WO2004108862A1 - Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites - Google Patents

Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites Download PDF

Info

Publication number
WO2004108862A1
WO2004108862A1 PCT/US2003/017479 US0317479W WO2004108862A1 WO 2004108862 A1 WO2004108862 A1 WO 2004108862A1 US 0317479 W US0317479 W US 0317479W WO 2004108862 A1 WO2004108862 A1 WO 2004108862A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
dra
activated carbon
fuel
group
Prior art date
Application number
PCT/US2003/017479
Other languages
French (fr)
Inventor
John Andrew Waynick
Original Assignee
Southwest Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research Institute filed Critical Southwest Research Institute
Priority to PCT/US2003/017479 priority Critical patent/WO2004108862A1/en
Priority to AU2003243377A priority patent/AU2003243377A1/en
Publication of WO2004108862A1 publication Critical patent/WO2004108862A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/06Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with moving sorbents or sorbents dispersed in the oil

Definitions

  • the application relates to a method for selecting drag reducer additive
  • reducer additive nonetheless is a "contaminant" in liquid hydrocarbon fuels, and has
  • drag reducer additive may cause plugging of fuel filters and
  • Drag reducer additive is prohibited in
  • additive in aviation turbine fuel may result in downgrading of the entire batch to non- aviation kerosene or diesel fuel, both of which generally have less market value.
  • Viable methods of detecting and quantifying drag reducer additive in liquid hydrocarbon fuels commonly employ gel permeation chromatography, which is time
  • Contaminated aviation turbine fuels may be diverted to other uses or returned to a refinery for reprocessing, either of which results in additional expense. Simple and inexpensive methods and materials are needed for removing drag reducer additive
  • the application provides a method for removing drag reducer additive from a liquid hydrocarbon fuel.
  • the method comprises providing a contaminated liquid hydrocarbon fuel comprising a concentration of a drag reducer additive, and contacting the contaminated liquid hydrocarbon fuel with a quantity of one or more of
  • an activated carbon or a graphite effective to substantially reduce said concentration of drag reducer additive, thereby producing a clean liquid hydrocarbon fuel.
  • Figure 1 is a graph of % Polymer Removed vs. Carbon (activated carbons
  • Figure 2 is a graph of % Polymer Removed vs. Carbon (activated carbons
  • Figure 3 is a graph of % Polymer Removed vs. Carbon (activated carbons
  • Figure 4 is a graph of % Polymer Removed vs. Carbon (activated carbons and graphites) used to remove sheared FLO ® XS polymer from jet fuel for both Grad
  • Figure 5 is a graph of % Polymer Removed vs. Carbon (activated carbons
  • the application provides methods for removing drag reducer additive
  • DPA liquid hydrocarbon fuels, preferably motor gasoline or jet fuel, most
  • contaminated refers to the presence of DRA in the fuel, due to either intentional addition or unintentional addition.
  • liquid hydrocarbon fuel is meant any hydrocarbon that is liquid under
  • Suitable liquid hydrocarbon fuels include, but
  • hydrocarbon fuel is selected from the group consisting of liquefied natural gas (LNG),
  • LPG liquefied petroleum gas
  • motor gasoline motor gasoline
  • aviation gasoline distillate fuels
  • liquid hydrocarbon fuel is
  • liquid hydrocarbon fuel is jet fuel, at least in part due to the stringent requirements applicable to jet fuel and drag reducer
  • jet fuel refers to both commercial jet fuel (Jet A, Jet A-l, and
  • JET B and military jet fuel, such as JP-4, JP-5, JP-8 and the like.
  • DRA drag reducer additive
  • the drag reducer additive may comprise other components besides the polyolefin moieties. Examples of such components
  • the polymer itself may
  • the drag reducer additive includes, but is not
  • non-polar long-chain polyolefin polymers generally referred to
  • polyalphaolefins having a “peak" molecular weight sufficiently high to allow the
  • Suitable polyalphaolefins are believed to have a
  • peak molecular weight refers to the peak that typically is measured as the drag
  • Suitable polyalphaolefins comprise polymerized linear alpha olefin (LAO)
  • Suitable polyalpha olefins are made by a variety of
  • olefins made by solution polymerization may be more readily adsorbable onto the
  • Drag reducer additives are generally unsheared, partially sheared, or fully sheared.
  • An additive that is fully sheared is one that is degraded in molecular weight
  • Drag reducer additives include, but are not
  • the drag reducer additive is FLO ® XS and
  • this flow regime is comprised of at least three regions. At the center of the
  • pipe is a turbulent core, which is the largest region and includes most of the fluid in the pipe. This is the zone of eddy currents and random motions for which turbulent
  • the burst creates the turbulence in the core, and energy is wasted in different
  • Drag reducer additive appears to interfere with the bursting process
  • the drag reducer additive typically degrades through shearing
  • the degraded drag reducer additive is generally sheared or partially sheared drag
  • drag reducer additive may contain a significant amount of drag reducer additive, including that in the sheared and partially sheared form.
  • fuels preferably motor gasoline and jet fuels, most preferably jet fuels.
  • the more active removal agents are believed to comprise ducts or pores
  • the drag reducer molecule is strongly immobilized.
  • the specific activated carbons and graphites may be in the form of crushed
  • particles or granules powder, cylinders, globules, fibers, or honeycombs.
  • Preferred agents are in the form of particles or granules. Most preferred agents are in powder or granule form.
  • Suitable activated carbons are commercially available, for example, from
  • % adsorption capacity of about 0.018% or more, preferably about 0.025% or more, more preferably about 0.03% or more.
  • CALGON ADP CALGON COLORSORB
  • CALGON ADP CALGON ADP
  • CALGON COLORSORB CALGON ADP
  • Balcer Petrolite FLO ® XS useful for removing Balcer Petrolite FLO ® XS and equivalents thereof include, but are
  • Preferred Graphites [0028] Most preferred carbonaceous materials are graphites. Graphite is a
  • Graphite can be amorphous (“amorphous graphite").
  • Artificial graphite can be manufactured from petroleum coke and is primarily used to make electrodes.
  • the virgin by-product of such electrode production has a carbon content as high as 99.9%, and can be a relatively inexpensive source of graphite agent, to highly refined natural graphite.
  • graphites are commercially available, for example, from Asbury Carbons, Inc., Asbury, NJ; Superior Graphite Co., Chicago, IL; Stanford Materials Corporation,
  • Preferred graphites comprise graphite powders or granular graphite
  • the granular graphite particulates have an average diameter of from about 0.01 microns to about 10,000 microns; preferably from about 0.1 microns to about 1,000 microns; most preferably about 1 micron to about 100 microns.
  • Preferred graphites have a porosity sufficient to provide an adsorption capacity of about 0.01
  • Suitable and preferred graphites are commercially available from Superior Graphite Company. Preferred graphite
  • products comprise, but are not necessarily limited to, purified carbon, natural graphite, silica (crystalline quartz), and synthetic graphite.
  • suitable graphites attain a % polymer removal of about
  • polymer concentration more preferably about 9-11 ppm polymer concentration, most
  • PETROLITE FLO ® XS and equivalents thereof include but are not necessarily
  • BAKER PETROLITE FLO ® XS and equivalents thereof include but are not
  • the DRA in use was removable by carbonaceous materials. In fact, it would even be most preferable to use as DRA in fuels only materials known to be removable by carbonaceous materials. Or it may be desirable to test for the presence of DRA before incurring the expense of removal.
  • the activated carbon and/or graphite(s) may be used to remove the drag reducer additive from a given liquid hydrocarbon fuel, preferably motor gasoline or jet fuel, most preferably jet fuel. Alternately, a given sample of
  • hydrocarbon fuel is analyzed for DRA by gel permeation chromatography (GPC).
  • carbonaceous materials preferably selected activated carbons, more preferably graphite(s) are incorporated into a system for filtering the DRA/fuel mixture and for
  • the filter may be in any suitable
  • Suitable locations include, but are
  • the filter comprises a component of a fuel delivery system from a tanker truck to a jet engine.
  • the graphites may or may not be heated. Heating removes any water, if any is adsorbed on
  • the filtering system preferably selected activated carbons, more preferably graphite(s), until the removal rate is so low that the carbonaceous materials must be replaced.
  • the filtering system preferably selected activated carbons, more preferably graphite(s), until the removal rate is so low that the carbonaceous materials must be replaced.
  • Civilian aircraft generally are serviced in hangers at airports. Military aircraft are serviced on the flight line, where a row of aircraft are parked away from a
  • the servicing vehicles return to the maintenance terminal to themselves be refueled or for other servicing.
  • the fuel delivery system comprises: (1) a tank of a refueling truck, (2) a transfer hose, (3) a bracket for storing the hose, (4) a manual pump, (5) a filter device, (6) a drain connected to the transfer hose at one end, and (7) a shutoff valve.
  • the filter device comprising the removal agent of the present application may be inserted either in series or in parallel with these one-way filters.
  • a filter device such as a canister or cartridge of the removal agent(s), is placed downstream of the one-way filters in order to improve efficiency and longevity of the operation.
  • EXAMPLE 1 [0042] The Grad Add/Stir method was used in this example. About 100 ml of jet fuel comprising about 8.36 ppm of FLO ® XS - unsheared DRA (manufactured by
  • Baker Petrolite was stirred with a magnetic stir bar, to create a moderate vortex.
  • Increments of about 0.02 to about 0.1 gram of a removal agent were placed in the agitating DRA/jet fuel mixture, while stirring, until a total of about 1.0 g had been added. The stirring was continued for approximately two to three minutes. The
  • FIG. 1 is a graphical representation of the effectiveness of graphites to remove unsheared DRA from jet fuel. Table 1 further summarizes the % adsorption capacity for both an activated carbon group, and a graphite group. For unsheared
  • EXAMPLE 2 [0045] The Quick Add/Stir method was used in this example. About 100 ml of jet fuel comprising about 8.36 ppm of FLO ® XS - unsheared DRA (manufactured by
  • Baker Petrolite was stirred with a magnetic stir bar, to create a moderate vortex.
  • Table 1 summarizes the % DRA adsorbed for both an
  • FIG. 2 compares the effectiveness of removing DRA using the Grad Add/Stir and Quick
  • FIG. 2 further demonstrates that
  • graphite is more effective at DRA removal than activated carbon, regardless of the method employed.
  • the removal agents listed in Table 1 are derived from numerous sources, including wood, coconut and other shells, peat, bituminous coal, lignite coal, and
  • Each carbon source material differs in surface area, pore size, density,
  • FIG. 3 is a graphical representation of the effectiveness of graphites to remove sheared DRA from jet fuel.
  • Table 2 further summarizes the % adsorption
  • FIG. 4 further demonstrates that
  • graphite is more effective at DRA removal than activated carbon, regardless of the method employed.
  • FIG. 5 demonstrates the effectiveness of the removal agents to remove both sheared and unsheared FLO ® XS from jet fuel. All removal agents perform better removing unsheared polymer over sheared polymer. Only the most effective removal agents at removing unsheared polymer were effective at removing sheared polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

The application relates to a method for selecting drag reducer additive (DRA) effectively removable by activated carbons and graphites to be used in fuel. The application also relates to effective activated carbons and graphites for removing DRA from fuel, and to a method of using effective activated carbons and graphites to remove DRA from fuel.

Description

TITLE: REMOVAL OF DRAG REDUCER ADDITIVE FROM FUEL BY
TREATMENT WITH SELECTED ACTIVATED CARBONS AND GRAPHITES Cross-reference to Related Applications
[0001] This application is a continuation-in-part application of U.S. Patent
Application No. 10/124,974, filed on April 18, 2002.
Field of the Invention
[0002] The application relates to a method for selecting drag reducer additive
(DRA) effectively removable by activated carbon to be used in fuel. The application
also relates effective activated carbons and graphites for removing DRA from fuel,
and to a method of using effective activated carbon and graphites to remove DRA from fuel.
Background
[0003] In order to move fluid through pipelines, into or out of wells, or through equipment, energy must be applied to the fluid. The energy moves the fluid, but is lost
in the form of friction. This frictional pressure drop, or drag, restricts the fluid flow,
limiting throughput and requiring greater amounts of energy for pumping.
[0004] Materials can be added to flowing fluids in order to reduce the energy lost
due to friction, or drag, thus permitting the movement of more fluid at the same differential pressure. The resulting reduction in frictional pressure drop improves
pumping efficiency, lowers energy costs, and increases profitability. Materials for
reducing drag in flowing fluids are generally known by the generic names "flow
improver" or "drag reducer additive" (sometimes referred to as "DRA"). [0005] Unfortunately, whether in the virgin form or in the sheared or partially sheared form, and despite the fact that it is intentionally added to certain fuels, drag
reducer additive nonetheless is a "contaminant" in liquid hydrocarbon fuels, and has
the potential to cause a number of problems. For example, the presence of drag reducer additive in motor gasoline, even in the sheared form, has caused increased
intake valve deposits, plugging of fuel filters, and increased combustion chamber
deposits. In diesel fuels, drag reducer additive may cause plugging of fuel filters and
strainers and increased fuel injector deposits. Drag reducer additive is prohibited in
aviation turbine fuels, although it has been observed as a contaminant due to accidental addition or other non-intentional means. The presence of drag reducer
additive in aviation turbine fuel may result in downgrading of the entire batch to non- aviation kerosene or diesel fuel, both of which generally have less market value.
[0006] Viable methods of detecting and quantifying drag reducer additive in liquid hydrocarbon fuels commonly employ gel permeation chromatography, which is time
consuming and expensive. Because of this, contaminated liquid hydrocarbon fuels
often are used, despite the potential problems if drag reducer additive is present.
Contaminated aviation turbine fuels may be diverted to other uses or returned to a refinery for reprocessing, either of which results in additional expense. Simple and inexpensive methods and materials are needed for removing drag reducer additive
from liquid hydrocarbon fuels.
Summary [0007] The application provides a method for removing drag reducer additive from a liquid hydrocarbon fuel. The method comprises providing a contaminated liquid hydrocarbon fuel comprising a concentration of a drag reducer additive, and contacting the contaminated liquid hydrocarbon fuel with a quantity of one or more of
an activated carbon or a graphite effective to substantially reduce said concentration of drag reducer additive, thereby producing a clean liquid hydrocarbon fuel.
Brief Description of the Figures
[0008] Figure 1 is a graph of % Polymer Removed vs. Carbon (activated carbons
and graphites) used to remove unsheared FLO®XS polymer from jet fuel using the Grad Add/Stir method (described in detail below).
[0009] Figure 2 is a graph of % Polymer Removed vs. Carbon (activated carbons
and graphites) used to remove unsheared FLO®XS polymer from jet fuel for both Grad Add/Stir and Quick Add/Stir methods using the Grad Add/Stir method.
[0010] Figure 3 is a graph of % Polymer Removed vs. Carbon (activated carbons
and graphites) used to remove sheared FLO®XS polymer from jet fuel using the Grad
Add/Stir method.
[0011] Figure 4 is a graph of % Polymer Removed vs. Carbon (activated carbons and graphites) used to remove sheared FLO®XS polymer from jet fuel for both Grad
Add/Stir and Quick Add/Stir methods. [0012] Figure 5 is a graph of % Polymer Removed vs. Carbon (activated carbons
and graphites) used to remove FLO ®XS polymer from jet fuel for Unsheared vs.
Sheared FLO®XS polymer using the Grad Add/Stir method. Detailed Description
[0013] The application provides methods for removing drag reducer additive
(DRA) from liquid hydrocarbon fuels, preferably motor gasoline or jet fuel, most
preferably jet fuel, using selected activated carbons or graphites. As used herein, the
word "contaminated" refers to the presence of DRA in the fuel, due to either intentional addition or unintentional addition.
"Liquid Hydrocarbon Fuel"
[0014] By "liquid hydrocarbon fuel" is meant any hydrocarbon that is liquid under
conditions of transport and/or storage. Suitable liquid hydrocarbon fuels include, but
are not necessarily limited to those having a boiling range of from about 150 °F to
about 750 °F, which may be used as a fuel. In one embodiment, the liquid
hydrocarbon fuel is selected from the group consisting of liquefied natural gas (LNG),
liquefied petroleum gas (LPG), motor gasoline, aviation gasoline, distillate fuels such
as diesel fuel and home heating oil, kerosene, jet fuel, No. 2 oil, residual fuel, No. 6
fuel, or bunker fuel. In a preferred embodiment, the liquid hydrocarbon fuel is
selected from the group consisting of diesel fuel, jet fuel, aviation gasoline, and motor
gasoline. In a more preferred embodiment, the liquid hydrocarbon fuel is jet fuel, at least in part due to the stringent requirements applicable to jet fuel and drag reducer
additive. The phrase "jet fuel" refers to both commercial jet fuel (Jet A, Jet A-l, and
JET B) and military jet fuel, such as JP-4, JP-5, JP-8 and the like.
"Drag Reducer Additive" [0015] The term "drag reducer additive" (i.e. DRA) is defined to mean polyolefin polymers comprising polyolefin moieties which are introduced into petroleum liquids
for the purpose of reducing fluid flow drag. The drag reducer additive may comprise other components besides the polyolefin moieties. Examples of such components
include, but are not necessarily limited to surfactant, catalyst residue, other additives,
and other byproducts from the production of the polymer. The polymer itself may
contain other non-olefin monomer units as well.
[0016] In a preferred embodiment, the drag reducer additive includes, but is not
necessarily limited to, non-polar long-chain polyolefin polymers, generally referred to
as "polyalphaolefins," having a "peak" molecular weight sufficiently high to allow the
polymers to reduce fluid flow drag. Suitable polyalphaolefins are believed to have a
molecular weight of about 1 million Daltons or more, more preferably about 10
million Daltons or more, most preferably about 25 million Daltons or more. The
"peak" molecular weight refers to the peak that typically is measured as the drag
reducer is eluted and detected during gel permeation chromatography.
[0017] Suitable polyalphaolefins comprise polymerized linear alpha olefin (LAO)
monomers having from about 2 to about 40 carbon atoms, preferably from about 2 to
about 30 carbon atoms, more preferably from about 4 to about 20 carbon atoms, most
preferably from about 6 to about 12 carbon atoms. An especially preferred embodiment for a DRA which is effectively removable by the activated carbons
and/or graphites described herein comprises at least two different LAO's, preferably
having from about 6 to about 12 carbon atoms, the number of carbon atoms of the "at
least two different LAO's" differing by 6. [0018] Polyalphaolefins having relatively high molecular weights are required to
impart good drag reduction. Suitable polyalpha olefins "are made by a variety of
processes, including but not necessarily limited to solution polymerization and bulk
polymerization. Bulk polymerization is said to produce "ultra-high molecular weight polyolefin drag reducers [that] are significantly larger (molecular weight basis) than
the best molecular weights made by solution polymerization." See U.S. Patent No.
5,504,132. Preferred DRA's for removal according to the process described herein
are made by solution polymerization.
[0019] Without limiting the invention to a specific theory or mechanism of action,
the very large polyalpha olefins made by bulk polymerization may be more difficult to
adsorb onto and retain on the carbonaceous removal agents. In contrast, the polyalpha
olefins made by solution polymerization may be more readily adsorbable onto the
removal agents, and more readily retained by the removal agents.
[0020] Drag reducer additives are generally unsheared, partially sheared, or fully sheared. An additive that is fully sheared is one that is degraded in molecular weight
to the maximum extent possible using high shear devices such as pumps, static
mixers, etc. Commercially available drag reducer additives include, but are not
necessarily limited to, CDR ® Flow Improver and REFINED POWER ™,
manufactured by Conoco Specialty Products, Inc., EN-660 Flow Improver,
manufactured by Energy 2000 LLC, and FLO ®XS and FLO ®XL, manufactured by
Baker Petrolite. In a preferred embodiment, the drag reducer additive is FLO®XS and
equivalents thereof. [0021] The exact mechanism by which a drag reducer additive reduces drag in flowing liquid hydrocarbons is not completely known. However, a drag reducer
additive apparently alters the turbulent flow regime of the liquid hydrocarbons. In a pipeline, this flow regime is comprised of at least three regions. At the center of the
pipe is a turbulent core, which is the largest region and includes most of the fluid in the pipe. This is the zone of eddy currents and random motions for which turbulent
flow is named. Nearest to the pipe line wall is the laminar sublayer. In this zone, the fluid moves laterally in "sheets". Between the laminar layer and the turbulent core
lies the "buffer zone". It appears that much of the turbulence which exists in turbulent
flow develops when a portion of the laminar sublayer, called a "streak", moves up to
the buffer zone, where it begins to vortex and oscillate, finally breaking up and
throwing fluid into the core. This ejection of fluid into the core is called a "burst".
The burst creates the turbulence in the core, and energy is wasted in different
directions. Drag reducer additive appears to interfere with the bursting process and
prevent or reduce the degree of turbulence by stretching in the flow, absorbing the
energy in the streak, and thereby preventing bursts.
[0022] As liquids containing drag reducer additive travel through pumps, pipelines
and other equipment, the drag reducer additive typically degrades through shearing
action, resulting in a reduction in the molecular weight of the drag reducer additive. The degraded drag reducer additive is generally sheared or partially sheared drag
reducer additive. Upon reaching the ultimate destination, liquid hydrocarbon fuels
that have been shipped using drag reducer additive may contain a significant amount of drag reducer additive, including that in the sheared and partially sheared form.
Removal Agents for Removing DRA from Fuels
[0023] The present application is based on the surprising finding that selected
activated carbons and graphites, particularly selected graphites, are much more
effective than others as removal agents for binding and removing drag reducer
additive from fuels, preferably motor gasoline and jet fuels, most preferably jet fuels.
The superiority has been demonstrated in unsheared DRA known as Baker Petrolite
FLO®XS.
[0024] Without limiting the application to a particular theory or mechanism of
operation, the more active removal agents are believed to comprise ducts or pores
having a hydrophobic/hydrophilic property that provides a chemical attraction to
pendant groups on the drag reducer additive. The chemical attraction is believed to
bring the pendant groups on the drag reducer additive into proximity and orientation
with the pore surface of the agent, thereby immobilizing the pendant groups. Because
many pendant groups on a given drag reducer molecule are simultaneously
immobilized, the drag reducer molecule is strongly immobilized.
[0025] Without limiting the claims to a particular mechanism or theory of action,
the effective activated carbons and graphites are believed to be porous materials
comprising pores having a hydrophobic/hydrophilic property that is compatible with
or provides a chemical attraction to pendant groups of the particular drag reducer
additive. The specific activated carbons and graphites may be in the form of crushed
particles or granules, powder, cylinders, globules, fibers, or honeycombs. Preferred agents are in the form of particles or granules. Most preferred agents are in powder or granule form.
Activated Carbons
[0026] Suitable activated carbons are commercially available, for example, from
AUchem Industries, Inc., Beta Chemicals, Calgon, Coyne Chemical Co., Elf Atochem North America, Inc. (Performance Products), R. W. Greef & Co, Inc., Kingshine
Chemical Co., Ltd., Mays Chemical Co., Inc., Mitsubishi International Corp.
(Industrial Specialty Chemicals Div.), Spectrum Chemical Mfg. Corp., Norit and
others. When added (in increments with agitation) to a fuel mixture containing a
preferred unsheared drag reducer additive of about 8-12 ppm polymer concentration,
more preferably about 9-11 ppm polymer concentration, most preferably about 10
ppm polymer concentration, suitable activated carbons attain a % polymer removal of
about 20% or more; preferably about 30% or more; more preferably at least about
40% or more, at about lg activated carbon/100 ml fuel. This equates to a %
adsorption capacity of about 0.014% or more, preferably about 0.02% or more, most
preferably about 0.03% or more. When added (in increments with agitation) to a fuel
mixture containing a preferred sheared drag reducer additive of about 8-12 ppm
polymer concentration, more preferably about 9-11 ppm polymer concentration, most preferably about 10 ppm polymer concentration, suitable activated carbons attain a %
polymer removal of about 20% or more; preferably about 25% or more; more
preferably about 30% or more, at about lg activated carbon/100 ml fuel. This equates
to a % adsorption capacity of about 0.018% or more, preferably about 0.025% or more, more preferably about 0.03% or more.
[0027] Commercially viable activated carbons, which have been demonstrated to be
suitable to remove Baker Petrolite FLO® XS and equivalents thereof include, but are
not necessarily limited to, CALGON ADP, CALGON COLORSORB, CALGON
WPX, NORIT A SUPRA, NORIT CA 1, NORIT FGD, NORIT HDB, SXO
POWDER, and CARBON 5565. Preferred activated carbons demonstrated to be
useful for removing Balcer Petrolite FLO® XS and equivalents thereof include, but are
not necessarily limited to CALGON WPX, NORIT A SUPRA, NORIT CA1, NORIT
FGD, NORIT HDB, SXO POWDER and CARBON 5565. Most preferred activated
carbons demonstrated to be useful for removing Balcer Petrolite FLO® XS and
equivalents thereof include, but are not necessarily limited to NORIT A SUPRA,
NORIT CAl, NORIT FGD, and NORIT HDB.
Preferred Graphites [0028] Most preferred carbonaceous materials are graphites. Graphite is a
crystalline form of carbon found as a naturally occurring mineral in many locations
around the world. Graphite can be amorphous ("amorphous graphite"). Graphite
also can have a perfect basal cleavage which, coupled with its extreme softness, gives
it an oily, slippery feel, such graphites include, but are not necessarily limited to
natural graphite, synthetic graphite, and expanded graphite. Each of these graphite
types is commercially available in various forms, including, crystalline lumps,
crystalline large flakes, crystalline medium flakes, crystalline small flakes, and
powder form. Artificial graphite can be manufactured from petroleum coke and is primarily used to make electrodes. The virgin by-product of such electrode production has a carbon content as high as 99.9%, and can be a relatively inexpensive source of graphite agent, to highly refined natural graphite. Suitable candidate
graphites are commercially available, for example, from Asbury Carbons, Inc., Asbury, NJ; Superior Graphite Co., Chicago, IL; Stanford Materials Corporation,
Aliso Viejo, CA; and others.
[0029] Preferred graphites comprise graphite powders or granular graphite
particulates. The granular graphite particulates have an average diameter of from about 0.01 microns to about 10,000 microns; preferably from about 0.1 microns to about 1,000 microns; most preferably about 1 micron to about 100 microns. Preferred graphites have a porosity sufficient to provide an adsorption capacity of about 0.01
wt.% or more, preferably about 0.03 wt.% or more, most preferably about 0.04 wt%,
when added to a preferred drag reducer additive. Suitable and preferred graphites are commercially available from Superior Graphite Company. Preferred graphite
products comprise, but are not necessarily limited to, purified carbon, natural graphite, silica (crystalline quartz), and synthetic graphite.
[0030] When added (in increments with agitation) to a fuel mixture containing a preferred unsheared drag reducer additive of about 8-12 ppm polymer concentration,
more preferably about 9-11 ppm polymer concentration, most preferably about 10
ppm polymer concentration, suitable graphites attain a % polymer removal of about
30% or more; preferably about 40% or more; more preferably at least about 50% or more, at about lg activated carbon/100 ml fuel. This equates to a % adsorption capacity of about 0.02% or more, more preferably about 0.03% or more, most
preferably about 0.04% or more. When added (in increments with agitation) to a fuel mixture containing a preferred sheared drag reducer additive of about 8-12 ppm
polymer concentration, more preferably about 9-11 ppm polymer concentration, most
preferably about 10 ppm polymer concentration, suitable graphites attain a % polymer
removal of at least about 25%; more suitably at least about 30%; most suitably at least
about 35%, at about lg activated carbon/ 100 ml fuel. This equates to a % adsorption
capacity of about 0.02%, more preferably about 0.025%, most preferably about
0.03%.
[0031] Graphites that demonstrated commercial viability for adsorbing unsheared
and sheared BAKER PETROLITE FLO® XS and equivalents included GRAPHITE 2126, GRAPHITE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5526,
GRAPHITE 5539, GRAPHITE 9026, GRAPHITE 9039, and GRAPHITE GA-17,
available from Superior Graphite Co. The foregoing graphites exhibited an adsorption
capacity for unsheared and sheared BAKER PETROLITE FLO® XS of about 0.01
wt% or more.
[0032] Preferred commercially available graphites for adsorbing unsheared BAKER
PETROLITE FLO® XS and equivalents included GRAPHITE 2126, GRAPHITE
2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHITE GA-17. The foregoing graphites exhibited an adsorptioncapacity for unsheared BAKER PETROLITE FLO® XS of about 0.02 wt% or more. Preferred
commercially available graphites for adsorbing sheared BAKER PETROLITE FLO ©' XS and equivalents included GRAPHITE 2126, GRAPHITE 2139, GRAPHITE
3726, GRAPHITE 3739, GRAPHITE 9026, and GRAPHITE 9039. The foregoing
graphites exhibited an adsorptioncapacity for sheared BAKER PETROLITE FLO® XS of about 0.018 wt% or more.
[0033] Even more' preferred commercially available graphites for adsorbing unsheared BAKER PETROLITE FLO® XS and equivalents included GRAPHITE
2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and
GRAPHITE GA-17. The foregoing graphites exhibited an adsorptioncapacity for
unsheared BAKER PETROLITE FLO® XS of about 0.03 wt% or more.
[0034] Most prefeπ-ed graphites, particularly for adsorbing unsheared BAKER
PETROLITE FLO® XS and equivalents thereof, include but are not necessarily
limited to GRAPHITE 2139 and GRAPHITE 3739. The foregoing graphites
exhibited an adsorptioncapacity for unsheared BAKER PETROLITE FLO® XS of about 0.04 wt% or more. Most preferred graphites, particularly for adsorbing sheared
BAKER PETROLITE FLO® XS and equivalents thereof, include but are not
necessarily limited to GRAPHITE 3726 and GRAPHITE 3739. The foregoing
graphites exhibited an adsorptioncapacity for sheared BAKER PETROLITE FLO® XS
of about 0.025 wt% or more.
Removal of Drag Reducer Additive From Liquid Hydrocarbon Fuels
[0035] It may be desirable simply to subject all of a given fuel at a given storage or
transport site to a DRA removal procedure. This would be particularly effective if all
the DRA in use was removable by carbonaceous materials. In fact, it would even be most preferable to use as DRA in fuels only materials known to be removable by carbonaceous materials. Or it may be desirable to test for the presence of DRA before incurring the expense of removal.
[0036] Once preferred carbonaceous materials, preferably graphite removal agents have been identified, the activated carbon and/or graphite(s) may be used to remove the drag reducer additive from a given liquid hydrocarbon fuel, preferably motor gasoline or jet fuel, most preferably jet fuel. Alternately, a given sample of
hydrocarbon fuel is analyzed for DRA by gel permeation chromatography (GPC).
[0037] When it is desired to remove DRA from a given fuel, one or more effective
carbonaceous materials, preferably selected activated carbons, more preferably graphite(s) are incorporated into a system for filtering the DRA/fuel mixture and for
removing drag reducer additive from that mixture. The filter may be in any suitable
form and may be installed in a variety of locations. Suitable locations include, but are
not necessarily limited to a pipeline to a fuel terminal, a delivery system between a
fuel terminal and a tanker truck, a delivery system between two different tanker trucks, a delivery system from a tanker truck to a storage tank or to an engine, and, actually as a component of the engine, itself. In one embodiment, the filter comprises a component of a fuel delivery system from a tanker truck to a jet engine. The filter
may be used in substantially any type of delivery system. In each method, the graphites may or may not be heated. Heating removes any water, if any is adsorbed on
the graphite.
[0038] Due to the difficulty in providing for incremental addition and agitation in most commercial situations, it may be preferred to simply pass the liquid hydrocarbon
fuel through a bed of the carbonaceous materials, preferably selected activated carbons, more preferably graphite(s), until the removal rate is so low that the carbonaceous materials must be replaced. In one embodiment, the filtering system
provides for agitation of the DRA/fuel mixture as incremental additions of a given carbonaceous material, preferably a selected activated carbon(s), more preferably graphite(s) are added to the DRA/fuel mixture. This procedure is sometimes herein referred to as the "gradual addition and stirring" method or "Grad Add/Stir" method.
This is a preferred method for more viscous hydrocarbon fuels such as jet fuel.
[0039] Civilian aircraft generally are serviced in hangers at airports. Military aircraft are serviced on the flight line, where a row of aircraft are parked away from a
maintenance terminal and nearer to the runway, to be ready for mobilization. The distance from the flight line to the maintenance terminals may be as much as one mile. Servicing of aircraft, particularly military aircraft, typically is performed by shuttling
service vehicles out to the flight line from the maintenance terminal where they
perform the requisite service. Periodically, the servicing vehicles return to the maintenance terminal to themselves be refueled or for other servicing.
[0040] An example of how the system would be incorporated into a known fuel
delivery system is described in U.S. Patent Application No. 10/124,974, filed on April 18, 2002, incorporated herein by reference. Briefly, the fuel delivery system comprises: (1) a tank of a refueling truck, (2) a transfer hose, (3) a bracket for storing the hose, (4) a manual pump, (5) a filter device, (6) a drain connected to the transfer hose at one end, and (7) a shutoff valve. The filter device comprising the removal agent of the present application may be inserted either in series or in parallel with these one-way filters. Preferably, a filter device, such as a canister or cartridge of the removal agent(s), is placed downstream of the one-way filters in order to improve efficiency and longevity of the operation.
[0041] The application will be better understood with reference to the following examples, which are illustrative only:
EXAMPLE 1 [0042] The Grad Add/Stir method was used in this example. About 100 ml of jet fuel comprising about 8.36 ppm of FLO® XS - unsheared DRA (manufactured by
Baker Petrolite) was stirred with a magnetic stir bar, to create a moderate vortex.
Increments of about 0.02 to about 0.1 gram of a removal agent were placed in the agitating DRA/jet fuel mixture, while stirring, until a total of about 1.0 g had been added. The stirring was continued for approximately two to three minutes. The
sample was allowed to settle for about 5 minutes. The carbon was removed from the mixture by filtration with a Whatman 8 micron filter. The mixture was then tested for
polymer concentration.
[0043] The polymer adsorption of removal agents increased with graphite as
compared to activated carbon. Table 1 (in Example 2) summarizes the % DRA
adsorbed for both an activated carbon group (34 samples), and a graphite group (9 samples). FIG. 1 is a graphical representation of the effectiveness of graphites to remove unsheared DRA from jet fuel. Table 1 further summarizes the % adsorption capacity for both an activated carbon group, and a graphite group. For unsheared
DRA, the % adsorption capacity of a given carbon = (0.000678)*(% polymer removed). This formula is derived using the initial polymer concentration, volume of DRA/fuel used in the experiment, weight of carbon used in the experiment, and density of the DRA/fuel used.
[0044] As shown in FIG. 1, graphites are more effective at removing unsheared polymer than activated carbons. The highest removal effectiveness of the 43 removal
agents tested was 58.20 % (with "Graphite 3739"), provided by Superior Graphite
Company, which corresponds to a polymer adsorption capacity of 0.04 %(wt).
EXAMPLE 2 [0045] The Quick Add/Stir method was used in this example. About 100 ml of jet fuel comprising about 8.36 ppm of FLO® XS - unsheared DRA (manufactured by
Baker Petrolite) was stirred with a magnetic stir bar, to create a moderate vortex.
Once the removal agent had cooled, about 1.0 g of the removal agent was placed in
the agitating DRA/jet fuel mixture, while stirring. The stirring was continued for approximately two to three minutes. The sample was allowed to settle for about 5 minutes. The carbon was removed from the mixture by filtration with a Whatman 8
micron filter. The mixture was then tested for polymer concentration. [0046] The polymer adsorption of removal agents increased with graphite as
compared to activated carbon. Table 1 summarizes the % DRA adsorbed for both an
activated carbon group (7 samples), and a graphite group (1 sample). The highest removal effectiveness of the 8 removal agents tested was 49.90 % (with "Graphite 3739"), which corresponds to a polymer adsorption capacity of 0.034 %(wt). FIG. 2 compares the effectiveness of removing DRA using the Grad Add/Stir and Quick
Add/Stir methods for the 8 commonly tested removal agents. The Grad Add/Stir method gave superior results in 5 of the 8 carbons tested. The Quick Add/Stir method
gave superior results in 3 of the 8 carbons tested. FIG. 2 further demonstrates that
graphite is more effective at DRA removal than activated carbon, regardless of the method employed.
[0047] The removal agents listed in Table 1 are derived from numerous sources, including wood, coconut and other shells, peat, bituminous coal, lignite coal, and
anthracite coal. Each carbon source material differs in surface area, pore size, density,
and strength characteristics.
Table 1
Figure imgf000019_0001
Figure imgf000020_0001
[0048] Based on the foregoing, a gradual or incremental add/stir procedure is more efficient in removing DRA from more viscous hydrocarbon fuels, such as jet fuel.
EXAMPLE 3 [0049] The Grad Add/Stir method was used in this example. About 100 ml of jet
fuel comprising about 8.36 ppm of FLO® XS - sheared DRA (manufactured by Baker
Petrolite) was stirred with a magnetic stir bar, to create a moderate vortex. Increments of about 0.02 to about 0.1 gram of a removal agent were placed in the agitating
DRA/jet fuel mixture, while stirring, until a total of about 1.0 g had been added. The
stirring was continued for approximately two to three minutes. The sample was
allowed to settle for about 5 minutes. The carbon was removed from the mixture by
filtration with a Whatman 8 micron filter. The mixture was then tested for polymer
concentration.
[0050] The polymer adsorption of removal agents increased with graphite as compared to activated carbon. Table 2 (in Example 4) summarizes the % DRA adsorbed for both an activated carbon group (34 samples), and a graphite group (9
samples). FIG. 3 is a graphical representation of the effectiveness of graphites to remove sheared DRA from jet fuel. Table 2 further summarizes the % adsorption
capacity for both an activated carbon group, and a graphite group. For sheared DRA, the % adsorption capacity of a given carbon = (0.000857)*(% polymer removed). This formula is derived using the initial polymer concentration, volume of DRA/fuel
used in the experiment, weight of carbon used in the experiment, and density of the DRA/fuel used.
[0051] As shown in FIG. 3, graphites are more effective at removing sheared polymer than activated carbons. The highest removal effectiveness of the 43 removal
agents tested was 36.30% (with "Graphite 3739"), which corresponds to a polymer adsorption capacity of 0.031 %(wt).
EXAMPLE 4
[0052] The Quick Add/Stir method was used in this example. About 100 ml of jet
fuel comprising about 8.36 ppm of FLO® XS - sheared DRA was stirred with a magnetic stir bar, to create a moderate vortex. Once the removal agent had cooled, about 1.0 g of the removal agent was placed in the agitating DRA/jet fuel mixture, while stirring. The stirring was continued for approximately two to three minutes.
The sample was allowed to settle for about 5 minutes. The carbon was removed from
the mixture by filtration with a Whatman 8 micron filter. The mixture was then tested
for polymer concentration.
[0053] The polymer adsorption of removal agents increased with graphite as
compared to activated carbon. Table 2 summarizes the % DRA adsorbed for both an activated carbon group (7 samples), and a graphite group (1 sample). The highest removal effectiveness of the 8 removal agents tested was 42.10 % (with "Graphite
3739"), which corresponds to a polymer adsorption capacity of 0.040 %(wt). FIG. 4
compares the effectiveness of removing DRA using the Grad Add/Stir and Quick
Add/Stir methods for the 8 commonly tested removal agents. The Grad Add/Stir
method gave superior results in 5 of the 8 carbons tested. The Quick Add/Stir method gave superior results in 3 of the 8 carbons tested. FIG. 4 further demonstrates that
graphite is more effective at DRA removal than activated carbon, regardless of the method employed.
[0054] FIG. 5 demonstrates the effectiveness of the removal agents to remove both sheared and unsheared FLO® XS from jet fuel. All removal agents perform better removing unsheared polymer over sheared polymer. Only the most effective removal agents at removing unsheared polymer were effective at removing sheared polymer.
Table 2
Figure imgf000023_0001
Figure imgf000024_0001
[0055] Persons of ordinary skill in the art will recognize that many modifications may be made to the present application without departing from the spirit and scope of the present application. The embodiment described herein is meant to be illustrative only and should not be taken as limiting the application.

Claims

We claim: 1. A method of removing drag reducer additive from a liquid hydrocarbon fuel, said method comprising:
providing a contaminated liquid hydrocarbon fuel comprising a concentration of a drag reducer additive (DRA); contacting said contaminated liquid hydrocarbon fuel with a quantity of one or
more graphite effective to substantially reduce said concentration of
DRA, said contacting occurring under conditions effective to produce a clean liquid hydrocarbon fuel.
2. The method of claim 1 wherein said graphite comprises a graphite powder.
3. The method of claim 1 wherein said graphite comprises a particulate
having an average diameter of from about 1 micron to about 100 microns.
4. The method of claim 1 wherein said graphite comprises an adsorption
capacity for said DRA of about 0.01 wt.% or more at from about 8 to about 12 ppm
DRA concentration and at about lg activated carbon/100 ml fuel, said DRA being selected from the group consisting of sheared and unsheared DRA.
5. The method of claim 1 wherein said graphite comprises an adsorption capacity for DRA of about 0.02 wt.% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
6. The method of claim 1 wherein said graphite comprises an adsorption capacity for sheared DRA of about 0.025 wt.% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
7. The method of claim 1 wherein said graphite comprises an adsorption capacity for unsheared DRA of about 0.04 wt.% or more at from about 8 to about 12
ppm DRA concentration and at about lg activated carbon/100 ml fuel.
8. The method of claim 1 wherein said graphite produces a % polymer
removal for unsheared DRA of about 25% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
9. The method of claim 1 wherein said graphite produces a % polymer
removal for DRA of about 30% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
10. The method of claim 1 wherein said graphite produces a % polymer
removal for sheared DRA of about 35% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
11. The method of claim 1 wherein said graphite produces a % DRA
removal for unsheared DRA of about 40% or more at about lg activated carbon/100
ml fuel.
12. The method of claim 1 wherein said graphite produces a % DRA removal for unsheared DRA of about 50% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
13. The method of claim 1 wherein said graphite is selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5526, GRAPHITE 5539, GRAPHTTE 9026, GRAPHTTE 9039, and GRAPHTTE GA-17.
14. The method of claim 1 wherein said graphite is selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139, GRAPHITE 3726, GRAPHTTE 3739, GRAPHITE 5539, GRAPHTTE 9039, and GRAPHITE GA-17.
15. The method of claim 1 wherein said graphite is selected from the group
consisting of GRAPHITE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE
5539, GRAPHTTE 9039, and GRAPHITE GA-17.
16. The method of claim 1 wherein said graphite is selected from the group consisting of GRAPHTTE 2139 and GRAPHITE 3739.
17. A method of removing drag reducer additive from a liquid
hydrocarbon fuel, said method comprising:
providing a contaminated liquid hydrocarbon fuel comprising a concentration
of a drag reducer additive (DRA);
contacting said contaminated liquid hydrocarbon fuel with a quantity of one or more activated carbon effective to having an adsorption capacity for DRA of about 0.014 or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA
being sheared or unsheared, said contacting occurring under conditions
effective to produce a clean liquid hydrocarbon fuel.
18. The method of claim 17 wherein said activated carbon has an adsorption capacity for sheared DRA of 0.018% or more.
19. The method of claim 17 wherein said activated carbon has an adsorption capacity for DRA of about 0.020% or more, said DRA being selected from the group consisting of sheared and unsheared DRA.
20. The method of claim 17 wherein said activated carbon has an adsorptioncapacity for DRA of 0.025%, said DRA being selected from the group consisting of sheared and unsheared DRA.
21. The method of claim 17 wherein said activated carbon has an
adsorptioncapacity for DRA of about 0.030%, said DRA being selected from the
group consisting of sheared and unsheared DRA.
22. The method of claim 17 wherein said activated carbon comprises an
activated carbon powder.
23. The method of claim 17 wherein said activated carbon comprises a
particulate having an average diameter of from about 1 micron to about 100 microns.
24. The method of claim 17 wherein said activated carbon produces a %
polymer removal for DRA of about 20% or more at from about 8 to about 12 ppm
DRA concentration and at about lg activated carbon/100 ml fuel, said DRA being
selected from the group consisting of sheared and unsheared DRA.
25. The method of claim 17 wherein said activated carbon produces a %
polymer removal for unsheared DRA of about 30% or more at from about 8 to about
12 ppm DRA concentration and at about lg activated carbon/100 ml fuel, said DRA
being selected from the group consisting of sheared and unsheared DRA.
26. The method of claim 17 wherein said activated carbon produces a % polymer removal for unsheared DRA of about 40% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
27. The method of claim 17 wherein said activated carbon is selected from the group consisting of CALGON ADP, CALGON COLORSORB, CALGON WPX,
NORIT A SUPRA, NORIT CA 1, NORTTN FGD, NORTT HDB, SXO POWDER, and CARBON 5565.
28. The method of claim 17 wherein said activated carbon is selected from the group consisting of CALGON WPX, NORIT A SUPRA, NORTT CAl , NORIT
FGD, NORIT HDB , SXO POWDER and CARBON 5565.
29. The method of claim 17 wherein said activated carbon is selected from
the group consisting of NORIT A SUPRA, NORIT CAl, NORIT FGD, and NORIT HDB.
30. A method of removing drag reducer additive from a liquid hydrocarbon fuel, said method comprising:
providing a contaminated liquid hydrocarbon fuel comprising a concentration of a drag reducer additive (DRA), said DRA comprising
polyalphaolefin produced by solution polymerization;
contacting said contaminated liquid hydrocarbon fuel with a quantity of removal agent under conditions effective to produce a clean liquid
hydrocarbon fuel, said removal agent being selected from the group
consisting of one or more graphite and one or more activated carbon having an adsorptioncapacity for said DRA of about 0.014 or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
31. The method of claim 30 wherein said graphite comprises an adsorption capacity for DRA of about 0.02 wt.% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel, said DRA being selected from the group consisting of sheared and unsheared DRA.
32. The method of claim 30 wherein said graphite comprises an
adsorptioncapacity for unsheared DRA of about 0.04 wt.% or more at from about 8 to
about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
33. The method of claim 30 wherein said graphite produces a % polymer removal for unsheared DRA of about 25% or more at from about 8 to about 12 ppm
DRA concentration and at about lg activated carbon/100 ml fuel.
34. The method of claim 30 wherein said graphite produces a % polymer
removal for DRA of about 30% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
35. The method of claim 30 wherein said graphite produces a % DRA removal for unsheared DRA of about 40% or more at about lg activated carbon/100 ml fuel.
36. The method of claim 30 wherein said graphite produces a % DRA
removal for unsheared DRA of about 50% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
37. The method of claim 30 wherein said removal agent comprises graphite selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139,
GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5526, GRAPHTTE 5539, GRAPHITE 9026, GRAPHTTE 9039, and GRAPHTTE GA-17.
38. The method of claim 30 wherein said removal agent comprises
graphite selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139,
GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHITE GA-17.
39. The method of claim 30 wherein said removal agent comprises
graphite selected from the group consisting of GRAPHITE 2139, GRAPHITE 3726,
GRAPHTTE 3739, GRAPHTTE 5539, GRAPHITE 9039, and GRAPHITE GA-17.
40. The method of claim 30 wherein said removal agent comprises graphite selected from the group consisting of GRAPHITE 2139 and GRAPHITE
3739.
41. The method of claim 30 wherein said removal agent is activated carbon selected from the group consisting of CALGON ADP, CALGON COLORSORB ,
CALGON WPX, NORTT A SUPRA, NORIT CA 1 , NORTTN FGD, NORIT HDB,
SXO POWDER, and CARBON 5565.
42. The method of claim 30 wherein said removal agent is activated carbon
selected from the group consisting of CALGON WPX, NORTT A SUPRA, NORIT
CAl, NORTT FGD, NORIT HDB, SXO POWDER and CARBON 5565.
43. The method of claim 30 wherein said removal agent is activated carbon selected from the group consisting of NORIT A SUPRA, NORIT CAl , NORIT FGD, and NORIT HDB.
44. A method of removing drag reducer additive from a liquid hydrocarbon fuel, said method comprising:
providing a contaminated liquid hydrocarbon fuel comprising a concentration
of a drag reducer additive (DRA) comprising polymerized linear alpha
olefin (LAO) monomers having from about 6 to about 12 carbon
atoms, wherein said LAO monomers comprise two different LAO's
which differ in number of carbon atoms by 6; contacting said contaminated liquid hydrocarbon fuel with a quantity of a removal agent under conditions effective to produce a clean liquid
hydrocarbon fuel, said removal agent being selected from the group
consisting of one or more graphite and one or more activated carbon
having an adsorptioncapacity for said DRA of about 0.014 or more at
from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
45. The method of claim 44 wherein said graphite comprises an adsorption capacity for DRA of about 0.02 wt.% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
46. The method of claim 44 wherein said graphite comprises an adsorption capacity for unsheared DRA of about 0.04 wt.% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
47. The method of claim 44 wherein said graphite produces a % polymer removal for unsheared DRA of about 25% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
48. The method of claim 44 wherein said graphite produces a % polymer removal for DRA of about 30% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected from the group consisting of sheared and unsheared DRA.
49. The method of claim 44 wherein said graphite produces a % DRA
removal for unsheared DRA of about 40% or more at about lg activated carbon/100
ml fuel.
50. The method of claim 44 wherein said graphite produces a % DRA removal for unsheared DRA of about 50% or more at from about 8 to about 12 ppm
DRA concentration and at about lg activated carbon/100 ml fuel.
51. The method of claim 44 wherein said removal agent comprises
graphite selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139,
GRAPHITE 3726, GRAPHTTE 3739, GRAPHITE 5526, GRAPHITE 5539, GRAPHITE 9026, GRAPHITE 9039, and GRAPHTTE GA-17.
52. The method of claim 44 wherein said removal agent comprises
graphite selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139,
GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHITE GA-17.
53. The method of claim 44 wherein said removal agent comprises graphite selected from the group consisting of GRAPHITE 2139, GRAPHITE 3726,
GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHITE GA-17.
54. The method of claim 44 wherein said removal agent comprises
graphite selected from the group consisting of GRAPHTTE 2139 and GRAPHITE
3739.
55. The method of claim 44 wherein said removal agent is activated carbon
selected from the group consisting of CALGON ADP, CALGON COLORSORB , CALGON WPX, NORIT A SUPRA, NORIT CA 1 , NORITN FGD, NORIT HDB ,
SXO POWDER, and CARBON 5565.
56. The method of claim 44 wherein said removal agent is activated carbon
selected from the group consisting of CALGON WPX, NORIT A SUPRA, NORTT
CAl, NORIT FGD, NORTT HDB, SXO POWDER and CARBON 5565.
57. The method of claim 44 wherein said removal agent is activated carbon selected from the group consisting of NORIT A SUPRA, NORIT CAl , NORIT FGD, and NORIT HDB.
58. A method of removing drag reducer additive from a liquid hydrocarbon
fuel, said method comprising: providing a contaminated liquid hydrocarbon fuel comprising a concentration
of a drag reducer additive (DRA) comprising polymerized linear alpha
olefin (LAO) monomers having from about 2 to about 40 carbon atoms;
contacting said contaminated liquid hydrocarbon fuel with a quantity of a removal agent under conditions effective to produce a clean liquid hydrocarbon fuel, said removal agent being selected from the group consisting of one or more graphite and one or more activated carbon having an adsorptioncapacity for said DRA of about 0.014 or more at from about 8 to about 12 ppm DRA concentration and at about lg
activated carbon/100 ml fuel.
59. The method of claim 58 wherein said LAO monomers have from about
2 to about 30 carbon atoms.
60. The method of claim 58 wherein said LAO monomers have from about 4 to about 20 carbon atoms.
61. The method of claim 58 wherein said LAO monomers have from about
6 to about 12 carbon atoms.
62. The method of claim 58 wherein said graphite comprises an adsorption capacity for DRA of about 0.02 wt.% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
63. The method of claim 58 wherein said graphite comprises an adsorptioncapacity for unsheared DRA of about 0.04 wt.% or more at from about 8 to
about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
64. The method of claim 58 wherein said graphite produces a % polymer removal for unsheared DRA of about 25% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel.
65. The method of claim 58 wherein said graphite produces a % polymer
removal for DRA of about 30% or more at from about 8 to about 12 ppm DRA concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
66. The method of claim 58 wherein said graphite produces a % DRA
removal for unsheared DRA of about 40% or more at about lg activated carbon/100 ml fuel.
67. The method of claim 58 wherein said graphite produces a % DRA
removal for unsheared DRA of about 50% or more at from about 8 to about 12 ppm
DRA concentration and at about lg activated carbon/100 ml fuel.
68. The method of claim 58 wherein said graphite comprises an adsorption capacity for DRA of about 0.02 wt.% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
69. The method of claim 58 wherein said graphite produces a % polymer
removal for DRA of about 30% or more at from about 8 to about 12 ppm DRA
concentration and at about lg activated carbon/100 ml fuel, said DRA being selected
from the group consisting of sheared and unsheared DRA.
70. The method of claim 58 wherein said removal agent comprises
graphite selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5526, GRAPHITE 5539, GRAPHITE 9026, GRAPHITE 9039, and GRAPHITE GA-17.
71. The method of claim 58 wherein said removal agent comprises
graphite selected from the group consisting of GRAPHITE 2126, GRAPHTTE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHITE GA-17.
72. The method of claim 58 wherein said removal agent comprises graphite selected from the group consisting of GRAPHITE 2139, GRAPHITE 3726,
GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHTTE GA-17.
73. The method of claim 58 wherein said removal agent comprises graphite selected from the group consisting of GRAPHITE 2139 and GRAPHITE
3739.
74. The method of claim 58 wherein said removal agent is activated carbon
selected from the group consisting of CALGON ADP, CALGON COLORSORB,
CALGON WPX, NORIT A SUPRA, NORIT CA 1 , NORITN FGD, NORIT HDB , SXO POWDER, and CARBON 5565.
75. The method of claim 58 wherein said removal agent is activated carbon
selected from the group consisting of CALGON WPX, NORIT A SUPRA, NORIT CAl, NORIT FGD, NORTT HDB, SXO POWDER and CARBON 5565.
76. The method of claim 58 wherein said removal agent is activated carbon
selected from the group consisting of NORTT A SUPRA, NORIT CAl , NORIT FGD,
and NORIT HDB.
77. The method of claim 58 wherein said removal agent comprises graphite selected from the group consisting of GRAPHITE 2126, GRAPHTTE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5526, GRAPHTTE 5539, GRAPHTTE 9026, GRAPHITE 9039, and GRAPHITE GA-17.
78. The method of claim 58 wherein said removal agent comprises graphite selected from the group consisting of GRAPHITE 2139 and GRAPHTTE
3739.
79. The method of claim 58 wherein said removal agent is activated carbon
selected from the group consisting of CALGON ADP, CALGON COLORSORB,
CALGON WPX, NORIT A SUPRA, NORIT CA 1, NORITN FGD, NORIT HDB,
SXO POWDER, and CARBON 5565.
80. The method of claim 58 wherein said removal agent is activated carbon
selected from the group consisting of NORIT A SUPRA, NORIT CAl , NORIT FGD, and NORIT HDB.
81. The method of any of claims 1 and 2-80 wherein the liquid
hydrocarbon fuel has a boiling range of from about 150 °F to about 750 °F.
82. The method of any of claims 1 and 2-80 wherein said liquid
hydrocarbon fuel is selected from the group consisting of liquefied natural gas (LNG), liquefied petroleum gas (LPG), motor gasoline, aviation gasoline, distillate fuels such as diesel fuel and home heating oil, kerosene, jet fuel, No. 2 oil, residual fuel, No. 6
fuel, or bunker fuel.
83. The method of claims 1 and 2-80 wherein the liquid hydrocarbon fuel is selected from the group consisting of diesel fuel, jet fuel, aviation gasoline, and motor gasoline.
84. The method of claims 1 and 2-80 wherein the liquid hydrocarbon fuel is jet fuel.
85. The method of any of claims 1 and 2-80 wherein the DRA is FLO ® XS .
86. The method of claim 84 wherein the DRA is FLO ® XS .
87. The method of any of claims 1 and 2-80 wherein said conditions comprise adding said quantity of said one or more effective graphites to said contaminated liquid hydrocarbon fuel in increments with agitation.
88. The method of claim 81 wherein said conditions comprise adding said
quantity of said one or more effective graphites to said contaminated liquid
hydrocarbon fuel in increments with agitation.
89. The method of claim 82 wherein said conditions comprise adding said
quantity of said one or more effective graphites to said contaminated liquid
hydrocarbon fuel in increments with agitation.
90. The method of claim 83 wherein said conditions comprise adding said quantity of said one or more effective graphites to said contaminated liquid
hydrocarbon fuel in increments with agitation.
91. The method of claim 84 wherein said conditions comprise adding said quantity of said one or more effective graphites to said contaminated liquid
hydrocarbon fuel in increments with agitation.
92. The method of claim 85 wherein said conditions comprise adding said quantity of said one or more effective graphites to said contaminated liquid hydrocarbon fuel in increments with agitation.
93. The method of claim 86 wherein said conditions comprise adding said quantity of said one or more effective graphites to said contaminated liquid
hydrocarbon fuel in increments with agitation.
94. The method of claim 87 wherein said conditions comprise adding said
quantity of said one or more effective graphites to said contaminated liquid hydrocarbon fuel in increments with agitation.
95. A method for selecting a drag reducer additive for a liquid hydrocarbon
fuel comprising:
providing one or more samples of liquid hydrocarbon fuel comprising a single candidate DRA; and,
determining whether said single candidate DRA is removed from said liquid
hydrocarbon fuel by a removal agent selected from the group
consisting of a graphite and an activated carbon having an
adsorptioncapacity for DRA of about 0.014 or more at from about 8 to
about 12 ppm DRA concentration and at about lg activated carbon/100
ml fuel; and, selecting as said DRA only candidates which are removed from said liquid
hydrocarbon fuel by said removal agent.
96. The method of claim 95 wherein said liquid hydrocarbon fuel in said
samples is jet fuel.
97. The method of claims 95 and 96 wherein said removal agent is activated carbon selected from the group consisting of CALGON ADP, CALGON COLORSORB, CALGON WPX, NORIT A SUPRA, NOR T CA 1, NORITN FGD, NORTT HDB , SXO POWDER, and CARBON 5565.
98. The method of claims 95 and 96 wherein said removal agent is
activated carbon selected from the group consisting of CALGON WPX, NORTT A
SUPRA, NORTT CAl, NORTT FGD, NORTT HDB, SXO POWDER and CARBON
5565.
99. The method of claims 95 and 96 wherein said removal agent is
activated carbon selected from the group consisting of NORIT A SUPRA, NORIT
CAl, NORTT FGD, and NORIT HDB.
100. The method of claims 95 and 96 wherein said removal agent is graphite
selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139, GRAPHTTE 3726, GRAPHITE 3739, GRAPHTTE 5526, GRAPHITE 5539,
GRAPHITE 9026, GRAPHITE 9039, and GRAPHITE GA-17.
101. The method of claims 95 and 96 wherein said removal agent is graphite
selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139,
GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and
GRAPHITE GA-17.
102. The method of claims 95 and 96 wherein said removal agent is graphite
selected from the group consisting of GRAPHTTE 2139, GRAPHTTE 3726,
GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHITE GA-17.
103. The method of claims 95 and 96 wherein said removal agent comprises GRAPHITE 2139 104. The method of claims 95 and 96 wherein said removal agent comprises
and GRAPHITE 3739.
105. A removal agent for removing drag reducer from a liquid hydrocarbon fuel, the removal agent comprising activated carbon selected from the group
consisting of CALGON ADP, CALGON COLORSORB, CALGON WPX, NORIT A
SUPRA, NORTT CA 1, NORITN FGD, NORTT HDB, SXO POWDER, and
CARBON 5565.
106. A removal agent for removing drag reducer from a liquid hydrocarbon fuel, the removal agent comprising activated carbon selected from the group
consisting of CALGON WPX, NORIT A SUPRA, NORIT CAl , NORIT FGD,
NORTT HDB, SXO POWDER and CARBON 5565.
107. A removal agent for removing drag reducer from a liquid hydrocarbon
fuel, the removal agent comprising activated carbon selected from the group
consisting of NORTT A SUPRA, NORIT CAl , NORTT FGD, and NORIT HDB .
108. A removal agent for removing drag reducer from a liquid hydrocarbon
fuel, the removal agent comprising graphite selected from the group consisting of
GRAPHITE 2126, GRAPHITE 2139, GRAPHITE 3726, GRAPHITE 3739,
GRAPHITE 5526, GRAPHITE 5539, GRAPHITE 9026, GRAPHITE 9039, and
GRAPHITE GA-17.
109. A removal agent for removing drag reducer from a liquid hydrocarbon fuel, the removal agent comprising graphite selected from the group consisting of GRAPHITE 2126, GRAPHITE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHTTE 5539, GRAPHITE 9039, and GRAPHTTE GA-17.
110. A removal agent for removing drag reducer from a liquid hydrocarbon fuel, the removal agent comprising graphite selected from the group consisting of
GRAPHITE 2139, GRAPHITE 3726, GRAPHITE 3739, GRAPHITE 5539, GRAPHITE 9039, and GRAPHITE GA-17.
111. A removal agent for removing drag reducer from a liquid hydrocarbon
fuel, the removal agent comprising graphite selected from the group consisting of
GRAPHITE 2139 and GRAPHTTE 3739.
PCT/US2003/017479 2003-06-03 2003-06-03 Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites WO2004108862A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US2003/017479 WO2004108862A1 (en) 2003-06-03 2003-06-03 Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites
AU2003243377A AU2003243377A1 (en) 2003-06-03 2003-06-03 Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/017479 WO2004108862A1 (en) 2003-06-03 2003-06-03 Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites

Publications (1)

Publication Number Publication Date
WO2004108862A1 true WO2004108862A1 (en) 2004-12-16

Family

ID=33509895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/017479 WO2004108862A1 (en) 2003-06-03 2003-06-03 Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites

Country Status (2)

Country Link
AU (1) AU2003243377A1 (en)
WO (1) WO2004108862A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261747B2 (en) 2004-03-08 2007-08-28 Southwest Research Institute Removal of drag reducer additive from liquid hydrocarbon fuel using attapulgus clay
US7264640B2 (en) 2003-06-03 2007-09-04 Southwest Research Institute Method for improving the performance of engines powered by liquid hydrocarbon fuel
US7364599B2 (en) 2003-06-03 2008-04-29 Southwest Research Institute Methods for increased removal of drag reducer additives from liquid hydrocarbon fuel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1236066A (en) * 1968-10-22 1971-06-16 British Petroleum Co Modified oleophilic graphite
US4747855A (en) * 1983-07-20 1988-05-31 Hidefumi Hirai Solid absorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US4837249A (en) * 1985-12-12 1989-06-06 General Technology Applications, Inc. Rapid dissolving polymer compositions and uses therefor
US5788865A (en) * 1992-10-14 1998-08-04 Herbert F. Boeckman, II Process for separating a hydrophobic liquid from a liquid contaminated therewith
US20030019149A1 (en) * 2001-04-18 2003-01-30 Waynick John Andrew Selection of materials to test for and/or remove drag reducer additive in liquid hydrocarbon fuels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1236066A (en) * 1968-10-22 1971-06-16 British Petroleum Co Modified oleophilic graphite
US4747855A (en) * 1983-07-20 1988-05-31 Hidefumi Hirai Solid absorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US4837249A (en) * 1985-12-12 1989-06-06 General Technology Applications, Inc. Rapid dissolving polymer compositions and uses therefor
US5788865A (en) * 1992-10-14 1998-08-04 Herbert F. Boeckman, II Process for separating a hydrophobic liquid from a liquid contaminated therewith
US20030019149A1 (en) * 2001-04-18 2003-01-30 Waynick John Andrew Selection of materials to test for and/or remove drag reducer additive in liquid hydrocarbon fuels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264640B2 (en) 2003-06-03 2007-09-04 Southwest Research Institute Method for improving the performance of engines powered by liquid hydrocarbon fuel
US7364599B2 (en) 2003-06-03 2008-04-29 Southwest Research Institute Methods for increased removal of drag reducer additives from liquid hydrocarbon fuel
US7261747B2 (en) 2004-03-08 2007-08-28 Southwest Research Institute Removal of drag reducer additive from liquid hydrocarbon fuel using attapulgus clay

Also Published As

Publication number Publication date
AU2003243377A1 (en) 2005-01-04

Similar Documents

Publication Publication Date Title
US11560520B2 (en) Multi-stage process and device for treatment heavy marine fuel oil and resultant composition and the removal of detrimental solids
WO2005086803A2 (en) Method for improving the performance of engines powered by liquid hydrocarbon fuel
US7018434B2 (en) Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites
WO2008149206A1 (en) Process for treating hydrocarbon liquid compositions
EP2379936B1 (en) Drag reducing polymers for low molecular weight liquids applications
WO2005086809A2 (en) Removal of drag reducer additive from liquid hydrocarbon fuel using attapulgus clay
JP2006176744A (en) Unleaded high octane number gasoline
WO2004108862A1 (en) Removal of drag reducer additive from fuel by treatment with selected activated carbons and graphites
US6599337B2 (en) Selection of materials to test for and/or remove drag reducer additive in liquid hydrocarbon fuels
JPH0531907B2 (en)
US3529944A (en) Process for clarifying and stabilizing hydrocarbon liquids
WO2007142013A1 (en) Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
WO2006035102A1 (en) Filter device
CN108753383A (en) A kind of application of fuel assistants and preparation method thereof and the fuel assistants
JP2007153936A (en) Gasoline
CA2514999C (en) Settling aids for solids in hydrocarbons
WO2009156713A1 (en) Purification method
JP2019151704A (en) Fuel oil composition for internal combustion engine and manufacturing method therefor
Syrmanova et al. Restoring the quality of oil products by vermiculite sorbent adsorption
JP2007246753A (en) Unleaded gasoline
US20040089590A1 (en) Settling aids for solids in hydrocarbons
JP5005989B2 (en) Unleaded gasoline
JP2005089503A (en) Method for producing low-sulfur gas oil
JP2006328357A (en) Catalytically reformed gasoline and unleaded gasoline
JP2007246754A (en) Unleaded gasoline

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP