WO2004105810A1 - Treatment of biological material containing living cells using a plasma generated by a gas discharge - Google Patents

Treatment of biological material containing living cells using a plasma generated by a gas discharge Download PDF

Info

Publication number
WO2004105810A1
WO2004105810A1 PCT/EP2004/005988 EP2004005988W WO2004105810A1 WO 2004105810 A1 WO2004105810 A1 WO 2004105810A1 EP 2004005988 W EP2004005988 W EP 2004005988W WO 2004105810 A1 WO2004105810 A1 WO 2004105810A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
electrode
gas
gas discharge
biological material
Prior art date
Application number
PCT/EP2004/005988
Other languages
German (de)
French (fr)
Inventor
Wolfgang Viöl
Original Assignee
Fachhochschule Hildesheim/Holzminden/ Göttingen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fachhochschule Hildesheim/Holzminden/ Göttingen filed Critical Fachhochschule Hildesheim/Holzminden/ Göttingen
Priority to JP2006508258A priority Critical patent/JP2006526442A/en
Priority to EP04735879A priority patent/EP1628688B8/en
Priority to DE502004003889T priority patent/DE502004003889D1/en
Publication of WO2004105810A1 publication Critical patent/WO2004105810A1/en
Priority to US11/291,354 priority patent/US8103340B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/005Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor after treatment of microbial biomass not covered by C12N1/02 - C12N1/08
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • A61B2018/00583Coblation, i.e. ablation using a cold plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices

Definitions

  • the invention relates to a method for treating a biological material containing living cells with a plasma generated by a gas discharge at atmospheric pressure according to the preamble of claim 1 and a corresponding device according to the preamble of claim 11.
  • a plasma in the sense of the present invention is not blood plasma but a physical plasma, ie a certain, electrically conductive state of a gas or a gas mixture.
  • a method and a device are known from US 5,866,082 A.
  • a glass bulb filled with neon is provided, which forms a dielectric.
  • An electrode is arranged on a rear side of the glass bulb and an AC high voltage is applied to it by an alternating high-voltage generator in order to cause a gas discharge on the one hand in the neon gas within the glass bulb and on the other hand between the glass bulb and a skin surface.
  • the known method and the known device are used to treat the skin, on the surface of which the gas discharge is ignited, with ozone, which arises during gas discharge in air.
  • the electrical power that is delivered from the AC high-voltage generator to the electrode is in the range of several 10 watts.
  • the known device is supplied with electrical energy via the usual power network.
  • the known device and the known method are intended for the extensive treatment of skin.
  • the dimensions of the electrode and the glass bulb do not allow 10 local treatments.
  • the ozone treatment of the skin serves cosmetic purposes by killing bacteria on the surface of the skin.
  • GB 2,378,387 A A further development of the device known from US 5,866,082 A is described in GB 2,378,387 A.
  • the further development is intended in particular to counter the problem associated with a possible breakage of the glass bulb.
  • a protective jacket is provided for the glass bulb, which has openings in order to enable gas to be discharged from the skin surface.
  • GB 2,378,287 shows that the glass bulb is no longer able to conduct electrical energy for the gas discharge if it breaks and the neon gas escapes.
  • an electrosurgical instrument which forms a plasma 20 through an unobstructed gas discharge in an inert gas or gas mixture which contains no oxygen.
  • the effect of the plasma on the tissue treated with this instrument is essentially thermal, i.e. thermal coagulation occurs.
  • An unimpeded electrical discharge can only be achieved in the very high frequency range and with relatively high electrical powers.
  • ozone In the field of dentistry, the treatment of dental caries with ozone is known. For this purpose, a defined area above the point of a tooth that is affected by caries is flushed with ozone. The ozone is generated in a stationary device and fed to a treatment bell on a mouth probe via a hose. From the same treatment bell, the ozone is sucked out again and unused ozone is in
  • the invention has for its object to provide a method and an apparatus according to the preambles of claims 1 and 11, with which living cells containing biological materials can be treated with low energy expenditure, with little risk of accidents and also in locally restricted areas.
  • the object of the invention is achieved by a method with the features of independent claim 1 and by a device with the features of independent claim 11.
  • Advantageous embodiments of the method and the device are described in the dependent claims 2 to 10 and 12 to 20, respectively.
  • the dielectric is a solid-state dielectric which is arranged without a distance in front of the electrode to which the alternating high voltage for igniting the gas discharge is applied over the biological material to be treated. That means there is no complex gas-filled glass cylinder. Rather, the dielectric is a simple solid. The dielectric may well consist of glass. But then it is solid glass. The dielectric can also consist of ceramic or plastics which are sufficiently inert to the influences of the gas discharge. Compared to a gas-filled glass bulb, the dielectric can be very thin with the new method and the new device. Its typical thickness is a few, ie a maximum of 5 mm. The dielectric is preferably a maximum of 3 mm thick.
  • the small thickness of the dielectric facilitates the formation of the gas discharge over a small defined area of the biological material to be treated. Dispensing with any additional gas space between the dielectric and the electrode or even within the dielectric reduces the need for electrical energy for the gas discharge.
  • the gas discharge which is dielectrically impeded in the invention generates an essentially cold plasma, ie the thermal effects are only slight. critical are the chemical and microphysical effects caused by the plasma.
  • an essential effect is based on the generation of free oxygen, ie atomic and / or excited oxygen, which is highly oxidative, so that, for example, microorganisms on the surface of the biological material to be treated can be selectively killed .
  • the microorganisms to be killed can, for example, involve tooth decay.
  • Free oxygen is even more effective than ozone in this regard.
  • the reactivity of free oxygen can also kill surface layers of tissue, which can be degenerate tissue. Despite the essentially non-thermal effect of the plasma in the invention, oxidative coagulation is also possible, for example to stop bleeding.
  • the gas discharge can be formed over an area of the biological material that is less than 100 mm 2 , preferably less than 50 mm 2 .
  • the area spanned by the gas discharge which means the entire area in which gas discharge takes place and not only the individual discharge channels, can also be only a few square millimeters in size, so that a very targeted local treatment of the biological material is possible.
  • a gas flow in the region of the gas discharge can be conducted over the biological material, which cools the biological material. Reaction products can also be removed from the area of the plasma with the gas flow.
  • the suction can take place coaxially to the electrode, that is to say for example through an annular space around the electrode or through a tube formed by the electrode, so that the device is very narrow in the area of the gas discharge despite the gas discharge.
  • the gas flow can also be used to ignite the gas discharge in a gas or gas mixture whose composition differs from air in order to specifically induce certain reactions of the biological material to be treated with certain constituents of the gas or gas mixture.
  • the electrical power of the gas discharge is typically less than 10 watts in the invention.
  • the electrical power is preferably even lower and is below 5 watts. Specifically, it can be one watt or even less.
  • the alternating high voltage is generated with a frequency in the range from 1 to 3,000 kHz in the form of individual bipolar voltage pulses of the order of 1 kV.
  • This is possible with commercially available electronic semiconductor components. That is, an alternating high voltage generator of the new device can be realized comparatively inexpensively. Due to the bipolarity of the pulses, it is not absolutely necessary to ground the biological material and the alternating high-voltage generator or to provide a reflux circuit between them. However, these measures can nevertheless be taken within the scope of the invention.
  • the area of the gas discharge can be shielded laterally with electrically insulating and non-statically charging material. This is useful, for example, when the gas discharge is ignited in a mouth for the treatment of a tooth infected with caries and there is a risk of the patient's tongue coming into contact with the dielectric. Direct contact of the tooth to be treated with the dielectric is also undesirable.
  • a particular advantage of the present invention is that it can be implemented in battery operation. That is, the AC voltage for igniting and maintaining the gas discharge can be generated from a commercially available battery using electrical energy.
  • the new device for carrying out the new method can thus be designed as a compact hand-held device.
  • an active surface of the dielectric is referred to in connection with the definition of the new device in claims 11 to 20, it is the surface of the dielectric which faces the biological material when the device is used and over which the alternating high voltage is applied forms an electric field strength on the electrode which is sufficient to ignite and maintain the gas discharge.
  • the active surface of the dielectric in individual cases depends on the geometry of the electrode and the Dielectric and is of course also influenced by the alternating high voltages applied to the electrode. In practice, however, the extent of the active area of the dielectric can easily be determined by looking at where the gas discharge takes place in front of the surface of the dielectric.
  • Specific applications of the new method and the new device include the treatment of itching on the skin, as occurs, for example, in neurodermatitis and also in mosquito bites. After it has been treated with plasma, such an itchiness is significantly reduced. Killing viruses during skin treatment can be used, for example, to treat warts, shingles or herpes.
  • a tooth can also be prepared for caries prophylaxis by removing saliva residues with the plasma, killing bacteria and viruses and activating its tooth surface or increasing the surface energy of the tooth. This pretreatment means that a subsequent coating of the tooth with a fluorine protector, a fissure sealant or the like works better and lasts longer.
  • the coating of the tooth can also be effected by the plasma itself if methane and silane, for example, are added to the gas in which the gas discharge is ignited to generate the plasma.
  • Fluorinated gases such as tetrafluoromethane can also be added.
  • Fig. 1 shows schematically the structure of a first embodiment of the new
  • Fig. 2 shows schematically the structure of a second embodiment of the new device when carrying out a second embodiment of the new
  • FIG. 3 shows schematically the structure of a further embodiment of the new
  • FIG 4 schematically shows the structure of yet another embodiment of the new device when carrying out yet another embodiment of the new method.
  • the device shown in FIG. 1 has, as an essential component, a pin-shaped electrode 3, a dielectric 2 covering the rounded tip 6 of the electrode 3 and an alternating high-voltage generator 7 which generates an alternating high voltage which is applied to the electrode 3 during operation of the device.
  • These components of the device can be accommodated together with one or more accumulators 8 for supplying the high-voltage generator 7 with electrical energy in a hand-held device.
  • the alternating high-voltage generator 7 can also be supplied with electrical energy via a power supply unit.
  • the power supply unit or a unit comprising the power supply unit and the alternating high-voltage generator can be designed as a stand-alone unit.
  • the dielectric 2 serves on the one hand to isolate the electrode 3.
  • the dielectric obstruction of a gas discharge 9 which can be ignited by applying the alternating high voltage to the electrode 3 between the dielectric 2 and the surface of a biological material 1, and which a plasma 4 generated over the surface of the biological material 1.
  • the gas discharge takes place in the presence of oxygen, for example atmospheric oxygen, the plasma comprises free oxygen, ie highly reactive free oxygen atoms, which act chemically on the biological material 1 on its surface.
  • the dielectric obstruction of the gas discharge 9 by the dielectric 2 results in a cold plasma 4. That is, the thermal effects of the plasma 4 are negligible from a few to a few seconds, at least over shorter exposure times to the biological material 1.
  • the cross-sectional area of the gas discharge 9 is defined by the area in which there is sufficient electric field strength to maintain the gas discharge 9 between the dielectric 2 and the biological material 1.
  • the corresponding surface of the dielectric 2 is also referred to here as the active surface of the dielectric 2. Outside of this active area
  • the dielectric 2 mainly serves as insulation of the electrode 3. For this purpose, it can also have a different composition and / or higher wall thickness outside the active area. In the area of the active surface of the dielectric 2, its wall thickness is typically a few millimeters.
  • the material of the dielectric 2 is preferably a ceramic. However, it can also be glass or a plastic that is sufficiently resistant to plasma 4.
  • the treatment of the biological material 1 by the plasma 4 essentially consists in killing cells, for example undesired microorganisms such as bacteria or degenerate tissue, on the surface of the biological material 1. Specifically, this can be done to treat tooth decay on a tooth.
  • the embodiment of the new device shown in FIG. 2 initially differs from that according to FIG. 1 in that the details regarding the AC high-voltage generator and its supply with electrical energy are omitted. It is crucial, however, that a suction and insulating housing is arranged at a distance around the dielectric 2, which has an opening 11 in front of the active surface of the dielectric 2, through which gas is sucked out from the area of the gas discharge 9. This suction prevents the uncontrolled release of free oxygen from the plasma 4 into the vicinity of the gas discharge 9. Rather, such oxygen can be neutralized in suitable filters after extraction.
  • the material of the insulating and suction housing 10 is electrically insulating and not statically chargeable in such a way that it is ensured that neither a gas discharge is ignited in the space between the dielectric 2 and the insulating and suction housing 10, nor that there is direct contact with the insulating material - And suction housing 10 leads itself with a conductive object for the transmission of electrical energy.
  • the patient's tongue can be prevented from coming into contact with the dielectric 2 or even the electrode 3, which would lead to an unpleasant electrical irritation.
  • a gas can also be selectively fed into this area, the composition of which deviates from air or which is used solely for cooling the surface of the biological material 1.
  • Such cooling is also achieved by the suction of gas 12 in the device according to FIG. 2.
  • a reaction gas 13 with a special composition deviating from air is blown into the area of the gas discharge 9 5.
  • the electrode 3 is tubular and covered with the dielectric 2 both inside and outside and at its tip 6.
  • the resulting active area of the dielectric 2 is an annular area. That is, the area of the gas discharge 9 is cylindrical in shape.
  • 10 gas could also be sucked out of the area of the gas discharge 9 in order to prevent the uncontrolled release of free oxygen, for example, into the surroundings of the gas discharge 9.
  • Fig. 4 shows an embodiment of the device with a slightly different geometric arrangement.
  • the rod-shaped electrode 3 is encircled by the dielectric 2
  • the low electrical power of the gas discharge 9 also ensures that the level of any electrical irritation associated with the use of the new device, i.e. the application of the new method, even in extreme cases, remains small. This is an important security aspect.
  • An additional safety aspect is that the dielectric 2 is a solid solid-state dielectric that is seamless

Abstract

According to the invention, in order to treat a biological material (1) containing living cells using a plasma (4) generated by a gas discharge at atmospheric pressure (9), an electrode (3) is placed at a distance from the biological material (1). A dielectric (2) is also placed at a distance from the biological material (1) between the electrode (3) and said material (1) and an alternating high voltage is fed to the electrode (3) to ignite the gas discharge (9) that is impeded by the dielectric (2) between an active surface (5) of said dielectric (2) and the biological material (1). A solid body dielectric (2) is used as the dielectric and is positioned immediately in front of the electrode (3).

Description

BEHANDLUNG VON LEBENDE ZELLEN ENTHALTENDEN BIOLOGISCHEN MATERIALIEN MIT EINEM DURCH EINE GASENTLADUNG ERZEUGTEN PLASMA TREATMENT OF LIVING CELLS CONTAINING BIOLOGICAL MATERIALS WITH A PLASMA GENERATED BY A GAS DISCHARGE
Die Erfindung betrifft ein Verfahren zur Behandlung eines lebende Zellen enthaltenden biologischen Materials mit einem durch eine Gasentladung bei Atmosphärendruck erzeugten Plasma nach dem Oberbegriff des Patentanspruchs 1 sowie eine entsprechende Vorrichtung nach dem Oberbegriff des Patentanspruchs 11. Dabei ist ein Plasma im Sinne der vorliegenden Erfindung kein Blutplasma sondern ein physikalisches Plasma, d.h. ein bestimmter, elektrisch leitfähiger Zustand eines Gases bzw. eines Gasgemisches.The invention relates to a method for treating a biological material containing living cells with a plasma generated by a gas discharge at atmospheric pressure according to the preamble of claim 1 and a corresponding device according to the preamble of claim 11. A plasma in the sense of the present invention is not blood plasma but a physical plasma, ie a certain, electrically conductive state of a gas or a gas mixture.
STAND DER TECHNIKSTATE OF THE ART
Die Behandlung organischer Materialien mit einem Plasma, welches durch eine Gasentladung bei Atmosphärendruck erzeugt wird, ist beispielsweise durch der DE 199 57 775 C1 bekannt. Hier werden Holzoberflächen durch eine dielektrisch behinderte Entladung modifiziert. Hinweise zur Behandlung von biologischem Material, das lebende Zellen enthält, sind hier jedoch nicht gegeben.The treatment of organic materials with a plasma, which is generated by a gas discharge at atmospheric pressure, is known, for example, from DE 199 57 775 C1. Here wooden surfaces are modified by a dielectric barrier discharge. However, there is no information on the treatment of biological material that contains living cells.
Ein Verfahren und eine Vorrichtung nach dem Oberbegriff des Patentanspruchs 1 bzw. 11 sind aus der US 5,866,082 A bekannt. Hier ist ein mit Neon gefüllter Glaskolben vorgesehen, der ein Dielektrikum ausbildet. Auf einer Rückseite des Glaskolbens ist eine Elektrode angeordnet, die von einem Wechselhochspannungsgenerator mit einer Wechselhochspannung beaufschlagt wird, um eine Gasentladung einerseits in dem Neongas innerhalb des Glaskolbens und andererseits zwischen dem Glaskolben und einer Hautoberfläche hervorzurufen. Das bekannte Verfahren und die bekannte Vorrichtung dienen zur Behandlung der Haut, über deren Oberfläche die Gasentladung gezündet wird, mit Ozon, welches bei der Gasentladung in Luft entsteht. Die elektrische Leistung, die von dem Wechselhochspannungsgenerator an die Elektrode abgegeben wird, liegt im Bereich mehrerer 10 Watt. Es ist daher wichtig, einen unmittelbaren Kontakt der Haut mit der Elektrode zu vermeiden, auch wenn der dazwischenliegende Gaskolben zerstört wird. Aus 5 diesem Grund steht eine Abschirmung aus elektrisch isolierendem Material nach vorn über die Elektrode in dem Bereich des Glaskolbens über. Die Versorgung der bekannten Vorrichtung mit elektrischer Energie erfolgt über das übliche Stromnetz. Die bekannte Vorrichtung und das bekannte Verfahren sind für die großflächige Behandlung von Haut vorgesehen. Die Abmessungen der Elektrode und des Glaskolbens erlauben keine lokalen 10 Behandlungen. Die Ozonbehandlung der Haut dient kosmetischen Zwecken, indem Bakterien an der Hautoberfläche abgetötet werden.A method and a device according to the preamble of claim 1 and 11 are known from US 5,866,082 A. Here, a glass bulb filled with neon is provided, which forms a dielectric. An electrode is arranged on a rear side of the glass bulb and an AC high voltage is applied to it by an alternating high-voltage generator in order to cause a gas discharge on the one hand in the neon gas within the glass bulb and on the other hand between the glass bulb and a skin surface. The known method and the known device are used to treat the skin, on the surface of which the gas discharge is ignited, with ozone, which arises during gas discharge in air. The electrical power that is delivered from the AC high-voltage generator to the electrode is in the range of several 10 watts. It is therefore important to avoid direct skin contact with the electrode, even if the gas piston in between is destroyed. For this reason, a shield made of electrically insulating material projects forward over the electrode in the region of the glass bulb. The known device is supplied with electrical energy via the usual power network. The known device and the known method are intended for the extensive treatment of skin. The dimensions of the electrode and the glass bulb do not allow 10 local treatments. The ozone treatment of the skin serves cosmetic purposes by killing bacteria on the surface of the skin.
Eine Weiterentwicklung der aus der US 5,866,082 A bekannten Vorrichtung ist in der GB 2,378,387 A beschrieben. Mit der Weiterentwicklung soll insbesondere dem Problem begegnet werden, das mit einem möglichen Bruch des Glaskolbens verbunden ist. Hierzu ist I5 ein Schutzmantel für den Glaskolben vorgesehen, der Durchbrechungen aufweist, um die Gasentladung gegenüber der Hautoberfläche zu ermöglichen. Dabei ist der GB 2,378,287 zu entnehmen, dass der Glaskolben nicht länger in der Lage ist, elektrische Energie für die Gasentladung zu leiten, wenn er zerbricht und das Neongas entweicht.A further development of the device known from US 5,866,082 A is described in GB 2,378,387 A. The further development is intended in particular to counter the problem associated with a possible breakage of the glass bulb. For this purpose, a protective jacket is provided for the glass bulb, which has openings in order to enable gas to be discharged from the skin surface. GB 2,378,287 shows that the glass bulb is no longer able to conduct electrical energy for the gas discharge if it breaks and the neon gas escapes.
Aus der DE 198 20 240 A1 ist ein elektrochirurgisches Instrument bekannt, das ein Plasma 20 durch eine unbehinderte Gasentladung in einem inerten Gas oder Gasgemisch, das keinen Sauerstoff enthält, ausbildet. Die Wirkung des Plasmas auf das mit diesem Instrument behandelten Gewebe ist im Wesentlichen thermisch, d.h. es kommt zur thermischen Koagulation. Eine nicht behinderte elektrische Entladung ist nur im sehr hohen Frequenzbereich und mit relativ hohen elektrischen Leistungen realisierbar.From DE 198 20 240 A1, an electrosurgical instrument is known which forms a plasma 20 through an unobstructed gas discharge in an inert gas or gas mixture which contains no oxygen. The effect of the plasma on the tissue treated with this instrument is essentially thermal, i.e. thermal coagulation occurs. An unimpeded electrical discharge can only be achieved in the very high frequency range and with relatively high electrical powers.
?5 Im Bereich der Zahnheilkunde ist die Behandlung von Zahnkaries mit Ozon bekannt. Hierzu wird ein abgegrenzter Bereich oberhalb der Stelle eines Zahns, die von Karies befallen ist, mit Ozon durchspült. Das Ozon wird in einer stationären Vorrichtung erzeugt und über einen Schlauch einer Behandlungsglocke an einer Mundsonde zugeführt. Aus derselben Behandlungsglocke wird das Ozon wieder abgesaugt und nicht verbrauchtes Ozon wird in? 5 In the field of dentistry, the treatment of dental caries with ozone is known. For this purpose, a defined area above the point of a tooth that is affected by caries is flushed with ozone. The ozone is generated in a stationary device and fed to a treatment bell on a mouth probe via a hose. From the same treatment bell, the ozone is sucked out again and unused ozone is in
30 einem Filter neutralisiert. Die bekannte Vorrichtung zur Kariesbehandlung in ihrer Gesamtheit ist recht aufwendig. AUFGABE DER ERFINDUNG30 neutralized a filter. The known device for caries treatment in its entirety is quite complex. OBJECT OF THE INVENTION
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung nach den Oberbegriffen der Patentansprüche 1 und 11 aufzuzeigen, mit denen lebende Zellen enthaltende biologische Materialien mit geringem Energieaufwand, mit geringer Unfallgefahr und auch in lokal eng begrenzten Bereichen behandelt werden können.The invention has for its object to provide a method and an apparatus according to the preambles of claims 1 and 11, with which living cells containing biological materials can be treated with low energy expenditure, with little risk of accidents and also in locally restricted areas.
LÖSUNGSOLUTION
Die Aufgabe der Erfindung wird durch ein Verfahren mit den Merkmalen des unabhängigen Patentanspruchs 1 und durch eine Vorrichtung mit den Merkmalen des unabhängigen Patentanspruchs 11 gelöst. Vorteilhafte Ausführungsformen des Verfahrens und der Vorrichtung sind in den abhängigen Patentansprüchen 2 bis 10 bzw. 12 bis 20 beschrieben.The object of the invention is achieved by a method with the features of independent claim 1 and by a device with the features of independent claim 11. Advantageous embodiments of the method and the device are described in the dependent claims 2 to 10 and 12 to 20, respectively.
BESCHREIBUNG DER ERFINDUNGDESCRIPTION OF THE INVENTION
Bei dem neuen Verfahren und der neuen Vorrichtung ist das Dielektrikum ein Festkörperdielektrikum, das ohne Abstand vor der Elektrode angeordnet ist, an die die Wechselhochspannung zum Zünden der Gasentladung über dem zu behandelnden biologischen Material angelegt wird. D.h., es gibt keinen aufwändigen gasgefüllten Glaszylinder. Vielmehr ist das Dielektrikum ein einfacher Festkörper. Dabei kann das Dielektrikum durchaus aus Glas bestehen. Es handelt sich dann aber um massives Glas. Das Dielektrikum kann auch aus Keramik oder solchen Kunststoffen bestehen, die gegenüber den Einflüssen der Gasentladung hinreichend inert sind. Verglichen mit einem gasgefüllten Glaskolben kann das Dielektrikum bei dem neuen Verfahren und der neuen Vorrichtung sehr dünn sein. Seine typische Dicke liegt bei wenigen, d.h. maximal 5 mm. Vorzugsweise ist das Dielektrikum maximal 3 mm dick. Je nach Material des Dielektrikums kann aber auch eine Dicke von beispielsweise 0,5 mm und weniger ausreichend sein. Die geringe Dicke des Dielektrikums erleichtert die Ausbildung der Gasentladung über einer kleinen definierten Fläche des zu behandelnden biologischen Materials. Der Verzicht auf jeden zusätzlichen Gasraum zwischen dem Dielektrikum und der Elektrode oder auch innerhalb des Dielektrikums reduziert den Bedarf an elektrischer Energie für die Gasentladung. Die bei der Erfindung dielektrisch behinderte Gasentladung erzeugt ein im Wesentlichen kaltes Plasma, d.h., die thermischen Effekte sind nur gering. Entscheidender sind die chemischen und mikrophysikalischen Effekte, die von dem Plasma verursacht werden. Wenn die Gasentladung in der Anwesenheit von Sauerstoff erfolgt, beruht ein wesentlicher Effekt auf der Erzeugung von freiem Sauerstoff, d.h. atomarem und/oder angeregtem Sauerstoff, der hoch oxidativ ist, so dass beispielsweise Mikroorganismen an der Oberfläche des zu behandelnden biologischen Materials gezielt abgetötet werden können. Bei den abzutötenden Mikroorganismen kann es sich beispielsweise um den Kariesbefall eines Zahns handeln. Freier Sauerstoff ist in dieser Beziehung noch wirksamer als Ozon. Durch die Reaktivität von freiem Sauerstoff können auch Oberflächenschichten von Gewebe, bei dem es sich um entartetes Gewebe handeln kann, abgetötet werden. Trotz der im Wesentlichen nicht thermischen Wirkung des Plasmas bei der Erfindung ist auch eine oxidative Koagulation beispielsweise zur Stillung von Blutungen möglich.In the new method and the new device, the dielectric is a solid-state dielectric which is arranged without a distance in front of the electrode to which the alternating high voltage for igniting the gas discharge is applied over the biological material to be treated. That means there is no complex gas-filled glass cylinder. Rather, the dielectric is a simple solid. The dielectric may well consist of glass. But then it is solid glass. The dielectric can also consist of ceramic or plastics which are sufficiently inert to the influences of the gas discharge. Compared to a gas-filled glass bulb, the dielectric can be very thin with the new method and the new device. Its typical thickness is a few, ie a maximum of 5 mm. The dielectric is preferably a maximum of 3 mm thick. Depending on the material of the dielectric, a thickness of 0.5 mm or less, for example, may also be sufficient. The small thickness of the dielectric facilitates the formation of the gas discharge over a small defined area of the biological material to be treated. Dispensing with any additional gas space between the dielectric and the electrode or even within the dielectric reduces the need for electrical energy for the gas discharge. The gas discharge which is dielectrically impeded in the invention generates an essentially cold plasma, ie the thermal effects are only slight. critical are the chemical and microphysical effects caused by the plasma. If the gas discharge takes place in the presence of oxygen, an essential effect is based on the generation of free oxygen, ie atomic and / or excited oxygen, which is highly oxidative, so that, for example, microorganisms on the surface of the biological material to be treated can be selectively killed , The microorganisms to be killed can, for example, involve tooth decay. Free oxygen is even more effective than ozone in this regard. The reactivity of free oxygen can also kill surface layers of tissue, which can be degenerate tissue. Despite the essentially non-thermal effect of the plasma in the invention, oxidative coagulation is also possible, for example to stop bleeding.
Konkret kann die Gasentladung bei der Erfindung über einer Fläche des biologischen Materials ausgebildet werden, die kleiner als 100 mm2, vorzugsweise kleiner als 50 mm2 ist. Die von der Gasentladung überspannte Fläche, womit der gesamte Bereich gemeint ist, in dem Gasentladung stattfindet und nicht nur die einzelnen Entladungskanäle, kann auch nur wenige Quadratmillimeter groß sein, so dass eine sehr zielgerichtete lokale Behandlung des biologischen Materials möglich ist.Specifically, in the invention, the gas discharge can be formed over an area of the biological material that is less than 100 mm 2 , preferably less than 50 mm 2 . The area spanned by the gas discharge, which means the entire area in which gas discharge takes place and not only the individual discharge channels, can also be only a few square millimeters in size, so that a very targeted local treatment of the biological material is possible.
Um jegliche thermischen Einflüsse des Plasmas von dem zu behandelnden biologischen Material fernzuhalten, kann eine Gasströmung im Bereich der Gasentladung über das biologische Material geführt werden, die das biologische Material kühlt. Mit der Gasströmung können auch Reaktionsprodukte aus dem Bereich des Plasmas abgeführt werden.In order to keep any thermal influences of the plasma away from the biological material to be treated, a gas flow in the region of the gas discharge can be conducted over the biological material, which cools the biological material. Reaction products can also be removed from the area of the plasma with the gas flow.
Um freien Sauerstoff nicht unkontrolliert in die Umgebung der Gasentladung gelangen zu lassen, ist es bevorzugt, Gas aus dem Bereich der Gasentladung abzusaugen. Dabei kann die Absaugung koaxial zu der Elektrode erfolgen, also beispielsweise durch einen Ringraum um die Elektrode oder durch ein von der Elektrode gebildetes Rohr, so dass die Vorrichtung im Bereich der Gasentladung trotz der Gasentladung sehr schmal baut.In order not to let free oxygen get into the environment of the gas discharge in an uncontrolled manner, it is preferred to draw off gas from the area of the gas discharge. The suction can take place coaxially to the electrode, that is to say for example through an annular space around the electrode or through a tube formed by the electrode, so that the device is very narrow in the area of the gas discharge despite the gas discharge.
Die Gasströmung kann aber auch dazu genutzt werden, die Gasentladung in einem Gas oder Gasgemisch zu zünden, dessen Zusammensetzung von Luft abweicht, um bestimmte Reaktionen des zu behandelnden biologischen Materials mit bestimmten Inhaltsstoffen des Gases oder Gasgemisches gezielt hervorzurufen. Die elektrische Leistung der Gasentladung beträgt bei der Erfindung typischerweise weniger als 10 Watt. Vorzugsweise ist die elektrische Leistung noch geringer und liegt unterhalb von 5 Watt. Sie kann konkret bei einem Watt oder noch darunter liegen.However, the gas flow can also be used to ignite the gas discharge in a gas or gas mixture whose composition differs from air in order to specifically induce certain reactions of the biological material to be treated with certain constituents of the gas or gas mixture. The electrical power of the gas discharge is typically less than 10 watts in the invention. The electrical power is preferably even lower and is below 5 watts. Specifically, it can be one watt or even less.
Besonders bevorzugt ist es, wenn die Wechselhochspannung mit einer Frequenz im Bereich von 1 bis 3.000 kHz in Form einzelner bipolarer Spannungspulse der Größenordnung 1 kV erzeugt wird. Dies ist mit handelsüblichen elektronischen Halbleiterbausteinen möglich. D.h., ein Wechselhochspannungsgenerator der neuen Vorrichtung kann vergleichsweise preisgünstig realisiert werden. Durch die Bipolarität der Pulse ist es nicht zwingend erforderlich, das biologische Material und den Wechselhochspannungsgenerator zu erden oder einen Rückflussstromkreislauf zwischen ihnen bereitzustellen. Diese Maßnahmen können aber dennoch im Rahmen der Erfindung ergriffen werden.It is particularly preferred if the alternating high voltage is generated with a frequency in the range from 1 to 3,000 kHz in the form of individual bipolar voltage pulses of the order of 1 kV. This is possible with commercially available electronic semiconductor components. That is, an alternating high voltage generator of the new device can be realized comparatively inexpensively. Due to the bipolarity of the pulses, it is not absolutely necessary to ground the biological material and the alternating high-voltage generator or to provide a reflux circuit between them. However, these measures can nevertheless be taken within the scope of the invention.
Um einen unerwünschten Kontakt von biologischem Material mit der aktiven Fläche des Dielektrikums zu verhindern, kann der Bereich der Gasentladung seitlich mit elektrisch isolierendem und sich nicht statisch aufladendem Material abgeschirmt werden. Dies ist beispielsweise dann sinnvoll, wenn die Gasentladung in einem Mundraum zur Behandlung eines mit Karies befallenen Zahns gezündet wird und dabei die Gefahr besteht, dass die Zunge des Patienten mit dem Dielektrikum in Kontakt gerät. Auch ein unmittelbarer Kontakt des zu behandelnden Zahns mit dem Dielektrikum ist unerwünscht.In order to prevent undesired contact of biological material with the active surface of the dielectric, the area of the gas discharge can be shielded laterally with electrically insulating and non-statically charging material. This is useful, for example, when the gas discharge is ignited in a mouth for the treatment of a tooth infected with caries and there is a risk of the patient's tongue coming into contact with the dielectric. Direct contact of the tooth to be treated with the dielectric is also undesirable.
Als besonderer Vorteil der vorliegenden Erfindung ergibt sich, dass diese im Batteriebetrieb umgesetzt werden kann. D.h., die Wechselspannung zum Zünden und Aufrechterhalten der Gasentladung kann unter Verwendung elektrischer Energie aus einem handelsüblichen Akkumulator erzeugt werden. Damit ist die neue Vorrichtung zur Durchführung des neuen Verfahrens als kompaktes Handgerät ausbildbar.A particular advantage of the present invention is that it can be implemented in battery operation. That is, the AC voltage for igniting and maintaining the gas discharge can be generated from a commercially available battery using electrical energy. The new device for carrying out the new method can thus be designed as a compact hand-held device.
Sobald im Zusammenhang mit der Definition der neuen Vorrichtung in den Patentansprüchen 11 bis 20 auf eine aktive Fläche des Dielektrikums verwiesen wird, so handelt es sich um die dem biologischen Material bei der Verwendung der Vorrichtung zugewandte Oberfläche des Dielektrikums, über der sich beim Anlegen der Wechselhochspannung an die Elektrode eine elektrische Feldstärke ausbildet, die zum Zünden und Aufrechterhalten der Gasentladung ausreichend ist. Was im Einzelfall als aktive Oberfläche des Dielektrikums anzusehen ist, hängt von der Geometrie der Elektrode und des Dielektrikums ab und wird natürlich auch von der an die Elektrode angelegten Wechselhochspannungen beeinflusst. Praktisch ist der Umfang der aktiven Fläche des Dielektrikums aber leicht festzustellen, indem geschaut wird, wo vor der Oberfläche des Dielektrikums die Gasentladung erfolgt.As soon as an active surface of the dielectric is referred to in connection with the definition of the new device in claims 11 to 20, it is the surface of the dielectric which faces the biological material when the device is used and over which the alternating high voltage is applied forms an electric field strength on the electrode which is sufficient to ignite and maintain the gas discharge. What is to be regarded as the active surface of the dielectric in individual cases depends on the geometry of the electrode and the Dielectric and is of course also influenced by the alternating high voltages applied to the electrode. In practice, however, the extent of the active area of the dielectric can easily be determined by looking at where the gas discharge takes place in front of the surface of the dielectric.
Konkrete Anwendungen des neuen Verfahrens und der neuen Vorrichtung schließen die Behandlung von Juckreiz an der Haut, wie er beispielsweise bei Neurodermitis und auch bei Mückenstichen auftritt, ein. Nach der Plasmabehandlung geht ein solcher Juckreiz deutlich zurück. Das Abtöten von Viren bei der Hautbehandlung kann beispielsweise dazu genutzt werden, um Warzen, Gürtelrose oder Herpes zu behandeln. Bei der Zahnbehandlung mit dem neuen Verfahren und der neuen Vorrichtung kann ein Zahn auch für die Kariesprophylaxe vorbereitet werden, indem er mit dem Plasma von Speichelresten gereinigt wird, Bakterien und Viren abgetötet werden und seine Zahnoberfläche aktiviert bzw. die Oberflächenenergie des Zahns erhöht wird. Diese Vorbehandlung bewirkt, dass eine nachfolgende Lackierung des Zahns mit einem Fluorprotektor, einer Fisurenversiegelung oder dergleichen besser wirkt und länger hält. Die Beschichtung des Zahns kann auch durch das Plasma selbst bewirkt werden, wenn dem Gas, in dem die Gasentladung zur Erzeugung des Plasmas gezündet wird, beispielsweise Methan und Silan zugesetzt werden. Es können auch fluorierte Gase wie Tetrafluormethan zugeführt werden.Specific applications of the new method and the new device include the treatment of itching on the skin, as occurs, for example, in neurodermatitis and also in mosquito bites. After it has been treated with plasma, such an itchiness is significantly reduced. Killing viruses during skin treatment can be used, for example, to treat warts, shingles or herpes. In the case of dental treatment with the new method and the new device, a tooth can also be prepared for caries prophylaxis by removing saliva residues with the plasma, killing bacteria and viruses and activating its tooth surface or increasing the surface energy of the tooth. This pretreatment means that a subsequent coating of the tooth with a fluorine protector, a fissure sealant or the like works better and lasts longer. The coating of the tooth can also be effected by the plasma itself if methane and silane, for example, are added to the gas in which the gas discharge is ignited to generate the plasma. Fluorinated gases such as tetrafluoromethane can also be added.
KURZBESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES
Im Folgenden wird die Erfindung anhand von in den Figuren dargestellten bevorzugten Ausführungsbeispielen weiter erläutert und beschrieben.The invention is further explained and described below with reference to preferred exemplary embodiments illustrated in the figures.
Fig. 1 zeigt schematisch den Aufbau einer ersten Ausführungsform der neuenFig. 1 shows schematically the structure of a first embodiment of the new
Vorrichtung bei der Durchführung des neuen Verfahrens,Device for the implementation of the new method,
Fig. 2 zeigt schematisch den Aufbau einer zweiten Ausführungsform der neuen Vorrichtung bei der Durchführung einer zweiten Ausführungsform des neuenFig. 2 shows schematically the structure of a second embodiment of the new device when carrying out a second embodiment of the new
Verfahrens. Fig. 3 zeigt schematisch den Aufbau einer weiteren Ausführungsform der neuenProcess. Fig. 3 shows schematically the structure of a further embodiment of the new
Vorrichtung bei der Durchführung einer weiteren Ausführungsform des neuen Verfahrens undDevice in carrying out a further embodiment of the new method and
Fig. 4 zeigt schematisch den Aufbau noch einer weiteren Ausführungsform der neuen Vorrichtung bei der Durchführung noch einer weiteren Ausführungsform des neuen Verfahrens.4 schematically shows the structure of yet another embodiment of the new device when carrying out yet another embodiment of the new method.
FIGURENBESCHREIBUNGDESCRIPTION OF THE FIGURES
Die in Fig. 1 dargestellte Vorrichtung weist als wesentlichen Bestandteil eine stiftförmige Elektrode 3, ein die abgerundete Spitze 6 der Elektrode 3 abdeckendes Dielektrikum 2 und einen Wechselhochspannungsgenerator 7 auf, der eine Wechselhochspannung erzeugt, welche im Betrieb der Vorrichtung an der Elektrode 3 anliegt. Diese Bestandteile der Vorrichtung können gemeinsam mit einem oder mehreren Akkumulatoren 8 zur Versorgung des Wechselhochspannungsgenerators 7 mit elektrischer Energie in einem Handgerät untergebracht sein. Der Wechselhochspannungsgenerator 7 kann aber auch über ein Netzgerät mit elektrischer Energie versorgt werden. Dabei kann das Netzgerät oder eine Einheit aus dem Netzgerät und dem Wechselhochspannungsgenerator als Standgerät ausgebildet sein. Das Dielektrikum 2 dient einerseits zur Isolierung der Elektrode 3. Andererseits dient es zur dielektrischen Behinderung einer Gasentladung 9, welche durch Anlegen der Wechselhochspannung an die Elektrode 3 zwischen dem Dielektrikum 2 und der Oberfläche eines biologischen Materials 1 gezündet werden kann, und die ein Plasma 4 über der Oberfläche des biologischen Materials 1 erzeugt. Wenn die Gasentladung in der Anwesenheit von Sauerstoff, beispielsweise Luftsauerstoff erfolgt, umfasst das Plasma freien Sauerstoff, d.h. hochreaktive freie Sauerstoffatome, die chemisch auf das biologische Material 1 an seiner Oberfläche einwirken. Die dielektrische Behinderung der Gasentladung 9 durch das Dielektrikum 2 resultiert in ein kaltes Plasma 4. D.h., die thermischen Effekte des Plasmas 4 sind zumindest über kürzere Einwirkzeiten auf das biologische Material 1 von wenigen bis einigen Sekunden vernachlässigbar. Die Querschnittsfläche der Gasentladung 9 wird durch den Bereich definiert, in dem eine ausreichende elektrische Feldstärke zum Aufrechterhalten der Gasentladung 9 zwischen dem Dielektrikum 2 und dem biologischen Material 1 vorliegt. Die entsprechende Oberfläche des Dielektrikums 2 wird hier auch als aktive Fläche des Dielektrikums 2 bezeichnet. Außerhalb dieser aktiven Fläche dient das Dielektrikum 2 vorwiegend als Isolierung der Elektrode 3. Es kann dazu außerhalb der aktiven Fläche auch gezielt eine andere Zusammensetzung und/oder höhere Wandstärke aufweisen. Im Bereich der aktiven Fläche des Dielektrikums 2 beträgt seine Wandstärke typischerweise einige wenige Millimeter. Das Material des Dielektrikums 2 ist vorzugsweise eine Keramik. Es kann sich aber auch um Glas oder einen gegenüber dem Plasma 4 hinreichend resistenten Kunststoff handeln. Die Behandlung des biologischen Materials 1 durch das Plasma 4 besteht im Wesentlichen darin, Zellen, beispielsweise unerwünschte Mikroorganismen wie Bakterien oder entartetes Gewebe, an der Oberfläche des biologischen Materials 1 abzutöten. Konkret kann dies zur Behandlung von Karies an einem Zahn erfolgen.The device shown in FIG. 1 has, as an essential component, a pin-shaped electrode 3, a dielectric 2 covering the rounded tip 6 of the electrode 3 and an alternating high-voltage generator 7 which generates an alternating high voltage which is applied to the electrode 3 during operation of the device. These components of the device can be accommodated together with one or more accumulators 8 for supplying the high-voltage generator 7 with electrical energy in a hand-held device. The alternating high-voltage generator 7 can also be supplied with electrical energy via a power supply unit. The power supply unit or a unit comprising the power supply unit and the alternating high-voltage generator can be designed as a stand-alone unit. The dielectric 2 serves on the one hand to isolate the electrode 3. On the other hand it serves for the dielectric obstruction of a gas discharge 9, which can be ignited by applying the alternating high voltage to the electrode 3 between the dielectric 2 and the surface of a biological material 1, and which a plasma 4 generated over the surface of the biological material 1. If the gas discharge takes place in the presence of oxygen, for example atmospheric oxygen, the plasma comprises free oxygen, ie highly reactive free oxygen atoms, which act chemically on the biological material 1 on its surface. The dielectric obstruction of the gas discharge 9 by the dielectric 2 results in a cold plasma 4. That is, the thermal effects of the plasma 4 are negligible from a few to a few seconds, at least over shorter exposure times to the biological material 1. The cross-sectional area of the gas discharge 9 is defined by the area in which there is sufficient electric field strength to maintain the gas discharge 9 between the dielectric 2 and the biological material 1. The corresponding surface of the dielectric 2 is also referred to here as the active surface of the dielectric 2. Outside of this active area The dielectric 2 mainly serves as insulation of the electrode 3. For this purpose, it can also have a different composition and / or higher wall thickness outside the active area. In the area of the active surface of the dielectric 2, its wall thickness is typically a few millimeters. The material of the dielectric 2 is preferably a ceramic. However, it can also be glass or a plastic that is sufficiently resistant to plasma 4. The treatment of the biological material 1 by the plasma 4 essentially consists in killing cells, for example undesired microorganisms such as bacteria or degenerate tissue, on the surface of the biological material 1. Specifically, this can be done to treat tooth decay on a tooth.
Die in Fig. 2 dargestellte Ausführungsform der neuen Vorrichtung unterscheidet sich von derjenigen gemäß Fig. 1 zunächst dadurch, dass die Details bezüglich des Wechselhochspannungsgenerators und seiner Versorgung mit elektrischer Energie weggelassen sind. Entscheidend ist jedoch, dass hier ein Absaug- und Isoliergehäuse mit Abstand um das Dielektrikum 2 herum angeordnet ist, das vor der aktiven Fläche des Dielektrikums 2 eine Öffnung 11 aufweist, durch die hindurch Gas aus dem Bereich der Gasentladung 9 abgesaugt wird. Durch diese Absaugung wird das unkontrollierte Freisetzen von freiem Sauerstoff in die Umgebung der Gasentladung 9 aus dem Plasma 4 heraus verhindert. Vielmehr kann solcher Sauerstoff nach der Absaugung in geeigneten Filtern neutralisiert werden. Das Material des Isolier- und Absauggehäuses 10 ist derart elektrisch isolierend und nicht statisch aufladbar, dass sichergestellt ist, dass weder eine Gasentladung in dem Zwischenraum zwischen dem Dielektrikum 2 und dem Isolier- und Absauggehäuse 10 gezündet wird, noch dass ein direkter Kontakt mit dem Isolier- und Absauggehäuse 10 selbst mit einem leitenden Gegenstand zur Übertragung von elektrischer Energie führt. So kann beispielsweise bei der Behandlung von Karies im Mundraum verhindert werden, dass die Zunge des Patienten mit dem Dielektrikum 2 oder gar der Elektrode 3 in Kontakt kommt, was zu einer unangenehmen elektrischen Reizung führen würde.The embodiment of the new device shown in FIG. 2 initially differs from that according to FIG. 1 in that the details regarding the AC high-voltage generator and its supply with electrical energy are omitted. It is crucial, however, that a suction and insulating housing is arranged at a distance around the dielectric 2, which has an opening 11 in front of the active surface of the dielectric 2, through which gas is sucked out from the area of the gas discharge 9. This suction prevents the uncontrolled release of free oxygen from the plasma 4 into the vicinity of the gas discharge 9. Rather, such oxygen can be neutralized in suitable filters after extraction. The material of the insulating and suction housing 10 is electrically insulating and not statically chargeable in such a way that it is ensured that neither a gas discharge is ignited in the space between the dielectric 2 and the insulating and suction housing 10, nor that there is direct contact with the insulating material - And suction housing 10 leads itself with a conductive object for the transmission of electrical energy. For example, in the treatment of caries in the oral cavity, the patient's tongue can be prevented from coming into contact with the dielectric 2 or even the electrode 3, which would lead to an unpleasant electrical irritation.
Statt der Absaugung von Gas 12 aus dem Bereich der Gasentladung 9 kann in den diesen Bereich auch gezielt ein Gas zugeführt werden, dessen Zusammensetzung von Luft abweicht oder dass auch allein zur Kühlung der Oberfläche des biologischen Materials 1 dient. Eine solche Kühlung wird aber auch durch die Absaugung von Gas 12 bei der Vorrichtung gemäß Fig. 2 erreicht. In jedem Fall bewirkt die Kühlung der Oberfläche des biologischen Materials 1 durch eine Gasströmung, dass sich die Auswirkungen des Plasmas 4 auf nichtthermische chemische und mikrophysikalische Effekte beschränken.Instead of the suction of gas 12 from the area of the gas discharge 9, a gas can also be selectively fed into this area, the composition of which deviates from air or which is used solely for cooling the surface of the biological material 1. Such cooling is also achieved by the suction of gas 12 in the device according to FIG. 2. In any case, cooling the surface of the biological material 1 by a gas flow that the effects of the plasma 4 are limited to non-thermal chemical and microphysical effects.
Bei der Ausführungsform der Vorrichtung gemäß Fig. 3 wird ein Reaktionsgas 13 mit einer speziellen von Luft abweichenden Zusammensetzung in den Bereich der Gasentladung 9 5 eingeblasen. Dies erfolgt wie in Fig. 2 in einer koaxialen Anordnung. In Fig. 3 ist aber die Elektrode 3 rohrförmig und sowohl innen als auch außen sowie an ihrer Spitze 6 mit dem Dielektrikum 2 überzogen. Die resultierende aktive Fläche des Dielektrikums 2 ist eine Ringfläche. D.h., das Gebiet der Gasentladung 9 ist zylindermantelförmig. Zusätzlich zu der Zufuhr von Reaktionsgas 13 könnte in einer Fig. 2 entsprechenden Anordnung auch noch 10 Gas aus dem Bereich der Gasentladung 9 abgesaugt werden, um auch hier das unkontrollierte Freisetzen beispielsweise von freiem Sauerstoff in die Umgebung der Gasentladung 9 zu unterbinden.In the embodiment of the device according to FIG. 3, a reaction gas 13 with a special composition deviating from air is blown into the area of the gas discharge 9 5. As in FIG. 2, this is done in a coaxial arrangement. 3, however, the electrode 3 is tubular and covered with the dielectric 2 both inside and outside and at its tip 6. The resulting active area of the dielectric 2 is an annular area. That is, the area of the gas discharge 9 is cylindrical in shape. In addition to the supply of reaction gas 13, in an arrangement corresponding to FIG. 2, 10 gas could also be sucked out of the area of the gas discharge 9 in order to prevent the uncontrolled release of free oxygen, for example, into the surroundings of the gas discharge 9.
Fig. 4 zeigt eine Ausführungsform der Vorrichtung mit etwas anderer geometrischer Anordnung. Hier ist die stabförmige Elektrode 3 umlaufend von dem Dielektrikum 2Fig. 4 shows an embodiment of the device with a slightly different geometric arrangement. Here, the rod-shaped electrode 3 is encircled by the dielectric 2
15 umgeben. Bei paralleler Anordnung der Elektrode 3 zu der Oberfläche des biologischen Materials 1 bildet sich so ein linienförmiger Bereich der Gasentladung 9 aus, in dem das Plasma 4 erzeugt wird. Durch Bewegen der Elektrode 3 über die Oberfläche des biologischen Materials 1 können so relativ große Flächen des biologischen Materials 1 mit dem Plasma 4 behandelt werden, obwohl die zu einem Zeitpunkt behandelte Oberfläche des15 surrounded. When the electrode 3 is arranged parallel to the surface of the biological material 1, a linear region of the gas discharge 9 is formed in which the plasma 4 is generated. By moving the electrode 3 over the surface of the biological material 1, relatively large areas of the biological material 1 can thus be treated with the plasma 4, although the surface of the
20 biologischen Materials 1 , die der aktiven Fläche des Dielektrikums 2 entspricht, immer nur vergleichsweise klein ist. Die geringe Größe des Gebiets der Gasentladung 9 reduziert ebenso wie die dielektrische Behinderung der Gasentladung 9 den Energiebedarf für die Gasentladung 9, was Voraussetzung dafür ist, dass die Gasentladung 9 unter Verwendung von Akkumulatoren, konkret handelsüblichen Batterien, als elektrische Energieversorgung20 biological material 1, which corresponds to the active area of the dielectric 2, is always only comparatively small. The small size of the area of the gas discharge 9, like the dielectric obstruction of the gas discharge 9, reduces the energy requirement for the gas discharge 9, which is a prerequisite for the gas discharge 9 to be used as an electrical energy supply using accumulators, specifically commercially available batteries
'_:5 möglich ist. Gleichzeitig stellt die geringe elektrische Leistung der Gasentladung 9 auch sicher, dass das Niveau jeglicher elektrischer Reizungen, die mit der Verwendung der neuen Vorrichtung, d.h. der Anwendung des neuen Verfahrens auch im Extremfall verbunden sind, klein bleibt. Dies ist ein wichtiger Sicherheitsaspekt. Ein zusätzlicher Sicherheitsaspekt besteht darin, dass das Dielektrikum 2 ein massives Festkörperdielektrikum ist, das nahtlos'_: 5 is possible. At the same time, the low electrical power of the gas discharge 9 also ensures that the level of any electrical irritation associated with the use of the new device, i.e. the application of the new method, even in extreme cases, remains small. This is an important security aspect. An additional safety aspect is that the dielectric 2 is a solid solid-state dielectric that is seamless
30 auf der Elektrode 3 angeordnet ist, so dass die Gefahr eines direkten Kontakts mit der Elektrode 3 auch bei einer unsachgemäßen Verwendung der neuen Vorrichtung realistisch nicht vorhanden ist. BEZUGSZEICHENLISTE30 is arranged on the electrode 3, so that the risk of direct contact with the electrode 3 does not realistically exist even if the new device is used improperly. LIST OF REFERENCE NUMBERS
biologisches Material 11 Öffnungbiological material 11 opening
Dielektrikum 12 GasDielectric 12 gas
Elektrode 13 ReaktionsgasElectrode 13 reaction gas
Plasma 14 Gasströmung aktive Fläche 15 GaszuführungPlasma 14 gas flow active surface 15 gas supply
Spitzetop
WechselhochspannungsgeneratorAC high voltage generator
Akkumulatoraccumulator
Gasentladunggas discharge
Isolier- und Absauggehäuse Isolation and suction housing

Claims

PATENTANSPRÜCHE
1. Verfahren zur Behandlung eines lebende Zellen enthaltenden biologischen Materials mit einem durch eine Gasentladung bei Atmosphärendruck erzeugten Plasma, wobei eine Elektrode mit Abstand zu dem biologischen Material angeordnet wird, wobei ein Dielektrikum mit Abstand zu dem biologischen Material zwischen der Elektrode und dem biologischen Material angeordnet wird und wobei zum Zünden der durch das Dielektrikum behinderten Gasentladung zwischen dem Dielektrikum und dem biologischen Material eine Wechsel- hochspannung an die Elektrode angelegt wird, dadurch gekennzeichnet, dass als Dielektrikum (2) ein Festkörperdielektrikum ohne Abstand vor der Elektrode (3) angeordnet wird.1. A method for treating a biological material containing living cells with a plasma generated by a gas discharge at atmospheric pressure, wherein an electrode is arranged at a distance from the biological material, wherein a dielectric is arranged at a distance from the biological material between the electrode and the biological material and in order to ignite the gas discharge impeded by the dielectric, an alternating high voltage is applied to the electrode between the dielectric and the biological material, characterized in that a solid-state dielectric is arranged without a distance in front of the electrode (3) as the dielectric (2).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Gasentladung (9) über einer Fläche des biologischen Materials (1) ausgebildet wird, die kleiner als 100 mm2, vorzugsweise kleiner als 50 mm2, ist.2. The method according to claim 1, characterized in that the gas discharge (9) is formed over an area of the biological material (1) which is less than 100 mm 2 , preferably less than 50 mm 2 .
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Gasströmung (14) im Bereich der Gasentladung (9) über das biologische Material (1) geführt wird.3. The method according to claim 1 or 2, characterized in that a gas flow (14) in the region of the gas discharge (9) is guided over the biological material (1).
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Gas (12) aus dem Bereich der Gasentladung (9) abgesaugt wird.4. The method according to any one of claims 1 to 3, characterized in that gas (12) is sucked out of the area of the gas discharge (9).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Gas (12) koaxial zu der Elektrode (2) abgesaugt wird.5. The method according to claim 4, characterized in that the gas (12) is extracted coaxially to the electrode (2).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gasentladung (9) in einem Gas oder Gasgemisch (13) gezündet wird, dessen Zusammensetzung von Luft abweicht. 6. The method according to any one of claims 1 to 5, characterized in that the gas discharge (9) is ignited in a gas or gas mixture (13), the composition of which deviates from air.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wechselhochspannung so an die Elektrode (3) angelegt wird, das die elektrische Leistung der Gasentladung (9) weniger als 10 W, vorzugsweise weniger als 5 W beträgt.7. The method according to any one of claims 1 to 6, characterized in that the alternating high voltage is applied to the electrode (3) so that the electrical power of the gas discharge (9) is less than 10 W, preferably less than 5 W.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wechselhochspannung mit einer Frequenz von 1 bis 3000 kHz in Form einzelner bipolarer Spannungspulse der Größenordnung 1 kV erzeugt wird.8. The method according to any one of claims 1 to 7, characterized in that the alternating high voltage is generated at a frequency of 1 to 3000 kHz in the form of individual bipolar voltage pulses of the order of 1 kV.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Bereich der Gasentladung (9) seitlich mit elektrisch isolierendem und sich nicht statisch aufladenden Material (10) abgeschirmt wird.9. The method according to any one of claims 1 to 8, characterized in that the region of the gas discharge (9) is shielded laterally with electrically insulating and non-statically charging material (10).
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wechselhochspannung unter Verwendung elektrischer Energie aus einem Akkumulator (8) erzeugt wird.10. The method according to any one of claims 1 to 9, characterized in that the alternating high voltage is generated using electrical energy from an accumulator (8).
11. Vorrichtung zur Behandlung eines lebende Zellen enthaltenden biologischen Materials, insbesondere nach dem Verfahren nach einem der Ansprüche 1 bis 10, mit einem durch eine Gasentladung bei Atmosphärendruck erzeugten Plasma, mit einer Elektrode, mit einem vor der Elektrode angeordneten Dielektrikum und mit einem Wechselhochspannungs- generator zum Erzeugen einer an der Elektrode anliegenden Wechselhochspannung, die die durch das Dielektrikum behinderte Gasentladung zwischen einer aktiven Fläche des Dielektrikums und dem biologischen Material zündet, dadurch gekennzeichnet, dass das Dielektrikum (2) ein Festkörperdielektrikum ist, das ohne Abstand vor der Elektrode (3) angeordnet ist.11. Device for treating a biological material containing living cells, in particular according to the method according to one of claims 1 to 10, with a plasma generated by a gas discharge at atmospheric pressure, with an electrode, with a dielectric arranged in front of the electrode and with an alternating high-voltage Generator for generating an alternating high voltage applied to the electrode, which ignites the gas discharge impeded by the dielectric between an active surface of the dielectric and the biological material, characterized in that the dielectric (2) is a solid-state dielectric which is spaced apart from the electrode (3 ) is arranged.
12. Vorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass die aktive Fläche (5) des Dielektrikums (2) kleiner als 100 mm2, vorzugsweise kleiner als 50 mm2, ist.12. The device according to claim 11, characterized in that the active area (5) of the dielectric (2) is less than 100 mm 2 , preferably less than 50 mm 2 .
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass eine Gaszuführung (15) in den Bereich vor der aktiven Fläche (5) des Dielektrikums (2) vorgesehen ist. 13. The apparatus of claim 11 or 12, characterized in that a gas supply (15) in the area in front of the active surface (5) of the dielectric (2) is provided.
14. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gaszuführung (15) an ein Reservoir für ein Gas oder Gasgemisch (13) mit anderer Zusammensetzung als Luft angeschlossen ist.14. Device according to one of claims 1 to 5, characterized in that the gas supply (15) is connected to a reservoir for a gas or gas mixture (13) with a composition other than air.
15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass eine Gasabsaugung (10) aus dem Bereich vor der aktiven Fläche (5) des Dielektrikums (2) vorgesehen ist.15. Device according to one of claims 11 to 14, characterized in that a gas suction (10) from the area in front of the active surface (5) of the dielectric (2) is provided.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass Gasabsaugung (10) ein koaxial zu der Elektrode (3) angeordnetes Absaugrohr aufweist.16. The apparatus according to claim 15, characterized in that gas suction (10) has a suction pipe arranged coaxially to the electrode (3).
17. Vorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Wechselhochspannungsgenerator (7) eine elektrische Leistung von weniger als 10 W, vorzugsweise weniger als 5 W an die Elektrode (3) abgibt.17. The device according to one of claims 11 to 16, characterized in that the alternating high-voltage generator (7) delivers an electrical power of less than 10 W, preferably less than 5 W to the electrode (3).
18. Vorrichtung nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass der Wechselhochspannungsgenerator (7) die Wechselhochspannung mit einer Frequenz von 1 bis 3000 kHz in Form einzelner bipolarer Spannungspulse der Größenordnung 1 kV erzeugt.18. Device according to one of claims 11 to 17, characterized in that the alternating high voltage generator (7) generates the alternating high voltage at a frequency of 1 to 3000 kHz in the form of individual bipolar voltage pulses of the order of 1 kV.
19. Vorrichtung nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, dass eine seitliche Abschirmung (10) aus elektrisch isolierendem und sich nicht statisch aufladenden Material über die aktive Fläche (5) des Dielektrikums (2) vorsteht.19. Device according to one of claims 11 to 18, characterized in that a lateral shield (10) made of electrically insulating and non-statically charging material protrudes over the active surface (5) of the dielectric (2).
20. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Wechselhochspannungsgenerator (7) und die Elektrode (3) mit dem Dielektrikum (2) Teile eines batteriebetriebenen Handgeräts sind. 20. Device according to one of claims 1 to 9, characterized in that the alternating high-voltage generator (7) and the electrode (3) with the dielectric (2) are parts of a battery-operated hand-held device.
PCT/EP2004/005988 2003-06-03 2004-06-03 Treatment of biological material containing living cells using a plasma generated by a gas discharge WO2004105810A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006508258A JP2006526442A (en) 2003-06-03 2004-06-03 Treatment of biological materials including living cells by plasma generated by gas discharge
EP04735879A EP1628688B8 (en) 2003-06-03 2004-06-03 Treatment of biological material containing living cells using a plasma generated by a gas discharge
DE502004003889T DE502004003889D1 (en) 2003-06-03 2004-06-03 TREATMENT OF LIVING CELLS CONTAINING BIOLOGICAL MATERIALS WITH A PLASMA PRODUCED BY A GAS DISCHARGE
US11/291,354 US8103340B2 (en) 2003-06-03 2005-12-01 Treatment of biological material containing living cells using a plasma generated by a gas discharge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10324926.5 2003-06-03
DE10324926A DE10324926B3 (en) 2003-06-03 2003-06-03 Apparatus for treating a biological cell containing living cells with a plasma generated by a gas discharge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/291,354 Continuation-In-Part US8103340B2 (en) 2003-06-03 2005-12-01 Treatment of biological material containing living cells using a plasma generated by a gas discharge

Publications (1)

Publication Number Publication Date
WO2004105810A1 true WO2004105810A1 (en) 2004-12-09

Family

ID=33482384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/005988 WO2004105810A1 (en) 2003-06-03 2004-06-03 Treatment of biological material containing living cells using a plasma generated by a gas discharge

Country Status (7)

Country Link
US (1) US8103340B2 (en)
EP (1) EP1628688B8 (en)
JP (1) JP2006526442A (en)
AT (1) ATE362773T1 (en)
DE (2) DE10324926B3 (en)
ES (1) ES2286638T3 (en)
WO (1) WO2004105810A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1810626A2 (en) 2006-01-18 2007-07-25 Alma Lasers Ltd System for treating biological tissue with a plasma gas discharge
DE102006020483A1 (en) * 2006-04-28 2007-11-08 Fachhochschule Hildesheim/Holzminden/Göttingen Method and device for treating seed with a physical plasma at atmospheric pressure
EP1876986A2 (en) * 2005-04-25 2008-01-16 Drexel University Methods for non-thermal application of gas plasma to living tissue
DE102006011312B4 (en) * 2006-03-11 2010-04-15 Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - Apparatus for plasma treatment under atmospheric pressure
DE202009011521U1 (en) 2009-08-25 2010-12-30 INP Greifswald Leibniz-Institut für Plasmaforschung und Technologie e. V. Plasma cuff
DE202010004332U1 (en) 2010-03-29 2011-10-19 INP Greifswald Leibniz-Institut für Plasmaforschung und Technologie e. V. Plasma source array for the treatment of free-form surfaces
WO2011144344A3 (en) * 2010-05-19 2012-02-16 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Appliance for at least partially sterilizing a contaminated surface
DE102010052723A1 (en) 2010-11-25 2012-05-31 Technische Universität Ilmenau Method and device for preparing or processing process material, in particular biological process material
US8388618B2 (en) 2005-04-25 2013-03-05 Drexel University Control of mucus membrane bleeding with cold plasma
WO2013167693A1 (en) 2012-05-09 2013-11-14 Inp Greifswald - Leibniz-Institut Für Plasmaforschung Und Technologie E. V. Device for the plasma treatment of human, animal or plant surfaces, in particular of skin or mucous membrane areas
WO2014203218A1 (en) 2013-06-21 2014-12-24 L'oreal Cosmetic use of a cold plasma
EP2670477B1 (en) 2011-02-01 2015-11-25 Moe Medical Devices LLC Plasma-assisted skin treatment
WO2021089266A1 (en) * 2019-11-08 2021-05-14 Relyon Plasma Gmbh Discharge system and method for generating a dielectric barrier discharge
WO2023046726A1 (en) * 2021-09-21 2023-03-30 Cinogy Gmbh Electrode assembly for a plasma discharge

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262488A1 (en) * 2007-04-12 2008-10-23 Rhytec Limited Tissue treatment system and a method of cosmetic tissue treatment
US20140188195A1 (en) * 2012-12-28 2014-07-03 Cold Plasma Medical Technologies, Inc. Method and Apparatus for Proximity Control in Cold Plasma Medical Devices
DE102007030915A1 (en) 2007-07-03 2009-01-22 Cinogy Gmbh Device for the treatment of surfaces with a plasma generated by means of an electrode via a solid dielectric by a dielectrically impeded gas discharge
GB2458329B (en) * 2008-03-15 2012-11-07 Creo Medical Ltd Applicator assembly for plasma sterilisation of body cavities
EP2223575A1 (en) * 2007-12-10 2010-09-01 Construction Research & Technology GmbH Method and device for the treatment of surfaces
JP2011521735A (en) 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション System, method and apparatus for generating plasma
DE102008030913B4 (en) * 2008-07-02 2013-03-07 Reinhausen Plasma Gmbh Wundschnellverband
EP2308415A4 (en) * 2008-07-18 2016-04-06 Yoshida Creation Inc Dental clinical apparatus and plasma jet applying device for dentistry
EP2160081A1 (en) * 2008-08-27 2010-03-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-thermal plasma for wound treatment and associated apparatus and method
DE102008045830A1 (en) * 2008-09-05 2010-03-11 Cinogy Gmbh A method of treating a living cell containing biological material
US8821486B2 (en) * 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
US9662163B2 (en) 2008-10-21 2017-05-30 Hermes Innovations Llc Endometrial ablation devices and systems
EP3415172A1 (en) * 2009-06-16 2018-12-19 TheraDep Technologies, Inc. Wound healing device
FR2947416B1 (en) * 2009-06-29 2015-01-16 Univ Toulouse 3 Paul Sabatier DEVICE FOR TRANSMITTING A PLASMA JET FROM ATMOSPHERIC AIR AT TEMPERATURE AND AMBIENT PRESSURE AND USE OF SUCH A DEVICE
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method
GB0920124D0 (en) 2009-11-17 2009-12-30 Linde Ag Device for generating gaseous species
GB201006383D0 (en) * 2010-04-16 2010-06-02 Linde Ag Device for providing a flow of plasma
US10335223B2 (en) 2010-10-26 2019-07-02 Erbe Elektromedizin Gmbh Hemostasis instrument
US9199026B2 (en) 2011-01-07 2015-12-01 Somerset Group Enterprises, Inc. Modular extracorporeal systems and methods for treating blood-borne diseases
DE102011000261A1 (en) 2011-01-21 2012-07-26 Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Dielectric coplanar discharge source for surface treatment under atmospheric pressure
EP2707098A4 (en) * 2011-05-13 2014-05-07 Thomas J Sheperak Plasma directed electron beam wound care system apparatus and method
WO2013106443A1 (en) * 2012-01-09 2013-07-18 Somerset Group Enterprises, Inc. Modular extracorporeal systems and methods for treating blood-borne diseases
ITBO20130087A1 (en) 2013-02-28 2014-08-29 Univ Bologna Alma Mater DEVICE AND METHOD OF GENERATION OF COLD PLASMA
MX2016003876A (en) * 2013-09-27 2017-02-15 Ep Tech Llc Methods and apparatus for delivery of molecules across layers of tissue.
US9649125B2 (en) 2013-10-15 2017-05-16 Hermes Innovations Llc Laparoscopic device
CN107708591B (en) 2015-04-29 2020-09-29 席勒斯科技有限公司 Medical ablation device and method of use
US10716611B2 (en) 2015-05-15 2020-07-21 ClearIt, LLC Systems and methods for tattoo removal using cold plasma
US10052149B2 (en) 2016-01-20 2018-08-21 RELIGN Corporation Arthroscopic devices and methods
WO2017136334A1 (en) 2016-02-01 2017-08-10 Theradep Technologies Inc. Systems and methods for delivering therapeutic agents
EP3445258A4 (en) 2016-04-22 2019-12-04 Relign Corporation Arthroscopic devices and methods
US10765850B2 (en) 2016-05-12 2020-09-08 Gojo Industries, Inc. Methods and systems for trans-tissue substance delivery using plasmaporation
US20180000534A1 (en) 2016-07-01 2018-01-04 RELIGN Corporation Arthroscopic devices and methods
US20180104503A1 (en) 2016-10-15 2018-04-19 Michelle Wirtz Cold atmospheric plasma treatment of actinic keratosis and non-melanoma skin cancer
US10692704B2 (en) 2016-11-10 2020-06-23 Gojo Industries Inc. Methods and systems for generating plasma activated liquid
KR101822916B1 (en) * 2016-11-25 2018-01-31 주식회사 서린메디케어 Skin treatment apparatus using fractional plasma
DE102017118568B3 (en) 2017-08-15 2018-10-31 Cinogy Gmbh Plasma treatment device
DE102017120902A1 (en) 2017-09-11 2019-03-14 Cinogy Gmbh Plasma treatment device
KR102017259B1 (en) * 2017-10-12 2019-09-02 한국기계연구원 Skin reactor
US11690998B2 (en) 2017-10-31 2023-07-04 Theradep Technologies, Inc. Methods of treating bacterial infections
US11678612B2 (en) 2018-02-28 2023-06-20 Jazan University Plasma treatment method and system for plants
KR20210035196A (en) * 2018-06-29 2021-03-31 드렉셀유니버시티 Use of cold atmospheric plasma for wart treatment
EP3897433A1 (en) 2018-12-19 2021-10-27 Clearit, LLC Systems and methods for tattoo removal using an applied electric field
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
US11049694B2 (en) * 2019-09-27 2021-06-29 Applied Materials, Inc. Modular microwave source with embedded ground surface
US20230012949A1 (en) 2019-12-10 2023-01-19 Activcell Group Ag Therapeutic device for cell therapy or cell stimulation
DE102020215097A1 (en) 2020-12-01 2022-06-02 BSH Hausgeräte GmbH plasma device
DE102022124101A1 (en) 2022-09-20 2024-03-21 Cinogy Gmbh Plasma treatment arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007248A1 (en) * 1986-05-31 1987-12-03 Oliver Sieke Process and device for treating objects
US5866082A (en) * 1997-03-27 1999-02-02 Omega 5 Technologies Inc. Hand-held ozone-producing apparatus
EP0956827A1 (en) * 1998-05-06 1999-11-17 Erbe Elektromedizin GmbH Electrosurgical apparatus
WO2004023927A1 (en) * 2002-08-24 2004-03-25 Vioel Wolfgang Method and device for preparing a fingernail or a toe-nail for coating, in particular with varnish

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0784452T3 (en) * 1994-08-29 2004-02-16 Plasma Surgical Invest Ltd Apparatus for stopping bleeding in living human and animal tissues
US6213999B1 (en) * 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US5886082A (en) * 1995-04-05 1999-03-23 Kansai Paint Co., Ltd. Aqueous coating composition
JPH1147240A (en) 1997-08-08 1999-02-23 Nippon Paint Co Ltd Disinfection method using mobile type discharger
RU2138213C1 (en) * 1998-06-15 1999-09-27 Всероссийский электротехнический институт им.В.И.Ленина Device for coagulation and stimulation of healing of wound defects of biological tissues
US6543460B1 (en) * 1999-06-24 2003-04-08 Wisconsin Alumni Research Foundation Cold-plasma treatment of seeds to remove surface materials
DE19957775C1 (en) 1999-12-01 2000-07-13 Wolfgang Vioel Modification of wood surfaces uses an electrode fed with alternating high voltages which generates an electrical discharge under atmospheric pressure to cover the wood surface
GB2378387B (en) 2001-06-13 2004-11-17 Newford Company Ltd Apparatus for beauty treatment
US6780178B2 (en) * 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007248A1 (en) * 1986-05-31 1987-12-03 Oliver Sieke Process and device for treating objects
US5866082A (en) * 1997-03-27 1999-02-02 Omega 5 Technologies Inc. Hand-held ozone-producing apparatus
EP0956827A1 (en) * 1998-05-06 1999-11-17 Erbe Elektromedizin GmbH Electrosurgical apparatus
WO2004023927A1 (en) * 2002-08-24 2004-03-25 Vioel Wolfgang Method and device for preparing a fingernail or a toe-nail for coating, in particular with varnish

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9215788B2 (en) 2005-01-18 2015-12-15 Alma Lasers Ltd. System and method for treating biological tissue with a plasma gas discharge
US8388618B2 (en) 2005-04-25 2013-03-05 Drexel University Control of mucus membrane bleeding with cold plasma
EP1876986A2 (en) * 2005-04-25 2008-01-16 Drexel University Methods for non-thermal application of gas plasma to living tissue
EP1876986B1 (en) * 2005-04-25 2014-04-09 Drexel University Device for non-thermal application of gas plasma to living tissue
US8521274B2 (en) 2005-04-25 2013-08-27 Drexel University Methods for non-thermal application of gas plasma to living tissue
EP1810626A3 (en) * 2006-01-18 2007-09-12 Alma Lasers Ltd System for treating biological tissue with a plasma gas discharge
EP1810626A2 (en) 2006-01-18 2007-07-25 Alma Lasers Ltd System for treating biological tissue with a plasma gas discharge
DE102006011312B4 (en) * 2006-03-11 2010-04-15 Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - Apparatus for plasma treatment under atmospheric pressure
US8136481B2 (en) 2006-03-11 2012-03-20 Fachhochschule Hildesheim/Holzminden/Goettingen Device for plasma treatment at atmospheric pressure
DE102006020483A1 (en) * 2006-04-28 2007-11-08 Fachhochschule Hildesheim/Holzminden/Göttingen Method and device for treating seed with a physical plasma at atmospheric pressure
WO2007124945A1 (en) * 2006-04-28 2007-11-08 Fachhochschule Hildesheim/Holzminden/Göttingen Method and device for treating seeds with a physical plasma at atmospheric pressure
DE202009011521U1 (en) 2009-08-25 2010-12-30 INP Greifswald Leibniz-Institut für Plasmaforschung und Technologie e. V. Plasma cuff
WO2011023478A1 (en) 2009-08-25 2011-03-03 Inp Greifswald Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V. Device for the planar treatment of areas of human or animal skin or mucous membrane surfaces by means of a cold atmospheric pressure plasma
DE202010004332U1 (en) 2010-03-29 2011-10-19 INP Greifswald Leibniz-Institut für Plasmaforschung und Technologie e. V. Plasma source array for the treatment of free-form surfaces
WO2011144344A3 (en) * 2010-05-19 2012-02-16 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Appliance for at least partially sterilizing a contaminated surface
DE102010052723A1 (en) 2010-11-25 2012-05-31 Technische Universität Ilmenau Method and device for preparing or processing process material, in particular biological process material
DE102010052723B4 (en) * 2010-11-25 2013-11-07 Technische Universität Ilmenau Method and device for preparing or processing process material, in particular biological process material
EP2670477B1 (en) 2011-02-01 2015-11-25 Moe Medical Devices LLC Plasma-assisted skin treatment
WO2013167693A1 (en) 2012-05-09 2013-11-14 Inp Greifswald - Leibniz-Institut Für Plasmaforschung Und Technologie E. V. Device for the plasma treatment of human, animal or plant surfaces, in particular of skin or mucous membrane areas
DE102012207750A1 (en) 2012-05-09 2013-11-28 Leibniz-Institut für Plasmaforschung und Technologie e.V. APPARATUS FOR THE PLASMA TREATMENT OF HUMAN, ANIMAL OR VEGETABLE SURFACES, IN PARTICULAR OF SKIN OR TINIAL TIPS
WO2014203218A1 (en) 2013-06-21 2014-12-24 L'oreal Cosmetic use of a cold plasma
FR3007273A1 (en) * 2013-06-21 2014-12-26 Oreal COSMETIC USE OF COLD PLASMA
WO2021089266A1 (en) * 2019-11-08 2021-05-14 Relyon Plasma Gmbh Discharge system and method for generating a dielectric barrier discharge
WO2023046726A1 (en) * 2021-09-21 2023-03-30 Cinogy Gmbh Electrode assembly for a plasma discharge

Also Published As

Publication number Publication date
EP1628688B1 (en) 2007-05-23
US8103340B2 (en) 2012-01-24
US20060084158A1 (en) 2006-04-20
ATE362773T1 (en) 2007-06-15
JP2006526442A (en) 2006-11-24
EP1628688A1 (en) 2006-03-01
DE10324926B3 (en) 2005-02-03
ES2286638T3 (en) 2007-12-01
DE502004003889D1 (en) 2007-07-05
EP1628688B8 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP1628688B8 (en) Treatment of biological material containing living cells using a plasma generated by a gas discharge
EP2465332B1 (en) Device for treating living cells by means of a plasma
EP2163143B1 (en) Device for the treatment of surfaces with a plasma generated by an electrode over a solid dielectric via a dielectric barrier gas discharge
DE102013113941B4 (en) Arrangement for the treatment of wounds
EP2505042A2 (en) Device and method for generating a pulsed anisothermal atmospheric pressure plasma
EP2462785B1 (en) Device for generating a non-thermal atmospheric pressure plasma
DE102012025079B4 (en) Apparatus and method for treating biological tissue with a low pressure plasma
DE102009005194B4 (en) Laser processing device for processing a material
DE102010011643A1 (en) Apparatus and method for the plasma treatment of living tissue
DE102012025080A1 (en) Apparatus and method for treating biological tissue with a low pressure plasma
DE102006020483A1 (en) Method and device for treating seed with a physical plasma at atmospheric pressure
DE10318570B4 (en) Plasma sterilization device
EP2362755A1 (en) Method for treating a biological material comprising living cells
DE102009002278A1 (en) Device for producing e.g. non-thermal plasma, for treatment of e.g. chronic wounds, has plasma and ultrasonic effective areas arranged next to each other, and three electrodes for generating plasma and ultrasonic pulses
EP1151724B1 (en) Ultrasound applicator for disintegration of tissue
EP2364119B1 (en) Laser processing device for processing tissue
DE60308056T2 (en) METHOD FOR PLASMASTERILIZING DIELECTRIC OBJECTS WITH HOLLOW PARTS
EP0429814A2 (en) Process and apparatus for initiating and/or promoting chemical processes
DE102019006536B3 (en) Device and method for skin and in particular wound treatment using plasma
EP2394694A1 (en) Electro-surgical device for treating inflammations by means of invasive electro-stimulation
DE60202867T2 (en) DEVICE FOR PRODUCING OZONE GAS FOR BEAUTY TREATMENT
DE102020100828B4 (en) Device for generating a dielectric barrier discharge and method for treating an object to be activated
WO2021089266A1 (en) Discharge system and method for generating a dielectric barrier discharge
DE60132260T2 (en) LASEREPILATIONSGERÄT
DE10240922A1 (en) Irradiation apparatus for treating cell-mediated inflammation of skin comprises lamp producing light pulses and cooling bath for part of body being treated

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004735879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006508258

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11291354

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004735879

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11291354

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004735879

Country of ref document: EP