WO2005002290A1 - Control method and apparatus for improving the efficacy of fluorescent lamps - Google Patents

Control method and apparatus for improving the efficacy of fluorescent lamps Download PDF

Info

Publication number
WO2005002290A1
WO2005002290A1 PCT/IB2004/050950 IB2004050950W WO2005002290A1 WO 2005002290 A1 WO2005002290 A1 WO 2005002290A1 IB 2004050950 W IB2004050950 W IB 2004050950W WO 2005002290 A1 WO2005002290 A1 WO 2005002290A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent lamp
set forth
heat
enclosure
amount
Prior art date
Application number
PCT/IB2004/050950
Other languages
French (fr)
Other versions
WO2005002290A8 (en
Inventor
Charles Trushell
Original Assignee
Koninklijke Philips Electronics, N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics, N.V. filed Critical Koninklijke Philips Electronics, N.V.
Priority to JP2006516728A priority Critical patent/JP2007516562A/en
Priority to EP04744370A priority patent/EP1642481A1/en
Priority to US10/562,284 priority patent/US20080100226A1/en
Publication of WO2005002290A1 publication Critical patent/WO2005002290A1/en
Publication of WO2005002290A8 publication Critical patent/WO2005002290A8/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3922Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations and measurement of the incident light

Definitions

  • Fig. 1 is a schematic representation of a first embodiment of the present invention as applied to a conventional type of fluorescent lamp which is enclosed in a thermally insulative enclosure to prevent loss of heat and wherein the control circuitry which implements the dimming control is located externally of the lamp.
  • Fig. 2 is a schematic representation of an embodiment wherein the fluorescent lamp has been adapted so that the control circuitry which implements the necessary control is incorporated in the body of the lamp along with the blast and other circuits.
  • the efficiency of converting electrical energy into UV radiation depends heavily on the concentration of mercury vapor inside an operating lamp.
  • concentration of mercury vapor is very dependent on the temperature of the glass bulb enclosing the operating arc. Due to inherent inefficiencies in the conversion of electrical energy to visible light some amount of heat is produced. This has the effect of raising the bulb wall temperature. Since the amount of heat lost from the lamp due to convection/radiation depends on temperature, the operating lamp reaches an equilibrium temperature wherein there is balance between the amount of heat generated and the amount of heat which is lost. This temperature depends on electrical power applied and factors that influence heat transfer from the bulb. For instance, if the lamp has a surrounding sleeve, is encapsulated in plastic (i.e.
  • the bulb wall will reach a higher temperature than normal.
  • the light output of a fluorescent lamp attains a maximum at a particular bulb wall temperature.
  • fluorescence lamps have an optimum operating temperature. Since this temperature depends on the pressure of other gases in the lamp interior it is an intrinsic feature of different lamp designs. In most lamps this temperature is about 40°C (104°F.).
  • the glass bulb does not exhibit a uniform temperature when the lamp is operating so at thermal equilibrium the "coldest spot" on the bulb establishes the concentration of mercury in the operating arc. If the concentration of mercury vapor is too high or too low the light output of the lamp is less than what it would be at the optimum temperature.
  • active dimming of fluorescent lamp-based lighting systems is employed and the heat generated by the lamps is intentionally prevented from escaping.
  • the lamp temperature would increase to a level where the 'cold spot' of the lamp would be above the optimum temperature for that particular lamp. This would of course reduce the efficacy of the lamp and therefore result in less light being produced by the power which is supplied thereto.
  • the thermal insulation of the lamp is achieved by using any one or combination of know techniques.
  • the active dimming causes a reduction in power delivered to the system (based on luminous flux) which reduces the temperature of the lamp toward that at which maximum light output is achieved.
  • Fig. 1 shows a fluorescent lamp 100 which is provided with a thermally insulative type enclosure 102.
  • This enclosure can be selected to have a low IR (infrared) transmittivity and thermal conduction while sufficiently transparent to allow for efficient illumination.
  • the enclosure can be made of polycarbonate or have a polycarbonate glaze on the interior.
  • the interior of the enclosure can be evacuated or filled with a gas which inhibits the loss of the heat generated by the fluorescent lamp, to the external atmosphere.
  • gases such as argon or krypton could be used.
  • Filling the interior of the enclosure can be filled with carbon dioxide is also within the purview of the embodiment. It will be appreciated at this point, that this type of lamp and is being illustrated merely by way of example and that the invention is not limited to this specific type of lamp configuration/arrangement.
  • thermal insulative techniques which can be used to limit the amount of heat which is permitted to escape from the lamp, is not limited to enclosures and that other techniques may be used.
  • glazing the outer walls of the gas filled portions of the fluorescent lamp with an IR reflective material such as polycarbonate of other forms of heat reflective films can also be used.
  • a source of alternating current, such as conventional household supply is connected to a control circuit 104.
  • This circuit includes active controller and dimmer functions. These are denoted by the functional blocks 106, 108.
  • a light sensor 110 is arranged so as to be responsive to the amount of light which is produced by the lamp.
  • This sensor 110 can take the form of a photodiode, phototransistor of the like type of photo sensitive device which generates an output which varies with the amount of light which is received.
  • the output of this sensor 110 is applied to the control circuit and is, in accordance with this embodiment of the invention, used to automatically modify the amount of power which is supplied to the lamp by the dimmer in small imperceptible increments until such time as the sensor output reaches a maximum and the current which is consumed is at its lowest level for the detected amount of light. Examples of the type of circuit which can be utilized for this automatic control can be found in United States Patent No. 4,394,603 issued on July 19, 1983 in the name of Widmayer, United States Patent No.
  • Fig. 2 depicts an embodiment wherein the insulation, sensor and control circuit are incorporated into a single unit as different from the arrangement which is shown in Fig. 1 wherein the sensor and control circuit are disposed outboard of the fluorescent lamp per se.
  • Fig. 2 elements corresponding those denoted by the numerals 100, 102, 104, etc., are designated by 200, 202, 204, etc.
  • the outboard disposition of the sensor 110 and circuit 104 in the Fig, 1 arrangement is suited to situations wherein a group of lamps are used in close proximity and a single light sensitive sensor can be used for control all of the group. This control can be extended to a large number of lamps wherein the sensor is oriented toward the lamps so as to be responsive to only the light produced by the lamps and therefore enable a single circuit arrangement be used to control the current which is supplied to all of the lamps.
  • all the lamps in a large room can be controlled by a single sensor arrangement which is adapted (such as by suitable lenses, shielding or the like) to detect the amount of light which is being produced by the plurality of lamps.
  • the number of lamps in a fixture is limited by considerations of heat transfer so that the "cold spot" of each lamp does not greatly exceed the point where the lamp loses efficiency.
  • cold temperature applications required special, more expensive HO (high output) and VHO (very high output) lamps.
  • HO high output
  • VHO very high output
  • the fixture can be used to insulate the lamps or used further insulate lamps which are already provided with their own individual insulation to prevent loss of heat and/or induce the heat to accumulate in the fixture and achieve the heat loss which is used to improve the efficacy of the lamps.
  • the embodiments of the invention allow for good luminaire design. For a given number of lamps of a certain wattage, the luminaire must accommodate the heat generated in order to maintain the lamps at the optimum temperature. If a luminaire is underdesigned so that it contains too many lamps (i.e. to achieve higher light intensities) the lamps are bound to get too hot and the light output and efficacy are compromised. Thus good luminaire design is heavily constrained by the heat generation of lamps.
  • the embodiments of the invention tend to improve the longevity of the lamps in that for a given lamp, with the insulation, the amount of power can actually be reduced and thus enable the lamp to operate at less than its normally rated wattage.
  • lamps, sleeves, encapsulations and luminaires are designed in such a way as to generate excessive heat they can be used in a circuit, as above, to operate with reduced power while still producing the expected light output (viz., are operating with increased efficacy).
  • HO and VHO lamps could be used in compact applications, CFLs (compact fluorescent lights) could be operated without amalgams and the annoying run-up properties.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

A fluorescent lamp arrangement has a fluorescent lamp (100), a thermal insulation (102) disposed with the fluorescent lamp for preventing heat from escaping from the lamp, a sensor (110) for detecting the amount of light generated by the lamp and a circuit (104) responsive to the sensor which controls the amount of electrical power which is supplied to the fluorescent lamp in accordance with the sensor output and which optimizes the amount of light which is produced by the fluorescent lamp for the amount of electrical power consumed.

Description

CONTROL METHOD AND APPARATUS FOR IMPROVING THE EFFICACY OF FLUORESCENT LAMPS The present invention relates to a control method and apparatus for improving the efficacy of fluorescent lamps. In the drawings: Fig. 1 is a schematic representation of a first embodiment of the present invention as applied to a conventional type of fluorescent lamp which is enclosed in a thermally insulative enclosure to prevent loss of heat and wherein the control circuitry which implements the dimming control is located externally of the lamp. Fig. 2 is a schematic representation of an embodiment wherein the fluorescent lamp has been adapted so that the control circuitry which implements the necessary control is incorporated in the body of the lamp along with the blast and other circuits. The efficiency of converting electrical energy into UV radiation (which ultimately produces visible light) depends heavily on the concentration of mercury vapor inside an operating lamp. The concentration of mercury vapor, in turn, is very dependent on the temperature of the glass bulb enclosing the operating arc. Due to inherent inefficiencies in the conversion of electrical energy to visible light some amount of heat is produced. This has the effect of raising the bulb wall temperature. Since the amount of heat lost from the lamp due to convection/radiation depends on temperature, the operating lamp reaches an equilibrium temperature wherein there is balance between the amount of heat generated and the amount of heat which is lost. This temperature depends on electrical power applied and factors that influence heat transfer from the bulb. For instance, if the lamp has a surrounding sleeve, is encapsulated in plastic (i.e. 'Shattersheild') or is operated in a poorly designed or situated luminaire, the bulb wall will reach a higher temperature than normal. The light output of a fluorescent lamp attains a maximum at a particular bulb wall temperature. In other words, fluorescence lamps have an optimum operating temperature. Since this temperature depends on the pressure of other gases in the lamp interior it is an intrinsic feature of different lamp designs. In most lamps this temperature is about 40°C (104°F.). The glass bulb does not exhibit a uniform temperature when the lamp is operating so at thermal equilibrium the "coldest spot" on the bulb establishes the concentration of mercury in the operating arc. If the concentration of mercury vapor is too high or too low the light output of the lamp is less than what it would be at the optimum temperature. In accordance with the embodiments of the invention, active dimming of fluorescent lamp-based lighting systems is employed and the heat generated by the lamps is intentionally prevented from escaping. It will be appreciated that, in the absence of control circuitry the lamp temperature would increase to a level where the 'cold spot' of the lamp would be above the optimum temperature for that particular lamp. This would of course reduce the efficacy of the lamp and therefore result in less light being produced by the power which is supplied thereto. The thermal insulation of the lamp is achieved by using any one or combination of know techniques. With the control circuitry according to the embodiment of the invention, the active dimming causes a reduction in power delivered to the system (based on luminous flux) which reduces the temperature of the lamp toward that at which maximum light output is achieved. This results in the 'cold spot' of the lamp being maintained at the optimum temperature for light output. The reduction in power required to achieve this optimum situation results in an increase in lamp efficacy. More specifically, the embodiments of the invention in effect, heat the lamps so that the temperature is increased. This can be done by insulating the lamps so that as little heat as possible is allowed to escape. The embodiments then utilizes this otherwise waste heat, which is a natural consequence of inefficiencies in producing light in fluorescent lamps, to enable an increase in lamp (and system) efficacy. Merely by way of example, Fig. 1 shows a fluorescent lamp 100 which is provided with a thermally insulative type enclosure 102. This enclosure can be selected to have a low IR (infrared) transmittivity and thermal conduction while sufficiently transparent to allow for efficient illumination. In this example, the enclosure can be made of polycarbonate or have a polycarbonate glaze on the interior. Alternatively or in addition thereto, the interior of the enclosure can be evacuated or filled with a gas which inhibits the loss of the heat generated by the fluorescent lamp, to the external atmosphere. For example, gases such as argon or krypton could be used. Filling the interior of the enclosure can be filled with carbon dioxide is also within the purview of the embodiment. It will be appreciated at this point, that this type of lamp and is being illustrated merely by way of example and that the invention is not limited to this specific type of lamp configuration/arrangement. It should be also noted that the thermal insulative techniques which can be used to limit the amount of heat which is permitted to escape from the lamp, is not limited to enclosures and that other techniques may be used. For example, glazing the outer walls of the gas filled portions of the fluorescent lamp with an IR reflective material such as polycarbonate of other forms of heat reflective films can also be used. A source of alternating current, such as conventional household supply is connected to a control circuit 104. This circuit includes active controller and dimmer functions. These are denoted by the functional blocks 106, 108. A light sensor 110 is arranged so as to be responsive to the amount of light which is produced by the lamp. This sensor 110 can take the form of a photodiode, phototransistor of the like type of photo sensitive device which generates an output which varies with the amount of light which is received. The output of this sensor 110 is applied to the control circuit and is, in accordance with this embodiment of the invention, used to automatically modify the amount of power which is supplied to the lamp by the dimmer in small imperceptible increments until such time as the sensor output reaches a maximum and the current which is consumed is at its lowest level for the detected amount of light. Examples of the type of circuit which can be utilized for this automatic control can be found in United States Patent No. 4,394,603 issued on July 19, 1983 in the name of Widmayer, United States Patent No. 4,482,844 issued on November 13, 1984 in the name of Schweer et al. and United States Patent No 5,742,131 issued on April 21, 1998 in the name of Spout et al. The disclosure of these documents is hereby incorporated by reference. The above mentioned patents disclose fluorescent lamp dimmer controls which are responsive to ambient light. However, it is deemed well within the purview of a person of skill in the art of controlling the amount of electrical power supplied to a fluorescent lamp that using the sensor 110 to detect only the light from the fluorescent lamp and therefore be unresponsive to ambient light, and therefore control the amount of electrical power supplied to the lamp 100 in a manner wherein the optimally maximum light generation for the optimally minimum power input, can be readily achieved. Accordingly, no further disclosure will be given for brevity. Fig. 2 depicts an embodiment wherein the insulation, sensor and control circuit are incorporated into a single unit as different from the arrangement which is shown in Fig. 1 wherein the sensor and control circuit are disposed outboard of the fluorescent lamp per se.
In Fig. 2, elements corresponding those denoted by the numerals 100, 102, 104, etc., are designated by 200, 202, 204, etc. The outboard disposition of the sensor 110 and circuit 104 in the Fig, 1 arrangement, is suited to situations wherein a group of lamps are used in close proximity and a single light sensitive sensor can be used for control all of the group. This control can be extended to a large number of lamps wherein the sensor is oriented toward the lamps so as to be responsive to only the light produced by the lamps and therefore enable a single circuit arrangement be used to control the current which is supplied to all of the lamps. In other words, all the lamps in a large room can be controlled by a single sensor arrangement which is adapted (such as by suitable lenses, shielding or the like) to detect the amount of light which is being produced by the plurality of lamps. Heretofore, the number of lamps in a fixture is limited by considerations of heat transfer so that the "cold spot" of each lamp does not greatly exceed the point where the lamp loses efficiency. Previously, cold temperature applications required special, more expensive HO (high output) and VHO (very high output) lamps. However, with the embodiments of the invention, if enough lamps are put in a fixture inexpensive lamps can be used in these applications instead of the more expensive HO or VHO types. In fact, in this arrangement the fixture can be used to insulate the lamps or used further insulate lamps which are already provided with their own individual insulation to prevent loss of heat and/or induce the heat to accumulate in the fixture and achieve the heat loss which is used to improve the efficacy of the lamps. The embodiments of the invention allow for good luminaire design. For a given number of lamps of a certain wattage, the luminaire must accommodate the heat generated in order to maintain the lamps at the optimum temperature. If a luminaire is underdesigned so that it contains too many lamps (i.e. to achieve higher light intensities) the lamps are bound to get too hot and the light output and efficacy are compromised. Thus good luminaire design is heavily constrained by the heat generation of lamps. Similarly, if a lamp has a sleeve or is encapsulated in plastic it will also tend to operate above the optimum temperature with the same consequence. The embodiments of the invention, of course, obviate this problem. In addition to achieving the optimum light generation for the amount of current used, the embodiments of the invention tend to improve the longevity of the lamps in that for a given lamp, with the insulation, the amount of power can actually be reduced and thus enable the lamp to operate at less than its normally rated wattage. Although the invention has been disclosed with reference to only a limited number of embodiments, it will be appreciated that if lamps, sleeves, encapsulations and luminaires are designed in such a way as to generate excessive heat they can be used in a circuit, as above, to operate with reduced power while still producing the expected light output (viz., are operating with increased efficacy). This permits, among many other things, smaller, cheaper luminaires with higher luminous flux (more lamps per unit area). HO and VHO lamps could be used in compact applications, CFLs (compact fluorescent lights) could be operated without amalgams and the annoying run-up properties. Further, while the embodiments of the invention have focussed on insulative techniques for inducing self-heating of the lamps, it is within the scope of the invention to heat the lamps using some external source of heat. This source can be a source of waste heat should one be conveniently close to the lamps disposition The scope of the invention is limited only by the appended claims.

Claims

CLAIMS:
1. A fluorescent lamp arrangement comprising: a fluorescent lamp; a source of heat disposed with fluorescent lamp for elevating the temperature of the fluorescent lamp; a sensor for detecting the amount of light generated by the lamp; and a circuit responsive to the sensor which controls the amount of electrical power that is supplied to the fluorescent lamp in accordance with the sensor output and which optimizes the amount to light that is produced by the fluorescent lamp for the amount of electrical power consumed.
2. A fluorescent lamp arrangement as set forth in claim 1, wherein the source of heat comprises thermal insulation disposed with the fluorescent lamp to prevent heat which is generated by the fluorescent lamp from escaping from the fluorescent lamp.
3. A fluorescent lamp arrangement as set forth in claim 2, wherein the thermal insulation comprises a thermal insulating medium disposed about at least the light emitting portion of the fluorescent lamp.
4. A fluorescent lamp arrangement as set forth in claim 2, wherein the thermal insulation comprises an enclosure.
5. A fluorescent lamp arrangement as set forth in claim 4, wherein the enclosure is adapted to be thermally insulative.
6. A fluorescent lamp arrangement as set forth in claim 4, wherein the interior of the enclosure is evacuated.
7. A fluorescent lamp arrangement as set forth in claim 4, wherein the interior of the enclosure is filled with a gas having thermally insulative properties.
8. A fluorescent lamp arrangement as set forth in claim 2, wherein the thermal insulation comprises a glazing of a thermally insulative material on at least the light emitting portions of the fluorescent lamp.
9. A method of increasing fluorescent lamp illumination efficiency comprising: heating the fluorescent lamp; sensing light emitted from the fluorescent lamp and producing a signal indicative of an amount of light emitted thereof; and controlling the amount of electrical power supplied to the fluorescent lamp in response to the sensed level of illumination to adjust a temperature of the fluorescent lamp temperature toward a value at which the amount of light emitted by the fluorescent lamp is optimized.
10. A method as set forth in claim 9, wherein the heating of the fluorescent lamp comprises preventing heat loss from the fluorescent lamp and using heat which is produced by the lamp to heat itself.
11. A method as set forth in claim 10, wherein the step of preventing loss of heat comprises enclosing the fluorescent lamp in an enclosure which attenuates loss of heat therethough.
12. A method as set forth in claim 11, wherein the step of preventing heat loss comprises enclosing the fluorescent lamp in an enclosure and evacuating air from a space in the enclosure.
13. A method as set forth in claim 10, wherein the step of preventing heat loss comprises providing the enclosure with a heat reflective layer.
14. A method as set forth in claim 13, wherein the heat reflective layer is made of polycarbonate.
15. A method as set forth in claim 10, wherein the step of preventing heat loss comprises enclosing the fluorescent lamp in an enclosure and filling a space within the enclosure with a medium which exhibits low heat transmission characteristics.
PCT/IB2004/050950 2003-06-27 2004-06-21 Control method and apparatus for improving the efficacy of fluorescent lamps WO2005002290A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006516728A JP2007516562A (en) 2003-06-27 2004-06-21 Control method and apparatus for improving the effectiveness of a fluorescent lamp
EP04744370A EP1642481A1 (en) 2003-06-27 2004-06-21 Control method and apparatus for improving the efficacy of fluorescent lamps
US10/562,284 US20080100226A1 (en) 2003-06-27 2004-06-21 Control Method and Apparatus for Improving the Efficacy of Fluorescent Lamps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48271603P 2003-06-27 2003-06-27
US60/482,716 2003-06-27

Publications (2)

Publication Number Publication Date
WO2005002290A1 true WO2005002290A1 (en) 2005-01-06
WO2005002290A8 WO2005002290A8 (en) 2005-05-06

Family

ID=33552006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/050950 WO2005002290A1 (en) 2003-06-27 2004-06-21 Control method and apparatus for improving the efficacy of fluorescent lamps

Country Status (5)

Country Link
US (1) US20080100226A1 (en)
EP (1) EP1642481A1 (en)
JP (1) JP2007516562A (en)
CN (1) CN1813500A (en)
WO (1) WO2005002290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061936A2 (en) * 2006-11-21 2008-05-29 Osram Gesellschaft mit beschränkter Haftung Electric lamp comprising a sensory mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100245279A1 (en) * 2009-03-31 2010-09-30 Robe Lighting S.R.O. Display and display control system for an automated luminaire
US8314562B2 (en) * 2009-07-27 2012-11-20 Sunonwealth Electric Machine Industry Co., Ltd. Lamp
US20130082596A1 (en) * 2011-09-29 2013-04-04 General Electric Company Light detector to control a hybrid lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB829286A (en) * 1955-05-03 1960-03-02 Gen Electric Co Ltd Improvements in or relating to sodium vapour electric discharge lamps
US4887122A (en) * 1987-11-04 1989-12-12 Minolta Camera Kabushiki Kaisha Copying machine
EP1017257A1 (en) * 1998-12-31 2000-07-05 Honeywell Inc. Backlight brightness controller

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673401A (en) * 1969-10-29 1972-06-27 Thermoplastic Processes Inc Fluorescent lamp protection apparatus
US4394603A (en) * 1978-09-26 1983-07-19 Controlled Environment Systems Inc. Energy conserving automatic light output system
CA1177111A (en) * 1982-02-17 1984-10-30 Carl Schweer Lamp dimmer
US5834908A (en) * 1991-05-20 1998-11-10 Bhk, Inc. Instant-on vapor lamp and operation thereof
DE9116651U1 (en) * 1991-10-10 1993-08-26 Waldhauer Lothar Discharge tube and control of a device containing it
US5742131A (en) * 1993-11-23 1998-04-21 The Watt Stopper Dimmable ballast control circuit
US6157143A (en) * 1999-03-02 2000-12-05 General Electric Company Fluroescent lamps at full front surface luminance for backlighting flat panel displays
TW520618B (en) * 1999-10-21 2003-02-11 Matsushita Electric Ind Co Ltd Fluorescent lamp operating apparatus and compact self-ballasted fluorescent lamp
US6891323B2 (en) * 2002-09-20 2005-05-10 Osram Sylvania Inc. Fluorescent lamp and amalgam assembly therefor
US6906465B2 (en) * 2002-12-09 2005-06-14 Osram Sylvania Inc. End-of-life protection for compact fluorescent lamps
US7270244B1 (en) * 2004-01-22 2007-09-18 Pacific Cornetta, Inc. Polycarbonate double walled liquid holding vessel
US7477005B2 (en) * 2005-10-26 2009-01-13 General Electric Company Fluorescent lamp providing more robust light output

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB829286A (en) * 1955-05-03 1960-03-02 Gen Electric Co Ltd Improvements in or relating to sodium vapour electric discharge lamps
US4887122A (en) * 1987-11-04 1989-12-12 Minolta Camera Kabushiki Kaisha Copying machine
EP1017257A1 (en) * 1998-12-31 2000-07-05 Honeywell Inc. Backlight brightness controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061936A2 (en) * 2006-11-21 2008-05-29 Osram Gesellschaft mit beschränkter Haftung Electric lamp comprising a sensory mechanism
WO2008061936A3 (en) * 2006-11-21 2009-01-22 Osram Gmbh Electric lamp comprising a sensory mechanism

Also Published As

Publication number Publication date
US20080100226A1 (en) 2008-05-01
JP2007516562A (en) 2007-06-21
EP1642481A1 (en) 2006-04-05
CN1813500A (en) 2006-08-02
WO2005002290A8 (en) 2005-05-06

Similar Documents

Publication Publication Date Title
US6688753B2 (en) Integrated light source
US6111359A (en) Integrated HID reflector lamp with HID arc tube in a pressed glass reflector retained in a shell housing a ballast
US8926139B2 (en) Gas-discharge lamp replacement with passive cooling
JP5542658B2 (en) LED-type luminaire and related method for temperature management
WO2009140141A1 (en) Gas-discharge lamp replacement
US20080100226A1 (en) Control Method and Apparatus for Improving the Efficacy of Fluorescent Lamps
EP1883099A2 (en) Lighting device with a compact structure
CA2226467A1 (en) Integrated hid reflector lamp
US20110109218A1 (en) LED Light Structure with Internal Electronic Circuit
JPH07153425A (en) Discharge lamp and its preparation
JP2008512836A (en) Halogen lamp
KR102302403B1 (en) Light apparatus for led with sterilization and method for controlling mode there of
RU169969U1 (en) Halogen bulb
CN1842889A (en) Low-pressure mercury vapor discharge lamp
TW202036655A (en) Mercury discharge lamp
JP2011159391A (en) Straight tube fluorescent lamp type led light and lighting system using the same
KR101470379B1 (en) The LED light that can prevent overheating and overcurrent with the dimming function of the converter
KR101470378B1 (en) The LED light that can prevent overcurrent and overheating
KR101470381B1 (en) The dimming LED light that can prevent overcurrent and overheating
WO1998020520A1 (en) Light producing device and control thereof
JP2004259669A (en) Tunnel luminaire
JP4505942B2 (en) Discharge lamp lighting device
JP5004288B2 (en) Display device and lighting system thereof
KR100731156B1 (en) Heat transfer structure of electrodeless xenon phosphor lamp
JP2010257766A (en) Lighting apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 01/2005 ADD "DECLARATION UNDER RULE 4.17: - AS TO THE APPLICANT S ENTITLEMENT TO CLAIM THE PRIORITY OF THE EARLIER APPLICATION (RULE 4.17(III)) FOR ALL DESIGNATIONS."

WWE Wipo information: entry into national phase

Ref document number: 2004744370

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10562284

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048179603

Country of ref document: CN

Ref document number: 2006516728

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004744370

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004744370

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10562284

Country of ref document: US