WO2005005117A2 - Non-woven glass fiber mat faced gypsum board and process of manufacture - Google Patents
Non-woven glass fiber mat faced gypsum board and process of manufacture Download PDFInfo
- Publication number
- WO2005005117A2 WO2005005117A2 PCT/US2004/018178 US2004018178W WO2005005117A2 WO 2005005117 A2 WO2005005117 A2 WO 2005005117A2 US 2004018178 W US2004018178 W US 2004018178W WO 2005005117 A2 WO2005005117 A2 WO 2005005117A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gypsum board
- recited
- average fiber
- fibers
- web
- Prior art date
Links
- 229910052602 gypsum Inorganic materials 0.000 title claims abstract description 119
- 239000010440 gypsum Substances 0.000 title claims abstract description 119
- 239000003365 glass fiber Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 230000008569 process Effects 0.000 title claims description 18
- 239000000835 fiber Substances 0.000 claims abstract description 103
- 239000011230 binding agent Substances 0.000 claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 239000002002 slurry Substances 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000011521 glass Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 12
- 239000004816 latex Substances 0.000 claims description 12
- 229920000126 latex Polymers 0.000 claims description 12
- 229920001577 copolymer Polymers 0.000 claims description 9
- 230000035699 permeability Effects 0.000 claims description 9
- 239000004971 Cross linker Substances 0.000 claims description 6
- 229920000877 Melamine resin Polymers 0.000 claims description 6
- 229920001410 Microfiber Polymers 0.000 claims description 5
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 5
- 239000003139 biocide Substances 0.000 claims description 5
- 239000003658 microfiber Substances 0.000 claims description 5
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 230000003115 biocidal effect Effects 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000002655 kraft paper Substances 0.000 claims description 4
- 239000011490 mineral wool Substances 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- 239000004925 Acrylic resin Substances 0.000 claims description 3
- 229920000178 Acrylic resin Polymers 0.000 claims description 3
- 229920006243 acrylic copolymer Polymers 0.000 claims description 3
- 229940095564 anhydrous calcium sulfate Drugs 0.000 claims description 3
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 claims description 3
- 238000004132 cross linking Methods 0.000 claims description 3
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 claims description 3
- 230000009477 glass transition Effects 0.000 claims description 3
- 239000000049 pigment Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 235000019738 Limestone Nutrition 0.000 claims description 2
- 239000004677 Nylon Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 229920002125 Sokalan® Polymers 0.000 claims description 2
- 239000005388 borosilicate glass Substances 0.000 claims description 2
- 239000004568 cement Substances 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims description 2
- 238000004040 coloring Methods 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 claims description 2
- 230000000855 fungicidal effect Effects 0.000 claims description 2
- 239000000417 fungicide Substances 0.000 claims description 2
- 229920001519 homopolymer Polymers 0.000 claims description 2
- 230000006872 improvement Effects 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000006028 limestone Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000012783 reinforcing fiber Substances 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000004640 Melamine resin Substances 0.000 claims 2
- 239000012209 synthetic fiber Substances 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- OKZJGWWKRGIIRL-UHFFFAOYSA-N [N].NC1=NC(N)=NC(N)=N1 Chemical compound [N].NC1=NC(N)=NC(N)=N1 OKZJGWWKRGIIRL-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000011819 refractory material Substances 0.000 claims 1
- 239000003973 paint Substances 0.000 abstract description 9
- 239000000047 product Substances 0.000 description 11
- 239000000123 paper Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000010422 painting Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 3
- 238000009435 building construction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000011152 fibreglass Substances 0.000 description 3
- 150000007974 melamines Chemical class 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000035874 Excoriation Diseases 0.000 description 2
- 206010040880 Skin irritation Diseases 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229920005822 acrylic binder Polymers 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000010981 drying operation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920005594 polymer fiber Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000036556 skin irritation Effects 0.000 description 2
- 231100000475 skin irritation Toxicity 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 240000000254 Agrostemma githago Species 0.000 description 1
- 235000009899 Agrostemma githago Nutrition 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 244000034902 Fevillea cordifolia Species 0.000 description 1
- 235000004863 Fevillea cordifolia Nutrition 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000008454 Hyperhidrosis Diseases 0.000 description 1
- 229920001944 Plastisol Polymers 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HZVVJJIYJKGMFL-UHFFFAOYSA-N almasilate Chemical compound O.[Mg+2].[Al+3].[Al+3].O[Si](O)=O.O[Si](O)=O HZVVJJIYJKGMFL-UHFFFAOYSA-N 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- BLCTWBJQROOONQ-UHFFFAOYSA-N ethenyl prop-2-enoate Chemical compound C=COC(=O)C=C BLCTWBJQROOONQ-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 208000020442 loss of weight Diseases 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000004999 plastisol Substances 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229920000582 polyisocyanurate Polymers 0.000 description 1
- 239000011495 polyisocyanurate Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 208000013460 sweaty Diseases 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- YSGSDAIMSCVPHG-UHFFFAOYSA-N valyl-methionine Chemical compound CSCCC(C(O)=O)NC(=O)C(N)C(C)C YSGSDAIMSCVPHG-UHFFFAOYSA-N 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B13/00—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
- B32B13/14—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B19/00—Machines or methods for applying the material to surfaces to form a permanent layer thereon
- B28B19/0092—Machines or methods for applying the material to surfaces to form a permanent layer thereon to webs, sheets or the like, e.g. of paper, cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/0006—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/02—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
- B32B17/04—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/04—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/16—Drying; Softening; Cleaning
- B32B38/164—Drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/18—Handling of layers or the laminate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
- C04B28/145—Calcium sulfate hemi-hydrate with a specific crystal form
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
- C04B28/16—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/043—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of plaster
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2317/00—Animal or vegetable based
- B32B2317/12—Paper, e.g. cardboard
- B32B2317/122—Kraft paper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2607/00—Walls, panels
- B32B2607/02—Wall papers, wall coverings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
- C04B2111/0062—Gypsum-paper board like materials
- C04B2111/00629—Gypsum-paper board like materials the covering sheets being made of material other than paper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/603—Including strand or fiber material precoated with other than free metal or alloy
- Y10T442/604—Strand or fiber material is glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/615—Strand or fiber material is blended with another chemically different microfiber in the same layer
- Y10T442/616—Blend of synthetic polymeric and inorganic microfibers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/615—Strand or fiber material is blended with another chemically different microfiber in the same layer
- Y10T442/618—Blend of chemically different inorganic microfibers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/623—Microfiber is glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/647—Including a foamed layer or component
- Y10T442/652—Nonwoven fabric is coated, impregnated, or autogenously bonded
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/659—Including an additional nonwoven fabric
- Y10T442/665—Including a layer derived from a water-settable material [e.g., cement, gypsum, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/697—Containing at least two chemically different strand or fiber materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/697—Containing at least two chemically different strand or fiber materials
- Y10T442/698—Containing polymeric and natural strand or fiber materials
Definitions
- the present invention relates to a gypsum board used in building construction and to a process for its manufacture; and more particularly, to a non-woven glass fiber mat comprising a blend of glass fibers having different diameters and lengths bonded together with a resinous latex binder, a gypsum board or similar product in panel form faced on at least one side with such a mat, and processes for the manufacture thereof.
- a gypsum slurry is first generated in a mechanical mixer by mixing at least one of anhydrous calcium sulfate (CaSO 4 ) and calcium sulfate hemihydrate (CaSO 4 - 1 /2H 2 O, also known as calcined gypsum), water, and other substances, which may include set accelerants, waterproofing agents, reinforcing mineral, glass fibers, and the like.
- the gypsum slurry is normally deposited on a continuously advancing, lower facing sheet, such as kraft paper.
- additives e.g. cellulose and glass fibers, are often added to the slurry to strengthen the gypsum core once it is dry or set.
- Starch is frequently added to the slurry in order to improve the adhesion between the gypsum core and the facing.
- a continuously advancing upper facing sheet is laid over the gypsum and the edges of the upper and lower facing sheets are pasted to each other with a suitable adhesive.
- the facing sheets and gypsum slurry are passed between parallel upper and lower forming plates or rolls in order to generate an integrated and continuous flat strip of unset gypsum sandwiched between the sheets.
- Such a flat strip of unset gypsum is known as a facing or liner.
- the strip is conveyed over a series of continuous moving belts and rollers for a period of several minutes, during which time the core begins to hydrate back to gypsum (CaSO 4 -2H 2 O).
- the process is conventionally termed "setting," since the rehydrated gypsum is relatively hard.
- the strip is stressed in a way that can cause the facing to delaminate from the gypsum core if its adhesion is not sufficient.
- the continuous strip is cut into shorter lengths or even individual boards or panels of prescribed length. After the cutting step, the gypsum boards are fed into drying ovens or kilns so as to evaporate excess water.
- the boards are blown with hot drying air. After the dried gypsum boards are removed from the ovens, the ends of the boards are trimmed off and the boards are cut to desired sizes.
- the boards are commonly sold to the building industry in the form of sheets nominally 4 feet wide and 8 to 12 feet or more long and in thicknesses from nominally about V to 1 inches, the width and length dimensions defining the two faces of the board. While paper is widely used as a facing material for gypsum board products because of its low cost, many applications demand water resistance that paper facing cannot provide. Upon exposure to water either directly in liquid form or indirectly through exposure to high humidity, paper is highly prone to degradation, such as by deiamination, that substantially compromises its mechanical strength.
- Gypsum products typically rely on the integrity of the facing as a major contributor to their structural strength. Consequently, paper-faced products are generally not suited for exterior or other building uses in which exposure to moisture conditions is presumed. In addition, there is growing attention being given to the issue of mold and mildew growth in building interiors and the potential adverse health impact such activity might have on building occupants.
- the paper facing of conventional gypsum board contains wood pulp and other organic materials that may act in the presence of moisture or high humidity as nutrients for such microbial growth. A satisfactory alternative facing material less susceptible to growth is highly sought.
- a further drawback of paper-faced gypsum board is flame resistance. In a building fire, the exposed paper facing quickly burns away.
- U.S. Patent 4,647,496 discloses an exterior insulation system including a fibrous mat-faced gypsum board having a set gypsum core that is water-resistant.
- the fibrous mat is preferably sufficiently porous for the water in the gypsum slurry to evaporate during the production drying operation as the gypsum sets.
- the mat comprises fibrous material that can be either mineral-type or a synthetic resin.
- One preferred mat comprises non-woven glass fibers, randomly oriented and secured together with a modified or plasticized urea formaldehyde resin binder, and sold as DURA-GLASS® 7502 by the Manville Building Materials Corporation.
- gypsum board products incorporating such conventional fibrous mats have proven to have certain drawbacks. While fibrous mats are undesirably more costly than the traditionally used kraft paper, there are other, more troublesome issues as well.
- Some persons are found to be quite sensitive to the fiberglass mat, and develop skin irritations and abrasions when exposed to the mat at various stages, including the initial production of the mat, the manufacture of composite gypsum board with the mat facing, and during the cutting, handling, and fastening operations (e.g., with nails or screws) that attend installation of the end product during building construction. Handling of the mat, and especially cutting, is believed to release glass fibers responsible for the irritation. The fibers may either become airborne or be transferred by direct contact. As a result, workers are generally forced to wear long-sleeved shirts and long pants and to use protective equipment such as dust masks. Such measures are especially unpleasant in the sweaty, hot and humid conditions often encountered either in manufacturing facilities or on a construction jobsite.
- the fibers in the mat themselves give rise to various asperities, and to additional, larger sized irregularities often termed in the industry with descriptives such as “orange peel”, “cockle”, or similarly evocative terms describing surface non-planarity.
- the perceived smoothness of a board surface is the result of a complex interplay between various topographic features of the board, including the size, depth, spacing, and regularity of the features. In most instances, the smoothness of different board surfaces may readily be compared and ranked by visual inspection, especially under illumination by obliquely incident light.
- image analysis techniques are useful in quantifying certain of the topological features seen on various gypsum board surfaces. Many of the aforementioned surface defects arise during the drying or curing of the mat or gypsum board.
- mat-faced gypsum board is seldom if ever used for interior finished walls.
- Another form of mat-faced gypsum board is known from U.S. Patent 4,879,173, which discloses a mat of non-woven fibers having a reinforcing resinous binder that can comprise a single resin or a mixture of resins, either thermoplastic or thermosetting.
- Exemplary resins disclosed include a styrene-acrylic copolymer and a self-crosslinking vinyl acetate-acrylic copolymer.
- a small amount of the binder is applied to the surface of the mat and penetrates but part of the way therethrough.
- the board is said to be useful as a support member in a built-up roof.
- the highly textured surface of the mat binder provides many interstices into which can flow an adhesive used to adhere an overlying component.
- considerable care is required in using a mat containing substantial numbers of voids as a facer for gypsum board.
- Conventional processing that incorporates deposition of a relatively wet slurry is generally found to result in considerable intrusion of the slurry through the mat and onto the faced surface, which is frequently undesirable. Prevention of this excess intrusion typically requires very careful control of the slurry viscosity, which, in turn, frequently leads to other production problems.
- Alternative mats, which inherently limit intrusion, yet still have sufficient permeability to permit water to escape during the formation and heat drying of the gypsum board are thus eagerly sought as a simpler alternative.
- a fibrous mat facer with improved strike-through resistance and useful as a facer substrate or carrier for receiving a curable substance in a fluid state is disclosed by U.S. Patent 4,637,951.
- the porous, non-woven mat comprises a blend of microfibers intermixed and dispersed with base fibers and bound with a binder comprising a water miscible combination of a heat settable polymer.
- the mat is said to be useful in forming composite materials employing a curable thermoset, preferably foamable material such as a polyurethane or polyisocyanurate rigid foam board and as a carrier web in the vinyl flooring industry where the settable polymer comprises a vinyl plastisol.
- the present invention provides a gypsum board and a process for the manufacture thereof.
- the board comprises a layer of set gypsum having a first face and a second face and a fibrous mat affixed to at least one of the faces.
- the mat includes a non-woven web comprising a blend of a major portion composed of chopped continuous glass fibers having an average fiber diameter ranging from about 8 to 17 ⁇ m and a minor portion composed of fine staple fibers having an average fiber diameter of less than about 5.5 ⁇ m.
- the minor portion comprises about 1 - 30 percent of the dry weight of the web.
- the gypsum board of the invention typically is used for a number of purposes in building construction, such as a surface material for walls and ceilings and as an underlayment for floors, roofs, and the like.
- the board finds application in both interior and exterior environments.
- the board has a smooth, uniform surface that readily accepts paint or other surface treatments to provide a pleasing aesthetic appearance.
- Various embodiments of the invention have further desirable attributes, including resistance to flame, moisture, and growth of mold and mildew.
- the inadvertent release of fibers from the mat used in the present gypsum board is minimized, limiting the incidence of skin irritation among workers involved in either production or installation of the board.
- FIG. 1 is a cross-sectional view of a mat-faced gypsum board of the invention.
- DETAILED DESCRIPTION OF THE INVENTION The present invention provides gypsum board and other hydraulic set and cementitious boards having front and back large surfaces, at least one of which is faced with a non-woven, fibrous mat.
- hydraulic set is meant a material capable of hardening to form a cementitious compound in the presence of water.
- Typical hydraulic set materials include gypsum, Portland cement, pozzolanic materials, and the like.
- FIG. 1 there is shown generally at 30 a sectional view across the width direction of one embodiment of a mat-faced gypsum board in accordance with the invention.
- the board comprises a layer of set gypsum 28, which is sandwiched between first and second fibrous mats 14, 20, and bonded thereto.
- Two right-angled folds are formed in each lateral edge of first mat 14, a first upward fold and a second inward fold. The two folds are separated by a small distance, whereby the thickness of board is generally determined.
- the second folds define longitudinally extending strips 16 and 18 that are substantially parallel to the main part of the mat.
- a second fibrous mat 20 covers the other side of the set gypsum core 28.
- second mat 20 The respective lateral edges of second mat 20 are affixed to strips 16 and 18, preferably with adhesive 22, 23.
- board 30 is installed with the side bearing mat 14 facing a finished space.
- the board is advantageously ready for painting, but other finishing forms such as plaster, wallpaper or other known wall coverings may also be applied with a minimum of surface preparation.
- the mats used in the present invention for one or both of the large faces of the gypsum board comprise a non-woven web bonded together with a resinous binder.
- the web consists essentially of a blend of a major portion composed of chopped continuous glass fibers having an average diameter ranging from about 8 to about 17 ⁇ m and a minor portion composed of fine staple fibers, also called microfibers.
- the minor portion comprises about 1 - 30 percent, and preferably about 20 - 30 percent, of the weight of the dry web.
- the fine fibers have an average fiber diameter of less than about 5.5 ⁇ m, and preferably an average fiber diameter of less than about 3.5 ⁇ m, and more preferably less than about 1.9 ⁇ m.
- the fine fibers preferably have a fiber length of less than about 7 mm.
- the chopped strand fibers preferably have fairly uniform fiber diameters and lengths, although mixtures of different lengths and different fiber diameters are contemplated and included within the scope of the invention.
- Chopped strand fibers are readily distinguishable from staple fibers by those skilled in the art.
- Staple fibers are usually made by processes such as rotary fiberization or flame attenuation of molten glass known in the fiber industry. They typically have a wider range of lengths and fiber diameters than chopped strand fibers. Commonly the microfibers have a distribution of lengths ranging from a few times their diameters up to about 7 mm, with a few fibers as long as about 12 mm.
- One method of making the fine fibers is disclosed by U.S. Patent No. 4,167,404, which disclosure is hereby incorporated in the entirety by reference thereto.
- fibrous mats containing a combination of chopped, relatively large diameter fibers and staple microfibers of lesser diameter conveys a number of advantages over boards made with other known fibrous mats.
- the smaller fibers tend to fill the interstices between large fibers, thereby limiting the intrusion of gypsum slurry into and through the mat onto the board surface. Surprisingly, this control is achieved without unduly compromising the permeability of the mat for residual water vapor in the gypsum that must be removed during board production.
- the distribution of chopped fiber diameters may have a single mode, but may optionally be multi-modal.
- suitable arrangement of the distribution of fiber size affords further and more precise control of the porosity and air permeability of the fibrous mat and the corresponding propensity for bleed-through of the gypsum slurry.
- the need for careful control of slurry viscosity during board production with the present mat is greatly eased, leading to cost reduction and manufacturing efficiency.
- the surface of boards made in accordance with the present invention has an improved "hand,” i.e., an improved subjective feel, and better accepts surface treatments because of its greater smoothness. Even after prior art boards are coated with substantial amounts of paint in multiple coats, the texture of the facing mat in many instances remains visible, making the surface aesthetically unpleasing for many applications.
- the present boards may be finished to provide an aesthetic and functional surface with far less paint and the associated labor to prepare the surface and apply the paint or other desired finish, wallpaper or other coating, or the like.
- a preferred continuous glass fiber for the major portion of the fibrous web is at least one member selected from the group consisting of E, C, and T type and sodium borosilicate glasses.
- E glass refers to a family of glasses typically with a calcium aluminoborosilicate composition and a maximum alkali content of 2.0% that are also known as electrical glasses.
- E glass fiber is commonly used to reinforce various articles.
- C glass typically has a soda-lime-borosilicat ⁇ composition that provides it with enhanced chemical stability in corrosive environments
- T glass usually has a magnesium aluminosilicate composition and especially high tensile strength in filament form.
- the chopped fibers of the major portion can have varying lengths, but more commonly are substantially of similar length.
- E glass fiber having an average fiber diameter ranging from about 10 to 16 ⁇ m and a length ranging from about 5 to 30 mm.
- E glass fiber has sufficiently high strength and other mechanical properties to produce acceptable mats and is relatively low in cost and widely available.
- Most preferred is E glass having an average fiber diameter of about 11 ⁇ 1.5 ⁇ m and a length ranging from about 6 to 12 mm.
- the staple fibers used for the minor portion of the web are preferably glass or mineral fibers, such as mineral wool, slag wool, ceramic fibers, carbon fibers, metal fibers, refractory fibers, or mixtures thereof.
- Other synthetic or polymer fibers such as melt blown micro denier fibers of polyester, nylon, polyethylene, polypropylene, or the like, may also be used.
- the aforementioned fibrous mat comprising a blend of fibers be used for both facings of the board, one of the faces may also be formed with kraft paper, other glass mats, or other facings conventionally used in gypsum board.
- Suitable binders include urea formaldehyde; conventional modified urea formaldehyde; acrylic resins; melamine resins, preferably having a high nitrogen resins such as those disclosed by U.S. Patent 5,840,413; homopolymers or copolymers of polyacrylic acid having a molecular weight of less than 10,000, preferably less than 3,000; crosslinking acrylic copolymer having a glass transition temperature (GTT) of at least about 25°C, crosslinked vinyl chloride acrylate copolymers having a GTT preferably no higher than about 113°C; and other known flame and water resistant conventional mat binders.
- GTT glass transition temperature
- Binder systems having a GTT ranging from about 15 to 45°C are thus preferred.
- Aqueous modified and plasticized urea formaldehyde resin binders may be used and have low cost and acceptably high performance.
- the binder used for the present mats comprise an effective amount of a water repellant to limit the intrusion of gypsum slurry during board production.
- vinyl acrylate latex copolymers may further incorporate stearylated melamine for improvement in water repellency, preferably at a level ranging from about 3 to 10 wt.%, and more preferably at about 6 wt.%.
- a suitable aqueous stearylated melamine emulsion is available from the Sequa Chemical Corporation, Chester, SC, under the tradename SEQUAPELTM 409. The stearylated melamine is in liquid form having a solids content of about 40 wt.
- gypsum board incorporating mat with the preferred binder is more resistant to abrasion than board faced with either paper or conventional fibrous mats.
- a preferred binder for the present mat comprises an acrylate copolymer binder latex with a GTT of about 25°C available from Noveon, Inc. of Cleveland, OH, under the tradename HycarTM 26138.
- this acrylate copolymer latex has a solids content of about 50 weight percent solids, but it is preferred to dilute the concentration with water to about 25 wt. percent solids before using it.
- mat bound with the acrylate copolymer latex is smoother and the mat thinner for equivalent weight and properties than with other known binders.
- expensive fluorochemical emulsions needed in prior art binders are not required.
- the amount of acrylate copolymer latex binder (and any optional cross-linker) left in the wet mat during manufacture can be determined by a loss on ignition (LOI) test, the result thereof being specified as a percentage of the dry weight of the finished mat.
- LOI loss on ignition
- the amount of binder in the final mat, based on its dry weight ranges from about 15 to 35 wt. percent, with about 20 - 30 wt. percent being more preferred, and 25 ⁇ 2.5 wt. percent being most preferred.
- the upper limit is dictated by process constraints and cost, while the minimum is required for adequate tensile strength.
- the fibrous mats of the present invention further contain fillers, pigments, or other inert or active ingredients either throughout the mat or concentrated on a surface.
- the mat can contain effective amounts of fine particles of limestone, glass, clay, coloring pigments, biocide, fungicide, intumescent material, or mixtures thereof.
- additives may be added for known structural, functional, or aesthetic qualities imparted thereby. These qualities include coloration, modification of the structure or texture of the surface, resistance to mold or fungus formation, and fire resistance.
- flame retardants sufficient to provide flame resistance, e.g. according to NFPA Method 701 of the National Fire Protection Association or ASTM Standard E84, Class 1 , by the American Society for the Testing of Materials, are added.
- Biocide is preferably added to the mat and/or gypsum slurry to resist fungal growth, measurable in accordance with ASTM Standard D3273.
- Gypsum board in accordance with the present invention preferably is faced with a mat having a basis weight ranging from about 0.6 to 2.2 pounds per 100 square feet, more preferably ranging from about 0.9to 2.2 lbs./100 sq. ft., and most preferably about 1.25 ⁇ 0.2 lbs. /100 sq. ft. (about 29 - 110, 45 - 110, and 60 ⁇ 10 g/m 2 , respectively).
- the binder content of the dried and cured mats ranges from about 10 to 35 wt. percent, more preferably from about 15 to 30 wt. percent, and most preferably from about 25 ⁇ 3 wt. percent, based on the weight of the finished mat.
- the basis weight must be large enough to provide the mat with sufficient tensile strength for producing quality gypsum board.
- the binder content must be limited for the mat to remain sufficiently flexible to permit it to be bent to form the corners of the board, as shown in FIG. 1.
- too thick a mat renders the board difficult to cut during installation. Such cuts are needed both for overall size and to fit the board around protrusions such as plumbing and electrical hardware.
- the utility of the present mat is further enhanced by its relatively high air permeability.
- air permeability During the gypsum board formation process, far more water is present in the gypsum slurry than is stochiometrically needed to drive the gypsum rehydration reaction. The excess is removed during a drying operation, and preferably escapes through the facings.
- facers must have sufficient permeability to allow the drying to be accomplished within an acceptable time period and without bubbling, delamination, or other degradation of the facer.
- the air permeability of a mat is conventionally measured by the air flow between reservoirs separated by the mat.
- the Frazier test is called the Frazier test and further described by ASTM Standard Method D737, with the results ordinarily being given in units of cubic feet per minute per square foot (cfm/ft 2 ).
- the test is usually carried out at a differential pressure of about 0.5 inches of water.
- the permeability of the present mat is at least about 250, and more preferably, at least about 300 cfm/ft 2 .
- any suitable method may be used to form the present mats.
- One such method known from U.S. Patent No. 4,129,674, employs a wet-laid, inclined wire screen mat-forming machine.
- the method comprises forming a slurry, preferably a water slurry, containing the requisite fibers.
- the solids content of such a slurry may be very low, such as approximately 0.2%.
- the slurry is intensely mechanically agitated to disperse the fibers uniformly therein and then dispensed onto a moving screen.
- a vacuum is applied to remove a substantial part of the water, which is preferably recycled, and thereby form a web of the fibers.
- the web After application of a binder, the web is heated to evaporate any remaining water and cure the binder, thus forming the bonded mat.
- the mat-forming process is carried out in a continuous operation.
- the moving screen is provided as a continuous conveyor-like loop and is slightly upwardly inclined during the portion of its travel in which the fiber slurry is deposited thereon.
- a binder is applied and the mat heated to effect final drying and curing.
- the web is optionally transferred to one or more additional downstream conveyor systems for binder application and passage through a heated oven for the final drying and curing operation.
- Machines suitable for carrying out such a web-forming process are available commercially and include devices manufactured under the tradenames HydroformerTM by Voith-Sulzer of Appleton, WS, and DeltaformerTM by Valmet/Sandy Hill of Glenns Falls, NY.
- the aqueous binder solution is preferably applied using a curtain coater or a dip and squeeze applicator. Normally, the mat is subjected to temperatures of about 120 - 330°C for periods usually not exceeding 1 or 2 minutes, and frequently less than 40 seconds, for the drying and curing operations.
- Alternative mat forming methods useful in forming mat for the present invention include the use of well-known cylinder forming and "dry laying.”
- the invention further provides a method for making gypsum board and other hydraulic set and cementitious board products for interior and/or exterior use, i.e. products appointed for installation on either interior or exterior surfaces of building structures.
- exterior surface is meant any surface of a completed structure expected to be exposed to weather; by interior surface is meant a surface within the confines of an enclosed, completed structure and not intended to be exposed to weather.
- non-woven, fibrous mat is present on at least one of the large faces of the gypsum board.
- the present improved gypsum board production method comprises the steps of: forming an aqueous slurry comprising at least one of anhydrous calcium sulfate, calcium sulfate hemi-hydrate, and hydraulic setting cement; distributing the slurry to form a layer on a first facing; applying a second facing onto the top of the layer; separating the resultant board into individual articles; and drying the articles.
- the process is characterized in that at least one of the facings comprises a non-woven, fibrous mat having a fibrous web comprising a blend of fibers, including a major portion of chopped continuous glass fibers and a minor amount of fine staple fibers.
- the chopped continuous fibers have an average fiber diameter ranging from about 8 to 17 ⁇ m, and the staple fibers have an average or mean fiber diameter of less than about 5.5 ⁇ m.
- the fibers in the web are bound together with a polymeric binder.
- the slurry may be distributed to form a layer between two facings.
- the slurry optionally includes reinforcing fibers or other known additives used as process control agents or to impart desired functional properties to the board, including one or more of agents such as biocides, flame retardants, and water repellants.
- the product of the invention is ordinarily of a form known in the building trades as board, i.e. a product having a width and a length substantially greater than its thickness. Gypsum and other hydraulic set and cementitious board products are typically furnished commercially in nominal widths of at least 2 feet, and more commonly 4 feet. Lengths are generally at least 2 feet, but more commonly are 8 - 12 feet.
- Gypsum and other hydraulic set boards made in accordance with the present invention exhibit a number of desirable qualities.
- the fibrous mat used results in a surface that is smoother and more amenable to painting or other surface finishing processes than prior art boards,
- the mat is also more flexible, facilitating the bending operations needed to fold the facer around the core during production, as illustrated for mat 14 in FIG. 1.
- board incorporating the fibrous mat of the invention has a reduced tendency to generate irritating dust during cutting and handling than prior art boards faced with other facing materials.
- any known process for making mat faced gypsum board can be used along with the mats described for facing at least one major face of the gypsum boards of the present invention.
- those processes described in U.S. Patent Nos. 4,647,496, 5,220,762, 6,524,679, all herein incorporated by reference, are typical, but the method of the present invention is not limited to only these known processes of making fibrous mat faced gypsum board.
- the following examples are presented to provide a more complete understanding of the invention.
- the specific techniques, conditions, materials, proportions and reported data set forth to illustrate the principles and practice of the invention are exemplary and should not be construed as limiting the scope of the invention.
- Comparative Example 1 Preparation and Testing of a Conventional Non-Woven Glass Fiber Mat
- a non-woven glass fiber mat of a type typically used as a facer for conventional gypsum board is prepared using a wet laid mat machine in the manner disclosed in U.S. Patent No. 4,129,674, which is hereby incorporated in the entirety by reference thereto.
- the mat designated as comparative example 1 , contains chopped glass fibers and is bonded together with a polymer binder containing a small amount of water repellant.
- the specific materials used are set forth in Table I.
- the M137 and K137 glass fibers are commercially available from the Johns Manville Corporation of Denver, CO.
- a conventional modified urea formaldehyde binder is applied with a curtain coating/saturation technique. TABLE I
- Standard tests for characterizing the physical and mechanical properties are carried out on the comparative example mat, including basis weight per unit area, loss of weight on ignition, and thickness. Strengths are measured both along the web direction and across the web, using a conventional mechanical testing machine to determine the peak tensile strength of a sample about 7.5 cm wide. The stiffness is determined using the standard Taber stiffness test, wherein a 38 mm wide strip is deflected by applying force at a point 50 mm from a clamping point. The torque (in g- cm) required to achieve a 15° deflection is conventionally termed the Taber stiffness. Air permeability is measured using the Frazier test at a differential pressure of 0.5 inches of water in accordance with ASTM Method D737.
- Examples 2 - 5 Four non-woven fiberglass mats designated as Examples 2 - 5 are formed using a wet laid mat machine in the manner disclosed in U.S. Patent No. 4,129,674. Each mat contains a blend of glass fibers of various average fiber diameters as set forth in Table III. Examples 2 - 3 contain a blend of about 75 weight percent of fiber content H 137 chopped glass fibers about 12 mm long and having an average fiber diameter of about 11 ⁇ m, and about 25 wt. percent fiber content of CX 253 glass staple fiber having an average fiber diameter of about 5 ⁇ m. Both fibers are available from Johns Manville Corporation of Denver, CO. The fibers make up about 73 ⁇ 1.5 wt. percent of the mat, based on the weight of the dry mat.
- the mat is made on a wet- laid, inclined wire screen mat forming machine.
- the fibers are bonded together with about 26 ⁇ 1.5 wt. percent of a cured modified acrylic binder, composed of HycarTM 26138, an acrylic resin latex having a glass transition temperature of about 25°C, and about 2.5 wt.% melamine formaldehyde.
- the HycarTM 26138 resin latex is available from Noveon, Inc. of Cleveland, OH.
- a curtain coating/saturation technique is used to apply the binder.
- Examples 4 - 5 contain a blend of about 75 weight percent H 137 chopped glass fibers about 12 mm long and having an average fiber diameter of about 11 ⁇ m, and about 25 wt.
- the mats of the above Comparative Example 1 and Examples 3 and 5 of the invention are used as facers for the manufacture of gypsum board in a manner as disclosed in U. S. Patent No. 4,647,496. Smoothness is determined by relative ranking of samples observed for shadows cast by surface irregularities when viewed under low incident light angle. Samples with deeper surface or non-uniform irregularities are ranked lower than shallow or uniform irregularity. Samples are ranked on a scale of 1-10 with 10 being completely smooth.
- the mats of Examples 3 and 5 produce gypsum board having smoothnesses rated at 7 and 5, respectively, and are therefore smoother than board made with the mat of Comparative Example 1 , which has a smoothness rating of 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laminated Bodies (AREA)
- Paper (AREA)
- Finishing Walls (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES04754709T ES2711228T3 (en) | 2003-06-27 | 2004-06-07 | Plasterboard coated with non-woven fiberglass mat and manufacturing process |
PL04754709T PL1644167T3 (en) | 2003-06-27 | 2004-06-07 | Non-woven glass fiber mat faced gypsum board and process of manufacture |
CA 2529627 CA2529627C (en) | 2003-06-27 | 2004-06-07 | Non-woven glass fiber mat faced gypsum board and process of manufacture |
EP04754709.6A EP1644167B1 (en) | 2003-06-27 | 2004-06-07 | Non-woven glass fiber mat faced gypsum board and process of manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/608,790 US7842629B2 (en) | 2003-06-27 | 2003-06-27 | Non-woven glass fiber mat faced gypsum board and process of manufacture |
US10/608,790 | 2003-06-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005005117A2 true WO2005005117A2 (en) | 2005-01-20 |
WO2005005117A3 WO2005005117A3 (en) | 2005-06-16 |
Family
ID=33540680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/018178 WO2005005117A2 (en) | 2003-06-27 | 2004-06-07 | Non-woven glass fiber mat faced gypsum board and process of manufacture |
Country Status (8)
Country | Link |
---|---|
US (1) | US7842629B2 (en) |
EP (1) | EP1644167B1 (en) |
CA (1) | CA2529627C (en) |
ES (1) | ES2711228T3 (en) |
PL (1) | PL1644167T3 (en) |
RU (1) | RU2348532C2 (en) |
TR (1) | TR201819200T4 (en) |
WO (1) | WO2005005117A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7744994B2 (en) | 2004-03-30 | 2010-06-29 | Coveright Surfaces Holding Gmbh | Coating composition, coated article and a method to manufacture the same |
WO2011019598A1 (en) | 2009-08-11 | 2011-02-17 | Johns Manville | Curable fiberglass binder |
WO2017139270A1 (en) * | 2016-02-08 | 2017-08-17 | Certainteed Gypsum, Inc. | System, method and apparatus for gypsum board with embedded structure having open cells that are substantially filled |
CN108166695A (en) * | 2017-12-21 | 2018-06-15 | 泰山石膏有限公司 | A kind of surface has the gypsum sheet material of composite glass fiber facing felt |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7208225B2 (en) * | 1995-06-30 | 2007-04-24 | Lafarge Platres | Prefabricated plaster board |
US6723670B2 (en) * | 2001-08-07 | 2004-04-20 | Johns Manville International, Inc. | Coated nonwoven fiber mat |
US20040163724A1 (en) * | 2001-09-06 | 2004-08-26 | Mark Trabbold | Formaldehyde-free duct liner |
US20040161993A1 (en) * | 2001-09-06 | 2004-08-19 | Gary Tripp | Inorganic fiber insulation made from glass fibers and polymer bonding fibers |
US20030041626A1 (en) * | 2001-09-06 | 2003-03-06 | Certainteed Corporation | Insulation containing a mixed layer of textile fibers and of rotary and/or flame attenuated fibers, and process for producing the same |
US20040192141A1 (en) * | 2001-09-06 | 2004-09-30 | Alain Yang | Sub-layer material for laminate flooring |
US20040209074A1 (en) * | 2003-04-17 | 2004-10-21 | Georgia-Pacific Gypsum Corporation | Mat faced gypsum board |
US7989370B2 (en) * | 2003-10-17 | 2011-08-02 | Georgia-Pacific Gypsum Llc | Interior wallboard and method of making same |
US20050202227A1 (en) * | 2004-03-10 | 2005-09-15 | Kajander Richard E. | Silane based coatings on glass fiber reinforcements in gypsum board |
US7745357B2 (en) | 2004-03-12 | 2010-06-29 | Georgia-Pacific Gypsum Llc | Use of pre-coated mat for preparing gypsum board |
US7846536B2 (en) * | 2004-12-16 | 2010-12-07 | United States Gypsum Company | Building panels with aesthetic edges |
US7635657B2 (en) * | 2005-04-25 | 2009-12-22 | Georgia-Pacific Gypsum Llc | Interior wallboard and method of making same |
WO2007055074A1 (en) * | 2005-11-09 | 2007-05-18 | Yoshino Gypsum Co., Ltd. | Composition for building material, plasterboard, and technique, wall, and the like employing or formed from these |
US20070141931A1 (en) | 2005-12-21 | 2007-06-21 | Malay Nandi | Faced board material having a smooth aesthetically pleasing outer surface and good adhesion of facer to core |
US20080003903A1 (en) * | 2005-12-21 | 2008-01-03 | Malay Nandi | Coated nonwoven mat |
US20070141304A1 (en) * | 2005-12-21 | 2007-06-21 | Gaurav Agrawal | Perforated board formed from cementitious material and process and system for producing same |
US20070149083A1 (en) * | 2005-12-22 | 2007-06-28 | Gaurav Agrawal | Board formed from a cementitious material and a facer containing a laminate |
US20070148430A1 (en) * | 2005-12-22 | 2007-06-28 | Gaurav Agrawal | Perforated, coated nonwoven mat |
US20070175173A1 (en) * | 2005-12-30 | 2007-08-02 | Babineau Francis J Jr | Board construction assembly for reducing sound transmission and method |
US20070197114A1 (en) * | 2006-02-23 | 2007-08-23 | Grove Dale A | Wear resistant coating composition for a veil product |
US20080152945A1 (en) * | 2006-12-20 | 2008-06-26 | David Paul Miller | Fiber reinforced gypsum panel |
US8070895B2 (en) | 2007-02-12 | 2011-12-06 | United States Gypsum Company | Water resistant cementitious article and method for preparing same |
ES2773003T3 (en) * | 2007-02-21 | 2020-07-09 | Johns Manville Europe Gmbh | New composite materials, method for their manufacture and use |
US7829488B2 (en) * | 2008-01-22 | 2010-11-09 | Johns Manville | Non-woven glass fiber mat faced gypsum board and process of manufacture |
MX2011004136A (en) * | 2008-10-30 | 2011-05-24 | United States Gypsum Co | Mat-faced cementitious article and method for preparing same. |
US8590268B2 (en) * | 2008-11-21 | 2013-11-26 | Maxxon Corporation | Installing underlayment systems |
US8329308B2 (en) | 2009-03-31 | 2012-12-11 | United States Gypsum Company | Cementitious article and method for preparing the same |
DE102011011056A1 (en) * | 2011-02-11 | 2012-08-16 | Johns Manville Europe Gmbh | Glass fiber fleece and glass fiber nonwoven products containing |
US20130178126A1 (en) * | 2012-01-09 | 2013-07-11 | Glenda Beth Bennett | Microfiber-containing fiber reinforced facer mats and method of making |
RU2529687C2 (en) * | 2012-04-24 | 2014-09-27 | Александр Витольдович Малицкий | Laminar composite (versions) |
US9267238B2 (en) | 2012-07-25 | 2016-02-23 | Johns Manville | Glass fiber reinforced facer mat |
US10336036B2 (en) | 2013-03-15 | 2019-07-02 | United States Gypsum Company | Cementitious article comprising hydrophobic finish |
GB201309058D0 (en) * | 2013-05-20 | 2013-07-03 | Bpb United Kingdom Ltd | Composite construction panel having improved substrate board and method for the manufacture thereof |
US8734613B1 (en) | 2013-07-05 | 2014-05-27 | Usg Interiors, Llc | Glass fiber enhanced mineral wool based acoustical tile |
CN103979904B (en) * | 2013-08-02 | 2016-04-13 | 上海纯翠装饰材料有限公司 | Reinforcing glass fiber high-strength plasterboard |
US10378135B2 (en) * | 2013-08-06 | 2019-08-13 | Johns Manville | Glass fibre mat and products containing glass fibre mats |
DE102013013321A1 (en) * | 2013-08-09 | 2015-02-12 | Johns Manville Europe Gmbh | Nonwoven fabric and non-woven fabric containing products |
EP3058126B1 (en) | 2013-10-16 | 2017-09-06 | OCV Intellectual Capital, LLC | Flexible non-woven mat |
WO2015167362A1 (en) * | 2014-04-30 | 2015-11-05 | Александр Витольдович МАЛИЦКИЙ | Wooden grating structural panel (variants) |
JP6453703B2 (en) * | 2015-04-28 | 2019-01-16 | 帝人株式会社 | FRP panel and manufacturing method thereof |
EP3426861A1 (en) * | 2016-03-10 | 2019-01-16 | Carlisle Intangible, LLC | Heat compensating roofing boards |
CN105904795B (en) * | 2016-05-18 | 2018-08-14 | 盐城市悦诚新材料股份有限公司 | Non-woven fabrics overlay film protective plate |
US10272399B2 (en) | 2016-08-05 | 2019-04-30 | United States Gypsum Company | Method for producing fiber reinforced cementitious slurry using a multi-stage continuous mixer |
US10981294B2 (en) | 2016-08-05 | 2021-04-20 | United States Gypsum Company | Headbox and forming station for fiber-reinforced cementitious panel production |
US11224990B2 (en) | 2016-08-05 | 2022-01-18 | United States Gypsum Company | Continuous methods of making fiber reinforced concrete panels |
US11173629B2 (en) | 2016-08-05 | 2021-11-16 | United States Gypsum Company | Continuous mixer and method of mixing reinforcing fibers with cementitious materials |
CN106739210A (en) * | 2016-12-12 | 2017-05-31 | 王成英 | A kind of impermeable PLASTIC LAMINATED and its production method |
US10562206B2 (en) | 2017-06-05 | 2020-02-18 | National Gypsum Properties, Llc | Cementitious panels, and systems and methods for manufacturing cementitious panels |
US11225793B2 (en) | 2018-04-27 | 2022-01-18 | United States Gypsum Company | Fly ash-free coating formulation for fibrous mat tile backerboard |
CN108775124A (en) * | 2018-08-08 | 2018-11-09 | 郑州三迪建筑科技有限公司 | A kind of wire side plasterboard grid cloth |
CA3156002A1 (en) * | 2019-09-27 | 2021-04-01 | Owens Corning Intellectual Capital, Llc | Uncoated nonwoven fiber mat |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4129674A (en) | 1972-10-27 | 1978-12-12 | Johns-Manville Corporation | Fibrous mat especially suitable for roofing products and a method of making the mat |
US4167404A (en) | 1977-03-24 | 1979-09-11 | Johns-Manville Corporation | Method and apparatus for collecting fibrous material |
US4637951A (en) | 1984-12-24 | 1987-01-20 | Manville Sales Corporation | Fibrous mat facer with improved strike-through resistance |
US4647496A (en) | 1984-02-27 | 1987-03-03 | Georgia-Pacific Corporation | Use of fibrous mat-faced gypsum board in exterior finishing systems for buildings |
US4879173A (en) | 1988-01-06 | 1989-11-07 | Georgia-Pacific Corporation | Glass mat with reinforcing binder |
US5840413A (en) | 1993-07-13 | 1998-11-24 | Johns Manville International, Inc. | Fire retardant nonwoven mat and method of making |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4195110A (en) | 1973-11-12 | 1980-03-25 | United States Gypsum Company | Glass-reinforced composite gypsum board |
US4810569A (en) | 1984-02-27 | 1989-03-07 | Georgia-Pacific Corporation | Fibrous mat-faced gypsum board |
US5220762A (en) | 1984-02-27 | 1993-06-22 | Georgia-Pacific Corporation | Fibrous mat-faced gypsum board in exterior and interior finishing systems for buildings |
US5644880A (en) | 1984-02-27 | 1997-07-08 | Georgia-Pacific Corporation | Gypsum board and systems containing same |
US5148645A (en) | 1984-02-27 | 1992-09-22 | Georgia-Pacific Corporation | Use of fibrous mat-faced gypsum board in shaft wall assemblies and improved fire resistant board |
DE3408932A1 (en) | 1984-03-12 | 1985-09-19 | Fiebig & Schillings Gmbh, 8772 Marktheidenfeld | LAYERING MATERIAL ON FLEECE OR FABRIC BASE |
US4722866A (en) | 1985-04-09 | 1988-02-02 | Georgia-Pacific Corporation | Fire resistant gypsum board |
US4772846A (en) * | 1986-12-29 | 1988-09-20 | Hughes Aircraft Company | Wafer alignment and positioning apparatus for chip testing by voltage contrast electron microscopy |
CA1341084C (en) | 1987-11-16 | 2000-08-15 | George W. Green | Coated fibrous mat-faced gypsum board resistant to water and humidity |
DE3937433A1 (en) | 1989-11-10 | 1991-05-16 | Knauf Westdeutsche Gips | PLASTERBOARD PANEL WITH COATING FROM COATED FIBERGLASS Mats and METHOD FOR THE PRODUCTION THEREOF |
US5079078A (en) | 1990-01-29 | 1992-01-07 | Owens-Corning Fiberglas Corp. | Fire-resistant panel system |
DE4011793C1 (en) | 1990-04-12 | 1991-12-12 | Redco N.V., Kapelle-Op-Den-Bos, Be | |
DE4110622C2 (en) * | 1991-04-02 | 1995-12-21 | Schoeller Felix Jun Papier | Polyolefin coated substrate for photographic materials |
US5308692A (en) * | 1992-06-26 | 1994-05-03 | Herbert Malarkey Roofing Company | Fire resistant mat |
US5389716A (en) * | 1992-06-26 | 1995-02-14 | Georgia-Pacific Resins, Inc. | Fire resistant cured binder for fibrous mats |
GB9319205D0 (en) * | 1993-09-16 | 1993-11-03 | Brown Jonathon L | Cement products and a method of manufacture thereof |
CA2157337C (en) | 1995-06-07 | 2006-01-31 | Debbie O'haver-Smith | Improved fibrous mat and mat-faced gypsum board |
CA2228047C (en) | 1995-08-18 | 2004-07-27 | Debbie O'haver-Smith | Improved mat-faced gypsum board and method of manufacturing same |
US6044604A (en) | 1996-09-23 | 2000-04-04 | Bridgestone/Firestone, Inc. | Composite roofing members having improved dimensional stability and related methods |
US5735092A (en) | 1996-09-23 | 1998-04-07 | Bridgestone/Firestone, Inc. | Composite roofing members having improved dimensional stability and related methods |
US5891563A (en) | 1996-10-08 | 1999-04-06 | Bridgestone/Firestone, Inc. | Polyisocyanurate boards with reduced moisture absorbency and lower air permeability and related methods |
US6110575A (en) | 1996-11-12 | 2000-08-29 | Yoshino Sangyo Co., Ltd. | Gypsum-based composite article and method for producing same |
US5772846A (en) | 1997-01-09 | 1998-06-30 | Johns Manville International, Inc. | Nonwoven glass fiber mat for facing gypsum board and method of making |
GB9701500D0 (en) | 1997-01-24 | 1997-03-12 | Bpb Plc | Non-woven inorganic fibre mat |
WO1999016984A1 (en) * | 1997-09-26 | 1999-04-08 | Ibiden Co., Ltd. | Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition |
US6368991B1 (en) | 1998-09-08 | 2002-04-09 | Building Materials Investment Corporation | Foamed facer and insulation boards made therefrom |
US6365533B1 (en) * | 1998-09-08 | 2002-04-02 | Building Materials Investment Corportion | Foamed facer and insulation boards made therefrom cross-reference to related patent application |
US6774071B2 (en) | 1998-09-08 | 2004-08-10 | Building Materials Investment Corporation | Foamed facer and insulation boards made therefrom |
US6187697B1 (en) | 1998-12-31 | 2001-02-13 | Alan Michael Jaffee | Multiple layer nonwoven mat and laminate |
US6294253B1 (en) | 1999-08-11 | 2001-09-25 | Johns Manville International, Inc. | Uniformly dispersing fibers |
US6770354B2 (en) | 2001-04-19 | 2004-08-03 | G-P Gypsum Corporation | Mat-faced gypsum board |
US6524679B2 (en) * | 2001-06-06 | 2003-02-25 | Bpb, Plc | Glass reinforced gypsum board |
US6723670B2 (en) * | 2001-08-07 | 2004-04-20 | Johns Manville International, Inc. | Coated nonwoven fiber mat |
JP3631994B2 (en) | 2001-11-29 | 2005-03-23 | 旭ファイバーグラス株式会社 | Long fiber reinforced thermoplastic resin sheet and composite molded body reinforced by the sheet |
US6579413B1 (en) | 2002-03-21 | 2003-06-17 | Owens Corning Fiberglas Technology, Inc. | Wet-formed mat applications for cement backerboards |
US6800361B2 (en) | 2002-06-14 | 2004-10-05 | E. I. Du Pont De Nemours And Company | Gypsum board having improved flexibility, toughness, abuse resistance, water resistance and fire resistance |
US7056582B2 (en) * | 2003-04-17 | 2006-06-06 | Usg Interiors, Inc. | Mold resistant acoustical panel |
US20050079786A1 (en) | 2003-10-10 | 2005-04-14 | Wilkins Rodney R. | Fiberglass-polypropylene mat and method of forming a fiberglass-polypropylene mat |
US7238402B2 (en) | 2004-03-10 | 2007-07-03 | Johns Manville | Glass fibers and mats having improved surface structures in gypsum boards |
US20050221705A1 (en) | 2004-03-30 | 2005-10-06 | Hitch James M | Nonwoven fiber mats with smooth surfaces and method |
US7338702B2 (en) | 2004-04-27 | 2008-03-04 | Johns Manville | Non-woven glass mat with dissolvable binder system for fiber-reinforced gypsum board |
-
2003
- 2003-06-27 US US10/608,790 patent/US7842629B2/en not_active Expired - Lifetime
-
2004
- 2004-06-07 TR TR2018/19200T patent/TR201819200T4/en unknown
- 2004-06-07 CA CA 2529627 patent/CA2529627C/en not_active Expired - Lifetime
- 2004-06-07 EP EP04754709.6A patent/EP1644167B1/en not_active Expired - Lifetime
- 2004-06-07 PL PL04754709T patent/PL1644167T3/en unknown
- 2004-06-07 RU RU2006102359A patent/RU2348532C2/en active
- 2004-06-07 WO PCT/US2004/018178 patent/WO2005005117A2/en active Application Filing
- 2004-06-07 ES ES04754709T patent/ES2711228T3/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4129674A (en) | 1972-10-27 | 1978-12-12 | Johns-Manville Corporation | Fibrous mat especially suitable for roofing products and a method of making the mat |
US4167404A (en) | 1977-03-24 | 1979-09-11 | Johns-Manville Corporation | Method and apparatus for collecting fibrous material |
US4647496A (en) | 1984-02-27 | 1987-03-03 | Georgia-Pacific Corporation | Use of fibrous mat-faced gypsum board in exterior finishing systems for buildings |
US4637951A (en) | 1984-12-24 | 1987-01-20 | Manville Sales Corporation | Fibrous mat facer with improved strike-through resistance |
US4879173A (en) | 1988-01-06 | 1989-11-07 | Georgia-Pacific Corporation | Glass mat with reinforcing binder |
US5840413A (en) | 1993-07-13 | 1998-11-24 | Johns Manville International, Inc. | Fire retardant nonwoven mat and method of making |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7744994B2 (en) | 2004-03-30 | 2010-06-29 | Coveright Surfaces Holding Gmbh | Coating composition, coated article and a method to manufacture the same |
WO2011019598A1 (en) | 2009-08-11 | 2011-02-17 | Johns Manville | Curable fiberglass binder |
WO2011019597A1 (en) | 2009-08-11 | 2011-02-17 | Johns Manville | Curable fiberglass binder comprising amine salt of inorganic acid |
WO2017139270A1 (en) * | 2016-02-08 | 2017-08-17 | Certainteed Gypsum, Inc. | System, method and apparatus for gypsum board with embedded structure having open cells that are substantially filled |
CN108166695A (en) * | 2017-12-21 | 2018-06-15 | 泰山石膏有限公司 | A kind of surface has the gypsum sheet material of composite glass fiber facing felt |
Also Published As
Publication number | Publication date |
---|---|
EP1644167A2 (en) | 2006-04-12 |
US7842629B2 (en) | 2010-11-30 |
CA2529627C (en) | 2011-05-03 |
TR201819200T4 (en) | 2019-01-21 |
EP1644167B1 (en) | 2018-11-14 |
ES2711228T3 (en) | 2019-04-30 |
US20040266304A1 (en) | 2004-12-30 |
RU2348532C2 (en) | 2009-03-10 |
PL1644167T3 (en) | 2019-05-31 |
WO2005005117A3 (en) | 2005-06-16 |
RU2006102359A (en) | 2006-06-27 |
EP1644167A4 (en) | 2008-05-21 |
CA2529627A1 (en) | 2005-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2529627C (en) | Non-woven glass fiber mat faced gypsum board and process of manufacture | |
CA2529631C (en) | Gypsum board faced with non-woven glass fiber mat | |
US7829488B2 (en) | Non-woven glass fiber mat faced gypsum board and process of manufacture | |
EP1800853B1 (en) | Board material | |
US20080003903A1 (en) | Coated nonwoven mat | |
US7338702B2 (en) | Non-woven glass mat with dissolvable binder system for fiber-reinforced gypsum board | |
US6737156B2 (en) | Interior wallboard and method of making same | |
CA2157337C (en) | Improved fibrous mat and mat-faced gypsum board | |
US20070149078A1 (en) | Perforated non-woven fiberglass mat | |
US7700505B2 (en) | Gypsum board and systems comprising it | |
CN104245305B (en) | Gypsum board suitable for wet or damp areas | |
US20070148430A1 (en) | Perforated, coated nonwoven mat | |
CA1308344C (en) | Gypsum backer board | |
EP2612969B1 (en) | Microfiber-containing fiber reinforced facer mats and the method of making | |
JP2012507421A (en) | Cementitious article having a matte surface and method for producing the same | |
MXPA97009639A (en) | Improved fibrous mat and plaster tablet covered with est |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2529627 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004754709 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006102359 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004754709 Country of ref document: EP |