WO2004113456A2 - Superhydrophobic coating - Google Patents

Superhydrophobic coating Download PDF

Info

Publication number
WO2004113456A2
WO2004113456A2 PCT/CH2004/000383 CH2004000383W WO2004113456A2 WO 2004113456 A2 WO2004113456 A2 WO 2004113456A2 CH 2004000383 W CH2004000383 W CH 2004000383W WO 2004113456 A2 WO2004113456 A2 WO 2004113456A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
substrate
independently
group
formula
Prior art date
Application number
PCT/CH2004/000383
Other languages
French (fr)
Other versions
WO2004113456A3 (en
Inventor
Jan Zimmermann
Stefan Seeger
Georg Artus
Stefan Jung
Original Assignee
University Of Zurich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Zurich filed Critical University Of Zurich
Priority to EP04738024.1A priority Critical patent/EP1644450B1/en
Priority to JP2006515626A priority patent/JP2007523959A/en
Priority to US10/561,943 priority patent/US7914897B2/en
Priority to CN2004800208131A priority patent/CN1826391B/en
Publication of WO2004113456A2 publication Critical patent/WO2004113456A2/en
Publication of WO2004113456A3 publication Critical patent/WO2004113456A3/en
Priority to US12/983,987 priority patent/US8586693B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2164Coating or impregnation specified as water repellent
    • Y10T442/218Organosilicon containing

Definitions

  • the present invention relates to a composition capable of forming a superhydrophobic coating on a surface, a substrate having a superhydrophobic coating formed of such a composition, as well as to a method of production of such a superhydrophobic coating.
  • the coatings are transparent.
  • Surfaces with particular wetting characteristics are widely used and of great interest to various industries, such as the textile industry, construction industry, e.g. corrosion or masonry protection, the automotive industry, in medical technologies as well as for sanitary products.
  • various industries such as the textile industry, construction industry, e.g. corrosion or masonry protection, the automotive industry, in medical technologies as well as for sanitary products.
  • surface modification techniques to impart such properties to surfaces of various substrates, natural or artificial, such as metal, glass, wood, ceramics, paper, polymers, fabrics, building materials, such as stone, concrete, marble, bricks, tiles, etc, to achieve the desired characteristics is a widely researched field.
  • the hydrophobicity of a material may be determined by the contact angle of a water droplet to the surface, hi general, hydrophobicity is achieved by lowering the surface energy.
  • non-hydrophobic materials may be rendered hydrophobic by applying a surface coating of low surface energy material. Chemically this may be done for example by incorporating apolar moieties, such as methyl or trifluoromethyl groups, into the surface.
  • Superhydrophobic properties typically referring to contact angles larger than about 150° and theoretically up to 180 °, additionally require a high surface roughness. On a rough and hydrophobic surface air can be trapped underneath the water droplet which greatly reduces the actual liquid/solid contact area and thus the contact angle increases.
  • the substrates treated with such surface coatings have a higher hydrophobicity, and thus show water repellent properties as well as excellent durability and smear resistance, hi addition the superhydrophobic coatings of the invention are optically transparent.
  • silanes as surface coatings.
  • silanization with silanes such as trichloromethylsilane (TCMS) or (3-phenypropyl)-methyldichlorosilane (PMDS) in the gas phase yields contact angles of 95° or around 60°, respectively.
  • TCMS trichloromethylsilane
  • PMDS 3-phenypropyl-methyldichlorosilane
  • silanization with for example TCMS in the gas phase under certain conditions yields a polysiloxane coating with superhydrophobic properties, i.e. having contact angles in the superhydrophobic range, preferably yielding contact angles of higher than about 140°, preferably higher than 150° and more preferably higher than 160°.
  • these coatings have been shown to have sliding angles lower than 20° for a 10 ⁇ l water droplet and are optically transparent. For many applications such transparent coatings are useful on transparent substrates like glass, with contact angles of up to 155°.
  • R a is a straight-chain or branched C (1-24) alkyl group
  • R b is an aromatic group which is linked by a single covalent bond or a spacer unit to the Si- atom
  • R 1 and R 2 are independently of each other a lower alkyl group
  • X 1 and X 2 are independently of each other a hydrolysable group, and n, m are independently of each other 0 or 1, with the proviso that if n and m are independently of each other 0 or 1, X may represent the same or different groups, yields a polysiloxane coating with superhydrophobic properties, i.e. having contact angles in the superhydrophobic range, preferably yielding contact angles of higher than about 140°, preferably higher than 150° and more preferably higher than 160°. Furthermore these coatings have been shown to have sliding angles lower than 20° for a 10 ⁇ l water droplet and are optically transparent.
  • straight-chain or branched C (1-24 ) alkyl group includes preferably straight chain and branched hydrocarbon radicals having 1 to 16, more preferably 1 to 12, more preferably 1 to 8 carbon atoms and most preferred 1 to 4 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl and isobutyl groups.
  • aromatic includes optionally substituted carbocyclic and heterocyclic groups comprising five-, six-or ten-membered ring systems, such as furane, phenyl, pyridine, pyrimidine, or naphthalene, preferably phenyl, which are unsubstituted or substituted by an optionally substituted lower alkyl group, such as methyl, ethyl or trifluoromethyl, a halogen, such as fluoro, chloro, bromo, preferably chloro, a cyano or nitro group
  • spacer unit includes a straight-chain or branched allcyl residue, having 1 to 8 carbon atoms, preferably 1 to 6, more preferably 1, 2 or 3 carbon atoms.
  • lower alkyl includes straight chain and branched hydrocarbon radicals having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms. Methyl, ethyl, propyl and isopropyl groups are especially preferred.
  • hydrolysable group includes a halogen, such as fluoro or chloro, preferably chloro, or an alkoxy group, such as a straight chain and branched hydrocarbonoxy radical having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, wherein methoxy, ethoxy, propoxy and isopropoxy groups are especially preferred.
  • compounds of formula I include trichloromethylsilane (TCMS), trichloroethylsilane, trichloro(n-propyl)silane, trimethoxymethylsilane and triethoxymethylsilane and particularly preferred examples of compounds of formula II include (3-phenylpropyl)-methyldichlorosilane (PMDS), benzyltrichlorosilane, methylbenzyltrichlorosilane and trifluoromethylbenzyltrichlorosilane.
  • TCMS trichloromethylsilane
  • PMDS 3-phenylpropyl)-methyldichlorosilane
  • benzyltrichlorosilane methylbenzyltrichlorosilane
  • trifluoromethylbenzyltrichlorosilane trifluoromethylbenzyltrichlorosilane.
  • alkoxysilanes such as methyltriethoxysilane, (3-phenylpropyl)-methyldimethoxysilane or (3-phenylpropyl)- methyldiethoxysilane, to avoid the formation of hydrochloric acid during hydrolysis of the silanes with water molecules in the reaction volume or at the substrate surface.
  • the volume ratio of compound of formula I to compound of formula II ranges from 1 : 100 to 100: 1 , preferably from 1:50 to 50:1, more preferably from 1:10 to 10:1, most preferably from 1:1 to 5:1 depending on the nature of the compounds and the nature of the substrate. For example, on glass slides the highest contact angles of up to 165° were observed with a composition comprising TCMS and PMDS in a volume ratio of 3:1.
  • compositions of the present invention may be applied to a substrate of choice in a coating reaction, which is an atmospheric pressure chemical vapour deposition without carrier gas comprising the following steps:
  • the substrate surface is cleaned from particles and any adsorbed impurities, such as by ultrasonication in water and in an apolar solvent usually, preferably by ultrasonication at 50°C for 30 minutes in a cleansing agent solution.
  • a cleansing agent solution for example, glass substrates maybe cleaned by ultrasonication in a mixture of hydrochloric acid and methanol and afterwards in trichloromethane.
  • This step is followed by an optional activation step to create functional groups, such as hydroxyl groups and the like, in sufficient frequency at the surface to allow condensation reaction with the silanes to occur and to ensure a proper adhesion of the coating.
  • functional groups such as hydroxyl groups and the like
  • Good activation results for all materials have been observed for example using a high frequency plasma treatment in a low pressure oxygen, nitrogen or hydrogen atmosphere.
  • a piranha-solution sulphuric acid: hydrogen peroxide, 2:1
  • the activation step can be omitted.
  • a simple desiccator maybe used as reaction vessel for the silanization ( Figure 8).
  • the silane is added in an Eppendorf cap, which is placed in a special holder.
  • the holder comprises a mechanism for opening the Eppendorf cap which can be triggered from outside by a magnet.
  • the desiccator is closed and flushed by a suiteable carrier gas, e.g. a nitrogen/water gas mixture.
  • the relative humidity of the gas mixture needed in the desiccator can be set by independently adjusting the flow rates of dry and wet gas stream by two valves combined with rotameters.
  • the gas streams are mixed in a mixing chamber where the relative humidity is controlled by a hygrometer.
  • the desiccator is flushed until the relative humidity measured by a second hygrometer at the outlet of the desiccator remains constant.
  • the inlet and outlet cocks at the desiccator are closed and the coating reaction is started by opening the Eppendorf cap.
  • the reaction may be run at atmospheric pressure or lower pressures if necessary.
  • the reaction is completed within 0 to 24 hours and typically after twelve hours. After rinsing with any aqueous solvent, such as water, the coated substrate is ready for use.
  • the molar ratio of silane to water is in the range of 1:10 to 10:1.
  • the coated substrate may optionally be submitted to a curing step to complete the condensation reaction of remaining free hydroxyl groups at the surface and inside the layer, thereby further increasing the stability of the silane layer by forming additional cross- linking Si-O-Si bonds within the layer or from the substrate to the layer.
  • silanization may be achieved in solution, wherein a cleaned and optionally activated substrate is placed at room temperature under stirring in a previously prepared solution comprising the two silanes dissolved or suspended in an aprotic solvent, such as toluene. After 3 to 4 hours the substrate is removed, rinsed with for example ethanol and subsequently water and dried.
  • aprotic solvent such as toluene
  • the coating reaction is also applicable to other materials.
  • the substrates of interest for the present invention may include a wide range of materials, natural or artificial, e.g. metal (e.g. Al or Ti or alloys thereof), silicon based material like semiconductors, glass, ceramics, paper, wood, polymers, fabrics, cellulose and its derivatives, biodegradable materials, construction and building materials, such as stone, concrete, marble, bricks, tiles, and other inorganic or organic materials and can be porous or non-porous, moulded or shaped, rigid or flexible, in various shapes and forms, e.g. in form of films, powders, granules, particles, woven and non-woven layers, webs, tapes, panes, pipes and the like.
  • Representative substrates comprising such materials may include textiles, glass devices such as glass panes, mirrors, etc., sanitary products, cars, etc.
  • the fibers are solid and ranged from very short, nearly spherical bases up to several ⁇ m in length with diameters ranging from approximately 10 nm to 160 nm.
  • AFM measurements revealed a mean layer thickness of at least 60nm to 85nm.
  • the root-mean-square roughness as determined by scanning force microscopy from different samples ranged from 20nm to 30nm.
  • Force-displacement curves measured by an atomic force microscope reveal the mechanic flexibility of the nano-filaments and also confirm the length scale of the filaments of several hundred nanometers (Fig. 12).
  • the observed surface roughness may be further increased depending on the nature of the substrate to be coated: for example, the micro-roughness of a sandblasted glass surface may add to the nano-roughness of the coating mimicking the surface structure found on hydrophobic plant leaves, h these cases, contact angles above 160° as well as hardly measurable sliding angles of 2° were observed with a 10 ⁇ l water droplet.
  • MPPS-coated glass slides immersed in water show total reflection of light at the water- coating interface as observed with hydrophobic plant leaves (Fig. 10)(A. Otten et al, Langmuir 20, 2405 (2004)).
  • the reason for this effect is a thin layer of air between coating and water. This air layer is stable over weeks.
  • First ellipsometric studies with a coated silicon sample immersed in water reveal an air layer of 170nm thickness on top of a MPPS-layer with refractive index 1.17 and 141nm in thickness. This air layer very probably is also the reason for iridescence when a coated glass slide is rinsed with water.
  • a coating of thickness around 1 lOnm with a refractive index of 1.17 should act anti- reflective. This property could be shown for MPPS-coated glass slides by UN-NIS absorption spectroscopy ( Figure 3).
  • the coating is inert to water vapour ( Figure 5) and several organic solvents such as ethanol, acetone or trichloromethane.
  • Fig. 1 SEM images of the MPPS coating on a) a silicon wafer and b) on a glass substrate.
  • Fig. 2 AFM height image of a MPPS-coated glass slide.
  • Fig. 3 UN-spectra of glass slides. Dotted line: MPPS-coated on both sides; continuous line: cleaned and plasma treated glass slide for comparison.
  • Fig. 4 Durability of a MPPS-coated glass slide subjected to long-term UN-irradiation.
  • Fig. 5 Durability of a MPPS-coated glass slide subjected water vapour atmosphere in an autoclave.
  • Fig. 6 A 10 ⁇ l water droplet on a coated cotton fabric.
  • Fig. 7 A 10 ⁇ l water droplet on ceramics.
  • Fig. 9 TEM image of the polysiloxane filaments embedded in epoxy resin.
  • Fig. 10 Coated (left) and uncoated (right) glass slide immersed in water.
  • the coated slide shows total reflection.
  • the bubbles are air bubbles.
  • Fig. 11 Iridescence of a coated glass slide while rinsing.
  • Fig. 12 Force-displacement curve at a MPPS-coated silicon surface.
  • the irregular pattern in the withdrawal curve of the approach-retract-cycle can be interpreted as the -step by step release of filaments from the tip which got stuck to it by adhesion forces when the tip was in contact with the surface.
  • Microsope glass slides purchased from Menzel, Braunschweig, Germany (26 mm by 76 mm, thickness 0.13 - 0.16 mm) and polished silicon wafers purchased from CrysTec, Berlin (15 mm by 15 mm) were used for contact angle measurements and AFM imaging. Silicon cantilever chips were used as silicon substrate for the electron microscopy samples. TCMS, PMDS and other silanes were purchased from ABCR, Germany, and used without further purification.
  • Glass slides were ultrasonicated for 30 min in a 1:1 mixture of cone. HCl/methanol, rinsed with bidest. water and dried under a nitrogen flow. Afterwards they were ultrasonicated in trichloromethane for 30 min and again rinsed with bidest. water and dried under a nitrogen flow.
  • XPS measurements were performed with a VG ESCALAB 220 photoelectron spectrometer with Al K ⁇ radiation.
  • the samples were coated pieces of a silicon wafer of about 1cm by 1cm in size.
  • MPPS-coated glass slides can be charged electrostatically. Simple rubbing with dry fingers is enough to charge the slide. After charging the placement of a water drop onto the sample is impossible. The drop is immediately accelerated off the glass slide. Further investigations on this effect are in progress.
  • MPPS coating obtained by silanization of a glass slide with a total area of approximately 200 cm 2 with a mixture of TCMS and PMDS in a ratio of 3:1 in an atmospheric pressure chemical vapour deposition without carrier gas:
  • the glass slide Prior to the silanization reaction the glass slide was cleaned from particles and any adsorbed impurities by ultrasonication in a mixture of hydrochloric acid and methanol (ratio 1:1) and afterwards in trichloromethane, followed by activation of the surface by treatment with a Piranha-solution (cone. H 2 S0 4 /H 2 0 2 in the ratio 2:1) for 30 min at 90°C. Subsequently the glass slide was rinsed with purified water and dried with nitrogen gas. The silanization was carried out in a simple desiccator as reaction vessel flushed by a nitrogen/water gas mixture. Two separate flasks with the two silanes were placed into the desiccator and the glass substrates were added on a scaffold. The desiccator was closed and the reaction was carried out at room temperature for 12 hours. After rinsing with water the coated glass substrates are ready for use.
  • a Piranha-solution cone. H 2 S0 4 /H 2 0 2 in the ratio
  • the root-mean-square roughness R RMS and mean layer thickness were determined by atomic force microscopy and X-ray reflectometry. In case of an MPPS-coated glass sample a root- mean-square roughness R RMS of 27 nm was observed Examples 2 - 8
  • Table 1 Contact angles and roll off (sliding) angles of coatings composed of various silane mixtures on glass.
  • Example 1 Durability of MPPS-coated glass slides: a) A sample of Example 1 was exposed in an autoclave at pressures of 1.5 bar and 2.6 bar and temperatures of 125 °C and 140°C, respectively, for up to 9 h. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4). b) A sample of Example 1 was placed in a drying chamber at 250 °C for 24 h. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4). c) A sample of Example 1 was placed in a liquid nitrogen (- 196 °C) for 10 min. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4).
  • Example 1 was exposed to UN radiation (35 Watt, distance sample to source: 10 cm) for 3 h. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4).
  • Example 1 was exposed to various, commercially available detergents for 24 h and subsequently rinsed with water or organic solvents, such as acetone, ethanol or chloroform, and dried. Contact angles measured after the treatment showed no significant deviations from the initial contact angles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Silicon Polymers (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

A composition for coating comprising at least one compound of formula (I): RaSi(R1)n(X1)3-n, and optionally at least one compound of formula (II): RbSi(R2)m(X2)3-m, wherein Ra is a straight-chain or branched C(1-24) alkyl group, Rb is an aromatic group, such as an optionally substituted carbocyclic and heterocyclic group comprising five-, six- or ten-membered ring systems, which is linked by a single covalent bond or a spacer unit, such as a straight-chain or branched alkyl residue having 1 to 8 carbon atoms, to the Si- atom, R1 and R2 are independently of each other a lower alkyl group, such as a straight chain and branched hydrocarbon radical having 1 to 6 carbon atoms, X1 and X2 are independently of each other a hydrolysable group, such as a halogen or an alkoxy group and n, m are independently of each other 0 or 1, with the proviso that if n and m are independently of each other 0 or 1, X may represent the same or different groups.

Description

Superhydrophobic Coating
The present invention relates to a composition capable of forming a superhydrophobic coating on a surface, a substrate having a superhydrophobic coating formed of such a composition, as well as to a method of production of such a superhydrophobic coating. Preferably the coatings are transparent.
Surfaces with particular wetting characteristics, i.e. water repellent surfaces, are widely used and of great interest to various industries, such as the textile industry, construction industry, e.g. corrosion or masonry protection, the automotive industry, in medical technologies as well as for sanitary products. Likewise, the use of surface modification techniques to impart such properties to surfaces of various substrates, natural or artificial, such as metal, glass, wood, ceramics, paper, polymers, fabrics, building materials, such as stone, concrete, marble, bricks, tiles, etc, to achieve the desired characteristics is a widely researched field.
The hydrophobicity of a material, i.e. its tendency to repel water, may be determined by the contact angle of a water droplet to the surface, hi general, hydrophobicity is achieved by lowering the surface energy. Thus, non-hydrophobic materials may be rendered hydrophobic by applying a surface coating of low surface energy material. Chemically this may be done for example by incorporating apolar moieties, such as methyl or trifluoromethyl groups, into the surface.' Superhydrophobic properties, typically referring to contact angles larger than about 150° and theoretically up to 180 °, additionally require a high surface roughness. On a rough and hydrophobic surface air can be trapped underneath the water droplet which greatly reduces the actual liquid/solid contact area and thus the contact angle increases. With higher contact angles, e.g. contact angles of more than about 150°, other important effects like self- cleaning properties or enhanced water sliding behaviour can be obtained (Yoshimitsu, Z. et al, Langmuir 18, 5818 (2002)). Yet, if the surface roughness is too high and reaches the submicrometer scale light is scattered at the surface and the coating appears no longer transparent. Thus, to obtain optically neutral coatings the roughness has to be restricted to be well below the wavelength of visible light.
BESTATIGUNGSKOPIE Many techniques of rendering surfaces superhydrophobic are described in the literature (Nakajima, A. et al, Monatsh. Chem. 132, 31 (2002); L. Feng et al, Adv. Mater. 14, 1857 (2002)). Most common are plasma polymerization or etching of apolar polymers like polypropylene or polytetrafluoroethylene, plasma enhanced chemical vapor deposition of methyl or fluorine containing silanes, solidification of molten polymers or waxes, sublimation material and paint or sprays containing hydrophobized microbeads or evaporation of volatile compounds (Miwa, M. et al, Langmuir 16, 5754 (2000)). order to increase the roughness very often additional steps like mechanical treatment, chemical or plasma etching or anodic oxidation are necessary before or after the coating step. However, there are several disadvantages associated with these methods, such as complicated and thus time-consuming procedures, expensive starting materials like fiuorinated silanes and/or extreme reaction conditions which restrict the applicability to few resistant materials. In addition only a few coatings are optically transparent.
Thus, having regard to the wide variety of materials in daily life where a transparent and water repellent coating is highly desirable there is clearly a need for superhydrophobic, transparent surfaces as well as to simple and economical methods of preparation of such surfaces, which are overcoming the disadvantages mentioned hereinabove.
It is therefore an object of the present invention to provide a composition capable of forming a superhydrophobic coating on a surface, which is characterized by having contact angles of higher than about 140°, preferably higher than 150° and more preferably higher than 160°.
It is another object of the present invention to provide a substrate having a superhydrophobic coating formed of such a composition. The substrates treated with such surface coatings have a higher hydrophobicity, and thus show water repellent properties as well as excellent durability and smear resistance, hi addition the superhydrophobic coatings of the invention are optically transparent.
It is yet a further object of the present invention to provide a method of production of such superhydrophobic coatings formed by the compositions of the invention, which is characterized by its simplicity, efficacy and low cost.
The use of silanes as surface coatings is known in the art. However, silanization with silanes such as trichloromethylsilane (TCMS) or (3-phenypropyl)-methyldichlorosilane (PMDS) in the gas phase yields contact angles of 95° or around 60°, respectively. More specifically, for silanization with trichloromethylsilane (TCMS) in the gas phase under dry atmosphere and wherein only moisture condensed at the substrate surface for reaction with the silane was considered, advancing contact angles of 88° and 104° were reported in the literature (A. Y. Fadeev et al, Langmuir 16, 7268 (2000); M. Trau et al., J. Colloid Interface Sci. 148, 182, (1992)). For silanization with trichloromethylsilane (TCMS) and similar silanes in humid atmosphere, contact angles below 120° were reported in the literature (WO 02/28956). Thus, under these reported conditions the measured angles were clearly lying outside the desired superhydrophobic range as mentioned hereinabove
However, applicants have now surprisingly discovered that silanization with for example TCMS in the gas phase under certain conditions yields a polysiloxane coating with superhydrophobic properties, i.e. having contact angles in the superhydrophobic range, preferably yielding contact angles of higher than about 140°, preferably higher than 150° and more preferably higher than 160°. Furthermore these coatings have been shown to have sliding angles lower than 20° for a 10 μl water droplet and are optically transparent. For many applications such transparent coatings are useful on transparent substrates like glass, with contact angles of up to 155°.
Thus, applicants have now surprisingly discovered that silanization with a composition comprising at least one compound of formula I and optionally at least one compound of formula II
RaSi(R1)n(X,)3-n I RbSi(R2)m(X2)3-m π
wherein
Ra is a straight-chain or branched C(1-24) alkyl group,
Rb is an aromatic group which is linked by a single covalent bond or a spacer unit to the Si- atom,
R1 and R2 are independently of each other a lower alkyl group,
X1 and X2 are independently of each other a hydrolysable group, and n, m are independently of each other 0 or 1, with the proviso that if n and m are independently of each other 0 or 1, X may represent the same or different groups, yields a polysiloxane coating with superhydrophobic properties, i.e. having contact angles in the superhydrophobic range, preferably yielding contact angles of higher than about 140°, preferably higher than 150° and more preferably higher than 160°. Furthermore these coatings have been shown to have sliding angles lower than 20° for a 10 μl water droplet and are optically transparent.
It is understood that the term "straight-chain or branched C(1-24) alkyl group" includes preferably straight chain and branched hydrocarbon radicals having 1 to 16, more preferably 1 to 12, more preferably 1 to 8 carbon atoms and most preferred 1 to 4 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl and isobutyl groups.
It is understood that the term "aromatic" includes optionally substituted carbocyclic and heterocyclic groups comprising five-, six-or ten-membered ring systems, such as furane, phenyl, pyridine, pyrimidine, or naphthalene, preferably phenyl, which are unsubstituted or substituted by an optionally substituted lower alkyl group, such as methyl, ethyl or trifluoromethyl, a halogen, such as fluoro, chloro, bromo, preferably chloro, a cyano or nitro group
It is understood that the term "spacer unit" includes a straight-chain or branched allcyl residue, having 1 to 8 carbon atoms, preferably 1 to 6, more preferably 1, 2 or 3 carbon atoms.
It is understood that the term "lower alkyl" includes straight chain and branched hydrocarbon radicals having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms. Methyl, ethyl, propyl and isopropyl groups are especially preferred.
It is understood that the term "hydrolysable group" includes a halogen, such as fluoro or chloro, preferably chloro, or an alkoxy group, such as a straight chain and branched hydrocarbonoxy radical having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, wherein methoxy, ethoxy, propoxy and isopropoxy groups are especially preferred.
Particularly preferred examples of compounds of formula I include trichloromethylsilane (TCMS), trichloroethylsilane, trichloro(n-propyl)silane, trimethoxymethylsilane and triethoxymethylsilane and particularly preferred examples of compounds of formula II include (3-phenylpropyl)-methyldichlorosilane (PMDS), benzyltrichlorosilane, methylbenzyltrichlorosilane and trifluoromethylbenzyltrichlorosilane. In case of acid-sensitive substrates it is preferred to use alkoxysilanes, such as methyltriethoxysilane, (3-phenylpropyl)-methyldimethoxysilane or (3-phenylpropyl)- methyldiethoxysilane, to avoid the formation of hydrochloric acid during hydrolysis of the silanes with water molecules in the reaction volume or at the substrate surface.
If the composition for coating comprises a compound of formula H., the volume ratio of compound of formula I to compound of formula II ranges from 1 : 100 to 100: 1 , preferably from 1:50 to 50:1, more preferably from 1:10 to 10:1, most preferably from 1:1 to 5:1 depending on the nature of the compounds and the nature of the substrate. For example, on glass slides the highest contact angles of up to 165° were observed with a composition comprising TCMS and PMDS in a volume ratio of 3:1.
The compositions of the present invention may be applied to a substrate of choice in a coating reaction, which is an atmospheric pressure chemical vapour deposition without carrier gas comprising the following steps:
In a first step the substrate surface is cleaned from particles and any adsorbed impurities, such as by ultrasonication in water and in an apolar solvent usually, preferably by ultrasonication at 50°C for 30 minutes in a cleansing agent solution. For example, glass substrates maybe cleaned by ultrasonication in a mixture of hydrochloric acid and methanol and afterwards in trichloromethane.
This step is followed by an optional activation step to create functional groups, such as hydroxyl groups and the like, in sufficient frequency at the surface to allow condensation reaction with the silanes to occur and to ensure a proper adhesion of the coating. Good activation results for all materials have been observed for example using a high frequency plasma treatment in a low pressure oxygen, nitrogen or hydrogen atmosphere. In case of glass or other resistant materials a piranha-solution (sulphuric acid: hydrogen peroxide, 2:1) can be used alternatively. For materials having a sufficient amount of functional groups present at the surface, such as hydroxyl groups and the like, such as cellulose, e.g. cotton or wood, the activation step can be omitted.
A simple desiccator maybe used as reaction vessel for the silanization (Figure 8). The silane is added in an Eppendorf cap, which is placed in a special holder. The holder comprises a mechanism for opening the Eppendorf cap which can be triggered from outside by a magnet. The desiccator is closed and flushed by a suiteable carrier gas, e.g. a nitrogen/water gas mixture. The relative humidity of the gas mixture needed in the desiccator can be set by independently adjusting the flow rates of dry and wet gas stream by two valves combined with rotameters. The gas streams are mixed in a mixing chamber where the relative humidity is controlled by a hygrometer. The desiccator is flushed until the relative humidity measured by a second hygrometer at the outlet of the desiccator remains constant. The inlet and outlet cocks at the desiccator are closed and the coating reaction is started by opening the Eppendorf cap. Depending on the volatility of the silanes, the reaction may be run at atmospheric pressure or lower pressures if necessary. The reaction is completed within 0 to 24 hours and typically after twelve hours. After rinsing with any aqueous solvent, such as water, the coated substrate is ready for use.
Preferably the molar ratio of silane to water (adjustment of the humidity in the desiccator) is in the range of 1:10 to 10:1.
As a final step the coated substrate may optionally be submitted to a curing step to complete the condensation reaction of remaining free hydroxyl groups at the surface and inside the layer, thereby further increasing the stability of the silane layer by forming additional cross- linking Si-O-Si bonds within the layer or from the substrate to the layer.
Alternatively, silanization may be achieved in solution, wherein a cleaned and optionally activated substrate is placed at room temperature under stirring in a previously prepared solution comprising the two silanes dissolved or suspended in an aprotic solvent, such as toluene. After 3 to 4 hours the substrate is removed, rinsed with for example ethanol and subsequently water and dried.
With small adaptations to mainly the cleaning and activation steps, which are obvious to a person skilled in the art, the coating reaction is also applicable to other materials.
The substrates of interest for the present invention may include a wide range of materials, natural or artificial, e.g. metal (e.g. Al or Ti or alloys thereof), silicon based material like semiconductors, glass, ceramics, paper, wood, polymers, fabrics, cellulose and its derivatives, biodegradable materials, construction and building materials, such as stone, concrete, marble, bricks, tiles, and other inorganic or organic materials and can be porous or non-porous, moulded or shaped, rigid or flexible, in various shapes and forms, e.g. in form of films, powders, granules, particles, woven and non-woven layers, webs, tapes, panes, pipes and the like. Representative substrates comprising such materials may include textiles, glass devices such as glass panes, mirrors, etc., sanitary products, cars, etc.
Characterization of the surface coatings of the invention by scanning electron microscopy, transmission electron microscopy and scanning force microscopy demonstrated the formation of distinct geometrical forms, such as thin filaments giving rise to the required surface roughness (Figure 1-2, 9). The fibers are solid and ranged from very short, nearly spherical bases up to several μm in length with diameters ranging from approximately 10 nm to 160 nm.
AFM measurements revealed a mean layer thickness of at least 60nm to 85nm.
The root-mean-square roughness as determined by scanning force microscopy from different samples ranged from 20nm to 30nm. Force-displacement curves measured by an atomic force microscope reveal the mechanic flexibility of the nano-filaments and also confirm the length scale of the filaments of several hundred nanometers (Fig. 12).
The observed surface roughness may be further increased depending on the nature of the substrate to be coated: for example, the micro-roughness of a sandblasted glass surface may add to the nano-roughness of the coating mimicking the surface structure found on hydrophobic plant leaves, h these cases, contact angles above 160° as well as hardly measurable sliding angles of 2° were observed with a 10 μl water droplet.
Such unexpected formation of the surface roughness during condensation reaction as a consequence of self-organisation, i.e. self-arrangement, or self-assembly of the silanes of the present invention is a great advantage over many other coating methods, since the main prerequisites of superhydrophobicity, namely roughness and low surface energy, are addressed in one single step.
It was further shown that the coatings of the invention were transparent (Figure 3) and possessed high durability. No changes in contact angles were observed e.g. after heat treatment at 250 °C for 24 h or dipping a coated glass slide into liquid nitrogen for several minutes as well as irradiation with UN-light for 5 hours at 35 mW/cm2 (Figure 4).
MPPS-coated glass slides immersed in water show total reflection of light at the water- coating interface as observed with hydrophobic plant leaves (Fig. 10)(A. Otten et al, Langmuir 20, 2405 (2004)). The reason for this effect is a thin layer of air between coating and water. This air layer is stable over weeks. First ellipsometric studies with a coated silicon sample immersed in water reveal an air layer of 170nm thickness on top of a MPPS-layer with refractive index 1.17 and 141nm in thickness. This air layer very probably is also the reason for iridescence when a coated glass slide is rinsed with water.
A coating of thickness around 1 lOnm with a refractive index of 1.17 should act anti- reflective. This property could be shown for MPPS-coated glass slides by UN-NIS absorption spectroscopy (Figure 3).
XPS investigations of coated silicon samples confirm the atomic ratios of polymerised TCMS C:Si:0 = 1:1:1.5 within the limits of error. No chlorine was found in the coating. In none of the three measurements with three different samples signals of the underlying substrate material were observed indicating a coating free of defects.
Furthermore the coating is inert to water vapour (Figure 5) and several organic solvents such as ethanol, acetone or trichloromethane.
The following non-limiting Examples are illustrative for the present invention.
Legend to the figures
Fig. 1. SEM images of the MPPS coating on a) a silicon wafer and b) on a glass substrate.
Fig. 2. AFM height image of a MPPS-coated glass slide.
Fig. 3. UN-spectra of glass slides. Dotted line: MPPS-coated on both sides; continuous line: cleaned and plasma treated glass slide for comparison.
Fig. 4. Durability of a MPPS-coated glass slide subjected to long-term UN-irradiation.
Fig. 5. Durability of a MPPS-coated glass slide subjected water vapour atmosphere in an autoclave.
Fig. 6. A 10 μl water droplet on a coated cotton fabric.
Fig. 7. A 10 μl water droplet on ceramics.
Fig. 8. Experimental setup used for coating.
Fig. 9. TEM image of the polysiloxane filaments embedded in epoxy resin.
Fig. 10, Coated (left) and uncoated (right) glass slide immersed in water. The coated slide shows total reflection. The bubbles are air bubbles.
Fig. 11 Iridescence of a coated glass slide while rinsing.
Fig. 12 Force-displacement curve at a MPPS-coated silicon surface. The irregular pattern in the withdrawal curve of the approach-retract-cycle can be interpreted as the -step by step release of filaments from the tip which got stuck to it by adhesion forces when the tip was in contact with the surface.
EXAMPLES
Materials. Microsope glass slides purchased from Menzel, Braunschweig, Germany (26 mm by 76 mm, thickness 0.13 - 0.16 mm) and polished silicon wafers purchased from CrysTec, Berlin (15 mm by 15 mm) were used for contact angle measurements and AFM imaging. Silicon cantilever chips were used as silicon substrate for the electron microscopy samples. TCMS, PMDS and other silanes were purchased from ABCR, Germany, and used without further purification.
Cleaning. Glass slides were ultrasonicated for 30 min in a 1:1 mixture of cone. HCl/methanol, rinsed with bidest. water and dried under a nitrogen flow. Afterwards they were ultrasonicated in trichloromethane for 30 min and again rinsed with bidest. water and dried under a nitrogen flow.
Glass slides were ultrasonicated for 30 min in a 10% solution of "deconex 11 universal" (Borer Chemie AG) at 50°C, rinsed with bidest. water and dried under a nitrogen flow.
Activation. A laboratory plasma machine "Femto" from Diener electronic, Nagold, Germany, is used for high frequency plasma activation. Best activation results were obtained by low pressure high frequency plasma treatment in an oxygen atmosphere. Alternatively treatment in hot piranha-solution (cone. H2S04/H202 in the ratio 2:1) for 20 min can be used for glass substrates.
Characterization methods. Contact angle and sliding angle measurements were performed with the Contact Angle System OCA and included software from Dataphysics, Stuttgart, Germany. The sample was kept at 25±1° in a constant-temperature chamber. Both contact angle and sliding angle of a particular droplet were measured at the same position on the sample. Characterization of the surface quality was performed with a 10 μl water droplet.
Scanning force microscopy was performed with a PicoSPM scan head (Molecular Imaging, Phoenix, Arizona) controlled by a RHK SPM1000 electronics and SPM32 software (RHK Technology Inc., Troy, Michigan). All measurements were performed in intermittent contact mode with silicon cantilevers. Measurements in cyclooctane were performed in the standard liquid cell from Molecular Imaging.
For scanning electron microscopy investigations glass samples were sputtered with Au (< 10 nm) and measured on a Jeol 25-S microscope. Silicon samples were sputtered with C (3nm or 8 nm) and measured on a Philips CM12 microscope. All images were acquired using a secondary electron detector. For transmission electron microscopy investigations epoxy resin was allowed to polymerise in contact with a coated glass sample. Thereby filaments were embedded in the resin. The hardened resin was removed and cut into thin samples of 60nm in thickness. The samples were investigated with a Philips CM12 microscope.
XPS measurements were performed with a VG ESCALAB 220 photoelectron spectrometer with Al Kα radiation. The samples were coated pieces of a silicon wafer of about 1cm by 1cm in size.
Electrostatic charging. MPPS-coated glass slides can be charged electrostatically. Simple rubbing with dry fingers is enough to charge the slide. After charging the placement of a water drop onto the sample is impossible. The drop is immediately accelerated off the glass slide. Further investigations on this effect are in progress.
Example 1
MPPS coating obtained by silanization of a glass slide with a total area of approximately 200 cm2 with a mixture of TCMS and PMDS in a ratio of 3:1 in an atmospheric pressure chemical vapour deposition without carrier gas:
Prior to the silanization reaction the glass slide was cleaned from particles and any adsorbed impurities by ultrasonication in a mixture of hydrochloric acid and methanol (ratio 1:1) and afterwards in trichloromethane, followed by activation of the surface by treatment with a Piranha-solution (cone. H2S04/H202 in the ratio 2:1) for 30 min at 90°C. Subsequently the glass slide was rinsed with purified water and dried with nitrogen gas. The silanization was carried out in a simple desiccator as reaction vessel flushed by a nitrogen/water gas mixture. Two separate flasks with the two silanes were placed into the desiccator and the glass substrates were added on a scaffold. The desiccator was closed and the reaction was carried out at room temperature for 12 hours. After rinsing with water the coated glass substrates are ready for use.
Contact angles and sliding angles of a water drop were measured as indicated above and are shown in Table 1.
The root-mean-square roughness RRMS and mean layer thickness were determined by atomic force microscopy and X-ray reflectometry. In case of an MPPS-coated glass sample a root- mean-square roughness RRMS of 27 nm was observed Examples 2 - 8
Silanizations were performed as described under Example 1. Contact angles and sliding angles were measured as indicated above and are shown in Table 1.
Figure imgf000014_0001
* depending on the type of glass ** Example 8 was fully transparent
Table 1: Contact angles and roll off (sliding) angles of coatings composed of various silane mixtures on glass.
Example 9
Contact angles of other liquids on MPPS-coated glass slides were determined as described hereinabove (Table 2). All liquids were purchased from Fluka in the highest purity grades available and kept under appropriate atmosphere (air, N2, Ar). Contact angles given in table 2 are advancing angles (sessile drop method). For every contact angle four to six movies of a growing drop (2 μl to 20 μl) were automatically evaluated frame by frame by the Dataphysics software and checked manually for consistency afterwards. Irregular (no convergence, large differences in left and right contact angle) data were rejected. The obtained contact angles were averaged per liquid. For large contact angles higher than 150° the software systematically overestimated the contact angles. For thiodiethylene glycol and glycerol the contact angles were determined by hand.
Figure imgf000015_0001
Table 2. Contact angles of several liquids on MPPS-coated glass slides.
Example 10
The preparation of MPPS-coatings on various substrates and contact angle measurements were performed as described hereinabove (Example 1). The contact angles are reported in Table 3.
Figure imgf000016_0001
* no exact contact angle measurement possible due to macroscopic surface roughness (see also Figures 6 and 7).
Table 3: Contact angles of MPPS coatings on various substrates
Example 10
Durability of MPPS-coated glass slides: a) A sample of Example 1 was exposed in an autoclave at pressures of 1.5 bar and 2.6 bar and temperatures of 125 °C and 140°C, respectively, for up to 9 h. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4). b) A sample of Example 1 was placed in a drying chamber at 250 °C for 24 h. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4). c) A sample of Example 1 was placed in a liquid nitrogen (- 196 °C) for 10 min. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4). d) A sample of Example 1 was exposed to UN radiation (35 Watt, distance sample to source: 10 cm) for 3 h. Contact angles measured after the treatment showed no significant deviations from the initial contact angles (Table 4). e) A sample of Example 1 was exposed to various, commercially available detergents for 24 h and subsequently rinsed with water or organic solvents, such as acetone, ethanol or chloroform, and dried. Contact angles measured after the treatment showed no significant deviations from the initial contact angles.
Figure imgf000017_0001
Table 4. Durability measurements of a MPPS-coated glass slide

Claims

Claims
1. A composition for coating comprising at least one compound of formula I and optionally at least one compound of formula II
Figure imgf000018_0001
RbSi(R2)m(X2)3-m π
wherein
R is a straight-chain or branched C(1- 4) alkyl group,
Rb is an aromatic group, such as an optionally substituted carbocyclic and heterocyclic group comprising five-, six- or ten-membered ring systems, which is linked by a single covalent bond or a spacer unit, such as a straight- chain or branched alkyl residue having 1 to 8 carbon atoms, to the Si- atom,
R1 and R2 are independently of each other a lower alkyl group, such as a straight chain and branched hydrocarbon radical having 1 to 6 carbon atoms,
X1 and X2 are independently of each other a hydrolysable group, such as a halogen or an alkoxy group and n, m are independently of each other 0 or 1 , with the proviso that if n and m are independently of each other 0 or 1, X may represent the same or different groups.
2. A composition according to claim 1 , wherein the volume ratio of a compound of formula I to a compound of formula JJ ranges from 1:100 to 100:1, preferably from 1:50 to 50:1, more preferably from 1:10 to 10:1, most preferably from 1:1 to 5:1.
3. A substrate having a coating formed of a composition according to claims 1 or 2.
4. A substrate according to claim 3, wherein the coating is in form of filaments.
5. A substrate according to claim 4, wherein the coating is obtainable using a method according to claim 12.
6. A substrate according to claim 4 or 5, wherein the filaments range from very short, nearly spherical bases up to several μm in length with diameters ranging from approximately 10 nm to 160 nm.
7. A substrate according to claim 4 to 6, wherein the coating has a thickness of 1 to 350 nm.
8. A substrate according to claims 4 to 7, wherein the coating is transparent, and wherein preferentially also the substrate is transparent.
9. A substrate according to claims 3 to 8, wherein the coating has a mean layer thickness of at least 60nm to 85nm.
10. A substrate according to claims 3 to 9, wherein the substrate is natural or artificial and is selected from a fabric, metal like Ti or Al, glass, ceramics, cellulose, paper, wood, silicon-based material and polymers.
11. A method of production of a substrate comprising applying a coating formed of a composition according to claims 1 or 2.
12. A method according to claim 11, wherein the silanization is carried out under conditions such that the molar ratio of silane to water, the water being preferably in the gas phase, is in the range of 1:10 to 10:1.
13. A textile having a coating formed of a composition according to claims 1 or 2.
14. A glass device having a coating formed of a composition according to claims 1 or 2.
15. A sanitary device having a coating formed of a composition according to claims 1 or 2.
PCT/CH2004/000383 2003-06-23 2004-06-23 Superhydrophobic coating WO2004113456A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04738024.1A EP1644450B1 (en) 2003-06-23 2004-06-23 Superhydrophobic coating
JP2006515626A JP2007523959A (en) 2003-06-23 2004-06-23 Super hydrophobic coating
US10/561,943 US7914897B2 (en) 2003-06-23 2004-06-23 Superhydrophobic coating
CN2004800208131A CN1826391B (en) 2003-06-23 2004-06-23 Superhydrophobic coating
US12/983,987 US8586693B2 (en) 2003-06-23 2011-01-04 Superhydrophobic coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03405455.1 2003-06-23
EP03405455 2003-06-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/561,943 A-371-Of-International US7914897B2 (en) 2003-06-23 2004-06-23 Superhydrophobic coating
US12/983,987 Division US8586693B2 (en) 2003-06-23 2011-01-04 Superhydrophobic coating

Publications (2)

Publication Number Publication Date
WO2004113456A2 true WO2004113456A2 (en) 2004-12-29
WO2004113456A3 WO2004113456A3 (en) 2006-01-19

Family

ID=33522502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2004/000383 WO2004113456A2 (en) 2003-06-23 2004-06-23 Superhydrophobic coating

Country Status (5)

Country Link
US (2) US7914897B2 (en)
EP (1) EP1644450B1 (en)
JP (2) JP2007523959A (en)
CN (1) CN1826391B (en)
WO (1) WO2004113456A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001036A1 (en) 2009-07-02 2011-01-06 Aalto-Korkeakoulusäätiö Liquid-repellent material
US8067065B2 (en) * 2005-12-08 2011-11-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fibrillar, nanotextured coating and method for its manufacture
WO2014049208A1 (en) 2012-09-25 2014-04-03 Greenbutton Oy Hydrophobic material and method of producing the same
EP2952267A2 (en) 2014-06-03 2015-12-09 Karlsruher Institut für Technologie Reactive superhydrophobic surfaces, patterned superhydrophobic surfaces, methods for producing the same and use of the patterned superhydrophobic surfaces
EP3138624A1 (en) 2015-09-01 2017-03-08 Silana GmbH Material for the treatment of fluids or fluid mixtures
WO2018162648A1 (en) * 2017-03-08 2018-09-13 Silana Gmbh Thermal insulation materials
EP3399233A1 (en) * 2017-03-15 2018-11-07 Doosan Heavy Industries & Construction Co., Ltd. Method for manufacturing a heat transfer tube comprising a superhydrophobic surface
CN114932236A (en) * 2022-05-18 2022-08-23 江苏大学 Preparation method of continuous laser direct forming super-hydrophobic nickel-based surface

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070005024A1 (en) * 2005-06-10 2007-01-04 Jan Weber Medical devices having superhydrophobic surfaces, superhydrophilic surfaces, or both
EP2077132A1 (en) 2008-01-02 2009-07-08 Boehringer Ingelheim Pharma GmbH & Co. KG Dispensing device, storage device and method for dispensing a formulation
US8066416B2 (en) * 2008-06-09 2011-11-29 Federal-Mogul Ignition Company Head lamp assembly and accent lighting therefor
DE102009013969B4 (en) * 2009-03-19 2011-03-31 Ab Skf sealing arrangement
EP2414560B1 (en) * 2009-03-31 2013-10-23 Boehringer Ingelheim International GmbH Method for coating a surface of a component
US9353268B2 (en) 2009-04-30 2016-05-31 Enki Technology, Inc. Anti-reflective and anti-soiling coatings for self-cleaning properties
US8864897B2 (en) 2009-04-30 2014-10-21 Enki Technology, Inc. Anti-reflective and anti-soiling coatings with self-cleaning properties
US9376593B2 (en) 2009-04-30 2016-06-28 Enki Technology, Inc. Multi-layer coatings
US20100304086A1 (en) 2009-05-29 2010-12-02 Alain Robert Emile Carre Super non-wetting, anti-fingerprinting coatings for glass
WO2011064163A1 (en) 2009-11-25 2011-06-03 Boehringer Ingelheim International Gmbh Nebulizer
US10016568B2 (en) 2009-11-25 2018-07-10 Boehringer Ingelheim International Gmbh Nebulizer
CA2798405A1 (en) * 2010-05-17 2011-11-24 Dow Corning Corporation Hydrophobic cellulosic substrates and methods for producing the same
JP5874724B2 (en) 2010-06-24 2016-03-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nebulizer
MX2013003256A (en) * 2010-10-07 2013-05-01 Dow Corning Hydrophobic substrates and methods for their production using acyloxysilanes.
JP2013543535A (en) * 2010-10-07 2013-12-05 ダウ コーニング コーポレーション Biodegradable hydrophobic cellulosic substrates and methods for producing them using halosilanes
US20130190429A1 (en) * 2010-10-07 2013-07-25 Dow Corning Corporation Biodegradable Hydrophobic Cellulosic Substrates And Methods For Their Production Using Reactive Silanes
CN103328717B (en) 2011-01-18 2016-07-06 派特拉国际控股有限责任公司 The method processing base material with halogenated silanes
US9827384B2 (en) 2011-05-23 2017-11-28 Boehringer Ingelheim International Gmbh Nebulizer
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
US9237973B2 (en) 2012-01-31 2016-01-19 Kimberly-Clark Worldwide, Inc. Treated apertures
JP5224306B1 (en) * 2012-01-31 2013-07-03 国立大学法人群馬大学 Crystallization substrate, crystallization container, crystallization apparatus, and crystal production method
WO2013152894A1 (en) 2012-04-13 2013-10-17 Boehringer Ingelheim International Gmbh Atomiser with coding means
US20130323464A1 (en) * 2012-05-31 2013-12-05 Liang Liang Coated article comprising a hydrophobic anti-reflection surface, and methods for making the same
US8668960B1 (en) 2013-02-08 2014-03-11 Enki Technology, Inc. Flow coating apparatus and method of coating
JP6346456B2 (en) * 2013-02-22 2018-06-20 国立研究開発法人産業技術総合研究所 Water / oil repellent coating and method for producing the same
US9803100B2 (en) 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
WO2015013464A1 (en) 2013-07-23 2015-01-29 Lotus Leaf Coatings, Inc. Process for preparing an optically clear superhydrophobic coating solution
PL2835146T3 (en) 2013-08-09 2021-04-06 Boehringer Ingelheim International Gmbh Nebulizer
KR101556677B1 (en) 2014-02-25 2015-10-01 성균관대학교산학협력단 Superhydrophobic thin film, and preparing method of the same
WO2015160888A1 (en) * 2014-04-15 2015-10-22 Brookhaven Science Associates, Llc Superhydrophobic sponge as an efficient oil absorbent material for oil spill cleanup applications
CN106999980B (en) * 2014-07-02 2021-02-23 西拉纳有限公司 Liquid coating composition for use in a method for forming a superhydrophobic, superoleophobic or superamphiphobic layer
US9598586B2 (en) 2014-07-14 2017-03-21 Enki Technology, Inc. Coating materials and methods for enhanced reliability
US9376589B2 (en) 2014-07-14 2016-06-28 Enki Technology, Inc. High gain durable anti-reflective coating with oblate voids
US9382449B2 (en) 2014-09-19 2016-07-05 Enki Technology, Inc. Optical enhancing durable anti-reflective coating
KR102441644B1 (en) 2014-10-31 2022-09-07 스미또모 가가꾸 가부시키가이샤 Transparent coating film
WO2016068103A1 (en) 2014-10-31 2016-05-06 住友化学株式会社 Water-repellant/oil-repellant coating composition
WO2016070077A1 (en) * 2014-10-31 2016-05-06 Massachusetts, University Of Fabrication of micro-and nano-particle coated materials
WO2016068118A1 (en) 2014-10-31 2016-05-06 住友化学株式会社 Transparent coating film
US10400137B2 (en) 2014-11-12 2019-09-03 Sumitomo Chemical Company, Limited Water-repellant and oil-repellant coating composition and transparent film
US9873236B2 (en) 2014-12-01 2018-01-23 Hewlett-Packard Development Company, L.P. Coated substrates
WO2016138272A1 (en) 2015-02-27 2016-09-01 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
EP3498384A1 (en) * 2017-12-15 2019-06-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Nanofilament coatings on surfaces of non-planar, in particular tubular substrates, and methods for preparing the same
CN108159779A (en) * 2018-02-10 2018-06-15 北京清正泰科技术有限公司 A kind of filtering material and the air filter unit based on the filtering material
US10941270B2 (en) 2018-03-09 2021-03-09 John Nguyen Ta Biodegradation of polymer using surface chemistry
EP4074603A1 (en) 2021-04-15 2022-10-19 Airbus Defence and Space GmbH De-icing system, airfoil and aircraft having such a system, and de-icing method
CN113275224B (en) * 2021-04-29 2022-09-23 杭州电子科技大学 Surface corrosion protection method for neodymium iron boron permanent magnet
CN113278315A (en) * 2021-05-27 2021-08-20 广州大学 Protective coating and preparation method and application thereof
KR102643964B1 (en) 2022-06-08 2024-03-07 한국생산기술연구원 Fluorinated organopolysilazanes with improved anti-icing effect

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487122A (en) * 1966-11-21 1969-12-30 Owens Illinois Inc Organopolysiloxane composition containing an organic acid and a polyamide
US4299886A (en) * 1979-09-28 1981-11-10 Daicel Chemical Industries, Ltd. Process for surface coating of molded polycarbonate resin product
US4408009A (en) * 1982-02-17 1983-10-04 Union Carbide Corporation Co-condensates of alkyl silicates and alkoxy silanes
WO2003044077A1 (en) * 2001-11-16 2003-05-30 Honeywell International Inc. Spin-on-glass anti-reflective coatings for photolithography

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE465549A (en) * 1940-11-16 1900-01-01
US2824778A (en) * 1954-09-28 1958-02-25 Robbart Edward Process for imparting water repellency to cellulosic material comprising cellulosic fibers by reaction with an aerosol containing organo silicon halide
US4339479A (en) * 1966-01-24 1982-07-13 Edward Robbart Treatment of cellulose
DE2536013A1 (en) * 1975-08-13 1977-03-03 Bosch Gmbh Robert PROCESS FOR IMPROVING THE DURABILITY OF PROTECTIVE COATINGS CONSISTING OF SILICON OXIDES
JPS53130732A (en) * 1977-03-18 1978-11-15 Rohm & Haas Weatherproof and wearrresistant coating composition and method of bonding same
JPS6021936B2 (en) * 1978-01-18 1985-05-30 武田薬品工業株式会社 Surface treatment method for glass molded products
US4834020A (en) * 1987-12-04 1989-05-30 Watkins-Johnson Company Atmospheric pressure chemical vapor deposition apparatus
GB9115818D0 (en) * 1991-07-23 1991-09-04 Impact International Inc Oligoorganosilasesquioxanes
JPH05309316A (en) * 1992-05-12 1993-11-22 Olympus Optical Co Ltd Production of langmuir-blodgett's film
MX9708204A (en) * 1995-04-28 1997-12-31 Minnesota Mining & Mfg Abrasive article having a bond system comprising a polysiloxane.
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JPH101610A (en) * 1996-06-14 1998-01-06 Nippon Shokubai Co Ltd Aqueous organosilicon-based composition and civil engineering and construction material
JPH10237431A (en) * 1997-02-27 1998-09-08 Toto Ltd Member with ultrawater-repellent surface
TW437017B (en) 1998-02-05 2001-05-28 Asm Japan Kk Silicone polymer insulation film on semiconductor substrate and method for formation thereof
US6432846B1 (en) 1999-02-02 2002-08-13 Asm Japan K.K. Silicone polymer insulation film on semiconductor substrate and method for forming the film
JP2000230140A (en) * 1999-02-08 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> Water repellent coating material
JP2000273395A (en) * 1999-03-24 2000-10-03 Matsushita Electric Works Ltd Inorganic coating agent and coated article
JP5229843B2 (en) * 1999-05-18 2013-07-03 戸田工業株式会社 Hydrophobized metal compound particle powder and method for producing the same
US6472076B1 (en) * 1999-10-18 2002-10-29 Honeywell International Inc. Deposition of organosilsesquioxane films
RU2002123294A (en) * 2000-02-28 2004-01-10 Эдсил Эл Си (Us) NON-AQUEOUS COVERING COMPOSITIONS FORMED FROM SILANES AND ALCOHOLATES OF METALS
US6743516B2 (en) 2000-09-29 2004-06-01 Guardian Industries Corporation Highly durable hydrophobic coatings and methods
US6951598B2 (en) * 2002-11-06 2005-10-04 Kimberly-Clark Worldwide, Inc. Hydrophobically modified cationic acrylate copolymer/polysiloxane blends and use in tissue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487122A (en) * 1966-11-21 1969-12-30 Owens Illinois Inc Organopolysiloxane composition containing an organic acid and a polyamide
US4299886A (en) * 1979-09-28 1981-11-10 Daicel Chemical Industries, Ltd. Process for surface coating of molded polycarbonate resin product
US4408009A (en) * 1982-02-17 1983-10-04 Union Carbide Corporation Co-condensates of alkyl silicates and alkoxy silanes
WO2003044077A1 (en) * 2001-11-16 2003-05-30 Honeywell International Inc. Spin-on-glass anti-reflective coatings for photolithography

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067065B2 (en) * 2005-12-08 2011-11-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fibrillar, nanotextured coating and method for its manufacture
WO2011001036A1 (en) 2009-07-02 2011-01-06 Aalto-Korkeakoulusäätiö Liquid-repellent material
WO2014049208A1 (en) 2012-09-25 2014-04-03 Greenbutton Oy Hydrophobic material and method of producing the same
EP2952267A2 (en) 2014-06-03 2015-12-09 Karlsruher Institut für Technologie Reactive superhydrophobic surfaces, patterned superhydrophobic surfaces, methods for producing the same and use of the patterned superhydrophobic surfaces
EP3138624A1 (en) 2015-09-01 2017-03-08 Silana GmbH Material for the treatment of fluids or fluid mixtures
US10807047B2 (en) 2015-09-01 2020-10-20 Silana Gmbh Material for the treatment of fluids or fluid mixtures
WO2018162648A1 (en) * 2017-03-08 2018-09-13 Silana Gmbh Thermal insulation materials
EP3399233A1 (en) * 2017-03-15 2018-11-07 Doosan Heavy Industries & Construction Co., Ltd. Method for manufacturing a heat transfer tube comprising a superhydrophobic surface
US10663237B2 (en) 2017-03-15 2020-05-26 Doosan Heavy Industries Construction Co., Ltd. Heat transfer tube having superhydrophobic surface and method for manufacturing the same
CN114932236A (en) * 2022-05-18 2022-08-23 江苏大学 Preparation method of continuous laser direct forming super-hydrophobic nickel-based surface

Also Published As

Publication number Publication date
US8586693B2 (en) 2013-11-19
EP1644450A2 (en) 2006-04-12
JP2007523959A (en) 2007-08-23
EP1644450B1 (en) 2015-08-19
CN1826391A (en) 2006-08-30
CN1826391B (en) 2012-12-12
US20110165808A1 (en) 2011-07-07
JP2013256672A (en) 2013-12-26
US20070264437A1 (en) 2007-11-15
JP5572746B2 (en) 2014-08-13
WO2004113456A3 (en) 2006-01-19
US7914897B2 (en) 2011-03-29

Similar Documents

Publication Publication Date Title
US7914897B2 (en) Superhydrophobic coating
CN103596701B (en) Hydrophobic hydrocarbon coating
ES2275039T3 (en) PROCEDURE FOR THE PRODUCTION OF REMOVABLE LAMINAR COATINGS, DIRTY AND WATER REPELLENTS.
CN101270260B (en) Ultra-hydrophobic surface coating material and preparation method thereof
JP3498881B2 (en) Manufacturing method of water-repellent glass
US20070218297A1 (en) Non-stick ceramic coating composition and process
JP6899324B2 (en) Liquid coating composition for use in methods of forming hyperhydrophobic, ultra-oleophobic or ultra-amphipathic layers
US8580027B1 (en) Sprayed on superoleophobic surface formulations
CA2739903A1 (en) Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
WO2007104258A1 (en) Non-stick ceramic coating composition and process
WO2014035742A2 (en) Sprayable superhydrophobic coatings
TW201609385A (en) Hydrophobic article
CN108300299B (en) Protective coating composition with anti-skid function, coated product and preparation method of coated product
JP2013523923A (en) Formulations suitable for use as anti-graffiti coatings with improved wetting properties
Crick et al. A single step route to superhydrophobic surfaces through aerosol assisted deposition of rough polymer surfaces: duplicating the lotus effect
JP2004137137A (en) Article covered with coating, method of producing the same, and coating solution used in the same
US20190085171A1 (en) Durable hydrophobic coating composition
CN114651048B (en) Formulations and methods for forming protective surfaces
Abu-Dheir et al. Sol-gel coating of colloidal particles deposited glass surface pertinent to self-cleaning applications
WO2005030664A1 (en) Functional glass article and process for producing the same
TWI600725B (en) Protective coating composition with anti-skid function, coating product and preparation method thereof
WO2004037936A1 (en) Process and composition for coating
Duan et al. The fabrication of microstructure surface of super-hydrophobic coating by surface gelation technology
WO2010134545A1 (en) Waterdrop slidable article and method for producing same
JP2010162788A (en) Tubular structure for transferring aqueous solution, and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020813.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006515626

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004738024

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004738024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10561943

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10561943

Country of ref document: US