WO2004109797A1 - Heatsink for integrated circuit such as cpu - Google Patents

Heatsink for integrated circuit such as cpu Download PDF

Info

Publication number
WO2004109797A1
WO2004109797A1 PCT/JP2004/007703 JP2004007703W WO2004109797A1 WO 2004109797 A1 WO2004109797 A1 WO 2004109797A1 JP 2004007703 W JP2004007703 W JP 2004007703W WO 2004109797 A1 WO2004109797 A1 WO 2004109797A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
cpu
radiator
integrated circuit
oxide powder
Prior art date
Application number
PCT/JP2004/007703
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyoshi Kaneko
Akira Ota
Original Assignee
Ceramission Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramission Co., Ltd. filed Critical Ceramission Co., Ltd.
Publication of WO2004109797A1 publication Critical patent/WO2004109797A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Heat sink for integrated circuits such as CPU
  • the present invention relates to a radiator for an integrated circuit such as a CPU, and more particularly, to a radiator for an integrated circuit such as a CPU having excellent heat radiation.
  • Patent Document 1 discloses a CPU cooling device including a fan having a discharge port directed forward on a ridge-shaped protrusion provided on a rear side of a CPU mounting portion of a socket. Have been.
  • a cooling device that cools the heat-generating component by providing a cooler that cools the heat-generating component by exchanging heat between the heat-generating component and the heat-generating component and the refrigerant, cools the heat-generating component by circulating the refrigerant between them, is a patent. It is disclosed in reference 2.
  • Patent Document 3 discloses that a hollow body having buoyancy is contained in a paint so that the density of the hollow body becomes coarse from the base surface to the surface of the coating film so that the thermal conductivity is reduced. Thermal conductivity to minimize It is disclosed that a film having a gradient imparted thereto is formed to effectively radiate the heat generated by the CPU.
  • An object of the present invention is to provide a heat radiator for an integrated circuit such as a CPU and the like which has a large heat radiation effect at a low cost without requiring a great deal of equipment.
  • the present inventors have found that forming a film with a specific coating material improves the heat radiation effect of a radiator for CPUs and the like, and have completed the present invention.
  • the term “heat dissipation” refers to the characteristics of suppressing the temperature rise of integrated circuits such as CPUs and electronic devices that use these circuits by releasing the heat accumulated in the CPU and the like to the outside.
  • the present invention suppresses a rise in temperature of an integrated circuit such as a CPU by forming a specific film on a radiator for an integrated circuit such as a CPU and radiating heat accumulated in the integrated circuit such as the CPU. At the same time, it suppresses the temperature rise of devices that use the integrated circuit such as the CPU. By minimizing the temperature rise of integrated circuits such as CPUs, equipment, components, etc., it is possible to easily reduce the size of equipment.
  • a radiator for an integrated circuit such as a CPU refers to a device or device for dissipating heat generated by the CPU to the outside to prevent a temperature rise of the integrated circuit such as the CPU.
  • a radiator is also generally called a heat sink.
  • Patent Document 1 JP 2002-190562 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-368471
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-309180
  • the gist of the present invention is to provide a film formed from a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder, and kaolin powder. It is a radiator for integrated circuits such as CPUs.
  • the alkoxysilane can contain at least one of dialkoxysilane, trialkoxysilane and tetraalkoxysilane.
  • a titanium alkoxide and / or an aluminum alkoxide can be further mixed.
  • the present invention is a radiator for an integrated circuit such as a CPU having a film formed from a mixture of an aqueous solution of sodium silicate and potassium silicate, silicon oxide powder, aluminum oxide powder, and kaolin powder.
  • the present invention relates to a heat sink for an integrated circuit such as a CPU having a film formed from a mixture of an emulsion containing a silicone resin, silicon oxide powder, aluminum oxide powder, and kaolin powder.
  • the radiator includes a fin-type heat sink, an outer surface of a mounting cover of the heat sink, and
  • a radiator for integrated circuits such as CPUs characterized in that a film is formed on the outer surface of the fin located on the outermost side of the heat sink, and the radiator includes a fin-type heat sink and a fan motor.
  • the thickness of the film is preferably 10-100 ⁇ — ⁇ .
  • the film in the present invention is a film formed from a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder, an aqueous solution of sodium silicate, and an aqueous solution of potassium silicate.
  • silicon oxide powder, aluminum oxide powder and kaolin powder are dispersed in a binder containing an alkoxysilane, a binder containing an aqueous solution of sodium silicate and potassium silicate, or a binder containing a silicone emulsion to form a suspension.
  • This film is formed by applying a turbid liquid to a radiator for integrated circuits such as CPU.
  • Metal oxides and nitrides can be used. That is, as metal oxides, zirconium oxide, titanium oxide, tin oxide, copper oxide, iron oxide, cobalt oxide, magnesium oxide, manganese oxide, zinc oxide, germanium oxide, antimony oxide, boron oxide, and barrier oxide And at least one metal oxide such as bismuth oxide, calcium oxide and strontium oxide.
  • nitrides such as boron nitride, aluminum nitride, dinoleconium nitride, tin nitride, strontium nitride, titanium nitride, and barium nitride / silicon nitride can be contained.
  • the metal oxide, kaolin, nitride, and the like contained in the film should preferably have a particle size of 15 x m-10 Onm. More preferably, those having a particle size of 10 zm-80 nm are used. The use of particles with this particle size makes the surface of the film smooth and clean and increases the efficiency of heat dissipation.
  • Kaolin is preferably a mixture of alkoxysilane, sodium silicate and potassium silicate by weight, or 0.1-20 addition to silicone resin 1.
  • the amount of the metal oxide added is preferably 0.5 to 70 parts by weight of alkoxysilane, a combination of sodium silicate and potassium silicate, or 1 part of the silicone resin. This is to maintain high heat dissipation performance while maintaining film forming properties.
  • silicon oxide powder, aluminum oxide powder, kaolin powder and the like are dispersed and suspended in a binder containing alkoxysilane, a binder containing an aqueous solution of sodium silicate and potassium silicate, or a binder containing silicone emulsion.
  • This suspension is applied to a radiator for integrated circuits such as CPU to form a film.
  • the viscosity of the suspension increases, adjust the viscosity by adding a solvent or water as necessary.
  • the suspension is applied to the object with a brush, spray, roller, printing, etc., dried at room temperature or warming, and then, if necessary, heat-treated at 80 ° C or 300 ° C to obtain a metal surface.
  • a film having a high degree of adhesion to the film can be obtained.
  • the film is formed on an integrated circuit radiator such as a CPU with an appropriate thickness. Unless the thickness of the present film is a certain thickness, the heat radiation effect is not sufficiently exhibited. On the contrary, if the thickness is too large, a heat storage effect occurs in the film, and the heat radiation effect becomes insufficient.
  • the film thickness is preferably 100 / im or less, more preferably 10 ⁇ -100 m, and particularly preferably 30 ⁇ m-80 ⁇ m.
  • the coating film of the present invention has excellent heat resistance such as heat shock resistance, heat dissipation, heat shielding and the like. It also has a high emissivity of 0.95, which has a high ability to radiate the stored energy as far-infrared rays into the air.
  • the heat stored inside can be converted into far-infrared electromagnetic waves, which can be radiated efficiently, thereby suppressing the temperature rise of objects.
  • Efficiently radiating far-infrared rays means converting the heat accumulated inside into far-infrared rays and radiating heat efficiently, resulting in the effect of suppressing temperature rise. This leads to the result that heat is dissipated efficiently without using a means of air flow.
  • the radiation characteristics of substances that have conventionally been considered to have a high far-infrared radiation capability eg, zeolite, cordierite, apatite, dolomite, etc.
  • the emissivity differs depending on the wavelength that does not have characteristics. In most cases, the emissivity tends to decrease in the area around 9 microns wavelength.
  • far infrared rays emitted from the composition provided by the present invention maintain an emissivity of 0.9 or more over the entire range of wavelengths from 4 to 14 microns, and have extremely high radiation efficiency.
  • a film formed from a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide, aluminum oxide, kaolin and the like is basically formed by hydrolysis and condensation of alkoxysilane. It is. That is, the alkoxysilane hydrolyzes and binds to the silane groups present on the surface of the colloidal silica, forming a film.
  • the formation of a film by hydrolysis of alkoxysilane is described, for example, in JP-A-11-223191, JP-A-63-207868, JP-A-3-47883 and the like.
  • JP-A-1-223191, JP-A-63-207868, JP-A-3-47883 and the like describe coating compositions excellent in far-infrared radiation.
  • the purpose of the coating composition is to enhance the heating effect in a heater, a heater, or the like, and the present invention releases heat from an object having a high temperature to suppress the temperature rise.
  • the invention is different from the invention described in the patent document. It becomes.
  • alkoxysilane undergoes hydrolysis / condensation in the presence of water, it is preferable that the alkoxysilane be kept free of water until immediately before use. That is, it is stored as a solution in a water-soluble solvent.
  • a water-soluble solvent solution of alkoxysilane, water dispersion of colloidal silica, silicon oxide, aluminum oxide, kaolin, etc. are mixed and applied to a heat sink for integrated circuits such as CPU to form a film. Under the action of water present in the aqueous dispersion of colloidal silica, alkoxysilane is hydrolyzed and condensed to form a film.
  • the alkoxysilane solution is mixed with an aqueous dispersion of colloidal silica, a metal oxide powder, and the like.
  • the mixing ratio of the alkoxysilane solution and the aqueous dispersion of colloidal silica is preferably such that the weight ratio of colloidal silica (solid content) to alkoxysilane is 0.011.
  • the water in the aqueous colloidal silica dispersion contributes to the hydrolysis of the alkoxysilane.
  • the alkoxysilane reacts with the silanol groups of the colloidal silica during the hydrolysis process to form a film in a form that embraces the colloidal silica.
  • Colloidal silica contributes to film formability, film retention, heat dissipation, and heat shielding.
  • a titanium alkoxide and / or an aluminum alkoxide can be mixed.
  • the titanium alkoxide and / or the aluminum alkoxide may be used as a simple substance, or may be used as a solution.
  • titanium alkoxide and / or aluminum alkoxide may be used as a solution in an organic solvent, or an alkoxysilane solution may be further mixed with titanium alkoxide and / or aluminum alkoxide.
  • the titanium alkoxide and / or aluminum alkoxide is preferably added in a ratio of 0.01 to 0.5 with respect to the silicon atom of the alkoxysilane.
  • the titanium alkoxide and the Z or aluminum alkoxide co-hydrolyze with the alkoxysilane with water to form a film containing titanium and / or aluminum in the main chain.
  • alkoxysilane tetraalkoxysilane, trialkoxysilane (mono-organic group-substituted alkoxysilane), dialkoxysilane (di-organic group-substituted alkoxysilane) and the like can be used. These alkoxysilanes can also be used as an appropriate mixture.
  • a Norecoxy silane is kept in a water-free state, ie, a water-free solution, until immediately before use.
  • solvent used for the solution use a water-soluble solvent that dissolves water.
  • alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone and methyl ethyl ketone, cyclic ethers such as dioxane and tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like Solvent.
  • solvents such as cyclic ethers such as dioxane and tetrahydrofuran, and solvents such as N-methylolepyrrolidone, methylformamide, methylacetamide, dimethylformamide, and dimethylacetamide can be suitably used.
  • alkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and methyltripropoxy.
  • titanium alkoxides include tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, and specific examples of aluminum alkoxides include aluminum triisopropoxide and aluminum triethoxide. That can be S. However, it is not limited to these.
  • Colloidal silica can be easily obtained by hydrolyzing tetraalkoxysilane (tetraalkyl silicate) based on a known technique. It is also commercially available. For example, tetraethyl silicate is dropped into a mixture of ethyl alcohol and water containing a catalyst such as hydrochloric acid, nitric acid, and ammonia, and hydrolyzed.After the hydrolysis, ethyl alcohol and the catalyst are removed, for example, under vacuum. Thereby, an aqueous dispersion of colloidal silica is obtained. The particle size of the colloidal silica is as small as on the order of microns or less. Colloidal silica has silanol groups on the surface.
  • the amount of colloidal silica in the aqueous dispersion of colloidal silica is about 10 to 60% by weight. This amount can be appropriately adjusted based on the amount of water used at the time of hydrolysis. After hydrolysis of the silicate, it is prepared by adding water. [0028] A mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, and a metal oxide is applied to a radiator for an integrated circuit such as a CPU to form a film. Immediately before forming a film, a solution of alkoxysilane and an aqueous dispersion of colloidal silica are first mixed, and a metal oxide powder or the like is added to the mixed solution to obtain a suspension.
  • an alkoxysilane solution a colloidal silica aqueous dispersion, a metal oxide, and the like may be mixed. These mixtures form a suspension. This suspension is applied to a radiator for integrated circuits such as a CPU to form a film.
  • an alkali metal salt of silicic acid can be used.
  • the alkali metal salt of silicic acid specifically, sodium silicate, potassium silicate and lithium silicate can be used. Since silicates such as sodium silicate, potassium silicate and lithium silicate are supplied as an aqueous solution, a metal oxide and kaolin nitride are added to and mixed with an aqueous solution of an alkali metal salt of silicate, and if necessary, mixed.
  • sodium silicate, potassium silicate and lithium silicate can be used, and it is preferable to use a mixture of both sodium silicate and potassium silicate.
  • the ratio of sodium silicate to potassium silicate is preferably 0.5 to 7 (solid content basis) with respect to 1 potassium silicate. This is because if the amount of sodium silicate is large, it is difficult to remove water from the film, that is, it is difficult to dry and form the film, and if the amount of potassium silicate is large, the film form performance is deteriorated. It is preferable to use potassium in combination.
  • an emulsion containing a silicone resin can be used for forming a film.
  • silicon oxide, aluminum oxide, force oil, etc. are mixed with an emulsion containing a silicone resin, and water is added as needed to form a suspension.
  • This suspension is used for integrated circuits such as CPUs. Apply to radiator to form film.
  • the proportion of the silicone resin emulsion in the suspension is preferably 3070% by weight.
  • the reason is that if the amount of the silicone resin emulsion is small, the stability of the film decreases, and at the same time, the adhesion of the film to a heat sink for integrated circuits such as a CPU decreases. is there. If the amount of the silicone resin emulsion is too large, the amount of the metal oxide and the like becomes relatively small, and the heat radiation effect is reduced.
  • the silicone resin emulsion is an emulsion in which a water-insoluble silicone resin is mainly dispersed in water.
  • Silicone resin emulsions can be obtained roughly by the following five methods. 1) A method of emulsifying an alkylsilicone conjugate or its partially hydrolyzed / condensed product using various surfactants to obtain an aqueous emulsion (Japanese Patent Application Laid-Open Nos. 58-213046 and 62-197369) And JP-A-3-115485 and JP-A-3-200793.
  • An emulsion obtained by emulsion-polymerizing a polymerizable butyl monomer can be further mixed with this emulsion (Japanese Patent Application Laid-Open No. 6-344665). 2) An alkylsilane compound is added to water without using a surfactant. Emulsion polymerization of a radically polymerizable vinyl monomer in the presence of a water-soluble polymer obtained by decomposition (JP-A-8-60098).
  • a silicone compound is added to the emulsion particles, followed by hydrolysis and condensation, and a silicone resin is introduced into the emulsion particles (JP-A-3-45628, JP-A-8-3409); 5) alkyl containing a polymerizable functional group It can be obtained by a method such as a method of emulsion-polymerizing silicate together with a radical polymerizable biel monomer to prepare an emulsion (Japanese Patent Application Laid-Open Nos. 61-9463 and 8-27347). It can also be obtained as a commercial product.
  • JP-B-63-54314 describes a far-infrared radiation paint in which alumina alone or a mixture of alumina and an inorganic oxide is dispersed in a silicone resin binder.
  • the silicone resin used as the emulsion has excellent heat resistance, adhesiveness, and electrical properties.
  • the silicone resin in the emulsion state serves as a binder for metal oxides and nitrides, and also serves to adhere these metal oxides and nitrides to the coating surface to form a stable and strong coating. .
  • the emulsion containing the silicone resin obtained by any of the above methods is made to contain a metal oxide.
  • a powder such as a metal oxide is added to and mixed with the emulsion containing the silicone resin to obtain an emulsion suspension. Since water originally exists in an emulsion containing a silicone resin, a metal oxide or the like is mixed in a suspended state with the water to obtain an emulsion suspension containing the silicone resin and the metal oxide. it can.
  • the viscosity of the emulsion suspension may increase.
  • the viscosity of the emulsion suspension is preferably adjusted by appropriately adding water.
  • the emulsion containing the silicone resin may have a large water content, and the viscosity of the emulsion suspension containing a metal oxide or the like may be low.
  • the viscosity can be adjusted by appropriately adding a thickener.
  • FIG. 11 and FIG. 3 show an embodiment of a radiator for an integrated circuit such as a CPU according to the present invention.
  • a member denoted by reference numeral 1 is a CPU to be radiated, and a radiator 3 is arranged on an upper side of the CPU 1.
  • the CPU radiator 3 includes a heat sink body 7, a fan motor 5, and a fan motor 5 in which a number of flat fins 10 are arranged in parallel. And a mounting cover 6 for mounting. As shown in FIG. 1, the CPU radiator 3 is connected to the CPU 1 via a thermally conductive grease (jewel) 2. In order to measure the temperature of the CPU 1, a thermocouple holding plate 4 holding a thermocouple 11 is provided between the CPU and the jewel 2.
  • the mounting cover 6 has a role of covering the heat sink body 7 and connecting the fan motor 5 to the heat sink body 7.
  • the mounting cover 6 is provided with a pair of opposing side surfaces 8.
  • the side surface 8 is arranged parallel to the fins 10 of the heat sink body 7. Since the surface perpendicular to the fins 10 serves as a passage for the air for cooling the fins, no side surface is arranged on the surface perpendicular to the fins 10.
  • a pair of end faces 9 are arranged on the mounting cover 6 so as to be opposed to each other in order to promote fixing of the fan motor 5.
  • the pair of end surfaces 9 are erected on the side surface on which the side surface 8 is not provided. It should be noted that the side surface 8 may not always be provided if necessary.
  • a plurality of through-holes are formed in the side surface 8, but these through-holes need not necessarily be formed. You don't have to open it.
  • the radiator 3 is not necessarily provided with the force fan motor 5 which has been described to include the fins 10 and the fan motor 5.
  • a film may be formed on the outer surface of the mounting cover 6 by providing only the fins 10. At this time, if the mounting cover 6 does not have the side surface 8, a film can be formed on the outer surface of the fin 10 located on the outermost layer of the fin 10 of the heat sink body 7.
  • a feature of the present invention is that a film is formed on the outer surface of the mounting cover 6 in the heatsink 3 for CPU.
  • the outer surfaces are the side surface 8 and the end surface 9.
  • a film is formed on these side surfaces 8 and end surfaces 9. It is needless to say that the side surface 8 and the end surface 9 each have two surfaces, so that each of the two surfaces forms a film.
  • a film is formed on the outer surfaces of the two fins 10 located on both sides of the outermost layer of the fins 10 of the heat sink body 7. Even when the side surface 8 is present, a coating may be provided on the outermost fin 10, but in this case, the effect of the coating provided on the fin 10 is not significant.
  • the location where the film is formed is not limited to the side face 8 and the end face 9. This is because the side surface 8 and the end surface 9 differ depending on the shape of the mounting cover 6.
  • a copper fin 10 constitutes a heat sink body 7, and an aluminum or steel mounting cover 6 is arranged so as to surround the periphery thereof.
  • the fan motor 5 is provided above the mounting cover 6.
  • the heat generated by the CUP 1 is conducted to the heat sink body 7 and is radiated from the fins 10.
  • the high temperature air staying in the vicinity of the fins 10 is discharged to the outside by the fan motor 5 to prevent the temperature of the CPU 1 from rising.
  • the film is a mixture of an alkoxysilane solution, an aqueous dispersion of colloidanoresili force, a mixture of silicon oxide powder, aluminum oxide powder and kaolin powder.
  • the film is formed by an aqueous solution of sodium silicate and potassium silicate, It is a film formed from a mixture of silicon oxide powder, aluminum oxide powder, and kaolin powder, and a film formed from a mixture of emulsion containing silicone resin, silicon oxide powder, aluminum oxide powder, and kaolin powder.
  • % Of an acidic colloidal silica aqueous dispersion Take 700 parts by weight of this mixture 110 parts by weight of phosphorus, 435 parts by weight of silicon oxide powder, 190 parts by weight of aluminum oxide powder and 120 parts by weight of dinoreconium oxide powder were added and mixed by stirring to obtain a suspension. This suspension was applied to the entire side surface 8 and the end surface 9 of the mounting cover 6 and air-dried in the air. Film thickness is 52 xm
  • the degree of temperature rise of the CPU 1 was measured using the CPU radiator 3 to which the mounting cover 6 on which the above-mentioned film was formed was attached.
  • the film was formed on the side surface 8 and the end surface 9 of the mounting cover 6 in FIGS. In each case, a film was formed on both front and rear surfaces.
  • the fan motor 5 was mounted on the mounting cover 6, and the radiator 3 for the CPU was assembled.
  • the CPU radiator 3 was connected to the CPU 1 via the thermocouple holding plate 4 and the jewel 2, as shown in FIG.
  • CPU1 equipped with a heatsink for CPU3 was mounted on a commercially available motherboard for temperature measurement and placed in a normal PC housing. A load of 75W was applied to CPU1 to track the temperature rise of CPU1.
  • FIG. 4 shows a time curve of the temperature rise.
  • symbol A indicates the temperature rise curve of CPU 1 when no film is formed on the outer surface of mounting cover 6, and symbol B indicates that a film is formed on side surface 8 and end surface 9 which are the outer surface of mounting cover 6.
  • the figure shows the temperature rise curve of CPU1 in the case of this. Eight minutes after the start of the measurement, a temperature difference of about 15 ° C was generated between the presence and absence of the film, and the effect of preventing the rise of the temperature of the film was confirmed because the temperature of CPU1 was low when the film was formed.
  • this suspension was applied to the entire side surface 8 and the end surface 9 of the mounting cover 6 to form a film.
  • the film thickness after air drying in the atmosphere was 49 zm. After drying, it was heat-treated at 100 ° C for 1 hour.
  • the mounting cover 6 was attached to the CPU 1 in the same manner as in the specific example 1, and the degree of temperature rise of the CPU 1 was measured.
  • the temperature measurement results were almost the same as those shown in FIG. After 30 minutes, when the temperature reaches an equilibrium state, the temperature of CPU1 when a film is formed is 63 ° C, and the temperature of CPU1 without a film is approximately 77 ° C and approximately 14 ° C. Temperature difference. That is, the temperature of the CPU 1 when the film is formed is low, and the effect of preventing the temperature of the film from rising is recognized.
  • the product "P @ LON_MF_56" manufactured by Shin-Etsu Chemical Co., Ltd. was used as the emulsion containing silicone resin.
  • 12 parts by weight of a force absorber To 50.8 parts by weight of the emulsion containing the silicone resin, 12 parts by weight of a force absorber, 8.2 parts by weight of silicon oxide, 12.3 parts by weight of aluminum oxide, 6.2 parts by weight of titanium oxide, and 10.5 parts by weight of zirconium oxide.
  • the mixture was added and mixed to obtain an emulsion suspension.
  • This emulsion suspension was applied to the entire side surface 8 and the end surface 9 of the mounting cover 6 to form a film.
  • the film thickness after air drying in the atmosphere was 51 ⁇ . After drying, heat treatment was performed at 100 ° C. for 1 hour.
  • the degree of temperature rise of CPU1 was measured. After 30 minutes, when the temperature reaches an equilibrium state, the temperature of CPU1 when a film is formed is 64 ° C, and the temperature of CPU1 when a film is not formed is about 78 ° C and about 14 ° C. A temperature difference occurred. In other words, the temperature of the CPU 1 when the film was formed was low, and the effect of preventing the temperature of the film from rising was recognized.
  • the film of the present invention has an effect of suppressing a temperature rise of the CPU. Suppressing the temperature rise of the CPU facilitates miniaturization of electronic devices and improves the reliability of the CPU.
  • the CPU 1 is illustrated as a heat radiation target.
  • the embodiments of the present invention can be applied to, but not limited to, large-scale integrated circuits such as digital signal processors.
  • the radiator for an integrated circuit such as a CPU according to the present invention can suppress a rise in temperature, and can contribute to miniaturization of an integrated circuit such as a CPU.
  • FIG. 1 is an explanatory side view showing an embodiment of an integrated circuit radiator such as a CPU according to the present invention.
  • FIG. 2 is an exploded view of the radiator shown in FIG. 1.
  • FIG. 3 is an assembly view of the radiator shown in FIG. 2.
  • FIG. 4 is a graph of a measurement result obtained by measuring a temperature rise of a radiator according to the present invention over time.

Abstract

A heatsink for integrated circuits such as CPUs is disclosed which comprises a coating film with high emissivity. The coating film is formed by applying a suspension which is obtained by dispersing a silicon oxide powder, an aluminum oxide powder and a kaolin powder into a binder containing an alkoxysilane, a binder containing an aqueous sodium silicate solution and an aqueous potassium silicate solution, or a binder containing a silicone emulsion. Such a coating film is preferably formed on the outer surface of a mounting cover (6) for fixing a fan motor (5) to a heatsink main body (7) composed of fins (10) and/or respective outer side of the outermost fins. The coating film preferably has a thickness of 10-100 μm.

Description

明 細 書  Specification
CPUなどの集積回路用放熱器  Heat sink for integrated circuits such as CPU
技術分野  Technical field
[0001] 本発明は、 CPUなどの集積回路用放熱器に関し、更に詳しくは、放熱性に優れた CPUなどの集積回路用の放熱器に関するものである。  The present invention relates to a radiator for an integrated circuit such as a CPU, and more particularly, to a radiator for an integrated circuit such as a CPU having excellent heat radiation.
背景技術  Background art
[0002] 近年、パソコン、携帯端末 PC、プリンタ、 FAX器、携帯電話等の電子機器類の高 密度化に伴い、機器内部に用いられる各パーツ部品の小型化が必須となってきてい る。 OA機器以外の精密工作機械、産業用小型ロボットといった FA機器関連等の分 野においても、電子化技術と半導体集積化技術開発のために部品の小型化が加速 している。  [0002] In recent years, as electronic devices such as personal computers, mobile terminals PCs, printers, fax machines, and mobile phones have increased in density, it has become essential to reduce the size of each part used inside the devices. In fields other than OA equipment, such as precision machine tools other than OA equipment and FA equipment such as industrial small robots, the miniaturization of parts is accelerating due to the development of computerization technology and semiconductor integration technology.
[0003] 各種電子機器の小型化に際しては、半導体等の内部素子及び電子回路部の発熱 による部品や機器の温度上昇が大きな問題となっている。機器の小型化によって、 温度上昇が一段と高くなり、この温度上昇が機器の信頼性や寿命に大きく影響する ようになってきている。特に、 CPUの発熱量は大きいので、 CPUが発生する熱を如 何に発散させるかが重要な課題となっている。  [0003] When miniaturizing various electronic devices, a rise in the temperature of components and devices due to heat generated by internal elements such as semiconductors and electronic circuit portions has become a major problem. With the miniaturization of equipment, the temperature rise has become even higher, and this rise in temperature has been greatly affecting the reliability and life of the equipment. In particular, since the heat generated by the CPU is large, it is important to dissipate the heat generated by the CPU.
[0004] CPUの発熱問題を解決するために、機器装置内部の温度上昇を抑える工夫が色 々為されている。従来、放熱フィン及び冷却ファンを設けて熱を外部に発散させるこ とが広く行われている。し力、しながら、最早これだけでは不十分な状況に立ち至って いる。  [0004] In order to solve the problem of CPU heat generation, various devices have been devised to suppress a rise in temperature inside the device. Conventionally, it has been widely practiced to dissipate heat to the outside by providing a radiation fin and a cooling fan. However, this is no longer enough.
[0005] CPU冷却装置として、ソケットにおける CPU取付部の後側に設けられた畝状突出 部の上に、吐出し口を前方に向けて配置されたファンを備えたもの力 特許文献 1に 開示されている。発熱部品、発熱部品と冷媒とで熱交換を行い発熱部品を冷却する 冷却器、冷媒カ 熱を取り除くファンを設け、冷媒をこららの間を循環させて、発部品 を冷却する冷却装置が特許文献 2に開示されている。また、特許文献 3には、塗料中 に浮力を有する中空体を含有せしめ、素地面から塗膜表面に向かって中空体の密 度が粗力 密になるようにして、熱伝導率が表面層で最も小さくなるように熱伝導率 に勾配を賦与した皮膜を形成せしめ、 CPUの発生した熱を効果的に放熱することが 開示されている。 [0005] Patent Document 1 discloses a CPU cooling device including a fan having a discharge port directed forward on a ridge-shaped protrusion provided on a rear side of a CPU mounting portion of a socket. Have been. A cooling device that cools the heat-generating component by providing a cooler that cools the heat-generating component by exchanging heat between the heat-generating component and the heat-generating component and the refrigerant, cools the heat-generating component by circulating the refrigerant between them, is a patent. It is disclosed in reference 2. Further, Patent Document 3 discloses that a hollow body having buoyancy is contained in a paint so that the density of the hollow body becomes coarse from the base surface to the surface of the coating film so that the thermal conductivity is reduced. Thermal conductivity to minimize It is disclosed that a film having a gradient imparted thereto is formed to effectively radiate the heat generated by the CPU.
[0006] し力しながら、特許文献 1のようにファンモータやヒートシンクのフィンの構造や設置 位置を変えただけでは、 CPUの放熱効果は若干は改善されるが、基本的には不十 分であり、特許文献 2の様に冷媒を循環させる方法は、装置が大型化合物の方向に あり、小型化の潮流に逆行するものである。また、特許文献 3の塗膜は、逆に熱伝導 量を抑えることになり逆効果になる問題がある。  [0006] While merely changing the structure and installation position of the fins of the fan motor and heat sink as described in Patent Document 1, the heat radiation effect of the CPU is slightly improved, but is basically insufficient. In the method of circulating a refrigerant as disclosed in Patent Document 2, the device is in the direction of a large compound, and goes against the tide of miniaturization. On the other hand, the coating film of Patent Document 3 has a problem that the amount of heat conduction is suppressed and the effect is adversely affected.
[0007] 本発明は、設備的にも大きく手を加えることなぐ低コストで、放熱性効果の大きい C PUなどの集積回路用放熱器を提供しょうとするものである。本発明者等は、特定の コーティング材で皮膜を形成することにより、 CPU用などの放熱器の放熱効果が向 上することを見出し、本発明を完成させたのである。ここで放熱性というのは、 CPUな どに蓄積した熱を外部に放出し、 CPUなどの集積回路及びこれらの回路を使用する 電子機器の温度上昇を抑える特性をレ、う。  An object of the present invention is to provide a heat radiator for an integrated circuit such as a CPU and the like which has a large heat radiation effect at a low cost without requiring a great deal of equipment. The present inventors have found that forming a film with a specific coating material improves the heat radiation effect of a radiator for CPUs and the like, and have completed the present invention. Here, the term “heat dissipation” refers to the characteristics of suppressing the temperature rise of integrated circuits such as CPUs and electronic devices that use these circuits by releasing the heat accumulated in the CPU and the like to the outside.
[0008] 本発明は、 CPUなどの集積回路用放熱器に特定の皮膜を形成せしめ、 CPUなど の集積回路に蓄積された熱を放射することにより、 CPUなどの集積回路自身の温度 上昇を抑えるとともに、その CPUなどの集積回路を使用する機器の温度上昇を抑え るものである。 CPUなどの集積回路、機器、部品等の温度上昇を抑えることにより、 機器の小型化を容易にすることができる。ここで CPUなどの集積回路用放熱器という のは、 CPUが発生する熱を外部に発散させて、 CPUなどの集積回路の温度上昇を 防止するための装置、機器をいう。放熱器は、一般的には、ヒートシンクとも呼ばれて いる。  The present invention suppresses a rise in temperature of an integrated circuit such as a CPU by forming a specific film on a radiator for an integrated circuit such as a CPU and radiating heat accumulated in the integrated circuit such as the CPU. At the same time, it suppresses the temperature rise of devices that use the integrated circuit such as the CPU. By minimizing the temperature rise of integrated circuits such as CPUs, equipment, components, etc., it is possible to easily reduce the size of equipment. Here, a radiator for an integrated circuit such as a CPU refers to a device or device for dissipating heat generated by the CPU to the outside to prevent a temperature rise of the integrated circuit such as the CPU. A radiator is also generally called a heat sink.
特許文献 1 :特開 2002 - 190562号公報  Patent Document 1: JP 2002-190562 A
特許文献 2:特開 2002 - 368471号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-368471
特許文献 3:特開 2002 - 309180号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2002-309180
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems the invention is trying to solve
[0009] 本発明の要旨は、アルコキシシランの溶液、コロイダルシリカの水分散液、酸化珪 素粉末、酸化アルミニウム粉末及びカオリン粉末との混合物から形成せしめた皮膜を 有する CPUなどの集積回路用放熱器である。そして、アルコキシシランが、ジアルコ キシシラン、トリアルコキシシラン及びテトラアルコキシシランの少なくとも一種を含有 すること力 Sできる。更に、チタンアルコキシド及び/又はアルミニウムアルコキシドを更 に混合することができる。 [0009] The gist of the present invention is to provide a film formed from a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder, and kaolin powder. It is a radiator for integrated circuits such as CPUs. Further, the alkoxysilane can contain at least one of dialkoxysilane, trialkoxysilane and tetraalkoxysilane. Furthermore, a titanium alkoxide and / or an aluminum alkoxide can be further mixed.
[0010] また、珪酸ナトリウム及び珪酸カリウムの水溶液、酸化珪素粉末、酸化アルミニウム 粉末並びにカオリン粉末との混合物から形成せしめた皮膜を有する CPUなどの集積 回路用放熱器である。  [0010] Further, the present invention is a radiator for an integrated circuit such as a CPU having a film formed from a mixture of an aqueous solution of sodium silicate and potassium silicate, silicon oxide powder, aluminum oxide powder, and kaolin powder.
[0011] 更に、シリコーン樹脂を含むェマルジヨン、酸化珪素粉末、酸化アルミニウム粉末及 びカオリン粉末との混合物から形成せしめた皮膜を有する CPUなどの集積回路用放 熱器である。  [0011] Further, the present invention relates to a heat sink for an integrated circuit such as a CPU having a film formed from a mixture of an emulsion containing a silicone resin, silicon oxide powder, aluminum oxide powder, and kaolin powder.
[0012] 放熱器がフィン型ヒートシンクを備え、ヒートシンクの取り付けカバーの外表面及び [0012] The radiator includes a fin-type heat sink, an outer surface of a mounting cover of the heat sink, and
/又はヒートシンク最外側に位置するフィンの外面に皮膜を形成せしめたことを特徴 とする CPUなどの集積回路用放熱器であり、また、放熱器がフィン型ヒートシンク及 びファンモータを備え、ファンモータをヒートシンクに取り付ける取り付けカバーの外 表面及び/又はヒートシンク最外側に位置するフィンの外面に皮膜を形成せしめたA radiator for integrated circuits such as CPUs, characterized in that a film is formed on the outer surface of the fin located on the outermost side of the heat sink, and the radiator includes a fin-type heat sink and a fan motor. A coating on the outer surface of the mounting cover and / or the outer surface of the fin located on the outermost side of the heat sink.
CPUなどの集積回路用放熱器である。そして、皮膜の厚みは、 10— 100 μ ΐηとする のが好ましい。 This is a radiator for integrated circuits such as CPU. The thickness of the film is preferably 10-100 μ—η.
[0013] 本発明における皮膜は、アルコキシシランの溶液、コロイダルシリカの水分散液、酸 化珪素粉末、酸化アルミニウム粉末及びカオリン粉末との混合物から形成せしめた 皮膜、珪酸ナトリウムの水溶液、珪酸カリウムの水溶液、酸化珪素粉末、酸化アルミ二 ゥム粉末及びカオリン粉末との混合物から形成せしめた皮膜又はシリコーン樹脂を含 むェマルジヨン、酸化珪素粉末、酸化アルミニウム粉末及びカオリン粉末との混合物 力、ら形成せしめたものである。即ち、酸化珪素粉末、酸化アルミニウム粉末及びカオ リン粉末を、アルコキシシランを含むバインダー、珪酸ナトリウム水溶液と珪酸カリウム 水溶液を含むバインダー又はシリコーンェマルジヨンを含むバインダーに分散させ懸 濁液となし、この懸濁液を CPUなどの集積回路用放熱器に塗布し形成せしめた皮膜 である。  [0013] The film in the present invention is a film formed from a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder, an aqueous solution of sodium silicate, and an aqueous solution of potassium silicate. A film formed from a mixture of, silicon oxide powder, aluminum oxide powder, and kaolin powder or a mixture containing silicone resin, emulsion containing silicon resin, silicon oxide powder, aluminum oxide powder, and kaolin powder. It is. That is, silicon oxide powder, aluminum oxide powder and kaolin powder are dispersed in a binder containing an alkoxysilane, a binder containing an aqueous solution of sodium silicate and potassium silicate, or a binder containing a silicone emulsion to form a suspension. This film is formed by applying a turbid liquid to a radiator for integrated circuits such as CPU.
[0014] 皮膜の構成成分として、酸化珪素、酸化アルミニウム及びカオリンの他にも、各種の 金属酸化物や窒化物を使用することができる。即ち、金属酸化物としては酸化ジルコ 二ゥム、酸化チタン、酸化錫、酸化銅、酸化鉄、酸化コバルト、酸化マグネシウム、酸 化マンガン、酸化亜鉛、酸化ゲルマニウム、酸化アンチモン、酸化硼素、酸化バリゥ ム、酸化ビスマス、酸化カルシウム、酸化ストロンチウム等の金属酸化物の少なくとも 1 種を含有することができる。金属酸化物以外に、窒化硼素、窒化アルミニウム、窒化 ジノレコニゥム、窒化錫、窒化ストロンチウム、窒化チタン、窒化バリウムゃ窒化珪素等 の窒化物を含有することができる。 [0014] In addition to silicon oxide, aluminum oxide and kaolin, various constituents of the film include Metal oxides and nitrides can be used. That is, as metal oxides, zirconium oxide, titanium oxide, tin oxide, copper oxide, iron oxide, cobalt oxide, magnesium oxide, manganese oxide, zinc oxide, germanium oxide, antimony oxide, boron oxide, and barrier oxide And at least one metal oxide such as bismuth oxide, calcium oxide and strontium oxide. In addition to metal oxides, nitrides such as boron nitride, aluminum nitride, dinoleconium nitride, tin nitride, strontium nitride, titanium nitride, and barium nitride / silicon nitride can be contained.
[0015] 皮膜中に含有させる金属酸化物、カオリンや窒化物等は、その粒径を 15 x m— 10 Onmとするのがよレ、。より好ましくは、 10 z m— 80nmの粒径のものを使用する。この 粒径のものを使用することにより、皮膜の表面が滑らかで綺麗になるとともに放熱の 効率が高まる。  [0015] The metal oxide, kaolin, nitride, and the like contained in the film should preferably have a particle size of 15 x m-10 Onm. More preferably, those having a particle size of 10 zm-80 nm are used. The use of particles with this particle size makes the surface of the film smooth and clean and increases the efficiency of heat dissipation.
[0016] カオリンは、重量でアルコキシシラン、珪酸ナトリウムと珪酸カリウムを合わせたもの 又はシリコーン樹脂 1に対して 0. 1— 20添カ卩することが好ましい。また、金属酸化物 の添加量は、重量でアルコキシシラン、珪酸ナトリウムと珪酸カリウムとを併せたもの 又はシリコーン樹脂 1に対して 0. 5— 70添加することが好ましい。これは、皮膜形成 性を維持しながら、高い放熱性能を保持するためである。  [0016] Kaolin is preferably a mixture of alkoxysilane, sodium silicate and potassium silicate by weight, or 0.1-20 addition to silicone resin 1. The amount of the metal oxide added is preferably 0.5 to 70 parts by weight of alkoxysilane, a combination of sodium silicate and potassium silicate, or 1 part of the silicone resin. This is to maintain high heat dissipation performance while maintaining film forming properties.
[0017] 既に述べたように、酸化珪素粉末、酸化アルミニウム粉末及びカオリン粉末等をァ ルコキシシランを含むバインダー、珪酸ナトリウム水溶液と珪酸カリウム水溶液を含む バインダー又はシリコーンェマルジヨンを含むバインダーに分散させ懸濁液となし、こ の懸濁液を CPUなどの集積回路用放熱器に塗布し皮膜を形成せしめる。このとき、 懸濁液の粘度が高くなるようであれば、必要に応じて、溶剤や水を添加して、粘度を 調整する。このようにして得た懸濁液を対象物に塗布することにより、皮膜を得ること ができる。懸濁液を対象物に筆塗り、スプレー、ローラー、印刷等により塗布し、常温 又は加温にて乾燥後、更に、必要に応じて、 80°C 300°Cで熱処理することにより、 金属表面との密着度の高い皮膜を得ることができる。  As described above, silicon oxide powder, aluminum oxide powder, kaolin powder and the like are dispersed and suspended in a binder containing alkoxysilane, a binder containing an aqueous solution of sodium silicate and potassium silicate, or a binder containing silicone emulsion. This suspension is applied to a radiator for integrated circuits such as CPU to form a film. At this time, if the viscosity of the suspension increases, adjust the viscosity by adding a solvent or water as necessary. By applying the suspension thus obtained to an object, a film can be obtained. The suspension is applied to the object with a brush, spray, roller, printing, etc., dried at room temperature or warming, and then, if necessary, heat-treated at 80 ° C or 300 ° C to obtain a metal surface. A film having a high degree of adhesion to the film can be obtained.
[0018] 皮膜は、適度の厚みをもって CPUなどの集積回路用放熱器に形成せしめる。本皮 膜の膜厚は、或る程度の厚さがないと放熱効果は充分に発現しないが、逆に厚さが 大きすぎると皮膜に蓄熱作用が起こり、放熱効果が不十分になる。本発明者らの実 験によると膜厚は 100 /i m以下が好ましぐ更に好ましくは 10 μ ΐη— 100 m、特に 好ましくは 30 μ m— 80 μ mである。 The film is formed on an integrated circuit radiator such as a CPU with an appropriate thickness. Unless the thickness of the present film is a certain thickness, the heat radiation effect is not sufficiently exhibited. On the contrary, if the thickness is too large, a heat storage effect occurs in the film, and the heat radiation effect becomes insufficient. Inventors' fruit According to experiments, the film thickness is preferably 100 / im or less, more preferably 10 μΐη-100 m, and particularly preferably 30 μm-80 μm.
[0019] 本発明における皮膜は、優れた抗ヒートショック性等の耐熱性、放熱性、遮熱性等 の特性を有する。また、蓄熱したエネルギーを遠赤外線として空気中に放射する能 力が高ぐ放射率 0. 95という高い数値を示す。内部に蓄積した熱を遠赤外線という 電磁波に変換して効率よく放射し、物体の温度上昇を抑えることができる。効率良く 遠赤外線を放射するということは、内部に蓄積した熱を遠赤外線という電磁波に変換 して効率よく放熱することを意味し、結果として温度上昇を抑える効果をもたらす。こ れは空気流という手段を用いずに効率よく放熱するという結果を導く。従来遠赤外線 の放射能力が高いとされている物質 (例えば、ゼォライト、コージヱライト、アパタイト、 ドロマイト等)の放射特性を見ると、 4ミクロン乃至 14ミクロンの波長全ての領域にわた つて高い遠赤外線の放射特性をもつわけではなぐ波長によって放射率に相違があ る。多くの場合、 9ミクロン波長前後の鎮域で放射率が下がる傾向が見られる。一方、 本発明が提供する組成物の放射する遠赤外線は 4ミクロン乃至 14ミクロン波長の全 ての領域にわたって 0. 9以上の放射率を維持し、非常に放射効率の高いものとなつ ている。 [0019] The coating film of the present invention has excellent heat resistance such as heat shock resistance, heat dissipation, heat shielding and the like. It also has a high emissivity of 0.95, which has a high ability to radiate the stored energy as far-infrared rays into the air. The heat stored inside can be converted into far-infrared electromagnetic waves, which can be radiated efficiently, thereby suppressing the temperature rise of objects. Efficiently radiating far-infrared rays means converting the heat accumulated inside into far-infrared rays and radiating heat efficiently, resulting in the effect of suppressing temperature rise. This leads to the result that heat is dissipated efficiently without using a means of air flow. Looking at the radiation characteristics of substances that have conventionally been considered to have a high far-infrared radiation capability (eg, zeolite, cordierite, apatite, dolomite, etc.) The emissivity differs depending on the wavelength that does not have characteristics. In most cases, the emissivity tends to decrease in the area around 9 microns wavelength. On the other hand, far infrared rays emitted from the composition provided by the present invention maintain an emissivity of 0.9 or more over the entire range of wavelengths from 4 to 14 microns, and have extremely high radiation efficiency.
[0020] アルコキシシランの溶液、コロイダルシリカの水分散液、酸化珪素、酸化アルミニゥ ム、カオリン等の混合物から形成せしめた皮膜は、基本的には、アルコキシシランの 加水分解 ·縮合により形成されるものである。即ち、アルコキシシランが加水分解をし てコロイダルシリカの表面に存在するシラン基とも結合しながら、皮膜を形成する。ァ ルコキシシランの加水分解によって皮膜を形成することは、例えば、特開平 1一 2231 91号公報、特開昭 63—207868号公報、特開平 3— 47883号公報等に記載されて いる。  A film formed from a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide, aluminum oxide, kaolin and the like is basically formed by hydrolysis and condensation of alkoxysilane. It is. That is, the alkoxysilane hydrolyzes and binds to the silane groups present on the surface of the colloidal silica, forming a film. The formation of a film by hydrolysis of alkoxysilane is described, for example, in JP-A-11-223191, JP-A-63-207868, JP-A-3-47883 and the like.
[0021] 前記特開平 1—223191号公報、特開昭 63—207868号公報、特開平 3— 47883 号公報等には、遠赤外線放射性に優れたコーティング組成物が記載されている。し 力 ながら、前記コーティング組成物は、ヒータや加熱器等において、加熱効果を高 めることを目的にしており、本発明は、温度の高い物体から熱を放出し、温度上昇を 抑えようとするもので、その目的及び効果の点で、前記特許文献記載の発明とは異 なるものである。 [0021] The above-mentioned JP-A-1-223191, JP-A-63-207868, JP-A-3-47883 and the like describe coating compositions excellent in far-infrared radiation. However, the purpose of the coating composition is to enhance the heating effect in a heater, a heater, or the like, and the present invention releases heat from an object having a high temperature to suppress the temperature rise. In terms of the purpose and effect, the invention is different from the invention described in the patent document. It becomes.
[0022] アルコキシシランは水が存在すると加水分解 ·縮合が起こるので、使用直前までは 水の存在しない状態に保つのがよい。即ち、水溶性溶媒の溶液として保存しておく のである。使用時に、アルコキシシランの水溶性溶媒溶液、コロイダルシリカの水分 散液、酸化珪素、酸化アルミニウム、カオリン等を混合し、 CPUなどの集積回路用放 熱器に塗布し皮膜を形成せしめる。コロイダルシリカの水分散液に存在する水の作 用を受けて、アルコキシシランが加水分解 ·縮合し皮膜を形成する。  [0022] Since alkoxysilane undergoes hydrolysis / condensation in the presence of water, it is preferable that the alkoxysilane be kept free of water until immediately before use. That is, it is stored as a solution in a water-soluble solvent. At the time of use, a water-soluble solvent solution of alkoxysilane, water dispersion of colloidal silica, silicon oxide, aluminum oxide, kaolin, etc. are mixed and applied to a heat sink for integrated circuits such as CPU to form a film. Under the action of water present in the aqueous dispersion of colloidal silica, alkoxysilane is hydrolyzed and condensed to form a film.
[0023] アルコキシシラン溶液は、使用直前に、コロイダルシリカの水分散液と金属酸化物 粉末等と混合される。アルコキシシラン溶液とコロイダルシリカの水分散液との混合割 合は、コロイダルシリカ(固形分)が、アルコキシシランに対して重量比で、 0. 01 1と なるように混合することが好ましい。コロイダルシリカ水分散液の水は、アルコキシシラ ンの加水分解に寄与する。同時に、アルコキシシランがその加水分解の過程でコロイ ダルシリカのシラノール基と反応しコロイダルシリカを抱き込んだ形で皮膜を形成する ことができる。コロイダルシリカは、膜形性、膜の保持性及び放熱性、遮熱性に寄与 する。  [0023] Immediately before use, the alkoxysilane solution is mixed with an aqueous dispersion of colloidal silica, a metal oxide powder, and the like. The mixing ratio of the alkoxysilane solution and the aqueous dispersion of colloidal silica is preferably such that the weight ratio of colloidal silica (solid content) to alkoxysilane is 0.011. The water in the aqueous colloidal silica dispersion contributes to the hydrolysis of the alkoxysilane. At the same time, the alkoxysilane reacts with the silanol groups of the colloidal silica during the hydrolysis process to form a film in a form that embraces the colloidal silica. Colloidal silica contributes to film formability, film retention, heat dissipation, and heat shielding.
[0024] また、チタンアルコキシド及び/又はアルミニウムアルコキシドを混合させることがで きる。チタンアルコキシド及び/又はアルミニウムアルコキシドは、単体として使用して もよレ、し、溶液として使用することもできる。溶液として使用する場合には、チタンァノレ コキシド及び/又はアルミニウムアルコキシドの有機溶媒の溶液状態で使用してもよ いし、アルコキシシランの溶液に更にチタンアルコキシド及び/又はアルミニウムアル コキシドを混合してもよレ、。そして、チタンアルコキシド及び/又はアルミニウムアルコ キシドは、アルコキシシランの珪素原子に対してチタン及び Z又はアルミニウム原子 が 0. 01-0. 5の割合で添加されることが好ましレ、。チタンアルコキシド及び Z又は アルミニウムアルコキシドは、水によりアルコキシシランとともに共加水分解し、チタン 及び又はアルミニウムを主鎖に含む皮膜を形成する。  Further, a titanium alkoxide and / or an aluminum alkoxide can be mixed. The titanium alkoxide and / or the aluminum alkoxide may be used as a simple substance, or may be used as a solution. When used as a solution, titanium alkoxide and / or aluminum alkoxide may be used as a solution in an organic solvent, or an alkoxysilane solution may be further mixed with titanium alkoxide and / or aluminum alkoxide. ,. The titanium alkoxide and / or aluminum alkoxide is preferably added in a ratio of 0.01 to 0.5 with respect to the silicon atom of the alkoxysilane. The titanium alkoxide and the Z or aluminum alkoxide co-hydrolyze with the alkoxysilane with water to form a film containing titanium and / or aluminum in the main chain.
[0025] アルコキシシランとしては、テトラアルコキシシラン、トリアルコキシシラン(モノ有機基 置換アルコキシシラン)、ジアルコキシシラン (ジ有機基置換アルコキシシラン)等を使 用すること力 Sできる。これらアルコキシシランを適宜混合して使用することもできる。ァ ノレコキシシランは、使用直前までは、水の存在しない状態、即ち、水を含まない溶液 の状態に保持する。溶液に使用する溶媒は、水の溶解する水溶性の溶媒を使用す る。具体的には、メチルアルコール、エチルアルコール等のアルコール、アセトン、メ チルェチルケトン等のケトン、ジォキサン、テトラヒドロフラン等の環状エーテル、 N—メ チルピロリドン、ジメチルスルホォキシド、ジメチルフオルムアミド、ジメチルァセトアミド 等の溶媒である。中でも、ジォキサン、テトラヒドロフラン等の環状エーテル、 N—メチ ノレピロリドン、メチルフオルムアミド、メチルァセトアミド、ジメチルフオルムアミド、ジメチ ルァセトアミド等の溶媒が好適に使用できる。 As the alkoxysilane, tetraalkoxysilane, trialkoxysilane (mono-organic group-substituted alkoxysilane), dialkoxysilane (di-organic group-substituted alkoxysilane) and the like can be used. These alkoxysilanes can also be used as an appropriate mixture. A Norecoxy silane is kept in a water-free state, ie, a water-free solution, until immediately before use. As the solvent used for the solution, use a water-soluble solvent that dissolves water. Specifically, alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone and methyl ethyl ketone, cyclic ethers such as dioxane and tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like Solvent. Of these, solvents such as cyclic ethers such as dioxane and tetrahydrofuran, and solvents such as N-methylolepyrrolidone, methylformamide, methylacetamide, dimethylformamide, and dimethylacetamide can be suitably used.
[0026] アルコキシシランの具体的な例としては、メチルトリメトキシシラン、メチルトリエトキシ シラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、フエニルトリメトキシシラン 、フエニルトリエトキシシラン、メチルトリプロポキシシラン、ェチルトリプロポキシシラン チノレジェトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロボキシシ ラン、テトラブトキシシラン、更には、エポキシ基を有する有機基を有していてもよい。 チタンアルコキシドの具体的な例としては、テトラメトキシチタン、テトラエトキシチタン 、テトラプロポキシチタン、テトラブトキシチタン、アルミニウムアルコキシドの具体的な 例としては、アルミニウムトリイソプロポキシド、アルミニウムトリエトキシド等を使用する こと力 Sできる。但し、これらに限定されるものではない。 Specific examples of the alkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and methyltripropoxy. Silane, ethyl tripropoxy silane, tinolegetoxy silane, tetramethoxy silane, tetra ethoxy silane, tetrapropoxy silane, tetrabutoxy silane, and may further have an organic group having an epoxy group. Specific examples of titanium alkoxides include tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, and specific examples of aluminum alkoxides include aluminum triisopropoxide and aluminum triethoxide. That can be S. However, it is not limited to these.
[0027] コロイダルシリカは、周知技術に基づきテトラアルコキシシラン(テトラアルキルシリケ ート)を加水分解することにより容易に得ることができる。市販もされている。例えば、 テトラェチルシリケートを塩酸、硝酸、アンモニア等の触媒の存在するェチルアルコ ールと水の混合液中に滴下し加水分解し、加水分解後エチルアルコールと触媒を、 例えば、真空下に除去することにより、コロイダルシリカの水分散液を得る。このコロイ ダルシリカの粒径は、ミクロンオーダーないしそれ以下の小さレ、ものである。コロイダ ルシリカは表面にシラノール基を有している。コロイダルシリカの水分散液中のコロイ ダルシリカの量は、 10— 60重量%程度である。この量は、加水分解時に使用する水 の量で適宜調製することができる。シリケートの加水分解後、水を加えて調製すること あでさる。 [0028] アルコキシシランの溶液、コロイダルシリカの水分散液及び金属酸化物等との混合 物を CPUなどの集積回路用放熱器に塗布し皮膜を形成せしめる。被膜を形成する 直前に、アルコキシシランの溶液とコロイダルシリカの水分散液を先ず混合し、この混 合液に金属酸化物粉末等を加えて懸濁液を得る。同時に、アルコキシシランの溶液 、コロイダルシリカの水分散液及び金属酸化物等を混合してもよい。これらの混合物 は懸濁液となる。この懸濁液を CPUなどの集積回路用放熱器に塗布し皮膜を形成 せしめる。 [0027] Colloidal silica can be easily obtained by hydrolyzing tetraalkoxysilane (tetraalkyl silicate) based on a known technique. It is also commercially available. For example, tetraethyl silicate is dropped into a mixture of ethyl alcohol and water containing a catalyst such as hydrochloric acid, nitric acid, and ammonia, and hydrolyzed.After the hydrolysis, ethyl alcohol and the catalyst are removed, for example, under vacuum. Thereby, an aqueous dispersion of colloidal silica is obtained. The particle size of the colloidal silica is as small as on the order of microns or less. Colloidal silica has silanol groups on the surface. The amount of colloidal silica in the aqueous dispersion of colloidal silica is about 10 to 60% by weight. This amount can be appropriately adjusted based on the amount of water used at the time of hydrolysis. After hydrolysis of the silicate, it is prepared by adding water. [0028] A mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, and a metal oxide is applied to a radiator for an integrated circuit such as a CPU to form a film. Immediately before forming a film, a solution of alkoxysilane and an aqueous dispersion of colloidal silica are first mixed, and a metal oxide powder or the like is added to the mixed solution to obtain a suspension. At the same time, an alkoxysilane solution, a colloidal silica aqueous dispersion, a metal oxide, and the like may be mixed. These mixtures form a suspension. This suspension is applied to a radiator for integrated circuits such as a CPU to form a film.
[0029] 皮膜形成のために珪酸のアルカリ金属塩を使用することができる。珪酸のアルカリ 金属塩としては、具体的には、珪酸ナトリウム、珪酸カリウムゃ珪酸リチウムを使用す ること力 sできる。珪酸ナトリウム、珪酸カリウムゃ珪酸リチウム等の珪酸塩は、水溶液と して供給されるので、珪酸のアルカリ金属塩の水溶液に金属酸化物、カオリンゃ窒化 物を添加、混合し、更に、必要に応じて水をカ卩えて懸濁液となし、この懸濁液を対象 物に塗布することにより、本発明における皮膜を得ることができる。  [0029] For forming a film, an alkali metal salt of silicic acid can be used. As the alkali metal salt of silicic acid, specifically, sodium silicate, potassium silicate and lithium silicate can be used. Since silicates such as sodium silicate, potassium silicate and lithium silicate are supplied as an aqueous solution, a metal oxide and kaolin nitride are added to and mixed with an aqueous solution of an alkali metal salt of silicate, and if necessary, mixed. By applying water to form a suspension and applying the suspension to an object, the film of the present invention can be obtained.
[0030] 珪酸のアルカリ金属塩は、具体的には、珪酸ナトリウム、珪酸カリウムや珪酸リチウ ムを使用しうるが、珪酸ナトリウム、珪酸カリウムの両者を混合使用するのがよい。混 合使用する際、珪酸ナトリウムと珪酸カリウムの割合は重量で、珪酸カリウム 1に対し て珪酸ナトリウム 0. 5— 7 (固形分ベース)が好ましい。これは、珪酸ナトリウムの量が 多いと、皮膜の水除去、即ち、乾燥が困難で皮膜形成が難しぐまた、珪酸カリウムの 量が多いと膜形性能が低下するので、適量の珪酸ナトリウムと珪酸カリウムを併用使 用するのが好ましい。  As the alkali metal salt of silicic acid, specifically, sodium silicate, potassium silicate and lithium silicate can be used, and it is preferable to use a mixture of both sodium silicate and potassium silicate. When used in a mixture, the ratio of sodium silicate to potassium silicate is preferably 0.5 to 7 (solid content basis) with respect to 1 potassium silicate. This is because if the amount of sodium silicate is large, it is difficult to remove water from the film, that is, it is difficult to dry and form the film, and if the amount of potassium silicate is large, the film form performance is deteriorated. It is preferable to use potassium in combination.
[0031] また、皮膜形成のためにシリコーン樹脂を含むェマルジヨンを使用することができる 。即ち、シリコーン樹脂を含むェマルジヨンに酸化珪素、酸化アルミニウム及び力オリ ン等を混合し、更に、必要に応じて水をカ卩えて懸濁液となし、この懸濁液を CPUなど の集積回路用放熱器に塗布し被膜を形成せしめる。シリコーン樹脂を含むェマルジ ヨンに酸化珪素、酸化アルミニウム及びカオリン等を混合して得た懸濁液において、 シリコーン樹脂ェマルジヨンがこの懸濁液に占める割合は 30 70重量%であること が好ましい。それは、シリコーン樹脂ェマルジヨンの量が少ないと、皮膜の安定性が 低下し、同時に、皮膜の CPUなどの集積回路用放熱器への接着性が低くなるからで ある。シリコーン榭脂ェマルジヨンの量が多すぎると、金属酸化物等の量が相対的に 少なくなり、放熱効果が小さくなる。 [0031] In addition, an emulsion containing a silicone resin can be used for forming a film. In other words, silicon oxide, aluminum oxide, force oil, etc. are mixed with an emulsion containing a silicone resin, and water is added as needed to form a suspension. This suspension is used for integrated circuits such as CPUs. Apply to radiator to form film. In a suspension obtained by mixing silicon oxide, aluminum oxide, kaolin and the like with an emulsion containing a silicone resin, the proportion of the silicone resin emulsion in the suspension is preferably 3070% by weight. The reason is that if the amount of the silicone resin emulsion is small, the stability of the film decreases, and at the same time, the adhesion of the film to a heat sink for integrated circuits such as a CPU decreases. is there. If the amount of the silicone resin emulsion is too large, the amount of the metal oxide and the like becomes relatively small, and the heat radiation effect is reduced.
[0032] シリコーン樹脂のェマルジヨンは、非水溶性のシリコーン樹脂を主として水に分散さ せたェマルジヨン状態のものである。シリコーン樹脂ェマルジヨンは、大別すると以下 の 5方法で得ることができる。即ち、 1)アルキルシリケ一トイ匕合物又はその部分加水 分解 ·縮合物を各種界面活性剤を用いて乳化し、水性ェマルジヨンとする方法 (特開 昭 58— 213046号、特開昭 62— 197369号、特開平 3— 115485号、特開平 3— 200 793号公報)。このェマルジヨンに、更に重合性ビュルモノマーを乳化重合したエマ ルジョンを混合することもできる(特開平 6—344665号公報)、 2)界面活性剤を使用 せずにアルキルシリケ一トイヒ合物を水中で加水分解して得られる水溶性ポリマーの 存在下、ラジカル重合可能なビニルモノマーを乳化重合する方法(特開平 8—60098 号公報)、 3)ビュル重合性アルキルシリケートを含有するアルキルシリケート混合物 を加水分解 '縮合することにより、固形のシリコーン樹脂を含む水性ェマルジヨンとし 、更にラジカル重合性ビュルモノマーを加え、乳化重合することにより、グラフト共重 合体微粒子(固形)ェマルジヨンを得る方法(特開平 5-209149号、特開平 7— 1967 50号公報)、 4)ラジカル重合性官能基を乳化重合したェマルジヨンにアルキルシリケ ート化合物を添加し、加水分解 '縮合させ、ェマルジヨン粒子中にシリコーン樹脂を 導入する方法(特開平 3— 45628号、特開平 8— 3409号公報)、 5)ビュル重合性官 能基含有アルキルシリケートを、ラジカル重合性ビエルモノマーと共に乳化重合し、 ェマルジヨンを作成する方法(特開昭 61-9463号、特開平 8— 27347号公報)等の 方法で得ること力 Sできる。また、市販品として入手することもできる。  [0032] The silicone resin emulsion is an emulsion in which a water-insoluble silicone resin is mainly dispersed in water. Silicone resin emulsions can be obtained roughly by the following five methods. 1) A method of emulsifying an alkylsilicone conjugate or its partially hydrolyzed / condensed product using various surfactants to obtain an aqueous emulsion (Japanese Patent Application Laid-Open Nos. 58-213046 and 62-197369) And JP-A-3-115485 and JP-A-3-200793. An emulsion obtained by emulsion-polymerizing a polymerizable butyl monomer can be further mixed with this emulsion (Japanese Patent Application Laid-Open No. 6-344665). 2) An alkylsilane compound is added to water without using a surfactant. Emulsion polymerization of a radically polymerizable vinyl monomer in the presence of a water-soluble polymer obtained by decomposition (JP-A-8-60098). 3) Hydrolysis of an alkyl silicate mixture containing a bullet polymerizable alkyl silicate A method of obtaining a graft copolymer fine particle (solid) emulsion by condensing to obtain an aqueous emulsion containing a solid silicone resin, further adding a radical polymerizable bur monomer, and performing emulsion polymerization (JP-A-5-209149, JP-A No. 7-196750), 4) Alkyl siliques are added to emulsions obtained by emulsion polymerization of radical polymerizable functional groups. A silicone compound is added to the emulsion particles, followed by hydrolysis and condensation, and a silicone resin is introduced into the emulsion particles (JP-A-3-45628, JP-A-8-3409); 5) alkyl containing a polymerizable functional group It can be obtained by a method such as a method of emulsion-polymerizing silicate together with a radical polymerizable biel monomer to prepare an emulsion (Japanese Patent Application Laid-Open Nos. 61-9463 and 8-27347). It can also be obtained as a commercial product.
[0033] シリコーン樹脂をバインダーに使用する塗料、皮膜に関しては、アルミナ単独又は アルミナに無機質酸化物を混合したものをシリコーン樹脂バインダーに分散させた遠 赤外線放射用塗料が記載された特公昭 63 - 54314号公報、酸化珪素若しくは酸化 アルミニウム及びポリシロキサン樹脂の硬化体よりなる被覆を赤外線輻射面に設ける ことが記載された特開昭 60—213743号公報、ポリシロキサン樹脂とマイ力粉末酸化 物の硬化体を赤外線輻射面にコーティングすることが記載された特開昭 59—21884 4号公報、遠赤外線輻射物質、シリコーン系樹脂、融剤及び溶剤からなる遠赤外線 輻射用塗料が記載された特開昭 57-128753号公報が知られている力 これらはい ずれも暖房、調理用の加熱に使用するもので、加熱体の加熱効率を高めるためのも のであり、本発明は、温度の高い物体から熱を放出し、温度上昇を抑えようとするも ので、その目的及び効果の点で、本発明は前記特許文献記載の発明とは異なるも のである。 With respect to paints and films using a silicone resin as a binder, JP-B-63-54314 describes a far-infrared radiation paint in which alumina alone or a mixture of alumina and an inorganic oxide is dispersed in a silicone resin binder. Japanese Patent Application Laid-Open No. Sho 60-213743, in which a coating made of a cured product of silicon oxide or aluminum oxide and a polysiloxane resin is provided on an infrared radiation surface, a cured product of a polysiloxane resin and a myric powder oxide JP-A-59-218444, in which coating is applied to an infrared radiation surface, far infrared radiation comprising a far infrared radiation material, a silicone resin, a flux and a solvent Japanese Patent Application Laid-Open No. 57-128753, in which a radiation paint is described, is known.All of these are used for heating and heating for cooking, and are for improving the heating efficiency of a heating body. The present invention radiates heat from an object having a high temperature to suppress a rise in temperature. Therefore, the present invention is different from the invention described in the above-mentioned patent document in terms of the object and effect.
[0034] ェマルジヨンにするシリコーン樹脂は、耐熱性、接着性、電気的性質に優れるもの である。ェマルジヨン状態のシリコーン樹脂は、金属酸化物や窒化物のバインダーと なるとともに、これら金属酸化物や窒化物を塗膜面に接着させ、安定した、強固な塗 膜を形成する役割を担うものである。  [0034] The silicone resin used as the emulsion has excellent heat resistance, adhesiveness, and electrical properties. The silicone resin in the emulsion state serves as a binder for metal oxides and nitrides, and also serves to adhere these metal oxides and nitrides to the coating surface to form a stable and strong coating. .
[0035] 上記いずれかの方法で得たシリコーン樹脂を含むェマルジヨンに、金属酸化物を 含有させる。シリコーン樹脂を含むェマルジヨンに金属酸化物等の粉末を添加混合 して、ェマルジヨン性の懸濁液を得る。シリコーン樹脂を含むェマルジヨンには、元々 水が存在するので、この水に金属酸化物等が懸濁状態で混合され、シリコーン樹脂 と金属酸化物等とを含むェマルジヨン性の懸濁液を得ることができる。  [0035] The emulsion containing the silicone resin obtained by any of the above methods is made to contain a metal oxide. A powder such as a metal oxide is added to and mixed with the emulsion containing the silicone resin to obtain an emulsion suspension. Since water originally exists in an emulsion containing a silicone resin, a metal oxide or the like is mixed in a suspended state with the water to obtain an emulsion suspension containing the silicone resin and the metal oxide. it can.
[0036] このェマルジヨン性懸濁液に加える金属酸化物等の量が相対的に多くなると、エマ ルジョン性懸濁液の粘度が高くなる場合がある。このような場合には、適宜水を加え てェマルジヨン性懸濁液の粘度を調節するのがよい。また、逆に、シリコーン樹脂を 含むェマルジヨンの水分量が多くて、金属酸化物等を含有させたェマルジヨン性懸 濁液の粘度が小さい場合もある。このように粘度の小さい場合は、適宜増粘剤を加え て粘度を調整することができる。  [0036] When the amount of the metal oxide or the like added to the emulsion suspension becomes relatively large, the viscosity of the emulsion suspension may increase. In such a case, the viscosity of the emulsion suspension is preferably adjusted by appropriately adding water. Conversely, the emulsion containing the silicone resin may have a large water content, and the viscosity of the emulsion suspension containing a metal oxide or the like may be low. When the viscosity is small as described above, the viscosity can be adjusted by appropriately adding a thickener.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下に、本発明の実施の形態について実施例に基づいて詳細に説明する。図 1一 図 3は、本発明にかかる CPUなどの集積回路用放熱器の一実施例を示している。図 1において、符号 1で示した部材が放熱対象の CPUであり、放熱器 3は、この CPU1 の上部側に配置されている。  Hereinafter, embodiments of the present invention will be described in detail based on examples. FIG. 11 and FIG. 3 show an embodiment of a radiator for an integrated circuit such as a CPU according to the present invention. In FIG. 1, a member denoted by reference numeral 1 is a CPU to be radiated, and a radiator 3 is arranged on an upper side of the CPU 1.
[0038] CPU用放熱器 3は、第 2, 3図に示すように、多数の平板状のフィン 10が並行に配 列されたヒートシンク本体 7、ファンモータ 5、ファンモータ 5をヒートシンク本体 7に取り 付けるための取り付けカバー 6とから構成されている。 [0039] CPU用放熱器 3は、図 1に示すように、熱伝導性のグリス(ジエル) 2を介して CPU1 に接続されている。 CPU 1の温度を測定するために、熱電対 11を保持した熱電対保 持板 4が CPUとジエル 2の間に設けられている。 [0038] As shown in Figs. 2 and 3, the CPU radiator 3 includes a heat sink body 7, a fan motor 5, and a fan motor 5 in which a number of flat fins 10 are arranged in parallel. And a mounting cover 6 for mounting. As shown in FIG. 1, the CPU radiator 3 is connected to the CPU 1 via a thermally conductive grease (jewel) 2. In order to measure the temperature of the CPU 1, a thermocouple holding plate 4 holding a thermocouple 11 is provided between the CPU and the jewel 2.
[0040] 取り付けカバー 6は、ヒートシンク本体 7をカバーするとともにファンモータ 5をヒート シンク本体 7に接続する役割を担っている。取り付けカバー 6には、対向する一対の 側面 8が設けられている。 The mounting cover 6 has a role of covering the heat sink body 7 and connecting the fan motor 5 to the heat sink body 7. The mounting cover 6 is provided with a pair of opposing side surfaces 8.
[0041] 側面 8は、ヒートシンク本体 7のフィン 10と平行に配置されている。フィン 10に垂直 な面は、フィン冷却用の空気の通路となるので、フィン 10に垂直な面には側面は配 置されていない。 The side surface 8 is arranged parallel to the fins 10 of the heat sink body 7. Since the surface perpendicular to the fins 10 serves as a passage for the air for cooling the fins, no side surface is arranged on the surface perpendicular to the fins 10.
[0042] また、取り付けカバー 6には、ファンモータ 5の固定を促すために、対向するように一 対の端面 9が配置されている。一対の端面 9は、側面 8が設けられていない側の側面 に立設されている。なお、側面 8は、必ずしも必要でなぐ設けられない場合もある。  [0042] Further, a pair of end faces 9 are arranged on the mounting cover 6 so as to be opposed to each other in order to promote fixing of the fan motor 5. The pair of end surfaces 9 are erected on the side surface on which the side surface 8 is not provided. It should be noted that the side surface 8 may not always be provided if necessary.
[0043] また、図 1一図 3に示した例で、側面 8に、複数の貫通孔があけられているが、これ らの貫通孔は必ずしもあける必要はなぐ貫通孔をあけてもよいし、あけなくてもよレ、。 また、図示した例では、放熱器 3に、フィン 10とファンモータ 5を設ける旨説明した力 ファンモータ 5は必ずしも設けなくてもよい。フィン 10のみを設けて、取り付カバー 6の 外表面に皮膜を形成せしめてもよい。この際、取り付けカバー 6に側面 8が無い場合 には、ヒートシンク本体 7のフィン 10の最外層に位置するフィン 10の外面に皮膜を形 成せしめることちできる。  Further, in the example shown in FIGS. 1 and 3, a plurality of through-holes are formed in the side surface 8, but these through-holes need not necessarily be formed. You don't have to open it. In the illustrated example, the radiator 3 is not necessarily provided with the force fan motor 5 which has been described to include the fins 10 and the fan motor 5. A film may be formed on the outer surface of the mounting cover 6 by providing only the fins 10. At this time, if the mounting cover 6 does not have the side surface 8, a film can be formed on the outer surface of the fin 10 located on the outermost layer of the fin 10 of the heat sink body 7.
[0044] CPU用放熱器 3において、取り付けカバー 6の外表面に皮膜を形成せしめるのが 本発明の特徴である。図 2,図 3に示した CPU用放熱器 3においては、外表面は、側 面 8と端面 9である。これらの側面 8と端面 9に皮膜を形成せしめる。側面 8と端面 9は それぞれ二面あるので各 2面とも皮膜を形成せしめることは言うまでもない。  A feature of the present invention is that a film is formed on the outer surface of the mounting cover 6 in the heatsink 3 for CPU. In the heatsink 3 for CPU shown in FIGS. 2 and 3, the outer surfaces are the side surface 8 and the end surface 9. A film is formed on these side surfaces 8 and end surfaces 9. It is needless to say that the side surface 8 and the end surface 9 each have two surfaces, so that each of the two surfaces forms a film.
[0045] 側面 8が設けられない場合には、ヒートシンク本体 7のフィン 10の最外層の両側に 位置する 2個のフィン 10の外面に皮膜を形成せしめる。側面 8が存在する場合にも、 最外層のフィン 10に皮膜を設けてもよいが、この場合は、フィン 10に設けた皮膜の効 果は大きくない。皮膜の形成箇所は、側面 8と端面 9に限られるものではなレ、。取り付 けカバー 6の形状によって、側面 8、端面 9が異なってくるからである。本発明の特徴 は、取り付けカバー 6の外表面、即ち、取り付けカバー 6が大気と接する面に皮膜を 形成せしせしめることにある。 When the side surface 8 is not provided, a film is formed on the outer surfaces of the two fins 10 located on both sides of the outermost layer of the fins 10 of the heat sink body 7. Even when the side surface 8 is present, a coating may be provided on the outermost fin 10, but in this case, the effect of the coating provided on the fin 10 is not significant. The location where the film is formed is not limited to the side face 8 and the end face 9. This is because the side surface 8 and the end surface 9 differ depending on the shape of the mounting cover 6. Features of the present invention The reason is that a film is formed on the outer surface of the mounting cover 6, that is, the surface where the mounting cover 6 comes into contact with the atmosphere.
[0046] 図 1一図 3に示すように、銅製のフィン 10がヒートシンク本体 7を構成し、その周囲を 囲うようにアルミニウムやスチール製の取り付けカバー 6が配置されている。取り付け カバー 6の上方にはファンモータ 5が設けられている。 CUP1で発生した熱は、ヒート シンク本体 7に伝導され、フィン 10から放熱される。ファンモータ 5でフィン 10付近に 滞留した温度の高い空気を外部に排出して、 CPU1の温度上昇を防止する。  As shown in FIGS. 1 and 3, a copper fin 10 constitutes a heat sink body 7, and an aluminum or steel mounting cover 6 is arranged so as to surround the periphery thereof. The fan motor 5 is provided above the mounting cover 6. The heat generated by the CUP 1 is conducted to the heat sink body 7 and is radiated from the fins 10. The high temperature air staying in the vicinity of the fins 10 is discharged to the outside by the fan motor 5 to prevent the temperature of the CPU 1 from rising.
[0047] 取り付けカバー 6の外表面(8、 9)に皮膜を形成することにより、この外表面から同 様に熱が放熱されて、 CPU1の温度上昇を更に防止する。即ち、フィン 10とファンモ ータ 5による冷却効果に加えて、皮膜による冷却効果がプラスされて、大きな放熱効 果が発現する。皮膜は、既に述べたように、アルコキシシランの溶液、コロイダノレシリ 力の水分散液、酸化珪素粉末、酸化アルミニウム粉末及びカオリン粉末との混合物 力 形成せしめた皮膜であり、珪酸ナトリウム及び珪酸カリウムの水溶液、酸化珪素 粉末、酸化アルミニウム粉末並びにカオリン粉末との混合物から形成せしめた皮膜で あり、シリコーン樹脂を含むェマルジヨン、酸化珪素粉末、酸化アルミニウム粉末及び カオリン粉末との混合物から形成せしめた皮膜である。  By forming a film on the outer surface (8, 9) of the mounting cover 6, heat is radiated from the outer surface in the same manner, and the temperature rise of the CPU 1 is further prevented. That is, in addition to the cooling effect of the fins 10 and the fan motor 5, the cooling effect of the coating is added, and a large heat radiation effect is exhibited. As described above, the film is a mixture of an alkoxysilane solution, an aqueous dispersion of colloidanoresili force, a mixture of silicon oxide powder, aluminum oxide powder and kaolin powder. The film is formed by an aqueous solution of sodium silicate and potassium silicate, It is a film formed from a mixture of silicon oxide powder, aluminum oxide powder, and kaolin powder, and a film formed from a mixture of emulsion containing silicone resin, silicon oxide powder, aluminum oxide powder, and kaolin powder.
[0048] CPU用放熱器 3における取り付けカバー 6の外表面 8, 9に皮膜を形成せしめること により、 CPU1の温度上昇を防止することができる。これは、皮膜の持つ遠赤外線放 射性能を利用し、熱エネルギーを遠赤外線に変換して空気中に放射させることで、 熱エネルギーを減少させ結果として放熱性能を高めることになり、大きな放熱効果を もたらすものである。これは、従来放熱対策において用いられた熱伝導や対流という 方法だけでなぐ熱エネルギーの放射という方法を加えることによって、より効率の高 い放熱対策を施すものとなっている。  [0048] By forming a film on the outer surfaces 8, 9 of the mounting cover 6 in the CPU radiator 3, it is possible to prevent the temperature of the CPU 1 from rising. This uses the far-infrared radiation performance of the film to convert thermal energy into far-infrared radiation and radiates it into the air, reducing heat energy and consequently improving heat radiation performance. It brings. In this method, more efficient heat dissipation measures are taken by adding a method of radiating heat energy that can be achieved only by the methods of heat conduction and convection used in conventional heat dissipation measures.
[0049] 具体例 1 [0049] Specific example 1
メチルトリメトキシシラン 300重量部、ジメチルジメトキシシラン 170重量部、グリシド キシプロピルトリメトキシシラン 30重量部、テトラブトキシチタン 15重量部を N—メチル ピロリドン 485重量部に溶解した溶液、シリカ固形分として 20重量%の酸性コロイダ ルシリカの水分散液 1000重量部とを混合した。この混合液の 700重量部をとり、カオ リン 110重量部、酸化珪素粉末 435重量部、酸化アルミニウム粉末 190重量部及び 酸化ジノレコニゥム粉末 120重量部を加え、攪拌混合して、懸濁液を得た。この懸濁 液を取り付けカバー 6の側面 8と端面 9の全面に塗布し、大気中で風乾した。皮膜厚 は 52 x mで A solution prepared by dissolving 300 parts by weight of methyltrimethoxysilane, 170 parts by weight of dimethyldimethoxysilane, 30 parts by weight of glycidoxypropyltrimethoxysilane, and 15 parts by weight of tetrabutoxytitanium in 485 parts by weight of N-methylpyrrolidone. % Of an acidic colloidal silica aqueous dispersion. Take 700 parts by weight of this mixture 110 parts by weight of phosphorus, 435 parts by weight of silicon oxide powder, 190 parts by weight of aluminum oxide powder and 120 parts by weight of dinoreconium oxide powder were added and mixed by stirring to obtain a suspension. This suspension was applied to the entire side surface 8 and the end surface 9 of the mounting cover 6 and air-dried in the air. Film thickness is 52 xm
あった。続いて 95°Cで 30分乾燥し、更に、 100°Cで 60分熱処理した。  there were. Subsequently, it was dried at 95 ° C for 30 minutes, and further heat-treated at 100 ° C for 60 minutes.
[0050] 上記皮膜を形成せしめた取り付けカバー 6を装着した CPU用放熱器 3を用いて、 C PU1の温度上昇の程度を測定した。皮膜を形成したのは、図 2 図 3において取り 付けカバー 6の側面 8と端面 9である。いずれも前後の両面に亘つて皮膜を形成した 。この取り付けカバー 6の上にファンモータ 5を装着し、 CPU用放熱器 3を組み立て た。 The degree of temperature rise of the CPU 1 was measured using the CPU radiator 3 to which the mounting cover 6 on which the above-mentioned film was formed was attached. The film was formed on the side surface 8 and the end surface 9 of the mounting cover 6 in FIGS. In each case, a film was formed on both front and rear surfaces. The fan motor 5 was mounted on the mounting cover 6, and the radiator 3 for the CPU was assembled.
[0051] この CPU用放熱器 3を、図 1に示したように、熱電対保持板 4及びジエル 2を介して CPU1に接続した。 CPU用放熱器 3を備えた CPU1を、市販の温度測定用マザ一 ボードに装着し、通常のパソコン筐体に配置した。 CPU1には 75Wの負荷を掛けて 、 CPU1の温度上昇を追跡した。  The CPU radiator 3 was connected to the CPU 1 via the thermocouple holding plate 4 and the jewel 2, as shown in FIG. CPU1 equipped with a heatsink for CPU3 was mounted on a commercially available motherboard for temperature measurement and placed in a normal PC housing. A load of 75W was applied to CPU1 to track the temperature rise of CPU1.
[0052] 温度上昇の時間曲線を第 4図に示している。第 4図において、記号 Aは、取り付け カバー 6の外表面に皮膜を形成しない場合の CPU1の温度上昇曲線を示し、記号 B は取り付けカバー 6の外表面である側面 8と端面 9に皮膜を形成した場合の CPU1の 温度上昇曲線を示す。測定開始後 8分で皮膜の有り無しで、 15°C程度の温度差が 生じ、皮膜を形成した場合の CPU1の温度は低ぐ皮膜の温度上昇防止効果が認め られた。  FIG. 4 shows a time curve of the temperature rise. In FIG. 4, symbol A indicates the temperature rise curve of CPU 1 when no film is formed on the outer surface of mounting cover 6, and symbol B indicates that a film is formed on side surface 8 and end surface 9 which are the outer surface of mounting cover 6. The figure shows the temperature rise curve of CPU1 in the case of this. Eight minutes after the start of the measurement, a temperature difference of about 15 ° C was generated between the presence and absence of the film, and the effect of preventing the rise of the temperature of the film was confirmed because the temperature of CPU1 was low when the film was formed.
[0053] 30分後には、温度はほぼ平衡状態に達し、この状態で、皮膜を形成した場合の C PU1の温度は 62°C程度で、皮膜を形成しない場合の CPU1の温度は 78°C程度で 、 16°C程度の温度差を生じた。これは、皮膜による CPUの温度上昇防止効果を示 すものである。また、ファンモータ 5を設けない場合について同様に温度を測定したと ころ、平衡状態における皮膜を形成せしめたときと皮膜を形成せしめないときの温度 差は 12°C程度であった。  [0053] After 30 minutes, the temperature almost reaches an equilibrium state. In this state, the temperature of CPU1 when a film is formed is about 62 ° C, and the temperature of CPU1 when no film is formed is 78 ° C. The temperature difference was about 16 ° C. This shows the effect of the film on preventing CPU temperature rise. When the temperature was measured in the same manner when the fan motor 5 was not provided, the temperature difference between when the film was formed and when the film was not formed in the equilibrium state was about 12 ° C.
[0054] 具体例 2  [0054] Specific Example 2
珪酸ナトリウムの 54. 5重量%水溶液 16重量部、珪酸カリウムの 30. 0重量%水溶 液 12重量部を混合し、水 20重量部を更に添加して希釈した水溶液に、二酸化珪素 の微粉末 18. 0重量部、酸化アルミニウムの微粉末 12. 0重量部及びカオリン 8重量 部を添加、混合し懸濁液を得た。 16 parts by weight of 54.5% by weight aqueous solution of sodium silicate, 30.0% by weight aqueous solution of potassium silicate The solution was mixed with 12 parts by weight of water and further diluted with 20 parts by weight of water, and 18.0 parts by weight of fine powder of silicon dioxide, 12.0 parts by weight of fine powder of aluminum oxide and 8 parts by weight of kaolin were added to the diluted aqueous solution. , Mixed to obtain a suspension.
[0055] 具体例 1と同様に、この懸濁液を取り付けカバー 6の側面 8と端面 9の全面に塗布し 、皮膜を形成せしめた。大気中で風乾した後の皮膜厚は 49 z mであった。乾燥後、 100°Cで 1時間熱処理した。  In the same manner as in Example 1, this suspension was applied to the entire side surface 8 and the end surface 9 of the mounting cover 6 to form a film. The film thickness after air drying in the atmosphere was 49 zm. After drying, it was heat-treated at 100 ° C for 1 hour.
[0056] この取り付けカバー 6を具体例 1と同様に CPU1に装着し、 CPU1の温度上昇の程 度を測定した。温度測定結果は、第 4図に示したものとほぼ同様の結果であった。 30 分後の温度が平衡状態に達した時点において、皮膜を形成した場合の CPU1の温 度は 63°Cで、皮膜を形成しない場合の CPU1の温度は 77°C程度で、 14°C程度の 温度差を生じた。即ち、皮膜を形成した場合の CPU1の温度は低ぐ皮膜の温度上 昇防止効果が認められる。  The mounting cover 6 was attached to the CPU 1 in the same manner as in the specific example 1, and the degree of temperature rise of the CPU 1 was measured. The temperature measurement results were almost the same as those shown in FIG. After 30 minutes, when the temperature reaches an equilibrium state, the temperature of CPU1 when a film is formed is 63 ° C, and the temperature of CPU1 without a film is approximately 77 ° C and approximately 14 ° C. Temperature difference. That is, the temperature of the CPU 1 when the film is formed is low, and the effect of preventing the temperature of the film from rising is recognized.
[0057] 具体例 3  [0057] Specific example 3
シリコーン樹脂を含むェマルジヨンとして信越化学工業株式会社製製品「P〇LON _MF_56」を使用した。このシリコーン樹脂を含むェマルジヨン 50. 8重量部に力オリ ン 12重量部、酸化珪素 8. 2重量部、酸化アルミニウム 12. 3重量部、酸化チタン 6. 2重量部及び酸化ジルコニウム 10. 5重量を添加混合し、ェマルジヨン性懸濁液を得 た。このェマルジヨン性懸濁液を取り付けカバー 6の側面 8と端面 9の全面に塗布し、 皮膜を形成せしめた。大気中で風乾した後の皮膜厚は 51 μ ΐηであった。乾燥後、 1 00°Cで 1時間熱処理した。同様にして、 CPU1の温度上昇の程度を測定した。 30分 後の温度が平衡状態に達した時点において、皮膜を形成した場合の CPU1の温度 は 64°Cで、皮膜を形成しない場合の CPU1の温度は 78°C程度で、 14°C程度の温 度差を生じた。即ち、皮膜を形成した場合の CPU1の温度は低ぐ皮膜の温度上昇 防止効果が認められた。  The product "P @ LON_MF_56" manufactured by Shin-Etsu Chemical Co., Ltd. was used as the emulsion containing silicone resin. To 50.8 parts by weight of the emulsion containing the silicone resin, 12 parts by weight of a force absorber, 8.2 parts by weight of silicon oxide, 12.3 parts by weight of aluminum oxide, 6.2 parts by weight of titanium oxide, and 10.5 parts by weight of zirconium oxide. The mixture was added and mixed to obtain an emulsion suspension. This emulsion suspension was applied to the entire side surface 8 and the end surface 9 of the mounting cover 6 to form a film. The film thickness after air drying in the atmosphere was 51 μΐη. After drying, heat treatment was performed at 100 ° C. for 1 hour. Similarly, the degree of temperature rise of CPU1 was measured. After 30 minutes, when the temperature reaches an equilibrium state, the temperature of CPU1 when a film is formed is 64 ° C, and the temperature of CPU1 when a film is not formed is about 78 ° C and about 14 ° C. A temperature difference occurred. In other words, the temperature of the CPU 1 when the film was formed was low, and the effect of preventing the temperature of the film from rising was recognized.
[0058] 以上、実施例および具体例で詳細に説明したように、本発明の皮膜は、 CPUの温 度上昇を抑える効果があることが認められた。 CPUの温度上昇を抑えることにより、 電子機器の小型化が容易になるとともに CPUの信頼性向上に繋がるものである。  As described above in detail in the examples and the specific examples, it was confirmed that the film of the present invention has an effect of suppressing a temperature rise of the CPU. Suppressing the temperature rise of the CPU facilitates miniaturization of electronic devices and improves the reliability of the CPU.
[0059] なお、上記実施例および具体例では、放熱対象として CPU1を例示したが、本発 明の実施は、これに限定されることはなぐ例えば、デジタルシグナルプロセッサなど の大規模集積回路にも適用することができる。 In the above-described embodiment and specific example, the CPU 1 is illustrated as a heat radiation target. The embodiments of the present invention can be applied to, but not limited to, large-scale integrated circuits such as digital signal processors.
産業上の利用可能性  Industrial applicability
[0060] 本発明にかかる CPUなどの集積回路用放熱器は、温度上昇を抑制することができ るので、 CPUなどの集積回路の小型化に貢献することができる。  The radiator for an integrated circuit such as a CPU according to the present invention can suppress a rise in temperature, and can contribute to miniaturization of an integrated circuit such as a CPU.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0061] [図 1]本発明にかかる CPUなどの集積回路放熱器の一実施例を示す側面説明図で ある。  FIG. 1 is an explanatory side view showing an embodiment of an integrated circuit radiator such as a CPU according to the present invention.
[図 2]図 1に示した放熱器の分解図である。  FIG. 2 is an exploded view of the radiator shown in FIG. 1.
[図 3]図 2に示した放熱器の組立て図である。  FIG. 3 is an assembly view of the radiator shown in FIG. 2.
[図 4]本発明にかかる放熱器の温度上昇を経時的に測定した測定結果のグラフであ る。  FIG. 4 is a graph of a measurement result obtained by measuring a temperature rise of a radiator according to the present invention over time.

Claims

請求の範囲 The scope of the claims
[1] アルコキシシランの溶液、コロイダルシリカの水分散液、酸化珪素粉末、酸化アルミ ニゥム粉末及びカオリン粉末との混合物から形成せしめた皮膜を有することを特徴と する CPUなどの集積回路用放熱器。  [1] A radiator for an integrated circuit such as a CPU, which has a film formed from a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder, and kaolin powder.
[2] 前記アルコキシシラン力 ジアルコキシシラン、トリアルコキシシラン及びテトラアルコ キシシランの少なくとも一種を含有することを特徴とする請求項 1に記載の CPUなど の集積回路用放熱器。 2. The radiator for an integrated circuit such as a CPU according to claim 1, wherein said alkoxysilane power contains at least one of dialkoxysilane, trialkoxysilane and tetraalkoxysilane.
[3] 前記チタンアルコキシド及び/又はアルミニウムアルコキシドを更に混合することを 特徴とする請求項 1または請求項 2に記載の CPUなどの集積回路用放熱器。  3. The radiator for an integrated circuit such as a CPU according to claim 1, wherein the titanium alkoxide and / or the aluminum alkoxide is further mixed.
[4] 珪酸ナトリウム及び珪酸カリウムの水溶液、酸化珪素粉末、酸化アルミニウム粉末 並びにカオリン粉末との混合物から形成せしめた皮膜を有することを特徴とする CP[4] CP having a film formed from a mixture of an aqueous solution of sodium silicate and potassium silicate, silicon oxide powder, aluminum oxide powder, and kaolin powder
Uなどの集積回路用放熱器。 Heat sink for integrated circuits such as U.
[5] シリコーン樹脂を含むェマルジヨン、酸化珪素粉末、酸化アルミニウム粉末及び力 ォリン粉末との混合物から形成せしめた皮膜を有することを特徴とする CPUなどの集 積回路用放熱器。 [5] A radiator for an integrated circuit such as a CPU, which has a film formed from a mixture of an emulsion containing a silicone resin, a silicon oxide powder, an aluminum oxide powder, and a phosphor powder.
[6] 前記放熱器がフィン型ヒートシンクを備え、前記ヒートシンクの取り付けカバーの外 表面及び/又はヒートシンク最外側に位置するフィンの外面に皮膜を形成せしめた ことを特徴とする請求項 1から請求項 5のいずれかに記載の CPUなどの集積回路用 放熱器。  [6] The radiator includes a fin-type heat sink, and a film is formed on an outer surface of a mounting cover of the heat sink and / or an outer surface of a fin located on an outermost side of the heat sink. A radiator for an integrated circuit such as a CPU according to any of 5 above.
[7] 前記放熱器がフィン型ヒートシンク及びファンモータを備え、ファンモータを前記ヒ ートシンクに取り付ける取り付けカバーの外表面及び z又はヒートシンク最外側に位 置するフィンの外面に皮膜を形成せしめたことを特徴とする請求 1から請求項 5のい ずれかに記載の CPUなどの集積回路用放熱器。  [7] The radiator includes a fin-type heat sink and a fan motor, and a film is formed on an outer surface of a mounting cover for attaching the fan motor to the heat sink and an outer surface of z or a fin located on the outermost side of the heat sink. 6. A radiator for an integrated circuit such as a CPU according to claim 1, wherein the radiator is for a CPU or the like.
[8] 前記皮膜の厚みが、 10 100 x mであることを特徴とする請求項 1から請求項 7の いずれかに記載の CPUなどの集積回路用放熱器。 [8] The radiator for an integrated circuit such as a CPU according to any one of claims 1 to 7, wherein the thickness of the film is 10100 x m.
PCT/JP2004/007703 2003-06-04 2004-06-03 Heatsink for integrated circuit such as cpu WO2004109797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-159661 2003-06-04
JP2003159661A JP2004363310A (en) 2003-06-04 2003-06-04 Heat dissipater for cpu

Publications (1)

Publication Number Publication Date
WO2004109797A1 true WO2004109797A1 (en) 2004-12-16

Family

ID=33508528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007703 WO2004109797A1 (en) 2003-06-04 2004-06-03 Heatsink for integrated circuit such as cpu

Country Status (2)

Country Link
JP (1) JP2004363310A (en)
WO (1) WO2004109797A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956528B2 (en) 2005-03-18 2011-06-07 Fujifilm Corporation Organic electroluminescent device comprising ceramic sheet and graphite sheet
US9859038B2 (en) 2012-08-10 2018-01-02 General Cable Technologies Corporation Surface modified overhead conductor
US10726975B2 (en) 2015-07-21 2020-07-28 General Cable Technologies Corporation Electrical accessories for power transmission systems and methods for preparing such electrical accessories
US10957468B2 (en) 2013-02-26 2021-03-23 General Cable Technologies Corporation Coated overhead conductors and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688020B2 (en) * 2004-10-29 2011-05-25 セラミッション株式会社 Solar cell module
JP2006253601A (en) * 2005-03-14 2006-09-21 Oki Electric Ind Co Ltd Heat radiator and heat radiating structure using same
DE102016205178A1 (en) * 2016-03-30 2017-10-05 Siemens Aktiengesellschaft Adhesive for connecting a power electronic assembly with a heat sink and composite thereof
JP6477659B2 (en) * 2016-10-19 2019-03-06 トヨタ自動車株式会社 Heat sink inspection method and heat sink manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633818A (en) * 1986-06-23 1988-01-08 市川 好男 Production of heating cooker
JPS6384675A (en) * 1986-09-27 1988-04-15 Yoshio Ichikawa Infrared ray radiation coated film
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material
JP2003309383A (en) * 2002-04-16 2003-10-31 Ceramission Kk Radiator
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633818A (en) * 1986-06-23 1988-01-08 市川 好男 Production of heating cooker
JPS6384675A (en) * 1986-09-27 1988-04-15 Yoshio Ichikawa Infrared ray radiation coated film
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material
JP2003309383A (en) * 2002-04-16 2003-10-31 Ceramission Kk Radiator
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956528B2 (en) 2005-03-18 2011-06-07 Fujifilm Corporation Organic electroluminescent device comprising ceramic sheet and graphite sheet
US9859038B2 (en) 2012-08-10 2018-01-02 General Cable Technologies Corporation Surface modified overhead conductor
US10586633B2 (en) 2012-08-10 2020-03-10 General Cable Technologies Corporation Surface modified overhead conductor
US10957468B2 (en) 2013-02-26 2021-03-23 General Cable Technologies Corporation Coated overhead conductors and methods
US10726975B2 (en) 2015-07-21 2020-07-28 General Cable Technologies Corporation Electrical accessories for power transmission systems and methods for preparing such electrical accessories

Also Published As

Publication number Publication date
JP2004363310A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
KR101035011B1 (en) Heat-radiant coatings and heat-radiant plate thereby
CN108192576B (en) Liquid metal thermal interface material and preparation method and application thereof
US9745498B2 (en) Heat-storage composition
TWI244880B (en) Phase change thermal interface materials including polyester resin
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
JP5105740B2 (en) Surface-modified corundum and resin composition
KR101243944B1 (en) Heat-radiant solution-processible composites and heat-radiant composite films fabricated using well-dispersed composites
TW201831602A (en) Thermally conductive resin composition, heat dissipation sheet, heat dissipation member and method for producing same
TW201536906A (en) Heat conductive composite sheet
JP2008019426A (en) Heat conductive silicone grease composition
JP2010155870A (en) Thermally conductive compound and method for producing the same
US20170338166A1 (en) Structure, and electronic component and electronic device including the structure
US20110127461A1 (en) Thermally conductive composition and method for producing them
KR20160084808A (en) Thermal conductive silicone composition and cured product, and composite sheet
KR20200098778A (en) Method of preparing Thermal Interface Material for Battery Package of Electrical Vehicle
WO2004109797A1 (en) Heatsink for integrated circuit such as cpu
WO2020039761A1 (en) Thermally-conductive silicone composition and thermally-conductive silicone cured product
JP2005317742A (en) Heat radiator for closed structure
JP2004359811A (en) Composition having excellent heat-releasing and heat-shielding properties, and film
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
JP4688020B2 (en) Solar cell module
JP2003309383A (en) Radiator
KR101817207B1 (en) Coating agent for spreading heat, coating paint for spreading heat and use thereof
KR102456808B1 (en) Method for manufacturing a high efficiency heating system using ceramic nano heating coating and a high efficiency heating system manufactured thereby
JP2004363309A (en) Semiconductor component exhibiting excellent heat dissipation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase