WO2004113429A2 - Polyolefin nanocomposites - Google Patents

Polyolefin nanocomposites Download PDF

Info

Publication number
WO2004113429A2
WO2004113429A2 PCT/IB2004/002012 IB2004002012W WO2004113429A2 WO 2004113429 A2 WO2004113429 A2 WO 2004113429A2 IB 2004002012 W IB2004002012 W IB 2004002012W WO 2004113429 A2 WO2004113429 A2 WO 2004113429A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
clay
organoclay
nanocomposite
recrystallization temperature
Prior art date
Application number
PCT/IB2004/002012
Other languages
French (fr)
Other versions
WO2004113429A3 (en
Inventor
David J. Chaiko
Original Assignee
The University Of Chicago
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Chicago filed Critical The University Of Chicago
Priority to EP04736784A priority Critical patent/EP1636303A2/en
Publication of WO2004113429A2 publication Critical patent/WO2004113429A2/en
Publication of WO2004113429A3 publication Critical patent/WO2004113429A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • This invention relates to a method for preparing organoclays for use in clay/polymer nanocomposites. More particularly, the invention relates to methods for the surface modification of clays to provide solid-state compatibility between the organoclay and semi-crystalline polymers like the polyolefins and waxes.
  • the simple mechanism by which the organoclays can improve barrier properties relies on the high aspect ratio of the exfoliated clay platelets to impart a tortuous path that retards the transport of diffusing species like oxygen or water vapor. In a strictly tortuous path mechanism, all diffusing species would be retarded to the same degree.
  • the tortuousity factor can be as high as several-hundred-fold for impermeable platelets with aspect ratios of 100-500 and at modest mineral loadings of 5-10 volume percent.
  • nanocomposite performance has not always lived up to expectations, and barrier improvements of two- to four-fold or less are more typical.
  • This invention provides a method lo prepare clay/polymer nanocomposites with improved control over the dispersion of the organoclay yielding increased barrier properties.
  • the method comprises combining an organophilic clay and a polymer, each having a recrystallization temperature, wherein the organophilic clay recrystallization temperature sufficiently matches the polymer recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer.
  • Such nanocomposites exhibit 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen compared to the polymer.
  • the invention provides a method for preparing a nanocomposite comprising combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.
  • invention methods for the preparation of nanocomposites further include the preparation of the organophilic clay by treating a clay with at least one surfactant to yield an organophilic clay having a recrystallization temperature higher than the polymer recrystallization temperature.
  • an organophilic clay may function as a nucleating agent during formation of the nanocomposite.
  • the growth of polymer spherulites is lessened or prevented.
  • the nanocomposites formed by the present method include organophilic clays that are partially or completely exfoliated.
  • organophilic clays may be prepared by surface treatment of a clay with a surfactant, such as a quaternary amine, and are compatible with hydrophobic materials such as polyolefins and waxes. Additionally, the surface of the clay is modified to produce an isotropic surface coating so that the polymer will wet and bond to the organoclay. This is achievable by using surfactants with sufficiently long alkyl chains so that they can become a part of the polymer crystal phase.
  • the organoclays are surface treated with a high-molecular-weight quaternary amine together with high-molecular-weight hydrotrope and/or an edge modifying surfactant to render the clay surface organophilic.
  • Suitable clays include phyllosilicates that are able to undergo ion exchange, such as smectites or mica. Natural or synthetic clays may be used in the present invention. Talcs may also be used in the invention but will normally require treatment with an appropriate edge-modifying surfactant.
  • the method of the present invention employs a surface-treated clay such as one including a nonionic polymeric hydrotrope adsorbed onto a basal surface thereof, and/or an edge modifying surfactant adsorbed onto an edge thereof.
  • a surface-treated clay such as one including a nonionic polymeric hydrotrope adsorbed onto a basal surface thereof, and/or an edge modifying surfactant adsorbed onto an edge thereof.
  • the process used to produce hydrotrope-modified organoclays is described in detail in co-pending United States Patent Application, 10/078992, filed on February 20, 2002.
  • the process used to make organoclays incorporating both basal surface modification with a hydrotrope and edge treatment is described in detail in co-pending United States Patent Application, 10/100,381, filed on March 18, 2002.
  • the smectite clay may be dispersed in water with the use of a pressure vessel to enable heating above the boiling point of the water.
  • the clay slurry is heated to a temperature sufficient to melt the quaternary amine and allow ion exchange with the basal surface of the clay.
  • the product of the reaction being an organoclay that exhibits melt/freeze transitions that match those of the polymer sufficiently so that the clay is able to remain dispersed in both the liquid and solid states.
  • the solids concentration of the slurry may range from less than 1 weight percent to approximately 60 to 70 weight percent.
  • sufficient mixing can be accomplished by use of a helical paddle mixer or alternatively, the mixing can be done using a single-screw extruder with a pressurized feeder to eliminate boiling of the water and thereby maintain the clay slurry at the desired water to solids ratio.
  • FIG. 1 DSC curve for the organoclay of Example 1. The peak
  • Transition from the crystal phase to the lamellar liquid crystal (LLC) phase occurs at j ui -JCrC ⁇ while th ⁇ re « ⁇ r/ot ll ⁇ ato;m ironsi ⁇ on ocrur: jt iboui 3 .-i Arh ⁇ heA of crystallization of -4.4 J/g.
  • FIG. 2 Cooling curves for a paraffin reference and the nanocomposite of Example 1 containing 10 weight percent organoclay. The peak freeze transitions occur at 45° and 28°C. The peak freeze transition for the pure organoclay is no longer present in the nanocomposite.
  • FIG. 3 Cooling curves for the polyethylene-b/ ⁇ c£-poly(ethylene glycol) cosurfactant and the nanocomposite of Example 4 containing 70 weight percent organoclay. The presence of the organoclay reduced the peak recrystallization temperature of the block copolymer from 92.6° to 84°C. [0015] FIG. 4. DSC heating curve for the nanocomposite of Example 4 showing the presence of the melt transitions for the quaternary amine on the organoclay and the cosurfactant [polyethylene-b/ ⁇ cfc-poly(ethylene glycol)].
  • the present invention provides organoclay/polymer nanocomposites having improved barrier properties and methods for making the same. More specifically, the invention permits the preparation of organoclay/polymer nanocomposites with improved barrier properties, that are explained by simple tortuosity effects, which result from the formation of a nanocomposite phase.
  • the nanocomposite phase may be demonstrated by the presence of a new set of thermal transitions that are intermediate between the individual thermal transitions of the organoclay and the polymer.
  • the present invention provides for the preparation of polyolefin nanocomposites wherein the organophilic clay is homogeneously dispersed throughout the polymer matrix.
  • Such nanocomposites exhibit superior dispersion stability such that the organoclay is dispersed in the polymer melt and is capable of maintaining the homogenous dispersion as the polymer cools to a semi-crystalline solid.
  • Inventive methods also provide for organoclays that act as nucleating agents by virtue of their high specific surface areas and appropriately designed recrystallization lemperaiui'cs.
  • the recrystallization temperature of the organophillic clay must be sufficiently matched with the polymer recrystallization temperature to promote the formation of the nanocomposite phase.
  • the phrase "sufficiently matched" does not require that the recrystallization temperatures be identical. Indeed, a wide range of recrystallization temperatures is possible.
  • the organoclay recrystallization temperature is within ⁇ 100% of the polymer recrystallization temperature, and is preferably within ⁇ 50%. Even more preferably the organoclay recrystallization temperature is within ⁇ 25% of the polymer recrystallization temperature, and still more preferably is within ⁇ 10%.
  • the barrier properties of a nanocomposite will improve the more closely matched are the recrystallization temperatures of the organoclay and polymer.
  • additives such as antioxidants, anticorrosion agents, reactive scavengers, such as colloidal metal oxides for improved acid barrier capabilities, oxygen scavengers for improved oxygen barrier capabilities, UN stabilizers, and colorants such as dyes and pigments may be incorporated into the compositions by admixing with the nanocomposite or by incorporating the additives directly onto the organoclay surface.
  • organoclays may be combined with water-soluble dyes and then dispersed in waxes or polyolefins. In this unique application, the organoclays aid the dispersion of the dyes. Water-soluble dyes which would not be expected to be dispersible in polyolefins may be used.
  • the present invention also encompasses embodiments wherein the organoclay has been modified on its basal surfaces with nonionic polymeric hydrotropes and on its edges with anionic surfactants that include organophosphorous and organosulfur compounds.
  • the process used to produce hydrotrope-modified organoclays is described in detail in co-pending United States Patent Application, 10/078992, filed on February 20, 2002, and co-pending United States Patent Application, 10/100,381, filed on March 18, 2002. Both applications are herein incorporated by reference in their entirety.
  • adso ⁇ tion of a polymeric hydrotrope on the basal surface of an edge modified clay is achieved by dispersing and/or disoolvin a polymeric hydrotrope in rhe day dispeicion and allowing the hydrotrope to adsorb onto the surface of the dispersed, edge modified clay.
  • the edge modification of the dispersed clay is carried out using an appropriate organic surfactant modifier.
  • Suitable organic surfactant edge modifiers for use in the present invention include organophosphorous and organosulfur compounds, particularly the following: a) phosphonic acids with the formula
  • R is an alkyl or hydroxyalkyl group with 1 to 50 carbon atoms or an aryl or hydroxyaryl group with 6 to 12 carbon atoms. Additionally, the R group may include oligomers comprised of two or more chemical species. Nonlimiting examples include polyethylene/poly(ethylene glycol)/polyethylene, Polypropylene/poly(ethylene glycol)/polypro ⁇ ylene, polypropylene/poly(ethylene glycol), polyethylene/poly(ethylene glycol), polyethylene/polypropylene, ⁇ oly(dimethylsiloxane)/poly(alkylmethylsiloxane), polyethylene/polybutylene, polyethylene/polybutene, polypropylene/polybutene, polystyrene/polybutadiene.
  • Suitable nonionic polymeric hydrotropes include, but are not limited to, polyvinyl alcohol, poly vinylpyrroli done, polypropylene glycol, polybutylene glycol, methoxypolyethylene glycol, dimethoxypolyethylene glycol, polyethylene glycol, polyethylene glycol derivatives such as, polyethylene glycol acrylate, polyethylene glycol diacrylate, polyethylene glycol methyl ether acrylate, polyethylene glycol methacrylate, polyethylene glycol dimethacrylate, polyethylene glycol methyl ether methacrylate, polyethylene glycol methyl ether epoxide, polyethylene glycol diglycidyl ether, polyethylene glycol phenyl ether acrylate, polyethylene glycol bisphenol A diglycidyl ether, polyethylene glycol dibenzoate, polyethylene glycol bis(3-aminopropyl ether), polyethylene glycol butyl ether, polyethylene glycol dicarboxymethyl ether, polyethylene glycol divinyl ether
  • polymeric hydrotropes include polyethylene-&/oc/-poly(ethylene glycol)-M ⁇ cZc-polyethylene, Polypropylene-Woc/c- poly(ethylene glycol)-Moc&-polypropylene, polypropylene-i?
  • oc/c-poly(ethylene glycol) polyethylene glycol-Woc/c-polypropylene glycol-Woc/c-polyethylene glycol, polyethylene glycol-? ⁇ m-polypropylene glycol, polyethylene glycol-r ⁇ re- polypropylene glycol monobucyl '-their, polypropylene glycol-WiX'Z'-polyethylene glycol-bloci' -polypropylene glycol, polypropylene glycol monobulyl ether, polytetrahydrofuran, polytetrahydrofuran bis(3-aminopropyl), polyethylene-Woc/c- polyethylene glycol and polypropylene glycol, and mixtures thereof.
  • the melt comprises about 1-99 weight percent of the nanocomposite. In other embodiments, the surface treated clay comprises about 1-15 weight percent and preferably about 3-10 weight percent of the nanocomposite.
  • the phyllosilicates are exposed to enough cationic surfactant to approximately satisfy the cationic exchange capacity of the phyllosilicates.
  • the amount of cation in the dispersion should be enough to satisfy between about 50 and 100 percent of the cation exchange capacity of the phyllosilicates. This includes embodiments where the amount of cation is sufficient to satisfy between about 75 and 100 percent of the exchange capacity of the phyllosilicate.
  • the cation exchange will be carried out at temperatures at least equal to or above the melting point of the surfactant.
  • the exchange will be carried out in a reactive extruder that is pressurized to prevent the evaporative loss of water from the clay slurry.
  • Suitable clays for use in the invention include phyllosilicate clays, such as mica and smectite clays.
  • exemplary smectite clays include montmorillonite, hectorite, saponite, sauconite, beidellite, nontronite and synthetic smectites such as Laponite®.
  • the clays discussed herein inherently have basal surfaces and are arranged in layers of particles which are :t d ⁇ ed on lop of one another. The stacking of the clay platelets provides interlayers, or galleries, between the clay layers.
  • These galleries are normally occupied by cations, typically comprising sodium, potassium, calcium, magnesium ions and combinations thereof, that balance the charge deficiency generated by the ux mu iL :ub " tit ⁇ >t ⁇ on within ⁇ he da y y ⁇ ⁇ o.
  • the distance between the basal surfaces of adjacent clay layers is referred to as the basal spacing.
  • the organoclay must be compatible with the polymer.
  • Compatibility between polymer/polymer and polymer/wax blends is known from prior art to be a function of the freezing points of the two components. If one component freezes at a significantly higher temperature than the other, the result upon cooling is a phase separated mixture that does not improve the properties of either component. For example, a paraffin wax that freezes at about 45°C is not compatible with either low density polyethylene which freezes at about 87 °C or with high density polyethylene which freezes above 100°C.
  • the effect of the organoclay on the recrystallization temperatures of the polymer must also be considered in the design of a useful nanocomposite system.
  • the recrystallization temperature of a polymer can be increased 15-20°C if the temperature of the polymer melt is insufficient to ensure complete crystal melting or if the polymer melt contains locally entangled segments originating from the polymer crystallites.
  • amo ⁇ hous polymers such as atactic polypropylene, ethylene propylene random copolymers, ethylene vinyl acetate copolymers, polyisoprene, polybutadiene, polychloroprene, polyisobutylene, poly(styrene-butadiene-styrene), silicones, polyurthanes, poly(methyl methacrylate), poly(methacrylate), poly(ethyl methacrylate), poly(propyl methacrylate), poly(butyl methacrylate), atactic polystyrene, would not be compatible with organoclays that possess a surface crystallization temperature. Organoclay compatibility with amo ⁇ hous polymers would require sufficiently matching the T g (glass transition temperature) of the surfactant coating with that of the polymer if the nanocomposite is to be used at temperatures below the T g of the polymer.
  • T g glass transition temperature
  • the nanocomposites prepared according to the present invention display unexpectedly high gas barrier capabilities in comparison to previous clay/wax and clay/polymer nanocomposites.
  • the nanocomposites disclosed herein can routinely reduce the o-ygen permeability of wa" coatings by a factor of ten to on ⁇ hundred or more. At sufficient clay concentrations, the permeability may be reduced by one thousand to ten thousand or more.
  • Combinations of wax nanocomposites with polyolefins can in turn result in significant reductions in gas permeability relative to the pure polymer. Reductions in oxygen permeability of ten to one-hundred fold or more relative to the pure polymer can be achieved with the present invention.
  • invention methods improve the barrier properties of clay/polymer nanocomposites by taking into account the effect of the semi-crystalline structure of polymers on nanocomposite mo ⁇ hology and performance.
  • the polyolefins consist of a mixture of crystalline and amo ⁇ hous phases at temperatures above the T g and below T m (melting transition temperature)
  • T g and below T m melting transition temperature
  • the hydrocarbon chains fold in on themselves to form crystallites which in turn stack upon themselves to form spherulites.
  • the crystallites are generally on the order of 10- 20 nm, while the spherulites can be as large as 50-100 microns or larger as in the case of waxes.
  • the crystallites are held together by amo ⁇ hous polymer segments which contribute to the strength of the material. If the hydrocarbon chain length is shortened sufficiently, as in the case of the waxes, the chains become less and less able to bridge the gap between the crystallites, and the material becomes brittle. Gas diffusion can take place at the interfaces between the crystallites and at the surfaces of the spherulites. Thus, a tortuous diffusion path is an inherent component of all semi- crystalline polymer systems.
  • the cohesion energy of the organoclay coating must be close to that of the wax or polyolefin crystal phase.
  • the freezing points of the surfactant chains on the clay surface and the polyolefin must be close enough to enable the exfoliated organoclay to enter solid solution as the nanocomposite phase freezes. It is reasonable to expect that this requirement will be true of all semi-crystalline materials, such as nylons, polyesters, and polyolefins. Because of supercooling effects, recrystallization temperatures will be lower than the melting temperatures.
  • the presence of the organoclay may affect the recrystallization temperature, especially if the organoclay is capable of acting as a nucleating agent. Therefore, the recrystallization temperature is expected to be a better predictor of solid-state miscibility than is the melting point.
  • an organophilic clay was prepared from a commercially available, water-washed montmorillonite (Cloisite Na ® which is a product of Southern Clay Products). The clay was dispersed in 40°C tap water at a solids concentration of 2.5 weight percent by high-shear mixing for 40 minutes. The edge of the clay was modified by addition of an aqueous solution of the ammonium sail of 1 -hydro ydodecane-l , l-di phosphonic acid.
  • the amount of ammonium alkyldiphosphonate added was 3 weight percent relative to the weight of the dry clay.
  • the temperature of the slurry was increased to 70°C and an amount of dimethyl dihydrogenated tallow ammonium chloride (Arquad -HT-75 a qujteniaiy amine salt commercially to 110 milliequivalents per 100 g clay was added over a period of one hour.
  • Combined with the quaternary amine was an amount of poly(propylene glycol) equivalent to 4 weight percent relative to the dry weight of the clay.
  • the molecular weight of the poly(propylene glycol) was 1000.
  • Irganox ® B225 (a product of Ciba Specialty Chemicals Co ⁇ .) at a concentration of 1000 ppm relative to the weight of the organoclay.
  • Irganox ® B225 a product of Ciba Specialty Chemicals Co ⁇ .
  • the suspension was vacuum filtered, redispersed in deionized water at 60°C and refiltered.
  • the organoclay was dried under vacuum at 70°C to produce a fine powder with less than 1 weight percent moisture.
  • Wax nanocomposites with organoclay concentrations of 5, 10, and 15 weight percent were prepared by mixing the organoclay powder into the melted wax with stirring at approximately 80°C.
  • the paraffin used to prepare the samples was purchased from Aldrich Chemical Co.
  • the wax nanocomposites were applied to a silicone release paper using a smooth coating rod from R. D. Specialties, Inc.
  • the oxygen transmission rate was measured on films with thickness of approximately 2 mils. The measured film thickness was used to calculate oxygen permeability from. the measured oxygen transmission rate.
  • the results for three different organoclay loadings are shown in Table 1 along with the reference value for zero clay addition. (A control experiment in which 5 weight percent Cloisite 15A was dispersed in the wax showed no reduction in oxygen permeability.) There is a dramatic decrease in oxygen permeability with increasing organoclay concentration until 15 weight percent organoclay loading. Microscopic examination of the film with 15 weight percent organoclay revealed extensive cracking that looked identical to that in the reference film with no added organoclay.
  • P 0 /P c 1 + 1/2 ⁇ • ⁇ (1)
  • P 0 and P c are the permeability of the pure polymer and the nanocomposite. respectively.
  • the relative permeability is proportional to the clay loading. If the permeability is limited by gas diffusion around impermeable clay platelets, the relative permeability becomes proportional to the square of the clay loading:
  • the melt/freeze transitions of the organoclay and the wax are close enough to produce a nanocomposite phase in which the organoclay remains in solid solution after the freezing of the wax takes place.
  • the DSC data in Figure 1 show the peak of the melt and freeze transitions of the pure organoclay which occur at 39.6° and 34.4°C, respectively.
  • the DSC cooling curves for the paraffin wax and the nanocomposite containing 10 weight percent organoclay are shown.
  • the peak freeze transitions for the paraffin wax occur at 45.7°C and 28.4°C with ⁇ H values of -136.8 J/g and -26.6 J/g, respectively.
  • the presence of two freeze temperatures indicates that the paraffin wax consists of a bimodal distribution of molecular weights.
  • the cooling curve for the nanocomposite is almost identical to the pure paraffin wax, but differs in a significant way when the total thermal transition energy is considered.
  • the freeze transition of the organoclay at 35 °C is no longer present in the nanocomposite because of the formation of a new nanocomposite phase.
  • Example 1 the effect of using a paraffinic wax with increased melt/freeze temperature on nanocomposite performance is illustrated.
  • the organoclay of Example 1 was dispersed in Paraflint H-l (a product of Moore & Munger). This is a high melting wax that is miscible with low density polyethylene (LDPE) at low wax/polymer ratios. The melt and freeze transitions of the wax are almost identical with that of LDPE.
  • the nanocomposite was prepared with 10 weight percent organoclay loading and the oxygen permeability of the pure wax and the nanocomposite were measured.
  • the permeability of the reference wax was 3404 x 10 "17 mol O 2 /m»s»Pa, while that of the nanocomposite was 2393 x 10 "17 mol O 2 /m»s»Pa.
  • the oxygen permeability was reduced only 30 percent relative to the pure wax. This is in contrast to the paraffin wax nanocomposite of Example 1 which demonstrated a 98.4 percent reduction in oxygen permeability at 10 weight percent organoclay loading.
  • This example illustrates the point that as the freeze transitions of the organoclay and the wax are further separated from one another, the ability to form an effective nanocomposite phase is diminished.
  • organoclay in an exfoliated state While maintaining the organoclay in an exfoliated state is important to nanocomposite performance, it may not be the only determining factor affecting barrier performance. Without wishing to be limited to any specific theory, it is believed that the inability of an isotropic polymer phase to wet and bond with an anisotropic organoclay surface is also a contributing factor responsible for the poor barrier performance observed in polyolefin systems, and in polymer systems in general.
  • nanocomposite systems all contain 5 weight percent organoclay as prepared in Example 1.
  • Example 1 the poly(propylene glycol) was used to introduce disorder within the quaternary amine monolayer.
  • a cosurfactant is used to increase the interaction between the organoclay surface and LDPE by increasing the effective freeze temperature of the organclay surface and to introduce a degree of isotropy to the organoclay surface.
  • An organoclay was prepared in the same manner as in Example 1 except without the addition of poIy(propylene glycol). Furthermore, the quaternary amine loading was reduced to 90 meq per 100 g of clay to accommodate the adso ⁇ tion of the cosurfactant.
  • the organoclay filter cake was mixed with polyethylene-bZocfc-poly(ethylene glycol) (Aldrich Chemical Co.) at a weight ratio of 70 percent orgnaoclay to 30 percent cosurfactant, on a dry basis.
  • the cosurfactant which has an HLB value of 4, a 50-carbon alkyl chain, and a melting and freezing point that closely matches that of LDPE is miscible with LDPE at low loading levels.
  • the DSC data in Figure 3 are the cooling curves for the polyethylene- bZ ⁇ c£-poly(ethylene glycol) and the clay nanocomposite containing 70 weight percent organoclay.
  • the presence of the organoclay reduced the peak freeze temperature of the block copolymer from 92.6°C to 84°C, indicating the presence of a nanocomposite phase having thermal transitions that are intermediate to those of the individual components.
  • the thermal transitions present in the pure organoclay of Example 1 were still detectable in the nanocomposite.
  • the melt transitions of the quaternary amine and the cosurfactant are detectible at 42.1° and 97.1°C, respectively.
  • the broad melt/freeze transitions of the cosurfactant are also noteworthy and problematic.
  • the broad thermal transitions mean that at least a portion of the organoclay surface will be in the melt state while the polymer is recrystallizing. This raises the possibility of forming interfacial defects between the organoclay and the polymer as the system cools to room temperature.
  • the ideal surfactant for preparing an organoclay would display narrow melt/freeze transitions at temperatures near or slightly above the thermal transitions of the polymer.
  • the x-ray diffraction pattern of the nanocomposite showed a broad reflection from the basal surface without any discrete basal spacing (D. J. Chaiko in Affordable iM ⁇ teri h Technology — Platform to Global Valn ⁇ and Peiformanc ., B. M Pasmussen, L. A. Pilalo, and H. S. Kli er, EDS., SAMPE: Covinal, CA, 2002, 1064).
  • the organoclay concentrate was diluted with LDPE to a final organoclay concentration of about 8 weight percent by compounding in a Brabender mixer for 30 min. at 130°C at a temperature of 170°C.
  • the nanocomposite was compression molded to produce transparent films of 125 microns thick.
  • the oxygen permeability of the nanocomposite was measured and found to be 14x lower than the LDPE reference. This represents an approximate 93 percent reduction in oxygen transmission relative to the pure LDPE film.
  • the quaternary amine used to prepare the organoclay exhibited a melting point below 40°C.
  • an organoclay is prepared using cetyltrimethyl ammonium bromide, which has a decomposition temperature in excess of 230°C.
  • the organoclay was prepared by dispersing Cloisite Na® in deionized water at 40°C.
  • the clay was dispersed with high shear mixing at a solids concentration of 2 weight percent.
  • the edge of the clay was treated with the ammonium salt of l-hydroxydodecane-l,l-diphosphonic acid.
  • the amount of ammonium alkyldiphosphonate added was 0.5 weight percent relative to the weight of ihe dry cby.
  • the temperature of the slurry was raised to 70°C and an amount of cetyltrimethyl ammonium bromide (Aldrich) was added equivalent to 100 meq per 100 g clay over a period of one half hour.
  • Combined with the quaternary amine was an amount of poly(ethylene glycol) equivalent to 4 weight percent relative to the weight of the dry clay.
  • the molecular weight of the poly(ethylene glycol) was 1500.
  • Mixing of the clay suspension was continued for one hour after all of the quaternary amine salt was added.
  • the suspension was filtered, redispersed in deionized water at 70°C and refiltered.
  • the organoclay was dried crushed and examined by DSC. The organoclay did not show a melt transition. Furthermore, the organoclay failed to disperse in LDPE by melt compounding. This example illustrates the importance of preparing organoclays with surfactants that exhibit melt/freeze transitions near those of the polymer if dispersion and exfoliation are to be achieved.

Abstract

The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer, each having a recrystallization temperature, wherein organophilic clay recrystallization temperature sufficiently matches the polymer recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer as shown in Figure 1. Such nanocomposites exhibit 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organoclay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

Description

POLYOLEFIN NANOCOMPOSITES
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0001] The United States Government has rights in this invention pursuant to
Contract No. W-31-109-ENG-38 between the United States Department of Energy and the University of Chicago representing Argonne National Laboratory.
FIELD OF THE INVENTION
[0002] This invention relates to a method for preparing organoclays for use in clay/polymer nanocomposites. More particularly, the invention relates to methods for the surface modification of clays to provide solid-state compatibility between the organoclay and semi-crystalline polymers like the polyolefins and waxes.
BACKGROUND OF THE INVENTION
[0003] Since the late 1980s a great deal of research around the world has tor ire 1 on
Figure imgf000002_0001
melhock, 10 mcorponA full/ e foluled ornedife clay: mlo polymers to increase mechanical and barrier properties. The approach relies on organoclay technology developed by Jordan in the 1950s, wherein the clay surface is treated to render it compatible with hydrophobic materials like the polyolefins and waxes. This surface treatment consists of an adsorbed monolayer of a high-molecular- weight quaternary amine, such as dimethyl dihydrogenated tallow amine. The surfactant adsorption takes place via an ion-exchange reaction involving the negatively charged basal surface of the clay platelets.
[0004] The simple mechanism by which the organoclays can improve barrier properties relies on the high aspect ratio of the exfoliated clay platelets to impart a tortuous path that retards the transport of diffusing species like oxygen or water vapor. In a strictly tortuous path mechanism, all diffusing species would be retarded to the same degree. The tortuousity factor can be as high as several-hundred-fold for impermeable platelets with aspect ratios of 100-500 and at modest mineral loadings of 5-10 volume percent. Unfortunately, nanocomposite performance has not always lived up to expectations, and barrier improvements of two- to four-fold or less are more typical.
[0005] To overcome the difficulties in exfoliating organoclays in hydrophobic polymers like the polyolefins, researchers have used functionalized polymers, like maleated polyethylene and polypropylene, as dispersants. While polar functional groups can interact with the organoclay surface and compatibalizing agents can promote exfoliation, this approach to nanocomposite formation has provided only modest improvements in the mechanical properties of polyolefins. Moreover, there have not been any published results that show increased barrier toward oxygen or water vapor in polyolefins or waxes.
[0006] Accordingly, there is a need for a rational approach to the design of new organoclay chemistries that provide both melt- and solid-state miscibility and enable the preparation of nanocomposites demonstrating significant improvements in the control of polymer nucleation, crystal growth, and physical properties such as increased mechanical and barrier performance.
SUMMARY OF THE INVENTION
[0007J This invention provides a method lo prepare clay/polymer nanocomposites with improved control over the dispersion of the organoclay yielding increased barrier properties. Specifically, the method comprises combining an organophilic clay and a polymer, each having a recrystallization temperature, wherein the organophilic clay recrystallization temperature sufficiently matches the polymer recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen compared to the polymer. Where the recrystallization temperatures of the organophillic clay and the polymer are not sufficiently matched, the mixture will show little or no improved barrier properties, and may exhibit partial or substantial phase-separation. Similarly, the invention provides a method for preparing a nanocomposite comprising combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.
[0008] Invention methods for the preparation of nanocomposites further include the preparation of the organophilic clay by treating a clay with at least one surfactant to yield an organophilic clay having a recrystallization temperature higher than the polymer recrystallization temperature. Such an organophilic clay may function as a nucleating agent during formation of the nanocomposite. In addition, by use of such an organoclay the growth of polymer spherulites is lessened or prevented.
[0009] The nanocomposites formed by the present method include organophilic clays that are partially or completely exfoliated. Such organophilic clays may be prepared by surface treatment of a clay with a surfactant, such as a quaternary amine, and are compatible with hydrophobic materials such as polyolefins and waxes. Additionally, the surface of the clay is modified to produce an isotropic surface coating so that the polymer will wet and bond to the organoclay. This is achievable by using surfactants with sufficiently long alkyl chains so that they can become a part of the polymer crystal phase. Alternatively, if the polymer is amorphous, such as an elastomer, the surfactant used to produce the organoclay will require alkyl chains that jjso rr-iMia amoφhous throughout lh<= temperature rjnge of intended nee Typically, the organoclays are surface treated with a high-molecular-weight quaternary amine together with high-molecular-weight hydrotrope and/or an edge modifying surfactant to render the clay surface organophilic. Suitable clays include phyllosilicates that are able to undergo ion exchange, such as smectites or mica. Natural or synthetic clays may be used in the present invention. Talcs may also be used in the invention but will normally require treatment with an appropriate edge-modifying surfactant.
[0010] In one embodiment, the method of the present invention employs a surface-treated clay such as one including a nonionic polymeric hydrotrope adsorbed onto a basal surface thereof, and/or an edge modifying surfactant adsorbed onto an edge thereof. The process used to produce hydrotrope-modified organoclays is described in detail in co-pending United States Patent Application, 10/078992, filed on February 20, 2002. The process used to make organoclays incorporating both basal surface modification with a hydrotrope and edge treatment is described in detail in co-pending United States Patent Application, 10/100,381, filed on March 18, 2002.
[0011] Various processes may be used to prepare the organoclays. By way of non-limiting example, the smectite clay may be dispersed in water with the use of a pressure vessel to enable heating above the boiling point of the water. The clay slurry is heated to a temperature sufficient to melt the quaternary amine and allow ion exchange with the basal surface of the clay. The product of the reaction being an organoclay that exhibits melt/freeze transitions that match those of the polymer sufficiently so that the clay is able to remain dispersed in both the liquid and solid states. The solids concentration of the slurry may range from less than 1 weight percent to approximately 60 to 70 weight percent. At high solids concentration, sufficient mixing can be accomplished by use of a helical paddle mixer or alternatively, the mixing can be done using a single-screw extruder with a pressurized feeder to eliminate boiling of the water and thereby maintain the clay slurry at the desired water to solids ratio.
BEIEF DESCRIPTION OF THE BRA WIT
[0012] FIG. 1. DSC curve for the organoclay of Example 1. The peak
Transition from the crystal phase to the lamellar liquid crystal (LLC) phase occurs at j ui -JCrC while th^ re«~r/ot llπato;m ironsiύon ocrur: jt iboui 3 .-i Arh Λ heA of crystallization of -4.4 J/g.
[0013] FIG. 2. Cooling curves for a paraffin reference and the nanocomposite of Example 1 containing 10 weight percent organoclay. The peak freeze transitions occur at 45° and 28°C. The peak freeze transition for the pure organoclay is no longer present in the nanocomposite.
[0014] FIG. 3. Cooling curves for the polyethylene-b/øc£-poly(ethylene glycol) cosurfactant and the nanocomposite of Example 4 containing 70 weight percent organoclay. The presence of the organoclay reduced the peak recrystallization temperature of the block copolymer from 92.6° to 84°C. [0015] FIG. 4. DSC heating curve for the nanocomposite of Example 4 showing the presence of the melt transitions for the quaternary amine on the organoclay and the cosurfactant [polyethylene-b/øcfc-poly(ethylene glycol)].
DETAILED DESCRIPTION OF THE INVENTION
[0016] The present invention provides organoclay/polymer nanocomposites having improved barrier properties and methods for making the same. More specifically, the invention permits the preparation of organoclay/polymer nanocomposites with improved barrier properties, that are explained by simple tortuosity effects, which result from the formation of a nanocomposite phase. The nanocomposite phase may be demonstrated by the presence of a new set of thermal transitions that are intermediate between the individual thermal transitions of the organoclay and the polymer.
[0017] The present invention provides for the preparation of polyolefin nanocomposites wherein the organophilic clay is homogeneously dispersed throughout the polymer matrix. Such nanocomposites exhibit superior dispersion stability such that the organoclay is dispersed in the polymer melt and is capable of maintaining the homogenous dispersion as the polymer cools to a semi-crystalline solid. Inventive methods also provide for organoclays that act as nucleating agents by virtue of their high specific surface areas and appropriately designed recrystallization lemperaiui'cs.
[0018] Thus, to prepare clay/polymer nanocomposites according to the present invention, the recrystallization temperature of the organophillic clay must be sufficiently matched with the polymer recrystallization temperature to promote the formation of the nanocomposite phase. The phrase "sufficiently matched" does not require that the recrystallization temperatures be identical. Indeed, a wide range of recrystallization temperatures is possible. In some embodiments, the organoclay recrystallization temperature is within ±100% of the polymer recrystallization temperature, and is preferably within ±50%. Even more preferably the organoclay recrystallization temperature is within ±25% of the polymer recrystallization temperature, and still more preferably is within ±10%. Typically, the barrier properties of a nanocomposite will improve the more closely matched are the recrystallization temperatures of the organoclay and polymer.
[0019] Other additives such as antioxidants, anticorrosion agents, reactive scavengers, such as colloidal metal oxides for improved acid barrier capabilities, oxygen scavengers for improved oxygen barrier capabilities, UN stabilizers, and colorants such as dyes and pigments may be incorporated into the compositions by admixing with the nanocomposite or by incorporating the additives directly onto the organoclay surface. For example, organoclays may be combined with water-soluble dyes and then dispersed in waxes or polyolefins. In this unique application, the organoclays aid the dispersion of the dyes. Water-soluble dyes which would not be expected to be dispersible in polyolefins may be used.
[0020] The present invention also encompasses embodiments wherein the organoclay has been modified on its basal surfaces with nonionic polymeric hydrotropes and on its edges with anionic surfactants that include organophosphorous and organosulfur compounds. The process used to produce hydrotrope-modified organoclays is described in detail in co-pending United States Patent Application, 10/078992, filed on February 20, 2002, and co-pending United States Patent Application, 10/100,381, filed on March 18, 2002. Both applications are herein incorporated by reference in their entirety. Briefly, adsoφtion of a polymeric hydrotrope on the basal surface of an edge modified clay is achieved by dispersing and/or disoolvin a polymeric hydrotrope in rhe day dispeicion and allowing the hydrotrope to adsorb onto the surface of the dispersed, edge modified clay. The edge modification of the dispersed clay is carried out using an appropriate organic surfactant modifier.
[0021] Suitable organic surfactant edge modifiers for use in the present invention include organophosphorous and organosulfur compounds, particularly the following: a) phosphonic acids with the formula
O
R- -OH
OH b) phosphonic acids with the formula
O
R- -OH
OR
c) phosphinic acids with the formula
Figure imgf000008_0001
d) phosphoric acid esters with the formula
O
RO- -OH
OH e) phosphoric acid diesters with the formula
o
RO- -OH
OR f) phosphorous acid diesters with the formula
OH
RO- -R g) diphosphonic acids with the formula
O O
HO- -R- -OH
OH OH h) pyrophosphoric acid diesters with the formula
o o
RO- -O- -OR
OH OH i) thiophosphonic acids with the formula
Figure imgf000009_0001
di thiophosphonic acids with the lorniui.
S
R- -SH
R where R is an alkyl or hydroxyalkyl group with 1 to 50 carbon atoms or an aryl or hydroxyaryl group with 6 to 12 carbon atoms. Additionally, the R group may include oligomers comprised of two or more chemical species. Nonlimiting examples include polyethylene/poly(ethylene glycol)/polyethylene, Polypropylene/poly(ethylene glycol)/polyproρylene, polypropylene/poly(ethylene glycol), polyethylene/poly(ethylene glycol), polyethylene/polypropylene, ρoly(dimethylsiloxane)/poly(alkylmethylsiloxane), polyethylene/polybutylene, polyethylene/polybutene, polypropylene/polybutene, polystyrene/polybutadiene.
[0022] Suitable nonionic polymeric hydrotropes include, but are not limited to, polyvinyl alcohol, poly vinylpyrroli done, polypropylene glycol, polybutylene glycol, methoxypolyethylene glycol, dimethoxypolyethylene glycol, polyethylene glycol, polyethylene glycol derivatives such as, polyethylene glycol acrylate, polyethylene glycol diacrylate, polyethylene glycol methyl ether acrylate, polyethylene glycol methacrylate, polyethylene glycol dimethacrylate, polyethylene glycol methyl ether methacrylate, polyethylene glycol methyl ether epoxide, polyethylene glycol diglycidyl ether, polyethylene glycol phenyl ether acrylate, polyethylene glycol bisphenol A diglycidyl ether, polyethylene glycol dibenzoate, polyethylene glycol bis(3-aminopropyl ether), polyethylene glycol butyl ether, polyethylene glycol dicarboxymethyl ether, polyethylene glycol divinyl ether, as well as copolymers of polyethylene glycol/polypropylene glycol, and polyethylene glycol/polybutylene glycol, and mixtures thereof.
[0023] Other nonlimiting examples of polymeric hydrotropes include polyethylene-&/oc/-poly(ethylene glycol)-MøcZc-polyethylene, Polypropylene-Woc/c- poly(ethylene glycol)-Moc&-polypropylene, polypropylene-i? oc/c-poly(ethylene glycol), polyethylene glycol-Woc/c-polypropylene glycol-Woc/c-polyethylene glycol, polyethylene glycol-?τm-polypropylene glycol, polyethylene glycol-røre- polypropylene glycol monobucyl '-their, polypropylene glycol-WiX'Z'-polyethylene glycol-bloci' -polypropylene glycol, polypropylene glycol monobulyl ether, polytetrahydrofuran, polytetrahydrofuran bis(3-aminopropyl), polyethylene-Woc/c- polyethylene glycol and polypropylene glycol, and mixtures thereof.
[0024] In some embodiments where the surface treated clay has been modified on both basal surfaces and edges, the melt comprises about 1-99 weight percent of the nanocomposite. In other embodiments, the surface treated clay comprises about 1-15 weight percent and preferably about 3-10 weight percent of the nanocomposite.
[0025] In embodiments wherein the phyllosilicates are subject to cation exchange, the phyllosilicates are exposed to enough cationic surfactant to approximately satisfy the cationic exchange capacity of the phyllosilicates. For dispersions in aliphatic solvents, waxes, and polyolefins, the amount of cation in the dispersion should be enough to satisfy between about 50 and 100 percent of the cation exchange capacity of the phyllosilicates. This includes embodiments where the amount of cation is sufficient to satisfy between about 75 and 100 percent of the exchange capacity of the phyllosilicate. This has the advantage that it substantially eliminates excess cationic surfactant which is only loosely bound to the phyllosilicate surface and easily separates during processing and composite material formation, degrading the quality of the composite materials. In preparing organoclays for polyolefin nanocomposites, the cation exchange will be carried out at temperatures at least equal to or above the melting point of the surfactant. For surfactants that melt at temperatures above 100°C, the exchange will be carried out in a reactive extruder that is pressurized to prevent the evaporative loss of water from the clay slurry.
[0026] Suitable clays for use in the invention include phyllosilicate clays, such as mica and smectite clays. Exemplary smectite clays include montmorillonite, hectorite, saponite, sauconite, beidellite, nontronite and synthetic smectites such as Laponite®. As will be well understood by one skilled in the art, the clays discussed herein inherently have basal surfaces and are arranged in layers of particles which are :t dιed on lop of one another. The stacking of the clay platelets provides interlayers, or galleries, between the clay layers. These galleries are normally occupied by cations, typically comprising sodium, potassium, calcium, magnesium ions and combinations thereof, that balance the charge deficiency generated by the ux mu iL :ub"titι>tιon within <he da y y~~ o. Typicdl / <'aιer i: J 1 so ρrr-c:nl in (he galleries and tends to associate with the cations. The distance between the basal surfaces of adjacent clay layers is referred to as the basal spacing.
[0027] To obtain useful nanocomposite properties in clay/polymer mixtures, the organoclay must be compatible with the polymer. Compatibility between polymer/polymer and polymer/wax blends is known from prior art to be a function of the freezing points of the two components. If one component freezes at a significantly higher temperature than the other, the result upon cooling is a phase separated mixture that does not improve the properties of either component. For example, a paraffin wax that freezes at about 45°C is not compatible with either low density polyethylene which freezes at about 87 °C or with high density polyethylene which freezes above 100°C. The effect of the organoclay on the recrystallization temperatures of the polymer must also be considered in the design of a useful nanocomposite system. Melt and shear histories of polymer systems are also important factors. For example, the recrystallization temperature of a polymer can be increased 15-20°C if the temperature of the polymer melt is insufficient to ensure complete crystal melting or if the polymer melt contains locally entangled segments originating from the polymer crystallites.
[0028] In a similar manner, amoφhous polymers, such as atactic polypropylene, ethylene propylene random copolymers, ethylene vinyl acetate copolymers, polyisoprene, polybutadiene, polychloroprene, polyisobutylene, poly(styrene-butadiene-styrene), silicones, polyurthanes, poly(methyl methacrylate), poly(methacrylate), poly(ethyl methacrylate), poly(propyl methacrylate), poly(butyl methacrylate), atactic polystyrene, would not be compatible with organoclays that possess a surface crystallization temperature. Organoclay compatibility with amoφhous polymers would require sufficiently matching the Tg (glass transition temperature) of the surfactant coating with that of the polymer if the nanocomposite is to be used at temperatures below the Tg of the polymer.
[0029] The nanocomposites prepared according to the present invention display unexpectedly high gas barrier capabilities in comparison to previous clay/wax and clay/polymer nanocomposites. The nanocomposites disclosed herein can routinely reduce the o-ygen permeability of wa" coatings by a factor of ten to on^ hundred or more. At sufficient clay concentrations, the permeability may be reduced by one thousand to ten thousand or more. Combinations of wax nanocomposites with polyolefins can in turn result in significant reductions in gas permeability relative to the pure polymer. Reductions in oxygen permeability of ten to one-hundred fold or more relative to the pure polymer can be achieved with the present invention.
[0030] While not wishing to be bound by theory and without limiting the scope of the invention, it is believed that invention methods improve the barrier properties of clay/polymer nanocomposites by taking into account the effect of the semi-crystalline structure of polymers on nanocomposite moφhology and performance. The polyolefins, consist of a mixture of crystalline and amoφhous phases at temperatures above the Tg and below Tm (melting transition temperature) The hydrocarbon chains fold in on themselves to form crystallites which in turn stack upon themselves to form spherulites. The crystallites are generally on the order of 10- 20 nm, while the spherulites can be as large as 50-100 microns or larger as in the case of waxes. The crystallites are held together by amoφhous polymer segments which contribute to the strength of the material. If the hydrocarbon chain length is shortened sufficiently, as in the case of the waxes, the chains become less and less able to bridge the gap between the crystallites, and the material becomes brittle. Gas diffusion can take place at the interfaces between the crystallites and at the surfaces of the spherulites. Thus, a tortuous diffusion path is an inherent component of all semi- crystalline polymer systems.
[0031] Despite the chemical similarity between paraffin wax and low-density polyethylene (LDPE), they are not compatible because of the large difference in their freezing points - that is, their mixtures phase-separate upon cooling from the melt. By extension, organoclay that is prepared with paraffin-like surfactants is unlikely to be compatible with either LDPE or the other polyolefins. During cooling of the polymer, if the interaction energy between the organoclay surface and the polymer chains is insufficient to disrupt the normal crystallization process, the organoclay will be pushed aside by the growing polymer crystallites, along with any other impurities that happen to be present in the polymer melt. In fact, there is no prior art showing an increase in barrier properties for any olefin-based nanocomposites, including waxes. In these systems, the addition of organoclays, according to prior art, actually results in a decrease of barrier properties. The lad: of signific int commercial itanocυ posife barrier materials, despite years of research since the first publications in the field (see, e.g., Okada, F., et al., U.S. Patent No. 4,739,007 (1988)) illustrates just how difficult these problems are to solve.
[0032] Thus, it is not enough that the melted polymer wet the surface of the organoclay; the cohesion energy of the organoclay coating must be close to that of the wax or polyolefin crystal phase. In other words, the freezing points of the surfactant chains on the clay surface and the polyolefin must be close enough to enable the exfoliated organoclay to enter solid solution as the nanocomposite phase freezes. It is reasonable to expect that this requirement will be true of all semi-crystalline materials, such as nylons, polyesters, and polyolefins. Because of supercooling effects, recrystallization temperatures will be lower than the melting temperatures. In addition, the presence of the organoclay may affect the recrystallization temperature, especially if the organoclay is capable of acting as a nucleating agent. Therefore, the recrystallization temperature is expected to be a better predictor of solid-state miscibility than is the melting point.
[0033] The following non-limiting examples serve to further illustrate advantages of the disclosed invention.
EXAMPLES
EXAMPLE 1
[0034] In this example, the superior barrier performance that can be achieved when the melt/freeze transitions of the organoclay and a paraffin wax are close enough to generate a new nanocomposite phase. An organophilic clay was prepared from a commercially available, water-washed montmorillonite (Cloisite Na® which is a product of Southern Clay Products). The clay was dispersed in 40°C tap water at a solids concentration of 2.5 weight percent by high-shear mixing for 40 minutes. The edge of the clay was modified by addition of an aqueous solution of the ammonium sail of 1 -hydro ydodecane-l , l-di phosphonic acid. The amount of ammonium alkyldiphosphonate added was 3 weight percent relative to the weight of the dry clay. Following equilibration for 30 minutes, the temperature of the slurry was increased to 70°C and an amount of dimethyl dihydrogenated tallow ammonium chloride (Arquad -HT-75 a qujteniaiy amine salt commercially
Figure imgf000014_0001
to 110 milliequivalents per 100 g clay was added over a period of one hour. Combined with the quaternary amine was an amount of poly(propylene glycol) equivalent to 4 weight percent relative to the dry weight of the clay. The molecular weight of the poly(propylene glycol) was 1000. Also combined with the quaternary amine solution was an antioxidant, Irganox® B225 (a product of Ciba Specialty Chemicals Coφ.) at a concentration of 1000 ppm relative to the weight of the organoclay. Mixing of the clay suspension was continued for one hour after all of the quaternary amine salt was added. The suspension was vacuum filtered, redispersed in deionized water at 60°C and refiltered. The organoclay was dried under vacuum at 70°C to produce a fine powder with less than 1 weight percent moisture. The basal spacing of the organoclay product, as measured by x-ray diffraction, was approximately 36.5 A.
[0035] Wax nanocomposites with organoclay concentrations of 5, 10, and 15 weight percent were prepared by mixing the organoclay powder into the melted wax with stirring at approximately 80°C. The paraffin used to prepare the samples was purchased from Aldrich Chemical Co. The wax nanocomposites were applied to a silicone release paper using a smooth coating rod from R. D. Specialties, Inc.
[0036] The oxygen transmission rate was measured on films with thickness of approximately 2 mils. The measured film thickness was used to calculate oxygen permeability from. the measured oxygen transmission rate. The results for three different organoclay loadings are shown in Table 1 along with the reference value for zero clay addition. (A control experiment in which 5 weight percent Cloisite 15A was dispersed in the wax showed no reduction in oxygen permeability.) There is a dramatic decrease in oxygen permeability with increasing organoclay concentration until 15 weight percent organoclay loading. Microscopic examination of the film with 15 weight percent organoclay revealed extensive cracking that looked identical to that in the reference film with no added organoclay. With only 5 weight percent organoclay the oxygen permeability dropped by approximately 62 fold, while with 10 weight percent organoclay addition, the oxygen permeability dropped by 330 fold. This performance is well beyond what has been found in nylon nanocomposites where reduction in ox en permeability of 2-5 fold is found for 2-5 weight percent organoclay loading. See, e.g., A. Usuki, N. Hasegawa, H. Iladoura, and T. Okamoto, Nano Lett, 1, No. 5, 271 (2001). No reduction in oxygen permeability has been reported for wax nanocomposites.
TABLE 1. Oxygen Permeability of clay/wax nanocomposite films.
Figure imgf000016_0001
* units are mol O2/m»s#Pa
[0037] The levels of reduction in gas permeability found in nylon nanocomposites are consistent with a tortuosity mechanism in which the permeability is proportional to clay loading (i.e., Nielsen model). If the gas permeability is limited by diffusion through narrow gaps between the oriented clay platelets, the relative permeability is a function of the aspect ratio (α) and the clay loading (φ) as shown in equation (1):
P0/Pc = 1 + 1/2 α • φ (1) where P0 and Pc are the permeability of the pure polymer and the nanocomposite. respectively. In this case the relative permeability is proportional to the clay loading. If the permeability is limited by gas diffusion around impermeable clay platelets, the relative permeability becomes proportional to the square of the clay loading:
P0/Pc = 1 + α2 o φ2/(l-φ) (2)
[0038] If we attempt to fit the data of Table 1 with the Nielsen equation ( Eq.
1) in which the gas permeability is a function of both the volume fraction of the mineral filler and the aspect ratio of the filler platelets, we can calculate an effective aspect ratio for the organoclay platelets in our wax nanocomposites at 5 and 10 weight percent organoclay. The calculated aspect ratios turn out to be approximately 3,000 and 9,500 for 5 weight percent and 10 weight percent clay loading, respectively. These values are well beyond the typical aspect ratios for montmorillonite which are reported to be between 100-500. If, on the other hand, we use Eq 2 to back calculate an effective aspect ratio, we obtain values of 250 and 240 at 5 and 10 weight percent loading, respectively. These values are well within the physically acceptable range of aspect ratios for montmorillonite in nanocomposite systems. Clearly, the mechanism by which the oxygen permeability in the wax nanocomposites is reduced is by a tortuous path in which the permeability is limited by diffusion around the clay platelets, as described in Eq 2.
[0039] In this example, the melt/freeze transitions of the organoclay and the wax are close enough to produce a nanocomposite phase in which the organoclay remains in solid solution after the freezing of the wax takes place. The DSC data in Figure 1 show the peak of the melt and freeze transitions of the pure organoclay which occur at 39.6° and 34.4°C, respectively. In Figure 2, the DSC cooling curves for the paraffin wax and the nanocomposite containing 10 weight percent organoclay are shown. The peak freeze transitions for the paraffin wax occur at 45.7°C and 28.4°C with ΔH values of -136.8 J/g and -26.6 J/g, respectively. The presence of two freeze temperatures indicates that the paraffin wax consists of a bimodal distribution of molecular weights. The cooling curve for the nanocomposite is almost identical to the pure paraffin wax, but differs in a significant way when the total thermal transition energy is considered. The freeze transition of the organoclay at 35 °C is no longer present in the nanocomposite because of the formation of a new nanocomposite phase. The peal: freeze transitions of the nanocomposite occur at 45.2 and 22.1 °C with ΔH values of -127.0 J/g and -27.5 J/g, respectively. From a measurement of normalized peak areas (i.e., normalized for sample weight), the total heat of crystallization for the pure paraffin is -0.99 J while for the nanocomposite the value is -1.66 J. These data :ho thai (he degree of uyotallization in (he rnnocomρoc)tρ \„ higher than rhc p ir iftm reference. Thus, it may be concluded that the organoclay acts as a nucleating agent.
EXAMPLE 2
[0040] In this example, the effect of using a paraffinic wax with increased melt/freeze temperature on nanocomposite performance is illustrated. The organoclay of Example 1 was dispersed in Paraflint H-l (a product of Moore & Munger). This is a high melting wax that is miscible with low density polyethylene (LDPE) at low wax/polymer ratios. The melt and freeze transitions of the wax are almost identical with that of LDPE. The nanocomposite was prepared with 10 weight percent organoclay loading and the oxygen permeability of the pure wax and the nanocomposite were measured. The permeability of the reference wax was 3404 x 10"17 mol O2/m»s»Pa, while that of the nanocomposite was 2393 x 10"17 mol O2/m»s»Pa. In this case the oxygen permeability was reduced only 30 percent relative to the pure wax. This is in contrast to the paraffin wax nanocomposite of Example 1 which demonstrated a 98.4 percent reduction in oxygen permeability at 10 weight percent organoclay loading. This example illustrates the point that as the freeze transitions of the organoclay and the wax are further separated from one another, the ability to form an effective nanocomposite phase is diminished.
EXAMPLE 3
[0041] While maintaining the organoclay in an exfoliated state is important to nanocomposite performance, it may not be the only determining factor affecting barrier performance. Without wishing to be limited to any specific theory, it is believed that the inability of an isotropic polymer phase to wet and bond with an anisotropic organoclay surface is also a contributing factor responsible for the poor barrier performance observed in polyolefin systems, and in polymer systems in general. In other words, while it may be relatively easy for a paraffin molecule to suffer the loss in entropy necessary to adopt a favorable orientation to interact with the organoclay surface, it is unlikely that the significantly greater loss in entropy accompanying the uncoiling of a high-molecular-weight polymer could be c m en ate oufficiertily by changer in enthalpy. This hypothesis is supported by the data in Table 2, which show the effects of freezing points and molecular weight on oxygen barrier. As the olefin chain length is increase from paraffin to LDPE, we see a steady decline in the influence of the organoclay on oxygen transmission rate. This can be partially explained by the fact that an increase in chain length is accompanied by an increase in recrystallization temperature, which would lead to phase separation of the clay during cooling of the melt. However, while the recrystallization temperatures of Paraflint H-l and LDPE are virtually identical, the wax nanocomposite still exhibits some improvement in barrier properties while the LDPE system shows no change in oxygen permeability. TABLE 2. Relationship between oxygen barrier, molecular weight, and recrystallization temperature.
Figure imgf000019_0001
*The nanocomposite systems all contain 5 weight percent organoclay as prepared in Example 1.
EXAMPLE 4
[0042] To overcome the difficulties in exfoliating organoclays in hydrophobic polymers like the polyolefins, researchers have used functionalized polymers, like maleated polyethylene and plypropylene, as dispersants. While polar functional groups can interact with the organoclay surface and compatibilizing agents can promote exhalation, the presence of organoclay thermal transitions would still be present and, if not matched to the polymer, would create a highly permeable inteφhase surrounding the organcolay. While this approach to nanocomposite formation has been shown to provide modest improvements in the mechanical ρroρerti =r of pel /olefin0 there is no pnoi art th:ιi irw increased barrier toward oxygen or water vapor in polyolefins or waxes.
[0043] In Example 1, the poly(propylene glycol) was used to introduce disorder within the quaternary amine monolayer. In this example a cosurfactant is used to increase the interaction between the organoclay surface and LDPE by increasing the effective freeze temperature of the organclay surface and to introduce a degree of isotropy to the organoclay surface. An organoclay was prepared in the same manner as in Example 1 except without the addition of poIy(propylene glycol). Furthermore, the quaternary amine loading was reduced to 90 meq per 100 g of clay to accommodate the adsoφtion of the cosurfactant. The organoclay filter cake was mixed with polyethylene-bZocfc-poly(ethylene glycol) (Aldrich Chemical Co.) at a weight ratio of 70 percent orgnaoclay to 30 percent cosurfactant, on a dry basis. The cosurfactant, which has an HLB value of 4, a 50-carbon alkyl chain, and a melting and freezing point that closely matches that of LDPE is miscible with LDPE at low loading levels.
[0044] The DSC data in Figure 3 are the cooling curves for the polyethylene- bZøc£-poly(ethylene glycol) and the clay nanocomposite containing 70 weight percent organoclay. The presence of the organoclay reduced the peak freeze temperature of the block copolymer from 92.6°C to 84°C, indicating the presence of a nanocomposite phase having thermal transitions that are intermediate to those of the individual components. However, the thermal transitions present in the pure organoclay of Example 1 were still detectable in the nanocomposite. In Figure 4 the melt transitions of the quaternary amine and the cosurfactant are detectible at 42.1° and 97.1°C, respectively. The broad melt/freeze transitions of the cosurfactant are also noteworthy and problematic. The broad thermal transitions mean that at least a portion of the organoclay surface will be in the melt state while the polymer is recrystallizing. This raises the possibility of forming interfacial defects between the organoclay and the polymer as the system cools to room temperature. The ideal surfactant for preparing an organoclay would display narrow melt/freeze transitions at temperatures near or slightly above the thermal transitions of the polymer.
[0045] The x-ray diffraction pattern of the nanocomposite showed a broad reflection from the basal surface without any discrete basal spacing (D. J. Chaiko in Affordable iMσteri h Technology — Platform to Global Valn^ and Peiformanc ., B. M Pasmussen, L. A. Pilalo, and H. S. Kli er, EDS., SAMPE: Covinal, CA, 2002, 1064). The organoclay concentrate was diluted with LDPE to a final organoclay concentration of about 8 weight percent by compounding in a Brabender mixer for 30 min. at 130°C at a temperature of 170°C. The nanocomposite was compression molded to produce transparent films of 125 microns thick. The oxygen permeability of the nanocomposite was measured and found to be 14x lower than the LDPE reference. This represents an approximate 93 percent reduction in oxygen transmission relative to the pure LDPE film.
[0046] While the performance of the nanocomposite is very good, the relative reduction in oxygen permeability is less than what was observed in the paraffin system of Example 1. This is believed to be due to the fact that the melt/freeze transitions of the organoclay surface were still detectable (see FIG. 4). Increasing the recrystallization temperature of the organoclay by use of a higher freezing quaternary amine would be expected to improve the barrier properties even further.
[0047] This example highlights the fact that while coupling agents or compatibilizing agents (e.g., maleated polyolefins) may help disperse the organoclay and aid in the formation of nanoscale dispersions, the fact remains that the phase transitions of the quaternary amine are likely to still be present, and can be expected to lead to grain boundary defects that would provide an unimpeded path for gas transport, thereby limiting the barrier performance of the nanocomposite.
COMPARATIVE EXAMPLE 1
[0048] In the previous examples, the quaternary amine used to prepare the organoclay exhibited a melting point below 40°C. In the present comparative example, an organoclay is prepared using cetyltrimethyl ammonium bromide, which has a decomposition temperature in excess of 230°C.
[0049] The organoclay was prepared by dispersing Cloisite Na® in deionized water at 40°C. The clay was dispersed with high shear mixing at a solids concentration of 2 weight percent. The edge of the clay was treated with the ammonium salt of l-hydroxydodecane-l,l-diphosphonic acid. The amount of ammonium alkyldiphosphonate added was 0.5 weight percent relative to the weight of ihe dry cby. Following equilibration for 30 minutes, the temperature of the slurry was raised to 70°C and an amount of cetyltrimethyl ammonium bromide (Aldrich) was added equivalent to 100 meq per 100 g clay over a period of one half hour. Combined with the quaternary amine was an amount of poly(ethylene glycol) equivalent to 4 weight percent relative to the weight of the dry clay. The molecular weight of the poly(ethylene glycol) was 1500. Mixing of the clay suspension was continued for one hour after all of the quaternary amine salt was added. The suspension was filtered, redispersed in deionized water at 70°C and refiltered. The organoclay was dried crushed and examined by DSC. The organoclay did not show a melt transition. Furthermore, the organoclay failed to disperse in LDPE by melt compounding. This example illustrates the importance of preparing organoclays with surfactants that exhibit melt/freeze transitions near those of the polymer if dispersion and exfoliation are to be achieved.
[0050] As will be understood by one skilled in the art, for any and all puφoses, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as "up to," "at least," "greater than," "less than," and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above.
[0051] All references cited herein are specifically incoφorated by reference in their entirety into the disclosure of this application.
[0052] While preferred embodiments have been illustrated and described, it should be understood that changes and modifications can be made therein in accordance with ordinary εliill in the art wiLhout departing from the invention in its broader aspects as defined in the following claims.

Claims

CLAIMSWhat is claimed:
1. A method of preparing a nanocomposite comprising combining an organophilic clay and a polymer, each having a recrystallization temperature, wherein the organophilic clay recrystallization temperature sufficiently matches the polymer recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer.
2. The method according to claim 1, wherein the gas is oxygen.
3. The method according to claim 2, wherein the nanocomposite formed has at least ten fold less permeability to oxygen than the polymer.
4. The method according to claim 1, wherein the organophilic clay is a phyllosilicate.
5. The method according to claim 1, wherein the organophilic clay is a smectite or mica.
6. The method according to claim 1, wherein the organophilic clay is a smectite selected from the group consisting of montmorillonite, hectorite, saponite, sauconite, beidellite, nontronite, Laponite, and combinations of two or more thereof.
7. The method according to claim 1, wherein the organophilic clay is a surface-treated clay.
8. The method according to claim 7, wherein the surface-treated clay includes an edge modifying surfactant adsorbed onto an edge thereof.
9. The method according to claim 7, wherein the surface-treated clay includes a nonionic polymeric hydrotrope adsorbed onto the basal surface thereof.
10. The method according to claim 1, wherein the organophilic clay recrystallization temperature is within ± 100% of the polymer peak recrystallization temperature.
11. The method according to claim 1, wherein the organophilic clay recrystallization temperature is within ±50% of the polymer peak recrystallization temperature.
12. The method according to claim 1, wherein the organophilic clay recrystallization temperature is within ±25% of the polymer peak recrystallization temperature.
13. The method according to claim 1, wherein the organophilic clay recrystallization temperature is within ±10% of the polymer peak recrystallization temperature.
14. The method according to claim 1 further comprising preparing the organophilic clay by treatment of a clay with at least one surfactant to yield an organophilic clay having a recrystallization temperature higher than the polymer recrystallization temperature.
15. The method according to claim 14, wherein the organophilic clay may function as a nucleating agent during formation of the nanocomposite.
J 6. The method according to r laim 1 , whereby the growth of polymer spherulites is lessened.
17. The method according to claim 14, whereby the growth of polymer spherulites is prevented.
18. A method of preparing a nanocomposite comprising combining an amoφhous organophilic clay and an amoφhous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.
PCT/IB2004/002012 2003-06-23 2004-06-14 Polyolefin nanocomposites WO2004113429A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04736784A EP1636303A2 (en) 2003-06-23 2004-06-14 Polyolefin nanocomposites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48073103P 2003-06-23 2003-06-23
US60/480,731 2003-06-23

Publications (2)

Publication Number Publication Date
WO2004113429A2 true WO2004113429A2 (en) 2004-12-29
WO2004113429A3 WO2004113429A3 (en) 2005-02-17

Family

ID=33539323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/002012 WO2004113429A2 (en) 2003-06-23 2004-06-14 Polyolefin nanocomposites

Country Status (3)

Country Link
US (1) US7157516B2 (en)
EP (1) EP1636303A2 (en)
WO (1) WO2004113429A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051261A2 (en) 2006-01-20 2008-05-02 Momentive Performance Materials Inc. Sealant composition containing inorganic-organic nanocomposite filler
US7919185B2 (en) 2006-02-15 2011-04-05 Chaiko David J Polymer composites, polymer nanocomposites and methods

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2281776T3 (en) * 2003-01-08 2007-10-01 Sud-Chemie Ag BASIC BLENDS BASED ON PRE-EXFOLIATED NANOARCICLES AND ITS USE.
CA2562345C (en) * 2004-04-07 2014-01-21 Revcor, Inc. Polymer nanocomposites for air movement devices
DE102004039451A1 (en) * 2004-08-13 2006-03-02 Süd-Chemie AG Polymer blend of incompatible polymers
EP1681314A1 (en) * 2005-01-12 2006-07-19 Borealis Technology Oy Nanocomposite with improved physical properties
KR101406415B1 (en) 2005-07-15 2014-06-19 미셀 테크놀로지즈, 인코포레이티드 Polymer coatings containing drug powder of controlled morphology
WO2007011708A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
DE102005042138A1 (en) 2005-09-05 2007-03-08 Deutsches Wollforschungsinstitut An Der Rwth Aachen E.V. Process for the production of composite materials
US8398306B2 (en) 2005-11-07 2013-03-19 Kraft Foods Global Brands Llc Flexible package with internal, resealable closure feature
US20070135552A1 (en) * 2005-12-09 2007-06-14 General Atomics Gas barrier
WO2007071242A1 (en) * 2005-12-23 2007-06-28 Aalborg Universitet Method for constructing a product exposed to load, especially a biomedical joint implant comprising nanocomposites
WO2007106671A1 (en) * 2006-03-13 2007-09-20 Polyone Corporation Use of organoclay in hdpe nanocomposites to provide barrier properties in containers and film
WO2007121049A1 (en) * 2006-04-11 2007-10-25 Polyone Corporation Weatherable polyolefin nanocomposites
WO2007127363A2 (en) 2006-04-26 2007-11-08 Micell Technologies, Inc. Coatings containing multiple drugs
US7858686B2 (en) * 2006-05-03 2010-12-28 Polyone Corporation Stabilized polyolefin nanocomposites
CA2667228C (en) 2006-10-23 2015-07-14 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US7871696B2 (en) * 2006-11-21 2011-01-18 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US7871697B2 (en) 2006-11-21 2011-01-18 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
WO2008086369A1 (en) 2007-01-08 2008-07-17 Micell Technologies, Inc. Stents having biodegradable layers
WO2008113362A1 (en) 2007-03-16 2008-09-25 Nkt Flexibles I/S A flexible pipe
WO2008148013A1 (en) * 2007-05-25 2008-12-04 Micell Technologies, Inc. Polymer films for medical device coating
WO2008151272A1 (en) * 2007-06-05 2008-12-11 Lord Corporation High temperature rubber to metal bonded devices and methods of making high temperature engine mounts
KR20100017104A (en) * 2007-06-20 2010-02-16 쇼와 덴코 가부시키가이샤 Organized clay, process for producing the same, and resin composite containing organized clay
US9232808B2 (en) 2007-06-29 2016-01-12 Kraft Foods Group Brands Llc Processed cheese without emulsifying salts
US8633261B2 (en) * 2008-04-15 2014-01-21 The University Of Queensland Polymer composites having particles with mixed organic modifications
JP5608160B2 (en) 2008-04-17 2014-10-15 ミセル テクノロジーズ、インコーポレイテッド Stent with bioabsorbable layer
CA2946195A1 (en) 2008-07-17 2010-01-21 Micell Technologies, Inc. Drug delivery medical device
US8834913B2 (en) 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
EP2413847A4 (en) 2009-04-01 2013-11-27 Micell Technologies Inc Coated stents
EP3366326A1 (en) 2009-04-17 2018-08-29 Micell Technologies, Inc. Stents having controlled elution
US9279046B2 (en) * 2009-06-08 2016-03-08 Board Of Trustees Of Michigan State University Nanocomposites and nanocomposite foams and methods and products related to same
EP2453834A4 (en) 2009-07-16 2014-04-16 Micell Technologies Inc Drug delivery medical device
US8697208B2 (en) * 2009-07-24 2014-04-15 Fina Technology, Inc. Polystyrene nanocomposites for blow molding applications
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability
JP2013521195A (en) 2010-02-26 2013-06-10 クラフト・フーヅ・グローバル・ブランヅ リミテッド ライアビリティ カンパニー Package with adhesive-based reclosable fastener and method therefor
RU2557614C2 (en) 2010-02-26 2015-07-27 Интерконтинентал Грейт Брэндс ЛЛС Uv-curable self-adhesive material with low stickiness for re-sealed packages
US8795762B2 (en) 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
CA2797110C (en) 2010-04-22 2020-07-21 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
CA2805631C (en) 2010-07-16 2018-07-31 Micell Technologies, Inc. Drug delivery medical device
US9533472B2 (en) 2011-01-03 2017-01-03 Intercontinental Great Brands Llc Peelable sealant containing thermoplastic composite blends for packaging applications
US10464100B2 (en) 2011-05-31 2019-11-05 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
WO2014098847A1 (en) * 2012-12-19 2014-06-26 Empire Technology Development Llc Composite fiber materials and methods of processing
JP6330024B2 (en) 2013-03-12 2018-05-23 マイセル・テクノロジーズ,インコーポレイテッド Bioabsorbable biomedical implant
JP2016519965A (en) 2013-05-15 2016-07-11 マイセル・テクノロジーズ,インコーポレイテッド Bioabsorbable biomedical implant
EP3356466B1 (en) 2015-10-01 2023-10-04 Braskem S.A. Polyolefin compositions with improved mechanical and barrier properties
CN114605841B (en) * 2022-01-21 2022-11-18 太原科技大学 Preparation method and application of organic/inorganic hybrid additive for accelerating crystal form transformation of polybutene-1

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910523A (en) * 1997-12-01 1999-06-08 Hudson; Steven David Polyolefin nanocomposites
US6383282B1 (en) * 2000-03-22 2002-05-07 The University Of Chicago Pseudophasic extraction method for the separation of ultra-fine minerals
US6462122B1 (en) * 2000-03-01 2002-10-08 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
US6521678B1 (en) * 2000-11-21 2003-02-18 Argonne National Laboratory Process for the preparation of organoclays
US6632868B2 (en) * 2000-03-01 2003-10-14 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
US6709759B2 (en) * 2000-05-12 2004-03-23 Pechiney Emballage Flexible Europe Thermoplastic film structures having improved barrier and mechanical properties
US6770697B2 (en) * 2001-02-20 2004-08-03 Solvay Engineered Polymers High melt-strength polyolefin composites and methods for making and using same
US6790896B2 (en) * 2002-03-18 2004-09-14 The University Of Chicago Composite materials with improved phyllosilicate dispersion

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977594A (en) 1975-08-04 1976-08-31 Swan Walter B Polygonal carton
US4434075A (en) 1981-10-19 1984-02-28 Nl Industries, Inc. Anionically modified organophilic clays and their preparation
US4412018A (en) 1980-11-17 1983-10-25 Nl Industries, Inc. Organophilic clay complexes, their preparation and compositions comprising said complexes
US4517112A (en) 1982-02-18 1985-05-14 Nl Industries, Inc. Modified organophilic clay complexes, their preparation and non-aqueous systems containing them
US4435217A (en) 1982-04-22 1984-03-06 Venture Innovations, Inc. Concentrated hydrophilic polymer suspensions
US4816517A (en) 1982-09-29 1989-03-28 Vulkor, Incorporated Crosslinked polymer interdispersions containing polyolefin and method of making
JPH0778089B2 (en) 1987-03-26 1995-08-23 株式会社豊田中央研究所 Method of manufacturing composite material
EP0598836B1 (en) 1991-08-12 1997-10-15 AlliedSignal Inc. Melt process formation of polymer nanocomposite of exfoliated layered material
US5955535A (en) 1993-11-29 1999-09-21 Cornell Research Foundation, Inc. Method for preparing silicate-polymer composite
DE4410727A1 (en) 1994-03-28 1995-10-05 Sued Chemie Ag Thickener based on at least one synthetic layered silicate
US5645758A (en) 1994-04-14 1997-07-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Liquid crystal composition, liquid crystal device using the same, light controlling element, recording medium, and light shutter
US5554670A (en) 1994-09-12 1996-09-10 Cornell Research Foundation, Inc. Method of preparing layered silicate-epoxy nanocomposites
EP0747322B1 (en) 1995-06-05 2001-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite clay material and method for producing the same, blend material and composite clay rubber using the same and production method thereof
US5552469A (en) 1995-06-07 1996-09-03 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
US5698624A (en) 1995-06-07 1997-12-16 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising matrix polymers and said exfoliated layered materials formed with water-insoluble oligomers and polymers
US5726247A (en) 1996-06-14 1998-03-10 E. I. Du Pont De Nemours And Company Fluoropolymer nanocomposites
US5876812A (en) 1996-07-09 1999-03-02 Tetra Laval Holdings & Finance, Sa Nanocomposite polymer container
US5962553A (en) 1996-09-03 1999-10-05 Raychem Corporation Organoclay-polymer composites
US6043300A (en) 1996-12-09 2000-03-28 Rheox, Inc. Liquid rheological additives for non-aqueous systems and non-aqueous systems containing such liquid rheological additives
ID23684A (en) 1996-12-31 2000-05-11 Dow Chemical Co COMPOSITION-POLYMER-ORGANOCLAY AND ITS MAKING
US5840796A (en) 1997-05-09 1998-11-24 Xerox Corporation Polymer nanocomposites
US6060549A (en) 1997-05-20 2000-05-09 Exxon Chemical Patents, Inc. Rubber toughened thermoplastic resin nano composites
US6034163A (en) 1997-12-22 2000-03-07 Eastman Chemical Company Polyester nanocomposites for high barrier applications
US6036765A (en) 1998-04-01 2000-03-14 Southern Clay Products Organoclay compositions and method of preparation
US6380295B1 (en) 1998-04-22 2002-04-30 Rheox Inc. Clay/organic chemical compositions useful as additives to polymer, plastic and resin matrices to produce nanocomposites and nanocomposites containing such compositions
US6262162B1 (en) 1999-03-19 2001-07-17 Amcol International Corporation Layered compositions with multi-charged onium ions as exchange cations, and their application to prepare monomer, oligomer, and polymer intercalates and nanocomposites prepared with the layered compositions of the intercalates
US6271298B1 (en) 1999-04-28 2001-08-07 Southern Clay Products, Inc. Process for treating smectite clays to facilitate exfoliation
US6271297B1 (en) 1999-05-13 2001-08-07 Case Western Reserve University General approach to nanocomposite preparation
US6172121B1 (en) 1999-05-21 2001-01-09 The University Of Chicago Process for preparing organoclays for aqueous and polar-organic systems
US6136908A (en) 1999-06-17 2000-10-24 Industrial Technology Research Institute Preparation of thermoplastic nanocomposite
US6407155B1 (en) 2000-03-01 2002-06-18 Amcol International Corporation Intercalates formed via coupling agent-reaction and onium ion-intercalation pre-treatment of layered material for polymer intercalation
JP3986959B2 (en) 2000-09-21 2007-10-03 ローム アンド ハース カンパニー High acid content nanocomposite aqueous dispersion
US6841226B2 (en) 2001-11-13 2005-01-11 Eastman Kodak Company Ethoxylated alcohol intercalated smectite materials and method
US6822035B2 (en) 2002-02-20 2004-11-23 The University Of Chicago Process for the preparation of organoclays
US6864308B2 (en) 2002-06-13 2005-03-08 Basell Poliolefine Italia S.P.A. Method for making polyolefin nanocomposites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910523A (en) * 1997-12-01 1999-06-08 Hudson; Steven David Polyolefin nanocomposites
US6462122B1 (en) * 2000-03-01 2002-10-08 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
US6632868B2 (en) * 2000-03-01 2003-10-14 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
US6383282B1 (en) * 2000-03-22 2002-05-07 The University Of Chicago Pseudophasic extraction method for the separation of ultra-fine minerals
US6709759B2 (en) * 2000-05-12 2004-03-23 Pechiney Emballage Flexible Europe Thermoplastic film structures having improved barrier and mechanical properties
US6521678B1 (en) * 2000-11-21 2003-02-18 Argonne National Laboratory Process for the preparation of organoclays
US6770697B2 (en) * 2001-02-20 2004-08-03 Solvay Engineered Polymers High melt-strength polyolefin composites and methods for making and using same
US6790896B2 (en) * 2002-03-18 2004-09-14 The University Of Chicago Composite materials with improved phyllosilicate dispersion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051261A2 (en) 2006-01-20 2008-05-02 Momentive Performance Materials Inc. Sealant composition containing inorganic-organic nanocomposite filler
WO2008051261A3 (en) * 2006-01-20 2008-10-09 Momentive Performance Mat Inc Sealant composition containing inorganic-organic nanocomposite filler
JP2009523892A (en) * 2006-01-20 2009-06-25 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Sealant composition comprising inorganic-organic nanocomposite filler
US7919185B2 (en) 2006-02-15 2011-04-05 Chaiko David J Polymer composites, polymer nanocomposites and methods

Also Published As

Publication number Publication date
US20040260000A1 (en) 2004-12-23
US7157516B2 (en) 2007-01-02
EP1636303A2 (en) 2006-03-22
WO2004113429A3 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
WO2004113429A2 (en) Polyolefin nanocomposites
US7135508B2 (en) Coatings and films derived from clay/wax nanocomposites
US6790896B2 (en) Composite materials with improved phyllosilicate dispersion
Costache et al. Preparation and characterization of poly (ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants
Gain et al. Gas barrier properties of poly (ε‐caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions
Sanchez‐Garcia et al. Morphology and barrier properties of nanobiocomposites of poly (3‐hydroxybutyrate) and layered silicates
US7919185B2 (en) Polymer composites, polymer nanocomposites and methods
Ramaraj et al. Poly (vinyl alcohol) and layered double hydroxide composites: thermal and mechanical properties
Villanueva et al. Comparative study of nanocomposites of polyolefin compatibilizers containing kaolinite and montmorillonite organoclays
Coiai et al. The influence of the compatibilizer on the morphology and thermal properties of polypropylene‐layered double hydroxide composites
Mrah et al. In situ polymerization of styrene–clay nanocomposites and their properties
US7160942B2 (en) Polymer-phyllosilicate nanocomposites and their preparation
Song et al. Study on the solvothermal preparation of polyethylene/organophilic montmorillonite nanocomposites
Hegde et al. Different crystallization mechanisms in polypropylene–nanoclay nanocomposite with different weight percentage of nanoclay additives
De Lisi et al. Laponite clay in homopolymer and tri-block copolymer matrices: Thermal and structural investigations
US7214734B2 (en) Liquid crystalline composites containing phyllosilicates
Giannakas et al. Preparation and characterization of polymer/organosilicate nanocomposites based on unmodified LDPE
Bae et al. Dispersion and flame retardancy of ethylene vinylacetate/layered silicate nanocomposites using the masterbatch approach for cable insulating material
Ghosh et al. Effects of layered silicates on the confined crystalline morphology of poly (hexamethylene terephthalate)
Chang et al. Synthesis and characterization of poly (butylene terephthalate)/mica nanocomposite fibers via in situ interlayer polymerization
Passador et al. Effect of blending protocol on the rheological properties and morphology of HDPE/LLDPE blend-based nanocomposites
Zhu et al. Intercalation compounds and clay nanocomposites
Gerasin et al. Influence of the structure of a modifier layer on the compatibility of polymers with a modified montmorillonite
Strawhecker et al. Nanocomposites based on water soluble polymers and unmodified smectite clays
Babiker et al. The thermal and mechanical properties of ultra-high molecular polyethylene/montmorillonite clay (UHMWPE/MMT) nanocomposites using gel and pressure-induced flow process (PIF)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004736784

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004736784

Country of ref document: EP