address of the frame memory storing the detected target signal as a target range.
12. The laser rangefinder of claim 11 , wherein the range reader sorts target signals in the ascending order according to addresses of the frame memory storing the target signals when the detected target signals are plural, and the range reader reads the address having the largest value as a target range of the target from among the sorted addresses.
13. The laser rangefinder of claim 10, wherein the laser receiver further comprises a receiver for receiving laser beams output from the rangefinder to generate a laser oscillation signal, the timing controller generates a laser start pulse according to the laser oscillation signal, and repeats the storing, operating, and accumulating process of the range-finding data N times until a laser stop pulse is provided, and the range counter counts range-finding time according to the laser start pulse, and outputs a laser stop pulse to the timing controller when the counted range-finding time exceeds the established time.
14. The laser rangefinder of claim 10, wherein the data accumulator further comprises an address controller for controlling data storage into the shift register and the frame memory.
15. The laser rangefinder of claim 7, further comprising a display for displaying the target range.
16. A signal receiver of a laser rangefinder for finding a range to a target using laser beams, the signal receiver for receiving laser beams reflected from the target and generating corresponding range-finding data, comprising: a photodetector for receiving the laser beams and outputting a corresponding photocurrent signal; an amplifier for amplifying the photocurrent signal and converting it into a voltage signal; a differentiator for differentiating the voltage signal to cancel a noise
voltage component superimposed on the voltage signal; a filter for filtering the differentiated signal; and a zero voltage detector for comparing the filtered signal with a zero
voltage, outputting 1 when the signal is a positive voltage, and 0 when the
signal is a negative voltage to generate and output binary range-finding data.
17. A range detecting device of a laser rangefinder for finding a
range to a target using laser beams, the range detecting device for detecting
a target range based on range-finding data corresponding to the laser beams
reflected and received from the target, comprising: a data accumulator including: a shift register for sequentially storing the range-finding data; a frame memory for storing previously accumulated data; an adder for adding the range-finding data stored in the shift register
and the previously accumulated data stored in the frame memory, and storing the added results in the frame memory; a counter for counting range-
finding time; and a timing controller for operating the shifter register and the
adder until the range-finding time exceeds the established time, and
repeating the storing, operating, and accumulating process of the range-
finding data N times; and a range detector including: a target signal detector for detecting data
exceeding an established threshold value as target signals from among
accumulated data stored in the frame memory; and a range reader for reading an address of the frame memory storing the detected target signal as a target range.
PCT/KR2003/001681 2003-07-10 2003-08-20 Laser rangefinder and method thereof WO2005006016A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003253455A AU2003253455A1 (en) 2003-07-10 2003-08-20 Laser rangefinder and method thereof
EP03817439.7A EP1651982B1 (en) 2003-07-10 2003-08-20 Laser rangefinder and method of laser rangefinding
US10/564,207 US7499829B2 (en) 2003-07-10 2003-08-20 Laser rangefinder and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0046882 2003-07-10
KR1020030046882A KR100464584B1 (en) 2003-07-10 2003-07-10 Laser Rangefinder and method thereof

Publications (1)

Publication Number Publication Date
WO2005006016A1 true WO2005006016A1 (en) 2005-01-20

Family

ID=36123689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2003/001681 WO2005006016A1 (en) 2003-07-10 2003-08-20 Laser rangefinder and method thereof

Country Status (5)

Country Link
US (1) US7499829B2 (en)
EP (1) EP1651982B1 (en)
KR (1) KR100464584B1 (en)
AU (1) AU2003253455A1 (en)
WO (1) WO2005006016A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972961A2 (en) 2007-03-22 2008-09-24 Sick Ag Optoelectronic sensor and method for measuring distance or a change in distance
CN101403603B (en) * 2008-11-14 2010-06-02 天津大学 Large scale scanning survey apparatus and method based on laser ranging and Bluetooth transmission
CN102033231A (en) * 2010-10-13 2011-04-27 山东神戎电子股份有限公司 Method for automatically measuring distance by utilizing integrated pulses of high-repetition frequency pulse laser and distance measurer using method

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242476B2 (en) 2005-12-19 2012-08-14 Leddartech Inc. LED object detection system and method combining complete reflection traces from individual narrow field-of-view channels
US8600656B2 (en) 2007-06-18 2013-12-03 Leddartech Inc. Lighting system with driver assistance capabilities
US8436748B2 (en) 2007-06-18 2013-05-07 Leddartech Inc. Lighting system with traffic management capabilities
KR100877706B1 (en) 2007-07-04 2009-01-08 국방과학연구소 Method and apparatus for estimating distance from air target using the low repeat laser distancemeter
WO2009079779A1 (en) 2007-12-21 2009-07-02 Leddartech Inc. Parking management system and method using lighting system
EP3206046B1 (en) 2007-12-21 2021-08-25 Leddartech Inc. Detection and ranging methods and systems
US8159660B2 (en) * 2008-04-04 2012-04-17 Leddartech Inc. Optical level measurement device and method
US8139205B2 (en) 2008-05-12 2012-03-20 Flir Systems, Inc. Optical payload with integrated laser rangefinder and target designator
KR101075747B1 (en) * 2009-01-14 2011-10-24 삼성전자주식회사 Method for measuring position of a portable terminal and indoor illuminating apparatus therefor
EP2517189B1 (en) 2009-12-22 2014-03-19 Leddartech Inc. Active 3d monitoring system for traffic detection
US8908159B2 (en) 2011-05-11 2014-12-09 Leddartech Inc. Multiple-field-of-view scannerless optical rangefinder in high ambient background light
WO2012172526A1 (en) 2011-06-17 2012-12-20 Leddartech Inc. System and method for traffic side detection and characterization
EP2570769A1 (en) * 2011-09-13 2013-03-20 Hexagon Technology Center GmbH Geodesic measuring system and method with multiple target tracking functionality
EP2820632B8 (en) 2012-03-02 2017-07-26 Leddartech Inc. System and method for multipurpose traffic detection and characterization
CN102909255B (en) * 2012-11-06 2015-06-10 南通富士通微电子股份有限公司 Punching die and stamping system
JP6938371B2 (en) 2014-09-09 2021-09-22 レッダーテック インコーポレイテッド Discretization of detection zones
CN104792271A (en) * 2015-04-29 2015-07-22 苏州泰欧阔仪器科技有限公司 Short-distance infrared ray length-measuring device
KR101725643B1 (en) 2015-07-27 2017-04-11 윤종식 Cutting method for the injection mold and apparatus of the same
WO2017138155A1 (en) * 2016-02-12 2017-08-17 パイオニア株式会社 Information processing device, control method, program, and storage medium
EP3232224B1 (en) * 2016-04-12 2018-06-13 Sick Ag Distance-measuring opto-electronic sensor and method for detecting and determining the distance from objects
CN108931779A (en) * 2017-05-27 2018-12-04 北京万集科技股份有限公司 Identification device, laser radar and moment discrimination method at the time of based on laser radar
CN114341665A (en) 2019-09-06 2022-04-12 株式会社电装 Distance measuring device
JP7294265B2 (en) * 2019-09-06 2023-06-20 株式会社デンソー rangefinder
CA3125716C (en) 2020-07-21 2024-04-09 Leddartech Inc. Systems and methods for wide-angle lidar using non-uniform magnification optics
US11567179B2 (en) 2020-07-21 2023-01-31 Leddartech Inc. Beam-steering device particularly for LIDAR systems
EP4185888A1 (en) 2020-07-21 2023-05-31 Leddartech Inc. Beam-steering device particularly for lidar systems
CN113406660B (en) * 2021-06-22 2022-11-22 河北白沙烟草有限责任公司 Maintenance-free laser bar code and laser ranging traveling crane double-positioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208125A (en) * 1977-06-03 1980-06-17 Asea Aktiebolag Cloud altitude measuring apparatus
EP0757257A2 (en) * 1995-07-31 1997-02-05 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Laser range finder receiver

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563105B2 (en) * 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
US20030035097A1 (en) 2000-10-02 2003-02-20 Robert Lai Method and apparatus for locating object by using laser range finder
US6781677B1 (en) * 2003-01-31 2004-08-24 The Boeing Company Laser range finding apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208125A (en) * 1977-06-03 1980-06-17 Asea Aktiebolag Cloud altitude measuring apparatus
EP0757257A2 (en) * 1995-07-31 1997-02-05 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Laser range finder receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972961A2 (en) 2007-03-22 2008-09-24 Sick Ag Optoelectronic sensor and method for measuring distance or a change in distance
EP1972961A3 (en) * 2007-03-22 2008-11-05 Sick Ag Optoelectronic sensor and method for measuring distance or a change in distance
CN101403603B (en) * 2008-11-14 2010-06-02 天津大学 Large scale scanning survey apparatus and method based on laser ranging and Bluetooth transmission
CN102033231A (en) * 2010-10-13 2011-04-27 山东神戎电子股份有限公司 Method for automatically measuring distance by utilizing integrated pulses of high-repetition frequency pulse laser and distance measurer using method

Also Published As

Publication number Publication date
EP1651982B1 (en) 2014-03-26
US7499829B2 (en) 2009-03-03
US20070255525A1 (en) 2007-11-01
AU2003253455A1 (en) 2005-01-28
EP1651982A1 (en) 2006-05-03
KR100464584B1 (en) 2005-01-03
AU2003253455A8 (en) 2005-01-28

Similar Documents

Publication Publication Date Title
EP1651982B1 (en) Laser rangefinder and method of laser rangefinding
EP1463960B1 (en) Dual mode adaptive threshold architecture for 3-d ladar focal plane array
EP3457170B1 (en) Distance measuring device
KR20200100099A (en) Systems and methods for efficient multi-feedback photo detectors
US7312856B2 (en) Programmable pulse capture device with automatic gain control
EP2909649B1 (en) Long-range, small target rangefinding
EP3935411A1 (en) Systems, methods, and media for single photon depth imaging with improved precision in ambient light
KR101284832B1 (en) Method for measuring distance and laser distance measuring device using the method
WO2020166609A1 (en) Optical ranging device
CN112255638A (en) Distance measuring system and method
CN110940992B (en) Signal detection method and system capable of improving detection distance and precision of laser radar
CN104126187A (en) System and method for noise reduction in a bar code signal
US20030035097A1 (en) Method and apparatus for locating object by using laser range finder
KR20050007210A (en) Laser Rangefinder and method thereof
US20230288538A1 (en) Laser receiving system and laser ranging system
CN115856933A (en) High-flux photon counting laser radar imaging device and method
US20220029716A1 (en) System and a method for extracting low-level signals from hi-level noisy signals
RU2742597C1 (en) Method for increasing performance of solid-state photomultiplier for recordin low-photon pulses and light measurement syatem imlementing said method
EP4063899A1 (en) Anti flicker filter for dtof sensor
RU2791151C1 (en) Method for incoherent accumulation of pulsed light-location signals
SU1597816A1 (en) Method of detecting structure of optical heterogeneities of atmoshere
Michálek et al. Photon counting Lidar for deep space applications: Demonstrator design
CN111521991A (en) Proximity detection apparatus and method
CN117007196A (en) Single photon detector
CN113608230A (en) Distance measurement method, device and equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003817439

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003817439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10564207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 10564207

Country of ref document: US