WO2004106001A1 - Vitrified grinding wheel and method of manufacturing the same - Google Patents

Vitrified grinding wheel and method of manufacturing the same Download PDF

Info

Publication number
WO2004106001A1
WO2004106001A1 PCT/JP2004/007754 JP2004007754W WO2004106001A1 WO 2004106001 A1 WO2004106001 A1 WO 2004106001A1 JP 2004007754 W JP2004007754 W JP 2004007754W WO 2004106001 A1 WO2004106001 A1 WO 2004106001A1
Authority
WO
WIPO (PCT)
Prior art keywords
vitrified
abrasive grains
grinding
volume
pore
Prior art date
Application number
PCT/JP2004/007754
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Yui
Osamu Kubota
Hideo Furukawa
Masatoshi Kishimoto
Naoyuki Ukai
Original Assignee
Bosch Corporation
Noritake Co., Limited
Noritake Super Abrasive Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corporation, Noritake Co., Limited, Noritake Super Abrasive Co., Ltd. filed Critical Bosch Corporation
Priority to JP2005506571A priority Critical patent/JPWO2004106001A1/en
Priority to EP04735340A priority patent/EP1634678A4/en
Priority to BRPI0411190-7A priority patent/BRPI0411190A/en
Publication of WO2004106001A1 publication Critical patent/WO2004106001A1/en
Priority to US11/289,296 priority patent/US20060137256A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • B24D3/18Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings for porous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for

Definitions

  • the present invention relates to a vitrified whetstone obtained by bonding abrasive grains with a vitrified binder.
  • vitrified grinding wheels have been used in a wide range of grinding and polishing operations, including precision grinding, because they can easily adjust the degree of bonding and composition and have water resistance, alkali resistance, and oil resistance.
  • Figure 2 shows the relationship between the effective cutting edge distance of the grinding wheel and the chip pocket during internal grinding. Show.
  • Fig. 2 in order to prevent clogging during grinding and improve machining efficiency, increase the abrasive grain size compared to the standard case (Fig. 2 (A))
  • One possible method is to increase the cutting edge distance We and the insert pocket P (Fig. 2 (B)).
  • the effective cutting edge interval We is widened, and the machining accuracy (surface roughness) is reduced.
  • the inorganic hollow material is crushed during grinding, and pores can be formed, so that an effect similar to that of a chip pocket can be expected. For example, by replacing a part of cBN abrasive grains with an inorganic hollow material,
  • the vitrified binder used to bind the inorganic hollow material remains in the grindstone, which has the disadvantage of hindering grinding.
  • a method of forming pores by using an organic pore forming material such as walnut or wood powder in the production of a grindstone.
  • the pore-forming material is contained in the compact before firing and burned out during the firing of the compact to form pores in the grindstone obtained after firing.
  • the use of such a pore-forming material is preferable because it does not have the drawbacks caused by including a filler such as an inorganic hollow body in the grindstone and can reduce only the degree of concentration.
  • the abrasive grains are non-oxide compared to general abrasives using A-type (alumina-based) general abrasives using WA abrasives (white alumina abrasives).
  • the vitrified binder is used in a large amount, it has a disadvantage that it is easily shrunk.
  • a conventional pore-forming material it is difficult to uniformly disperse the pores, and it is not suitable for a vitrified cBN grinding wheel that requires a more uniform distribution of abrasive grains than a general grinding wheel. there were.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to maintain a predetermined porosity even when using small-diameter abrasive grains. Another object of the present invention is to provide a vitrified grinding wheel in which pores and abrasive grains are uniformly dispersed. Another object of the present invention is to maintain a predetermined porosity in a grindstone and to uniformly disperse the abrasive grains and pores in the grindstone even when using small-diameter abrasive grains. It is an object of the present invention to provide a method for manufacturing a vitrified whetstone that can be performed.
  • the present inventors diligently studied the relationship between the effective cutting edge interval of abrasive grains and the tip pocket volume for the purpose of achieving both the processing efficiency and the processing accuracy of grinding.
  • the present inventors set the grinding efficiency and machining accuracy in advance, and then, based on the grinding efficiency and machining accuracy, the porosity and the concentration of abrasive grains.
  • a vitrified whetstone containing at least a cannonball and a vitrified binder characterized in that it has a preset porosity based on the processing efficiency and processing accuracy, the concentration of the abrasive, and the abrasive particle size. Vitrified grinding stone.
  • the above manufacturing method comprising a step of setting a porosity, a degree of concentration of abrasive grains, and a particle diameter based on processing accuracy.
  • the present invention includes a forced porosity based on burn-through holes of 5 to 35% by volume, even when a small-diameter abrasive having an average particle size of 10 to 90 m is used.
  • the degree of concentration can be maintained at 50 to 160 with a porosity of up to 70% by volume, and a grindstone in which abrasive grains and pores are uniformly dispersed can be provided.
  • the abrasive grains have a small diameter, they have a uniform cutting edge interval equivalent to that of a large-diameter abrasive grain, and can secure a chip pocket volume.
  • Fig. 2 is a diagram showing the relationship between the effective cutting edge spacing We of the grinding wheel and the tip pocket P during internal grinding.
  • FIG. 3 is a schematic enlarged sectional view showing the structure of a grindstone manufactured using a conventional burnout material.
  • FIG. 4 is a schematic enlarged explanatory view showing the structure of a grindstone manufactured without using a burnout material.
  • FIG. 6 is an explanatory diagram for explaining the effective cutting edge interval and the arrangement of abrasive grains according to the present invention.
  • FIG. 7 is a diagram showing the grinding efficiency ratio when the effective cutting edge interval is 0.1 mm in the preferred embodiment and the comparative example of the present invention.
  • Fig. 8 (1) to (3) show the results (in terms of power consumption) of internal grinding with a grinding efficiency of 0.3 mm3 / (mm'sec) using the grinding wheels of Examples 1 to 3 and Comparative Example 2. , Surface roughness and wear).
  • BEST MODE FOR CARRYING OUT THE INVENTION the vitrified grinding wheel of the present invention and a method for producing the same will be described in more detail.
  • the grindstone according to the present invention has a porosity, a degree of concentration of abrasive grains, and an abrasive grain size based on a preset machining efficiency and machining accuracy.
  • the grinding efficiency indicates the amount of grinding per second when the grinding wheel width is lmm, and can usually be expressed in units of mm 3 / (mnrsec).
  • the processing accuracy of grinding can be represented by surface roughness, and is usually represented by ten-point average roughness R ⁇ ( ⁇ ). For example, in the case of internal grinding, if grinding accuracy of 1 R ⁇ ( ⁇ m) or less was to be achieved, the grinding efficiency was conventionally limited to about 0.3 mm 3 / (min * sec) .
  • the grinding efficiency ratio is 3 or more when the effective cutting edge interval is 0.1 mm.
  • abrasive grains having a predetermined size preferably 10 to 90 ⁇
  • the abrasive grains are not adjacent to each other as shown in FIG. Maintain a constant effective cutting edge spacing by arranging them evenly as shown in (1).
  • the grinding wheel of the present invention can achieve a good machining efficiency (grinding efficiency ratio) while maintaining a predetermined grinding accuracy.
  • the term “porosity” refers to the ratio of the volume of pores (space) excluding abrasive grains, binders, and other fillers to the total volume of the grindstone.
  • the porosity is composed of a forced porosity and a natural porosity.
  • the "forced porosity” refers to a burn-through hole formed by firing a molded body containing at least abrasive grains, a vitrified binder, and a pore-forming material in a firing step to burn out the pore-forming material. Means the ratio of the volume to the total pore volume.
  • “natural porosity” means a porosity obtained by subtracting the forcible porosity from the total porosity, and occupies in the compacts in the gaps between the abrasive grains, the vitrified binder and the climate forming material before the firing treatment. Percentage.
  • the porosity is 3 The range is suitably from 0 to 70% by volume, preferably from 40 to 60% by volume, and more preferably from 45 to 55% by volume. If the porosity is 30% by volume or more, the volume of the tip pocket will be insufficient, and there will be no clogging during grinding and welding.
  • the pore-forming material is burned out in the firing step, a good porosity can be secured as compared with a grindstone not using the pore-forming material, and a porosity of up to 70% by volume can be obtained. it can.
  • the forced porosity is suitably in the range of 5 to 35% by volume, preferably 20 to 35% by volume, and More preferably, it is 3 5% by volume.
  • the forced porosity formed by the pore-forming material mainly contributes to the improvement of the processing efficiency of the grinding. If the forced porosity is 5% by volume or more, the grinding is excellent. Can be done.
  • the grinding wheel can be manufactured stably.
  • the size of the forced pores formed by burning out the pore-forming material greatly affects the performance of the grinding wheel. For example, if the size of the forced pores is small, the dispersibility of the abrasive grains and pores in the grindstone increases. Further, since the dispersibility of the abrasive grains and pores is increased, the interval between the cutting blades is stabilized, so that the chip discharging performance is increased, the power consumption during grinding is reduced, and this is advantageous in terms of production efficiency. In addition, since the strength of the grindstone is increased, the abrasion of the grindstone due to grinding is small, and the durability is improved.
  • the vitrified whetstone of the present invention has an average grain size of abrasive grains:! Pores with up to 3 times the size (including forced and natural pores) force 20 to 70 volumes relative to the total pore volume. / 0 , preferably 30 to 60 volumes. / 0 , more preferably 30 to 50% by volume.
  • the vitrified whetstone of the present invention has an average grain diameter of 0. Pores having a size of 1-1 times, 30-70 volumes with respect to the volume of all pores. / 0, good Mashiku 4 0-7 0% by volume, more preferably from Der Rukoto those contained 5 0-7 0 volume 0/0.
  • the proportion of pores having a desired size can be adjusted by appropriately setting the size and amount of the pore-forming material used. Further, the ratio of pores having a predetermined size can be determined by slicing a grindstone and analyzing a cross-sectional shape from three-dimensional data obtained by measuring a cross-section with a microscope capable of three-dimensional measurement.
  • the pore forming material used in the present invention is not particularly limited as long as it can burn out in the firing step.
  • the burnout start temperature is equal to or higher than the transition temperature of the vitrified binder described later, and the burnout completion temperature is lower than the maximum temperature within the range of the firing temperature of the vitrified binder. You can do it.
  • the burn-out start temperature is 5 ° C or more (more preferably 10 ° C or more, more preferably 20 ° G or more) higher than the transition point temperature of the vitrified binder.
  • Pores whose completion temperature is at least 5 ° C (more preferably at least 10 ° C, more preferably at least 20 ° C) higher than the maximum temperature within the range of the firing temperature of the grinding wheel raw material containing the vitrifide binder.
  • a forming material can be suitably used. It is preferable that the pore-forming material has such a strength that the material is not crushed when the raw material is stirred during the production of the grinding wheel. As long as the pore-forming material has such a strength that it is not crushed at the time of stirring, any of solid and hollow pore-forming materials can be used. Further, the specific gravity of the pore-forming material is desirably 1 or more (for example, 1 to 2.5, preferably 1 to 1.5).
  • the size of the pore-forming material is preferably selected according to the desired size of the forced pores. As described above, the smaller the size of the forced pores, the lower the power consumption during grinding and the more advantageous in terms of production efficiency. Also, the smaller the forced pores, the higher the strength of the grindstone, and the less the abrasion of the grindstone due to grinding, and the better the durability. However, if the forced pore diameter is too small, the grinding efficiency will be reduced. From the above viewpoint, it is appropriate that the size of the pore-forming material is 0.1 to 3 times the average particle size of the abrasive grains.
  • the size of the pore-forming material is preferably 0.16 to 1 times the average grain size of the abrasive grains.
  • a pore forming material having a size of about 3.5 to 36 ⁇ m is used.
  • the shape of the pore-forming material is not particularly limited, but is preferably a true sphere capable of dispersing the abrasive grains in the manufacturing process.
  • the content of the pore-forming material in the starting material is preferably 10 to 50% by volume%, more preferably 15 to 45%, and more preferably 15 to 40%. Is more preferred.
  • the volume% is 10% or more, the effect of forming burn-through holes is obtained, and when the volume% is 50% or less, it is possible to produce a grinding wheel having appropriate strength and durability.
  • Specific examples of the pore-forming material include, for example, polymer compounds such as polymethyl acrylate and polymethyl methacrylate, and carbonaceous materials containing 90% by mass or more of carbon. In particular, use of poly (methyl methacrylate) as a pore-forming material Is preferred. ⁇ Abrasives>
  • the grain size of the grain used in the present invention can be appropriately determined in relation to the porosity and the degree of concentration based on the processing efficiency and the processing accuracy of the grinding.
  • the average particle size is 10 to 90 ⁇ m, preferably 18 to 60 ⁇ , more preferably 20 to 55 ⁇ , and most preferably 25 to 45 ⁇ . It is appropriate to use abrasive grains. If the average grain size is 10 ⁇ or more, there is no problem of the connectivity between the ffi grains and the working efficiency of grinding is not significantly reduced.
  • a predetermined cutting edge interval can be maintained, and machining accuracy can be improved.
  • the type of abrasive grains is not particularly limited as long as it is within the range of the above average particle size.
  • abrasive grains such as cBN abrasive grains, A-based (alumina-based), and C-based (silicon carbide-based) grains can be used.
  • cBN abrasive grains When grinding high precision parts inside, it is preferable to use cBN abrasive grains.
  • the type of abrasive grains may be a single type or a mixture of two or more types.
  • one or more of general abrasive grains and inorganic hollow materials can be used in combination as a filler if necessary.
  • the amount of filler used it is appropriate to adjust the amount of filler used so that the concentration of cBN abrasive grains is 50 to 160.
  • the type of vitrified binder and pore-forming material and the sintering temperature must be controlled in order to suppress the deterioration of the diamond abrasive grains. It is desirable to set conditions appropriately.
  • the degree of concentration of the abrasive grains is suitably from 50 to 160, preferably from 75 to 150, and more preferably from 100 to 125.
  • concentration means the ratio of the abrasive grains in the grinding stone.
  • the concentration degree is 25% by volume. Equivalent to. Therefore, the concentration of 200 corresponds to 50% by volume.
  • the degree of concentration can be determined according to the above, taking into account the difference in density from diamond abrasive grains.
  • the degree of concentration 100 corresponds to about 25% by volume
  • the degree of concentration 200 corresponds to about 50% by volume.
  • a predetermined tip pocket volume can be obtained. Can be maintained or increased, and clogging and welding of the grinding wheel during high-efficiency grinding can be prevented.
  • the vitrified binder can be appropriately selected and used depending on the type of abrasive grains.
  • the vitrified binder may be, for example, borosilicate glass, crystallized glass, or the like. Examples of the crystallized glass include those that precipitate willemite.
  • the coefficient of thermal expansion of the vitrified binder is ⁇ 2 X 10 -6 (1 / K) of the coefficient of thermal expansion of the abrasive grains (room temperature to 500 ° G). Is desirably within the range.
  • the temperature at which the grinding stone containing the binder is fired is selected according to the type of the vitrified binder for superabrasives used. Since the transition temperature of the vitrified binder for superabrasives is lower than the transition temperature of the vitrified binder for general abrasives, the temperature at which the grindstone raw material containing the vitrified binder for superabrasives is fired is 65500. The temperature is preferably in the range of 100 to 900 ° C, more preferably in the range of 700 to 950 ° C.
  • compositions of the superabrasive for vitrified bonded material for example, S i 0 2: 4 0 ⁇ 7 0 mass. /. , A 1 2 Os: 1 0 ⁇ 2 0 wt%, B 2O3: 1 0 ⁇ 2 0 wt%, M 1 O: 2 ⁇ 1 0 wt%, M 2 2 0: 2 ⁇ 1 0 be exemplified wt% Can be.
  • M 1 is one or more metals selected from Al-Li metal and M 2 is one or more metals selected from Al-Li metal.
  • the content of the vitrisulfide binder can be appropriately selected, and may be, for example, in the range of 13 to 35% by volume, preferably 18 to 22% by volume, based on the volume of the starting material.
  • the vitrified grindstone of the present invention only needs to have at least a portion related to grinding having the above-described configuration. Therefore, the vitrified grindstone of the present invention also includes, for example, a vitrified grindstone portion containing abrasive grains and a vitrified binder provided on the surface of a ceramic holder that does not contain abrasive grains.
  • the grindstone of the present invention is a vitrified superabrasive grindstone
  • a usual additive used for a vitrified superabrasive grindstone for example, a brittle agent, a solid lubricant
  • the agent may be contained in an appropriate amount.
  • the manufacturing method of the present invention includes a step of setting the processing efficiency and the processing accuracy of the grinding, and setting the porosity, the concentration of the abrasive grains, and the abrasive particle diameter based on the processing efficiency and the processing accuracy.
  • the processing efficiency, processing accuracy, porosity, degree of concentration of abrasive grains, and abrasive grain size of the grinding those of the above-mentioned vitrified stone can be used as they are.
  • the abrasive grains, the vitrifide binder and the pore-forming material used in the manufacturing method of the present invention the abrasive grains, vitrifide binder and pore-forming material used in the above-mentioned vitrifide grindstone of the present invention are used. Is appropriate.
  • the production method of the present invention can include a firing step of firing a molded article containing at least abrasive grains, a vitrifide binder, and a pore-forming material to burn out the pore-forming material.
  • the molded body in the method for firing a molded body containing at least abrasive grains, a vitrifide binder, and a pore former, the molded body is held at a certain temperature for a certain time and fired to burn out the pore former.
  • the method is preferred. With this method, the pore-forming material burns out before the vitrified binder is melted in the firing step, and the binder ⁇ shrinks the firing due to the free movement of the abrasive grains ⁇ prevents the distribution of the abrasive grains from being disturbed.
  • the holding time is preferably a time sufficient for the pore forming material contained in the molded body to burn out.
  • the time sufficient for the pore forming material to burn out can be appropriately set according to the shape or size of the grindstone to be manufactured.
  • the holding temperature at the time of holding for a fixed time during firing is preferably at least the burn-out completion temperature of the pore-forming material (preferably a temperature higher than the burn-through completion temperature by 5 ° C or more, more preferably the burn-through completion temperature). Temperature higher than the temperature by 10 ° C or more).
  • the temperature at which the molded body is fired (the maximum temperature during firing) is a temperature within the range of the firing temperature of the vitrified binder, and may be equal to or higher than the burnout completion temperature of the pore forming material.
  • the dimension of the molded body when the molded body is fired is a dimension such that the pore forming material used can be burned out by + minutes.
  • the thickness (the length of the rectangular parallelepiped in the thinnest direction) should be 10 mm or less (preferably 5 mm or less, more preferably 3 mm or less). Can be.
  • the edge thickness (thickness of the wall of the cylinder) can be made 10 mm or less (preferably 5 mm or less, more preferably 3 mm or less).
  • the atmosphere at the time of firing be an atmosphere in which the pore-forming material sufficiently burns.
  • the pore-forming material is carbonaceous, for example, an atmosphere containing oxygen can be used.
  • the step of obtaining the molded body may be provided before the firing step.
  • a small-diameter workpiece can exhibit high grinding efficiency and calorie accuracy, so that it can be suitably used for internal grinding.
  • Applications of the grindstone of the present invention include, for example, grinding of an inner surface and a seat surface of an injection nozzle and a pressure adjusting component of a fuel injection device, and inner grinding of an inner ring and an outer ring of a bearing. Examples Hereinafter, the present invention will be described more specifically with reference to Examples.
  • Example 1 Fabrication of whetstone and its structure
  • the starting materials having the following formulations shown in Examples 1 to 3 and Comparative Examples 1 and 2 were press-molded and fired at 900 for 24 hours in the atmosphere (including 1 hour at 900 ° G.). Holding), and a vitrified whetstone was prepared.
  • the burning start temperature (10 mass% reduction) of polymethyl methacrylate was 300 ° C.
  • the burning completion temperature (A decrease of 90% by mass) was 500 ° C.
  • the transition point of the used vitrified binder was 550 ° C
  • the specific firing temperature was 850 to 950 ° C.
  • c BN abrasive (average particle size 30 ⁇ m (# 600), concentration 160) 1 volume part Polymethyl methacrylate (average particle size 5 m, true specific gravity 1.2) 4 volume part Vitrified binder 27.5 parts by volume Glue 14.5 parts by volume
  • cBN abrasive grains (average particle diameter 30 m (# 600), concentration 160) 56.5 parts by volume
  • Polymethyl methacrylate (average particle diameter 5 ⁇ m, true specific gravity 1.2) 2 1.0 parts by volume Vitrifide binder 2 2 .5 volume parts glue 14.5 volume parts
  • Vitrifide binder 16.0 parts by volume
  • cBN abrasive grains (average particle size 30 ⁇ , degree of concentration 180) 69.2 volume part Vitrifide binder 30.8 volume part Glue 14.3 volume part
  • FIG. 1 A schematic enlarged cross-sectional view of the structure of the grindstones of Example 1, Comparative Examples 1 and 2 obtained after firing is shown in FIG. And Figure 3 and Figure 4 respectively.
  • the grindstone of the present invention is a grindstone in which c ⁇ ⁇ abrasive grains 1 are bonded by vitrified bonding material 3. It has 2 burnout holes (forced pores) and 4 natural pores.
  • the grindstone of Comparative Example 1 is a grindstone in which cBN abrasive grains 21 and burn-through holes 22 are bonded by vitrified bonding material 23, and further has pores 24.
  • the grindstone of Comparative Example 2 is a grindstone in which cBN abrasive grains 31 are bonded by vitrified binder 32 and, in addition, has pores 33.
  • the grindstone of Example 1 shown in FIG. 1 has more uniformly dispersed abrasive grains and pores than the grindstones of Comparative Examples 1 and 2.
  • the grindstone of Comparative Example 1 shown in FIG. 3 has a good porosity but non-uniform abrasive grains.
  • the grindstone of Comparative Example 2 shown in FIG. 4 has non-uniform foundation grains and low porosity. This indicates that the grindstone of the present invention is a grindstone having a good chip pocket size while maintaining a constant effective cutting edge interval.
  • Example 1 in the case of having the same effective cutting edge interval We (0.1 mm), in Example 1, the grinding efficiency ratio could be normally reduced to 3.2. On the other hand, in Comparative Examples 1 and 2, the grinding efficiency ratio was only normal up to 1.9. This shows that the use of the vitrified grindstone of the present invention enables grinding with the same grinding accuracy with a grinding efficiency approximately 1.7 times higher than that of the conventional grindstone.
  • Examples 1-3 using a grinding wheel obtained in Comparative Example 2, performs internal grinding in processing efficiency 0. 3m m 3 / grinding (mn sec), was investigated power, surface roughness, wear .
  • Fig. 8 (1) shows the change in power consumption
  • Fig. 8 (2) shows the measurement result of surface roughness
  • Fig. 8 (3) shows the measurement result of wear.
  • the grindstones obtained in Examples 1 and 2 were subjected to internal grinding at a grinding efficiency of 0.7 mm 3 / (mnr sec), and the power consumption, surface roughness, and wear were examined.
  • the change in power consumption is shown in Fig. 9 (1)
  • the measurement result of surface roughness is shown in Fig. 9 (2)
  • the measurement result of wear is shown in Fig. 9 (3).
  • the work material, processing condition and dress condition are as follows.
  • the grinding wheel of Examples 1 As shown in FIG. 8 (2), the grinding wheel of Examples 1 3, the processing efficiency of grinding 0. In 3 mm 3 / (ni m'sec) , 0. 7 R z ( ⁇ m) of the following grinding Processing accuracy was obtained. Further, as shown in FIG. 9 (2), the grinding stones of Examples 1 and 2 obtain a grinding accuracy of 0.8 R zm) or less at a grinding efficiency of 0.7 mm 3 / (mnrsec). I was able to do it.
  • the vitrified grindstone of the present invention has a porosity, a degree of concentration of abrasive grains, and an abrasive grain diameter based on a preset grinding efficiency and processing accuracy.
  • the gantry of the present invention it is possible to accurately process the roughness of the processed surface while improving the processing efficiency of grinding, which has been conventionally used as an index of a contradictory grindstone.
  • the grinding efficiency and the processing accuracy are determined in advance, and the porosity, the degree of concentration of the abrasive grains, and the abrasive particle diameter are set based on the grinding efficiency and the processing accuracy. .
  • the manufacturing method of the present invention the grinding wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

A vitrified grinding wheel having a porosity (desirably 30 to 70 vol.%), a concentration ratio of abrasive grain (desirably 50 to 160), and an abrasive grain size (desirably 10 to 90 μm) based on pre-set grinding efficiency and grinding accuracy, desirably, a grinding accuracy of 0.1 to 1.6 Rz (μm) and a grinding efficiency of 0.1 to 2.0 mm3/(mm·sec), and a method of manufacturing the vitrified grinding wheel.

Description

ビトリフアイド砥石及びその製造方法  Vitrified whetstone and method of manufacturing the same
技術分野 Technical field
本発明は、 砥粒をビトリフアイド結合材で結合してなるビトリフアイド砥石及 明 The present invention relates to a vitrified whetstone obtained by bonding abrasive grains with a vitrified binder.
びその製造方法に関する。 特に、 本発明は、 被研削物の小径内面を研削する場合 田 And its manufacturing method. In particular, the present invention relates to a method for grinding a small-diameter inner surface of an object to be ground.
に優れた加工精度及び研削精度を提供し得るビトリフアイド砥石及びその製造方 書 Grinding wheel that can provide excellent machining accuracy and grinding accuracy and its manufacturing method
法に関する。 About the law.
背景技術 Background art
従来、ビトリフアイド砥石は、結合度及び組成の調整が容易に行え、かつ耐水、 耐アルカリ、 耐油性を有することから、 精密研削をはじめ、 幅広い研削、 研磨作 業で使用されている。 Conventionally, vitrified grinding wheels have been used in a wide range of grinding and polishing operations, including precision grinding, because they can easily adjust the degree of bonding and composition and have water resistance, alkali resistance, and oil resistance.
例えば、 エンジンの嘖射ノズルなどの小径ノズルの内面を研削する小径内面研 削の場合には、 砥石周速が制限され、 かつクイル剛性も小さくなる。 このため、 良好な研削を維持するためには、 砥石径をできるだけ大きくする必要がある。 こ のような理由から、 小径内面研削では、 加工物の内径に近い径を有する砥石が使 用されている。 し力 し、 この状態の研削では、 切り屑長さが長くなり、 目詰まり が発生しやすく、 特に、 研削能率を上げた場合にこの傾向が顕著である。 For example, in the case of small-diameter inner surface grinding in which the inner surface of a small-diameter nozzle such as an engine firing nozzle is ground, the peripheral speed of the grinding wheel is limited and the quill rigidity is also reduced. Therefore, in order to maintain good grinding, it is necessary to make the grinding wheel diameter as large as possible. For this reason, in small-diameter internal grinding, a grindstone having a diameter close to the inner diameter of the workpiece is used. However, in this state of grinding, the chip length becomes longer and clogging is likely to occur. This tendency is particularly remarkable when the grinding efficiency is increased.
内面研削時における砥石の有効切れ刃間隔とチップポケットとの関係を図 2に 示す。 図 2に示されるように、 研削時の目詰まりを防止し、 加工能率を向上させ るためには、 標準の場合 (図 2 (A)) と比較して、 砥粒径を大きくし、 有効切れ 刃間隔 Weとチップポケット Pとを大きくする方法が考えられる (図 2 (B))。 し かし、 この方法では有効切れ刃間隔 We が広がるため、 加工精度 (面粗さ) が低 下してしまう。 一方、 加工精度を向上させるために、 標準の場合 (図 2 (A)) と 比較して砥粒経を小さくして、 有効切れ刃間隔 We とチップポケット Pとを小さ くする方法が考えられる (図 2 (C)) 。 しかし、 この方法では、 チップポケット Pの体積が小さいため、 チップポケットは直ぐに被研削物の切り屑で一杯になつ てしまう。 この状態でさらに研削を継続すると、 砥石が目詰まりを起こし、 さら には溶着の原因ともなる。 このように、 研削の加工能率の向上と加工精度の向上 とはトレードオフの関係にあるため、 両者を同時に満たすことは、 従来困難であ るといわれていた。 従来、研削の加工能率及び加工精度を両立させる試みがなされている。例えば、 砥石に占める砥粒の割合を示す砥粒の集中度を下げて、 研削の加ェ能率及ぴ加ェ 精度を向上させる方法が考えられる。 しかし、 砥粒の集中度を下げると、 砥粒間 の結合性が低下し、 砥粒の結合上の問題が生じるとともに、 砥粒の分散性が低下 し、 砥粒を砥石中に均一に分散できないという問題があった。 このため、 砥粒の 集中度を下げる方法では、 研削の加工能率と加工精度の両立を達成することは困 難であった。 また、 c B N砲粒の一部を無機質中空状物質に置換する方法も知られている(特 開昭 6 2 _ 2 5 1 0 7 7号公報参照) 。 この方法によれば、 無機質中空状物質が 研削中に破碎され、 気孔を形成できるため、 チップポケットと類似の効果が期待 できる。 し力 しながら、 例えば、 c B N砥粒の一部を無機質中空状物質に置換し Figure 2 shows the relationship between the effective cutting edge distance of the grinding wheel and the chip pocket during internal grinding. Show. As shown in Fig. 2, in order to prevent clogging during grinding and improve machining efficiency, increase the abrasive grain size compared to the standard case (Fig. 2 (A)) One possible method is to increase the cutting edge distance We and the insert pocket P (Fig. 2 (B)). However, in this method, the effective cutting edge interval We is widened, and the machining accuracy (surface roughness) is reduced. On the other hand, in order to improve machining accuracy, it is conceivable to reduce the abrasive grain diameter compared to the standard case (Fig. 2 (A)) to reduce the effective cutting edge interval We and the insert pocket P. (Figure 2 (C)). However, in this method, since the volume of the chip pocket P is small, the chip pocket is immediately filled with the chips of the workpiece. If grinding is continued further in this state, the grinding wheel will be clogged, and it will also cause welding. As described above, since there is a trade-off between the improvement of the processing efficiency of grinding and the improvement of the processing accuracy, it has been conventionally difficult to satisfy both of them at the same time. Conventionally, attempts have been made to achieve both the processing efficiency and the processing accuracy of grinding. For example, a method is conceivable in which the concentration of the abrasive grains, which indicates the ratio of the abrasive grains in the grindstone, is reduced to improve the efficiency and accuracy of the grinding. However, if the concentration of the abrasive grains is reduced, the connectivity between the abrasive grains is reduced, causing problems in the bonding of the abrasive grains, and the dispersibility of the abrasive grains is reduced, so that the abrasive grains are uniformly dispersed in the grindstone. There was a problem that could not be done. For this reason, it was difficult to achieve both grinding efficiency and processing accuracy by the method of reducing the concentration of abrasive grains. Also, a method is known in which a part of cBN cannonball is replaced with an inorganic hollow substance (see Japanese Patent Application Laid-Open No. 62-251707). According to this method, the inorganic hollow material is crushed during grinding, and pores can be formed, so that an effect similar to that of a chip pocket can be expected. For example, by replacing a part of cBN abrasive grains with an inorganic hollow material,
2 Two
差換え用紙(規則 ) て集中度を 1 0 0程度にした砥石は、 集中度が低い分だけ 粒の分散性が悪く、 砥粒が均一に分散した砥石を得ることは困難であった。 さらに、 無機質中空状物 質もビトリフアイド結合材に保持されるため、 本来 c B N砥粒を保持すべきビト リファイド結合材が無機質中空状物質に捕らえられてしまう。 このため、 無機中 空状物質を用いた場合には、 通常よりも多いビトリフアイド結合材を使用する必 要があり、 その結果、 気孔率が低下するという欠点があった。 さらに、 無機質中 空状物質が研削時に破壌された場合、 無機質中空状物質を結合するために用いら れるビトリフアイド結合材が砥石中に残存することになり、 研削の障害になると いう欠点もあった。 一方、 くるみ、 木粉等の有機質の気孔形成材を砥石の製造の際に用いることに よって気孔を形成する方法も知られている。 気孔形成材は、 焼成前の成形体に含 有させ成形体の焼成時に燃え抜けさせて、 焼成後に得られる砥石中に気孔を形成 する。 このような気孔形成材を用いた場合、 砥石中に無機質中空体等の充填材を 含有させたことによる欠点を有さず、 集中度だけを低くできるため、 好ましい。 しかしながら、 用いる気孔形成材の種類によっては、 WA砥粒 (白色アルミナ 砥粒) などを使用した A系 (アルミナ系) の一般砥粒を使用した一般砥石と比べ ると、 砥粒が非酸化物であり、 かつビトリファイド結合材の使用量も多いため、 収縮しやすいという欠点があった。 さらに、 従来の気孔形成材を使用した場合、 気孔を均一に分散させることが難しく、 一般の砥石以上に砥粒分布の均一性が要 求されるビトリフアイド c B N砥石には不向きであるという欠点があった。 近年、 従来の気孔形成材を改善する目的で、 砥粒の集中度を 2 0 0未満とした ビトリフアイド砥石を製造する場合であっても、 焼成収縮が小さく、 かつ気孔を 均一に分布させる方法が知られている (例えば、 特開 2 0 0 0— 3 1 7 8 4 4号 公報) 。 この方法で得られた砥石は、 集中度が 2 0 0未満と小さい場合であって も、研削比が高く、研削焼けゃ熔着が発生し難く、使いやすいという利点がある。 しかしながら、上記方法であっても、集中度をさらに低くした場合、すなわち、 砥粒の平均粒径よりも大きな径の気孔形成材を使用した場合には、 砥粒同士の間 隔が広がるため、 有効切れ刃間隔が大きくなり、 その結果、 良好な加工精度を維 持できないとい.う問題があった。 さらに、 上記方法では、 砥石における気孔及び 砥粒の均一性が不十分であるという問題もあった。 したがって、 集中度をさらに 低下させた砥石であっても、 良好な加工能率及び加工精度を維持するためには、 上記方法の更なる改善が必要とされた。 かくして本発明は、 上記従来技術の問題点を解決するためになされたものであ り、 本発明の目的は、 小径の砥粒を使用した場合であっても、 所定の気孔率を維 持し、 気孔及ぴ砥粒が均一分散したビトリフアイド砥石を提供することにある。 また、 本発明のもう一つの目的は、 小径の砥粒を使用した場合であっても、 砥 石内で所定の気孔率を維持でき、 かつ砥石中に砥粒及び気孔を均一に分散させる ことのできるビトリフアイド砥石の製造方法を提供することにある。 発明の開示 本発明者は、 上記課題を解決するために、 研削の加工能率及び加工精度の両立 を目的として砥粒の有効切れ刃間隔とチップポケット体積との関係について鋭意 検討した。 その結果、 本発明者らは、 予め研削加工能率及び加工精度を設定して おき、 次いでこの研削加工能率及ぴ加工精度に基づいて、 気孔率、 砥粒の集中度 及び砥粒径を設定することにより、 研削能率と加工面粗さの両方を向上可能な方 法を見出し、 本努明を完成するに至った。 すなわち、 本発明の目的は、 以下のビトリフアイド砥石により達成される。 Replacement paper (rules) The whetstone having a concentration of about 100 was poor in particle dispersibility due to the low concentration, and it was difficult to obtain a whetstone in which abrasive grains were uniformly dispersed. Furthermore, since the inorganic hollow material is also held by the vitrified binder, the vitrified binder that should originally hold cBN abrasive grains is caught by the inorganic hollow material. For this reason, when an inorganic hollow material is used, it is necessary to use more vitrified binder than usual, and as a result, there is a disadvantage that the porosity is reduced. Furthermore, if the inorganic hollow material is ruptured during grinding, the vitrified binder used to bind the inorganic hollow material remains in the grindstone, which has the disadvantage of hindering grinding. Was. On the other hand, there is also known a method of forming pores by using an organic pore forming material such as walnut or wood powder in the production of a grindstone. The pore-forming material is contained in the compact before firing and burned out during the firing of the compact to form pores in the grindstone obtained after firing. The use of such a pore-forming material is preferable because it does not have the drawbacks caused by including a filler such as an inorganic hollow body in the grindstone and can reduce only the degree of concentration. However, depending on the type of pore-forming material used, the abrasive grains are non-oxide compared to general abrasives using A-type (alumina-based) general abrasives using WA abrasives (white alumina abrasives). However, since the vitrified binder is used in a large amount, it has a disadvantage that it is easily shrunk. Furthermore, when a conventional pore-forming material is used, it is difficult to uniformly disperse the pores, and it is not suitable for a vitrified cBN grinding wheel that requires a more uniform distribution of abrasive grains than a general grinding wheel. there were. In recent years, even in the case of manufacturing a vitrified whetstone in which the degree of concentration of abrasive grains is less than 200 for the purpose of improving a conventional pore forming material, firing shrinkage is small and pores are reduced. A method of uniformly distributing is known (for example, Japanese Patent Application Laid-Open No. 2000-317840). The grindstone obtained by this method has the advantage that the grinding ratio is high, the grinding burn and welding hardly occur, and the grinding wheel is easy to use, even when the concentration is as small as less than 200. However, even with the above method, when the degree of concentration is further reduced, that is, when a pore forming material having a diameter larger than the average particle diameter of the abrasive grains is used, the space between the abrasive grains is increased. There was a problem that the effective cutting edge interval became large, and as a result, good machining accuracy could not be maintained. Furthermore, in the above method, there was a problem that the uniformity of pores and abrasive grains in the grindstone was insufficient. Therefore, in order to maintain good machining efficiency and machining accuracy even with a grindstone having a further reduced degree of concentration, further improvement of the above method was required. Thus, the present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to maintain a predetermined porosity even when using small-diameter abrasive grains. Another object of the present invention is to provide a vitrified grinding wheel in which pores and abrasive grains are uniformly dispersed. Another object of the present invention is to maintain a predetermined porosity in a grindstone and to uniformly disperse the abrasive grains and pores in the grindstone even when using small-diameter abrasive grains. It is an object of the present invention to provide a method for manufacturing a vitrified whetstone that can be performed. DISCLOSURE OF THE INVENTION In order to solve the above-mentioned problems, the present inventors diligently studied the relationship between the effective cutting edge interval of abrasive grains and the tip pocket volume for the purpose of achieving both the processing efficiency and the processing accuracy of grinding. As a result, the present inventors set the grinding efficiency and machining accuracy in advance, and then, based on the grinding efficiency and machining accuracy, the porosity and the concentration of abrasive grains. We have found a method that can improve both grinding efficiency and machined surface roughness by setting the abrasive grain size, and have completed this effort. That is, the object of the present invention is achieved by the following vitrified grinding wheels.
( 1 ) 砲粒及びビトリファイド結合材を少なくとも含有するビトリフアイド砥石 であって、 予め設定した研削の加工能率及び加工精度に基づく気孔率、 砥粒の集 中度及び砥粒径を有することを特徴とするビトリフアイド砥石。 (1) A vitrified whetstone containing at least a cannonball and a vitrified binder, characterized in that it has a preset porosity based on the processing efficiency and processing accuracy, the concentration of the abrasive, and the abrasive particle size. Vitrified grinding stone.
(2) 前記研削の加工精度が 0. 1〜1. 6Rz( ni)である場合に、 研削の加 ェ能率が 0. 1〜 2. 0 mm3/(mm-sec)である ( 1 ) に記載のビトリフアイド 砥石。 (2) If the processing accuracy of the grinding is 0. 1~1. 6Rz (ni), pressurized E efficiency of grinding is 0. 1~ 2. 0 mm 3 / ( mm-sec) (1) The vitrified whetstone described in 1.
( 3 ) 前記気孔率が、 砥石全体の容積に対して 30〜 70容積%である ( 1 ) 又 は ( 2 ) に記載のビトリフアイド砥石。  (3) The vitrified whetstone according to (1) or (2), wherein the porosity is 30 to 70% by volume based on the total volume of the whetstone.
(4) 前記気孔率が、 気孔形成材を燃え抜けさせることにより形成される燃え抜 け孔に基づく強制気孔率を含む (1) 〜 (3) のいずれかに記載のビトリフアイ ド砥石。  (4) The vitrified grinding wheel according to any one of (1) to (3), wherein the porosity includes a forced porosity based on burnout holes formed by burning out the pore-forming material.
( 5 ) 前記強制気孔率が砥石全体の容積に対して 5〜 35容積%である ( 4 ) に 記載のビトリフアイド砲石。  (5) The vitrified cannon according to (4), wherein the forced porosity is 5 to 35% by volume based on the total volume of the grindstone.
(6) 前記気孔形成材が砥粒の平均粒径の 0. 1〜 3倍の大きさである (4) 又 は ( 5 ) に記載のビトリフアイド砥石。  (6) The vitrified whetstone according to (4) or (5), wherein the pore-forming material has a size of 0.1 to 3 times the average particle size of the abrasive grains.
(7) 全気孔の容量に占める、 砥粒の平均粒径の 1〜 3倍の大きさを有する気孔 の割合が、 20〜 70容量0 /0である ( 1 ) 〜 ( 6 ) のいずれかに記載のビトリフ アイド砥石。 (7) occupies the volume of all pores, the percentage of pores having 1 three times an average particle diameter of the abrasive grains, one of between 20 and 70 vol. 0/0 (1) - (6) The vitrif eyed whetstone described in 1.
(8) 全気孔の容量に占める、 砥粒の平均粒径の 0. 1〜1倍の大きさを有する 気孔の割合が、 30~70容量%でぁる (1) 〜 (6) のいずれかに記載のビト リファイド砥石。 (8) The ratio of the pores having a size of 0.1 to 1 times the average particle size of the abrasive grains in the total pore volume is 30 to 70% by volume. (1) Any of (1) to (6) Bites described in crab Refined whetstone.
(9) 前記気孔形成材が高分子化合物である (4) 〜 (8) のいずれかに記載の ビトリフアイ ド砥石。  (9) The vitrified whetstone according to any one of (4) to (8), wherein the pore-forming material is a polymer compound.
(10) 前記砥粒の平均粒径が 10〜90 μηιである (1) 〜 (9) のいずれか に記載のビトリフアイド砥石。  (10) The vitrified whetstone according to any one of (1) to (9), wherein the abrasive has an average particle diameter of 10 to 90 μηι.
(1 1) 前記砥粒の集中度が 50〜160である (1) 〜 (10) のいずれかに 記載のビトリフアイド砥石。  (11) The vitrified whetstone according to any one of (1) to (10), wherein the degree of concentration of the abrasive grains is 50 to 160.
(12) 前記砲粒が立方晶窒化ホウ素砥粒である (1) 〜 (11) のいずれかに 記載のビトリフアイド砥石。  (12) The vitrified whetstone according to any one of (1) to (11), wherein the cannonball is a cubic boron nitride abrasive.
(13) 砥粒及びビトリフアイド結合材を少なくとも含有するビトリフアイド砥 石であって、 全気孔の容量に占める、 砥粒の平均粒径の 1〜 3倍の大きさを有す る気孔の割合が、 20〜 70容量%であるビトリフアイド砥石。  (13) The ratio of pores having a size of 1 to 3 times the average grain size of the abrasive grains in the volume of all pores, which is a vitrified whetstone containing at least an abrasive grain and a vitrified binder, Vitrified whetstone with 20-70% by volume.
(14) 砥粒及びビトリファイド結合材を少なくとも含有するビトリファイド砥 石であって、 全気孔の容量に占める、 砥粒の平均粒径の 0. 1〜1倍の大きさを 有する気孔の割合が、 30〜 70容量%であるビトリフアイド砥石。  (14) A vitrified grindstone containing at least abrasive grains and a vitrified binder, wherein the proportion of pores having a size of 0.1 to 1 times the average grain size of the abrasive grains in the total pore volume is as follows: Vitrified whetstone with 30-70% by volume.
(15) 前記砥粒の平均粒径が 10〜90 μπιである (13) 又は (14) に記 載のビトリフアイド砥石。  (15) The vitrified whetstone according to (13) or (14), wherein the abrasive has an average particle diameter of 10 to 90 μπι.
(16) 前記砥粒の集中度が 50〜: L 60である (13) 〜 (15) のいずれか に記載のビトリフアイド砥石。 本発明のもう一つの目的は、 以下のビトリフアイド砥石の製造方法により達成 される。  (16) The vitrified whetstone according to any one of (13) to (15), wherein the concentration of the abrasive grains is 50 to: L60. Another object of the present invention is achieved by the following method for manufacturing a vitrified grinding wheel.
(17) 砥粒及びビトリファイド結合材を少なくとも含有するビトリフアイド砥 石の製造方法であって、 研削の加工能率及び加工精度を設定し、 該加ェ能率及び 加工精度に基づいて気孔率、 砥粒の集中度及ひ 粒径を設定する工程を有する前 記製造方法。 (17) A method for producing a vitrified whetstone containing at least an abrasive grain and a vitrified binder, wherein a grinding efficiency and a machining accuracy are set. The above manufacturing method, comprising a step of setting a porosity, a degree of concentration of abrasive grains, and a particle diameter based on processing accuracy.
(18) 前記研削の加工精度を 0. 1〜: L. 6Ι ζ(μΐη)に設定し、 かつ前記研 削の加工能率を 0. 1〜2. Q mm3/(mm'sec) に設定する (17) に記載の製 造方法。 (18) Processing precision 0. 1 of the grinding: Set L. 6Ι ζ (μΐη), and sets the processing efficiency of cutting the Institute to 0. 1~2 Q mm 3 / (mm'sec ). The production method according to (17).
(19) 前記気孔率を砥石全体の容積に対して 30〜 70容積%に設定する (1 7) 又は (18) に記載の製造方法。  (19) The production method according to (17) or (18), wherein the porosity is set to 30 to 70% by volume with respect to the entire volume of the grindstone.
(20) 前記気孔率が、 気孔形成材を燃え抜けさせることにより形成される燃え 抜け孔に基づく強制気孔率を含む (17) 〜 (19) のいずれかに記載の製造方 法。  (20) The method according to any one of (17) to (19), wherein the porosity includes a forced porosity based on burn-through holes formed by burning out the pore-forming material.
( 21:)前記強制気孔率を砥石全体の容積に対して 5〜 35容積%に設定する( 2 0) に記载の製造方法。  (21 :) The production method according to (20), wherein the forced porosity is set to 5 to 35% by volume based on the total volume of the grindstone.
(22) 前記気孔形成材として砥粒の平均粒径の 0. 1〜 3倍の大きさを有する 気孔形成材を用いる (20) 又は (21) に記載の製造方法。  (22) The production method according to (20) or (21), wherein a pore-forming material having a size of 0.1 to 3 times the average particle size of abrasive grains is used as the pore-forming material.
(23) 前記気孔形成材として高分子化合物を用いる (17) 〜 (22) のいず れかに記載の製造方法。  (23) The production method according to any one of (17) to (22), wherein a polymer compound is used as the pore-forming material.
(24) 前記砥粒として平均粒径が 10〜 90 μπιである砥粒を用いる (17) 〜 (23) のいずれかに記載の製造方法。  (24) The method according to any one of (17) to (23), wherein an abrasive having an average particle diameter of 10 to 90 μπι is used as the abrasive.
(25) 前記砥粒の集中度を 50〜160に設定する (17) 〜 (24) のいず れかに記載の製造方法。  (25) The method according to any one of (17) to (24), wherein the degree of concentration of the abrasive grains is set to 50 to 160.
(26) 前記砥粒として立方晶窒化ホウ素磁粒を用いる (17) 〜 (25) のい ずれかに記載の製造方法。 本発明では、 予め研削の加工能率及び加工精度が設定される。 このため、 本発 明であれば、 前記研削の加工能率及ぴ加工精度に基づいた気孔率、 砥粒の集中度 及び砥粒径を有するビトリフアイド砥石及びその製造方法を提供できる。 本努明 は、 例えば、 研削の加工能率を 0 . 3 mm3/(mm-sec)以上にした場合であって も、 1 . O R z ( x m)以下の良好な加工精度を有する砥石を提供することができ る。 また、 本発明は、 平均粒径が 1 0〜 9 0 mの小径の砥粒を使用した場合で あっても、 燃え抜け孔に基づく強制気孔率を 5〜3 5容積%含むため、 3 0〜7 0容積%の気孔率で集中度を 5 0〜 1 6 0に維持でき、 かつ砥粒及ぴ気孔を均一 に分散した砥石を提供できる。 その結果、 本発明は、 小径の砥粒であっても大径 の砥粒並の均一な切れ刃間隔を有し、かつチップポケット体積も確保できるため、 研削中に目詰まりを起こしにくく、 溶着も防ぐ、 研削加工能率及び研削加工精度 を両立したビトリファイド砥石及びその製造方法を提供できる。 図面の簡単な説明 図 1は、 本発明のビトリファイド砥石の概略拡大断面図である。 (26) The production method according to any one of (17) to (25), wherein cubic boron nitride magnetic particles are used as the abrasive particles. In the present invention, the processing efficiency and the processing accuracy of the grinding are set in advance. For this reason, according to the present invention, the porosity and the degree of concentration of the abrasive grains based on the processing efficiency and the processing accuracy of the grinding are described. And a vitrified grindstone having a grain size and a method for producing the same. MotoTsutomuAkira, for example, even when the machining efficiency of the grinding 0. 3 mm 3 / (mm -sec) or more, providing a grinding wheel having 1. OR z (xm) following good working accuracy can do. In addition, the present invention includes a forced porosity based on burn-through holes of 5 to 35% by volume, even when a small-diameter abrasive having an average particle size of 10 to 90 m is used. The degree of concentration can be maintained at 50 to 160 with a porosity of up to 70% by volume, and a grindstone in which abrasive grains and pores are uniformly dispersed can be provided. As a result, according to the present invention, even if the abrasive grains have a small diameter, they have a uniform cutting edge interval equivalent to that of a large-diameter abrasive grain, and can secure a chip pocket volume. Thus, a vitrified grinding wheel having both grinding efficiency and grinding accuracy, and a method for manufacturing the same can be provided. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic enlarged sectional view of a vitrified grinding wheel of the present invention.
図 2は、 内面研削時の砥石の有効切れ刃間隔 We とチップポケット Pの関係を 示す図である。  Fig. 2 is a diagram showing the relationship between the effective cutting edge spacing We of the grinding wheel and the tip pocket P during internal grinding.
図 3は、 従来の燃え抜け材を用いて作製した砥石の構造を示す概略拡大断面図 である。  FIG. 3 is a schematic enlarged sectional view showing the structure of a grindstone manufactured using a conventional burnout material.
図 4は、 燃え抜け材を使用しないで作製した砥石の構造を示す概略拡大説明図 である。  FIG. 4 is a schematic enlarged explanatory view showing the structure of a grindstone manufactured without using a burnout material.
図 5は、 本発明の砥石と従来の砥石との研削能率比及び有効切れ刃間隔の関係 を示す説明図である。  FIG. 5 is an explanatory diagram showing the relationship between the grinding efficiency ratio of the grinding wheel of the present invention and the conventional grinding wheel and the effective cutting edge interval.
図 6は、本発明の有効切れ刃間隔と砥粒の配置を説明するための説明図である。 図 7は、 本発明の好適な実施例及ぴ比較例における有効切れ刃間隔 0 . 1 mm のときの研削能率比を示す図である。 図 8 ( 1 )〜( 3 )は、 実施例 1〜 3及び比較例 2の砥石を使用して、研削の加工能率 0. 3mm3/(mm'sec)で内面研削を行った結果(消費電力、面粗度、磨耗) を示す。 図 9(1)〜(3)は、 実施例 1及び 2の砥石を使用して、研削の加工能率 0. 7 m m3/(mm'sec)で内面研削を行った結果 (消費電力、 面粗度、 磨耗) を示す。 発明を実施するための最良の形態 以下に本発明のビトリファイド砥石及びその製造方法についてさらに詳細に説 明する。 FIG. 6 is an explanatory diagram for explaining the effective cutting edge interval and the arrangement of abrasive grains according to the present invention. FIG. 7 is a diagram showing the grinding efficiency ratio when the effective cutting edge interval is 0.1 mm in the preferred embodiment and the comparative example of the present invention. Fig. 8 (1) to (3) show the results (in terms of power consumption) of internal grinding with a grinding efficiency of 0.3 mm3 / (mm'sec) using the grinding wheels of Examples 1 to 3 and Comparative Example 2. , Surface roughness and wear). 9 (1) to (3), using the grinding wheel of Examples 1 and 2, grinding processing efficiency 0. 7 mm 3 / (mm'sec) result of the internal grinding in (power consumption, surface (Roughness, wear). BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the vitrified grinding wheel of the present invention and a method for producing the same will be described in more detail.
[ビトリフアイド砥石] [Vitrifide whetstone]
<研削の加工能率及び加工精度 >  <Efficiency and accuracy of grinding>
本凳明の砥石では、 予め設定された研削の加工能率及び加工精度に基づく気孔 率、 砥粒の集中度及び砥粒径を有する。 研削の加工能率は、 砥石幅が lmmであ る場合における 1秒あたりの研削量を示すものであり、 通常 mm3/(mnrsec) の 単位で表すことができる。 また研削の加工精度は、 表面粗さで表すことができ、 通常、 十点平均粗さ R ζ(μιη)で示される。 例えば、 内面研削の場合、 1 R ζ(μ m)以下の研削の加工精度を得ようとすれ ば、 従来は研削の加工能率は 0. 3mm3/(min*sec) 程度が限界であった。 これ に対し、 本発明の砥石は、 1 R Ζ (μ m)以下の研削精度としても、 研削加工能率 を 0. 3mm3/(mm*sec)以上とすることができる。 より具体的には、研削の加工 精度を 0. 1〜1. 6 R z(/xm)、 好ましくは 0. 2〜1. 0 R z ( m)、 さらに 好ましくは 0. 3〜0. 5R ζ(μηι)に設定した場合であっても、 研削の加工能 率を 0. 1〜 2. 0 ram3/(mm'sec)、好まじくは 0. 2〜: 1. 0 nmi3/(nim'sec)、 The grindstone according to the present invention has a porosity, a degree of concentration of abrasive grains, and an abrasive grain size based on a preset machining efficiency and machining accuracy. The grinding efficiency indicates the amount of grinding per second when the grinding wheel width is lmm, and can usually be expressed in units of mm 3 / (mnrsec). The processing accuracy of grinding can be represented by surface roughness, and is usually represented by ten-point average roughness R 粗 (μιη). For example, in the case of internal grinding, if grinding accuracy of 1 R ζ (μm) or less was to be achieved, the grinding efficiency was conventionally limited to about 0.3 mm 3 / (min * sec) . On the other hand, the grinding wheel of the present invention can achieve a grinding efficiency of 0.3 mm 3 / (mm * sec) or more even with a grinding accuracy of 1 R Ζ (μm) or less. More specifically, the processing accuracy of grinding is 0.1 to 1.6 Rz (/ xm), preferably 0.2 to 1.0 Rz (m), and more preferably 0.3 to 0.5 Rz. Even when ζ (μηι) is set, the processing efficiency of grinding is 0.1 to 2.0 ram 3 / (mm'sec), and preferably 0.2 to: 1.0 nmi 3 / ( nim'sec),
9 9
差換え用紙(規則 2め さらに好ましくは 0 . 3〜0 . 7 mm3/(mm'sec) に設定することができる。 ここで、 上記研削の加工能率と有効切れ刃間隔 We との関係を説明するため、 図 5に研削能率比と有効切れ刃間隔 We の大きさとの関係を示す。 図 5に示され るように、 例えば、 従来の砥石は、 有効切れ刃間隔が 0 . 1 mmである場合、 研 削能率比が 2未満である。 これに対し、 本発明の砥石は、 有効切れ刃間隔が 0 . l mmである場合、 研削能率比を 2以上 (好ましくは 2 . 5以上、 さらに好まし くは 3以上) にすることができる (なお、 図 5は有効切れ刃間隔が 0 . l mmの ときに研削能率比 3以上を示す例である)。本発明の砥石は、所定の大きさの砥粒 (好ましくは 1 0〜9 0 μ πι) を選択し、 従来の砥石 (図 2参照) のように砥粒 どうしを隣接させずに、 図 6に示すように均一に配置して一定の有効切れ刃間隔 を維持する。 これにより本発明の砥石は、 所定の研削加工精度を維持した状態で 良好な加工能率 (研削能率比) を達成することができる。 Replacement paper (Rule 2 More preferably, it can be set to 0.3 to 0.7 mm 3 / (mm'sec). Here, in order to explain the relationship between the processing efficiency of the above-mentioned grinding and the effective cutting edge interval We, FIG. 5 shows the relationship between the grinding efficiency ratio and the size of the effective cutting edge interval We. As shown in FIG. 5, for example, the conventional grinding stone has a grinding efficiency ratio of less than 2 when the effective cutting edge interval is 0.1 mm. On the other hand, when the effective cutting edge interval is 0.1 mm, the grinding efficiency ratio of the grinding stone of the present invention can be 2 or more (preferably 2.5 or more, more preferably 3 or more). (Note that Fig. 5 shows an example in which the grinding efficiency ratio is 3 or more when the effective cutting edge interval is 0.1 mm.) In the grindstone of the present invention, abrasive grains having a predetermined size (preferably 10 to 90 μπι) are selected, and unlike the conventional grindstone (see FIG. 2), the abrasive grains are not adjacent to each other as shown in FIG. Maintain a constant effective cutting edge spacing by arranging them evenly as shown in (1). Thus, the grinding wheel of the present invention can achieve a good machining efficiency (grinding efficiency ratio) while maintaining a predetermined grinding accuracy.
<気孔率> <Porosity>
本明細書において 「気孔率」 とは、 砥石の全体積に対する、 砥粒、 結合材その 他の充填剤等を除いた気孔 (空間) の体積の割合を意味する。 本発明において、 気孔率は、 強制気孔率と自然気孔率とから構成される。 ここで 「強制気孔率」 と は、 砥粒、 ビトリフアイド結合材及ぴ気孔形成材を少なくとも含有する成形体を 焼成工程において焼成し、 気孔形成材を燃え抜けさせることにより形成される燃 え抜け孔の容積の、 全気孔の容積に対する割合を意味する。 また 「自然気孔率」 とは、全気孔率から前記強制気孔率を引いた気孔率を意味し、焼成処理前の砥粒、 ビトリフアイド結合材及ぴ気候形成材の隙間部分の成形体中に占める割合である。 本発明のビトリファイド砥石において、 気孔率は、 砥石全体の容積に対して 3 0〜7 0容積%の範囲であることが適当であり、 4 0〜6 0容積%であることが 好ましく、 4 5〜 5 5容積%であることがさらに好ましレ、。 気孔率が 3 0容積% 以上あれば、 チップポケットの体積が不足し、 研削中に目詰まりを起こして溶着 の原因になることもない。 また、 本発明では気孔形成材を焼成工程において燃え 抜けさせるため、 気孔形成材を使用しない砥石と比べて良好な気孔率を確保する ことができ、 7 0容積%までの気孔率を得ることができる。 上記気孔率のうち、 強制気孔率は、 砥石全体の容積に対して 5〜 3 5容積%の 範囲であることが適当であり、 2 0〜3 5容積%であることが好ましく、 2 5〜 3 5容積%であることがさらに好ましレ、。本発明のビトリフアイド砥石において、 研削の加工能率の向上に主に寄与するのは気孔形成材によつて形成される強制気 孔であり、強制気孔率が 5容量%以上であれば、研削を良好に行うことができる。 また、 強制気孔率が 3 5容積%以下であれば、 砥石を安定して製造することがで きる。 本発明のビトリフアイド砥石において、 気孔形成材を燃え抜けさせることによ つて形成される強制気孔の大きさは、 砥石の性能に大きく影響する。 例えば、 強 制気孔の大きさが小さいと、 砥石中の砥粒及び気孔の分散性が高まる。 更に、 砥 粒及び気孔の分散性が高まることにより切刃間隔が安定するため、 切粉の排出性 能が高まり研削時の消費電力が少なくなり、生産効率の点で有利である。しかも、 砥石の強度が高くなるため、研削による砥石の磨耗が少なく耐久性が良好となる。 本発明のビトリフアイド砥石は、 砥粒の平均粒径の:!〜 3倍の大きさを有する気 孔(強制気孔及び自然気孔を含む)力 全気孔の容量に対して 2 0〜 7 0容量。 /0、 好ましくは 3 0〜6 0容量。 /0、 より好ましくは 3 0〜5 0容量%含まれるもので あることができる。また、本発明のビトリフアイド砥石は、砥粒の平均粒径の 0 . 1〜1倍の大きさを有する気孔が、 全気孔の容量に対して 3 0〜7 0容量。 /0、 好 ましくは 4 0〜 7 0容量%、 より好ましくは 5 0〜7 0容量0 /0含まれるものであ ることができる。 所望の大きさを有する気孔の割合は、 使用する気孔形成材の大 きさ及び添加量を適宜設定することによって調整することができる。 また、 所定 の大きさを有する気孔の割合は、 砥石をスライスし、 三次元測定可能な顕微鏡で 断面を測定して得られる三次元データから断面形状を解析することによって求め ることができる。 As used herein, the term “porosity” refers to the ratio of the volume of pores (space) excluding abrasive grains, binders, and other fillers to the total volume of the grindstone. In the present invention, the porosity is composed of a forced porosity and a natural porosity. Here, the "forced porosity" refers to a burn-through hole formed by firing a molded body containing at least abrasive grains, a vitrified binder, and a pore-forming material in a firing step to burn out the pore-forming material. Means the ratio of the volume to the total pore volume. Further, “natural porosity” means a porosity obtained by subtracting the forcible porosity from the total porosity, and occupies in the compacts in the gaps between the abrasive grains, the vitrified binder and the climate forming material before the firing treatment. Percentage. In the vitrified grinding wheel of the present invention, the porosity is 3 The range is suitably from 0 to 70% by volume, preferably from 40 to 60% by volume, and more preferably from 45 to 55% by volume. If the porosity is 30% by volume or more, the volume of the tip pocket will be insufficient, and there will be no clogging during grinding and welding. Further, in the present invention, since the pore-forming material is burned out in the firing step, a good porosity can be secured as compared with a grindstone not using the pore-forming material, and a porosity of up to 70% by volume can be obtained. it can. Of the above porosity, the forced porosity is suitably in the range of 5 to 35% by volume, preferably 20 to 35% by volume, and More preferably, it is 3 5% by volume. In the vitrified grindstone of the present invention, the forced porosity formed by the pore-forming material mainly contributes to the improvement of the processing efficiency of the grinding. If the forced porosity is 5% by volume or more, the grinding is excellent. Can be done. If the forced porosity is 35% by volume or less, the grinding wheel can be manufactured stably. In the vitrified grinding wheel of the present invention, the size of the forced pores formed by burning out the pore-forming material greatly affects the performance of the grinding wheel. For example, if the size of the forced pores is small, the dispersibility of the abrasive grains and pores in the grindstone increases. Further, since the dispersibility of the abrasive grains and pores is increased, the interval between the cutting blades is stabilized, so that the chip discharging performance is increased, the power consumption during grinding is reduced, and this is advantageous in terms of production efficiency. In addition, since the strength of the grindstone is increased, the abrasion of the grindstone due to grinding is small, and the durability is improved. The vitrified whetstone of the present invention has an average grain size of abrasive grains:! Pores with up to 3 times the size (including forced and natural pores) force 20 to 70 volumes relative to the total pore volume. / 0 , preferably 30 to 60 volumes. / 0 , more preferably 30 to 50% by volume. In addition, the vitrified whetstone of the present invention has an average grain diameter of 0. Pores having a size of 1-1 times, 30-70 volumes with respect to the volume of all pores. / 0, good Mashiku 4 0-7 0% by volume, more preferably from Der Rukoto those contained 5 0-7 0 volume 0/0. The proportion of pores having a desired size can be adjusted by appropriately setting the size and amount of the pore-forming material used. Further, the ratio of pores having a predetermined size can be determined by slicing a grindstone and analyzing a cross-sectional shape from three-dimensional data obtained by measuring a cross-section with a microscope capable of three-dimensional measurement.
<気孔形成材〉 <Pore forming material>
本発明で用 ヽられる気孔形成材は、 焼成工程において燃え抜けるものであれば 特に限定されない。 好ましくは、 燃え抜け開始温度が後述するビトリフアイド結 合材の転移点の温度以上であると共に、 燃え抜け完了温度がビトリファイド結合 材の焼成温度の範囲内の最高温度よりも低レ、気孔形成材を用レ、ることができる。 例えば、 気孔形成材として、 燃え抜け開始温度が前記ビトリフアイド結合材の 転移点の温度よりも 5 °C以上 (より好ましくは 1 0 °C以上、 さらに好ましくは 2 0 °G以上) 高く、 燃え抜け完了温度が前記ビトリフアイ ド結合材を含む砥石原料 の焼成温度の範囲内の最高温度よりも 5 °C以上 (より好ましくは 1 0 °C以上、 さ らに好ましくは 2 0 °C以上) 低い気孔形成材を好適に用いることができる。 気孔形成材は、 砥石の製造過程における製造原料の撹拌時に粉碎されない程度 の強度を有するものが好ましい。 撹拌時に粉砕されない程度の強度を有するもの であれば、 気孔形成材は、 中実状及び中空状のいずれも用いることができる。 また、 気孔形成材の比重は、 1以上 (例えば 1〜2 . 5、 好ましくは 1〜1 . 5 ) であることが望ましい。 気孔形成材の比重が 1以上であれば、 出発原料の撹 拌中に浮くこともなく、 出発原料中に均一に分散させることができる。 気孔形成材の大きさは、 所望の強制気孔の大きさに応じて選択することが好ま しい。 前述のように、 強制気孔の大きさが小さいほど、 研削時の消費電力が少な く生産効率の点で有利である。 また、 強制気孔が小さいほど、 砥石の強度は高く 'なるため、 研削による砥石の磨耗が少なく耐久性が良好となる。 但し、 強制気孔 径が過度に小さいと、 研削の加工能率が低下する。 以上の観点から、 気孔形成材 の大きさは、 砥粒の平均粒径の 0 . 1〜 3倍であることが適当である。 特に、 研 削時の消費電力及び砥石の耐久性の観点からは、 気孔形成材の大きさは、 砥粒の 平均粒径の 0 . 1 6〜 1倍であることが好ましい。 例えば、 砥粒として c B N砥 粒を使用する場合、 砥粒の平均粒径が 2 2〜3 6 μ πιであるときは、 3 . 5〜3 6 μ m程度の大きさの気孔形成材を用いることができる。 気孔形成材の形状は、 特に限定されるものではないが、 製造工程において砥粒 を良好に分散できる真球状であることが好ましい。 気孔形成材の出発原料中に占める含有率は、 容積%で 1 0〜5 0 %であること が好ましく、 1 5〜4 5 %であることがより好ましく、 1 5〜4 0 %であること がさらに好ましい。 容積%が 1 0 %以上であれば、 燃え抜け孔の形成による効果 が得られ、 また容積%が 5 0 %以下であれば、 適度な強度及び耐久性を有する砥 石の製造が可能である。 気孔形成材の具体例としては、 例えば、 ポリアタリル酸メチル、 ポリメタタリ ル酸メチルなどの高分子化合物、 炭素を 9 0質量%以上含むカーボン質などを挙 げることができる。 特に、 気孔形成材としてポリメタクリル酸メチルを用いるこ とが好ましい。 <砥粒〉 The pore forming material used in the present invention is not particularly limited as long as it can burn out in the firing step. Preferably, the burnout start temperature is equal to or higher than the transition temperature of the vitrified binder described later, and the burnout completion temperature is lower than the maximum temperature within the range of the firing temperature of the vitrified binder. You can do it. For example, as the pore-forming material, the burn-out start temperature is 5 ° C or more (more preferably 10 ° C or more, more preferably 20 ° G or more) higher than the transition point temperature of the vitrified binder. Pores whose completion temperature is at least 5 ° C (more preferably at least 10 ° C, more preferably at least 20 ° C) higher than the maximum temperature within the range of the firing temperature of the grinding wheel raw material containing the vitrifide binder. A forming material can be suitably used. It is preferable that the pore-forming material has such a strength that the material is not crushed when the raw material is stirred during the production of the grinding wheel. As long as the pore-forming material has such a strength that it is not crushed at the time of stirring, any of solid and hollow pore-forming materials can be used. Further, the specific gravity of the pore-forming material is desirably 1 or more (for example, 1 to 2.5, preferably 1 to 1.5). If the specific gravity of the pore-forming material is 1 or more, stirring of the starting material It can be uniformly dispersed in the starting materials without floating during stirring. The size of the pore-forming material is preferably selected according to the desired size of the forced pores. As described above, the smaller the size of the forced pores, the lower the power consumption during grinding and the more advantageous in terms of production efficiency. Also, the smaller the forced pores, the higher the strength of the grindstone, and the less the abrasion of the grindstone due to grinding, and the better the durability. However, if the forced pore diameter is too small, the grinding efficiency will be reduced. From the above viewpoint, it is appropriate that the size of the pore-forming material is 0.1 to 3 times the average particle size of the abrasive grains. In particular, from the viewpoints of power consumption during grinding and durability of the grindstone, the size of the pore-forming material is preferably 0.16 to 1 times the average grain size of the abrasive grains. For example, when using cBN abrasive grains as abrasive grains, when the average grain size of the abrasive grains is 22 to 36 μπι, a pore forming material having a size of about 3.5 to 36 μm is used. Can be used. The shape of the pore-forming material is not particularly limited, but is preferably a true sphere capable of dispersing the abrasive grains in the manufacturing process. The content of the pore-forming material in the starting material is preferably 10 to 50% by volume%, more preferably 15 to 45%, and more preferably 15 to 40%. Is more preferred. When the volume% is 10% or more, the effect of forming burn-through holes is obtained, and when the volume% is 50% or less, it is possible to produce a grinding wheel having appropriate strength and durability. . Specific examples of the pore-forming material include, for example, polymer compounds such as polymethyl acrylate and polymethyl methacrylate, and carbonaceous materials containing 90% by mass or more of carbon. In particular, use of poly (methyl methacrylate) as a pore-forming material Is preferred. <Abrasives>
本 ¾明で用いられる抵粒の粒径は、 前記研削の加工能率及ぴ加工精度に基づい て気孔率及び集中度との関係において適宜決定することができる。 例えば、 上記 の研削能率及び研削の加工精度の範囲であれば、 平均粒径 10〜 90 μ m、 好ま しくは 18〜60 μκι、 さらに好ましくは 20〜55 μπι、 最も好ましくは 25 〜45 μπιの砥粒を用いることが適当である。 平均粒径が 10 μιη以上の砥粒で あれば、 ffi粒間の結合性の問題もなく、 かつ研削の加工能率を著しく低下させる ことはない。 また砥粒の平均粒径が 90 /zm以下であれば、 所定の切れ刃間隔を 維持でき、 加工精度を向上させることができる。 砥粒の種類は、 上記平均粒径の範囲内であれば特に限定はない。 例えば、 c B N砥粒、 A系 (アルミナ系) 、 C系 (炭化珪素系) 等の砥粒を用いることができ る。 高度な精密部品を内面研削する場合、 c BN砥粒を用いることが好ましい。 また、 砥粒の種類は、 単独であっても、 2種類以上を混合したものであってもよ い。 砥粒として c BN砥粒を適用する場合、 必要に応じて充填剤として一般の砥粒 及び無機質中空材のうちの 1種以上を併用できる。 伹し、 この場合には、 c BN 砥粒の集中度が 50〜 160になるように、 充填剤の使用量を調整することが適 当である。 また、 砥粒としてダイヤモンド砥粒を適用する場合、 ダイヤモンド砥粒の劣化 を抑えるため、 ビトリファイド結合材と気孔形成材の種類及び焼成温度等の製造 条件を適宜設定することが望ましい。 砥粒の集中度は、 5 0〜1 6 0であることが適当であり、 7 5〜 1 5 0である ことが好ましく、 1 0 0〜1 2 5であることがさらに好ましい。 ここで「集中度」 とは、 砥石中に占める砥粒の割合を意味し、 例えば、 ダイヤモンド砥粒の場合、 4 . 4 c t / c m3が集中度 1 0 0であり、 2 5容積%に相当する。 したがって、 集中度 2 0 0は 5 0容積%に相当する。 ダイヤモンド砥粒とは密度が相違する砥 粒を用いる場合には、 ダイヤモンド砥粒との密度の違いを考慮し、 上記に準じて 集中度を定めることができる。 なお、 砥粒が c B N砥粒である場合、 ダイヤモン ド砥粒と同様、 集中度 1 0 0は約 2 5容積%に相当し、 集中度 2 0 0は約 5 0容 積%に相当する。 The grain size of the grain used in the present invention can be appropriately determined in relation to the porosity and the degree of concentration based on the processing efficiency and the processing accuracy of the grinding. For example, within the above-mentioned range of the grinding efficiency and the processing accuracy of the grinding, the average particle size is 10 to 90 μm, preferably 18 to 60 μκι, more preferably 20 to 55 μπι, and most preferably 25 to 45 μπι. It is appropriate to use abrasive grains. If the average grain size is 10 μιη or more, there is no problem of the connectivity between the ffi grains and the working efficiency of grinding is not significantly reduced. When the average grain size of the abrasive grains is 90 / zm or less, a predetermined cutting edge interval can be maintained, and machining accuracy can be improved. The type of abrasive grains is not particularly limited as long as it is within the range of the above average particle size. For example, abrasive grains such as cBN abrasive grains, A-based (alumina-based), and C-based (silicon carbide-based) grains can be used. When grinding high precision parts inside, it is preferable to use cBN abrasive grains. In addition, the type of abrasive grains may be a single type or a mixture of two or more types. When applying cBN abrasive grains as abrasive grains, one or more of general abrasive grains and inorganic hollow materials can be used in combination as a filler if necessary. However, in this case, it is appropriate to adjust the amount of filler used so that the concentration of cBN abrasive grains is 50 to 160. In addition, when diamond abrasive grains are used as abrasive grains, the type of vitrified binder and pore-forming material and the sintering temperature must be controlled in order to suppress the deterioration of the diamond abrasive grains. It is desirable to set conditions appropriately. The degree of concentration of the abrasive grains is suitably from 50 to 160, preferably from 75 to 150, and more preferably from 100 to 125. Here, the “concentration” means the ratio of the abrasive grains in the grinding stone. For example, in the case of diamond abrasive grains, 4.4 ct / cm 3 is 100, and the concentration degree is 25% by volume. Equivalent to. Therefore, the concentration of 200 corresponds to 50% by volume. When using abrasive grains having a different density from diamond abrasive grains, the degree of concentration can be determined according to the above, taking into account the difference in density from diamond abrasive grains. When the abrasive grains are cBN abrasive grains, as in the case of diamond abrasive grains, the degree of concentration 100 corresponds to about 25% by volume, and the degree of concentration 200 corresponds to about 50% by volume. .
本発明では、 集中度を 5 0〜1 6 0と比較的低い範囲に調整し、 かつ上述した ように気孔率を 3 0〜 7 0容積%の範囲に調整することにより、 所定のチップポ ケット体積を維持ないしは増加させることができ、 高能率研削時の砥石の目詰ま りや溶着を防止することができる。 くビトリフアイ ド結合材> '  In the present invention, by adjusting the concentration to a relatively low range of 50 to 160 and adjusting the porosity to a range of 30 to 70% by volume as described above, a predetermined tip pocket volume can be obtained. Can be maintained or increased, and clogging and welding of the grinding wheel during high-efficiency grinding can be prevented. Vitrifide binder> ''
本発明において、 ビトリフアイド結合材は、 砥粒の種類に応じて適宜選択して 用いることができる。 例えば、 砥粒として c B N砥粒を用い ビトリフアイド c B N砥石を製造する場合、 ビトリフアイド結合材は、 例えば、 ホウ珪酸ガラス、 結晶化ガラスなどであることができる。 結晶化ガラスとしては、 例えばウィレマ イトを析出するものなどが挙げられる。 十分な保持力を有するためには、 ビトリ フアイド結合材の熱膨張係数は、砥粒の熱膨張係数に対して ± 2 X 1 0 -6 ( 1 /K) (室温〜 5 0 0 °G) の範囲以内であることが望ましい。 ビトリファイド結合材として超砥粒用ビトリファイド結合材を用いる場合の'結 合材を含む砥石原科を焼成する温度は、 使用される超砥粒用ビトリフアイド結合 材の種類に応じて選択される。 超砥粒用ビトリフアイド結合材の転移温度は、 一 般砥粒用ビトリフアイド結合材の転移温度よりも低いため、 超砥粒用ビトリファ ィド結合材を含む砥石原料を焼成する温度は、 6 5 0〜1 0 0 0 °Gの範囲とする ことが好ましく、 より好ましくは 7 0 0〜9 5 0 °Cの範囲である。 6 5 0 °C以上 であれば、 焼成後においても一定の強度を有する砥石が得られ、 また 1 0 0 0 °G 以下であれば、 超砥粒の劣化が起こることもない。 超砥粒用ビトリファイド結合材の好ましい組成としては、例えば、 S i 02: 4 0〜7 0質量。/。、 A 1 2Os: 1 0〜2 0質量%、 B 2O3: 1 0〜2 0質量%、 M1 O: 2〜1 0質量%、 M2 2 0: 2〜1 0重量%を挙げることができる。 但し、 M1 はアル力リ土類金属から選ばれる一種類以上の金属であり、 M2はアル力リ金属 より選ばれる一種類以上の金属である。 ビトリフアイド結合材の含有率は、 適宜選択でき、 例えば出発原料の容積に対 して 1 3〜3 5容積%、好ましくは 1 8〜2 2容積%の範囲とすることができる。 本発明のビトリファイド砥石は、 少なくとも研削に関与する部分が上述の構成 になっていればよい。 したがって、 本発明のビトリフアイド砥石には、 例えば砥 粒を含有しないセラミック製の保持体表面に、 砥粒とビトリフアイド結合材とを 含有するビトリフアイド砥石部を設けたものも含まれる。 また、 本発明の砥石がビトリフアイド超砥粒砥石である場合には、 所望により ビトリフアイド超砥粒砥石に使用される通常の添加剤、 例えば脆化剤、 固体潤滑 剤を適量含有させることもできる。 In the present invention, the vitrified binder can be appropriately selected and used depending on the type of abrasive grains. For example, in the case of manufacturing a vitrified cBN grindstone using cBN abrasive grains as abrasive grains, the vitrified binder may be, for example, borosilicate glass, crystallized glass, or the like. Examples of the crystallized glass include those that precipitate willemite. In order to have sufficient holding power, the coefficient of thermal expansion of the vitrified binder is ± 2 X 10 -6 (1 / K) of the coefficient of thermal expansion of the abrasive grains (room temperature to 500 ° G). Is desirably within the range. When the vitrified binder for superabrasives is used as the vitrified binder, the temperature at which the grinding stone containing the binder is fired is selected according to the type of the vitrified binder for superabrasives used. Since the transition temperature of the vitrified binder for superabrasives is lower than the transition temperature of the vitrified binder for general abrasives, the temperature at which the grindstone raw material containing the vitrified binder for superabrasives is fired is 65500. The temperature is preferably in the range of 100 to 900 ° C, more preferably in the range of 700 to 950 ° C. When the temperature is at least 65 ° C., a grindstone having a certain strength can be obtained even after firing, and when the temperature is at most 100 ° C., deterioration of superabrasive grains does not occur. Preferred compositions of the superabrasive for vitrified bonded material, for example, S i 0 2: 4 0~7 0 mass. /. , A 1 2 Os: 1 0~2 0 wt%, B 2O3: 1 0~2 0 wt%, M 1 O: 2~1 0 wt%, M 2 2 0: 2~1 0 be exemplified wt% Can be. Here, M 1 is one or more metals selected from Al-Li metal and M 2 is one or more metals selected from Al-Li metal. The content of the vitrisulfide binder can be appropriately selected, and may be, for example, in the range of 13 to 35% by volume, preferably 18 to 22% by volume, based on the volume of the starting material. The vitrified grindstone of the present invention only needs to have at least a portion related to grinding having the above-described configuration. Therefore, the vitrified grindstone of the present invention also includes, for example, a vitrified grindstone portion containing abrasive grains and a vitrified binder provided on the surface of a ceramic holder that does not contain abrasive grains. When the grindstone of the present invention is a vitrified superabrasive grindstone, if necessary, a usual additive used for a vitrified superabrasive grindstone, for example, a brittle agent, a solid lubricant The agent may be contained in an appropriate amount.
[ビトリフアイ ド砥石の製造方法] [Method of manufacturing vitrified wheel]
次に本発明のビトリファイド砥石の製造方法についてさらに詳細に説明する。 本発明の製造方法は、 .研削の加工能率及び加工精度を設定し、 該加工能率及び 加工精度に基づいて気孔率、 砥粒の集中度及び砥粒径を設定する工程を有する。 研削の加工能率、 加工精度、 気孔率、 砥粒の集中度及び砥粒径については、 前述 したビトリフアイド抵石のものをそのまま用いることができる。 さらに、 本努明 の製造方法で用いられる砥粒、 ビトリフアイ ド結合材及ぴ気孔形成材は、 前述し た本発明のビトリフアイド砥石で用いられる砥粒、 ビトリフアイド結合材及び気 孔形成材を用いることが適当である。 本発明の製造方法は、 砥粒、 ビトリフアイド結合材及び気孔形成材を少なくと も含有する成形体を焼成して気孔形成材を燃え抜けさせる焼成工程を有すること ができる。 本発明の製造方法において、 砥粒、 ビトリフアイド結合材及び気孔形 成材を少なくとも含有する成形体の焼成方法は、 該成形体を一定温度で一定時間 保持して焼成して気孔形成材を燃え抜けさせる方法が好ましい。 このような方法 であれば、 焼成工程においてビトリファイド結合材が溶ける前に気孔形成材が燃 え抜けて、 結合材ゃ砥粒が自由に動くことによる焼成収縮ゃ砥粒分布の乱れを防 ぐことができるため好ましい。 前記保持時間は、 前記成形体に含まれる気孔形成材が燃え抜けるに十分な時間 であることが好ましい。 気孔形成材が燃え抜けるに十分な時間は、 製造しようと する砥石の形状又は寸法に応じて適宜設定することができる。 前記成形体をビトリファイド結合材の焼成温度で保持する場合、 焼成温度の範 囲内の一定の温度で保持するが、この焼成温度の範囲内であれば、温度の変化(例 えば、 経過時間に対する温度の上昇) があってもよい。 焼成時に一定時間保持する際の保持温度は、 好ましくは、 前記気孔形成材の燃 え抜け完了温度以上 (好ましくは前記燃え抜け完了温度よりも 5 °C以上高い温度、 より好ましくは前記燃え抜け完了温度よりも 1 0 °C以上高い温度) である。 前記 成形体を焼成する温度 (焼成時の最高温度) としては、 前記ビトリフアイド結合 材の焼成温度の範囲内の温度であって、 前記気孔形成材の燃え抜け完了温度以上 にすることができる。 本発明の製造方法において、 前記成形体を焼成する際の前記成形体の寸法は、 用いられる気孔形成材が+分に燃え抜ける程度の寸法であることが好ましい。 例 えば、 形状が直方体状の成形体の場合、 厚み (直方体の最も肉厚が薄い方向の長 さ) を 1 0 mm以下 (好ましくは 5 mm以下、 より好ましくは 3 mm以下) にす ることができる。 また、 例えば、 形状が円筒状の成形体の場合、 縁厚 (円筒の壁 の厚み) を 1 0 mm以下 (好ましくは 5 mm以下、 より好ましくは 3 mm以下) にすることができる。 本発明の製造方法において、 焼成時の雰囲気は、 気孔形成材が十分に燃える雰 囲気にすることが適当である。 気孔形成材がカーボン質の場合は、 例えば、 酸素 を含有する雰囲気にすることができ、 通常は大気でよい。 本発明の製造方法では、 前記成形体を得る工程を前記焼成工程よりも前に有す ることができる。 前記成形体は、 好ましくは、 砥粒、 ビトリフアイド結合材粉末及び気孔形成材 を少なくとも含む出発原料と糊料等の一次結合材を混合 ·攪拌し、 前記各成分が 均一に分散した混合物を得て、 前記混合物を加圧して成形し乾燥することにより 得ることができる。 ビトリフアイド超砥粒砥石を製造する場合、 所望によりビトリフアイド超砥粒 砥石に使用される通常の添加剤、 例えば脆化剤、 固体潤滑剤、 成形助剤を適量前 記出発原料に含有させてもよい。 以上の製造方法で得られたビトリフアイド砥石は、 様々な研削装置の砥石とし て用いることができる。 特に小径の被研削物であっても高い研削加工能率及びカロ ェ精度を発揮できるため、 内面研削に好適に用いることができる。 本発明の砥石 の用途としては、 例えば、 燃料噴射装置のィンジェクシヨンノズルや圧力調整部 品の内面とシート面の研削、 ベアリングの内輪や外輪の内面研削などを挙げるこ とができる。 実施例 以下に、 実施例を挙げて本発明をさらに具体的に説明する。 Next, the method for producing a vitrified grinding wheel of the present invention will be described in more detail. The manufacturing method of the present invention includes a step of setting the processing efficiency and the processing accuracy of the grinding, and setting the porosity, the concentration of the abrasive grains, and the abrasive particle diameter based on the processing efficiency and the processing accuracy. As for the processing efficiency, processing accuracy, porosity, degree of concentration of abrasive grains, and abrasive grain size of the grinding, those of the above-mentioned vitrified stone can be used as they are. Further, as the abrasive grains, the vitrifide binder and the pore-forming material used in the manufacturing method of the present invention, the abrasive grains, vitrifide binder and pore-forming material used in the above-mentioned vitrifide grindstone of the present invention are used. Is appropriate. The production method of the present invention can include a firing step of firing a molded article containing at least abrasive grains, a vitrifide binder, and a pore-forming material to burn out the pore-forming material. In the production method of the present invention, in the method for firing a molded body containing at least abrasive grains, a vitrifide binder, and a pore former, the molded body is held at a certain temperature for a certain time and fired to burn out the pore former. The method is preferred. With this method, the pore-forming material burns out before the vitrified binder is melted in the firing step, and the binder ゃ shrinks the firing due to the free movement of the abrasive grains ゃ prevents the distribution of the abrasive grains from being disturbed. Is preferred because The holding time is preferably a time sufficient for the pore forming material contained in the molded body to burn out. The time sufficient for the pore forming material to burn out can be appropriately set according to the shape or size of the grindstone to be manufactured. When the compact is held at the firing temperature of the vitrified binder, it is held at a constant temperature within the firing temperature range. However, within this firing temperature range, a change in the temperature (for example, the temperature with respect to the elapsed time) May rise). The holding temperature at the time of holding for a fixed time during firing is preferably at least the burn-out completion temperature of the pore-forming material (preferably a temperature higher than the burn-through completion temperature by 5 ° C or more, more preferably the burn-through completion temperature). Temperature higher than the temperature by 10 ° C or more). The temperature at which the molded body is fired (the maximum temperature during firing) is a temperature within the range of the firing temperature of the vitrified binder, and may be equal to or higher than the burnout completion temperature of the pore forming material. In the manufacturing method of the present invention, it is preferable that the dimension of the molded body when the molded body is fired is a dimension such that the pore forming material used can be burned out by + minutes. For example, in the case of a rectangular parallelepiped shaped body, the thickness (the length of the rectangular parallelepiped in the thinnest direction) should be 10 mm or less (preferably 5 mm or less, more preferably 3 mm or less). Can be. Further, for example, in the case of a molded article having a cylindrical shape, the edge thickness (thickness of the wall of the cylinder) can be made 10 mm or less (preferably 5 mm or less, more preferably 3 mm or less). In the production method of the present invention, it is appropriate that the atmosphere at the time of firing be an atmosphere in which the pore-forming material sufficiently burns. When the pore-forming material is carbonaceous, for example, an atmosphere containing oxygen can be used. In the production method of the present invention, the step of obtaining the molded body may be provided before the firing step. Preferably, the molded body is obtained by mixing and stirring a starting material containing at least abrasive particles, vitrified binder powder and a pore-forming material, and a primary binder such as a paste, to obtain a mixture in which the above components are uniformly dispersed. The mixture can be obtained by molding under pressure and drying. When producing a vitrified superabrasive grindstone, a suitable amount of a usual additive used in a vitrified superabrasive grindstone, such as an embrittlement agent, a solid lubricant, or a molding aid, may be contained in the starting material, if desired. . The vitrified whetstone obtained by the above manufacturing method can be used as a whetstone of various grinding devices. In particular, even a small-diameter workpiece can exhibit high grinding efficiency and calorie accuracy, so that it can be suitably used for internal grinding. Applications of the grindstone of the present invention include, for example, grinding of an inner surface and a seat surface of an injection nozzle and a pressure adjusting component of a fuel injection device, and inner grinding of an inner ring and an outer ring of a bearing. Examples Hereinafter, the present invention will be described more specifically with reference to Examples.
なお、 本実施例に示す材料、 使用量、 割合、 処理内容、 処理手順等は、 本発明 の趣旨を逸脱しない限り適宜変更することができる。 したが.つて、 本発明の範囲 は、 以下に示す具体例により限定的に解釈されるべきものではない。  In addition, the materials, the amounts used, the ratios, the processing contents, the processing procedures, and the like shown in the present embodiment can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following specific examples.
1 . 砥石の作製及びその構造 実施例 1〜 3、 比較例 1及ぴ 2に示される下記の配合の出発原料をプレス成形 し、 9 0 0でで 24時間大気雰囲気中で焼成して(うち 9 0 0 °Gで 1時間保持)、 ビトリフアイド砥石を作製した。 実施例 1において、 昇温条件 1 0°〇 分で質量 の減少を測定したところ、 ポリメタクリル酸メチルの燃え抜け開始温度 (1 0質 量%減少) は 3 00°C、 燃え抜け完了温度 (9 0質量%減少) は 5 0 0°Cであつ た。 また、 使用したビトリフアイド結合材の転移点は 5 5 0 °Cであり、 固有焼成 温度は 8 5 0〜 9 5 0 °Cであった。 1. Fabrication of whetstone and its structure The starting materials having the following formulations shown in Examples 1 to 3 and Comparative Examples 1 and 2 were press-molded and fired at 900 for 24 hours in the atmosphere (including 1 hour at 900 ° G.). Holding), and a vitrified whetstone was prepared. In Example 1, when the mass loss was measured at 10 ° C. in the temperature-raising condition, the burning start temperature (10 mass% reduction) of polymethyl methacrylate was 300 ° C., and the burning completion temperature ( (A decrease of 90% by mass) was 500 ° C. In addition, the transition point of the used vitrified binder was 550 ° C, and the specific firing temperature was 850 to 950 ° C.
<実施例 1の出発原料とその配合 > <Starting material of Example 1 and its composition>
c B N砥粒 (平均粒径 30μ m(#600)、 集中度 160) 5 5. 1容量部 ポリメタタリル酸メチル (平均粒径 30 μ m、 真比重 1.2) 1 7. 4容量部 ビトリフアイド結合材 2 7. 5容量部 糊料 1 4. 5容量部  c BN abrasive grains (average particle size 30 μm (# 600), concentration 160) 5 5.1 volumetric volume polymethylmethacrylate (average particle size 30 μm, true specific gravity 1.2) 1 7.4 volume volume vitrifide binder 2 7.5 volume parts glue 1 4.5 volume parts
<実施例 1の焼成後の砥石の構造 > <Structure of the grindstone after firing in Example 1>
c B麵粒 4 0. 0容量部 気孔 4 0. 0容量部 燃え抜け孔 (強制気孔) : 1 0. 0容量部  c B 麵 grain 40.0 volume part Porosity 40.0 volume part Burn-through hole (forced pore): 10.0 volume part
自然気孔: 3 0. 0容量部  Natural pores: 30.0 volume
砥粒の平均粒径の 1〜 3倍の大きさを有する気孔の割合 3 7容量% ビトリフアイド結合材 2 0. 0容量部  Percentage of pores having a size 1 to 3 times the average particle size of abrasive grains 3 7% by volume Vitrified binder 20.0% by volume
<実施例 2の出発原料とその配合 > <Starting materials of Example 2 and their blending>
c B N砥粒 (平均粒径 30 μ m (#600)、 集中度 160) 1容量部 ポリメタタリル酸メチル (平均粒径 5 m、 真比重 1.2) 4容量部 ビトリフアイド結合材 27. 5容量部 糊料 14. 5容量部 c BN abrasive (average particle size 30 μm (# 600), concentration 160) 1 volume part Polymethyl methacrylate (average particle size 5 m, true specific gravity 1.2) 4 volume part Vitrified binder 27.5 parts by volume Glue 14.5 parts by volume
<実施例 2の焼成後の砥石の構造 > <Structure of the grindstone after firing in Example 2>
c B雇粒 40. 0容量部 気孔 4Ό. 0容量部 燃え抜け孔'(強制気孔) : 10. 0容量部  c B employment grain 40.0 volume part pore 4Ό. 0 volume part Burn-through hole (forced pore): 10.0 volume part
自然気孔: 30. 0容量部  Natural pores: 30.0 volume
砥粒の平均粒径の 0. 1〜 1倍の大きさを有する気孔の割合: 67容量% ビトリフアイド結合材 20. 0容量部  Percentage of pores having a size of 0.1 to 1 times the average particle size of the abrasive grains: 67% by volume Vitrified binder 20.0 parts by volume
<実施例 3の出発原料とその配合 > <Starting materials of Example 3 and their blend>
cBN砥粒 (平均粒径 30 m (#600)、 集中度 160) 5 6. 5容量部 ポリメタタリル酸メチル (平均粒径 5 μ m、 真比重 1.2) 2 1. 0容量部 ビトリフアイド結合材 2 2. 5容量部 糊料 1 4. 5容量部  cBN abrasive grains (average particle diameter 30 m (# 600), concentration 160) 56.5 parts by volume Polymethyl methacrylate (average particle diameter 5 μm, true specific gravity 1.2) 2 1.0 parts by volume Vitrifide binder 2 2 .5 volume parts glue 14.5 volume parts
<実施例 3の焼成後の砥石の構造〉 <Structure of the grindstone after firing in Example 3>
c B N砥粒 40. 0容量部 気孔 0容量部 燃え抜け孔 (強制気孔) : 14. 0容量部  c B N Abrasive grain 40.0 volume part Pores 0 volume part Burn-through hole (forced pore): 14.0 volume part
自然気孔: 30. 0容量部  Natural pores: 30.0 volume
ビトリフアイド結合材 16. 0容量部  Vitrifide binder 16.0 parts by volume
<比較例 1の出発原料とその配合 > c B N砥粒 (平均粒径 30μ m(#600)、 集中度 160) 55. 1容量部 カーボン質ビーズ (150 μπι) 17. 4容量部 ビトリフアイド結合材 27. 5容量部 糊料 14. 5容量部 <Starting materials of Comparative Example 1 and their blending> c BN abrasive grains (average particle size 30μm (# 600), concentration 160) 55. 1 volume part carbonaceous beads (150μπι) 17.4 volume part vitrifide binder 27.5 volume part paste 14.5 volume Department
<比較例 1の焼成後の砥石の構造 > <Structure of the grindstone after firing in Comparative Example 1>
c Β麵粒 43. 7容量部 気孔 40. 0容量部 燃え抜け孔 (強制気孔) : 10. 0容量部  c Particles 43.7 volume parts Pores 40.0 volume Burnout holes (forced pores): 10.0 volume parts
自然気孔: 30. 0容量部  Natural pores: 30.0 volume
ビトリフアイド結合材 3容量部  Vitrified binder 3 parts by volume
<比較例 2の出発原料とその配合 > <Starting material of Comparative Example 2 and its blend>
cBN砥粒 (平均粒径 30μπι、 集中度 180) 69. 2容量部 ビトリフアイド結合材 30. 8容量部 糊料 14. 3容量部  cBN abrasive grains (average particle size 30μπι, degree of concentration 180) 69.2 volume part Vitrifide binder 30.8 volume part Glue 14.3 volume part
<比較例 2の焼成後の砥石の構造 > <Structure of the grindstone after firing in Comparative Example 2>
c Β議粒 45 0容量部 気孔 (自然気孔) 35 0容量部 ビトリフアイド結合材 20 0容量部 焼成後に得られた実施例 1、 比較例 1及び 2の砥石の構造の概略拡大断面図を 図 1、 図 3及ぴ図 4にそれぞれ示す。 図 1に示されるように、 本発明の砥石は c Β Ν砥粒 1がビトリフアイド結合材 3により結合してなる砥石であり、 その他、 燃え抜け孔 (強制気孔) 2及び自然気孔 4を有する。 また、 図 3に示されるよう に、 比較例 1の砥石は c B N砥粒 2 1と燃え抜け孔 2 2がビトリフアイド結合材 2 3により結合された砥石であり、 その他、 気孔 2 4を有する。 また、 図 4に示 されるように、 比較例 2の砥石は c B N砥粒 3 1がビトリフアイド結合材 3 2に より結合され、 その他、 気孔 3 3を有する砥石である。 本発明の砥石と比較例の砥石の構造を比較すると、 図 1に示される実施例 1の 砥石は、 比較例 1及び 2の砥石よりも砥粒及び気孔が均一に分散されており、 か つ高い気孔率を有する。 これに対し、 図 3に示される比 例 1の砥石は、 気孔率 は良好であるが、 砥粒が不均一である。 ま 図 4に示される比較例 2の砥石は、 礎粒が不均一であり、 かつ気孔率が小さい。 このことから、 本発明の砥石は、 一 定の有効切れ刃間隔を維持した状態で、 良好なチップポケットの大きさを持つ砥 石であることが分かる。 c ΒAgglomerated particles 45 0 volume parts Pores (natural pores) 35 0 volume parts Vitrified binder 200 0 volume parts A schematic enlarged cross-sectional view of the structure of the grindstones of Example 1, Comparative Examples 1 and 2 obtained after firing is shown in FIG. And Figure 3 and Figure 4 respectively. As shown in FIG. 1, the grindstone of the present invention is a grindstone in which c Β Ν abrasive grains 1 are bonded by vitrified bonding material 3. It has 2 burnout holes (forced pores) and 4 natural pores. Further, as shown in FIG. 3, the grindstone of Comparative Example 1 is a grindstone in which cBN abrasive grains 21 and burn-through holes 22 are bonded by vitrified bonding material 23, and further has pores 24. As shown in FIG. 4, the grindstone of Comparative Example 2 is a grindstone in which cBN abrasive grains 31 are bonded by vitrified binder 32 and, in addition, has pores 33. Comparing the structures of the grindstone of the present invention and the grindstone of the comparative example, the grindstone of Example 1 shown in FIG. 1 has more uniformly dispersed abrasive grains and pores than the grindstones of Comparative Examples 1 and 2. Has a high porosity. In contrast, the grindstone of Comparative Example 1 shown in FIG. 3 has a good porosity but non-uniform abrasive grains. The grindstone of Comparative Example 2 shown in FIG. 4 has non-uniform foundation grains and low porosity. This indicates that the grindstone of the present invention is a grindstone having a good chip pocket size while maintaining a constant effective cutting edge interval.
2. ビトリフアイド砲石の評価 ( 1 ) 2. Evaluation of vitrified gemstones (1)
実施例 1、 比較例 1及ぴ 2で得られた砥石を使用して内面研削を行い、 研削能 率比及び有効切れ刃間隔の大きさとの関係について調べた。 その結果を図 7に示 す。 なお、 被削材、 加工条件及びドレス条件は下記の通りである。 ぐ被削材>  Internal grinding was performed using the grindstones obtained in Example 1 and Comparative Examples 1 and 2, and the relationship between the grinding efficiency ratio and the size of the effective cutting edge interval was examined. Figure 7 shows the results. The work material, processing conditions and dress conditions are as follows. Work Material>
材質 S CM4 1 5  Material S CM4 1 5
寸法 內径 Φ 3 . 9 5 mm  Size Diameter Φ3.95 mm
研削代 Φ 0 . 0 5 mm  Grinding allowance Φ 0.05 mm
<加工条件 >  <Processing conditions>
使用機械 内面研削盤 研削方式 湿式オシレート研削 Machine used Internal grinding machine Grinding method Wet oscillating grinding
砥石周速度 22. 6 / s  Wheel speed 22.6 / s
被削材周速度 0. 5 / s  Work material peripheral speed 0.5 / s
研削能率比 1〜3. 2  Grinding efficiency ratio 1 to 3.2
才シレーション あり  There is a talented silation
研削油 油性  Grinding oil Oily
< ドレス条件 >  <Dress conditions>
ドレッサ φ 50角柱ロータリー  Dresser φ50 square column rotary
ドレス切込 φ 1 μ m/ p a s s  Dress depth φ 1 μm / p a s s
リード 0. 004 mm r e v  Lead 0.004 mm r e v
図 7より、 同一の有効切れ刃間隔 We (0. 1 mm) を有する場合、実施例 1.で は研削能率比が 3. 2まで正常に研削することができた。 これに対し、 比較例 1 及び 2はいずれも研削能率比が 1. 9までしか正常に研削することができなかつ た。 このことから、 本発明のビトリフアイド砥石を用いれば、 同一の研削加工精 度において、 従来の砥石よりも約 1. 7倍の研削加工能率で研削することができ ることがわかる。 According to FIG. 7, in the case of having the same effective cutting edge interval We (0.1 mm), in Example 1, the grinding efficiency ratio could be normally reduced to 3.2. On the other hand, in Comparative Examples 1 and 2, the grinding efficiency ratio was only normal up to 1.9. This shows that the use of the vitrified grindstone of the present invention enables grinding with the same grinding accuracy with a grinding efficiency approximately 1.7 times higher than that of the conventional grindstone.
3. ビトリフアイ ド砥石の評価 (2) 3. Evaluation of vitrified wheel (2)
実施例 1〜3、 比較例 2で得られた砥石を使用して、 研削の加工能率 0. 3m m3/(mn sec)で内面研削を行い、 消費電力、 面粗度、 磨耗を調べた。 消費電力の 変化を図 8(1)に、 面粗度の測定結果を図 8 (2)に、 磨耗の測定結果を図 8 (3)に示 す。 また、 実施例 1及び 2で得られた砥石について、 研削能率 0. 7mm3/(mnr sec)で内面研削を行い、 消費電力、 面粗度、 磨耗を調べた。 消費電力の変化を図 9(1)に、 面粗度の測定結果を図 9 (2)に、 磨耗の測定結果を図 9 (3)に示す。 Examples 1-3, using a grinding wheel obtained in Comparative Example 2, performs internal grinding in processing efficiency 0. 3m m 3 / grinding (mn sec), was investigated power, surface roughness, wear . Fig. 8 (1) shows the change in power consumption, Fig. 8 (2) shows the measurement result of surface roughness, and Fig. 8 (3) shows the measurement result of wear. In addition, the grindstones obtained in Examples 1 and 2 were subjected to internal grinding at a grinding efficiency of 0.7 mm 3 / (mnr sec), and the power consumption, surface roughness, and wear were examined. The change in power consumption is shown in Fig. 9 (1), the measurement result of surface roughness is shown in Fig. 9 (2), and the measurement result of wear is shown in Fig. 9 (3).
24 twenty four
^換え用紙 (規則 26) 但し、 比較例 2の砥石はドレス直後の加工において溶着が発生したため、 その後 の評価を行うことができなかった。 ^ Replacement paper (Rule 26) However, the grinding wheel of Comparative Example 2 could not be evaluated because welding occurred in the processing immediately after dressing.
なお、 被削材、 加工条件及びドレス条件は下記の通りである。  The work material, processing condition and dress condition are as follows.
<被削材> <Work material>
材質 SU J -2  Material SU J -2
寸法 内径 Ψ 28. 3mm  Dimension inside diameter Ψ 28.3 mm
研削代 0. ύ 6 mm  Grinding allowance 0.ύ 6 mm
<加工条件 > <Processing conditions>
使用機械 内面研削盤  Machine used Internal grinding machine
研削方式 湿式オシレート研削  Grinding method Wet oscillating grinding
砥石周速度 45 m/ s  Wheel peripheral speed 45 m / s
被削材周速度 25 m/ s  Workpiece peripheral speed 25 m / s
オシレーション あり  With oscillation
研削油 水溶性  Grinding oil water-soluble
<ドレス条件 > <Dress conditions>
ドレッサ φ 2 5角柱ロータリー  Dresser φ2 5 prismatic rotary
ドレス切込 4 μ mZ a s s  Dress depth 4 μmZ a s s
リード 0. 030 mm/r e v  Lead 0.030 mm / r e v
(i) 消費電力 (i) Power consumption
図 8(1)に示すように、比較例 2の砥石では、研削初期の消費電力がきわめて高 く、 溶着が発生してその後の研削が不可能であった。 それに対し、 図 8(1)及び図 9 (1)に示すように、 実施例 1〜 3の砥石は、研削中、 消費電力が低レベルで安定 に維持され、 溶着の発生なく連続加工が可能であった。  As shown in FIG. 8 (1), in the grinding wheel of Comparative Example 2, the power consumption in the initial stage of grinding was extremely high, and welding occurred, and subsequent grinding was impossible. In contrast, as shown in Fig. 8 (1) and Fig. 9 (1), the grinding wheels of Examples 1 to 3 maintain stable power consumption at a low level during grinding, enabling continuous machining without welding. Met.
25 twenty five
差換え用紙(規則 26) (ii) 面粗度 Replacement paper (Rule 26) (ii) Surface roughness
図 8 (2)に示すように、 実施例 1〜 3の砥石は、 研削の加工能率 0 . 3 mm3/(ni m'sec)において、 0 . 7 R z ( μ m)以下の研削の加工精度を得ることができた。 また、 図 9 (2)に示すように、 実施例 1及び 2の砥石は、 研削の加工能率 0 . 7 mm3/(mnrsec)において、 0 . 8 R z m) 以下の研削の加工精度を得ること ができた。 As shown in FIG. 8 (2), the grinding wheel of Examples 1 3, the processing efficiency of grinding 0. In 3 mm 3 / (ni m'sec) , 0. 7 R z (μ m) of the following grinding Processing accuracy was obtained. Further, as shown in FIG. 9 (2), the grinding stones of Examples 1 and 2 obtain a grinding accuracy of 0.8 R zm) or less at a grinding efficiency of 0.7 mm 3 / (mnrsec). I was able to do it.
(iii) 磨耗 (iii) Wear
図 8 (3)及び図 9 (3)に示すように、実施例 1と実施例 2を比較すると、気孔形成 材の径が小さい (即ち、 強制気孔が小さい) 実施例 2の砥石の方が高強度である ため磨耗が少なかった。 また、 図 8 (3)に示すように、 同一径の気孔形成材を使用 した実施例 2と実施例 3を比較すると、 結合材量が多い実施例 2の砥石の方が高 硬度であるため磨耗が少なかつた。 産業上の利用可能性 以上説明したように、 本発明のビトリファイド砥石は、 予め設定された研削加 ェ能率及び加工精度に基づいた気孔率、 砥粒の集中度及び砥粒径を有する。 これ により本発明の砲石であれば、 従来では相反する砥石の指標とされていた研削の 加工能率を向上させつつ、 加工面の粗さを精度よく加工することができる。 また、 本発明のビトリフアイド延石の製造方法は、 予め研削加工能率及び加工 精度を定め、 この研削加工能率及び加工精度に基づいて気孔率、 砥粒の集中度及 ぴ砥粒径が設定される。 これにより本発明の製造方法であれば、 砥石内で砥石及  As shown in FIG. 8 (3) and FIG. 9 (3), when comparing Example 1 with Example 2, the diameter of the pore-forming material is small (that is, the forced pores are small). Due to the high strength, there was little wear. Also, as shown in Fig. 8 (3), comparing Example 2 and Example 3 using the pore-forming material of the same diameter, the grinding wheel of Example 2 with a larger amount of binder has higher hardness. Less wear. INDUSTRIAL APPLICABILITY As described above, the vitrified grindstone of the present invention has a porosity, a degree of concentration of abrasive grains, and an abrasive grain diameter based on a preset grinding efficiency and processing accuracy. As a result, with the gantry of the present invention, it is possible to accurately process the roughness of the processed surface while improving the processing efficiency of grinding, which has been conventionally used as an index of a contradictory grindstone. Further, in the method for producing vitrified rubble of the present invention, the grinding efficiency and the processing accuracy are determined in advance, and the porosity, the degree of concentration of the abrasive grains, and the abrasive particle diameter are set based on the grinding efficiency and the processing accuracy. . Thus, according to the manufacturing method of the present invention, the grinding wheel
26 26
差換え用紙(規蘭 ) び気孔を均一に分布させることが可能であり、 その結果、 研削の加工能率及び加 ェ精度を両立させた砥石を製造することができる。 Replacement paper (Norin) The pores and pores can be distributed uniformly, and as a result, it is possible to manufacture a grindstone that achieves both a high grinding efficiency and a high grinding accuracy.

Claims

1 . 砥粒及びビトリフアイド結合材を少なくとも含有するビトリフアイド砥石で あって、 予め設定した研削の加工能率及び加工精度に基づく気孔率、 砥粒の集中 度及び砥粒径を有することを特徴とするビトリフアイド砥石。 1. A vitrified whetstone containing at least abrasive grains and a vitrifide binder, having a porosity, a degree of concentration of abrasive grains, and an abrasive grain diameter based on preset grinding efficiency and accuracy. Whetstone.
2 . 前記研削の加工精度が 0 . 1〜1 . 6 R z m)である場合に、 研削の加工 言  2. If the processing accuracy of the grinding is 0.1 to 1.6 Rzm),
能率が 0 . 1〜 2 . 0 mm3/(mm · sec) である請求項 1に記載のビトリフアイド 砥石。 Efficiency is 0. 1~ 2. 0 mm 3 / (mm · sec) Bitorifuaido grindstone according to claim 1 is.
 of
3 . 前記気孔率が、 砥石全体の容積に対して 3 0〜 7 0容積%である請求項 1又 は 2に記載のビトリフアイド砥石。  3. The vitrified whetstone according to claim 1, wherein the porosity is 30 to 70% by volume based on the total volume of the whetstone.
 Enclosure
4 . 前記気孔率が、 気孔形成材を燃え抜けさせることにより形成される燃え抜け 孔に基づく強制気孔率を含む請求項 1〜 3のいずれか一項に記載のビトリファイ ド砥石。  4. The vitrified grindstone according to any one of claims 1 to 3, wherein the porosity includes a forced porosity based on burnout holes formed by burning out the pore-forming material.
5 . 前記強制気孔率が砥石全体の容積に対して 5〜 3 5容積%である請求項 4に 記載のビトリフアイド砥石。  5. The vitrified whetstone according to claim 4, wherein the forced porosity is 5 to 35% by volume based on the total volume of the whetstone.
6 . 前記気孔形成材が砥粒の平均粒径の 0 . 1〜 3倍の大きさである請求項 4又 は 5に記載のビトリフアイド砥石。 6. The vitrified whetstone according to claim 4, wherein the pore forming material has a size of 0.1 to 3 times the average particle size of the abrasive grains.
7 . 全気孔の容量に占める、 砥粒の平均粒径の 1〜 3倍の大きさを有する気孔の 割合が、 2 0〜 7 0容量%である請求項 1 ~ 6のいずれか 1項に記載のビトリフ アイド砥石。  7. The method according to any one of claims 1 to 6, wherein a ratio of pores having a size of 1 to 3 times the average particle size of the abrasive grains in the total pore volume is 20 to 70% by volume. The described vitrif eyed whetstone.
8 . 全気孔の容量に占める、 砥粒の平均粒径の 0 . 1〜1倍の大きさを有する気 孔の割合が、 3 0〜7 0容量%である請求項 1〜 6のいずれか 1項に記載のビト リファイド砥石。  8. The ratio of pores having a size of 0.1 to 1 times the average grain size of the abrasive grains in the total pore volume is 30 to 70% by volume. The vitrified grinding wheel according to item 1.
9 . 前記気孔形成材が高分子化合物である請求項 4〜 8のいずれか一項に記載の ビトリフアイド砥石。 9. The vitrified whetstone according to any one of claims 4 to 8, wherein the pore-forming material is a polymer compound.
1 0 . 前記砲粒の平均粒径が 1 0〜 9 0 mである請求項 1〜 9のいずれか一項 に記載のビトリフアイド ffi石。 10. The vitrified ffi stone according to any one of claims 1 to 9, wherein the average particle diameter of the cannonball is 10 to 90 m.
1 1 . 前記砥粒の集中度が 5 0〜 1 6 0である請求項 1〜 1 0のいずれか一項に 記載のビトリフアイド砥石。  11. The vitrified grindstone according to any one of claims 1 to 10, wherein the degree of concentration of the abrasive grains is 50 to 160.
1 2 . 前記礎粒が立方晶窒化ホウ素砥粒である請求項 1〜1 1のいずれか一項に 記載のビトリフアイド砥石。  12. The vitrified whetstone according to any one of claims 1 to 11, wherein the foundation grains are cubic boron nitride abrasive grains.
1 3 . 砥粒及ぴビトリファイド結合材を少なくとも含有するビトリフアイド砥石 であって、 全気孔の容量に占める、 砥粒の平均粒径の 1〜 3倍の大きさを有する 気孔の割合が、 2 0〜 7 0容量0 /0であるビトリフアイド砥石。 13. A vitrified whetstone containing at least an abrasive grain and a vitrified binder, wherein the proportion of pores having a size of 1 to 3 times the average grain size of the abrasive grains in the total pore volume is 20%. to 7 0 capacity 0/0, which is Bitorifuaido grindstone.
1 4 . 砥粒及ぴビトリファイド結合材を少なくとも含有するビトリフアイド砥石 であって、 全気孔の容量に占める、 砥粒の平均粒径の 0 . 1〜1倍の大きさを有 する気孔の割合が、 3 0〜 7 0容量%であるビトリフアイド砥石。  14. A vitrified whetstone containing at least abrasive grains and a vitrified binder, wherein the proportion of pores having a size of 0.1 to 1 times the average grain size of the abrasive grains in the volume of all pores is high. Vitrified whetstone that is 30 to 70% by volume.
1 5 . 前記砥粒の平均粒径が 1 0〜 9 0 μ mである請求項 1 3又は 1 4に記載の ビトリフアイ ド砥石。  15. The vitrified grinding stone according to claim 13 or 14, wherein the abrasive has an average particle diameter of 10 to 90 µm.
1 6 . 前記砥粒の集中度が 5 0〜 1 6 0である請求項 1 3〜 1 5のいずれか一項 に記載のビトリフアイド抵石。  16. The vitrifite calculus according to any one of claims 13 to 15, wherein the degree of concentration of the abrasive grains is 50 to 160.
1 7 . 粒及ぴビトリファイド結合材を少なくとも含有するビトリフアイド砥石 の製造方法であって、 研削の加工能率及び加工精度を設定し、 該加工能率及び加 ェ精度に基づいて気孔率、 砥粒の集中度及ぴ砥粒径を設定する工程を有する前記 製造方法。  17. A method for producing a vitrified grindstone containing at least a grain and a vitrified binder, wherein a grinding efficiency and a machining accuracy are set, and a porosity and a concentration of abrasive grains are determined based on the machining efficiency and the machining accuracy. The above-mentioned manufacturing method, comprising a step of setting a degree and an abrasive grain size.
1 8 . 前記研削の加工精度を 0 . 1〜1 . 6 Ι ζ ( μ m)に設定し、 かつ前記研削 の加工能率を 0 . 1〜2 . 0 mm3/(mm'sec) に設定する請求項 1 7に記載の製 造方法。 1-8. 0 machining accuracy of the grinding. 1-1. Set 6 Ι ζ (μ m), and 0 the processing efficiency of the grinding. 1 to 2. 0 mm 3 set / (mm'sec) 18. The production method according to claim 17, wherein
1 9 . 前記気孔率を砥石全体の容積に対して 3 0〜7 0容積%に設定する請求項 1 7又は 1 8に記載の製造方法。 19. The method according to claim 17 or 18, wherein the porosity is set to 30 to 70% by volume based on the total volume of the grindstone.
2 0 . 前記気孔率が、 気孔形成材を燃え抜けさせることにより形成される燃え抜 け孔に基づく強制気孔率を含む請求項 1 7〜1 9のいずれか一項に記載の製造方 法。 20. The method according to any one of claims 17 to 19, wherein the porosity includes a forced porosity based on burnout holes formed by burning out the pore-forming material.
2 1 . 前記強制気孔率を砥石全体の容積に対して 5〜 3 5容積%に設定する請求 項 2 0に記載の製造方法。  21. The production method according to claim 20, wherein the forced porosity is set to 5 to 35% by volume based on the total volume of the grindstone.
2 2 . 前記気孔形成材として砥粒の平均粒径の 0 . :!〜 3倍の大きさを有する気 孔形成材を用いる請求項 2 0又は 2 1に記載の製造方法。  22. The method according to claim 20 or 21, wherein the pore-forming material is a pore-forming material having a size of 0.3 to 3 times the average particle size of the abrasive grains.
2 3 . 前記気孔形成材として高分子化合物を用いる請求項 1 7〜 2 2のいずれか 一項に記載の製造方法。  23. The production method according to any one of claims 17 to 22, wherein a polymer compound is used as the pore-forming material.
2 4 . 前記砥粒として平均粒径が 1 0 ~ 9 0 μ πιである砥粒を用いる請求項 1 7 〜 2 3のいずれか一項に記載の製造方法。  24. The production method according to any one of claims 17 to 23, wherein an abrasive having an average particle diameter of 10 to 90 μπι is used as the abrasive.
2 5 . 前記砥粒の集中度を 5 0〜 1 6 0に設定する請求項 1 7〜 2 4のいずれか 一項に記載の製造方法。  25. The production method according to any one of claims 17 to 24, wherein the degree of concentration of the abrasive grains is set to 50 to 160.
2 6 . 前記抵粒として立方晶窒化ホウ素砥粒を用いる請求項 1 7〜2 5のいずれ か一項に記載の製造方法。  26. The production method according to any one of claims 17 to 25, wherein cubic boron nitride abrasive grains are used as the grain.
PCT/JP2004/007754 2003-05-30 2004-05-28 Vitrified grinding wheel and method of manufacturing the same WO2004106001A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005506571A JPWO2004106001A1 (en) 2003-05-30 2004-05-28 Vitrified grinding wheel and manufacturing method thereof
EP04735340A EP1634678A4 (en) 2003-05-30 2004-05-28 Vitrified grinding wheel and method of manufacturing the same
BRPI0411190-7A BRPI0411190A (en) 2003-05-30 2004-05-28 vitrified grinding wheel and method to manufacture the same
US11/289,296 US20060137256A1 (en) 2003-05-30 2005-11-30 Vitrified grinding stone and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003155149 2003-05-30
JP2003-155149 2003-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/289,296 Continuation-In-Part US20060137256A1 (en) 2003-05-30 2005-11-30 Vitrified grinding stone and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2004106001A1 true WO2004106001A1 (en) 2004-12-09

Family

ID=33487349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007754 WO2004106001A1 (en) 2003-05-30 2004-05-28 Vitrified grinding wheel and method of manufacturing the same

Country Status (7)

Country Link
US (1) US20060137256A1 (en)
EP (1) EP1634678A4 (en)
JP (1) JPWO2004106001A1 (en)
KR (1) KR100881254B1 (en)
CN (1) CN1795078A (en)
BR (1) BRPI0411190A (en)
WO (1) WO2004106001A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137098A (en) * 2006-11-30 2008-06-19 Seiko Instruments Inc Shaft for grinding stone, grinding stone with shaft, grinding machine, and manufacturing method of fuel injection nozzle
JP2012152881A (en) * 2011-01-28 2012-08-16 Allied Material Corp Superabrasive wheel, and grinding processing method using the same
JP2013219215A (en) * 2012-04-10 2013-10-24 Disco Abrasive Syst Ltd Method for processing sapphire wafer
WO2019073753A1 (en) * 2017-10-11 2019-04-18 株式会社アライドマテリアル Vitrified bonded superabrasive wheel
WO2021199509A1 (en) * 2020-03-30 2021-10-07 株式会社ノリタケカンパニーリミテド Method for producing high-porosity vitrified grinding stone

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398132B2 (en) * 2007-09-28 2014-01-29 豊田バンモップス株式会社 Grinding wheel
US7815338B2 (en) * 2008-03-02 2010-10-19 Altair Engineering, Inc. LED lighting unit including elongated heat sink and elongated lens
KR20130038416A (en) * 2008-06-23 2013-04-17 생-고벵 아브라시프 High porosity vitrified superabrasive products and method of preparation
JP5369654B2 (en) * 2008-12-04 2013-12-18 株式会社ジェイテクト Vitrified bond whetstone
CN102369087B (en) * 2009-03-31 2014-07-02 本田技研工业株式会社 Whetstone, method for producing whetstone, and device for producing whetstone
US8784519B2 (en) * 2009-10-27 2014-07-22 Saint-Gobain Abrasives, Inc. Vitrious bonded abbrasive
WO2011056671A2 (en) 2009-10-27 2011-05-12 Saint-Gobain Abrasives, Inc. Resin bonded abrasive
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same
JP5982971B2 (en) * 2012-04-10 2016-08-31 住友電気工業株式会社 Silicon carbide single crystal substrate
CH710934A1 (en) * 2015-04-01 2016-10-14 Reishauer Ag Open-pored, ceramic-bonded grinding tool, process for its production and pore-forming mixtures used for its production.
CN110385653B (en) * 2015-05-08 2022-05-17 磨卡公司 Disc-shaped abrasive disc grinding product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300222A (en) * 1996-05-13 1997-11-25 J G I:Kk Air ion generation type grinding wheel
JPH10138148A (en) * 1996-11-11 1998-05-26 Noritake Co Ltd Vitrified extra-abrasive grain grinding wheel
JP2000317844A (en) * 1999-05-11 2000-11-21 Noritake Co Ltd Vitrified grinding wheel and manufacture thereof
JP2002224963A (en) * 2001-01-31 2002-08-13 Allied Material Corp Super abrasive vitrified bonded whetstone
JP2003136410A (en) * 2001-10-31 2003-05-14 Allied Material Corp Super-abrasive grains vitrified bond grinding wheel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161185A (en) * 1978-06-08 1979-12-20 Suzuo Tsuchida Preparation ofmpound grain
JPS59161269A (en) * 1983-03-03 1984-09-12 Mizuho Kenma Toishi Kk Porous vitrified boron nitrified grindstone
JPH023366U (en) * 1988-06-13 1990-01-10
JP2000246647A (en) * 1999-03-01 2000-09-12 Noritake Co Ltd Vitrified extra-abrasive grain grinding wheel and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300222A (en) * 1996-05-13 1997-11-25 J G I:Kk Air ion generation type grinding wheel
JPH10138148A (en) * 1996-11-11 1998-05-26 Noritake Co Ltd Vitrified extra-abrasive grain grinding wheel
JP2000317844A (en) * 1999-05-11 2000-11-21 Noritake Co Ltd Vitrified grinding wheel and manufacture thereof
JP2002224963A (en) * 2001-01-31 2002-08-13 Allied Material Corp Super abrasive vitrified bonded whetstone
JP2003136410A (en) * 2001-10-31 2003-05-14 Allied Material Corp Super-abrasive grains vitrified bond grinding wheel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1634678A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137098A (en) * 2006-11-30 2008-06-19 Seiko Instruments Inc Shaft for grinding stone, grinding stone with shaft, grinding machine, and manufacturing method of fuel injection nozzle
JP2012152881A (en) * 2011-01-28 2012-08-16 Allied Material Corp Superabrasive wheel, and grinding processing method using the same
JP2013219215A (en) * 2012-04-10 2013-10-24 Disco Abrasive Syst Ltd Method for processing sapphire wafer
WO2019073753A1 (en) * 2017-10-11 2019-04-18 株式会社アライドマテリアル Vitrified bonded superabrasive wheel
CN111212706A (en) * 2017-10-11 2020-05-29 联合材料公司 Ceramic bond superhard abrasive grinding wheel
JPWO2019073753A1 (en) * 2017-10-11 2020-10-22 株式会社アライドマテリアル Vitrified Bond Super Abrasive Wheel
JP7197499B2 (en) 2017-10-11 2022-12-27 株式会社アライドマテリアル Vitrified Bond Superabrasive Wheel
US11673231B2 (en) 2017-10-11 2023-06-13 A.L.M.T. Corp. Vitrified bond super-abrasive grinding wheel
WO2021199509A1 (en) * 2020-03-30 2021-10-07 株式会社ノリタケカンパニーリミテド Method for producing high-porosity vitrified grinding stone
JP2021160006A (en) * 2020-03-30 2021-10-11 株式会社ノリタケカンパニーリミテド Manufacturing method of high porosity vitrified grindstone

Also Published As

Publication number Publication date
EP1634678A4 (en) 2007-05-30
BRPI0411190A (en) 2006-07-25
KR20060018233A (en) 2006-02-28
US20060137256A1 (en) 2006-06-29
EP1634678A1 (en) 2006-03-15
KR100881254B1 (en) 2009-02-05
JPWO2004106001A1 (en) 2006-07-20
CN1795078A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
WO2004106001A1 (en) Vitrified grinding wheel and method of manufacturing the same
JPH0716881B2 (en) Vitrified superabrasive stone
CZ370897A3 (en) Grinding wheel based on alumina with enhanced resistance of edges
KR102639639B1 (en) Sintered, polycrystalline, flat, geometrically structured ceramic grinding elements, methods for their production, and their use
KR20000005280A (en) Glass grinding machine including metal-clothed abrasive
CN105014553B (en) A kind of ceramic microcrystalline emery wheel and its manufacture method with high-strength grinding performance
JP2762661B2 (en) Porous metal bond whetstone and method of manufacturing the same
JP2005342836A (en) Superabrasive tool and manufacturing method thereof
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
JP2002273661A (en) Porous metal grinding wheel
JPH11188626A (en) Ceramics dress substrate
JPH10138148A (en) Vitrified extra-abrasive grain grinding wheel
JP2861487B2 (en) High hardness sintered cutting tool
JPH0857768A (en) Vitrified bond grinding wheel for heavy grinding
Azarhoushang Abrasive tools
JP3615084B2 (en) Vitrified grinding wheel manufacturing method
JPH0624700B2 (en) Vitrified grindstone
JP2021020263A (en) Vitrified super finishing grinding wheel
JP3226304U (en) Vitrified heterogeneous grinding wheel
JP2007196317A (en) Method of manufacturing vitrified superfinishing grinding wheel
JP2000246647A (en) Vitrified extra-abrasive grain grinding wheel and manufacture thereof
RU2680119C2 (en) Abrasive tool with ceramic pore agents (options)
CN113474123B (en) Metal bond grindstone containing glass filler
JPH10113876A (en) Diamond grindstone, its manufacturing method and tool
JP3209976B2 (en) Super finishing whetstone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506571

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004735340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048142492

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057022865

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11289296

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057022865

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004735340

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11289296

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0411190

Country of ref document: BR