WO2005002096A1 - 電界検出光学装置、トランシーバ、位置情報取得システム、及び情報入力システム - Google Patents

電界検出光学装置、トランシーバ、位置情報取得システム、及び情報入力システム Download PDF

Info

Publication number
WO2005002096A1
WO2005002096A1 PCT/JP2004/009159 JP2004009159W WO2005002096A1 WO 2005002096 A1 WO2005002096 A1 WO 2005002096A1 JP 2004009159 W JP2004009159 W JP 2004009159W WO 2005002096 A1 WO2005002096 A1 WO 2005002096A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
transceiver
signal
information
electric
Prior art date
Application number
PCT/JP2004/009159
Other languages
English (en)
French (fr)
Inventor
Mitsuru Shinagawa
Katsuyuki Ochiai
Tadashi Minotani
Aiichirou Sasaki
Nobutarou Shibata
Hakaru Kyuragi
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to JP2005511084A priority Critical patent/JP3974628B2/ja
Priority to EP04746628A priority patent/EP1564917B1/en
Priority to DE602004012832T priority patent/DE602004012832T2/de
Priority to US10/524,485 priority patent/US7907895B2/en
Priority to CN2004800008845A priority patent/CN1701544B/zh
Publication of WO2005002096A1 publication Critical patent/WO2005002096A1/ja
Priority to US12/111,866 priority patent/US20080205904A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • Electric field detection optical device transceiver, position information acquisition system, and information input system
  • the present invention relates to a transceiver used, for example, for data communication between wearable computers, and more particularly to a transceiver for receiving information based on an electric field induced in an electric field transmission medium.
  • the present invention relates to a transceiver capable of receiving information via a transmission medium.
  • the present invention particularly relates to a transceiver body capable of transmitting information via the electric field transmission medium by inducing an electric field based on information to be transmitted from the transmission electrode to the electric field transmission medium.
  • the present invention relates to an electric field detection optical device that detects an electric field by modulating the light intensity of a laser beam based on an electric field to be detected, and a transceiver including such an electric field detection optical device.
  • the present invention provides an electric field inducing means for inducing an electric field in the electric field transmission medium according to a position contacted by the electric field transmission medium, and receiving an electric field induced by the electric field transmission medium.
  • the present invention relates to a position information acquisition system including: a transceiver that acquires the position information by converting the information into an electric signal.
  • the present invention relates to an information input system for acquiring information based on position information or the like from a position information acquisition system.
  • FIG. 1 shows an image diagram in the case of performing communication between a plurality of wearable computers via such a human body.
  • the wearable computer 1 constitutes one set (set) by the transceiver 3 in contact with the wearable computer 1, and the wearable computer 1 has a pair of transceivers 1 and a transceiver 3 '.
  • the wearable computer 1 is a set of a PC (personal computer) 5 other than the wearable computer 1 worn on the human body and a transceiver 3'a installed on a wall or the like. Data communication with a set of transceivers 3'b is also possible.
  • the PC 5 in this case is not in contact with each other as in the case of the remote computer 1 and the transceiver 3 ', but is connected to the transceivers 3' a, 3, and b via the cable 4.
  • an electric field based on information (data) to be transmitted is converted into an electric field using a signal detection technique based on an electro-optical method using laser light and an electro-optical crystal. (Transmission medium) and receive information based on the electric field induced in the human body to transmit and receive information.
  • the technique of data communication via the human body will be described in more detail with reference to FIG.
  • FIG. 2 is an overall configuration diagram of a transceiver main body 30 ′ used for performing data communication via a human body (living body 100).
  • the transceiver body 30 ' is used in a state of being in contact with the living body 100 via the transmission / reception electrode 105' and the insulating film 107 '.
  • the transceiver body 30 ′ receives the data supplied from the wearable computer 1 via the I / O (input / output) circuit 101 and transmits the data to the transmission unit 103.
  • an electric field is induced from the transmission / reception electrode 105 'through the insulating film 107' to the living body 100, which is an electric field transmission medium, and the electric field is attached to another part of the living body 100 via the living body 100. Transmit to another transceiver 3 '.
  • the transceiver main body 30 ' is provided with another transceiver mounted on another part of the living body 100.
  • An electric field induced and transmitted from 3 ′ to the living body 100 is received by the transmission / reception electrode 105 ′ via the insulating film 107 ′.
  • the electric field detection optical unit 110 'constituting the electric field detection optical device 115' The received electric field is applied (applied) to the electro-optic crystal to cause polarization change and intensity change in the laser light.
  • the light receiving circuit 152 ′ constituting the electric field detecting optical device 115 ′ receives the laser light having undergone the polarization change or the intensity change, converts the laser light into an electric signal, and performs signal processing such as amplification of the electric signal. Do.
  • the signal processing circuit 116 constituting the receiving circuit 113 a frequency component other than the frequency component relating to the received information to be detected in the electric field is removed from the electric signals of various frequencies by the band pass filter constituting the signal processing circuit 116. (That is, only the frequency component related to the received information is extracted), thereby performing signal processing such as removal of noise (noise) of the electric signal. Then, the waveform shaping circuit 117 constituting the receiving circuit 113 performs the waveform shaping (signal processing) of the electric signal passing through the signal processing circuit 116 and supplies the electric signal to the universal computer 1 via the input / output circuit 101.
  • the electrodes can be divided into two for transmission and for reception. That is, the transmitting unit 103 induces an electric field from the transmitting electrode 105'a to the living body 100, which is an electric field transmission medium, via the insulating film 107'a. On the other hand, the receiving electrode 105'b receives, via the insulating film 107'b, an electric field induced and transmitted to the living body 100 from another transceiver 3 'mounted on another part of the living body 100.
  • the other configuration and operation are the same as those in FIG.
  • the wearable computer 1 mounted on the right arm causes the transceiver 3 ′ to induce an electric signal related to transmission data as an electric field in the living body 100, which is an electric field transmission medium, and indicates the electric signal with a wavy line.
  • the electric field is transmitted to other parts of the living body 100.
  • the wearable computer 1 mounted on the left arm the electric field transmitted from the living body 100 can be converted into an electric signal by the transceiver 3 'and then received as received data.
  • an electric field detection optical unit 110 ′ in the transceiver body 30 ′ includes a device that converts a change in polarization of laser light into an intensity change, such as a polarization modulator, and an electro-absorption (EA) light intensity modulator.
  • Laser light intensity changes like light intensity modulators such as Mach-Zehnder type light intensity modulators Is directly converted.
  • the electric field detection optical unit 110'a and the light receiving circuit 152'a using the polarization modulator 123 will be described with reference to FIGS. 4 and 5, and then, with reference to FIGS.
  • the electric field detection optical unit 110'b and the light receiving circuit 152'b using the light intensity modulator 124 will be described.
  • an electric field detection optical unit 110 ′ a using a polarization modulator 123 includes a current source 119, a laser diode 121, a collimating lens 133, and an electro-optical element (electro-optical crystal). , A first and second wave plates 135 and 137, a polarizing beam splitter 139 ', and first and second condenser lenses 141a and 141b.
  • the light receiving circuit 152'a includes a first photodiode 143a, a first load resistor 145a, and a first constant voltage source 147a, and a second photodiode 143b, a second load resistor 145b, and a second constant resistor. It comprises a voltage source 147b and a differential amplifier 112.
  • the polarization modulator 123 has sensitivity only to an electric field coupled in a direction perpendicular to the traveling direction of the laser light emitted from the laser diode 121, and optically modulates the electric field by this electric field intensity.
  • the characteristic that is, the birefringence changes, and the polarization of the laser beam is changed by the change of the birefringence.
  • a first electrode 125 and a second electrode 127 are provided on both sides of the polarization modulator 123 that are vertically opposed in the figure. The first electrode 125 and the second electrode 127 face at right angles to the traveling direction of the laser light from the laser diode 121 in the polarization modulator 123, and couple the electric field to the laser light at right angles. be able to.
  • the electric field detection optical unit 110 ′ a is connected to the receiving electrode 105 ′ b via the first electrode 125.
  • the second electrode 127 facing the first electrode 125 is connected to the ground electrode 131, and is configured to function as a ground electrode for the first electrode 125.
  • the receiving electrode 105 ′ b detects an electric field induced and transmitted to the living body 100, the receiving electrode 105 ′ b transmits the electric field to the first electrode 125 and couples the electric field to the polarization modulator 123 via the first electrode 125. Can be.
  • the laser light output from the laser diode 121 under the current control of the current source 119 is converted into parallel light through the collimator lens 133, and the parallel laser light is converted into the first wavelength.
  • the polarization state is adjusted by the plate 135, and the light enters the polarization modulator 123.
  • Polarization modulator 1 The laser light incident on the light 23 propagates between the first and second electrodes 125 and 127 in the polarization modulator 123.
  • the receiving electrode 105'b When the electric field induced and transmitted to the polarization detector 123 is detected via the first electrode 125 and the electric field is coupled to the polarization modulator 123, the electric field is connected to the first electrode 125 and the ground electrode 131.
  • the second electrode 127 is formed. Since this electric field is perpendicular to the traveling direction of the laser beam incident on the laser diode 121 and the polarization modulator 123, the birefringence, which is an optical characteristic of the polarization modulator 123, changes. Changes.
  • the laser light whose polarization has been changed by the electric field from the first electrode 125 in the polarization modulator 123 has its polarization state adjusted by the second wavelength plate 137 and enters the polarization beam splitter 139 ′.
  • the polarization beam splitter 139 ′ separates the laser light incident from the second wave plate 137 into a P wave and an S wave, and converts them into light intensity changes.
  • the laser beams separated into the P-wave component and the S-wave component by the polarization beam splitter 139 ′ are condensed by the first and second condenser lenses 14la and 141b, respectively, and then are converted to the second component constituting the photoelectric conversion means.
  • the light is received by the first and second photodiodes 143a and 143b, and the first and second photodiodes 143a and 143b can convert the P-wave optical signal and the S-wave optical signal into respective electric signals and output the electric signals.
  • the current signals output from the first and second photodiodes 143a and 143b are respectively supplied by a first load resistor 145a and a first constant voltage source 147a, and a second load resistor 145b and a second constant voltage source 147b.
  • a voltage signal intensity modulation signal
  • the extracted voltage signal is supplied to the signal processing circuit 116 shown in FIGS.
  • the voltage signal Sa from the first photodiode 143a and the voltage signal Sb from the second photodiode 143b are 180 ° out of phase,
  • the phase signal component is amplified, and the noise of the laser light of the same phase is subtracted and removed.
  • the signal processing circuit 116 shown in FIGS. 2 and 3 performs signal processing for noise elimination, and the waveform shaping circuit 117 performs signal processing for waveform shaping.
  • Computer 1 will be supplied.
  • the electric field detection optical unit 110′b and the light receiving circuit 152′b using the light intensity modulator 124 will be described with reference to FIGS.
  • the same components as those of the electric field detection optical unit 110'a and the light receiving circuit 152'a using the polarization modulator 123 are denoted by the same reference numerals.
  • the electric field detection optical unit 110 ′ b using the light intensity modulator 124 includes a current source 119, a laser diode 121, a collimating lens 133, an electro-absorption (EA) light intensity modulation
  • a light intensity modulator 124 such as a light modulator or a Mach-Zehnder type light intensity modulator, and a focusing lens 141 are provided.
  • the light receiving circuit 152 ′ b includes a photodiode 143, a load resistor 145, a constant voltage source 147, and a (single) amplifier 118.
  • the light intensity modulator 124 is configured such that the light intensity of light passing therethrough changes depending on the intensity of the electric field to be coupled.
  • a first electrode 125 and a second electrode 127 are provided on both side surfaces of the light intensity modulator 124 that are vertically opposed in the drawing.
  • the first electrode 125 and the second electrode 127 are opposed at right angles to the traveling direction of the laser light from the laser diode 121 in the light intensity modulator 124, and couple the electric field at right angles to the laser light. be able to.
  • the electric field detection optical unit 110 ′ b is connected to the reception electrode 105 ′ b via the first electrode 125.
  • the second electrode 127 facing the first electrode 125 is connected to the ground electrode 131, and is configured to function as a ground electrode for the first electrode 125.
  • the receiving electrode 105 ′ b transmits this electric field to the first electrode 125 and couples to the light intensity modulator 124 via the first electrode 125. That can be S.
  • an electro-absorption (EA) light intensity modulator 124a which is an example of the light intensity modulator 124, will be briefly described with reference to FIG.
  • the electro-absorption light intensity modulator 124a maximizes the intensity of the incident laser light in accordance with the detection signal related to the electric field.
  • This is a modulator that changes the light intensity. That is, the light intensity of the incident laser light is attenuated based on the detection signal related to the electric field.
  • a Mach-Zehnder type light intensity modulator 124b which is an example of the light intensity modulator 124, will be briefly described with reference to FIG.
  • a Mach-Zehnder type optical intensity modulator 124b forms two waveguides 203a and 203b having different refractive indices of light from the substrate 201 on the substrate 201, and The incident laser light is confined in the waveguides 203a and 203b and branched.
  • An electric field is applied to the one split laser beam from the first electrode 125 and the second electrode 127 to combine the two, and then the laser beam is emitted via the lens 207.
  • the phase can be slightly delayed or advanced compared to a laser beam without an electric field.
  • the laser light output from the laser diode 121 by the current control of the current source 119 is converted into parallel light through the collimating lens 133, and the parallel laser light is subjected to light intensity modulation. Incident on the container 124.
  • the laser light incident on the light intensity modulator 124 propagates between the first and second electrodes 125 and 127 in the light intensity modulator 124, and as described above during the propagation of the laser light.
  • the receiving electrode 105 ′ b detects an electric field induced and transmitted to the living body 100 and couples this electric field to the light intensity modulator 124 via the first electrode 125, the electric field is grounded from the first electrode 125. It is formed toward the second electrode 127 connected to the electrode 131.
  • the laser light whose light intensity has changed is emitted, and is received by the photodiode 143 of the light receiving circuit 152 ′ b via the focusing lens 141.
  • the photodiode 143 converts the current signal into a current signal according to the light intensity of the laser light, and the current signal output from the photodiode 143 is converted into a voltage signal by the load resistor 145 and the constant voltage source 147, and then output. Is done.
  • the output voltage signal is amplified by the amplifier 118 and then supplied to the signal processing circuit 116 shown in FIGS.
  • the light intensity modulator 124 shown in FIG. 6 is different from a modulator such as the polarization modulator 123 shown in FIG.
  • the differential detection was not possible because the intensity modulated signal could not be taken out differentially. Without differential detection, If the output of the light intensity modulator 124 is received by the photodiode 143 as it is, the noise of the laser beam cannot be removed, the S / N of the received signal deteriorates, and the communication quality deteriorates.
  • the transceiver 3 ' shown in FIG. 9 has a transceiver body 30' attached to the bottom of the inner wall surface of an insulating case 33 made of an insulator, and a battery 6 for driving the transceiver body 30 'attached to the upper surface thereof. It has become. Further, a transmitting / receiving electrode 105 'is attached to the bottom of the outer wall surface of the insulating case 33, and the transmitting / receiving electrode 105' is covered with an insulating film 107 '. The operation of the wearable computer 1. The portion other than the input surface is covered with an insulating case 11.
  • the present invention has been made in view of the above circumstances, and has a transceiver main body capable of transmitting and receiving information via an electric field transmission medium, a battery for driving the transceiver, and an insulating case covering the transceiver main body.
  • the present invention has been made in view of the above-mentioned circumstances, and an electric field detection optical device using a light intensity modulator for electric field detection, and a transceiver including the electric field detection optical device. It is intended to suppress deterioration of communication quality.
  • the present invention has been made in view of the above circumstances, and facilitates information input to a computer or a portable terminal used in combination with a transceiver capable of transmitting and receiving information via an electric field transmission medium.
  • the purpose is to provide a technology that can do this.
  • the invention according to the first aspect provides a transmission / reception electrode that induces an electric field in an electric field transmission medium and receives the electric field induced in the electric field transmission medium.
  • a transmission / reception electrode that induces an electric field in an electric field transmission medium and receives the electric field induced in the electric field transmission medium.
  • transmission / reception of information via the electric field transmission medium can be performed.
  • a transceiver comprising: a battery for driving the transceiver body; and a third structure interposed between the transceiver body and the battery, wherein the first, second, and third structures are provided.
  • the gist of the present invention is a transceiver that is a structure composed of at least one of a metal, a semiconductor, and an insulator and equivalent to a parallel circuit of a resistor and a capacitor.
  • the invention according to a second aspect is the invention according to the first aspect, wherein the impedance of the second structure and the third structure is larger than the impedance of the first structure. Is the gist.
  • the invention according to a third aspect is the invention according to the second aspect, wherein the first structure is an insulating film that covers the transmission / reception electrode with respect to the electric field transmission medium. .
  • the invention according to a fourth aspect is characterized in that, in the invention according to the second aspect, the second structure and the third structure are insulating members.
  • the invention according to a fifth aspect provides an electric field based on information to be transmitted, by inducing an electric field from a transmission electrode to an electric field transmission medium, thereby transmitting information via the electric field transmission medium.
  • a transceiver comprising a transceiver body capable of transmitting, a battery for driving the transceiver body, and an insulating case in which the transceiver body is built, wherein the transmitting electrode is an outer wall of the insulating case.
  • the gist of the present invention is a transceiver in which the electric field transmission medium is provided over the entire surface of a portion to be approached and is covered with an insulating film so as not to be in direct contact with the electric field transmission medium.
  • the invention according to a sixth aspect is based on the invention according to the fifth aspect, further comprising an insulating member between the battery and the transceiver body.
  • the invention according to a seventh aspect is based on the invention according to the sixth aspect, in which the insulative member is a foam containing air.
  • the invention according to an eighth aspect is the invention according to the sixth aspect, wherein the insulating member is:
  • the gist should be a plurality of timber supports.
  • the invention according to a ninth aspect is based on the invention according to the sixth aspect, wherein the insulating member is a cushion material containing a predetermined gas.
  • the invention according to a tenth aspect is the invention according to the fifth aspect, wherein the reference voltage required for driving the transceiver body is defined, and the reference voltage is provided on an inner wall surface of the insulating case.
  • the gist of the present invention is to further include an attached ground electrode.
  • An invention according to an eleventh aspect is the invention according to the fifth aspect, wherein the reference voltage required for driving the transceiver body is defined, and an external device outside the insulating case is provided.
  • the gist is further provided with a ground electrode attached to the.
  • the invention according to a twelfth aspect provides a method in which an electric field based on information to be transmitted is induced in a transmission medium from a transmission electrode and induced in the electric field transmission medium.
  • a transceiver main body capable of transmitting and receiving information via the electric field transmission medium by receiving information based on the electric field being received by the receiving electrode, a battery for driving the transceiver main body, and the transceiver main body are built-in.
  • a transmission electrode provided over the entire surface of the outer wall surface of the insulating case to which the electric field transmission medium is to be brought close.
  • the receiving electrode is covered with a first insulating film so as not to come into direct contact with the electric field transmission medium, and the receiving electrode is provided on an outer wall surface of the first insulating film, and is directly in contact with the electric field transmission medium.
  • the gist is a transceiver covered with a second insulating film so that it does not come in contact with it.
  • the invention according to a thirteenth aspect provides a method in which an electric field based on information to be transmitted is induced from a transmission electrode in an electric field transmission medium, and the electric field is induced in the electric field transmission medium.
  • a transceiver main body capable of transmitting and receiving information via the electric field transmission medium by receiving information based on the electric field being received by the receiving electrode, a battery for driving the transceiver main body, and the transceiver main body are built-in.
  • a receiving case wherein the receiving electrode is provided over the entire surface of the outer surface of the insulating case to which the electric field transmission medium is to be brought close.
  • the transmission electrode is covered with a first insulating film so as not to come into direct contact with the electric field transmission medium, and the transmission electrode is provided on an outer wall surface of the first insulating film and directly in contact with the electric field transmission medium. Do not touch
  • the gist is a transceiver covered with a second insulating film as described above.
  • the invention according to a fourteenth aspect provides a method of receiving information based on an electric field induced in an electric field transmission medium, thereby transmitting information via the electric field transmission medium.
  • a transceiver capable of receiving comprising: storage means for storing information based on two electric signals and position information determined corresponding to the information in association with each other; and induced and transmitted to the electric field transmission medium.
  • An electric field detecting means for detecting an incoming electric field and converting a change in the electric field into an electric signal; and a signal having a predetermined band including the two electric signals among the electric signals obtained by the electric field detecting means.
  • the gist of the transceiver comprising a.
  • the storage means stores information based on the signal intensities of the two electric signals and position information determined corresponding to the information.
  • the band-pass filter is a first band-pass filter that passes only a signal component having a first band including one of the electric signals among the electric signals obtained by the electric field detection unit.
  • a second band-pass filter that passes only a signal component having a second band different from the first band including the other electric signal among the electric signals obtained by the electric field detecting means.
  • a signal intensity measuring means for measuring the signal intensity of the signal component passed through the first band-pass filter and the signal intensity passed through the second band-pass filter.
  • the processing unit refers to the storage unit, and refers to each of the signal component passing through the first band-pass filter and the signal component passing through the second band-pass filter, measured by the signal strength measurement unit. The point is to obtain position information corresponding to information based on signal strength.
  • the storage means stores the information on the intensity difference of the electric signal in association with position information determined corresponding to the information.
  • the position conversion processing means measured by the signal strength measuring means,
  • the gist is to calculate the intensity difference of the passed signal component and to refer to the storage means to obtain position information corresponding to the intensity difference.
  • the invention according to a seventeenth aspect is the invention according to the sixteenth aspect, wherein the association between the information on the intensity difference and the position information stored in the storage means is rewritable by an external device. Is the gist.
  • the invention according to an eighteenth aspect is based on the invention according to the fifteenth aspect, wherein the storage means stores the information on the intensity ratio of the electric signal in association with the position information determined in accordance with the information.
  • the position conversion processing means calculates an intensity ratio of a signal component passed through the first band-pass filter and a signal component passed through the second band-pass filter, measured by the signal strength measuring means.
  • the gist of the present invention is to refer to the storage means and obtain position information corresponding to the intensity ratio.
  • the invention according to a nineteenth aspect is the invention according to the eighteenth aspect, wherein the association between the intensity ratio information and the position information stored in the storage means is rewritable by an external device. Is the gist.
  • the storage means stores information based on a phase difference between two electric signals and position information determined corresponding to the information.
  • the band-pass filter stores a signal component having only a first band including one of the electric signals among the electric signals obtained by the electric field detecting means.
  • a filter and a second band-pass for passing only a signal component having a second band different from the first band including the other electric signal among the electric signals obtained by the electric field detecting means.
  • a phase detecting means for detecting a phase of a signal component passed through the first band-pass filter and a phase of a signal component passed through the second band-pass filter.
  • the gist is to obtain position information corresponding to the phase difference.
  • the invention according to a twenty-first aspect is the invention according to the twentieth aspect, wherein the association between the phase difference information and the position information stored in the storage means is rewritable by an external device.
  • the gist is that
  • the invention according to a twenty-second aspect is directed to an electric field transmission sheet capable of transmitting electric charges and capable of contacting an electric field transmission medium with an arbitrary point on the electric field transmission sheet.
  • First and second transmitters respectively arranged at different positions on the transmission sheet and inducing an electric field in the electric field transmission sheet based on an electric signal having a first band and a second band, respectively, and the electric field;
  • a position information acquisition system comprising: a transceiver capable of receiving information via the electric field transmission medium by receiving information based on an electric field induced in the transmission medium; Storage means for storing information based on the two electric signals and position information determined in accordance with the information in association with each other; detecting an electric field induced and transmitted to the electric field transmission medium;
  • Electric field detecting means for converting the change of the electric signal into an electric signal, and a band-pass filter for passing only a signal component having a predetermined band including the two electric signals among the electric signals obtained by the electric field detecting means.
  • the invention according to a twenty-third aspect is directed to an electric field transmission sheet capable of transmitting electric charges and capable of contacting an electric field transmission medium with an arbitrary point on the electric field transmission sheet.
  • First and second transmitters respectively arranged at different positions on the transmission sheet and inducing an electric field in the electric field transmission sheet based on an electric signal having a first band and a second band, respectively, and the electric field;
  • a transceiver capable of receiving information based on an electric field induced in a transmission medium to receive information via the electric field transmission medium, the information corresponding to information based on two electric signals and corresponding to the information.
  • Storage means for associating and storing position information determined by the electric field, electric field detection means for detecting an electric field induced and transmitted by the electric field transmission medium, and converting a change in the electric field into an electric signal; Inspection A band-pass filter that passes only a signal component having a predetermined band that includes the two electric signals among the electric signals obtained by the output unit; A position conversion processing means for obtaining position information corresponding to the information based on the two electrical signals described above; And a wearable computer that has a computer storage unit that stores the input information in association with the input information, and obtains the input information by referring to the computer storage unit based on the position information input from the transceiver.
  • the information input system provided is the gist.
  • the invention according to the twenty-fourth aspect is capable of contacting or operating with an electric field transmission medium, and applying an electric field to the electric field transmission medium according to a physical quantity based on the contact or operation.
  • Receiving an electric field induced in the electric field transmission medium applying the electric field to a polarization modulator or a light intensity modulator, and subjecting the laser light to polarization modulation or light intensity modulation according to the electric field.
  • the laser light modulated and polarized or light-intensity-modulated is converted into an electric signal, and an electric signal having a frequency component related to a physical quantity based on the contact or operation is extracted from the converted electric signal, and the contact is extracted.
  • An information input system comprising: an information processing means for acquiring information corresponding to a physical quantity based on the contact or the operation;
  • the invention according to a twenty-fifth aspect is an electric field detection optical device that detects the electric field by modulating the light intensity of the laser beam based on the electric field to be detected.
  • Branching means for branching, and light intensity modulating means for coupling the electric field to be detected, and modulating the light intensity of the first laser light based on the coupled electric field;
  • a first light-Z voltage converting means for converting the light intensity of the first laser light modulated by the light intensity modulating means into a voltage signal; and a second laser light branched by the branching means.
  • a second light / voltage conversion means for converting the intensity of the light into a voltage signal.
  • An electric field detection optical device having differential amplification means for differentially amplifying a voltage signal converted by the first optical Z-voltage conversion means and a voltage signal converted by the second optical / voltage conversion means. Is the gist.
  • the invention according to a twenty-sixth aspect is the invention according to the twenty-fifth aspect, wherein the electric field detection optical system
  • the unit further includes a light variable attenuator for attenuating the light intensity of the second laser light branched by the branching means, and the second photoelectric conversion means comprises a second variable attenuator attenuated by the light variable attenuator.
  • the point is to input the laser light of the above.
  • the electric field detection optical unit is configured to attenuate the light intensity of the first laser light branched by the branching unit by a predetermined ratio.
  • the light intensity modulating means inputs the first laser light attenuated by the first variable optical attenuator
  • the second photoelectric conversion means further comprises: attenuating the first laser variable attenuator by the second variable optical attenuator. The point is that the obtained second laser beam is input.
  • the first optical Z-voltage converter is configured to control the light intensity of the first laser light modulated by the light intensity modulator.
  • a first voltage source for applying a reverse bias voltage to the first light / current conversion means, and a first light / current conversion means.
  • a first load resistor that converts the current signal converted by the second light / voltage converter into a voltage signal, and wherein the second light / voltage converter has an intensity of the second laser light branched by the branching unit.
  • a second light / current converting means for converting the second light / current converting means into a current signal, a second voltage source for applying a reverse bias voltage to the second light / current converting means, and a second light / current converting means. And a second load resistor for converting the current signal converted by the second converter into a voltage signal.
  • the invention according to a twenty-ninth aspect is characterized in that, in the invention according to the twenty-eighth aspect, at least one of the first load resistance and the second load resistance is a variable resistance. You.
  • At least one of the first voltage source and the second voltage source is a variable voltage source.
  • the light receiving circuit comprises: a voltage signal converted by the first optical Z-voltage converter and the second optical Z-voltage.
  • the gist of the present invention is to further include amplifying means for amplifying at least one of the voltage signals converted by the voltage converting means.
  • the invention according to a thirty-second aspect provides a method for receiving information based on an electric field induced in an electric field transmission medium, thereby transmitting information via the electric field transmission medium.
  • a transceiver capable of receiving comprising: an electric field detection optical device according to a twenty-fifth aspect; a signal processing circuit that removes at least noise from a voltage signal output from the electric field detection optical device; Noise detection means for detecting the magnitude of the noise component of the voltage signal output from the circuit; and variably controlling a variable value in the electric field detection optical unit or the light receiving circuit based on the detection data output from the noise detection means.
  • a control signal generator for generating a control signal for performing the control.
  • FIG. 1 An image diagram in the case of performing communication between a plurality of wearable computers via a human body.
  • FIG. 2 is an overall configuration diagram of a conventional transceiver main body.
  • FIG. 3 is an overall configuration diagram of another conventional transceiver body.
  • FIG. 4 is a detailed configuration diagram of an electric field detection optical unit and a light receiving circuit of a conventional (polarization modulation type) transceiver body.
  • FIG. 5 is a diagram showing a waveform of an input signal of the differential amplifier shown in FIG. 4.
  • FIG. 6 is a detailed configuration diagram of an electric field detection optical unit and a light receiving circuit of a conventional (light intensity modulation type) transceiver main body.
  • FIG. 7 is a principle diagram in the case where a light intensity modulator used in an electric field detection optical unit of a conventional (light intensity modulation type) transceiver body is an electro-absorption type.
  • FIG. 8 is a principle diagram when a light intensity modulator used in an electric field detection optical unit of a conventional (light intensity modulation type) transceiver body is a Matsuhatsu Nissan type.
  • FIG. 9 is an image diagram showing a use state of a transceiver and a wearable computer when they are held by a human hand.
  • FIG. 10 is a front image diagram showing a use state of the transceiver and the wearable computer according to the first embodiment of the present invention.
  • FIG. 11 is a plane image diagram showing a use state of the transceiver and the wearable computer according to the first embodiment of the present invention.
  • FIG. 12 is a diagram showing frequency bands for information communication, transmitter A, and transmitter B.
  • FIG. 13 is an overall configuration diagram of a transceiver main body in the transceiver according to the first embodiment.
  • FIG. 14 is an overall configuration diagram of a transceiver main body in the transceiver according to the second embodiment.
  • FIG. 15 is a view showing a specific example of the electric field transfer sheet according to the first and second embodiments.
  • FIG. 16 is a view showing a specific example of the electric field transfer sheet according to the first and second embodiments.
  • FIG. 17 is a view showing a specific example of the electric field transfer sheet according to the first and second embodiments.
  • FIG. 18 is an overall configuration diagram of a transceiver main body according to the third and seventh embodiments of the present invention.
  • FIG. 19 is a detailed configuration diagram of an electric field detection optical unit and a light receiving circuit of a transceiver body according to a third embodiment.
  • FIG. 20 is a detailed configuration diagram of an electric field detection optical unit and a light receiving circuit of a transceiver body according to a fourth embodiment.
  • FIG. 21 is a detailed configuration diagram of an electric field detection optical unit and a light receiving circuit of a transceiver body according to a fifth embodiment.
  • FIG. 22 is a detailed configuration diagram of an electric field detection optical unit and a light receiving circuit of a transceiver body according to a sixth embodiment.
  • FIG. 23 is a detailed configuration diagram of an electric field detection optical unit and a light receiving circuit of a transceiver body according to a seventh embodiment.
  • FIG. 24 is an overall configuration diagram of a transceiver main body according to an eighth embodiment of the present invention.
  • FIG. 25 is a diagram showing an equivalent circuit between a living body, transmission / reception electrodes, and a transceiver main body.
  • FIG. 26 is a diagram showing an equivalent circuit between a living body, a transceiver main body, and a battery.
  • FIG. 27 is an overall configuration diagram of a transceiver and a wearable computer according to a ninth embodiment of the present invention.
  • FIG. 28 is a functional block diagram mainly showing functions of a transceiver main body.
  • FIG. 29 is a detailed configuration diagram of an electric field detection optical device.
  • 30 is a usage image diagram showing a usage state of the transceiver and the wearable computer shown in FIG. 27.
  • FIG. 31 is an overall configuration diagram of a transceiver and a wearable computer according to a tenth embodiment of the present invention.
  • FIG. 32 is an overall configuration diagram of a transceiver and a wearable computer according to an eleventh embodiment of the present invention.
  • FIG. 33 is an overall configuration diagram of a transceiver and a wearable computer according to a twelfth embodiment of the present invention.
  • FIG. 34 is an overall configuration diagram of a transceiver and a wearable computer according to a thirteenth embodiment of the present invention.
  • FIG. 35 is an overall configuration diagram of a transceiver and a wearable computer according to a fourteenth embodiment of the present invention.
  • FIG. 36 is a view showing another embodiment of the present invention.
  • FIG. 37 is a view showing another embodiment of the present invention.
  • the transceiver 3 induces an electric field based on the information to be transmitted in the electric field transmission medium (the living body 100 or the like), while inducing the electric field based on the electric field induced in the electric field transmission medium.
  • This transceiver is capable of transmitting and receiving information via an electric field transmission medium by receiving the received information.
  • FIG. 10 is an image diagram of the front showing a usage state of the transceiver 3 and the wearable computer 1 according to the first embodiment.
  • FIG. 11 is a plane image diagram showing the state of use similarly.
  • an insulating insulating sheet 301 is attached on a plane of a table 300, and an electric field transmission sheet 302 capable of transmitting an electric field is attached on a plane of the insulating sheet 301.
  • the transmitters A and B are arranged at different angles on the plane of the electric field transmission sheet 302, respectively.
  • the electric field transmission sheet 302 is rectangular, as shown in FIG.
  • the transmitters A and B have the same configurations as the transmission unit 103, the transmission electrode 105′a, and the insulating film 107′a, respectively, as shown in FIG. It is possible to induce an electric field based on the electric signals related to the transmission frequencies fa and fb in the electric field transmission sheet 302.
  • FIG. 13 is an overall configuration diagram of the transceiver main body 30a in the transceiver 3 according to the present embodiment.
  • the transceiver body 30a includes an lZ ⁇ (input / output) circuit 101, a transmission unit 103, a transmission electrode 105a, insulating films 107a and 107b, a reception electrode 105b, an electric field detection optical device 115, and a signal processing unit.
  • the point that it has a circuit 116 and a waveform shaping circuit 117 is similar to the conventional transceiver body 30 '.
  • the transceiver main body 30a of the present embodiment has bandpass filters 11a and 11b, signal strength measuring units 13a and 13b, a position conversion processing unit 15, and a memory 17.
  • the I / O circuit 101 is a circuit in which the transceiver body 30a inputs and outputs information (data) to and from an external device such as the wearable computer 1.
  • the transmission unit 103 is configured by a transmission circuit that induces an electric field related to the information (data) output from the I / O circuit 101 in the living body 100 based on the information (data).
  • the transmitting electrode 105a is an electrode used for inducing an electric field in the living body 100 by the transmitting unit 103, and is used as a transmitting antenna.
  • the insulating film 107a is an insulating film disposed between the transmission electrode 105a and the living body 100, and serves to prevent the transmission electrode 105a from directly contacting the living body 100.
  • the receiving electrode 105b is induced and transmitted to the living body 100 from the wearable computer 1 and the transceiver 3 'and the PC 5 and the transceivers 3'a and 3'b mounted on other parts of the living body 100. These electrodes are used to receive incoming electric fields and are used as receiving antennas.
  • the insulating film 107b is formed of the receiving electrode 105b and the living body 1 similarly to the insulating film 107a. This is an insulator film disposed between the first and second layers.
  • the electric field detection optical device 115 has a function of detecting an electric field received by the receiving electrode 105b and converting the electric field into an electric signal as reception information.
  • the signal processing circuit 116 further includes an amplifying unit 114 for amplifying an electric signal transmitted from the electric field detection optical device 115, and a band-pass filter 151.
  • the band-pass filter 151 limits the band of the electric signal output from the amplifying unit 114 to remove unnecessary noise and unnecessary signal components. This is a filter circuit that has the characteristic of passing signal components of only a fixed-width frequency band (fl-f2) for information communication as shown in Fig. 1.
  • the waveform shaping circuit 117 is a circuit that performs waveform shaping (signal processing) on the electric signal transmitted from the signal processing circuit 116 and supplies the electric signal to the computer 1 via the IZ circuit 101. is there.
  • the band-pass filter 11a limits the band of the electric signal output from the amplifying unit 114 to remove unnecessary noise and unnecessary signal components, so that the electric signal output from the amplifying unit 114 Among them, a filter circuit having a characteristic of passing a signal component of only the frequency band (fa) for the transmitter A as shown in FIG.
  • the signal strength measuring unit 13a is a circuit that measures the signal strength of an electric signal related to the signal component passed by the bandpass filter 11a.
  • the band-pass filter l ib limits the band of the electric signal output from the amplifying section 114 to remove unnecessary noise and unnecessary signal components.
  • This is a filter circuit having a characteristic of passing a signal component of only the frequency band (fb) for the transmitter B as shown in FIG.
  • the signal strength measuring unit 13b is a circuit that measures the signal strength of the electric signal related to the signal component passed by the bandpass filter lib.
  • the memory 17 is storage means for storing the intensity difference between two electric signals and a specific position in a two-dimensional space in association with each other.
  • an arbitrary position on the electric field transmission sheet 302 shown in FIGS. 10 and 11 and the intensity difference are associated in advance.
  • the correlation between the intensity difference stored in the memory 17 and the specific position is as follows. Can be rewritten from an external device via the I / O circuit 101.
  • the position conversion processing section 15 calculates the difference between the signal strength measured by the signal strength measuring section 13a and the signal strength measured by the signal strength measuring section 13b, and stores the difference between the signal strength and the memory 17 in the memory 17. By comparing the stored intensity difference with the stored intensity difference, a processing device such as a CPU (Central Processing Unit) that performs a process of converting the calculated intensity difference into a specific position in the two-dimensional space is obtained.
  • a processing device such as a CPU (Central Processing Unit) that performs a process of converting the calculated intensity difference into a specific position in the two-dimensional space is obtained.
  • CPU Central Processing Unit
  • the receiving electrode 105b receives electric fields from the transmitters A and B via the finger (living body 100) and the insulating film 107b.
  • the electric field detection optical device 115 couples (applies) the received electric field to an electro-optic crystal (not shown) in the electric field detection optical device 115, converts the electric field into an electric signal, and transmits the electric signal to the signal processing circuit 116.
  • the amplifying unit 114 of the signal processing circuit 116 amplifies the electric signal, and transmits the amplified electric signal to the bandpass filter 151. However, electric signals related to the electric field from the transmitters A and B do not pass through the band pass filter 116.
  • the electric signal transmitted from amplifying section 114 is also transmitted to band-pass filters 11a and lib.
  • the band-pass filter 11a passes the signal component of only the band (fa) for the transmitter A among the electric signals related to the electric field from the transmitters A and B, and transmits the signal to the signal strength measuring unit 13a. I do.
  • the signal strength measuring unit 13a measures the signal strength of the electric signal related to the signal component passed by the bandpass filter 11a.
  • the signal strength measuring unit 13b measures the signal strength of the electric signal related to the signal component passed by the band pass filter lib.
  • the position conversion processing unit 15 compares the signal strength measured by the signal strength measurement unit 13a with the signal strength. By calculating an intensity difference between the signal intensities measured by the intensity measuring unit 13b and comparing the intensity difference with the intensity difference stored in the memory 17, the calculated intensity difference can be used as the electric field transfer sheet 202. The process of converting into the specific position ⁇ in the above two-dimensional space is performed.
  • the position information (data) of the specific position obtained by the position conversion processing unit 15 is transmitted from the position conversion processing unit 15 to the wearable computer 1 via the input / output circuit 101.
  • the difference between the signal strength measured by the signal strength measuring unit 13a and the signal strength measured by the signal strength measuring unit 13b is calculated, and the difference between the signal strength and the memory is calculated.
  • the position conversion processing unit 15 calculates the difference between the signal strength measured by the signal strength measuring unit 13a and the signal strength measured by the signal strength measuring unit 13b.
  • an intensity ratio between the signal intensity measured by the signal intensity measuring unit 13a and the signal intensity measured by the signal intensity measuring unit 13b may be calculated.
  • the memory 17 needs to store the intensity ratio of the two electric signals and the specific position in the two-dimensional space in association with each other.
  • FIG. 14 is an overall configuration diagram of a transceiver main body 30b in the transceiver according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the phase detector 23a shown in Fig. 14 is a circuit that detects the phase of an electric signal related to the signal component passed by the bandpass filter 1la. Further, the phase detector 23b is a circuit that detects the phase of the electric signal related to the signal component passed by the bandpass filter lib.
  • the memory 27 is storage means for storing the phase difference between two electric signals and a specific position in a two-dimensional space in association with each other. Here, an arbitrary position on the electric field transmission sheet 302 shown in FIGS. 10 and 11 and a phase difference are associated in advance. Further, the association between the phase difference and the specific position stored in the memory 27 can be rewritten from an external device such as the wearable computer 1 via the IZ circuit 101.
  • the position conversion processing unit 25 calculates the difference between the phase measured by the phase detector 23a and the phase measured by the phase detector 23b, and calculates the difference between the phase difference and the phase difference stored in the memory 27. And a processing device such as a CPU that performs a process of converting the calculated phase difference into a specific position in a two-dimensional space by comparing the calculated phase difference.
  • the receiving electrode 105b receives the electric fields from the transmitters A and B via the finger (the living body 100) and the insulating film 107b.
  • the electric field detection optical device 115 couples (applies) the received electric field to an electro-optic crystal (not shown) in the electric field detection optical device 115, converts the electric field into an electric signal, and transmits the electric signal to the signal processing circuit 116.
  • the amplifying unit 114 of the signal processing circuit 116 amplifies the electric signal, and transmits the amplified electric signal to the bandpass filter 151. However, electric signals related to the electric field from the transmitters A and B do not pass through the band-pass filter 151.
  • the electric signal transmitted from amplifying section 114 is also transmitted to band-pass filters 11a and lib.
  • the band-pass filter 11a of the electric signals related to the electric field from the transmitters A and B, the signal component of only the band (fa) for the transmitter A is passed and transmitted to the phase detector 23a. .
  • the phase detector 23a detects the phase of the electric signal related to the signal component passed by the band-pass filter 1 la.
  • the band-pass filter l ib passes only the signal component of the band (fb) for the oscillator B among the electric signals related to the electric field from the oscillators A and B and transmits the signal to the phase detector 23b. I do.
  • the phase detector 23b detects the phase of the electric signal related to the signal component passed by the 1 lb band-pass filter.
  • the position conversion processing unit 25 calculates the difference between the phase measured by the phase detector 23a and the phase measured by the phase detector 23b, and calculates the phase difference and the phase stored in the memory 27. By comparing the calculated phase difference with the difference, a process of converting the calculated phase difference into a specific position in a two-dimensional space on the electric field transmission sheet 302 is performed.
  • the position information (data) of the specific position obtained by the position conversion processing section 25 is transmitted from the position conversion processing section 25 to the wearable computer 1 via the IZ ⁇ circuit 101.
  • FIGS. 15 and 16 show examples in which each of the above embodiments is used for an electric field transmission sheet 302a and a keyboard for a personal computer.
  • FIG. 15 by printing a picture of the keyboard on the electric field transmission sheet 302a, for example, when a person touches the specific position ⁇ 1, the distances xl, yl of the transmitters A, ⁇ and The touched key can be specified.
  • the force S at which the position information is transmitted from the transceiver 3 to the wearable computer 1 and, in this case, the respective distances xl and yl from the transmitters A and B are transmitted S, Of the electric field transmission sheet 302a, and a correspondence table of the position information to the input information, which is the same as the relation between the position on the electric field transmission sheet 302a and the print information of the position, so that the wearable computer 1 can store information intended by a human. I can figure it out.
  • FIG. 17 shows an example in which each of the above embodiments is used for an electric field transmission sheet 302b such as a touch panel, a touch screen, or a showcase.
  • the touched position can be specified from the respective distances x2 and y2 from the transmitters A and B.
  • the “two transmitters” and the “electric field transmission sheet” are used, and by touching the electric field transmission sheet with a hand (finger), the two transmitters are used.
  • Ability to obtain information at a distance The purpose of the present invention is not limited to this.
  • the present invention can be applied not only to a two-dimensional plane but also to a three-dimensional space.
  • signals from the three transmitters to a finger pointing to a point in three dimensions are transmitted through the electric field transmission medium.
  • the transceiver can acquire the position information of the point in the three-dimensional space intended by the human.
  • this is sent to an information device such as a wearable computer, the intended information can be input to the information device by a human pointing to a certain point in the three-dimensional space.
  • the transceiver can grasp the information on the position of the finger or the like as the information on the movement of the finger or the like. That is, for example, by tracing the electric field transmission sheet with a finger, the transceiver can grasp the movement of the finger in real time, and if the information is sent to an information device such as a wearable computer, the movement information is obtained. Information intended by humans, which is related to itself and its motion information, can be input to the information device.
  • the information to be transmitted to the transceiver via the living body is not limited to a signal capable of acquiring a position (speed).
  • the electric field transmission sheet has a function of detecting pressure
  • the pressure signal can also be converted into an electric field and sent to the transceiver via a finger or the like.
  • the transceiver can acquire information on the pressing force intended by a human, and further sends this information to an information device such as a wearable computer, and the information corresponding to the pressing force of the information device can be obtained. Can be obtained.
  • information devices such as wearable computers have been described as having information corresponding to the position information and pressure information intended by humans. If you do, you can have the transceiver itself obtain the information that you intended.
  • information equipment such as wearable computers and A third device other than the transceiver may have the information and the information device and the transceiver may obtain the information from the third device.
  • an electric field detection optical device 115a according to the third embodiment of the present invention and a light intensity modulation type transceiver equipped with the electric field detection optical device 115a (hereinafter simply referred to as “transcino”). ], And three).
  • Fig. 18 shows a transceiver main body used for performing data communication via the human body (living body 100).
  • FIG. 18 is an overall configuration diagram common to the third to seventh embodiments.
  • the transceiver main unit 30c includes an IZ ⁇ (input / output) circuit 101, a transmission unit 103, a transmission electrode 105a, a reception electrode 105b, insulating films 107a and 107b, an electric field detection optical device 115 (electric field detection It has an optical unit 110, a light receiving circuit 152), a signal processing circuit 116, and a waveform shaping circuit 117.
  • IZ ⁇ input / output
  • the I / O circuit 101 is a circuit in which the transceiver body 3c inputs and outputs information (data) to and from an external device such as the wearable computer 1.
  • the transmitting unit 103 is configured by a transmitting circuit that induces an electric field related to the information (data) output from the I / O circuit 101 in the living body 100 based on the information (data).
  • the transmitting electrode 105a is an electrode used for inducing an electric field in the living body 100 by the transmitting unit 103, and is used as a transmitting antenna.
  • the receiving electrode 105b is induced and transmitted to the living body 100 from the wearable computer 1 and the transceiver 3 'and the PC 5 and the transceivers 3'a and 3'b attached to other parts of the living body 100. These electrodes are used to receive incoming electric fields, and are also used as receiving antennas.
  • the insulating film 107a is an insulating film disposed between the transmitting electrode 105a and the living body 100, and plays a role in preventing the transmitting electrode 105a from directly contacting the living body 100.
  • the insulating film 107b is an insulating film disposed between the receiving electrode 105b and the living body 100, and serves to prevent the receiving electrode 105b from directly contacting the living body 100.
  • the electric field detection optical unit 110 included in the electric field detection optical device 115 has a function of applying (applying) the electric field received by the receiving electrode 105b to the laser light to cause a change in the light intensity of the laser light. are doing.
  • the light receiving circuit 152 constituting the electric field detection optical device 115 receives the laser light whose light intensity has been changed, converts the laser light into an electric signal, and performs signal processing such as amplification of the electric signal. It is.
  • the signal processing circuit 116 is configured by at least a band-pass filter, and by this band-pass filter, among electric signals of various frequencies, other than frequency components related to reception information to be detected as an electric field. By removing the frequency components (ie, extracting only the frequency components related to the received information), signal processing such as removal of noise (noise) of the electric signal is performed.
  • the waveform shaping circuit 117 is a circuit that performs waveform shaping (signal processing) on the electric signal transmitted from the signal processing circuit 116 and supplies the electric signal to the real computer 1 via the IZ circuit 101. is there.
  • the electric field detection optical device 115a includes an electric field detection optical unit 110a, which is an example of the electric field detection optical unit 110, and a light receiving circuit 152a, which is an example of the light receiving circuit 152. Further, the electric field detection optical device 115a is installed in a transceiver main body 30c which is an example of the transceiver main body 30.
  • the electric field detection optical unit 110a includes a current source 119, a laser diode 121, a collimating lens 133, a beam splitter 139, a light intensity modulator 124, and first and second condenser lenses 141a and 141b. It is configured.
  • the light intensity modulator 124 is configured such that the light intensity of light passing therethrough changes depending on the intensity of the electric field to be coupled.
  • a first electrode 125 and a second electrode 127 are provided on both side surfaces of the light intensity modulator 124 that are vertically opposed in the drawing.
  • the first electrode 125 and the second electrode 127 sandwich the traveling direction of the laser light from the laser diode 121 in the light intensity modulator 124 from both sides, and can couple an electric field to the laser light at right angles.
  • the electric field detection optical unit 110a is connected to the receiving electrode 105b via the first electrode 125.
  • the second electrode 127 facing the first electrode 125 is connected to the ground electrode 131, and is configured to function as a ground electrode for the first electrode 125.
  • the laser light output from the laser diode 121 under the current control of the current source 119 is converted into parallel light via the collimator lens 133, and the parallel laser light enters the beam splitter 139.
  • the beam splitter 139 is an optical system that splits an incident laser beam into two and emits the split laser beam.
  • the first laser light of the laser light split by the beam splitter 139 is incident on the first condenser lens 141a via the light intensity modulator 124.
  • the second laser beam split by the beam splitter 139 is incident on the second condenser lens 141b without passing through the light intensity modulator 124.
  • the light receiving circuit 152a includes a first photodiode 143a for converting a current signal into a current signal in accordance with the light intensity of the first laser light modulated by the light intensity modulator 124.
  • a second photodiode 143b that converts the current into a current signal according to the light intensity of the second laser light received through the optical lens 141b, and a second constant voltage source that applies a reverse bias voltage to the second photodiode 143b.
  • the first laser light that has passed through the light intensity modulator 124 and the first condenser lens 141a of the electric field detection optical unit 110a is received by the first photodiode 143a, and is received by the first photodiode 143a.
  • a voltage signal (with a signal component) is output by the combination.
  • the second laser light that has passed through the second condenser lens 141b of the electric field detection optical unit 110a is received by the second photodiode 143b, and the noise of the laser light is consequently generated by the second set. Outputs a voltage signal (no signal component) containing (noise).
  • the light receiving circuit 152a further includes a differential amplifier 112 that differentially amplifies the voltage signal converted by the first load resistor 145a and the voltage signal converted by the second load resistor 145b.
  • the differential amplification is performed by the amplifier 112, and the output is supplied to the signal processing circuit 116 shown in FIG.
  • the laser beam is branched just before the laser beam is incident on the light intensity modulator 124, and one is input to the light intensity modulator 124 to detect the electric field.
  • the laser light is used as laser light (with signal components), and the other is not input to the light intensity modulator 124, but is used only as laser light (without signal components) for removing laser light noise.
  • a light modulator 124 such as a polarization modulator 123, which converts a change in polarization of laser light into a change in intensity and cannot output a differentially modulated intensity signal, is used.
  • the noise of the light can be removed.
  • an electric field detection optical device 115b according to the fourth embodiment of the present invention and a light intensity modulation type transceiver 3 including the electric field detection optical device 115b will be described with reference to FIG.
  • the electric field detection optical device 115b includes an electric field detection optical unit 110b described below instead of the electric field detection optical unit 110a in the electric field detection optical device 115a according to the third embodiment. Things. Note that among the configurations of the electric field detection optical unit 110b, the same components as those of the electric field detection optical unit 110a are denoted by the same reference numerals, and description thereof will be omitted.
  • the light receiving circuit 152a according to the present embodiment has the same configuration as the light receiving circuit 152a according to the first embodiment, and a description thereof will be omitted.
  • a first variable optical attenuator 134A is inserted between the beam splitter 139 and the light intensity modulator 124, and the beam splitter 139 is A second variable optical attenuator 134B is inserted between the second condenser lens 141b.
  • the first and second variable optical attenuators 134A and 134B attenuate the light intensity of the laser light by a predetermined ratio.
  • the first laser light which is split into two beams by the beam splitter 139, passes through the light intensity modulator 124. Since the second laser light does not pass through the light intensity modulator 124, of Since the transmission efficiency of the second laser light is higher than the transmission efficiency of the laser light, it is necessary to balance both. Therefore, in the present embodiment, the attenuation of the second light variable attenuator 134B through which the second laser light passes is set to be larger than the attenuation of the first light variable attenuator 134A through which the first laser light passes. Let's do it.
  • the light intensity of the first laser beam split by the beam splitter 139 can be attenuated by the first variable optical attenuator 134A, and then converted to a current signal by the first photodiode 143a.
  • the light intensity of the second laser beam split by the beam splitter 139 is attenuated by the second variable optical attenuator 134B, and then converted to a current signal by the second photodiode 143b.
  • the force of the laser beam passing through the second variable attenuator 134B is larger than that of the laser beam passing through the first variable attenuator 134A.
  • the first and second variable optical attenuators 134A and 134B are inserted and installed, so that the laser light is branched in order to remove the noise of the laser light. Even in this case, the input signals to the differential amplifier 112 can be balanced.
  • the first variable optical attenuator 134A may be omitted without being attached.
  • an electric field detection optical device 115c according to a fifth embodiment of the present invention and a light intensity modulation type transceiver 3 including the electric field detection optical device 115c will be described with reference to FIG.
  • the electric field detection optical device 115c includes a light receiving circuit 152b described below instead of the light receiving circuit 152a in the electric field detection optical device 115a according to the third embodiment.
  • the same components as those of the above-described light receiving circuit 152a are denoted by the same reference numerals, and description thereof will be omitted.
  • the electric field detection optical unit 110a according to the present embodiment has the same configuration as the electric field detection optical unit 110a according to the first embodiment, and a description thereof will be omitted.
  • the light receiving circuit 152b of the embodiment is characterized in that first and second variable load resistors 145A and 145B are provided, respectively. These first and second variable load resistors 145A and B have variable load resistance values, and the second variable load resistor 145B has a larger resistance value than the first variable load resistor 145A. Is set.
  • the signal intensities of the output voltage signals from the first photodiode 143a and the second photodiode 143b can be made equal.
  • the light receiving circuit 152b of the present embodiment includes the first and second load resistors 145a, b.
  • the variable load resistors 145A and 145B the input signal to the differential amplifier 112 can be balanced even when the laser light is branched in order to remove the noise of the laser light.
  • an electric field detection optical device 115d according to the sixth embodiment of the present invention and a light intensity modulation type transceiver 3 including the electric field detection optical device 115d will be described with reference to FIG.
  • the electric field detecting optical device 115d includes a light receiving circuit 152c described below instead of the light receiving circuit 152a in the electric field detecting optical device 115a according to the third embodiment.
  • a light receiving circuit 152c described below instead of the light receiving circuit 152a in the electric field detecting optical device 115a according to the third embodiment.
  • the same components as those of the above-described light receiving circuit 152a are denoted by the same reference numerals, and description thereof will be omitted.
  • the electric field detection optical unit 110a according to the present embodiment has the same configuration as the electric field detection optical unit 110a according to the first embodiment, and a description thereof will be omitted.
  • the light receiving circuit 152c of the present embodiment includes first and second variable voltage sources 147a and 147b, respectively.
  • the feature is that 147A and B are provided.
  • These first and second variable voltage sources 147A and 147B have variable voltage values, and are set so that the voltage value of the second variable voltage source 145B is smaller than the voltage value of the first variable voltage source 147A. Have been.
  • the signal strengths of the output voltage signals from the first photodiode 143a and the second photodiode 143b can be made equal.
  • the first and second constant voltage sources 14 of the third embodiment are used.
  • the light receiving circuit 152c of the present embodiment includes first and second variable voltage sources, respectively.
  • Providing 147A and 147B can balance the input signal to differential amplifier 112 even when the laser light is branched in order to remove laser light noise.
  • first and second variable voltage sources 147A and 147B can balance the input signal to the differential amplifier 112, it may be omitted without attaching either one. .
  • an electric field detection optical device 115e according to the seventh embodiment of the present invention and a light intensity modulation type transceiver 3 including the electric field detection optical device 115e will be described with reference to FIG.
  • the electric field detection optical device 115e includes a light receiving circuit 152d described below instead of the light receiving circuit 152a in the electric field detection optical device 115a according to the third embodiment.
  • a light receiving circuit 152d described below instead of the light receiving circuit 152a in the electric field detection optical device 115a according to the third embodiment.
  • the same components as those of the above-described light receiving circuit 152a are denoted by the same reference numerals, and description thereof is omitted.
  • the electric field detection optical unit 110a according to the present embodiment has the same configuration as the electric field detection optical unit 110a according to the first embodiment, and a description thereof will be omitted.
  • first and second signals for amplifying the respective voltage signals are output.
  • the feature is that the second variable gain amplifiers 149A and B are provided. These first and second variable gain amplifiers 149A and 149B have variable voltage gains, and are set so that the voltage gain of the second variable gain amplifier 149B is smaller than the voltage gain of the first variable gain amplifier 149A. Have been.
  • the respective voltage signals are amplified.
  • the first and second variable gain amplifiers 149A and 149B laser noise can be reduced. Even when the laser light is branched for removal, the input signal to the differential amplifier 112 can be balanced.
  • first and second variable gain amplifiers 149A and 149B can balance the input signal to the differential amplifier 112, it may be omitted without attaching either one. .
  • an electro-absorption (EA) light intensity modulator As the light intensity modulator in the above-described third to seventh embodiments, an electro-absorption (EA) light intensity modulator, a Mach-Zehnder type light intensity modulator, or the like can be adopted as in the related art.
  • EA electro-absorption
  • transceiver main body 30d of the transceiver according to the eighth embodiment of the present invention will be described with reference to FIG.
  • the transceiver body 30d according to the present embodiment has an overall configuration as shown in FIG. In this overall configuration, each configuration except for the electric field detection optical device 215, the noise detection unit 218, and the control signal generation unit 219 is the same as that of the transceiver main body 30c according to the third embodiment, and thus the same reference numerals are assigned. , The description of which will be omitted.
  • any one of the electric field detection optical devices 115b to 115e described in the above-described fourth to seventh embodiments is used, and the signal is output from the signal processing circuit 116.
  • the noise detection unit 218 determines the amount of noise remaining in the electric signal output from the signal processing circuit 116, that is, the noise existing in the frequency band related to the received information to be detected. Is detected.
  • the “variable value” indicates the amount of attenuation of the light intensity of the first and second variable optical attenuators 134A and 134B.
  • the resistance values of the first and second variable load resistors 145A and 145B are shown.
  • the voltage values of the first and second variable voltage sources 147A and 147B are shown.
  • the seventh embodiment (FIG. 23) And the voltage gains of the first and second variable gain amplifiers 113A and 113B.
  • a transceiver having a transceiver body capable of transmitting and receiving information via an electric field transmission medium, a battery for driving the transceiver body, and an insulating case covering the transceiver body.
  • An embodiment of a transceiver of a type in which a wide surface of the outer wall surface is contacted with a living body (hand) as an electric field transmission medium will be described.
  • FIG. 25 is a diagram showing an equivalent circuit between a living body, transmission / reception electrodes, and a transceiver main body.
  • the thickness of the insulating film 107 is made too thin while applying force, the possibility that the living body 100 directly touches the transmitting / receiving electrode 105 increases, and the risk of a large current flowing through the living body 100 increases. Therefore, it is better to increase the area of the transmitting / receiving electrode 105 to increase the capacity while ensuring safety. It's a good idea because you can make it bigger. Also, by increasing the size of the transmitting / receiving electrode 105, a shielding effect can be expected.
  • FIG. 26 is a diagram showing an equivalent circuit between a living body, a transceiver main body, and a battery.
  • an insulator having a small dielectric constant may be used, or the insulator, the living body 100, the transceiver body 30, It is necessary to reduce the contact area with each of the battery 6 and the battery 6 and to increase the thickness of the insulator.
  • the transceiver of the type shown in Fig. 9 the following can be considered as an embodiment for performing reliable and highly reliable communication through a living body.
  • FIG. 27 is an overall configuration diagram of the transceiver 3a and the wearable computer 1 according to the ninth embodiment.
  • FIG. 28 is a functional block diagram mainly showing the functions of the transceiver main body 30.
  • FIG. 29 is a detailed configuration diagram of the electric field detection optical device 115 ′.
  • FIG. 30 is a usage image diagram showing a usage state of transceiver 3a and wearable computer 1 shown in FIG.
  • the transceiver 3a is provided with an insulating case 33 formed of an insulator, the following devices and the like built in the insulating case 33, and the outside of the insulating case 33. It is composed of the following members and the like.
  • an insulating foam material 7a for weakening the electrical coupling between the insulating case 33 and the transceiver body 30 is attached.
  • a transceiver body 30 that transmits and receives data (information) to and from the wearable computer 1 is attached to the upper surface.
  • an insulating foam material 7b for weakening the electrical connection between the transceiver body 30 and the battery 6 is attached to the upper surface thereof. Furthermore, on the top A battery 6 for driving the sheaver 30 is attached.
  • the insulating foam material 7a is sandwiched (supported in a sandwiched state) between the insulating case 33 and the transceiver body 30, and the insulating foam material 7b is sandwiched between the transceiver body 30 and the battery 6.
  • Insulating foams 7a and 7b have holes containing countless air. Therefore, the transmission of noise between the insulating case 33 and the transceiver main body 30 can be suppressed by the insulating foam material 7a. Further, the transmission of noise between the transceiver body 30 and the battery 6 can be suppressed by the insulating foam material 7b.
  • a first ground (Ground) electrode 131 which will be described later, extends from the transceiver main body 30, and transmits and receives signals without contacting other devices (battery 6, wearable computer 1, etc.). It is attached to the upper part of the inner wall surface of the insulating case 33 away from the electrode 105. Further, a second ground electrode 161 and a third ground electrode 163, which will be described later, extend from the transceiver body 30 so that the second ground electrode 161 and the third ground electrode 163 do not come into contact with other devices (battery 6, wearable computer 1, etc.) and the first ground electrode 131. Also, the force is attached to the upper part of the inner wall surface of the insulating case 33 away from the transmitting / receiving electrode 105.
  • Transmission / reception electrodes 105 are attached to the bottom of the outer wall surface and the outer wall surface side of insulating case 33, and the entire transmission / reception electrode 105 is covered with insulating film 107. Operation of data 1 Other parts than the input surface are covered with insulating case 11.
  • the transceiver body 30 includes an I / O (input / output) circuit 101, a transmission unit 103, a transmission / reception electrode 105, an insulating film 107, an electric field detection optical device 115 ', a reception circuit 113 (a signal processing circuit 116, a waveform shaping).
  • the point of having the circuit 117) is the same as that of the conventional transceiver main body 30 ', but these configurations will be described again.
  • the I / O circuit 101 is a circuit in which the transceiver body 30 inputs and outputs information (data) to and from an external device such as the wearable computer 1.
  • the transmission unit 103 is configured by a transmission circuit that induces an electric field related to this information in the living body 100 based on information (data) output from the IZ ⁇ circuit 101.
  • the transmission / reception electrode 105 is an electrode used for inducing an electric field in the living body 100 by the transmission unit 103, and is used as a transmission antenna.
  • the transmitting and receiving electrode 105 receives the electric field induced and transmitted by the living body 100. And used as a receiving antenna.
  • the insulating film 107 is an insulator film disposed between the transmitting / receiving electrode 105 and the living body 100, and has a role of preventing the transmitting / receiving electrode 105 from directly contacting the living body 100.
  • the electric field detection optical device 115 has a function of detecting an electric field received by the transmission / reception electrode 105 and converting the electric field into an electric signal as reception information.
  • the signal processing circuit 116 of the receiving circuit 113 further amplifies the electric signal transmitted from the electric field detection optical unit 115 ', and restricts the band of the electric signal to reduce unnecessary noise or unnecessary signal. This is a circuit that performs processing for removing components.
  • the waveform shaping circuit 117 is a circuit that performs waveform shaping (signal processing) on the electric signal transmitted from the signal processing circuit 116 and supplies the electric signal to the real computer 1 via the IZ circuit 101. is there.
  • the transmitting unit 103, the receiving circuit 113, and the I / O circuit 101 can be driven by the battery 6.
  • the electric field detection optical unit 115 performs a process of converting the electric field received by the transceiver body 30 into an electric signal. This process is performed by detecting an electric field by an electro-optical method using a laser beam and an electro-optical crystal.
  • the electric field detecting optical unit 115 includes a current source 119, a laser diode 121, an electro-optical element (electro-optical crystal) 123, first and second wave plates 135 and 137, a polarizing beam splitter. 139, a plurality of lenses 133, 141a, b, photodiodes 143a, b, and a first ground electrode 131.
  • the electro-optical element 123 has sensitivity only to an electric field that is coupled in a direction perpendicular to the traveling direction of the laser light from the laser diode 121. Is changed, and the polarization of the laser light is changed by the change of the birefringence.
  • a first electrode 125 and a second electrode 127 are provided on both side surfaces of the electro-optical element 123 that are vertically opposed in FIG. The first electrode 125 and the second electrode 127 sandwich the traveling direction of the laser light from the laser diode 121 in the electro-optical element 123 from both sides, and can couple an electric field to the laser light at right angles.
  • the electric field detection optical section 115 ′ is connected to the transmission / reception electrode 105 via the first electrode 125.
  • the second electrode 127 facing the first electrode 125 is connected to the first ground electrode 131, and is configured to function as a ground electrode for the first electrode 125. Then, the transmitting / receiving electrode 105 receives the electric field induced and transmitted to the living body 100, transmits the electric field to the first electrode 125, and couples the electric field to the electro-optical element 123 via the first electrode 125. Wear.
  • the laser light output from the laser diode 121 by the current control of the current source 119 is converted into parallel light through the collimating lens 133, and the parallel light is polarized by the first wavelength plate 135. Is adjusted, and is incident on the electro-optical element 123.
  • the laser beam incident on the electro-optical element 123 propagates between the first and second electrodes 125 and 127 in the electro-optical element 123.
  • the electric field is connected from the first electrode 125 to the ground electrode 131. Formed toward the second electrode 127.
  • the birefringence which is an optical characteristic of the electro-optical element 123, changes, thereby changing the polarization of the laser light. Change.
  • the laser light is incident on the polarization beam splitter 139 after the polarization state is adjusted by the second wave plate 137.
  • the polarization beam splitter 139 separates the laser light incident from the second wavelength plate 137 into a P-wave and an S-wave, and converts the split into a light intensity change.
  • the laser beams separated into the P-wave component and the S-wave component by the polarization beam splitter 139 are condensed by the first and second condenser lenses 141a and 141b, respectively.
  • the light is received by the photodiodes 143a and 143b, and the first and second photodiodes 143a and 143b can convert the P-wave optical signal and the S-wave optical signal into respective current signals and output them.
  • the current signals output from the first and second photodiodes 143a and 143b are converted into voltage signals using resistors, and then increased by the signal processing circuit 116 shown in FIG. Signal processing of width and noise removal is performed.
  • the first ground electrode 131 serving as a reference point of the voltage for the electric field detection optical unit 115 ′ extends outside the transceiver main body 30 as shown in FIG. Have been.
  • a second ground electrode 161 serving as a reference point of a voltage for the signal processing circuit 116 and a third ground electrode 163 serving as a reference point of a voltage for the transmitting unit 103 are commonly extended to the outside. ing.
  • the insulating case 33 has the outer wall bottom and the outer wall side. Even in such a case, since the transmission / reception electrode 105 and the insulating film 107 cover not only the bottom of the outer wall surface of the insulating case 33 but also the side of the outer wall surface, the transmission electric field El, Although E2 and E3 are induced, it suppresses a part of the electric field from returning to the transceiver 3 from the hand through the side surface of the insulating case 33.
  • the transmitting electrode (here) is formed on a wide surface including the side surface (side portion) connected only with the bottom surface (bottom portion).
  • the transmission / reception electrode 105) was attached and covered with the insulating film 107, so that even when the transceiver 3a was held by a human hand, a part of the transmission electric field was prevented from returning to the transceiver 3a from the hand again. S can do it.
  • an insulating foam material 7a is sandwiched between the insulating case 33 and the transceiver body 30, and an insulating foam material 7b is sandwiched between the transceiver body 30 and the battery 6, so that the battery 6 Noise that enters the transceiver body 30 from the insulating case 33 can be suppressed.
  • FIG. 31 is an overall configuration diagram of the transceiver 32 and the wearable computer 1 according to the tenth embodiment. Note that the same components as those in the ninth embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • insulating posts 99a, 99b are used instead of the insulating foaming agents 7a, 7b of the ninth embodiment.
  • the contact area between the insulator and each of the living body 100, the transceiver body 30, and the battery 6 is reduced, the effect that an unnecessary AC electric field is not induced is reduced. Even bigger.
  • the insulating pillars 99a and 99b may be made of wood in addition to the foaming agent. However, a light and durable material such as paulownia wood is preferred.
  • the columns are employed, but they may have a block structure.
  • FIG. 32 is an overall configuration diagram of the transceiver 3c and the wearable computer 1 according to the eleventh embodiment. Note that the same components as those in the ninth embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the second and third ground electrodes 161 and 163 are extended from the insulating case 33 of the transceiver 3c, and the side surfaces of the insulating case 11 of the wearable computer 1 ( Side).
  • the second and third ground electrodes 161 and 163 further include transmission / reception electrodes as compared with the ninth embodiment. Since it is far away from the transmitter / receiver electrode 105, it is possible to more securely prevent the unnecessary signal from flowing from the transmitting / receiving electrode 105 to the transceiver main body 30, and to further strengthen the ground.
  • FIG. 33 shows the transceiver 3d and the wearable computer 1 according to the twelfth embodiment.
  • FIG. 2 is an overall configuration diagram. Note that the same components as those in the ninth embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the first ground electrode 131 extends from the insulating case 33 of the transceiver 3d and is attached to the side (side) of the insulating case 11 of the wearable computer 1. ing.
  • the first ground electrode 131 is further away from the transmitting / receiving electrode 105 as compared with the ninth embodiment. Therefore, the sneak of unnecessary signals from the transmitting / receiving electrode 105 to the transceiver main body 30 can be more securely prevented, and the ground can be further strengthened.
  • FIG. 34 is an overall configuration diagram of the transceiver 3e and the wearable computer 1 according to the thirteenth embodiment. Note that the same components as those in the ninth embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the transmitting / receiving electrode 105 is divided into a transmitting-only transmitting electrode 105a and a receiving-only receiving electrode 105b, and the transmitting / receiving electrode 105a shown in FIG. Are arranged, and as shown in FIG. 34, a receiving electrode 105b is arranged on the outer bottom surface of the insulating film 107a.
  • the receiving electrode 105b is also covered with the insulating film 107b so that the human body does not touch it directly.
  • the insulating film 107 shown in FIG. 31 is represented as an insulating film 107a.
  • the transmission electrode 105a is relatively large and covers almost the entire insulating case 33, and the reception electrode 105b Since the power is small, the effect of reducing the rate at which a part of the electric field for transmission returns from the hand is reduced.
  • the transmitting electrode 105a and the receiving electrode 105b may be provided in a different arrangement position (fourteenth embodiment).
  • one of the ground electrodes is The force attached to the side of the insulating case 11 of the motor 1 is not limited to this.
  • the first ground electrode 131 and the second and third ground electrodes 161 and 163 are not brought into contact with each other. May be attached to the side surface of the insulating case 11.
  • the insulating foam material 7a is interposed between the insulating case 33 and the transceiver body 30, and the insulating property is provided between the transceiver body 30 and the battery 6.
  • Force holding the foam material 7b is not limited to this.
  • an integral insulating foam material 8 that covers the battery 6 and the transceiver body 30 without contacting them may be used.
  • a cushion-shaped insulating material 9 in which a gas such as air is trapped instead of a foam material may be used.
  • an electric field transmission medium such as a living body in a two-dimensional space
  • information input to the wearable computer 1 and the like can be performed by using the electric field transmission medium. This has the effect that it can be easily performed via
  • the laser light is branched (separated) just before the laser light enters the light intensity modulating means, and one of them is input to the light intensity modulating means and used as laser light for detecting an electric field.
  • the other is used only as laser light to remove noise from the laser light without being input to the light intensity modulation means. Therefore, even if the intensity modulation signal cannot be taken out and the light intensity modulation means is used, it is possible to remove the noise of the laser light, and the effect is obtained.
  • the transmitting electrode is attached to a wide surface including the side surface (side portion) of the outer wall surface of the insulating case that is connected only to the bottom surface (bottom portion), human transmission Even if the transceiver is held by one hand, it is possible to prevent part of the transmission electric field from returning to the transceiver from the hand.

Abstract

 人間の手(100)でトランシーバ(3a)を持つ場合には、絶縁ケース(33)の外壁面底部及び外壁面側部を持つことになる。従って、絶縁ケース(33)の外壁面底部だけでなく外壁面側部まで、送受信電極(105)及び絶縁膜(107)で覆うようにした。第1グランド電極(131)、第2グランド電極(161)、及び第3グランド電極(163)を絶縁ケース(33)の内壁面の上部であって、送受信電極(105)から離れた位置に取り付けた。絶縁ケース(33)とトランシーバ本体(30)の間に絶縁性発泡材(7a)を介在させ、トランシーバ本体(30)とバッテリ(6)の間に絶縁性発泡材(7b)を介在させた。

Description

明 細 書
電界検出光学装置、トランシーバ、位置情報取得システム、及び情報入 カシステム
技術分野
[0001] 本発明は、例えばウェアラブルコンピュータ間のデータ通信のために使用されるトラ ンシーバに関し、更に詳しくは、電界伝達媒体に誘起されている電界に基づいた情 報を受信することにより、前記電界伝達媒体を介した情報の受信が可能なトランシー バに関する。
[0002] また、本発明は、特に、送信すべき情報に基づいた電界を送信用電極から電界伝 達媒体に誘起させることにより、前記電界伝達媒体を介した情報の送信が可能なトラ ンシーバ本体と、このトランシーバ本体を駆動させるバッテリと、前記トランシーバ本 体が内蔵された絶縁ケースと、を備えるトランシーバに関する。
[0003] また、本発明は、レーザ光の光強度を検出対象の電界に基づいて変調させること で、電界を検出する電界検出光学装置と、そのような電界検出光学装置を備えたトラ ンシーバに関する。
[0004] また、本発明は、電界伝達媒体により接触された位置に応じて、電界伝達媒体に電 界を誘起させる電界誘起手段と、電界伝達媒体に誘起されてレ、る電界を受信して電 気信号に変換することにより、上記位置の情報を取得するトランシーバと、を備える位 置情報取得システムに関する。
[0005] また、本発明は、位置情報取得システムからの位置情報等に基づいて情報を取得 する情報入力システムに関する。
背景技術
[0006] 近年、衣服のように人体に着けて、操作及び使用することができるという新しい概念 のコンピュータが注目されている。このコンピュータは、ウェアラブルコンピュータ (Wearable Computer)と呼ばれ、携帯端末の小型化及び高性能化により実現が可能 となった。
[0007] また、複数のウェアラブルコンピュータ間のデータ通信を人間の腕、肩、胴体等の 人体 (生体)を介して行う技術の研究も進んでおり、この技術は既に特許文献等で提 案されている(例えば、特開 2001— 352298号公報(第 4一 5頁、第 1—5図)参照)。 図 1は、このような人体を介して複数のウェアラブルコンピュータ間通信を行う場合の イメージ図を示している。同図に示すように、ウェアラブルコンピュータ 1は、これに当 接されたトランシーバ 3,とにより一組 (セット)を構成しており、他のゥヱアラブルコンビ ユータ 1とトランシーバ 3 'の組に対して、人体を介することによりデータ通信を行うこと ができる。また、ウェアラブルコンピュータ 1は、人体に装着しているウェアラブルコン ピュータ 1以外の PC (パーソナルコンピュータ) 5と壁等に設置されているトランシーバ 3' aの組や、この PC5と床等に設置されているトランシーバ 3' bの組とのデータ通信 もそれぞれ可能である。但し、この場合の PC5は、ゥヱアラブルコンピュータ 1とトラン シーバ 3'のように互いに当接されておらず、ケーブル 4を介してトランシーバ 3' a, 3, bと接続されている。
[0008] また、人体を介して行うデータ通信に関しては、レーザ光と電気光学結晶を用いた 電気光学的手法による信号検出技術を利用し、送信すべき情報 (データ)に基づく 電界を人体(電界伝達媒体)に誘起させると共に、この人体に誘起された電界に基づ く情報を受信することによって、情報の送受信を行っている。この人体を介したデータ 通信の技術については、図 2を用いて更に詳しく説明する。
[0009] 図 2は、人体(生体 100)を介したデータ通信を行うために用いるトランシーバ本体 3 0'の全体構成図である。図 2に示すように、トランシーバ本体 30'は、送受信電極 10 5'及び絶縁膜 107'を介して生体 100に接触した状態で使用される。そして、トラン シーバ本体 30'は、ウェアラブルコンピュータ 1から供給されたデータを I/O (入出力 )回路 101を介して受信し、送信部 103に送信する。送信部 103では、送受信電極 1 05'から絶縁膜 107'を介して電界伝達媒体である生体 100に電界を誘起させ、この 電界を生体 100を介して生体 100の他の部位に装着されている別のトランシーバ 3 ' に伝達させる。
[0010] また、トランシーバ本体 30'は、生体 100の他の部位に装着された別のトランシーバ
3'から生体 100に誘起して伝達されてくる電界を絶縁膜 107'を介して送受信電極 1 05'で受信する。電界検出光学装置 115'を構成する電界検出光学部 110'では、こ の受信した電界を上記電気光学結晶に掛ける(印加する)ことでレーザ光に偏光変 化や強度変化を生じさせる。そして、電界検出光学装置 115'を構成する受光回路 1 52'では、上記偏光変化や強度変化されたレーザ光を受光して電気信号に変換す ると共に、この電気信号の増幅等の信号処理を行う。また、受信回路 113を構成する 信号処理回路 116では、これを構成するバンドパスフィルタにより、様々な周波数の 電気信号のうちで、電界検出対象である受信情報に係る周波数成分以外の周波数 成分を取り除く(即ち、受信情報に係る周波数成分のみを取り出す)ことで、電気信号 の雑音(ノイズ)の除去等の信号処理を行う。そして、受信回路 113を構成する波形 整形回路 117では、上記信号処理回路 116を通過した電気信号の波形整形 (信号 処理)を施し、入出力回路 101を介してゥヱアラブルコンピュータ 1に供給する。
[0011] また、図 3に示すように、電極を送信用と受信用の 2つに分けることもできる。すなわ ち、送信部 103は、送信電極 105' aから絶縁膜 107' aを介して電界伝達媒体である 生体 100に電界を誘起させる。一方、受信電極 105' bは、生体 100の他の部位に装 着された別のトランシーバ 3 'から生体 100に誘起して伝達されてくる電界を絶縁膜 1 07' bを介して受信する。尚、他の構成及びその動作は図 2と同様である。
[0012] 例えば、図 1に示すように、右腕に装着したウェアラブルコンピュータ 1は、トランシ ーバ 3 'により送信データに係る電気信号を電界として電界伝達媒体である生体 100 に誘起させ、波線で示すように電界として生体 100の他の部位に伝達する。一方、左 腕に装着したウェアラブルコンピュータ 1では、生体 100から伝達されてくる電界をトラ ンシーバ 3'により電気信号に戻してから、受信データとして受信することができる。
[0013] ところで、ウェアラブルコンピュータ 1等のコンピュータや携帯電話機等の携帯端末 は、図 1に示すように生体 100に装着したり持ち運びの利便性を考慮して、小型化す る要請がある。
[0014] しかし、コンピュータや携帯端末が小型になるに従い、コンピュータや携帯端末へ の情報入力が困難になるという問題が生じていた。
[0015] 一方、トランシーバ本体 30'における電界検出光学部 110'には、偏光変調器のよ うにレーザ光の偏光変化を強度変化に変換するものや、電界吸収型 (EA)光強度変 調器、マッハツエンダ型光強度変調器等の光強度変調器ようにレーザ光の強度変化 を直接変換するものがある。
[0016] そこで、図 4及び図 5を用いて、偏光変調器 123を使用した電界検出光学部 110 ' a 及び受光回路 152 ' aについて説明し、次に、図 6乃至図 8を用いて、光強度変調器 124を使用した電界検出光学部 110 ' b及び受光回路 152 ' bについて説明する。
[0017] まず、図 4に示すように、偏光変調器 123を使用した電界検出光学部 110 ' aは、電 流源 119、レーザダイオード 121、コリメートレンズ 133、電気光学素子(電気光学結 晶)等の偏光変調器 123、第 1及び第 2波長板 135, 137、偏向ビームスプリッタ 139 '、並びに第 1及び第 2集光レンズ 141a, bにより構成されている。
[0018] また、受光回路 152 ' aは、第 1フォトダイオード 143a、第 1負荷抵抗 145a、及び第 1定電圧源 147a、並びに、第 2フォトダイオード 143b、第 2負荷抵抗 145b、及び第 2 定電圧源 147b、並びに、差動アンプ 112によって構成されている。
[0019] このうち、偏光変調器 123は、レーザダイオード 121から出射されたレーザ光の進 行方向に対し、直角方向に結合される電界にのみ感度を有し、この電界強度によつ て光学特性、すなわち複屈折率が変化し、この複屈折率の変化によりレーザ光の偏 光を変化させるように構成されている。偏光変調器 123の図上で上下方向に対向す る両側面には、第 1電極 125と第 2電極 127が設けられている。この第 1電極 125及 び第 2電極 127は、レーザダイオード 121からのレーザ光の偏光変調器 123内にお ける進行方向に対して直角に対向し、レーザ光に対して電界を直角に結合させること ができる。
[0020] また、電界検出光学部 110 ' aは、第 1電極 125を介して受信電極 105 ' bに接続さ れている。第 1電極 125に対向する第 2電極 127は、グランド電極 131に接続されて おり、第 1電極 125に対してグランド電極として機能するように構成されている。そして 、受信電極 105 ' bは、生体 100に誘起されて伝達されてくる電界を検出すると、この 電界を第 1電極 125に伝達し、第 1電極 125を介して偏光変調器 123に結合すること ができる。
[0021] これによつて、電流源 119の電流制御によりレーザダイオード 121から出力されるレ 一ザ光は、コリメートレンズ 133を介して平行光にされ、平行光となったレーザ光は第 1波長板 135で偏光状態を調整されて、偏光変調器 123に入射する。偏光変調器 1 23に入射されたレーザ光は、偏光変調器 123内で第 1、第 2電極 125, 127の間を 伝播するが、このレーザ光の伝播中において上述したように受信電極 105' bが生体 100に誘起されて伝達されてくる電界を検出し、この電界を第 1電極 125を介して偏 光変調器 123に結合すると、この電界は第 1電極 125からグランド電極 131に接続さ れている第 2の電極 127に向かって形成される。この電界は、レーザダイオード 121 力 偏光変調器 123に入射されたレーザ光の進行方向に直角であるため、偏光変 調器 123の光学特性である複屈折率が変化し、これによりレーザ光の偏光が変化す る。
[0022] 次に、偏光変調器 123において第 1電極 125からの電界によって偏光が変化した レーザ光は、第 2波長板 137で偏光状態を調整されて偏光ビームスプリッタ 139 'に 入射する。偏光ビームスプリッタ 139'は、第 2波長板 137から入射されたレーザ光を P波及び S波に分離して、光の強度変化に変換する。この偏光ビームスプリッタ 139' で P波成分及び S波成分に分離されたレーザ光は、それぞれ第 1、第 2集光レンズ 14 la, 141bで集光されてから、光電気変換手段を構成する第 1、第 2のフォトダイォー ド 143a, 143bで受光され、第 1、第 2のフォトダイオード 143a, 143bにおいて P波光 信号と S波光信号をそれぞれの電気信号に変換して出力することができる。尚、第 1 、第 2のフォトダイオード 143a, 143bから出力される電流信号は、それぞれ第 1負荷 抵抗 145a及び第 1定電圧源 147a、並びに第 2負荷抵抗 145b及び第 2定電圧源 14 7bにより電圧信号に変換されてから、差動アンプ 112による差動で受信情報に係る 電圧信号 (強度変調信号)を取り出すことができる。尚、この取り出された電圧信号は 、図 2及び図 3に示す信号処理回路 116に供給される。
[0023] また、差動アンプ 112では、図 5に示すように、第 1フォトダイオード 143aによる電圧 信号 Saと、第 2フォトダイオード 143bによる電圧信号 Sbは、位相が 180° ずれてい るため、逆相の信号成分は増幅され、同相のレーザ光の雑音が差し引かれて除去さ れることになる。
[0024] そして、図 2及び図 3に示す信号処理回路 116で雑音除去の信号処理が施され、 波形整形回路 117で波形整形の信号処理を施されてから、入出力回路 101を介し てウェアラブルコンピュータ 1に供給されることになる。 [0025] 次に、図 6乃至図 8を用いて、光強度変調器 124を使用した電界検出光学部 110' b及び受光回路 152' bについて説明する。尚、上記偏光変調器 123を使用した電界 検出光学部 110' a及び受光回路 152' aの構成と同一構成については、同一符号を 付している。
[0026] まず、図 6に示すように、光強度変調器 124を使用した電界検出光学部 110' bは、 電流源 119、 レーザダイオード 121、コリメートレンズ 133、電界吸収型 (EA)光強度 変調器やマッハツエンダ型光強度変調器等の光強度変調器 124、並びに集光レン ズ 141により構成されている。
[0027] また、受光回路 152' bは、フォトダイオード 143、負荷抵抗 145、定電圧源 147、及 び(シングル)アンプ 118によって構成されてレ、る。
[0028] このうち、光強度変調器 124は、結合する電界強度によって通過する光の光強度 が変化するように構成されている。光強度変調器 124の図上で上下方向に対向する 両側面には、第 1電極 125と第 2電極 127が設けられている。この第 1電極 125及び 第 2電極 127は、レーザダイオード 121からのレーザ光の光強度変調器 124内にお ける進行方向に対して直角に対向し、レーザ光に対して電界を直角に結合させること ができる。
[0029] また、電界検出光学部 110' bは、第 1電極 125を介して受信電極 105' bに接続さ れている。第 1電極 125に対向する第 2電極 127は、グランド電極 131に接続されて おり、第 1電極 125に対してグランド電極として機能するように構成されている。そして 、受信電極 105' bは、生体 100に誘起されて伝達されてくる電界を検出すると、この 電界を第 1電極 125に伝達し、第 1電極 125を介して光強度変調器 124に結合する こと力 Sできる。
[0030] ここで、図 7を用いて、光強度変調器 124の一例である電界吸収型 (EA)光強度変 調器 124aを簡単に説明する。
[0031] 図 7に示すように、電界吸収型光強度変調器 124aは、光強度が一定のレーザ光が 入射された場合には、電界に係る検出信号に応じ、入射レーザ光の強度を最大とし て、光強度を変化させる変調器である。即ち、電界に係る検出信号に基づいて、上 記入射されたレーザ光の光強度が減衰する。 [0032] また、図 8を用いて、光強度変調器 124の一例であるマッハツエンダ型光強度変調 器 124bを簡単に説明する。
[0033] 図 8に示すように、マッハツエンダ型光強度変調器 124bは、基板 201に、この基板 201と光の屈折率が異なる 2つの導波路 203a, bを形成して、レンズ 205を介して入 射されたレーザ光を導波路 203a, b内に閉じこめると共に分岐させる。この分岐させ た一方のレーザ光に対して、第 1電極 125及び第 2電極 127より電界を掛けて結合さ せ、その後に、レンズ 207を介してレーザ光を出射させる構造となっている。レーザ光 の一方に電界を掛けることで、電界を掛けないレーザ光に比べて、少し位相を遅らせ たり、進ませたりすることができる。
[0034] 図 6に戻り、電流源 119の電流制御によりレーザダイオード 121から出力されるレー ザ光は、コリメートレンズ 133を介して平行光にされ、平行光となったレーザ光は光強 度変調器 124に入射する。光強度変調器 124に入射されたレーザ光は、光強度変 調器 124内で第 1、第 2電極 125, 127の間を伝播するが、このレーザ光の伝播中に おいて上述したように受信電極 105 ' bが生体 100に誘起されて伝達されてくる電界 を検出し、この電界を第 1電極 125を介して光強度変調器 124に結合すると、この電 界は第 1電極 125からグランド電極 131に接続されている第 2の電極 127に向かって 形成される。この電界の結合により、光強度が変化したレーザ光が出射され、集光レ ンズ 141を介して、受光回路 152 ' bのフォトダイオード 143で受光される。これにより 、フォトダイオード 143でレーザ光の光強度に応じて電流信号に変換され、フォトダイ オード 143から出力された電流信号は、負荷抵抗 145及び定電圧源 147により電圧 信号に変換されてから出力される。尚、この出力された電圧信号は、アンプ 118によ り増幅されてから、図 2及び図 3に示す信号処理回路 116に供給される。
[0035] そして、図 2及び図 3に示す信号処理回路 116で雑音除去の信号処理が施され、 波形整形回路 117で波形整形の信号処理を施されてから、入出力回路 101を介し てウェアラブルコンピュータ 1に供給されることになる。
[0036] しかし、図 6に示す光強度変調器 124は、図 4に示す偏光変調器 123のようなレー ザ光の偏光変化を強度変化に変換する変調器とは異なり、図 5に示すように差動で 強度変調信号が取り出せないため、差動検出ができなかった。差動検出をせずに、 光強度変調器 124の出力をそのままフォトダイオード 143で受光すると、レーザ光の 雑音が除去できず受信信号の S/Nが悪くなり、通信品質が劣化するという問題が生 じていた。
[0037] ところで、また、図 9に示すように、人間の手(生体 100)でトランシーバ 3 'とウェアラ ブルコンピュータ 1との組みを持つ場合もある。図 9に示すトランシーバ 3'は、絶縁体 により構成された絶縁ケース 33の内壁面底部にトランシーバ本体 30'が取り付けられ 、更に、その上面にトランシーバ本体 30'を駆動させるバッテリ 6が取り付けられた構 成となっている。更に、絶縁ケース 33の外壁面底部には、送受信電極 105'が取り付 けられており、この送受信電極 105 'は絶縁膜 107'で覆われている。尚、ウェアラブ ルコンピュータ 1の操作.入力面以外の部分は、絶縁ケース 11で覆われている。
[0038] し力 ながら、図 9に示すように手でトランシーバ 3'を持った場合には、送受信電極
105'から人間の手(生体 100)に送信用の電界 E1が誘起されても、その一部の電界 Ε2,, E3,が手から絶縁ケース 33の側面を介してトランシーバ 3,に戻って来てしまう 。そのため、トランシーバ 3 'が正常な送信動作を行わないという問題が生じていた。 発明の開示
[0039] 本発明は上述した事情を鑑みてなされたものであり、電界伝達媒体を介した情報の 送受信が可能なトランシーバ本体と、このトランシーバを駆動させるバッテリと、上記ト ランシーバ本体を覆う絶縁ケースと、を備えた構成のトランシーバの外壁面のうち、広 範な面を電界伝達媒体である生体で接触した場合であっても、トランシーバの送受 信動作を正常に行うことができる技術を提供することを目的としたものである。
[0040] また、本発明は上述した事情を鑑みてなされたものであり、電界検出に光強度変調 器を用いた電界検出光学装置、及び、この電界検出光学装置を備えたトランシーバ であっても、通信品質の劣化を抑制することを目的としたものである。
[0041] 本発明は上述した事情を鑑みてなされたものであり、電界伝達媒体を介した情報の 送受信が可能なトランシーバとセットで使用するコンピュータや携帯端末への情報入 力を容易に行うことができる技術を提供することを目的としたものである。
[0042] 上記目的を達成するため、第 1の態様に係る発明は、電界を電界伝達媒体に誘起 させると共に、前記電界伝達媒体に誘起されている電界を受信する送受信用電極と 、送信すべき情報に基づいた前記電界を前記送受信用電極に生じさせると共に、前 記送受信用電極に生じた前記電界を受信情報に変換することにより、前記電界伝達 媒体を介した情報の送受信が可能なトランシーバ本体と、前記送受信電極と前記電 界伝達媒体との間に介在する第 1の構造物と、前記トランシーバ本体と前記電界伝 達媒体との間に介在する第 2の構造物と、前記トランシーバ本体を駆動させるバッテ リと、前記トランシーバ本体と前記バッテリとの間に介在する第 3の構造物と、を備え たトランシーバであって、前記第 1、第 2、及び第 3の構造物は、金属、半導体、及び 絶縁体のうちの少なくとも 1つで構成され、抵抗と容量の並列回路として等価される構 造物であるトランシーバを要旨とする。
[0043] 第 2の態様に係る発明は、第 1の態様に係る発明において、前記第 2の構造物及び 第 3の構造物のインピーダンスは、前記第 1の構造物のインピーダンスよりも大きいこ とを要旨とする。
[0044] 第 3の態様に係る発明は、第 2の態様に係る発明において、前記第 1の構造物は、 前記電界伝達媒体に対して前記送受信電極を覆う絶縁膜であることを要旨とする。
[0045] 第 4の態様に係る発明は、第 2の態様に係る発明において、前記第 2の構造物及び 第 3の構造物は、絶縁性部材であることを要旨とする。
[0046] 上記目的を達成するため、第 5の態様に係る発明は、送信すべき情報に基づいた 電界を送信用電極から電界伝達媒体に誘起させることにより、前記電界伝達媒体を 介した情報の送信が可能なトランシーバ本体と、このトランシーバ本体を駆動させる バッテリと、前記トランシーバ本体が内蔵された絶縁ケースと、を備えたトランシーバ であって、前記送信用電極は、前記絶縁ケースの外壁面のうち、前記電界伝達媒体 が近接すべき部分の全面に渡って設けられていると共に、前記電界伝達媒体に直 接接触しなレ、ように絶縁膜で覆われてレ、るトランシーバを要旨とする。
[0047] 第 6の態様に係る発明は、第 5の態様に係る発明において、前記バッテリと前記トラ ンシーバ本体の間に絶縁性部材を更に備えることを要旨とする。
[0048] 第 7の態様に係る発明は、第 6の態様に係る発明において、前記絶縁性部材は、 空気が含まれる発泡材であることを要旨とする)。
[0049] 第 8の態様に係る発明は、第 6の態様に係る発明において、前記絶縁性部材は、 複数の木材支柱であることを要旨とする。
[0050] 第 9の態様に係る発明は、第 6の態様に係る発明において、前記絶縁性部材は、 所定の気体を閉じこめたクッション材であることを要旨とする。
[0051] 第 10の態様に係る発明は、第 5の態様に係る発明において、前記トランシーバ本 体が駆動する際に必要とする基準電圧を画定するものであって、前記絶縁ケースの 内壁面に取り付けられたグランド電極を更に備えることを要旨とする。
[0052] 第 11の態様に係る発明は、第 5の態様に係る発明において、前記トランシーバ本 体が駆動する際に必要とする基準電圧を画定するものであって、前記絶縁ケース外 の外部装置に取り付けられたグランド電極を更に備えることを要旨とする。
[0053] また、上記目的を達成するため、第 12の態様に係る発明は、送信すべき情報に基 づいた電界を送信用電極から電界伝達媒体に誘起させると共に、前記電界伝達媒 体に誘起されている電界に基づいた情報を受信用電極で受信することにより、前記 電界伝達媒体を介した情報の送受信が可能なトランシーバ本体と、このトランシーバ 本体を駆動させるバッテリと、前記トランシーバ本体が内蔵された絶縁ケースと、を備 えたトランシーバであって、前記送信用電極は、前記絶縁ケースの外壁面のうち、前 記電界伝達媒体が近接すべき部分の全面に渡って設けられていると共に、前記電 界伝達媒体に直接接触しないように第 1の絶縁膜で覆われ、前記受信用電極は、前 記第 1の絶縁膜の外壁面に設けられると共に、前記電界伝達媒体に直接接触しない ように第 2の絶縁膜で覆われているトランシーバを要旨とする。
[0054] また、上記目的を達成するため、第 13の態様に係る発明は、送信すべき情報に基 づいた電界を送信用電極から電界伝達媒体に誘起させると共に、前記電界伝達媒 体に誘起されている電界に基づいた情報を受信用電極で受信することにより、前記 電界伝達媒体を介した情報の送受信が可能なトランシーバ本体と、このトランシーバ 本体を駆動させるバッテリと、前記トランシーバ本体が内蔵された絶縁ケースと、を備 えたトランシーバであって、前記受信用電極は、前記絶縁ケースの外壁面のうち、前 記電界伝達媒体が近接すべき部分の全面に渡って設けられていると共に、前記電 界伝達媒体に直接接触しないように第 1の絶縁膜で覆われ、前記送信用電極は、前 記第 1の絶縁膜の外壁面に設けられると共に、前記電界伝達媒体に直接接触しない ように第 2の絶縁膜で覆われているトランシーバを要旨とする。
[0055] また、上記目的を達成するため、第 14の態様に係る発明は、電界伝達媒体に誘起 されている電界に基づいた情報を受信することにより、前記電界伝達媒体を介した情 報の受信が可能なトランシーバであって、 2つの電気信号に基づく情報と、その情報 に対応して決まる位置情報と、を関連付けて記憶する記憶手段と、前記電界伝達媒 体に誘起して伝達されてくる電界を検出し、当該電界の変化を電気信号に変換する 電界検出手段と、前記電界検出手段により得られた前記電気信号のうち、前記 2つ の電気信号が含まれる所定の帯域を有する信号成分のみを通過させるバンドパスフ イノレタと、前記記憶手段を参照して、前記バンドパスフィルタを通過した前記 2つの電 気信号に基づく情報に対応する位置情報を得る位置換算処理手段と、を備えるトラ ンシーバを要旨とする。
[0056] 第 15の態様に係る発明は、第 14の態様に係る発明において、前記記憶手段は、 2 つの電気信号の信号強度に基づく情報と、その情報に対応して決まる位置情報と、 を関連付けて記憶し、前記バンドパスフィルタは、前記電界検出手段により得られた 前記電気信号のうち、一方の電気信号が含まれる第 1の帯域を有する信号成分のみ を通過させる第 1のバンドパスフィルタと、前記電界検出手段により得られた前記電 気信号のうち、他方の電気信号が含まれる前記第 1の帯域とは異なる第 2の帯域を 有する信号成分のみを通過させる第 2のバンドパスフィルタとを含み、前記第 1のバン ドパスフィルタを通過した信号成分及び前記第 2のバンドパスフィルタを通過した信 号成分の信号強度を測定する信号強度測定手段を更に有し、位置換算処理手段は 、前記記憶手段を参照して、前記信号強度測定手段により測定された、前記第 1の バンドパスフィルタを通過した信号成分及び前記第 2のバンドパスフィルタを通過した 信号成分のそれぞれの信号強度に基づく情報に対応する位置情報を得ることを要 旨とする。
[0057] 第 16の態様に係る発明は、第 15の態様に係る発明において、前記記憶手段は、 電気信号の強度差の情報と、その情報に対応して決まる位置情報と、を関連付けて 記憶し、前記位置換算処理手段は、前記信号強度測定手段により測定された、前記
Γ通過した信号成分及び前記第 過した信号成分の強度差を算出し、前記記憶手段を参照し、その強度差に対応する 位置情報を得ることを要旨とする。
[0058] 第 17の態様に係る発明は、第 16の態様に係る発明において、前記記憶手段に記 憶されている強度差の情報と位置情報の関連付けは、外部装置力 書き換えが可能 であることを要旨とする。
[0059] 第 18の態様に係る発明は、第 15の態様に係る発明において、前記記憶手段は、 電気信号の強度比の情報と、その情報に対応して決まる位置情報と、を関連付けて 記憶し、前記位置換算処理手段は、前記信号強度測定手段により測定された、前記 第 1のバンドパスフィルタを通過した信号成分及び前記第 2のバンドパスフィルタを通 過した信号成分の強度比を算出し、前記記憶手段を参照し、その強度比に対応する 位置情報を得ることを要旨とする。
[0060] 第 19の態様に係る発明は、第 18の態様に係る発明において、前記記憶手段に記 憶されている強度比の情報と位置情報の関連付けは、外部装置力 書き換えが可能 であることを要旨とする。
[0061] 第 20の態様に係る発明は、第 14の態様に係る発明において、前記記憶手段は、 2 つの電気信号の位相差に基づく情報と、その情報に対応して決まる位置情報と、を 関連付けて記憶し、前記バンドパスフィルタは、前記電界検出手段により得られた前 記電気信号のうち、一方の電気信号が含まれる第 1の帯域を有する信号成分のみを 通過させる第 1のバンドパスフィルタと、前記電界検出手段により得られた前記電気 信号のうち、他方の電気信号が含まれる前記第 1の帯域とは異なる第 2の帯域を有 する信号成分のみを通過させる第 2のバンドパスフィルタとを含み、前記第 1のバンド パスフィルタを通過した信号成分及び前記第 2のバンドパスフィルタを通過した信号 成分の位相を検波する位相検波手段を更に備え、位置換算処理手段は、前記位相 検波手段により検波された、前記第 1のバンドパスフィルタを通過した信号成分及び 前記第 2のバンドパスフィルタを通過した信号成分の位相差を算出し、前記記憶手 段を参照し、その位相差に対応する位置情報を得ることを要旨とする。
[0062] 第 21の態様に係る発明は、第 20の態様に係る発明において、前記記憶手段に記 憶されている位相差の情報と位置情報の関連付けは、外部装置力 書き換えが可能 であることを要旨とする。
[0063] また、上記目的を達成するため、第 22の態様に係る発明は、電荷を伝達可能であ ると共に電界伝達媒体がその上の任意の一点と接触可能な電界伝達シートと、その 電界伝達シート上の異なる位置にそれぞれ配置され、それぞれ第 1の帯域及び第 2 の帯域を有する電気信号に基づいた電界を前記電界伝達シートに誘起させる第 1及 び第 2の発信器と、前記電界伝達媒体に誘起されている電界に基づいた情報を受信 することにより、前記電界伝達媒体を介した情報の受信が可能なトランシーバと、を備 えた位置情報取得システムであって、前記トランシーバは、 2つの電気信号に基づく 情報と、その情報に対応して決まる位置情報と、を関連付けて記憶する記憶手段と、 前記電界伝達媒体に誘起して伝達されてくる電界を検出し、当該電界の変化を電気 信号に変換する電界検出手段と、前記電界検出手段により得られた前記電気信号 のうち、前記 2つの電気信号が含まれる所定の帯域を有する信号成分のみを通過さ せるバンドパスフィルタと、前記記憶手段を参照して、前記バンドパスフィルタを通過 した前記 2つの電気信号に基づく情報に対応する位置情報を得る位置換算処理手 段と、を備える位置情報取得システムを要旨とする。
[0064] また、上記目的を達成するため、第 23の態様に係る発明は、電荷を伝達可能であ ると共に電界伝達媒体がその上の任意の一点と接触可能な電界伝達シートと、その 電界伝達シート上の異なる位置にそれぞれ配置され、それぞれ第 1の帯域及び第 2 の帯域を有する電気信号に基づいた電界を前記電界伝達シートに誘起させる第 1及 び第 2の発信器と、前記電界伝達媒体に誘起されている電界に基づいた情報を受信 することにより、前記電界伝達媒体を介した情報の受信が可能なトランシーバであつ て、 2つの電気信号に基づく情報と、その情報に対応して決まる位置情報と、を関連 付けて記憶する記憶手段と、前記電界伝達媒体に誘起して伝達されてくる電界を検 出し、当該電界の変化を電気信号に変換する電界検出手段と、前記電界検出手段 により得られた前記電気信号のうち、前記 2つの電気信号が含まれる所定の帯域を 有する信号成分のみを通過させるバンドパスフィルタと、前記記憶手段を参照して、 前記バンドパスフィルタを通過した前記 2つの電気信号に基づく情報に対応する位 置情報を得る位置換算処理手段と、を有するトランシーバと、位置情報とそれに対応 した入力情報と、を関連付けて記憶するコンピュータ記憶手段を有し、前記トランシ ーバから入力される位置情報に基づいて、前記コンピュータ記憶手段を参照して入 力情報を獲得するウェアラブルコンピュータと、を備える情報入力システムを要旨とす る。
[0065] また、上記目的を達成するため、第 24の態様に係る発明は、電界伝達媒体により 接触又は操作が可能であり、その接触又は操作に基づく物理量に応じて、前記電界 伝達媒体に電界を誘起させる電界誘起手段と、前記電界伝達媒体に誘起されてい る電界を受信し、その電界を偏光変調器又は光強度変調器に印加し、その電界に 応じてレーザ光を偏光変調又は光強度変調させ、偏光変調又は光強度変調された レーザ光を電気信号に変換し、変換された電気信号のうち、前記接触又は操作に基 づく物理量に係る周波数成分を有する電気信号を抽出し、前記接触又は操作に基 づく物理量に係る電気信号を出力するトランシーバと、前記トランシーバから前記接 触又は操作に基づく物理量に係る電気信号を入力し、前記電界伝達媒体による前 記接触又は操作に基づく物理量に対応した情報を取得する情報処理手段と、を備え た情報入力システムを要旨とする。
[0066] また、上記目的を達成するため、第 25の態様に係る発明は、レーザ光の光強度を 検出対象の電界に基づいて変調させることで、前記電界を検出する電界検出光学 装置であって、電界検出光学部と受光回路とを有し、前記電界検出光学部は、レー ザ光出射手段と、前記レーザ光出射手段から出射されたレーザ光を異なる第 1及び 第 2のレーザ光に分岐する分岐手段と、前記検出対象の電界が結合され、該結合さ れた電界に基づいて、前記第 1のレーザ光の光強度を変調する光強度変調手段と、 を有し、前記受光回路は、前記光強度変調手段によって変調された第 1のレーザ光 の光強度を電圧信号に変換する第 1の光 Z電圧変換手段と、前記分岐手段によつ て分岐された第 2のレーザ光の強度を電圧信号に変換する第 2の光/電圧変換手 段と、前記第 1の光 Z電圧変換手段によって変換された電圧信号と前記第 2の光/ 電圧変換手段によって変換された電圧信号とを差動増幅する差動増幅手段と、を有 する電界検出光学装置を要旨とする。
[0067] 第 26の態様に係る発明は、第 25の態様に係る発明において、前記電界検出光学 部は、前記分岐手段によって分岐された第 2のレーザ光の光強度を減衰させる光可 変アツテネータを更に備え、前記第 2の光電気変換手段は、前記光可変アツテネー タによって減衰された第 2のレーザ光を入力することを要旨とする。
[0068] 第 27の態様に係る発明は、第 25の態様に係る発明において、前記電界検出光学 部は、前記分岐手段によって分岐された第 1のレーザ光の光強度を所定割合減衰さ せる第 1の光可変アツテネータと、前記分岐手段によって分岐された第 2のレーザ光 の光強度を、前記第 1の光可変アツテネータにおける減衰割合よりも大きい割合で減 衰させる第 2の光可変アツテネータと、を更に備え、前記光強度変調手段は、前記第 1の光可変アツテネータによって減衰された第 1のレーザ光を入力し、前記第 2の光 電気変換手段は、前記第 2の光可変アツテネータによって減衰された第 2のレーザ光 を入力することを要旨とする。
[0069] 第 28の態様に係る発明は、第 25の態様に係る発明において、前記第 1の光 Z電 圧変換手段は、前記光強度変調手段によって変調された第 1のレーザ光の光強度を 電流信号に変換する第 1の光/電流変換手段と、前記第 1の光/電流変換手段に 対して、逆バイアス電圧を与える第 1の電圧源と、前記第 1の光/電流変換手段によ つて変換された電流信号を電圧信号に変換する第 1の負荷抵抗と、を有し、前記第 2 の光/電圧変換手段は、前記分岐手段によって分岐された第 2のレーザ光の強度を 電流信号に変換する第 2の光/電流変換手段と、前記第 2の光/電流変換手段に 対して、逆バイアス電圧を与える第 2の電圧源と、前記第 2の光/電流変換手段によ つて変換された電流信号を電圧信号に変換する第 2の負荷抵抗と、を有することを要 旨とする。
[0070] 第 29の態様に係る発明は、第 28の態様に係る発明において、前記第 1の負荷抵 抗及び前記第 2の負荷抵抗のうち少なくとも一方は、可変抵抗であることを要旨とす る。
[0071] 第 30の態様に係る発明は、第 28の態様に係る発明において、前記第 1の電圧源 及び前記第 2の電圧源のうち少なくとも一方は、可変電圧源であることを要旨とする。
[0072] 第 31の態様に係る発明は、第 25の態様に係る発明において、前記受光回路は、 前記第 1の光 Z電圧変換手段によって変換された電圧信号及び前記第 2の光 Z電 圧変換手段によって変換された電圧信号のうち少なくとも一方を増幅する増幅手段 を更に有することを要旨とする。
[0073] また、上記目的を達成するため、第 32の態様に係る発明は、電界伝達媒体に誘起 されている電界に基づいた情報を受信することにより、前記電界伝達媒体を介した情 報の受信が可能なトランシーバであって、第 25の態様に係る電界検出光学装置と、 前記電界検出光学装置から出力された電圧信号に対して、少なくとも雑音の除去を 行う信号処理回路と、前記信号処理回路から出力された電圧信号のノイズ成分の大 きさを検出するノイズ検出手段と、前記ノイズ検出手段から出力された検出データに 基づいて、前記電界検出光学部又は受光回路における可変値を可変制御するため の制御信号を発生させる制御信号発生器と、を備えたトランシーバを要旨とする。 図面の簡単な説明
[0074] [図 1]人体を介して複数のウェアラブルコンピュータ間通信を行う場合のイメージ図で める。
[図 2]従来のトランシーバ本体の全体構成図である。
[図 3]従来の他のトランシーバ本体の全体構成図である。
[図 4]従来の (偏光変調型)トランシーバ本体の電界検出光学部及び受光回路の詳 細構成図である。
[図 5]図 4に示す差動アンプの入力信号の波形を示した図である。
[図 6]従来の(光強度変調型)トランシーバ本体の電界検出光学部及び受光回路の 詳細構成図である。
[図 7]従来の(光強度変調型)トランシーバ本体の電界検出光学部で使用する光強度 変調器が電界吸収型の場合の原理図である。
[図 8]従来の(光強度変調型)トランシーバ本体の電界検出光学部で使用する光強度 変調器がマツハツヱンダ型の場合の原理図である。
[図 9]人間の手でトランシーバとウェアラブルコンピュータとの組みを持つ場合のそれ らの使用状態を示したイメージ図である。
[図 10]本発明の第 1の実施形態に係るトランシーバ及びウェアラブルコンピュータの 使用状態を示した正面のイメージ図である。 [図 11]本発明の第 1の実施形態に係るトランシーバ及びウェアラブルコンピュータの 使用状態を示した平面のイメージ図である。
[図 12]情報通信、発信器 A用、発信器 B用の周波数帯域を示した図である。
[図 13]第 1の実施形態に係るトランシーバ内のトランシーバ本体の全体構成図である
[図 14]第 2の実施形態に係るトランシーバ内のトランシーバ本体の全体構成図である
[図 15]第 1及び第 2の実施形態に係る電界伝達シートの具体例を示した図である。
[図 16]第 1及び第 2の実施形態に係る電界伝達シートの具体例を示した図である。
[図 17]第 1及び第 2の実施形態に係る電界伝達シートの具体例を示した図である。
[図 18]本発明の第 3 第 7の実施形態に係るトランシーバ本体の全体構成図である。
[図 19]第 3の実施形態に係るトランシーバ本体の電界検出光学部、受光回路の詳細 構成図である。
[図 20]第 4の実施形態に係るトランシーバ本体の電界検出光学部、受光回路の詳細 構成図である。
[図 21]第 5の実施形態に係るトランシーバ本体の電界検出光学部、受光回路の詳細 構成図である。
[図 22]第 6の実施形態に係るトランシーバ本体の電界検出光学部、受光回路の詳細 構成図である。
[図 23]第 7の実施形態に係るトランシーバ本体の電界検出光学部、受光回路の詳細 構成図である。
[図 24]本発明の第 8の実施形態に係るトランシーバ本体の全体構成図である。
[図 25]生体、送受信電極、及びトランシーバ本体間の等価回路を示す図である。
[図 26]生体、トランシーバ本体、及びバッテリ間の等価回路を示す図である。
[図 27]本発明の第 9の実施形態に係るトランシーバ及びウェアラブルコンピュータの 全体構成図である。
[図 28]主にトランシーバ本体の機能を示した機能ブロック図である。
[図 29]電界検出光学装置の詳細構成図である。 [図 30]図 27に示すトランシーバ及びウェアラブルコンピュータの使用状態を示した使 用イメージ図である。
[図 31]本発明の第 10の実施形態に係るトランシーバ及びウェアラブルコンピュータの 全体構成図である。
[図 32]本発明の第 11の実施形態に係るトランシーバ及びウェアラブルコンピュータの 全体構成図である。
[図 33]本発明の第 12の実施形態に係るトランシーバ及びウェアラブルコンピュータの 全体構成図である。
[図 34]本発明の第 13の実施形態に係るトランシーバ及びウェアラブルコンピュータの 全体構成図である。
[図 35]本発明の第 14の実施形態に係るトランシーバ及びウェアラブルコンピュータの 全体構成図である。
[図 36]本発明のその他の実施形態を示した図である。
[図 37]本発明のその他の実施形態を示した図である。
発明を実施するための最良の形態
[0075] 以下、図面を用いて、本発明を実施するための最良の形態(以下、「実施形態」とい う)を説明する。
[0076] 尚、本発明の実施形態に係るトランシーバ 3は、送信すべき情報に基づいた電界を 電界伝達媒体 (生体 100等)に誘起させる一方で、電界伝達媒体に誘起されている 電界に基づいた情報を受信することにより、電界伝達媒体を介した情報の送受信が 可能なトランシーバである。
[0077] 先ず、特に小型化されたウェアラブルコンピュータに対して情報入力を容易に行う ことができるトランシーバに係る実施形態について説明する。
[0078] ぐ第 1の実施形態 >
以下、図面を用いて、第 1の実施形態を説明する。
[0079] 図 10は、第 1の実施形態に係るトランシーバ 3及びウェアラブルコンピュータ 1の使 用状態を示した正面のイメージ図である。図 11は、同じく使用状態を示した平面のィ メージ図である。 [0080] 図 10に示すように、テーブル 300の平面上に絶縁性の絶縁シート 301を張り付け、 更に、絶縁シート 301の平面上に電界を伝達可能な電界伝達シート 302を張り付け ている。また更に、電界伝達シート 302の平面上の別角にそれぞれ発信器 A, Bを配 置させている。この配置位置は、図 11に示すように、電界伝達シート 302が長方形の 場合には、任意の別角である。
[0081] また、発信器 A, Bは、それぞれ図 3に示すような送信部 103、送信電極 105 ' a及 び絶縁膜 107 ' aと同様の構成を有し、それぞれ図 12に示すような発信周波数 fa, fb に係る電気信号に基づいた電界を電界伝達シート 302に誘起させることが可能であ る。
[0082] 図 13は、本実施形態に係るトランシーバ 3内のトランシーバ本体 30aの全体構成図 である。
[0083] 図 13に示すように、トランシーバ本体 30aは、 lZ〇(入出力)回路 101、送信部 103 、送信電極 105a、絶縁膜 107a, 107b,受信電極 105b、電界検出光学装置 115、 信号処理回路 116、及び波形整形回路 117を有している点は、従来のトランシーバ 本体 30 'と同様である。更に、本実施形態のトランシーバ本体 30aは、バンドパスフィ ルタ 11a, l ib、信号強度測定部 13a, 13b、位置換算処理部 15、及びメモリ 17を有 している。
[0084] このうち、 I/O回路 101は、トランシーバ本体 30aがウェアラブルコンピュータ 1等の 外部機器との情報 (データ)の入出力を行う回路である。送信部 103は、 I/O回路 1 01から出力される情報(データ)に基づき、この情報に係る電界を生体 100に誘起さ せる送信回路によって構成されている。送信電極 105aは、送信部 103により生体 10 0に対して電界を誘起するために使用する電極であり、送信用アンテナとして使用さ れる。絶縁膜 107aは、送信電極 105aと生体 100との間に配置する絶縁体の膜であ り、送信電極 105aが直接生体 100に接触することを防ぐ役割を果たす。
[0085] また、受信電極 105bは、生体 100の他の部分に装着されているウェアラブルコンビ ユータ 1及びトランシーバ 3 'や PC5及びトランシーバ 3 ' a, 3 ' bから生体 100に誘起さ れて伝達されてくる電界を受信するために使用する電極であり、受信用アンテナとし て使用される。絶縁膜 107bは、上記絶縁膜 107aと同様に、受信電極 105bと生体 1 00との間に配置された絶縁体の膜である。
[0086] 更に、電界検出光学装置 115は、受信電極 105bで受信した電界を検出し、この電 界を受信情報として電気信号に変換する機能を有している。また、信号処理回路 11 6は、更に電界検出光学装置 115から送信されてきた電気信号の増幅を行う増幅部 114、及び、バンドパスフィルタ 151によって構成されている。このバンドパスフィルタ 151は、増幅部 114から出力される電気信号の帯域を制限して不要な雑音や不要な 信号成分を除去することで、増幅部 114から出力される電気信号のうち、図 12に示 すような情報通信用の一定幅の周波数帯域 (fl一 f2)のみの信号成分を通過させる 特性を有するフィルタ回路である。
[0087] また、波形整形回路 117は、信号処理回路 116から送信されてきた電気信号に波 形整形 (信号処理)を施し、 IZ〇回路 101を介してゥヱアラブルコンピュータ 1に供給 する回路である。
[0088] 更に、バンドパスフィルタ 11aは、増幅部 114から出力される電気信号の帯域を制 限して不要な雑音や不要な信号成分を除去することで、増幅部 114から出力される 電気信号のうち、図 12に示すような発信器 A用の周波数帯域 (fa)のみの信号成分 を通過させる特性を有するフィルタ回路である。信号強度測定部 13aは、バンドパス フィルタ 11aによって通過した信号成分に係る電気信号の信号強度を測定する回路 である。
[0089] 一方、バンドパスフィルタ l ibは、増幅部 114から出力される電気信号の帯域を制 限して不要な雑音や不要な信号成分を除去することで、増幅部 114から出力される 電気信号のうち、図 12に示すような発信器 B用の周波数帯域 (fb)のみの信号成分 を通過させる特性を有するフィルタ回路である。信号強度測定部 13bは、バンドパス フィルタ l ibによって通過した信号成分に係る電気信号の信号強度を測定する回路 である。
[0090] メモリ 17は、 2つの電気信号の強度差と二次元空間における特定位置とを関連付 けて記憶しておく記憶手段である。本実施形態では、図 10及び図 11に示す電界伝 達シート 302上における任意位置と強度差を予め関連付けておく。また、このメモリ 1 7に記憶されている強度差と特定位置の関連付けは、ゥヱアラブルコンピュータ 1等 の外部装置から I/O回路 101を介して書き換えが可能である。
[0091] また、位置換算処理部 15は、信号強度測定部 13aで測定した信号強度と信号強 度測定部 13bで測定した信号強度の強度差を計算すると共に、この強度差とメモリ 1 7に記憶している強度差とを照合することで、上記計算した強度差を二次元空間にお ける特定位置に換算する処理を行う CPU(Central Processing Unit)等の処理装置で める。
[0092] 続いて、本実施形態に係るトランシーバ本体 30a及び発信器 A, Bを使用した位置 特定方法について説明する。
[0093] 図 10及び図 11に示すように、発信器 A, Bを電界伝達シート 302上に設置して駆 動させた状態で、ウェアラブルコンピュータ 1及びトランシーバ 3を装着した人間が電 界伝達シート 302上の特定位置ひに触れる。これにより、受信電極 105bでは、指( 生体 100)及び絶縁膜 107bを介して発信器 A, Bからの電界を受信する。電界検出 光学装置 115では、この受信した電界を電界検出光学装置 115における不図示の 電気光学結晶に結合(印加)して電気信号に変換してから信号処理回路 116に送信 する。信号処理回路 116の増幅部 114では、電気信号の増幅を行い、バンドパスフ ィルタ 151に送信する。しかし、発信器 A, Bからの電界に係る電気信号は、このバン ドパスフィルタ 116を通過しなレ、。
[0094] また、増幅部 114から送信された電気信号は、バンドパスフィルタ 11a, l ibにも送 信される。
[0095] そして、バンドパスフィルタ 11aでは、発信器 A, Bからの電界に係る電気信号のうち 、発信器 A用の帯域 (fa)のみの信号成分を通過させて信号強度測定部 13aに送信 する。信号強度測定部 13aでは、バンドパスフィルタ 11aによって通過した信号成分 に係る電気信号の信号強度を測定する。
[0096] 一方、バンドパスフィルタ l ibでは、発信器 A, Bからの電界に係る電気信号のうち 、発信器 B用の帯域 (fb)のみの信号成分を通過させて信号強度測定部 13bに送信 する。信号強度測定部 13bでは、バンドパスフィルタ l ibによって通過した信号成分 に係る電気信号の信号強度を測定する。
[0097] 次に、位置換算処理部 15では、信号強度測定部 13aで測定した信号強度と信号 強度測定部 13bで測定した信号強度の強度差を計算すると共に、この強度差とメモ リ 17に記憶している強度差とを照合することで、上記計算した強度差を電界伝達シ ート 202上の二次元空間における特定位置 αに換算する処理を行う。
[0098] そして最後に、位置換算処理部 15で求めた特定位置ひの位置情報(データ)は、 位置換算処理部 15から ΙΖ〇回路 101を介してウェアラブルコンピュータ 1に送信さ れる。
[0099] 以上説明したように本実施形態によれば、信号強度測定部 13aで測定した信号強 度と信号強度測定部 13bで測定した信号強度の強度差を計算すると共に、この強度 差とメモリ 17に記憶している強度差とを照合することで、上記計算した強度差を二次 元空間における特定位置に換算することにより、電界伝達シート 302のうちで、指(生 体 100)が触れた特定位置ひの位置情報をゥヱアラブルコンピュータ 1等に入力する ことができるため、ウェアラブルコンピュータ 1等への情報入力を容易に行うことができ るという効果を奏する。
[0100] 尚、上記実施形態では、位置換算処理部 15によって、信号強度測定部 13aで測 定した信号強度と信号強度測定部 13bで測定した信号強度の強度差を計算したが、 これに限るものではなぐ信号強度測定部 13aで測定した信号強度と信号強度測定 部 13bで測定した信号強度の強度比を計算してもよい。但し、この場合には、メモリ 1 7に、 2つの電気信号の強度比と二次元空間における特定位置とを関連付けて記憶 させておく必要がある。
[0101] <第 2の実施形態 >
続いて、図面を用いて、第 2の実施形態を説明する。
[0102] 図 14は、第 2の実施形態に係るトランシーバ内のトランシーバ本体 30bの全体構成 図である。尚、上記第 1の実施形態と同一構成については、同一符号を付して、その 説明を省略する。
[0103] 図 14に示す位相検波器 23aは、バンドパスフィルタ 1 laによって通過した信号成分 に係る電気信号の位相を検波する回路である。また、位相検波器 23bは、バンドパス フィルタ l ibによって通過した信号成分に係る電気信号の位相を検波する回路であ る。 [0104] メモリ 27は、 2つの電気信号の位相差と二次元空間における特定位置とを関連付 けて記憶しておく記憶手段である。ここでは、図 10及び図 11に示す電界伝達シート 302上における任意位置と位相差を予め関連付けておく。また、このメモリ 27に記憶 されている位相差と特定位置の関連付けは、ウェアラブルコンピュータ 1等の外部装 置から IZ〇回路 101を介して書き換えが可能である。
[0105] また、位置換算処理部 25は、位相検波器 23aで測定した位相と位相検波器 23bで 測定した位相の差を計算すると共に、この位相差とメモリ 27に記憶している位相差と を照合することで、上記計算した位相差を二次元空間における特定位置に換算する 処理を行う CPU等の処理装置である。
[0106] 続いて、本実施形態に係るトランシーバ 30b及び発信器 A, Bを使用した位置特定 方法について説明する。
[0107] 図 10及び図 11に示すように、発信器 A, Bを電界伝達シート 302上に設置して駆 動させた状態で、ウェアラブルコンピュータ 1及びトランシーバ 3を装着した人間が電 界伝達シート 302上の特定位置 αに触れる。これにより、受信電極 105bでは、指( 生体 100)及び絶縁膜 107bを介して発信器 A, Bからの電界を受信する。電界検出 光学装置 115では、この受信した電界を電界検出光学装置 115における不図示の 電気光学結晶に結合(印加)して電気信号に変換してから信号処理回路 116に送信 する。信号処理回路 116の増幅部 114では、電気信号の増幅を行い、バンドパスフ ィルタ 151に送信する。しかし、発信器 A, Bからの電界に係る電気信号は、このバン ドパスフィルタ 151を通過しなレ、。
[0108] また、増幅部 114から送信された電気信号は、バンドパスフィルタ 11a, l ibにも送 信される。
[0109] そして、バンドパスフィルタ 11aでは、発信器 A, Bからの電界に係る電気信号のうち 、発信器 A用の帯域 (fa)のみの信号成分を通過させて位相検波器 23aに送信する。 位相検波器 23aでは、バンドパスフィルタ 1 laによって通過した信号成分に係る電気 信号の位相を検波する。
[0110] 一方、バンドパスフィルタ l ibでは、発信器 A, Bからの電界に係る電気信号のうち 、発信器 B用の帯域 (fb)のみの信号成分を通過させて位相検波器 23bに送信する。 位相検波器 23bでは、バンドパスフィルタ 1 lbによって通過した信号成分に係る電気 信号の位相を検波する。
[0111] 次に、位置換算処理部 25では、位相検波器 23aで測定した位相と位相検波器 23 bで測定した位相の差を計算すると共に、この位相差とメモリ 27に記憶している位相 差とを照合することで、上記計算した位相差を電界伝達シート 302上の二次元空間 における特定位置ひに換算する処理を行う。
[0112] そして最後に、位置換算処理部 25で求めた特定位置ひの位置情報 (データ)は、 位置換算処理部 25から IZ〇回路 101を介してウェアラブルコンピュータ 1に送信さ れる。
[0113] 以上説明したように本実施形態によれば、上記第 1の実施形態と同様の効果を奏 する。
[0114] 以下、図 15乃至図 17を用いて、上記第 1及び第 2の実施形態の具体例を説明す る。
[0115] <第 1の具体例 >
図 15及び図 16では、上記各実施形態を電界伝達シート 302a、パソコン用のキー ボードに用いた例を示している。図 15に示すように、電界伝達シート 302a上にキー ボードの絵を印字することで、例えば、人間が特定位置 α 1に触れると、発信器 A, Β 力 のそれぞれの距離 xl, ylから、触れたキーを特定することができる。
[0116] 尚、前述のように、トランシーバ 3からウェアラブルコンピュータ 1からは位置情報、こ の場合には発信器 A, Bからのそれぞれの距離 xl , yl、が送られる力 S、ウェアラブル コンピュータ 1内には、電界伝達シート 302a上の位置とその位置の印字情報との関 係と同じ、位置情報対入力情報の対応表が備えられており、これにより、ウェアラブノレ コンピュータ 1は人間が意図した情報を把握することができる。
[0117] <第 2の具体例 >
図 17では、上記各実施形態を、タツチパネル、タッチスクリーン、又はショーケース 等の電界伝達シート 302bに用いた例を示している。この場合も同様に、例えば、人 間が特定位置ひ 2に触れると、発信器 A, Bからのそれぞれの距離 x2, y2から、触れ た位置を特定することができる。 [0118] 尚、上述の実施形態にあっては、「2つ発信器」と「電界伝達シート」を用レ、、電界伝 達シートに手 (指)で触れることにより、 2つの発信器からの電気信号を手 (生体 100) を介してトランシーバに送り、トランシーバは、その 2つの電気信号を分離し、その 2つ の電気信号に基づいて、その触れた位置の、 2つの発信器からの隔たりの情報を取 得している力 本発明の趣旨はこれに限られることはない。
[0119] 例えば、二次元平面のみならず、三次元空間にも応用できる。即ち、「3つの発信 器」と三次元的な「電界伝達媒体」なるものを用いれば、 3つの発信器から三次元上 のある点を指し示した指まで、その電界伝達媒体を介して信号を伝達させることがで き、そのときトランシーバは、 3つの信号を分離することとなる。これにより、人間が意 図した三次元空間内の点の位置情報をトランシーバが取得できることになる。更に、 これを、ウェアラブルコンピュータ等の情報機器に送ってやれば、人間が三次元空間 内のある点を指示することにより意図した情報を情報機器に入力させることができる。
[0120] また、トランシーバの処理速度が十分であれば、トランシーバは、指等の位置の情 報を、指等の動きの情報としても把握できることになる。つまり、例えば、電界伝達シ ートを指でなぞることにより、トランシーバは、指の動きをリアルタイムで把握することが でき、またその情報をウェアラブルコンピュータ等の情報機器に送ってやれば、その 動き情報自体や、その動き情報に関連した、人間が意図した情報を、情報機器に入 力させることができる。
[0121] 更に、生体を介してトランシーバに送る情報は位置 (速度)を取得できる信号だけと は限らない。例えば、電界伝達シートに圧力を検知する機能を持たせれば、その圧 力信号も電界に変換して指等を介して、トランシーバに送ることもできることとなる。つ まり、この場合、人間が意図した押し付ける力の情報をトランシーバは取得することが でき、更にこの情報をウェアラブルコンピュータ等の情報機器に送ってやれば、その 情報機器がその押し付ける力に対応した情報を取得することができることとなる。
[0122] 尚、以上の説明では、ウェアラブルコンピュータ等の情報機器力 人間が意図した 位置の情報や圧力の情報に対応する情報を有しているように説明したが、トランシー バ自体がこの情報を持っていてもよぐそうすればトランシーバ自体が人間が意図し た情報を取得することができる。また、ウェアラブルコンピュータ等の情報機器及びト ランシーバ以外の第 3の機器がその情報を所持してレ、て、情報機器及びトランシー バがその第 3の機器からその情報を取得するようにしてもょレ、。
[0123] 次に、電界検出光学部において光強度変調器を採用した場合のトランシーバに係 る実施形態について説明する。
[0124] ぐ第 3の実施形態 >
以下、図 18及び図 19を用いて、本発明の第 3の実施形態に係る電界検出光学装 置 115a及び、この電界検出光学装置 115aを備えた光強度変調型トランシーバ(以 下、単に「トランシーノ 」とレ、う) 3につレ、て説明する。
[0125] 図 18は、人体(生体 100)を介したデータ通信を行うために用いるトランシーバ本体
30cの全体構成図である。尚、図 18は、第 3—第 7の実施形態に共通の全体構成図 である。
[0126] 図 18に示すように、トランシーバ本体 30cは、 IZ〇(入出力)回路 101、送信部 103 、送信電極 105a、受信電極 105b、絶縁膜 107a, 107b,電界検出光学装置 115 ( 電界検出光学部 110、受光回路 152)、信号処理回路 116、及び波形整形回路 117 を有している。
[0127] I/O回路 101は、トランシーバ本体 3cがウェアラブルコンピュータ 1等の外部装置 との情報(データ)の入出力を行う回路である。送信部 103は、 I/O回路 101から出 力される情報(データ)に基づき、この情報に係る電界を生体 100に誘起させる送信 回路によって構成されている。送信電極 105aは、送信部 103により生体 100に対し て電界を誘起するために使用する電極であり、送信用アンテナとして使用される。ま た、受信電極 105bは、生体 100の他の部分に装着されているウェアラブルコンビュ ータ 1及びトランシーバ 3 'や PC5及びトランシーバ 3 ' a, 3 ' bから生体 100に誘起さ れて伝達されてくる電界を受信するために使用する電極であり、受信用アンテナとし ても使用される。
[0128] また、絶縁膜 107aは、送信電極 105aと生体 100との間に配置する絶縁体の膜で あり、送信電極 105aが直接生体 100に接触することを防ぐ役割を果たす。絶縁膜 10 7bは、受信電極 105bと生体 100との間に配置する絶縁体の膜であり、受信電極 10 5bが直接生体 100に接触することを防ぐ役割を果たす。 [0129] 更に、電界検出光学装置 115を構成する電界検出光学部 110は、受信電極 105b で受信した電界をレーザ光に掛ける(印加する)ことでレーザ光に光強度変化を生じ させる機能を有している。
[0130] また、電界検出光学装置 115を構成する受光回路 152は、上記光強度変化された レーザ光を受光して電気信号に変換すると共に、この電気信号の増幅等の信号処 理を行う回路である。また、信号処理回路 116は、少なくともバンドパスフィルタによつ て構成されており、このバンドパスフィルタにより、様々な周波数の電気信号のうちで 、電界検出対象である受信情報に係る周波数成分以外の周波数成分を取り除く(fi口 ち、受信情報に係る周波数成分のみを取り出す)ことで、電気信号の雑音 (ノイズ)の 除去等の信号処理を行う。
[0131] また、波形整形回路 117は、信号処理回路 116から送信されてきた電気信号に波 形整形 (信号処理)を施し、 IZ〇回路 101を介してゥヱアラブルコンピュータ 1に供給 する回路である。
[0132] 次に、図 19を用いて、電界検出光学装置 115の一例であり、第 3の実施形態に係 る電界検出光学装置 115aについて、更に詳細に説明する。尚、本実施形態に係る 電界検出光学装置 115aには、電界検出光学部 110の一例である電界検出光学部 110a,及び受光回路 152の一例である受光回路 152aが備えられている。また、電 界検出光学装置 115aは、トランシーバ本体 30の一例であるトランシーバ本体 30cに 設置されている。
[0133] 本実施形態に係る電界検出光学部 110aは、電流源 119、レーザダイオード 121、 コリメートレンズ 133、ビームスプリッタ 139、光強度変調器 124、並びに第 1及び第 2 集光レンズ 141a, bにより構成されている。
[0134] このうち、光強度変調器 124は、結合する電界強度によって通過する光の光強度 が変化するように構成されている。光強度変調器 124の図上で上下方向に対向する 両側面には、第 1電極 125と第 2電極 127が設けられている。この第 1電極 125及び 第 2電極 127は、レーザダイオード 121からのレーザ光の光強度変調器 124内にお ける進行方向を両側から挟み、レーザ光に対して電界を直角に結合させることができ る。 [0135] また、電界検出光学部 110aは、第 1電極 125を介して受信電極 105bに接続され ている。第 1電極 125に対向する第 2電極 127は、グランド電極 131に接続されており 、第 1電極 125に対してグランド電極として機能するように構成されている。そして、受 信電極 105bは、生体 100に誘起されて伝達されてくる電界を検出すると、この電界 を第 1電極 125に伝達し、第 1電極 125を介して光強度変調器 124に結合することが できる。
[0136] 電流源 119の電流制御によりレーザダイオード 121から出力されるレーザ光は、コリ メートレンズ 133を介して平行光にされ、平行光となったレーザ光はビームスプリッタ 139に入射する。このビームスプリッタ 139は、入射されたレーザ光を 2つに分岐して 出射する光学系である。このビームスプリッタ 139で分岐されたレーザ光のうちの第 1 のレーザ光は、光強度変調器 124を介して第 1集光レンズ 141aに入射される。また、 ビームスプリッタ 139で分岐されたうちの第 2のレーザ光は、光強度変調器 124を介 さずに第 2集光レンズ 141bに入射される。
[0137] 一方、受光回路 152aは、光強度変調器 124によって光強度変調した第 1のレーザ 光の光強度に応じて電流信号に変換する第 1フォトダイオード 143a、この第 1フォト ダイオード 143aに対して、逆バイアス電圧を与える第 1定電圧源 147a、及び第 1フ オトダイオード 143aによって変換された電流信号を電圧信号に変換する第 1負荷抵 抗 145aから成る第 1の組みと、第 2集光レンズ 141bを介して受光した第 2のレーザ 光の光強度に応じて電流信号に変換する第 2フォトダイオード 143b、この第 2フォト ダイオード 143bに対して、逆バイアス電圧を与える第 2定電圧源 147b、及び第 2フ オトダイオード 143bによって変換された電流信号を電圧信号に変換する第 2負荷抵 抗 145bから成る第 2の組みとを備えている。
[0138] これにより、電界検出光学部 110aの光強度変調器 124及び第 1集光レンズ 141a を通って来た第 1のレーザ光は、第 1フォトダイオード 143aで受光されて、上記第 1の 組みにより結果的に電圧信号 (信号成分あり)を出力する。また、電界検出光学部 11 0aの第 2集光レンズ 141bを通って来た第 2のレーザ光は、第 2フォトダイオード 143b で受光されて、上記第 2の組みにより結果的にレーザ光の雑音(ノイズ)を含んだ電 圧信号 (信号成分無し)を出力する。 [0139] そして、受光回路 152aは、第 1負荷抵抗 145aによって変換された電圧信号と第 2 負荷抵抗 145bによって変換された電圧信号とを差動増幅する差動アンプ 112も備 えており、差動アンプ 112によって差動増幅行い、この出力が図 18に示す信号処理 回路 116に供給される。
[0140] 以上説明したように本実施形態によれば、光強度変調器 124にレーザ光が入射す る直前でレーザ光を分岐し、一方を光強度変調器 124に入力して電界を検出するレ 一ザ光 (信号成分あり)として用い、他方は光強度変調器 124に入力せずにレーザ 光の雑音を除去するためのレーザ光 (信号成分無し)としてのみ用いている。このた め、偏光変調器 123のようなレーザ光の偏光変化を強度変化に変換する変調器のよ うに差動で強度変調信号が取り出せない光強度変調器 124を用レ、た場合でも、レー ザ光の雑音を除去することができる。
[0141] <第 4の実施形態 >
以下、図 20を用いて、本発明の第 4の実施形態に係る電界検出光学装置 115b及 び、この電界検出光学装置 115bを備えた光強度変調型トランシーバ 3について説 明する。
[0142] 本実施形態に係る電界検出光学装置 115bは、上記第 3の実施形態に係る電界検 出光学装置 115aにおける電界検出光学部 110aに代えて、以下に示す電界検出光 学部 110bを備えたものである。尚、電界検出光学部 110bの構成のうち、上記電界 検出光学部 110aの構成と同一構成については同一符号を付して、その説明を省略 する。また、本実施形態の受光回路 152aは、上記第 1の実施形態に係る受光回路 1 52aと同一構成であるため、その説明を省略する。
[0143] 図 20に示すように、本実施形態の電界検出光学部 110bでは、ビームスプリッタ 13 9と光強度変調器 124の間に第 1光可変アツテネータ 134Aを揷入設置し、ビームス プリッタ 139と第 2集光レンズ 141bの間に第 2光可変アツテネータ 134Bを揷入設置 している。この第 1、第 2の光可変アツテネータ 134A, Bは、レーザ光の光強度を所 定割合減衰させるものである。
[0144] 但し、ビームスプリッタ 139で 2つに分岐されたうちの第 1のレーザ光は光強度変調 器 124を通過する力 第 2のレーザ光は光強度変調器 124を通過しないため、第 1の レーザ光の伝達効率よりも第 2のレーザ光の伝達効率が高いことから、両方のバラン スを図る必要がある。そのため、本実施形態では、第 1のレーザ光が通過する第 1光 可変アツテネータ 134Aの減衰量よりも、第 2のレーザ光が通過する第 2光可変アツテ ネータ 134Bの減衰量を大きく設定してレ、る。
[0145] これによつて、第 1光可変アツテネータ 134Aにより、ビームスプリッタ 139によって 分岐した第 1のレーザ光の光強度を減衰させてから第 1フォトダイオード 143aで電流 信号に変換させることができると共に、第 2光可変アツテネータ 134Bにより、ビームス プリッタ 139によって分岐した第 2のレーザ光の光強度を減衰させてから第 2フォトダ ィオード 143bで電流信号に変換させることができる。し力、も、減衰量の割合は、第 1 光可変アツテネータ 134Aを通過するレーザ光よりも、第 2光可変アツテネータ 134B を通過するレーザ光の方が大きレ、。
[0146] 以上説明したように本実施形態によれば、第 1 ,第 2光可変アツテネータ 134A, B を挿入設置することで、レーザ光の雑音を除去するために、レーザ光を分岐させた場 合でも、差動アンプ 112への入力信号のバランスを図ることができる。
[0147] 尚、第 2光可変アツテネータ 134Bのみで差動アンプ 112への入力信号のバランス を図ることができれば、第 1光可変アツテネータ 134Aを取り付けずに省略してもよい
[0148] <第 5の実施形態 >
以下、図 21を用いて、本発明の第 5の実施形態に係る電界検出光学装置 115c及 び、この電界検出光学装置 115cを備えた光強度変調型トランシーバ 3について説明 する。
[0149] 本実施形態に係る電界検出光学装置 115cは、上記第 3の実施形態に係る電界検 出光学装置 115aにおける受光回路 152aに代えて、以下に示す受光回路 152bを 備えたものである。尚、受光回路 152bの構成のうち、上記受光回路 152aの構成と 同一構成については同一符号を付して、その説明を省略する。また、本実施形態の 電界検出光学部 110aは、上記第 1の実施形態に係る電界検出光学部 110aと同一 構成であるため、その説明を省略する。
[0150] 図 21に示すように、第 3の実施形態の第 1,第 2負荷抵抗 145a, bに代えて、本実 施形態の受光回路 152bでは、それぞれ第 1,第 2可変負荷抵抗 145A, Bを設けた 点が特徴である。これら第 1,第 2可変負荷抵抗 145A, Bは、負荷抵抗値が可変で あり、第 1可変負荷抵抗 145Aの抵抗値よりも、第 2可変負荷抵抗 145Bの抵抗値の 方が大きくなるように設定されている。
[0151] これによつて、第 1フォトダイオード 143a及び第 2フォトダイオード 143bからの出力 電圧信号の信号強度を同じにすることができる。
[0152] 以上説明したように本実施形態によれば、第 1の実施形態の第 1 ,第 2負荷抵抗 14 5a, bに代えて、本実施形態の受光回路 152bでは、第 1 ,第 2可変負荷抵抗 145A , Bを設けることで、レーザ光の雑音を除去するために、レーザ光を分岐させた場合 でも、差動アンプ 112への入力信号のバランスを図ることができる。
[0153] 尚、第 1,第 2可変負荷抵抗 145A, Bのうちの一方のみで差動アンプ 112への入 力信号のバランスを図ることができれば、いずれか一方を取り付けずに省略してもよ レ、。
[0154] <第 6の実施形態 >
以下、図 22を用いて、本発明の第 6の実施形態に係る電界検出光学装置 115d及 び、この電界検出光学装置 115dを備えた光強度変調型トランシーバ 3について説 明する。
[0155] 本実施形態に係る電界検出光学装置 115dは、上記第 3の実施形態に係る電界検 出光学装置 115aにおける受光回路 152aに代えて、以下に示す受光回路 152cを 備えたものである。尚、受光回路 152cの構成のうち、上記受光回路 152aの構成と 同一構成については同一符号を付して、その説明を省略する。また、本実施形態の 電界検出光学部 110aは、上記第 1の実施形態に係る電界検出光学部 110aと同一 構成であるため、その説明を省略する。
[0156] 図 22に示すように、第 3の実施形態の第 1,第 2定電圧源 147a, bに代えて、本実 施形態の受光回路 152cでは、それぞれ第 1 ,第 2可変電圧源 147A, Bを設けた点 が特徴である。これら第 1,第 2可変電圧源 147A, Bは、電圧値が可変であり、第 1 可変電圧源 147Aの電圧値よりも、第 2可変電圧源 145Bの電圧値の方が小さくなる ように設定されている。 [0157] これによつて、第 1フォトダイオード 143a及び第 2フォトダイオード 143bからの出力 電圧信号の信号強度を同じにすることができる。
[0158] 以上説明したように本実施形態によれば、第 3の実施形態の第 1 ,第 2定電圧源 14
7a, bに代えて、本実施形態の受光回路 152cでは、それぞれ第 1,第 2可変電圧源
147A, Bを設けることで、レーザ光の雑音を除去するために、レーザ光を分岐させた 場合でも、差動アンプ 112への入力信号のバランスを図ることができる。
[0159] 尚、第 1,第 2可変電圧源 147A, Bのうちの一方のみで差動アンプ 112への入力 信号のバランスを図ることができれば、いずれか一方を取り付けずに省略してもよい。
[0160] ぐ第 7の実施形態 >
以下、図 23を用いて、本発明の第 7の実施形態に係る電界検出光学装置 115e及 び、この電界検出光学装置 115eを備えた光強度変調型トランシーバ 3について説明 する。
[0161] 本実施形態に係る電界検出光学装置 115eは、上記第 3の実施形態に係る電界検 出光学装置 115aにおける受光回路 152aに代えて、以下に示す受光回路 152dを 備えたものである。尚、受光回路 152dの構成のうち、上記受光回路 152aの構成と 同一構成については同一符号を付して、その説明を省略する。また、本実施形態の 電界検出光学部 110aは、上記第 1の実施形態に係る電界検出光学部 110aと同一 構成であるため、その説明を省略する。
[0162] 図 23に示すように、第 1 ,第 2のフォトダイオード 143a, bからの出力電圧信号が差 動アンプ 112に入力される前に、それぞれの電圧信号を増幅するための第 1 ,第 2可 変ゲインアンプ 149A, Bを設けた点が特徴である。これら第 1 ,第 2可変ゲインアンプ 149A, Bは、電圧ゲインが可変であり、第 1可変ゲインアンプ 149Aの電圧ゲインより も、第 2可変ゲインアンプ 149Bの電圧ゲインの方が小さくなるように設定されている。
[0163] これによつて、第 1フォトダイオード 143a及び第 2フォトダイオード 143bからの出力 電圧信号の信号強度が異なっていても、同じにすることができる。
[0164] 以上説明したように本実施形態によれば、第 1 ,第 2のフォトダイオード 143a, から の出力電圧信号が差動アンプ 112に入力される前に、それぞれの電圧信号を増幅 するための第 1 ,第 2可変ゲインアンプ 149A, Bを設けることで、レーザ光の雑音を 除去するために、レーザ光を分岐させた場合でも、差動アンプ 112への入力信号の バランスを図ることができる。
[0165] 尚、第 1,第 2可変ゲインアンプ 149A, Bのうちの一方のみで差動アンプ 112への 入力信号のバランスを図ることができれば、いずれか一方を取り付けずに省略しても よい。
[0166] 尚、上述した第 3乃至第 7の実施形態における光強度変調器としては、従来と同様 、電界吸収型 (EA)光強度変調器やマッハツエンダ型光強度変調器等が採用できる
[0167] ぐ第 8の実施形態 >
以下、図 24を用いて、本発明の第 8の実施形態に係るトランシーバのトランシーバ 本体 30dについて説明する。
[0168] 本実施形態に係るトランシーバ本体 30dは、図 24に示したような全体構成を有する 。この全体構成のうち、電界検出光学装置 215、ノイズ検出部 218、制御信号発生部 219を除く各構成は、上記第 3の実施形態に係るトランシーバ本体 30cと同一である ため同一符号を付して、その説明を省略する。
[0169] 本実施形態のトランシーバ本体 30dでは、電界検出光学装置 215として、上記第 4 乃至第 7の実施形態で説明した電界検出光学装置 115b— 115eのいずれ力を用い 、信号処理回路 116から出力された電圧信号の雑音(ノイズ)成分の大きさを検出す るノイズ検出部 218と、このノイズ検出部 218から出力された検出データに基づいて、 電界検出光学装置 215を構成する電界検出光学部 110ゃ受光回路 152における可 変な値を可変制御するための制御信号を発生させる制御信号発生器 219を設けた 点が特徴である。尚、ノイズ検出部 218は、信号処理回路 116から出力された電気 信号中にどの程度の雑音が残っている力、、即ち、電界検出対象である受信情報に係 る周波数帯域中に存在する雑音がどの程度あるのかを検出する。
[0170] ここで、上記「可変な値」とは、第 4の実施形態では(図 20)、第 1,第 2の光可変アツ テネータ 134A, Bの光強度の減衰量を示す。また、第 5の実施形態では(図 21)、第 1 ,第 2の可変負荷抵抗 145A, Bの抵抗値を示す。また、第 6の実施形態では(図 2 2)、第 1 ,第 2の可変電圧源 147A, Bの電圧値を示す。第 7の実施形態では(図 23) 、第 1 ,第 2の可変ゲインアンプ 113A, Bの電圧ゲインを示す。
[0171] 以上説明したように本実施形態によれば、トランシーバ本体 30dの製造後であって も、可変な値を自動的に変更して調整することができるという効果を奏する。
[0172] 次に、電界伝達媒体を介した情報の送受信が可能なトランシーバ本体と、このトラ ンシーバ本体を駆動させるバッテリと、上記トランシーバ本体を覆う絶縁ケースと、を 備えた構成のトランシーバであって、外壁面のうち、広範な面を電界伝達媒体である 生体(手)で接触するタイプのトランシーバに係る実施形態について説明する。
[0173] 先ず、力かるトランシーバの実施形態の着眼点について説明する。そこで、図 9に 示したトランシーバ及びウェアラブルコンピュータに関し、生体(手)、送受信電極、ト ランシーバ本体、及びバッテリ間の等価回路を考えてみる。
[0174] 図 25は、生体、送受信電極、及びトランシーバ本体間の等価回路を示す図である
[0175] 図 9において、生体 100と送受信電極 105'とは絶縁膜 107'で隔てられているため 、生体 100と送受信電極 105間のインピーダンスは図 25のような等価回路で表現で きる。
[0176] ところで、生体 100を介しての信頼性の高い通信を実現するためには、生体 100へ の誘起交流電界 (周波数 f)を大きくする必要がある。この誘起交流電界 (周波数 f)を 大きくするためには、生体 100と送受信電極 105間のインピーダンスを小さくする必 要がある。ここで、図 25に示すように生体 100と送受信回路 105間のインピーダンス の抵抗成分は非常に大きいと考えられるので、当該インピーダンスを小さくするため には、その容量成分を大きくする必要がある。
[0177] そこで、容量成分を大きくするためには、絶縁膜 107の材料として誘電率の大きな 材料を使用したり、その厚さを薄くしたりすることが有効である。また、間接的に相対 する生体と広範に相対するように送受信電極 105の面積を大きくすることが有効であ る。
[0178] し力、しながら、絶縁膜 107の厚さを薄くしすぎると、送受信電極 105に直接生体 10 0が触れる可能性が大きくなり、生体 100に大きな電流が流れる危険性が高まる。従 つて、送受信電極 105の面積を大きくする策の方が、安全性を確保しながら容量を 大きくできるので、得策である。また、送受信電極 105を大きくすることでシールドの 効果も期待できる。
[0179] 図 26は、生体、トランシーバ本体、及びバッテリ間の等価回路を示す図である。
[0180] 生体 100を介しての信頼性の高い通信を実現するためには、生体 100、トランシー バ本体 30、及びバッテリ 6間相互に不要交流電界 (周波数 f)が誘起されないようにす る必要がある。そのためにはそれぞれの間のインピーダンスを大きくして、相互の結 合容量を小さくする必要がある。
[0181] 従って、相互間に絶縁体を介在させることとして、更に、その効果を大きくするため には、誘電率の小さな絶縁体を使用したり、絶縁体と、生体 100、トランシーバ本体 3 0、及びバッテリ 6のそれぞれとの接触面積を小さくしたり、また、絶縁体を厚くすること が必要である。
[0182] 以上の観点から、図 9に示したタイプのトランシーバにおいて、確実で信頼性の高 レ、、生体を介した通信を行うための実施形態として以下のものが考えられる。
[0183] <第 9の実施形態 >
以下、図 27乃至図 30を用いて、第 9の実施形態を説明する。
[0184] 図 27は、第 9の実施形態に係るトランシーバ 3a及びウェアラブルコンピュータ 1の全 体構成図である。図 28は、主にトランシーバ本体 30の機能を示した機能ブロック図 である。図 29は、電界検出光学装置 115 'の詳細構成図である。図 30は、図 27に示 すトランシーバ 3a及びウェアラブルコンピュータ 1の使用状態を示した使用イメージ 図である。
[0185] 図 27に示すように、トランシーバ 3aは、絶縁体で形成された絶縁ケース 33と、この 絶縁ケース 33に内蔵された以下に示す装置等と、この絶縁ケース 33の外部に取り 付けられた以下に示す部材等により構成されている。
[0186] 絶縁ケース 33の内壁面底部には、絶縁ケース 33とトランシーバ本体 30との電気的 な結合を弱めるための絶縁性発泡材 7aが取り付けられている。またその上面に、ゥェ アラブルコンピュータ 1に対してデータ(情報)の送受信を行うトランシーバ本体 30が 取り付けられている。またその上面に、トランシーバ本体 30とバッテリ 6との電気的な 結合を弱めるための絶縁性発泡材 7bが取り付けられている。更にその上面に、トラン シーバ 30を駆動させるバッテリ 6が取り付けられている。即ち、絶縁ケース 33とトラン シーバ本体 30の間に絶縁性発泡材 7aが挟持 (挟んだ状態に支持)され、更に、トラ ンシーバ本体 30とバッテリ 6の間に絶縁性発泡材 7bが挟持されている。また、絶縁 性発泡材 7a, 7bには、無数の空気を含んだ穴が空いている。このため、絶縁性発泡 材 7aによって、絶縁ケース 33とトランシーバ本体 30との間の雑音の伝達を抑制する こと力 Sできる。また、絶縁性発泡材 7bによって、トランシーバ本体 30とバッテリ 6との間 の雑音の伝達を抑制することができる。
[0187] 更に、トランシーバ本体 30からは、後述の第 1グランド (Ground)電極 131が延出さ れ、他の装置 (バッテリ 6、ウェアラブルコンピュータ 1等)に接触しない状態で、し力、も 、送受信電極 105から離れた絶縁ケース 33の内壁面の上部に取り付けられている。 また、トランシーバ本体 30からは、後述の第 2グランド電極 161及び第 3グランド電極 163が延出され、他の装置 (バッテリ 6、ウェアラブルコンピュータ 1等)及び第 1グラン ド電極 131に接触しない状態で、し力も、送受信電極 105から離れた絶縁ケース 33 の内壁面の上部に取り付けられている。
[0188] また、絶縁ケース 33の外壁面底部及び外壁面側部には、送受信電極 105が取り 付けられており、この送受信電極 105の全体が絶縁膜 107で覆われている。尚、ゥヱ ータ 1の操作.入力面以外の部分は、絶縁ケース 11で覆われている
[0189] 更に、トランシーバ本体 30は、 I/O (入出力)回路 101、送信部 103、送受信電極 105、絶縁膜 107、電界検出光学装置 115 '、受信回路 113 (信号処理回路 116、 波形整形回路 117)を有している点は、従来のトランシーバ本体 30'と同様であるが 、これらの構成につき、改めて説明する。
[0190] I/O回路 101は、トランシーバ本体 30がウェアラブルコンピュータ 1等の外部機器 との情報(データ)の入出力を行う回路である。送信部 103は、 IZ〇回路 101から出 力される情報(データ)に基づき、この情報に係る電界を生体 100に誘起させる送信 回路によって構成されている。送受信電極 105は、送信部 103により生体 100に対し て電界を誘起するために使用する電極であり、送信用アンテナとして使用される。ま た、送受信電極 105は、生体 100に誘起されて伝達されてくる電界を受信するため に使用する電極であり、受信用アンテナとしても使用される。絶縁膜 107は、送受信 電極 105と生体 100との間に配置する絶縁体の膜であり、送受信電極 105が直接生 体 100に接触することを防ぐ役割を果たす。
[0191] 更に、電界検出光学装置 115'は、送受信電極 105で受信した電界を検出し、この 電界を受信情報として電気信号に変換する機能を有している。
[0192] また、受信回路 113の信号処理回路 116は、更に電界検出光学部 115 'から送信 されてきた電気信号の増幅を行うと共に、電気信号の帯域を制限して不要な雑音や 不要な信号成分を除去する処理を行う回路である。
[0193] また、波形整形回路 117は、信号処理回路 116から送信されてきた電気信号に波 形整形 (信号処理)を施し、 IZ〇回路 101を介してゥヱアラブルコンピュータ 1に供給 する回路である。尚、送信部 103、受信回路 113、及び I/O回路 101は、バッテリ 6 によって駆動することができる。
[0194] ここで、図 29を用い、電界検出光学部 115 'について詳細に説明する。図 4を参照 して概要は説明済みであるが、再度説明する。
[0195] この電界検出光学部 115 'は、トランシーバ本体 30により受信した電界を電気信号 に戻す処理を行う。この処理は、レーザ光と電気光学結晶を用いた電気光学的手法 により電界を検出することによって行う。
[0196] 電界検出光学部 115'は、図 29に示すように、電流源 119、レーザダイオード 121 、電気光学素子(電気光学結晶) 123、第 1及び第 2波長板 135, 137、偏光ビーム スプリッタ 139、複数のレンズ 133, 141a, b、フォトダイオード 143a, b、並びに、第 1 グランド電極 131により構成されてレ、る。
[0197] このうち、電気光学素子 123は、レーザダイオード 121からのレーザ光の進行方向 に対して直角方向に結合される電界にのみ感度を有し、この電界強度によって光学 特性、すなわち複屈折率が変化し、この複屈折率の変化によりレーザ光の偏光を変 化させるように構成されている。電気光学素子 123の図 29上で上下方向に対向する 両側面には、第 1電極 125と第 2電極 127が設けられている。この第 1電極 125及び 第 2電極 127は、レーザダイオード 121からのレーザ光の電気光学素子 123内にお ける進行方向を両側から挟み、レーザ光に対して電界を直角に結合させることができ る。
[0198] また、電界検出光学部 115'は、第 1電極 125を介して送受信電極 105に接続され ている。第 1電極 125に対向する第 2電極 127は、第 1グランド電極 131に接続されて おり、第 1電極 125に対してグランド電極として機能するように構成されている。そして 、送受信電極 105は、生体 100に誘起して伝達されてくる電界を受信し、この電界を 第 1電極 125に伝達し、第 1電極 125を介して電気光学素子 123に結合することがで きる。
[0199] 一方、電流源 119の電流制御によりレーザダイオード 121から出力されるレーザ光 は、コリメートレンズ 133を介して平行光にされ、平行光となったレーザ光は第 1波長 板 135で偏光状態を調整されて、電気光学素子 123に入射する。電気光学素子 12 3に入射されたレーザ光は、電気光学素子 123内で第 1、第 2電極 125, 127の間を 伝播するが、このレーザ光の伝播中において上述したように送受信電極 105が生体 100に誘起されて伝達されてくる電界を受信し、この電界を第 1電極 125を介して電 気光学素子 123に結合させると、この電界は第 1電極 125からグランド電極 131に接 続されている第 2の電極 127に向かって形成される。この電界は、レーザダイオード 1 21から電気光学素子 123に入射したレーザ光の進行方向に直角であるため、電気 光学素子 123の光学特性である複屈折率が変化し、これによりレーザ光の偏光が変 化する。
[0200] 次に、電気光学素子 123において第 1電極 125からの電界によって偏光が変化し たレーザ光は、第 2波長板 137で偏光状態を調整されて偏光ビームスプリッタ 139に 入射する。偏光ビームスプリッタ 139は、第 2波長板 137から入射されたレーザ光を P 波及び S波に分離して、光の強度変化に変換する。
[0201] この偏光ビームスプリッタ 139で P波成分及び S波成分に分離されたレーザ光は、 それぞれ第 1、第 2の集光レンズ 141a, 141bで集光されてから、第 1、第 2のフォトダ ィオード 143a, 143bで受光され、第 1、第 2のフォトダイオード 143a, 143bにおい て P波光信号と S波光信号をそれぞれの電流信号に変換して出力することができる。 尚、上述したように第 1、第 2のフォトダイオード 143a, 143bから出力される電流信号 は、抵抗を用いて電圧信号に変換されてから、図 28に示す信号処理回路 116で増 幅及び雑音除去の信号処理を施される。
[0202] 更に、本実施形態のトランシーバ本体 30においては、電界検出光学部 115 '用の 電圧の基準点となる第 1グランド電極 131が、図 27に示すようにトランシーバ本体 30 の外部に延出されている。また、信号処理回路 116用の電圧の基準点となる第 2のグ ランド電極 161、及び、送信部 103用の電圧の基準点となる第 3のグランド電極 163 が共通して外部に延出されている。
[0203] 次に、図 30を用いて、本実施形態に係るトランシーバ 3a及びウェアラブルコンビュ ータ 1の使用状態を説明する。
[0204] 図 30に示すように、人間の手(生体 100)でトランシーバ 3aを持つ場合には、絶縁 ケース 33の外壁面底部及び外壁面側部を持つことになる。このような場合であっても 、送受信電極 105及び絶縁膜 107が、絶縁ケース 33の外壁面底部だけでなく外壁 面側部まで覆っているため、絶縁ケース 33の全体から送信用の電界 El , E2, E3が 誘起されるが、その一部の電界が手から絶縁ケース 33の側面を介してトランシーバ 3 に戻ることを抑制する。
[0205] 以上説明したように本実施形態によれば、絶縁ケース 33の外壁面のうち、底面 (底 部)だけでなぐ側面 (側部)等を含めた広範な面に送信用電極 (ここでは、送受信電 極 105)を取り付けて絶縁膜 107で覆ったので、人間の手でトランシーバ 3aを持った 場合であっても、送信用電界の一部が手から再びトランシーバ 3aへ戻ることを防止す ること力 Sできる。
[0206] また、第 1グランド電極 131、第 2グランド電極 161、及び第 3グランド電極 163を絶 縁ケース 33の内壁面の上部であって、送受信電極 105から離れた位置に取り付けた ことにより、送受信電極 105からトランシーバ本体 30への不要信号の回り込みを防止 することができると共に、グランドの強化を行うことができる。
[0207] 更に、絶縁ケース 33とトランシーバ本体 30の間に絶縁性発泡材 7aが挟持され、更 に、トランシーバ本体 30とバッテリ 6の間に絶縁性発泡材 7bが挟持されているため、 バッテリ 6や絶縁ケース 33からトランシーバ本体 30に侵入してくる雑音を抑制するこ とができる。
[0208] ぐ第 10の実施形態 > 以下、図 31を用いて、第 10の実施形態を説明する。
[0209] 図 31は、第 10の実施形態に係るトランシーバ 32及びウェアラブルコンピュータ 1の 全体構成図である。尚、上記第 9の実施形態と同一の構成については同一符号を付 して、その説明を省略する。
[0210] 本実施形態では、図 31に示すように、第 9の実施形態の絶縁性発泡剤 7a, 7bの変 わりに絶縁性支柱 99a, 99bを採用している。
[0211] このように、本実施形態によれば、絶縁体と、生体 100、トランシーバ本体 30、及び バッテリ 6のそれぞれとの接触面積を小さくしているので、不要交流電界が誘起され ない効果は更に大きい。
[0212] 絶縁性支柱 99a, 99bの材質としては、発泡剤の他に木材であってもよレ、。但し、桐 材のように軽くて丈夫なものが好ましい。
[0213] また、本実施形態では支柱を採用したが、ブロック構造を有するようにしてもよい。
[0214] <第 11の実施形態 >
以下、図 32を用いて、第 11の実施形態を説明する。
[0215] 図 32は、第 11の実施形態に係るトランシーバ 3c及びウェアラブルコンピュータ 1の 全体構成図である。尚、上記第 9の実施形態と同一の構成については同一符号を付 して、その説明を省略する。
[0216] 本実施形態では、図 32に示すように、第 2,第 3グランド電極 161 , 163力 トランシ ーバ 3cの絶縁ケース 33から延出されて、ウェアラブルコンピュータ 1の絶縁ケース 11 の側面 (側部)に取り付けられている。
[0217] このように本実施形態によれば、上記第 9の実施形態の効果に加え、更に、第 2, 第 3グランド電極 161 , 163が、上記第 9の実施形態に比べて更に送受信電極 105 力、ら離れているため、送受信電極 105からトランシーバ本体 30への不要信号の回り 込みを、より強固に防止することができると共に、グランドの更なる強化を行うことがで きる。
[0218] <第 12の実施形態 >
以下、図 33を用いて、第 12の実施形態を説明する。
[0219] 図 33は、第 12の実施形態に係るトランシーバ 3d及びウェアラブルコンピュータ 1の 全体構成図である。尚、上記第 9の実施形態と同一の構成については同一符号を付 して、その説明を省略する。
[0220] 本実施形態では、図 33に示すように、第 1グランド電極 131が、トランシーバ 3dの 絶縁ケース 33から延出されて、ウェアラブルコンピュータ 1の絶縁ケース 11の側面( 側部)に取り付けられている。
[0221] このように本実施形態によれば、上記第 9の実施形態の効果に加え、更に、第 1グ ランド電極 131が、上記第 9の実施形態に比べて更に送受信電極 105から離れてい るため、送受信電極 105からトランシーバ本体 30への不要信号の回り込みを、より強 固に防止することができると共に、グランドの更なる強化を行うことができる。
[0222] ぐ第 13の実施形態 >
以下、図 34を用いて、第 13の実施形態を説明する。
[0223] 図 34は、第 13の実施形態に係るトランシーバ 3e及びウェアラブルコンピュータ 1の 全体構成図である。尚、上記第 9の実施形態と同一の構成については同一符号を付 して、その説明を省略する。
[0224] 本実施形態では、図 34に示すように、送受信電極 105が、送信専用の送信電極 1 05aと受信専用の受信電極 105bに分かれ、図 31に示す送受信電極 105の部分に 送信電極 105aが配置され、図 34に示すように、絶縁膜 107aの外側底面に受信電 極 105bが配置されている。そして、受信電極 105bについても、人体が直接触れな レ、ようにするために絶縁膜 107bで覆っている。尚、図 31に示す絶縁膜 107につい て、本実施形態では、絶縁膜 107aとして表している。
[0225] このように本実施形態によれば、上記第 9の実施形態の効果に加え、更に、送信電 極 105aが比較的大きくて、絶縁ケース 33のほぼ全体を覆っており、受信電極 105b 力 、さくなつているため、送信用の電界の一部が手から戻ってくる割合が少なくなると レ、う効果も奏する。
[0226] 尚、図 35に示すトランシーバ 3fのように、送信電極 105aと受信電極 105bの配置 位置を入れ替えて設けてもょレ、(第 14の実施形態)。
[0227] ぐその他の実施形態 >
上記第 11及び第 12の実施形態では、片方のグランド電極をゥヱアラブルコンビュ ータ 1の絶縁ケース 11の側面に取り付けた力 これに限るものではなぐ第 1グランド 電極 131、及び第 2,第 3グランド電極 161, 163の両方を接触させずに、それぞれゥ エアラブルコンピュータ 1の絶縁ケース 11の側面に取り付けてもよい。
[0228] また、上記第 9及び第 11乃至第 13実施形態では、絶縁ケース 33とトランシーバ本 体 30の間に絶縁性発泡材 7aを挟持させ、トランシーバ本体 30とバッテリ 6の間に絶 縁性発泡材 7bを挟持させた力 これに限るものではなぐ図 36に示すように、バッテ リ 6とトランシーバ本体 30とを接触させないで覆う一体型の絶縁性発泡材 8を使用し てもよレ、。更に、図 37に示すように、発泡材ではなぐ空気等の気体が閉じこめられ たクッション状絶縁材 9を使用してもよい。
産業上の利用可能性
[0229] 以上説明したように本発明によれば、生体等の電界伝達媒体が二次元空間におけ る位置を触れて特定することにより、ウェアラブルコンピュータ 1等への情報入力も電 界伝達媒体を介して容易に行うことができるという効果を奏する。
[0230] また、本発明によれば、光強度変調手段にレーザ光が入射する手前でレーザ光を 分岐 (分離)し、一方を光強度変調手段に入力して電界を検出するレーザ光として用 レ、、他方は光強度変調手段に入力せずにレーザ光の雑音を除去するためのレーザ 光としてのみ用いているため、レーザ光の偏光変化を強度変化に変換する変調器の ように差動で強度変調信号が取り出せなレ、光強度変調手段を用レ、た場合でも、レー ザ光の雑音を除去することができるとレ、う効果を奏する。
[0231] 更に、本発明によれば、絶縁ケースの外壁面のうち、底面 (底部)だけでなぐ側面( 側部)等を含む広範な面に、送信用電極が取り付けられているため、人間の手でトラ ンシーバを持った場合であっても、送信用電界の一部が手から再びトランシーバへ 戻ることを防止することができる。

Claims

請求の範囲
[1] 電界を電界伝達媒体(100)に誘起させると共に、前記電界伝達媒体(100)に誘起 されている電界を受信する送受信用電極(105)と、
送信すべき情報に基づいた前記電界を前記送受信用電極(105)に生じさせると共 に、前記送受信用電極(105)に生じた前記電界を受信情報に変換することにより、 前記電界伝達媒体(100)を介した情報の送受信が可能なトランシーバ本体(30)と、 前記送受信電極(105)と前記電界伝達媒体(100)との間に介在する第 1の構造 物(107)と、
前記トランシーバ本体(30)と前記電界伝達媒体(100)との間に介在する第 2の構 造物(7a, 99a)と、
前記トランシーバ本体(30)を駆動させるバッテリ(6)と、
前記トランシーバ本体(30)と前記バッテリ(6)との間に介在する第 3の構造物(7b, 99b)と、
を備えたトランシーバ(3a, 3b, 3c, 3d, 3e)であって、
前記第 1、第 2、及び第 3の構造物は、金属、半導体、及び絶縁体のうちの少なく とも 1つで構成され、抵抗と容量の並列回路として等価される構造物であることを特徴 とするトランシーバ(3a, 3b, 3c, 3d, 3e)。
[2] 前記第 2の構造物(7a, 99a)及び第 3の構造物(7b, 99b)のインピーダンスは、前 記第 1の構造物(107)のインピーダンスよりも大きいことを特徴とする請求の範囲第 1 項 ίこ記載の卜ランシーノ (3a, 3b, 3c, 3d, 3e)。
[3] 前記第 1の構造物(107)は、前記電界伝達媒体(100)に対して前記送受信電極(1
05)を覆う絶縁膜であることを特徴とする請求の範囲第 2項に記載のトランシーバ(3a
, 3b, 3c, 3d, 3e)。
[4] 前記第 2の構造物(7a, 99a)及び第 3の構造物(7b, 99b)は、絶縁性部材であるこ とを特徴とする請求の範囲第 2項に記載のトランシーバ(3a, 3b, 3c, 3d, 3e)。
[5] 送信すべき情報に基づいた電界を送信用電極(105, 105a)から電界伝達媒体(10 0)に誘起させることにより、前記電界伝達媒体(100)を介した情報の送信が可能なト ランシーバ本体(30)と、 このトランシーバ本体(30)を駆動させるバッテリ(6)と、
前記トランシーバ本体(30)が内蔵された絶縁ケース(33)と、
を備えたトランシーバ(3a, 3b, 3c, 3d, 3e)であって、
前記送信用電極(105, 105a)は、前記絶縁ケース(33)の外壁面のうち、前記電 界伝達媒体(100)が近接すべき部分の全面に渡って設けられていると共に、前記電 界伝達媒体(100)に直接接触しないように絶縁膜(107, 107a)で覆われていること を特徴とするトランシーバ(3a, 3b, 3c, 3d, 3e)。
[6] 前記バッテリ(6)と前記トランシーバ本体(30)の間に絶縁性部材(7b, 99b)を更に 備えることを特徴とする請求の範囲第 5項に記載のトランシーバ(3a, 3b, 3c, 3d, 3 e) 0
[7] 前記絶縁性部材は、空気が含まれる発泡材(7b)であることを特徴とする請求の範囲 第 6項に記載のトランシーバ(3a, 3c, 3d, 3e)。
[8] 前記絶縁性部材は、複数の木材支柱(99b)であることを特徴とする請求の範囲第 6 項に記載のトランシーバ(3b)。
[9] 前記絶縁性部材は、所定の気体を閉じこめたクッション材であることを特徴とする請 求の範囲第 6項に記載のトランシーバ。
[10] 前記トランシーバ本体(30)が駆動する際に必要とする基準電圧を画定するものであ つて、前記絶縁ケース(33)の内壁面に取り付けられたグランド電極(131 , 161 , 16
3)を更に備えることを特徴とする請求の範囲第 5項に記載のトランシーバ(3a, 3b, 3 c, 3d, 3e)。
[11] 前記トランシーバ本体(30)が駆動する際に必要とする基準電圧を画定するものであ つて、前記絶縁ケース(33)外の外部装置に取り付けられたグランド電極(131, 161 , 163)を更に備えることを特徴とする請求の範囲第 5項に記載のトランシーバ(3c, 3 d)。
[12] 送信すべき情報に基づいた電界を送信用電極(105a)から電界伝達媒体(100)に 誘起させると共に、前記電界伝達媒体(100)に誘起されている電界に基づいた情報 を受信用電極(105b)で受信することにより、前記電界伝達媒体(100)を介した情報 の送受信が可能なトランシーバ本体(30)と、 このトランシーバ本体(30)を駆動させるバッテリ(6)と、
前記トランシーバ本体(30)が内蔵された絶縁ケース(33)と、
を備えたトランシーバ(3e)であって、
前記送信用電極(105a)は、前記絶縁ケース(33)の外壁面のうち、前記電界伝 達媒体(100)が近接すべき部分の全面に渡って設けられていると共に、前記電界伝 達媒体(100)に直接接触しないように第 1の絶縁膜(107a)で覆われ、
前記受信用電極( 105b)は、前記第 1の絶縁膜(107a)の外壁面に設けられると 共に、前記電界伝達媒体(100)に直接接触しないように第 2の絶縁膜(107b)で覆 われてレ、ることを特徴とするトランシーバ(3e)。
[13] 送信すべき情報に基づいた電界を送信用電極(105a)から電界伝達媒体(100)に 誘起させると共に、前記電界伝達媒体(100)に誘起されている電界に基づいた情報 を受信用電極(105b)で受信することにより、前記電界伝達媒体(100)を介した情報 の送受信が可能なトランシーバ本体(30)と、
このトランシーバ本体(30)を駆動させるバッテリ(6)と、
前記トランシーバ本体(30)が内蔵された絶縁ケース(33)と、
を備えたトランシーバ(3f)であって、
前記受信用電極(105b)は、前記絶縁ケース(33)の外壁面のうち、前記電界伝 達媒体(100)が近接すべき部分の全面に渡って設けられていると共に、前記電界伝 達媒体(100)に直接接触しないように第 1の絶縁膜(107a)で覆われ、
前記送信用電極(105a)は、前記第 1の絶縁膜(107a)の外壁面に設けられると 共に、前記電界伝達媒体(100)に直接接触しないように第 2の絶縁膜(107b)で覆 われてレ、ることを特徴とするトランシーバ(3f )。
[14] 電界伝達媒体(100)に誘起されている電界に基づいた情報を受信することにより、 前記電界伝達媒体(100)を介した情報の受信が可能なトランシーバ(3)であって、
2つの電気信号に基づく情報と、その情報に対応して決まる位置情報と、を関連付 けて記憶する記憶手段( 17)と、
前記電界伝達媒体(100)に誘起して伝達されてくる電界を検出し、当該電界の変 化を電気信号に変換する電界検出手段(115)と、 前記電界検出手段(115)により得られた前記電気信号のうち、前記 2つの電気信 号が含まれる所定の帯域を有する信号成分のみを通過させるバンドパスフィルタ(11 a, l ib)と、
前記記憶手段(17)を参照して、前記バンドパスフィルタを通過した前記 2つの電気 信号に基づく情報に対応する位置情報を得る位置換算処理手段(15)と、
を備えることを特徴とするトランシーバ(3)。
[15] 前記記憶手段(17)は、 2つの電気信号の信号強度に基づく情報と、その情報に対 応して決まる位置情報と、を関連付けて記憶し、
前記バンドパスフィルタ(l la, l ib)は、
前記電界検出手段(115)により得られた前記電気信号のうち、一方の電気信号 が含まれる第 1の帯域を有する信号成分のみを通過させる第 1のバンドパスフィルタ( 11a)と、
前記電界検出手段(115)により得られた前記電気信号のうち、他方の電気信号 が含まれる前記第 1の帯域とは異なる第 2の帯域を有する信号成分のみを通過させ る第 2のバンドパスフィルタ(1 lb)とを含み、
前記第 1のバンドパスフィルタ(11a)を通過した信号成分及び前記第 2のバンドパ スフィルタ(1 lb)を通過した信号成分の信号強度を測定する信号強度測定手段(13 a, 13b)を更に有し、
位置換算処理手段(15)は、前記記憶手段(17)を参照して、前記信号強度測定 手段(13a, 13b)により測定された、前記第 1のバンドパスフィルタを通過した信号成 分及び前記第 2のバンドパスフィルタを通過した信号成分のそれぞれの信号強度に 基づく情報に対応する位置情報を得ることを特徴とする請求の範囲第 14項に記載の トランシーバ(3)。
[16] 前記記憶手段(17)は、電気信号の強度差の情報と、その情報に対応して決まる位 置情報と、を関連付けて記憶し、
前記位置換算処理手段(15)は、前記信号強度測定手段(13a, 13b)により測定さ れた、前記第 1のバンドパスフィルタを通過した信号成分及び前記第 2のバンドパス フィルタを通過した信号成分の強度差を算出し、前記記憶手段(17)を参照し、その 強度差に対応する位置情報を得ることを特徴とする請求の範囲第 15項に記載のトラ ンシーバ(3)。
[17] 前記記憶手段(17)に記憶されている強度差の情報と位置情報の関連付けは、外部 装置から書き換えが可能であることを特徴とする請求の範囲第 16項に記載のトラン シーバ(3)。
[18] 前記記憶手段(17)は、電気信号の強度比の情報と、その情報に対応して決まる位 置情報と、を関連付けて記憶し、
前記位置換算処理手段(15)は、前記信号強度測定手段(13a, 13b)により測定さ れた、前記第 1のバンドパスフィルタを通過した信号成分及び前記第 2のバンドパス フィルタを通過した信号成分の強度比を算出し、前記記憶手段(17)を参照し、その 強度比に対応する位置情報を得ることを特徴とする請求の範囲第 15項に記載のトラ ンシーバ(3)。
[19] 前記記憶手段(17)に記憶されている強度比の情報と位置情報の関連付けは、外部 装置から書き換えが可能であることを特徴とする請求の範囲第 18項に記載のトラン シーバ(3)。
[20] 前記記憶手段(17)は、 2つの電気信号の位相差に基づく情報と、その情報に対応し て決まる位置情報と、を関連付けて記憶し、
前記バンドパスフィルタ(11a, l ib)は、
前記電界検出手段(115)により得られた前記電気信号のうち、一方の電気信号 が含まれる第 1の帯域を有する信号成分のみを通過させる第 1のバンドパスフィルタ( 11a)と、
前記電界検出手段(115)により得られた前記電気信号のうち、他方の電気信号 が含まれる前記第 1の帯域とは異なる第 2の帯域を有する信号成分のみを通過させ る第 2のバンドパスフィルタ(1 lb)とを含み、
前記第 1のバンドパスフィルタ(11a)を通過した信号成分及び前記第 2のバンドパ スフィルタ(l ib)を通過した信号成分の位相を検波する位相検波手段(23a, 23b) を更に備え、
位置換算処理手段(25)は、前記位相検波手段(23a, 23b)により検波された、前 記第 1のバンドパスフィルタを通過した信号成分及び前記第 2のバンドパスフィルタを 通過した信号成分の位相差を算出し、前記記憶手段(17)を参照し、その位相差に 対応する位置情報を得ることを特徴とする請求の範囲第 14項に記載のトランシ一ノ^ 3)。
[21] 前記記憶手段(17)に記憶されている位相差の情報と位置情報の関連付けは、外部 装置から書き換えが可能であることを特徴とする請求の範囲第 20項に記載のトラン シーバ(3)。
[22] 電荷を伝達可能であると共に電界伝達媒体(100)がその上の任意の一点と接触可 能な電界伝達シート (302a)と、
その電界伝達シート(302a)上の異なる位置にそれぞれ配置され、それぞれ第 1の 帯域及び第 2の帯域を有する電気信号に基づいた電界を前記電界伝達シート(302 a)に誘起させる第 1及び第 2の発信器 (A, B)と、
前記電界伝達媒体(100)に誘起されている電界に基づいた情報を受信することに より、前記電界伝達媒体(100)を介した情報の受信が可能なトランシーバ(3)と、 を備えた位置情報取得システムであって、
前記トランシーバ(3)は、
2つの電気信号に基づく情報と、その情報に対応して決まる位置情報と、を関連 付けて記憶する記憶手段(17)と、
前記電界伝達媒体(100)に誘起して伝達されてくる電界を検出し、当該電界の 変化を電気信号に変換する電界検出手段(115)と、
前記電界検出手段(115)により得られた前記電気信号のうち、前記 2つの電気信 号が含まれる所定の帯域を有する信号成分のみを通過させるバンドパスフィルタ(11 a, l ib)と、
前記記憶手段(17)を参照して、前記バンドパスフィルタを通過した前記 2つの電 気信号に基づく情報に対応する位置情報を得る位置換算処理手段(15)と、 を備えることを特徴とする位置情報取得システム。
[23] 電荷を伝達可能であると共に電界伝達媒体(100)がその上の任意の一点と接触可 能な電界伝達シート (302a)と、 その電界伝達シート(302a)上の異なる位置にそれぞれ配置され、それぞれ第 1の 帯域及び第 2の帯域を有する電気信号に基づいた電界を前記電界伝達シート(302 a)に誘起させる第 1及び第 2の発信器 (A, B)と、
前記電界伝達媒体(100)に誘起されている電界に基づいた情報を受信することに より、前記電界伝達媒体(100)を介した情報の受信が可能なトランシーバ(3)であつ て、
2つの電気信号に基づく情報と、その情報に対応して決まる位置情報と、を関連 付けて記憶する記憶手段(17)と、
前記電界伝達媒体(100)に誘起して伝達されてくる電界を検出し、当該電界の 変化を電気信号に変換する電界検出手段(115)と、
前記電界検出手段(115)により得られた前記電気信号のうち、前記 2つの電気信 号が含まれる所定の帯域を有する信号成分のみを通過させるバンドパスフィルタ(11 a, l ib)と、
前記記憶手段(17)を参照して、前記バンドパスフィルタを通過した前記 2つの電 気信号に基づく情報に対応する位置情報を得る位置換算処理手段(15)と、 を有するトランシーバ(3)と、
位置情報とそれに対応した入力情報と、を関連付けて記憶するコンピュータ記憶手 段を有し、前記トランシーバ(3)から入力される位置情報に基づいて、前記コンビュ ータ記憶手段を参照して入力情報を獲得するウェアラブルコンピュータ(1)と、 を備えることを特徴とする情報入力システム。
[24] 電界伝達媒体(100)により接触又は操作が可能であり、その接触又は操作に基づく 物理量に応じて、前記電界伝達媒体(100)に電界を誘起させる電界誘起手段と、 前記電界伝達媒体(100)に誘起されている電界を受信し、その電界を偏光変調器 又は光強度変調器に印加し、その電界に応じてレーザ光を偏光変調又は光強度変 調させ、偏光変調又は光強度変調されたレーザ光を電気信号に変換し、変換された 電気信号のうち、前記接触又は操作に基づく物理量に係る周波数成分を有する電 気信号を抽出し、前記接触又は操作に基づく物理量に係る電気信号を出力するトラ ンシーバと、 前記トランシーバから前記接触又は操作に基づく物理量に係る電気信号を入力し
、前記電界伝達媒体(100)による前記接触又は操作に基づく物理量に対応した情 報を取得する情報処理手段と、
を備えたことを特徴とする情報入力システム。
[25] レーザ光の光強度を検出対象の電界に基づいて変調させることで、前記電界を検出 する電界検出光学装置(115a, 115b, 115c, 115d, 115e)であって、
電界検出光学き (110a, 110b)と受光回路(152a, 152b, 152c, 152d)とを有し 前記電界検出光学部(115a, 115b, 115c, 115d, 115e)は、
レーザ光出射手段(121)と、
前記レーザ光出射手段(121)から出射されたレーザ光を異なる第 1及び第 2のレ 一ザ光に分岐する分岐手段(139)と、
前記検出対象の電界が結合され、該結合された電界に基づいて、前記第 1のレ 一ザ光の光強度を変調する光強度変調手段(124)と、を有し、
前記受光回路(152a, 152b, 152c, 152d)は、
前記光強度変調手段(124)によって変調された第 1のレーザ光の光強度を電圧 信号に変換する第 1の光/電圧変換手段(143a, 147a, 147A, 145a, 145A)と、 前記分岐手段(139)によって分岐された第 2のレーザ光の強度を電圧信号に変 換する第 2の光/電圧変換手段(143b, 147b, 147B, 145b, 145B)と、
前記第 1の光/電圧変換手段(143a, 147a, 147A, 145a, 145A)によって変 換された電圧信号と前記第 2の光/電圧変換手段(143b, 147b, 147B, 145b, 1 45B)によって変換された電圧信号とを差動増幅する差動増幅手段(112)と、を有 することを特徴とする電界検出光学装置(115a, 115b, 115c, 115d, 115e) 0
[26] 前記電界検出光学部(110b)は、前記分岐手段(139)によって分岐された第 2のレ 一ザ光の光強度を減衰させる光可変アツテネータ(134B)を更に備え、前記第 2の 光電気変換手段(143b)は、前記光可変アツテネータ(134B)によって減衰された 第 2のレーザ光を入力することを特徴とする請求の範囲第 25項に記載の電界検出光 学装置(115b)。
[27] 前記電界検出光学部(110b)は、前記分岐手段(139)によって分岐された第 1のレ 一ザ光の光強度を所定割合減衰させる第 1の光可変アツテネータ(134A)と、前記 分岐手段(139)によって分岐された第 2のレーザ光の光強度を、前記第 1の光可変 アツテネータにおける減衰割合よりも大きい割合で減衰させる第 2の光可変アツテネ ータ(134B)と、を更に備え、前記光強度変調手段(124)は、前記第 1の光可変アツ テネータ(134A)によって減衰された第 1のレーザ光を入力し、前記第 2の光電気変 換手段(143b)は、前記第 2の光可変アツテネータ(134B)によって減衰された第 2 のレーザ光を入力することを特徴とする請求の範囲第 25項に記載の電界検出光学 装置(115b)。
[28] 前記第 1の光 Z電圧変換手段(143a, 147a, 147A, 145a, 145A)は、
前記光強度変調手段(124)によって変調された第 1のレーザ光の光強度を電流 信号に変換する第 1の光 Z電流変換手段(143a)と、
前記第 1の光/電流変換手段(143a)に対して、逆バイアス電圧を与える第 1の 電圧源(147a, 147A)と、
前記第 1の光/電流変換手段(143a)によって変換された電流信号を電圧信号 に変換する第 1の負荷抵抗(145a, 145A)と、を有し、
前記第 2の光/電圧変換手段(143b, 147b, 147B, 145b, 145B)は、 前記分岐手段(139)によって分岐された第 2のレーザ光の強度を電流信号に変 換する第 2の光/電流変換手段(143b)と、
前記第 2の光/電流変換手段(143b)に対して、逆バイアス電圧を与える第 2の 電圧源(147b, 147B)と、
前記第 2の光/電流変換手段(143b)によって変換された電流信号を電圧信号 に変換する第 2の負荷抵抗(145b, 145B)と、を有することを特徴とする請求の範囲 第 25項に記載の電界検出光学装置(115a, 115b, 115c, 115d, 115e)。
[29] 前記第 1の負荷抵抗及び前記第 2の負荷抵抗のうち少なくとも一方は、可変抵抗(1 45A, 145B)であることを特徴とする請求の範囲第 28項に記載の電界検出光学装 置(115c)。
[30] 前記第 1の電圧源及び前記第 2の電圧源のうち少なくとも一方は、可変電圧源(147 A, 147B)であることを特徴とする請求の範囲第 28項に記載の電界検出光学装置( 115d)。
[31] 前記受光回路(152d)は、前記第 1の光/電圧変換手段(143a, 147a, 147A, 14 5a, 145A)によって変換された電圧信号及び前記第 2の光/電圧変換手段(143b , 147b, 147B, 145b, 145B)によって変換された電圧信号のうち少なくとも一方を 増幅する増幅手段(149A, 149B)を更に有することを特徴とする請求の範囲第 25 項に記載の電界検出光学装置(115e)。
[32] 電界伝達媒体(100)に誘起されている電界に基づいた情報を受信することにより、 前記電界伝達媒体(100)を介した情報の受信が可能なトランシーバであって、 請求の範囲第 25項に記載の電界検出光学装置(115, 215)と、
前記電界検出光学装置(115, 215)から出力された電圧信号に対して、少なくとも 雑音の除去を行う信号処理回路(116)と、
前記信号処理回路(116)から出力された電圧信号のノイズ成分の大きさを検出す るノイズ検出手段(218)と、
前記ノイズ検出手段( 218)から出力された検出データに基づレ、て、前記電界検出 光学部(110)又は受光回路(152)における可変値を可変制御するための制御信号 を発生させる制御信号発生器 (219)と、
を備えたことを特徴とするトランシーバ。
PCT/JP2004/009159 2003-06-30 2004-06-29 電界検出光学装置、トランシーバ、位置情報取得システム、及び情報入力システム WO2005002096A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005511084A JP3974628B2 (ja) 2003-06-30 2004-06-29 電界検出光学装置、トランシーバ、位置情報取得システム、及び情報入力システム
EP04746628A EP1564917B1 (en) 2003-06-30 2004-06-29 Electric field-detecting optical device, tranceiver, positional information-acquiring system, and information input system
DE602004012832T DE602004012832T2 (de) 2003-06-30 2004-06-29 Optische vorrichtung zur erkennung eines elektrischen feldes, sende-empfänger, system zur erfassung von positionsinformation und system zur informationseingabe
US10/524,485 US7907895B2 (en) 2003-06-30 2004-06-29 Electric field sensor device, transceiver, positional information obtaining system and information input system
CN2004800008845A CN1701544B (zh) 2003-06-30 2004-06-29 电场检测光学装置、收发机、位置信息获取系统、信息输入系统
US12/111,866 US20080205904A1 (en) 2003-06-30 2008-04-29 Electric Field Sensor Device, Transceiver, Positional Information Obtaining System, and Information Input System

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003188553 2003-06-30
JP2003-188553 2003-06-30
JP2003278171 2003-07-23
JP2003-278171 2003-07-23
JP2003-287753 2003-08-06
JP2003287753 2003-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/111,866 Division US20080205904A1 (en) 2003-06-30 2008-04-29 Electric Field Sensor Device, Transceiver, Positional Information Obtaining System, and Information Input System

Publications (1)

Publication Number Publication Date
WO2005002096A1 true WO2005002096A1 (ja) 2005-01-06

Family

ID=33556162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009159 WO2005002096A1 (ja) 2003-06-30 2004-06-29 電界検出光学装置、トランシーバ、位置情報取得システム、及び情報入力システム

Country Status (7)

Country Link
US (2) US7907895B2 (ja)
EP (1) EP1564917B1 (ja)
JP (1) JP3974628B2 (ja)
KR (3) KR100761442B1 (ja)
CN (2) CN1701544B (ja)
DE (1) DE602004012832T2 (ja)
WO (1) WO2005002096A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036439A (ja) * 2005-07-25 2007-02-08 Sony Corp 信号処理装置
WO2008130007A1 (ja) * 2007-04-20 2008-10-30 Alps Electric Co., Ltd. 通信機器
JP2010062818A (ja) * 2008-09-03 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 電極

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701544B (zh) * 2003-06-30 2011-05-18 日本电信电话株式会社 电场检测光学装置、收发机、位置信息获取系统、信息输入系统
US7761012B2 (en) * 2006-01-12 2010-07-20 Nec Laboratories America, Inc. Optical communication system and method for generating dark return-to zero and DWDM optical MM-Wave generation for ROF downstream link using optical phase modulator and optical interleaver
JP4480735B2 (ja) * 2007-03-22 2010-06-16 日本電信電話株式会社 電界通信装置
KR100871842B1 (ko) * 2007-05-02 2008-12-03 한국전자통신연구원 인체통신에서 접지전극의 인체접촉 제어 장치 및 그방법과, 그를 이용한 인체통신 시스템
US8773361B2 (en) 2007-11-20 2014-07-08 Samsung Electronics Co., Ltd. Device identification method and apparatus, device information provision method and apparatus, and computer-readable recording mediums having recorded thereon programs for executing the device identification method and the device information provision method
US8917247B2 (en) 2007-11-20 2014-12-23 Samsung Electronics Co., Ltd. External device identification method and apparatus in a device including a touch spot, and computer-readable recording mediums having recorded thereon programs for executing the external device identification method in a device including a touch spot
EP2063346B1 (en) * 2007-11-20 2017-06-14 Samsung Electronics Co., Ltd. Device identification method and apparatus, device information provision method and apparatus, and computer-readable recording mediums having recorded thereon programs for executing the device identification method and the device information provision method
JP5353877B2 (ja) * 2008-03-03 2013-11-27 日本電気株式会社 入力装置とその入力装置を備えた端末および入力方法
WO2010024029A1 (ja) * 2008-08-29 2010-03-04 日本電気株式会社 コマンド入力装置および携帯用情報機器とコマンド入力方法
KR101590043B1 (ko) * 2009-05-18 2016-02-01 삼성전자주식회사 인체 통신을 이용한 기능 수행 방법 및 그를 수행하는 단말기
WO2013114792A1 (ja) * 2012-01-31 2013-08-08 パナソニック株式会社 触感呈示装置および触感呈示方法
JP5862644B2 (ja) * 2013-11-22 2016-02-16 コニカミノルタ株式会社 通信システム、通信装置およびプログラム
KR20160116251A (ko) * 2015-03-27 2016-10-07 삼성전자주식회사 전자 장치, 웨어러블 디바이스 및 그 제어 방법
US9603155B2 (en) * 2015-07-31 2017-03-21 Corning Optical Communications Wireless Ltd Reducing leaked downlink interference signals in a remote unit uplink path(s) in a distributed antenna system (DAS)
US10641807B2 (en) * 2015-10-16 2020-05-05 Jx Nippon Mining & Metals Corporation Optical modulator and electric field sensor
EP4002724A1 (en) 2015-12-13 2022-05-25 Genxcomm, Inc. Interference cancellation methods and apparatus
US10044449B2 (en) * 2016-07-04 2018-08-07 Electronics And Telecommunications Research Institute Reception device and transmission/reception system including the same
KR102508747B1 (ko) * 2016-07-04 2023-03-14 한국전자통신연구원 수신 장치 및 이를 포함하는 송수신 시스템
US10257746B2 (en) * 2016-07-16 2019-04-09 GenXComm, Inc. Interference cancellation methods and apparatus
US9894612B1 (en) 2016-11-03 2018-02-13 Corning Optical Communications Wireless Ltd Reducing power consumption in a remote unit of a wireless distribution system (WDS) for intermodulation product suppression
US11150409B2 (en) 2018-12-27 2021-10-19 GenXComm, Inc. Saw assisted facet etch dicing
US10727945B1 (en) 2019-07-15 2020-07-28 GenXComm, Inc. Efficiently combining multiple taps of an optical filter
US11215755B2 (en) 2019-09-19 2022-01-04 GenXComm, Inc. Low loss, polarization-independent, large bandwidth mode converter for edge coupling
US11539394B2 (en) 2019-10-29 2022-12-27 GenXComm, Inc. Self-interference mitigation in in-band full-duplex communication systems
US11796737B2 (en) 2020-08-10 2023-10-24 GenXComm, Inc. Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
CN112505438B (zh) * 2020-11-26 2021-12-07 清华大学 基于静电力和压阻效应的微型电场传感器件
US11838056B2 (en) 2021-10-25 2023-12-05 GenXComm, Inc. Hybrid photonic integrated circuits for ultra-low phase noise signal generators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352298A (ja) * 2000-06-08 2001-12-21 Nippon Telegr & Teleph Corp <Ntt> トランシーバ
JP2003099192A (ja) * 2001-09-21 2003-04-04 Aiphone Co Ltd 静電容量式タッチパネル装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170993A (en) * 1962-01-08 1965-02-23 Henry K Puharich Means for aiding hearing by electrical stimulation of the facial nerve system
AU1899292A (en) * 1991-05-24 1993-01-08 Ep Technologies Inc Combination monophasic action potential/ablation catheter and high-performance filter system
DE4329898A1 (de) * 1993-09-04 1995-04-06 Marcus Dr Besson Kabelloses medizinisches Diagnose- und Überwachungsgerät
US6223018B1 (en) * 1996-12-12 2001-04-24 Nippon Telegraph And Telephone Corporation Intra-body information transfer device
US6088585A (en) * 1997-05-16 2000-07-11 Authentec, Inc. Portable telecommunication device including a fingerprint sensor and related methods
US6064905A (en) * 1998-06-18 2000-05-16 Cordis Webster, Inc. Multi-element tip electrode mapping catheter
US6200264B1 (en) 1998-08-06 2001-03-13 Medtronic Inc. Ambulatory recorder having wireless data transfer with a multi-plane lens
GB0005166D0 (en) * 2000-03-04 2000-04-26 Renishaw Plc Probe signal transmission system
US6842587B1 (en) 2000-03-30 2005-01-11 Nortel Networks Limited Use of amplified spontaneous emission from a semiconductor optical amplifier to minimize channel interference during initialization of an externally modulated DWDM transmitter
JP3507008B2 (ja) * 2000-06-08 2004-03-15 日本電信電話株式会社 トランシーバ
US6777922B2 (en) * 2001-05-14 2004-08-17 Sony Corporation Information processing apparatus for inputting a signal, and method therefor
US6892086B2 (en) * 2001-07-11 2005-05-10 Michael J. Russell Medical electrode for preventing the passage of harmful current to a patient
EP1298822B1 (en) * 2001-09-26 2009-03-11 Nippon Telegraph and Telephone Corporation Transceiver suitable for data communication between wearable computers
JP3801969B2 (ja) * 2001-09-26 2006-07-26 日本電信電話株式会社 トランシーバ
US20050137480A1 (en) * 2001-10-01 2005-06-23 Eckhard Alt Remote control of implantable device through medical implant communication service band
JP3884767B2 (ja) 2001-12-10 2007-02-21 日立マクセル株式会社 電池パック
KR20030068415A (ko) * 2002-02-14 2003-08-21 샤프 가부시키가이샤 표시장치, 전자기기 및 카메라
JP3846333B2 (ja) 2002-03-04 2006-11-15 松下電器産業株式会社 光出力装置および情報処理端末
US7187288B2 (en) * 2002-03-18 2007-03-06 Paratek Microwave, Inc. RFID tag reading system and method
US7496329B2 (en) * 2002-03-18 2009-02-24 Paratek Microwave, Inc. RF ID tag reader utilizing a scanning antenna system and method
TWI235557B (en) * 2002-07-18 2005-07-01 Ntt Docomo Inc Communication unit, communication equipment, management device, communication system and electric field communication device
WO2004016168A1 (en) * 2002-08-19 2004-02-26 Czarnek & Orkin Laboratories, Inc. Capacitive uterine contraction sensor
US7345868B2 (en) * 2002-10-07 2008-03-18 Presidio Components, Inc. Multilayer ceramic capacitor with terminal formed by electroless plating
EP1432140B1 (en) * 2002-10-31 2017-12-20 Nippon Telegraph And Telephone Corporation Transceiver capable of causing series resonance with parasitic capacitance
US6961601B2 (en) * 2003-06-11 2005-11-01 Quantum Applied Science & Research, Inc. Sensor system for measuring biopotentials
CN1701544B (zh) * 2003-06-30 2011-05-18 日本电信电话株式会社 电场检测光学装置、收发机、位置信息获取系统、信息输入系统
WO2006059684A1 (ja) * 2004-12-02 2006-06-08 Nippon Telegraph And Telephone Corporation 送信器、電界通信トランシーバおよび電界通信システム
JP2006350990A (ja) * 2005-05-17 2006-12-28 Sony Corp 情報処理システム、および情報処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352298A (ja) * 2000-06-08 2001-12-21 Nippon Telegr & Teleph Corp <Ntt> トランシーバ
JP2003099192A (ja) * 2001-09-21 2003-04-04 Aiphone Co Ltd 静電容量式タッチパネル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1564917A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036439A (ja) * 2005-07-25 2007-02-08 Sony Corp 信号処理装置
JP4544077B2 (ja) * 2005-07-25 2010-09-15 ソニー株式会社 信号処理装置
WO2008130007A1 (ja) * 2007-04-20 2008-10-30 Alps Electric Co., Ltd. 通信機器
US8185048B2 (en) 2007-04-20 2012-05-22 Alps Electric Co., Ltd. Communication apparatus
JP2010062818A (ja) * 2008-09-03 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 電極

Also Published As

Publication number Publication date
CN102170313A (zh) 2011-08-31
CN1701544B (zh) 2011-05-18
US7907895B2 (en) 2011-03-15
US20080205904A1 (en) 2008-08-28
US20050244166A1 (en) 2005-11-03
EP1564917B1 (en) 2008-04-02
KR20060127419A (ko) 2006-12-12
KR100777765B1 (ko) 2007-11-20
KR100761442B1 (ko) 2007-09-27
EP1564917A1 (en) 2005-08-17
CN1701544A (zh) 2005-11-23
JP3974628B2 (ja) 2007-09-12
JPWO2005002096A1 (ja) 2006-08-10
DE602004012832T2 (de) 2009-05-07
EP1564917A4 (en) 2006-12-20
KR20060020598A (ko) 2006-03-06
KR100761443B1 (ko) 2007-09-27
KR20060127420A (ko) 2006-12-12
DE602004012832D1 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
JP3974628B2 (ja) 電界検出光学装置、トランシーバ、位置情報取得システム、及び情報入力システム
JP3507007B2 (ja) トランシーバ
JP4257361B2 (ja) 電界検出光学装置及びトランシーバ
Shinagawa et al. Compact electro-optic sensor module for intra-body communication using optical pickup technology
JP3507008B2 (ja) トランシーバ
US8237931B2 (en) Optoacoustic convolver
JP3990398B2 (ja) ホットスポットシステム
JP3688615B2 (ja) 電界検出光学装置
JP3773890B2 (ja) トランシーバ
JP3773887B2 (ja) トランシーバ
JP3688614B2 (ja) 電界検出光学装置
JP3822552B2 (ja) トランシーバ
JP3839415B2 (ja) 電界検出光学装置
JP3720800B2 (ja) 電界検出光学装置
JP3869343B2 (ja) トランシーバ
JP4478178B2 (ja) 電極構造
JP3726079B2 (ja) 電界検出光学装置
JP2009017034A (ja) 電界通信装置
JP3759124B2 (ja) 電界センサ
JP3889378B2 (ja) 受信回路
JP2004158985A (ja) トランシーバ
JP2004325295A (ja) 電界センシング装置
JP2005031002A (ja) 電気光学効果を用いた温度センサ
JP2004129077A (ja) 電界検出光学装置
JP2005031003A (ja) 電気光学効果を用いた温度センサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005511084

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004746628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10524485

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048008845

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057009698

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004746628

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057009698

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004746628

Country of ref document: EP