WO2004107317A1 - Apparatus and method for embedding a watermark using sub-band filtering - Google Patents
Apparatus and method for embedding a watermark using sub-band filtering Download PDFInfo
- Publication number
- WO2004107317A1 WO2004107317A1 PCT/IB2004/050759 IB2004050759W WO2004107317A1 WO 2004107317 A1 WO2004107317 A1 WO 2004107317A1 IB 2004050759 W IB2004050759 W IB 2004050759W WO 2004107317 A1 WO2004107317 A1 WO 2004107317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sub
- band
- signal
- watermark
- signals
- Prior art date
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims description 66
- 230000004044 response Effects 0.000 claims abstract description 28
- 230000005236 sound signal Effects 0.000 claims description 13
- 238000004590 computer program Methods 0.000 claims 2
- 238000013459 approach Methods 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 8
- 101000969688 Homo sapiens Macrophage-expressed gene 1 protein Proteins 0.000 description 7
- 102100021285 Macrophage-expressed gene 1 protein Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/00884—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a watermark, i.e. a barely perceptible transformation of the original data which can nevertheless be recognised by an algorithm
- G11B20/00891—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a watermark, i.e. a barely perceptible transformation of the original data which can nevertheless be recognised by an algorithm embedded in audio data
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/002—Dynamic bit allocation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/913—Television signal processing therefor for scrambling ; for copy protection
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0204—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/913—Television signal processing therefor for scrambling ; for copy protection
- H04N2005/91307—Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal
- H04N2005/91335—Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal the copy protection signal being a watermark
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/80—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
- H04N9/804—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
- H04N9/8042—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
Definitions
- the invention relates to an apparatus and a method for embedding a watermark and in particular to an apparatus and a method for embedding a watermark into a sub-band encoded media signal.
- the illicit distribution of copyright material deprives the holder of the copyright the legitimate royalties for this material, and could provide the supplier of this illicitly distributed material with gains that encourages continued illicit distributions.
- content material that is intended to be copyright protected such as artistic renderings or other material having limited distribution rights are susceptible to wide-scale illicit distribution.
- the MP3 format for storing and transmitting compressed audio files has made a wide-scale distribution of audio recordings feasible. For instance, a 30 or 40 megabyte digital PCM (Pulse Code Modulation) audio recording of a song can be compressed into a 3 or 4 megabyte MP3 file.
- this MP3 file can be downloaded to a user's computer in a few minutes. This means that a malicious party could provide a direct dial- in service for downloading MP3 encoded song.
- the illicit copy of the MP3 encoded song can be subsequently rendered by software or hardware devices or can be decompressed and stored on a recordable CD for playback on a conventional CD player.
- SDMI Secure Digital Music Initiative
- Digital watermarks can be used for copy protection according to the scenarios mentioned above.
- the use of digital watermarks is not limited to this but can also be used for so-called forensic tracking, where watermarks are embedded in e.g. files distributed via an Electronic Content Delivery System, and used to track for instance illegally copied content on the Internet.
- Watermarks can furthermore be used for monitoring broadcast stations (e.g. commercials); or for authentication purposes etc.
- bitstream watermarking a major part of e.g. audio content is available in a compressed format such as MPEG, AAC, WMA, etc.
- the compressed audio signal is sometimes referred to as the bitstream. Embedding in this domain is therefore often called bitstream watermarking.
- the Invention preferably seeks to mitigate, alleviate or eliminate one or more of the above mentioned disadvantages singly or in any combination.
- a method of embedding a watermark into an input signal of a media signal comprising the steps of: obtaining a plurality of sub-band signals of the input signal; filtering a set of sub-band signals with a sub-band filter having a response associated with the watermark to generate a set of filtered sub-band signals; and generating an output signal by combining the set of filtered sub-band signals.
- the invention allows for watermark embedding in the sub-band domain thereby obviating the requirement for decoding and re-encoding the bitstream of the encoded signal.
- the invention thus allows for an advantageous method of watermark embedding and may specifically result in reduced delay, complexity and/or delay of the watermarking process.
- watermark embedding by filtering provides for a watermarking process which is highly suitable for practical implementation and which does not necessitate complex digital signal processing techniques.
- the input signal is a sub-band encoded media signal.
- the sub-band encoded media signal may be a media signal comprising multiplexed sub-band values.
- the sub-band encoded media signal may be a compressed bitstream.
- the media signal may be encoded in accordance with a sub-band encoding process such as an MPEG1 layer 1, 2 or 3 encoding process.
- the sub- bands may be obtained directly from the input signal by simple operations.
- the plurality of sub-bands may specifically correspond to the sub-bands of the sub-band encoded signal.
- the sub-bands may thus be obtained directly from sub-band encoded signal for example by demultiplexing of the input signal.
- the filtering in the sub-band domain may be by directly filtering the sub-bands of the input signal.
- the output signal is a sub-band encoded media signal.
- output signal may be a sub-band encoded media signal comprising multiplexed sub-band values.
- the sub-band encoded media signal may be a compressed bitstream.
- the media signal may be an MPEG1 layer 1, 2 or 3 encoded media signal.
- the output signal and input signal have corresponding sub-bands allowing for a simple and/or fast watermark embedding without requiring any sub- band conversion. This is particularly suitable where the input and output signals are of the same type.
- the output signal may be an MPEG1 encoded signal substantially identical to the input MPEG1 encoded input signal but with the watermark embedded. Thus a very simple and high performance method may be provided for substantially transparently embedding a watermark in an existing signal.
- the input signal has a corresponding base band input signal
- the output signal has a corresponding base band output signal having an associated desired watermark
- the response of the sub band filter is such that the watermark of the output signal corresponds to the desired watermark of the base band output signal
- the input signal may be a compressed bitstream having a corresponding PCM non-compressed base band signal.
- the output signal may be a compressed bitstream having a corresponding PCM non-compressed base band signal.
- the response may for example be the frequency response of the sub-band filter or a set of impulse responses of the sub-band filter for each sub-band channel.
- the watermark embedded by the sub-band filter may be substantially equivalent to the watermark that is desired for the corresponding base band signal.
- the invention allows for a desired base band watermark to be embedded by a simple process performed in the sub-band domain.
- the response of the sub-band filter corresponds to a sub-band equivalent of a response of a base band filter which by filtering of the base band input signal results in the desired watermark.
- the sub-band filter may thus embed a watermark in the sub-band domain which is substantially equivalent to a desired watermark that may be embedded by a corresponding base band filter.
- the sub-band filter may result in a substantially similar watermark being embedded as if the input signal had been decoded, filtered by the base band filter and then re-encoded.
- a desired base band watermark may be embedded in a compressed bit stream without requiring conversion to or from base band.
- the method further comprises the step of multiplying at least one of the filtered sub -band signals by a watermark energy scaling factor.
- a watermark energy scaling factor This provides for a particularly suitable implementation of the sub-band filtering wherein the strength of the watermarking may be controlled directly and explicitly by the watermark energy scaling factor.
- the method further comprises the step of dynamically adapting the watermark energy scaling factor.
- the watermark embedding strength may for example be dynamically controlled to be as large as possible (thereby facilitating detection) while not resulting in an unacceptable degradation of the media signal.
- the step of dynamically adapting the watermark energy scaling factor comprises dynamically adapting the watermark energy scaling factor in response to a characteristic of the input signal.
- the characteristic may e.g. be derived from the input signal and/or from a sub- band obtained from the input signal.
- the sensitivity of the media signal to the watermark embedding strength depends on dynamic characteristics of the input signal and the strength of the watermark embedding may therefore be adjusted in response to these characteristics.
- the watermark energy scaling factor may be adjusted in response to a masking threshold applied to the original media signal during encoding.
- the method further comprises the step of summing an unfiltered sub-band signal and a corresponding filtered sub-band signal. This allows for a convenient implementation wherein the embedding strength may be controlled.
- the method further comprises the step of adding a data payload to the watermark by shifting the set of sub-bands signals relative to the sub -band filter.
- the sub-band shifting allows for the additional data to be introduced in a simple low complexity way which does not affect the quality of the media signal and or the watermark detection performance.
- the method further comprises the step of performing an inverse shifting of the set of filtered sub-bands signals relative to the sub- band filter. This allows for a data payload to be introduced without affecting the media content of the output signal. Thus, the decoding of the output signal is unaffected by the watermark or the data payload.
- each shift position corresponds to a data value. This provides for a particularly advantageous and low complexity way of adding a data payload to the watermark embedding.
- the step of obtaining comprises demultiplexing, inverse quantising and scaling the input signal.
- the step of generating comprises quantising and multiplexing the output signal. This provides for a particularly suitable and low complexity implementation for generating sub-band encoded media signals.
- the media signal is chosen from the group consisting of: an audio signal; a video signal; and an image signal.
- the set of sub-band signals comprises all sub-band signals of the plurality of sub-band signals.
- the set of sub-band signals may comprise only some of the plurality of sub-band signals in order to reduce complexity and the computational burden but preferably comprises all of the sub-band signals in order to optimise the watermark performance.
- the method further comprises the steps of: decoding the output signal to generate a base band signal; and detecting the watermark in response to a characteristic of the base band signal.
- an apparatus for embedding a watermark into an input signal of a media signal comprising: means for obtaining a plurality of sub-band signals of the input signal; a sub-band filter for filtering a set of sub-band signals to generate a set of filtered sub-band signals, the sub-band filter having a response associated with the watermark; and means for generating an output signal by combining the set of filtered sub-band signals.
- FIG. 1 is an illustration of a system for encoding and decoding an audio signal
- FIG. 2 illustrates a system for embedding a watermark by filtering of a base band signal
- FIG. 3 illustrates a system for embedding a watermark in a sub-band encoding signal by filtering of a corresponding base band signal
- FIG. 4 illustrates a flow chart of a method of embedding a watermark in accordance with an embodiment of the invention
- FIG. 5 illustrates a block diagram of an apparatus for embedding a watermark in accordance with an embodiment of the invention
- FIG. 6 illustrates a block diagram of an alternative apparatus for embedding a watermark in accordance with an embodiment of the invention
- FIG. 7 illustrates a block diagram of a base band watermark embedding apparatus
- FIG. 8 illustrates a block diagram of a sub-band watermark embedding apparatus in accordance with an embodiment of the invention
- FIG. 9 illustrates a polyphase representation of the filters of the apparatus of FIG. 7;
- FIG. 10 illustrates the filters of FIG. 9 wherein the polyphase filtering operations have been transferred to the sub-band domain
- FIG. 1 1 illustrates a sub-band filter Wo(z) for embedding a watermark carrying a first bit value in accordance with an embodiment of the invention
- FIG. 12 illustrates a sub-band filter W ⁇ (z) for embedding a watermark carrying a second bit value in accordance with an embodiment of the invention
- FIG. 13 illustrates a sub-band filter Wo(z) for embedding a watermark carrying a second bit value in accordance with an embodiment of the invention.
- FIG. 1 is an illustration of a system for encoding and decoding an audio signal.
- the main elements are an analysis filterbank 101 and a synthesis or reconstruction filterbank 103.
- the polyphase description of both filterbanks will be used and the transfer matrices consisting of the polyphase components of the filters in the filterbank will be represented by A(z) for the analysis filterbank and R(z) for the synthesis filterbank.
- the filterbanks may for example correspond to cosine-modulated filterbanks as used in MPEG1.
- the parameter M will be used to denote the number of bands of the filterbank and thus the number of sub-bands of the sub-band encoded signal.
- M further corresponds to the decimation and interpolation factors of the analysis and synthesis filterbanks.
- the base band input signal will be represented by X(z) and X(z) will be used to denote a vector of sub-band signals.
- the base band signal X(z) is sampled at the sample frequency f s whereas each sub-band signal has a sample frequency of f s /M.
- the audio encoding generates the sub-band signal X(z) as:
- the audio decoding generates the decoded base band signal X'(z) as:
- X'(z) R(z)-X(z) (4)
- the decoded signal is generally not identical to the encoded signal.
- the encoded audio signal is not only encoded in the sub-band domain but is also compressed in this domain.
- the data compression is achieved by individually quantizing and scaling the data values of each sub- band in accordance with a psycho-acoustic model. Specifically, a psycho-acoustic masking threshold is used to reduce the bit rates of the individual sub-bands.
- the quantized values and associated scaling factors for each sub-band are multiplexed into a single compressed signal which in the following will be referred to as a compressed bitstream.
- WO 02/091374 Al discloses a method of inserting a watermark into a base band signal by a filtering of the base band signal.
- FIG. 2 illustrates a system for embedding a watermark by filtering of a base band signal.
- the base band signal X(z) is filtered by the watermark filter W(z) 201 to generate the watermark embedded output base band signal Y(z):
- FIG. 3 illustrates a system for embedding a watermark in a sub-band encoding signal by filtering of a corresponding base band signal.
- the incoming sub-band encoded bitstream X(z) is de-multiplexed and de- quantized and the resulting sub-band signals are fed to a synthesis filter R(z) 103.
- the resultant samples are combined to generate the corresponding base band signal X'(z).
- a base band signal X'(z) is generated by a decoding of the incoming compressed bitstream.
- the generated base band signal X'(z) is subsequently filtered in the base band watermark filter W(z) 203 to generate a watermark embedded base band signal Y(z).
- This base band signal is fed to an analysis filter 101 and the resulting sub-band data values are quantized and multiplexed into a bitstream.
- the watermark embedded base band signal Y(z) is re- encoded as a sub-band encoded output signal.
- the approach illustrated in FIG. 3 thus comprises the following steps: synthesizing (decoding) the signal X(z) with a re-construction filterbank R(z) 103, embedding a watermark in the signal X'(z) using the filter W(z) 203, and deriving the watermarked sub-band signals Y(z) using the analysis filterbank A(z) 101. Subsequent scaling, quantizing and multiplexing results in the watermarked bitstream.
- Operational delay of the embedding procedure is increased by the additional filterbank operations. This may especially be a notable disadvantage for real-time applications.
- Cascading of the filterbanks resulting from the decoding and re-encoding process may introduce additional unwanted distortions.
- PHNL030600EPP proposes that a watermark is embedded in the sub-band domain and the contents of this document is hereby included in full in the current patent application by specific and explicit reference.
- a temporal watermark may be embedded in the sub-band domain by use of a sub-band filtering process.
- the approach is applicable to the system of European Patent Application No. 03101546.4.
- FIG. 4 illustrates a flow chart of a method of embedding a watermark in accordance with a preferred embodiment of the invention.
- step 401 an input signal, such as an audio or other media signal, is received.
- Step 401 is followed by step 403 wherein a plurality of sub-band signals is obtained from the input signal.
- the input signal is a sub-band encoded media signal and the sub-bands may directly be obtained from the samples of the individual sub-bands.
- the plurality of sub-bands may be obtained in other ways.
- the input signal may in some cases be a base band signal and the plurality of sub-bands may be obtained by a sub-band encoding process.
- the watermark embedding may in some embodiments be integrated with the sub-band encoding.
- Step 403 is followed by step 405 wherein a set of the obtained sub-band signals are filtered by a sub-band filter having a response associated with the watermark.
- the sub-band watermark filter thus generates a set of filtered sub-band signals.
- the set of sub-band signals comprises all the sub-band signals but in some embodiments a subset of sub-bands may be used. This may specifically be desired in order to reduce complexity of the sub-band filter and thus of the watermark embedder.
- Step 405 is followed by step 407 wherein an output signal is generated by combining the set of filtered sub-band signals.
- the output signal is a sub-band encoded media signal and specifically the sub-band samples of the filtered sub- band signals may be unchanged and simply combined into a multiplexed bitstream (possibly following quantisation). In other embodiments, more advanced processing may be applied to generate the output signal from the sub-band values.
- FIG. 5 illustrates a block diagram of an apparatus for embedding a watermark in accordance with a preferred embodiment of the invention.
- the apparatus comprises an input 501 which in the specific embodiment receives a compressed audio bitstream.
- the bitstream is fed to a de-multiplexer 503 which de-multiplexes the bitstream to provide the individual sub-band quantized samples.
- the sub- band samples are fed to a de-quantizer 505 which de-quantizes the sub-band samples to provide the sub-band data values generated by the analysis filter of the audio encoder.
- sub-band signals Xo(z) - XM-I(Z) are fed to the sub-band filter W(z) 507 which embeds a watermark by performing a sub-band filtering of the sub-band signals Xo(z) - XM-I(Z) thereby generating filtered sub-band signals Yo(z) - Y -I(Z) comprising a sub-band watermark.
- the sub-band filter W(z) 507 is coupled to a quantizer 509 which quantizes the filtered sub-band signals Yo(z) - YM-I (Z).
- the quantization operation of the quantizer 509 may be equivalent to the quantization specified for the audio encoding. For example, a psycho acoustic-masking threshold of the MPEG1 specifications may be used.
- the quantizer 509 is coupled to a multiplexer 511 which multiplexes the data values of the filtered sub- band signals Yo(z) - YM-I(Z) into a single bitstream.
- the watermark embedder may specifically implement the function:
- FIG. 6 illustrates a block diagram of an alternative apparatus for embedding a watermark in accordance with an embodiment of the invention.
- the apparatus of FIG. 6 corresponds to the apparatus of FIG. 5 but has a specific implementation of the sub-band filter W(z).
- a modified sub-band filter W'(z) 601 is coupled to the quantizer 505.
- the modified sub-band filter W'(z) 601 generates modified filtered sub- band signals Vo(z) - V M _ I (Z).
- the watermark embedding of the apparatus of FIG. 6 further comprises multiplying at least one and preferably all of the filtered sub-band signals by a watermark energy scaling factor ( ⁇ ).
- the approach comprises summing the individual unfiltered sub- band signal with a corresponding filtered sub-band signal.
- the sub-band signals input to the quantiser 509 are in this embodiment:
- An advantage of the embodiment of FIG. 6 is the visibility of the embedding strength , which controls the relative watermark energy.
- ⁇ m may control the watermark energy in the individual sub-band signals.
- ⁇ is constant in time and for each sub-band.
- ⁇ m can be made adaptive.
- the embedding strength may thus be adjusted dynamically to suit the current conditions and in particular the current characteristics of the input signal.
- the adaptation of ⁇ m may for example be in response to the masking threshold of the host signal.
- the input signal X(z) is a compressed bitstream obtained by a sub-band audio encoding of a base band signal X(z).
- the input signal has a corresponding base band signal.
- the output signal is a compressed bit stream Y(z) which may be decoded to generate a base band signal Y(z).
- the output signal has a corresponding base band output signal Y(z).
- Watermark detection may frequently be performed in the base band domain.
- a base band watermark may be embedded in the base band and may be detected in the base band domain by a base band watermark detector.
- the corresponding output base band signal Y(z) may have an associated desired watermark.
- the sub-band filter W(z) is designed such that it results in a watermark of the output signal which corresponds to the desired watermark of the base band output signal.
- W(z) preferably has a response such that the base band watermark that results from a decoding of the output signal Y(z) is sufficiently similar to the desired base band watermark and specifically to the watermark signal that would result from the base band filtering operation of FIG. 2.
- FIG. 7 illustrates a block diagram of a base band watermark embedding apparatus.
- FIG. 8 illustrates a block diagram of a sub-band watermark embedding apparatus in accordance with an embodiment of the invention.
- FIG. 7 and 8 illustrates watermark embedding for a simple two sub-band encoded signal. However, the principle is readily extended to signals having more sub-bands.
- X(z) is subsequently filtered in the base band watermark filter W(z) to generate the base band watermarked output signal Y bb (z).
- the signal X(z) is fed to a sub-band filter W(z) 801 generating a watermarked sub- band signal Y(z). This signal is fed to the analysis filter R(z) 701 which generates the base band watermarked output signal Y s b(z).
- the goal of the design process is thus to design the sub-band filter W(Z) such that the response of both systems is substantially identical, or at least sufficiently similar.
- the task is to find W(z) such that Y bb (z) is substantially equal to Y b b(z).
- FIG. 9 illustrates a polyphase representation of the filters of the apparatus of FIG. 7. It is known in the art, that an arbitrary FIR-type filter may be rewritten as a polyphase filter and in FIG. 9 the individual components of the polyphase transfer matrices of R(z) and W(z) are shown. As illustrated in FIG. 9, the upsampling in the synthesis filter R(z) is followed by a down-sampling in W(z). Except for a delay z " ', the process of up- sampling and down- sampling between the filters R(z) and W(z) is equivalent to the identity operator.
- the polyphase filtering operations W p (z) 901 may accordingly be transferred to the sub-band domain as illustrated in FIG. 10.
- W p (z) 901 is based on filtering of sub-band signals which are not available in the input bitstream.
- FIG. 10 comparing FIG. 10 and the desired topology of FIG. 8 shows that the systems are identical if:
- the transfer matrix of W(z) can be determined from the polyphase representation of the base band filter W(z):
- I represents the Identity matrix and k is the delay of the total system.
- equation (10) may thus be rewritten as:
- the transfer matrices of the analysis filter A(z) and the reconstruction filter R(z) are known and W (z) may be derived from the base band filter W(z). Thus, the corresponding sub-band filter W(z) may be determined.
- the operational delay of the watermark embedder is smaller than the delay of the system of FIG. 3. This may be an important advantage in for example audio streams coupled with a video signal. Adding unnecessary delays in the audio stream requires additional delay (and thus expensive memory) of the video stream. Moreover it may be an advantage in real-time embedding applications.
- the filterbanks R(z) and A(z) may not be perfectly reconstructing. Using additional cascaded filterbanks such as proposed in FIG. 3 may distort the audio signal more then necessary.
- the method furthermore comprises the steps of decoding the output signal to generate a base band signal; and detecting- the watermark in response to a characteristic of the base band signal.
- the sub-band signal Y(z) may be decoded using a synthesis filter R(z) thereby generating the base band signal having a watermark.
- This watermark may be detected, for example by using the same detection process as that which would be used for a signal comprising a watermark embedded by the approach described in WO 02/091374 Al.
- the apparatus for embedding a watermark may further be operable to add a data payload to the watermark by shifting the set of sub-bands signals relative to the sub-band filter.
- cyclical shifts of all sub-bands are used and each shift position between the input sub-bands X(z) relative to the sub-band filter W(z) corresponds to a specific data value.
- the number of available data values corresponds to the number of possible shifts i.e. to the number of sub-bands.
- the data capacity may thus be found as
- the number of possible data values may be increased by allowing more complex shifts than cyclical shifts.
- the highest number of possible data values where each shift position corresponds to a data value may be achieved by allowing all possible combinations between the sub-bands of X(z) and of the sub-band filter W(z).
- FIG. 1 1 illustrates a sub-band filter Wo(z) 1101 for embedding a watermark carrying a first bit value in accordance with an embodiment of the invention.
- the sub-band filter adds the watermark component W A (Z) to the first sub-band signal Xo(z) and the watermark component W 8 (z) to the second sub-band signal X ⁇ (z).
- FIG. 12 illustrates a sub-band filter W ⁇ (z) 1201 for embedding a watermark carrying a second bit value in accordance with an embodiment of the invention.
- the sub-band filter adds the watermark component WB(Z) to the first sub-band signal Xo(z) and the watermark component WA(Z) to the second sub-band signal Xj(z).
- the watermark detector may determine if the watermark decoding has been in accordance with FIG. 1 1 or FIG. 12 and accordingly determine the corresponding value of the payload data. (The approach corresponds to embedding one of two different watermarks and the watermark detector may comprise independent detection functionality for the first and the second watermark).
- the approach of FIG. 12 requires a separate sub-band filter W ⁇ (z) to implement the second data value and this increases the complexity.
- the response of the sub-band filter W ⁇ (z) may be achieved by the sub-band filter Wo(z) by shifting the sub- bands of X(z) relative to the sub-bands of the sub-band filter Wo(z).
- a frequency inversion of a discrete time signal may be achieved by inverting every other sample, i.e. by multiplying the signal by (-1)" in the time domain. This is illustrated in FIG. 13 by a multiplication 1301 being applied to each sub-band signal before and after the sub-band filtering.
- the invention can be implemented in any suitable form including hardware, software, firmware or any combination of these. However, preferably, the invention is implemented as computer software running on one or more data processors and/or digital signal processors.
- the elements and components of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units. As such, the invention may be implemented in a single unit or may be physically and functionally distributed between different units and processors.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Editing Of Facsimile Originals (AREA)
- Image Processing (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006530892A JP2007503026A (en) | 2003-05-28 | 2004-05-24 | Apparatus and method for watermark embedding using subband filtering |
EP04734588A EP1634276B1 (en) | 2003-05-28 | 2004-05-24 | Apparatus and method for embedding a watermark using sub-band filtering |
US10/557,691 US20070071277A1 (en) | 2003-05-28 | 2004-05-24 | Apparatus and method for embedding a watermark using sub-band filtering |
DE602004009926T DE602004009926T2 (en) | 2003-05-28 | 2004-05-24 | DEVICE AND METHOD FOR EMBEDDING A WATERMARK USING SUBBAND FILTERING |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03101546.4 | 2003-05-28 | ||
EP03101546 | 2003-05-28 | ||
EP03101883.1 | 2003-06-25 | ||
EP03101883 | 2003-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004107317A1 true WO2004107317A1 (en) | 2004-12-09 |
Family
ID=33492153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2004/050759 WO2004107317A1 (en) | 2003-05-28 | 2004-05-24 | Apparatus and method for embedding a watermark using sub-band filtering |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070071277A1 (en) |
EP (1) | EP1634276B1 (en) |
JP (1) | JP2007503026A (en) |
KR (1) | KR20060023974A (en) |
AT (1) | ATE377822T1 (en) |
DE (1) | DE602004009926T2 (en) |
WO (1) | WO2004107317A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160839A (en) * | 2006-12-18 | 2008-07-10 | Palo Alto Research Center Inc | Computer control method for protecting human-to-human communication over network |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2045801B1 (en) * | 2007-10-01 | 2010-08-11 | Harman Becker Automotive Systems GmbH | Efficient audio signal processing in the sub-band regime, method, system and associated computer program |
US8788977B2 (en) * | 2008-11-20 | 2014-07-22 | Amazon Technologies, Inc. | Movement recognition as input mechanism |
KR101051002B1 (en) * | 2010-02-09 | 2011-07-26 | (주)인포마크 | Asymmetric watermarking system based on subspace |
US8878773B1 (en) | 2010-05-24 | 2014-11-04 | Amazon Technologies, Inc. | Determining relative motion as input |
RU2562434C2 (en) | 2010-08-12 | 2015-09-10 | Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. | Redigitisation of audio codec output signals with help of quadrature mirror filters (qmf) |
US9123272B1 (en) | 2011-05-13 | 2015-09-01 | Amazon Technologies, Inc. | Realistic image lighting and shading |
US10088924B1 (en) | 2011-08-04 | 2018-10-02 | Amazon Technologies, Inc. | Overcoming motion effects in gesture recognition |
WO2013035537A1 (en) * | 2011-09-08 | 2013-03-14 | 国立大学法人北陸先端科学技術大学院大学 | Digital watermark detection device and digital watermark detection method, as well as tampering detection device using digital watermark and tampering detection method using digital watermark |
US8884928B1 (en) | 2012-01-26 | 2014-11-11 | Amazon Technologies, Inc. | Correcting for parallax in electronic displays |
KR101426596B1 (en) * | 2012-07-11 | 2014-08-05 | 조선대학교산학협력단 | Audio Encoding Method |
US11199906B1 (en) | 2013-09-04 | 2021-12-14 | Amazon Technologies, Inc. | Global user input management |
US10055013B2 (en) | 2013-09-17 | 2018-08-21 | Amazon Technologies, Inc. | Dynamic object tracking for user interfaces |
WO2015108535A1 (en) * | 2014-01-17 | 2015-07-23 | Intel Corporation | Mechanism for facilitating watermarking-based management of echoes for content transmission at communication devices |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002091374A1 (en) * | 2001-05-08 | 2002-11-14 | Koninklijke Philips Electronics N.V. | Watermarking |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5822360A (en) * | 1995-09-06 | 1998-10-13 | Solana Technology Development Corporation | Method and apparatus for transporting auxiliary data in audio signals |
US5687191A (en) * | 1995-12-06 | 1997-11-11 | Solana Technology Development Corporation | Post-compression hidden data transport |
JPH1132200A (en) * | 1997-07-09 | 1999-02-02 | Matsushita Electric Ind Co Ltd | Watermark data insertion method and watermark data detection method |
US6209094B1 (en) * | 1998-10-14 | 2001-03-27 | Liquid Audio Inc. | Robust watermark method and apparatus for digital signals |
US6947509B1 (en) * | 1999-11-30 | 2005-09-20 | Verance Corporation | Oversampled filter bank for subband processing |
FR2803710B1 (en) * | 2000-01-11 | 2002-03-22 | Canon Kk | METHOD AND DEVICE FOR INSERTING A MARK SIGNAL INTO AN IMAGE |
-
2004
- 2004-05-24 WO PCT/IB2004/050759 patent/WO2004107317A1/en active IP Right Grant
- 2004-05-24 DE DE602004009926T patent/DE602004009926T2/en not_active Expired - Fee Related
- 2004-05-24 US US10/557,691 patent/US20070071277A1/en not_active Abandoned
- 2004-05-24 JP JP2006530892A patent/JP2007503026A/en not_active Withdrawn
- 2004-05-24 EP EP04734588A patent/EP1634276B1/en not_active Expired - Lifetime
- 2004-05-24 AT AT04734588T patent/ATE377822T1/en not_active IP Right Cessation
- 2004-05-24 KR KR1020057022651A patent/KR20060023974A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002091374A1 (en) * | 2001-05-08 | 2002-11-14 | Koninklijke Philips Electronics N.V. | Watermarking |
Non-Patent Citations (3)
Title |
---|
ANSARI R ET AL: "Data-hiding in audio using frequency-selective phase alteration", IEEE ICASSP 2004, 17 May 2004 (2004-05-17), PISCATAWAY, NJ, USA, pages V/389 - V/392, XP009035690, ISBN: 0-7803-8484-9 * |
PROAKIS J G ET AL: "Digital Signal Processing: principles, algorithms, and applications", 1996, DIGITAL SIGNAL PROCESSING, PRINCIPLES, ALGORITHMS AND APPLICATIONS, XP002294047 * |
QIAO L ET AL: "NON-INVERTIBLE WATERMARKING METHODS FOR MPEG ENCODED AUDIO", PROCEEDINGS OF THE SPIE, SPIE, BELLINGHAM, VA, US, vol. 3657, January 1999 (1999-01-01), pages 194 - 202, XP000949874, ISSN: 0277-786X * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160839A (en) * | 2006-12-18 | 2008-07-10 | Palo Alto Research Center Inc | Computer control method for protecting human-to-human communication over network |
Also Published As
Publication number | Publication date |
---|---|
US20070071277A1 (en) | 2007-03-29 |
DE602004009926T2 (en) | 2008-08-28 |
ATE377822T1 (en) | 2007-11-15 |
EP1634276B1 (en) | 2007-11-07 |
DE602004009926D1 (en) | 2007-12-20 |
JP2007503026A (en) | 2007-02-15 |
EP1634276A1 (en) | 2006-03-15 |
KR20060023974A (en) | 2006-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100903017B1 (en) | Scalable coding method for high quality audio | |
RU2375764C2 (en) | Signal coding | |
US7275031B2 (en) | Apparatus and method for encoding an audio signal and apparatus and method for decoding an encoded audio signal | |
EP1334484B1 (en) | Enhancing the performance of coding systems that use high frequency reconstruction methods | |
CA2736065C (en) | Audio coding system using characteristics of a decoded signal to adapt synthesized spectral components | |
US7587311B2 (en) | Device and method for embedding binary payload in a carrier signal | |
EP1634276B1 (en) | Apparatus and method for embedding a watermark using sub-band filtering | |
US20060004566A1 (en) | Low-bitrate encoding/decoding method and system | |
CA2489443C (en) | Audio coding system using characteristics of a decoded signal to adapt synthesized spectral components | |
JP2004264814A (en) | Technical innovation in pure lossless audio speech compression | |
US20070052560A1 (en) | Bit-stream watermarking | |
JP2006126826A (en) | Audio signal coding/decoding method and its device | |
JP2007523365A (en) | Bitstream processing method | |
KR100378796B1 (en) | Digital audio encoder and decoding method | |
EP1104969A1 (en) | Method and apparatus for encoding/decoding and watermarking a data stream | |
Tachibana | Two-dimensional audio watermark for MPEG AAC audio | |
JP2004302493A (en) | Audio decoding device | |
IL216068A (en) | Audio coding system using characteristics of a decoded signal to adapt synthesized spectral components | |
GB2423451A (en) | Inserting a watermark code into a digitally compressed audio or audio-visual signal or file |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004734588 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007071277 Country of ref document: US Ref document number: 10557691 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006530892 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057022651 Country of ref document: KR Ref document number: 20048146898 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2004734588 Country of ref document: EP Ref document number: 1020057022651 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 10557691 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2004734588 Country of ref document: EP |