WO2004104448A1 - Hydrostatic stepless speed change device - Google Patents

Hydrostatic stepless speed change device Download PDF

Info

Publication number
WO2004104448A1
WO2004104448A1 PCT/JP2004/005833 JP2004005833W WO2004104448A1 WO 2004104448 A1 WO2004104448 A1 WO 2004104448A1 JP 2004005833 W JP2004005833 W JP 2004005833W WO 2004104448 A1 WO2004104448 A1 WO 2004104448A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger block
motor
pump
oil passage
continuously variable
Prior art date
Application number
PCT/JP2004/005833
Other languages
French (fr)
Japanese (ja)
Inventor
Takeaki Nozaki
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to JP2005506316A priority Critical patent/JP4324165B2/en
Publication of WO2004104448A1 publication Critical patent/WO2004104448A1/en
Priority to US11/283,946 priority patent/US20060120884A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/04Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit
    • F16H39/06Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type
    • F16H39/08Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders
    • F16H39/10Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders with cylinders arranged around, and parallel or approximately parallel to the main axis of the gearing
    • F16H39/14Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders with cylinders arranged around, and parallel or approximately parallel to the main axis of the gearing with cylinders carried in rotary cylinder blocks or cylinder-bearing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion

Definitions

  • the present invention relates to a configuration of a hydrostatic continuously variable transmission, and a hydraulic / mechanical continuously variable transmission formed by combining the hydrostatic continuously variable transmission with a planetary gear mechanism.
  • a pump rotation shaft and a motor rotation shaft are formed by a housing and a high-pressure oil passage.
  • the plunger blocks which are mounted in parallel with bearings provided on both sides of the plate and are rotationally constrained to be mounted on the respective rotating shafts, have their respective rotating sliding surfaces opposed to the high-pressure oil passage plate.
  • a valve plate for separating into a suction port and a discharge port is interposed between the plunger block and the high-pressure oil passage plate, and the valve plate is fixed to the high-pressure oil passage plate.
  • the plunger in the plunger block is slid in the direction of the rotation axis by a swash plate arranged on the opposite side of the high-pressure oil passage plate with the plunger block interposed therebetween.
  • the oil supply and discharge are performed between the units (for example, see Japanese Patent Application Laid-Open No. 2003-035276).
  • the rotary sliding surface of the plunger block is slidably contacted with the non-rotatable valve plate fixed to the high-pressure oil passage plate to form a relative rotary sliding surface. Therefore, the relative rotation speed between the two becomes the rotation speed of the plunger block itself, which causes a problem that a large power loss occurs due to friction generated between the valve plate and the plunger block. Also, as with oil leaks, relative rotation Since there are two rolling sliding surfaces on the pump side and the motor side, it can be said that this frictional resistance greatly affects the power port.
  • HMT hydraulic / mechanical continuously variable transmission
  • the rotational power is input to one of the three elements of sun gear, internal gear, and planet carrier (first element), and one of the remaining two elements (second element) ), And output or input to HST from another element (third element).
  • the HMT is divided into two types depending on whether the output of the HST is linked to the third element or the input to the HST is linked.
  • the latter is of the output split type.
  • the third element and the HST are interlocked by a power transmission shaft, and the power transmission shaft and the input shaft or the output shaft of the HST are interlocked via gears.
  • the hydraulic pump and the hydraulic motor are arranged in parallel by sliding the rotating sliding surface of the plunger block, which is mounted on the parallel rotating shaft so that they cannot rotate relative to each other, to the high-pressure oil passage plate.
  • This configuration is referred to as a second conventional configuration in the HMT; see Japanese Patent Application Laid-Open No. 2000-127785).
  • an HMT in which the hydraulic pump and the hydraulic motor are arranged coaxially.
  • the hydraulic pump is configured as a fixed displacement type and the hydraulic motor is configured as a variable displacement type.
  • the split-output type is one in which the hydraulic pump is configured as a variable displacement type and the hydraulic motor is configured as a fixed displacement type (this configuration is referred to as the third conventional configuration in HMT; 1).
  • a split input type is adopted, in which a fixed swash plate of a hydraulic pump is fitted inside a hollow input shaft. ing.
  • the swash plate of the hydraulic pump is fitted inside the hollow input shaft, and the swash plate rotates, so that the hydraulic pump is configured as a variable displacement type. Can not. For this reason, a gear ratio lower than a fixed gear ratio uniquely determined by the angle of the fixed swash plate cannot be realized, that is, a continuously variable speed operation from zero cannot be performed. I have. In addition, since forward and reverse rotation cannot be performed only by operating the swash plate, a mechanism for switching between forward and backward is required.
  • the swash plate on the hydraulic motor side is configured to rotate, so it cannot be said that the hydraulic motor cannot be a variable capacity type, and the shift range cannot be widened.
  • the capacity of the hydraulic pump must be about twice as large as that of the hydraulic motor.
  • the third conventional configuration has a problem that the shift range is narrow, and a problem that the manufacturing cost is high due to the presence of the mechanism for switching between forward and backward.
  • Patent Document 1 JP-A-2000-127785
  • the present invention relates to a hydrostatic continuously variable transmission that combines an axial piston type hydraulic pump and a hydraulic motor, wherein a pump-side plunger block and a motor-side plunger block slide and rotate with each other. Faced through both plunges A plurality of communication passages for fluid communication between the cylinders formed in the first block are formed, and a separation element is provided in the plurality of communication passages. The plurality of communication path forces S are divided into a discharge region and a suction region.
  • one relative rotation sliding surface (mating surface) is formed, and the relative rotation sliding surface is compared with the conventional configuration in which two relative rotation sliding surfaces are formed on the high-pressure oil passage plate.
  • the amount of leakage from the running surface can be relatively reduced.
  • the required amount of charge oil can be reduced, and power loss and cost can be reduced.
  • the plunger blocks rotate in the same direction, they rotate relative to each other at a rotational speed determined from a difference between the rotational speeds of the plunger blocks, thereby reducing a power loss generated between the plunger block and the rotational sliding surface. be able to.
  • the separation element is constituted by a spool valve provided in one of the plunger blocks in the same number as the number of cylinders in one plunger block.
  • the spool valve is radially disposed so as to be slidable about the rotation axis of the plunger block, and its outer end is provided on the inner peripheral surface of an inner ring of a bearing eccentrically disposed with respect to the rotation axis.
  • the plunger block is slid in the radial direction of the rotating shaft in accordance with the rotation of the plunger block to open or divide an oil passage connecting the cylinders of the plunger blocks. It is assumed that the oil passage is divided and the oil passage of each plunger block is divided into a suction region and a discharge region.
  • the rotation axis of the motor-side plunger block and the rotation axis of the pump-side plunger block can be coaxially arranged, and a compact hydrostatic continuously variable transmission can be configured.
  • rotation axis of the motor-side plunger block and the rotation axis of the pump-side plunger block are arranged coaxially, and the rotation axis and the planetary gear mechanism are combined to form an input split type.
  • This is a hydrostatic type continuously variable transmission that can constitute a hydraulic / mechanical continuously variable transmission.
  • rotation axis of the motor-side plunger block and the rotation axis of the pump-side plunger block are arranged coaxially, and the rotation axis and the planetary gear mechanism are combined to form an output split type.
  • This is a hydrostatic type continuously variable transmission that can constitute a hydraulic / mechanical continuously variable transmission.
  • an inner peripheral surface of an inner race of the bearing is inclined with respect to an axial direction of the rotating shaft.
  • the contact portion of the distal end portion of the spool valve contacting the inner peripheral surface with respect to the inner peripheral surface can be rotated and slid, and the durability of the distal end portion of the spool valve can be improved.
  • the sliding direction of the spool valve is inclined with respect to the axial direction of the rotating shaft.
  • the contact portion of the tip of the spool valve that contacts the inner peripheral surface of the bearing with respect to the inner peripheral surface can be rotated and slid, and the durability of the distal end portion of the spool valve can be improved.
  • the separation element supports the pump-side plunger block and the motor-side plunger block on the eccentrically arranged rotating shafts, respectively, so as to face the relative rotation sliding surface between the two plunger blocks.
  • the separation element can be configured with a simple configuration such as the eccentric arrangement of both rotating shafts, and a hydrostatic continuously variable transmission with a small number of parts can be configured.
  • an oil passage plate that rotates integrally with one of the plunger blocks is provided, and the oil passage plate and the other plunger block are brought into contact with each other so as to be relatively rotatable and slidable.
  • a plurality of oil passages are formed in the oil passage plate so as to penetrate in the axial direction, and these oil passages are arranged on the side on which the oil passage plate is integrally rotated.
  • the rotation shaft of the plunger block on the side where the oil passage plate is integrally rotated is supported by the oil passage plate. It shall be.
  • the sliding resistance generated between the rotating sliding surfaces of both plunger blocks can be reduced with a simple configuration, and power loss can be reduced. Further, since the rotation shaft is supported by the oil passage plate, it is possible to prevent the rotation shaft from moving.
  • a charge oil supply mechanism is provided between a connection point of the hydrostatic type continuously variable transmission with a charge pump provided in a case housing and a hydraulic circuit in a motor-side or pump-side plunger block. It shall be.
  • an oil passage is formed in a fixed swash plate, a plunger block, and a rotating shaft, and the oil passage is provided inside the fixed swash plate, the plunger block, and the rotating shaft. This makes it possible to reduce the size of the hydrostatic continuously variable transmission. .
  • a check valve mechanism is provided between a connection point of a charge pump provided in a case housing of the hydrostatic stepless transmission and a hydraulic circuit in a motor-side or pump-side plunger block. .
  • a check mechanism is provided inside a fixed swash plate, a plunger block, and a rotating shaft, whereby the compactness of the hydrostatic continuously variable transmission can be achieved.
  • the case housing of the continuously variable transmission is located near the separation element. Harm 1J.
  • a hydraulic pump and a hydraulic motor can be separately arranged in each case housing, and a configuration that is easy to operate can be achieved.
  • case housing of the hydrostatic continuously variable transmission is configured to be divided, and a hydraulic motor and a hydraulic pump are housed in a first housing, and a first housing is formed by other housings. Is closed.
  • the rigidity of the housing can be improved as compared with a mode in which the motor'pumps are individually housed in separate housings.
  • FIG. 1 is a side sectional view showing a first configuration example of an HST.
  • FIG. 1 is a partial sectional view taken along the line ⁇ - ⁇ in FIG.
  • FIG. 2 is a partial cross-sectional view taken along the line ⁇ - ⁇ in FIG. 1.
  • FIG. 4 is a diagram showing a state where an oil passage formed between both plunger blocks is divided.
  • FIG. 5 (a) is a diagram showing an oil passage formed in a first section, and (b) is a diagram showing an oil passage formed in a second section. .
  • FIG. 6 is a view showing a rotary sliding surface of a pump-side plunger block.
  • FIG. 7 is a view showing a rotary sliding surface of a motor-side plunger block.
  • FIG. 8 is a view showing a rotary sliding surface of an oil passage plate.
  • [Garden 9] is a partial cross-sectional side view showing a series of oil passages formed by a road board and the like.
  • Garden 10 is a side sectional view showing a configuration example in which the spool valve is inclined in the first configuration example.
  • [Garden 11] is a view showing the configuration of the inclined surface of the constant swash plate.
  • Garden 12 is a plan sectional view showing the configuration of a charge oil supply mechanism and a check relief mechanism.
  • FIG. 13 is a view showing a configuration of a valve plate.
  • FIG. 16 (a) is a diagram showing a case housing configured to be split at the front side of the separation element, (b) is a diagram illustrating a case housing configured to be split at the rear side of the separation element, (C) is a diagram showing a case housing configured to house a hydraulic motor and a hydraulic pump in a first housing.
  • FIG. 17 is a diagram showing a configuration of an HST in which a hydraulic motor and a hydraulic pump are housed in a first housing.
  • FIG. 18 is an overall configuration diagram of an input split type HMT.
  • Garden 20 is a side sectional view showing a configuration example in which a spool vanoleb is inclined.
  • Garden 21 is a side sectional view showing the configuration of the charge oil supply mechanism and the check relief mechanism.
  • FIG. 22 is an overall configuration diagram of an output split type HMT.
  • FIG. 25 is a partial cross-sectional view taken along the line XXV-XXV shown in FIG. 24.
  • FIG. 26 is a diagram showing a configuration of a rotary sliding surface of a pump-side plunger block.
  • FIG. 27 is a diagram showing a configuration of a rotary sliding surface of a motor-side plunger block.
  • FIG. 28 is a view showing a configuration of an oil passage plate.
  • FIG. 29 is a diagram showing a configuration of an oil passage communicating the cylinders of the plunger block.
  • FIG. 30 is a view showing a relative rotation sliding surface formed when the oil passage plate is integrated with the plunger block in the same configuration.
  • the hydrostatic continuously variable transmission 1 (hereinafter referred to as “HST1”) as shown in FIGS. 1 and 2 has the following configuration.
  • the axial piston pump 30 (hereinafter referred to as “hydraulic pump 30”) and the axial pump 30 An HST1 equipped with a hydraulic piston motor 40 (hereinafter referred to as a “hydraulic motor 40”), and the pump-side plunger block 31 and the motor-side plan supported respectively by two concentrically arranged rotating shafts 30a'40a.
  • the jar blocks 41 are disposed to face each other, and the same number of spool valves 50, 50 as the number of cylinders 41a '41a (or 31a' 31a) of the plunger blocks are provided in the motor-side plunger block 41 (or 31).
  • the rotation shaft 40a (or 31a) is slidably arranged radially around the center.
  • the outer ends of the spool valves 50, 50 are in contact with the inner peripheral surface 61 of the inner ring 60a of the bearing 60 eccentrically arranged with respect to the rotating shaft 30a'40a, and are radially moved according to the rotation of the motor-side plunger block 41.
  • the oil passages 6a'6b for connecting the cylinders 31a'41a of the plunger blocks 31 and 41 to each other are opened or divided by the spool valves 50 and 50.
  • the HST 1 having the above configuration has a configuration in which the side on which the rotary shaft 30a is disposed in the axial direction of the rotary shaft 30a'40a is the front side, the hydraulic pump 30 is disposed on the front side, and the hydraulic motor 40 is disposed on the rear side. It is housed in the case housing 2a '2b which is a front and rear split type.
  • bearings 30b'40b are fitted on the front side of the case housing 2a and the rear side of the case housing 2b, respectively.
  • the two rotation shafts 30a'40a are arranged concentrically with the front end surfaces of the rotation shafts 40a facing each other.
  • the rotating shaft 30a supports a pump-side plunger block 31 force and the rotating shaft 40a supports a motor-side plunger block 41 so that they cannot rotate relative to each other, and the rotating sliding surfaces 34 and 44 face each other.
  • one relative rotational sliding surface (the mating surface 5c; see FIG. 1) is formed.
  • a movable swash plate 33M is arranged between the bearing 30b and the pump-side plunger block 31, and is formed at equal intervals on the pump-side plunger block 31 and in the axial direction of the rotary shaft 30a.
  • the variable displacement hydraulic pump 30 is configured so that plungers 32 and 32 in the provided 31a '31a are slid back and forth.
  • a fixed swash plate 43F is disposed between the bearing 40b and the motor-side plunger block 41, and is formed at equal intervals on the motor-side plunger block 41 and in the axial direction of the rotary shaft 40a.
  • the fixed displacement hydraulic motor 40 has a configuration in which plungers 42 and 42 in the provided 41a'41a are slid back and forth. Further, the swash plate tilt shaft 33a of the movable swash plate 33M of the hydraulic pump 30 and the swash plate tilt shaft 43a of the fixed swash plate 43F of the hydraulic motor 40 are parallel to each other.
  • the swash plate tilting shafts 33a and 43a have a relationship perpendicular to the paper surface in FIG.
  • the sum of the bottom area 32t 'and 32t of the rotation sliding surface 34 of the cylinder 31a' 31a of the pump-side plunger block 31 and the rotation of the cylinder 41a'41a of the motor-side plunger block 41 are shown.
  • the sum of the bottom areas 42t'42t on the sliding surface 44 side is designed to be almost the same, and the total pressure receiving area of each cylinder 31a'41a of the pump side plunger block 31 and the motor side plunger block 41 is calculated. They are almost the same.
  • a bearing 7 is fitted to the front end of the rotating shaft 40a so as to be relatively non-rotatable, and is rotated by the bearing 7.
  • the rear ends of the shafts 30a are inserted so as to be relatively rotatable, so that the end surfaces of the two rotating shafts 30a and 40a are arranged close to and opposed to each other.
  • the motor-side plunger block 41 has its outer peripheral surface supported by a bearing 160 fitted to the case housing 2b.
  • a pump-side port 34a'34a for individually communicating with the inside of each cylinder 31a'31a is opened on the rotary sliding surface 34 of the pump-side plunger block 31.
  • the sliding of the plungers 32 allows oil to pass through the pump-side port 34a'34a.
  • a motor-side port 44a'44a for individually communicating with each cylinder 41a'41a has one motor-side port 44a'44a.
  • Two openings are provided for the cylinders 41a'41a, and the sliding of the plungers 42 and 42 allows oil to pass through the motor-side ports 44a'44a.
  • one of the rotational sliding surfaces 34 of the pump-side plunger block 31 and the rotational sliding surface 44 of the motor-side plunger block 41 is provided.
  • the plunger blocks 31 and 41 have the same shape as the ports 34a'44a of the rotation sliding surfaces 34 and 44 of the plunger blocks 31 and 41 on the side where the rotation is restricted.
  • An oil passage plate 5 to be opened is sandwiched.
  • the arrangement is such that the rotation is restricted with respect to the motor-side plunger block 41, and the arrangement of the communication ports 5a 'and 5a is shown in FIG.
  • the rotation sliding surface 34 of the pump side plunger block 31 is brought into contact with the rotation sliding surface 55 of the A series of oil passages 6 are formed densely.
  • the relative rotation sliding surface (the mating surface 5c) between the two plunger blocks 31 and 41 of the pump motor is changed to the rotation sliding surface 55 of the oil passage plate 5 and the pump-side plunger block.
  • 31 is a contact surface with the rotary sliding surface 34.
  • This oil passage plate 5 is intended, in particular, to reduce sliding resistance generated between the two rotating sliding surfaces 34 and 44 and to prevent seizure. It is covered with a material. If there is no problem of seizure between the plunger blocks 31 and 41, the configuration may be such that the oil passage plate 5 is not provided and the rotary sliding surfaces 34 and 44 are directly contacted. Good.
  • the cylinders are arranged with the rotary shaft 40a as a center.
  • 51a'51a is formed radially, and column-shaped spool valves 50 are slidably disposed in the cylinder 51a'51a in the radial direction.
  • a series of annular oil passages 54 are formed in the circumferential direction of the rotary shaft 40a between the bottom of the cylinders 51a '51a' and the outer peripheral surface of the bearing 7 as shown in FIG.
  • a series of oil chambers 51b are formed so as to communicate with each other in the cylinders 51a '51a' ''.
  • the same number of the spool valves 50 as the number of the cylinders 41a and 41a are arranged radially around the rotation shaft 40a, and are formed in a hemispherical shape.
  • the distal end portion 50a'50a ' projects radially outward from the motor-side plunger block 41, and is eccentrically arranged on the rotation shaft 40a to form a bearing 60 for the outer ring of the motor-side plunger block 41.
  • the inner ring 60a is configured to be in contact with the inner peripheral surface 61 of the inner ring 60a.
  • the direction of eccentricity of the bearing 60 with respect to the rotating shaft 40a is the axial direction of the swash plate tilting shafts 33a'43a (FIG.
  • a straight line 4h connecting the axis 60d of the rotating shaft 40a and the axis 40d of the rotating shaft 40a is parallel to the swash plate tilting axis 33a'43a.
  • the inner diameter of the inner peripheral surface 61 of the bearing 60 (the inner ring 60a) is gradually reduced from the axial front side to the rear side of the rotary shaft 40a, so that the inner peripheral surface 61 is The rotary shaft 40a is tilted with respect to the axial direction.
  • the spool valve 50 is a columnar body having a small-diameter portion 50d disposed between two large-diameter portions 50b '50c.
  • the outer peripheral surface of the cylinder 51a is slid on the inner peripheral surface of the cylinder 51a, and an oil passage 56 is formed between the small-diameter portion 50d and the inner peripheral surface of the cylinder 51a as shown in FIG.
  • the oil passage 56 constitutes a part of the series of oil passages 6 that communicate the cylinder 41a of the motor-side plunger block 41 with the cylinder 31a of the pump-side plunger block 31.
  • the oil passage 56 is closed by the large diameter portion 50c of the spool valve 50 at a position where the motor-side plunger block 41 has a predetermined rotation angle. That is, at the position of the rotation angle 4v'4w, which is 90 degrees out of phase with respect to the straight line 4h parallel to the swash plate tilting shaft 33a '43a as shown in FIGS.
  • the large diameter portion 50c of the valve 50 is configured to reach the position of the port 44a of the rotary sliding surface 44, and the opening height of the port 44a in the radial direction about the rotation axis 40a and the large diameter
  • the oil passages 56 are closed by the spool valve 50 at the rotation angle 4v'4w with the shaft length of the portion 50c being substantially the same.
  • the bearing 60 is eccentric in the vertical direction with respect to the rotating shaft 40a, and as shown in FIG. 1, the spool valve 50 is at the uppermost position (rotation angle 4 V) and the lowermost position (rotation angle 4 V).
  • the oil passage 56 is closed as shown in FIG.
  • the discharge area (or suction area) of the hydraulic pump 30 is formed as the suction area (or discharge area) of the hydraulic motor 40, and in the second section 12,
  • the hydraulic pump 30 has a suction area (or discharge area), and a hydraulic motor 40 has a discharge area (suction area) formed therein.
  • a suction area and a discharge area Is separated by a spool valve 50 that closes the oil passage 56.
  • a communication passage (oil passages 6a and 6b) for fluid communication between the formed cylinders is formed, and a separation element (a spool valve 50, a bearing 60, and the like) is provided in the communication passage.
  • a passage (oil passage 6b) that communicates with the suction area. That is, the oil passage group in each plunger block 31 ⁇ 41 is divided into a suction area and a discharge area (one of them is oil path 6a and the other is 6b) by the separation element. .
  • the separation element is configured by the spool valve 50 provided in the one of the plunger blocks in the same number as the number of cylinders of the plunger block.
  • Numeral 50 is radially disposed so as to be slidable about the rotation axis of the plunger block, and its outer end is in contact with the inner peripheral surface of an inner ring 60a of a bearing 60 eccentrically arranged with respect to the rotation axis.
  • the plunger block is slid in the radial direction of the rotating shaft in accordance with the rotation of the plunger block, and opens or separates an oil passage communicating the cylinders of the plunger blocks.
  • the oil passage is divided, and the oil passage of each plunger block is divided into a suction area and a discharge area.
  • the HST1 is configured to supply pressure oil to the hydraulic motor 40 from the hydraulic pump 30 using the rotating shaft 30a as an input shaft and drive the rotating shaft 40a as an output shaft. Is done.
  • the swash plate tilt shaft 33a of the movable swash plate 33M of the hydraulic pump 30 and the swash plate tilt shaft 43a of the fixed swash plate 43F of the hydraulic motor 40 are parallel. Therefore, by setting the inclination directions of the two swash plates 33M and 43F in the main drive direction (for example, the direction in which the vehicle body equipped with the HST1 is moved forward) to the same direction, the plunger 32 of the hydraulic pump 30 can be set. Uses a smaller bearing 160 that can cancel out the thrust and radial loads with respect to the rotating shaft 30a '40a generated by the sliding of the plunger 32 of the hydraulic motor 40 and the plunger 42 of the hydraulic motor 40. As a result, the motor-side plunger block 41 can be supported, and power loss and cost can be reduced.
  • the total pressure receiving areas of the cylinders 31a and 41a of the pump-side plunger block 31 and the motor-side plunger block 41 are substantially the same.
  • the thrust direction and the radial load can cancel each other more reliably.
  • the number of cylinders 31a and 41a is not particularly limited, and the degree of freedom in designing the plunger block is wide.
  • the rotating shaft 40a of the motor-side plunger block 41 and the rotating shaft 30a of the pump-side plunger block 31 can be arranged coaxially, so that a compact hydrostatic A continuously variable transmission 1 can be configured.
  • the pump-side plunger block 31 and the motor-side plunger block 41 rotate in the same direction as shown in FIG. As a result, it is possible to reduce the power loss generated between the rotary sliding surfaces 34 and 44 (55).
  • the rotary sliding surfaces 34 and 44 (55) face each other to form one relative rotary sliding surface (the mating surface 5c). It is possible to relatively reduce the amount of leakage from the relative rotation sliding surface (the mating surface 5c) as compared with the configuration in which two relative rotation sliding surfaces are formed with respect to the high pressure oil passage plate. it can. From this, The required amount of charge oil can be reduced, and power loss and cost can be reduced.
  • the rotating shaft 30a'40a is configured to be supported by the bearings 30b'40b, and the rear end surface of the rotating shaft 30a and the front end surface of the rotating shaft 40a are close to each other.
  • the entire length of the HST1 can be made more compact than in a conventional configuration in which bearings are arranged on a high-pressure oil passage plate to support a rotary shaft.
  • the sliding resistance generated between the two rotating sliding surfaces 34 and 44 can be reduced with a simple configuration. .
  • power loss can be reduced.
  • the inner peripheral surface 61 of the inner ring 60a of the bearing 60 as shown in FIG. 1 is inclined with respect to the axial direction of the rotating shaft 40a, the inner peripheral surface 61 contacts the inner peripheral surface 61.
  • the hemispherical tip portions 50a '50a' ⁇ ⁇ of the spool valves 50 ⁇ 50 rotate about the sliding direction of the spool valves 50 ⁇ 50 as the motor-side plunger block 41 rotates.
  • the distal end portion 50a '50 a - an abutment against the inner peripheral surface 61 can be rotated sliding, it is possible to improve the durability of the spool valve 50 tip.
  • a cylinder 51a ′ 51a on which the spool valve 50 slides is attached to the rotation shaft 40a. It can be formed so as to be inclined with respect to the axial direction, the sliding direction of the spool valve is inclined with respect to the radial direction of the rotating shaft 40a, and the inner peripheral surface 61 of the inner ring 60a of the bearing 60 can be configured to be flat. . According to this configuration, similarly to the configuration in which the inner peripheral surface 61 is inclined, the effect of improving the durability of the spool valve 50 by rotating the spool valve 50 in the sliding direction can be obtained. A general-purpose bearing that makes the inner peripheral surface 61 flat can be used.
  • the configuration described below is based on the configuration of the charge oil supply mechanism between the connection point (charge oil passage 2f) with the charge pump provided in the case housing 2b of the HST1 and the hydraulic circuit in the motor or pump side plunger block.
  • This is a specific example of a configuration including a relief mechanism, which is installed inside a fixed swash plate, a plunger block, and a rotating shaft, respectively, to achieve the compactness of the HST1. Things.
  • a charge oil supply mechanism and a chuck relief mechanism are provided in the fixed swash plate 43f of the hydraulic motor 40.
  • a charge oil supply mechanism and a check relief mechanism are provided in the motor-side plunger block 41 of the hydraulic motor 40.
  • a charge oil supply mechanism and a check relief mechanism are provided in the rotating shaft 40a of the hydraulic motor 40.
  • FIGS. 1, 11 to 13 show a first configuration example relating to the charge oil supply mechanism and the check-relief mechanism.
  • a charge oil is formed on a fixed swash plate 43F of the hydraulic motor 40.
  • the passage 47 and the cylinder 41a'41a of the motor-side plunger block 41 are connected to the connecting oil passage 46a'46a formed in the bush 46,46 and the connecting oil formed in the plunger 42,42.
  • a structure in which a check oil relief valve 48 having a function of a check valve and a relief valve is provided in the charge oil passage 47 in the fixed swash plate 43F (FIG. 12). Is what you do.
  • a series of through holes 43c forming the charge oil passage 47 are formed in the fixed swash plate 43F as shown in FIGS. 11 and 12, and the left and right openings of the through holes 43c are formed.
  • the mouth is closed by the check 'relief valve 48L.48R'.
  • a charge oil passage 43d is formed rearward from a substantially central portion of the through hole 43c, and is illustrated via a charge oil passage 2f formed in the case housing 2b as shown in FIG. Nuyaichi It is connected to the dipump.
  • kidney ports 43L'43R is formed on the inclined surface 43f of the fixed swash plate 43F as shown in FIGS. 11 and 12, and the kidney one port 43L'43R and the check relief relief are provided. Connect the relief drain chambers 48a-48a of 48L-48R with the oil passages 43b-43b.
  • a valve plate 49 is fixed to the inclined surface 43f of the fixed swash plate 43F as shown in FIG. 1 and FIG. 13, and the kidney plate is formed on the valve plate 49 by being divided into four parts in the circumferential direction.
  • the one port 49a'49a '' forms a series of oil passages with the kidney one port 43L-43R of the inclined surface 43f.
  • Bridges 49b'49c '' formed between the kidney ports 49a'49a '' are provided to disconnect the kidney ports 43L.43R from the bridges 49b'49b located above and below.
  • the left and right bridges 49c'49c are provided to maintain the strength of the valve plate 49.
  • the valve plate 49 is intended to reduce sliding resistance generated between the fixed swash plate 43F and the intermediate plates 146 and 146 described below, and to prevent image sticking. For example, it is coated with a seizure-resistant material. If no seizure problem occurs between the fixed swash plate 43F and the intermediate plate 146, the valve plate 49 may not be provided.
  • a fixed swash plate-side cylindrical portion 46b'46b of the shoe 46 is inserted between the valve plate 49 and the shoe 46, thereby connecting the rotating shaft 40a.
  • Intermediate plates 146, 146 that rotate integrally with each shoe 46, 46 are sandwiched at the center.
  • a flat bottom insertion hole 146b '146b is formed in the intermediate plate 1 46, 146 on the side opposite to the valve plate 49, and the fixed swash plate side cylindrical portion 46 of the shoe 46' 46 is formed in the insertion hole 146 146).
  • No. 46) is inserted, and the end surface of the fixed swash plate side cylindrical portion 46b '46b is abutted on a flat bottom.
  • connecting oil passages 146a '146a are formed obliquely in a side view, and the kidney ports 49a' 49a 'of the valve plate 49 and the connecting oil passages 46 of the showers 46, 46 are formed. a'46a.
  • a retainer plate 246 is slidably held by a spherical portion 41b provided at the rear end of the plunger block 41 in order to prevent the shoe 46 from separating from the intermediate plate 146.
  • a communication oil passage 42a'42a for communicating the cylinder 41a * 41a with the communication oil passage 46a * 46a of the shoe 46 is formed in the sliding direction of the plungers 42. It is set up.
  • the cylinder 41a'41a of the motor-side plunger block 41 and the fixed swash plate are provided by the above-described communication oil passage 42a, communication oil passage 46a, communication oil passage 146a, kidney port 49a, and kidney port 43L'43R.
  • a series of connecting oil passages communicating with the charge oil passage 47 on the 43F is formed.
  • the cylinders 41a and 41a of the motor-side plunger block 41 and the check oil passage 47 are communicated via the check relief valves 48L and 48R, and the hydraulic pump 30 and the hydraulic motor 40 And a relief oil supply circuit for a closed hydraulic circuit (the oil passages 6a'6b) formed between them.
  • the charge oil supply mechanism and the check 'relief valve 48L' 48R as a relief mechanism are provided inside the fixed swash plate 43F of the hydraulic motor 40, so that the charge oil is supplied.
  • the space required for installing the supply mechanism and relief mechanism is not required.
  • the HST1 can be made more compact as a whole, and both mechanisms have high pressure resistance and excellent oil-tightness.
  • a configuration may be adopted in which two through holes 43c are provided, and a check valve and a relief valve are independently disposed in each of the through holes 43c.
  • the configuration shown in FIG. 14 shows a second configuration example related to the charge oil supply mechanism and the check relief mechanism.
  • This configuration includes a motor-side plunger block 41, a first annular oil passage 41r communicating with an oil passage 56 formed by the small diameter portion 5Od of the spool valve 50, and a cylinder 51a of the spool valve SO-SO.
  • a connecting oil passage 40 ⁇ 40 ⁇ 40w40x communicating with a charge pump (not shown) is provided on the rotating shaft 40a.
  • the first and second annular oil passages 41r * 41s and the communication oil passages 40 ⁇ ⁇ 40 ⁇ ⁇ 40 w'40x are connected via two communication oil passages 41e'4 If installed inside the motor side plunger block 41. While communicating, check valve 48c'48c to one set of connecting oil passages 41e'41f And a relief valve is arranged in another set of connecting oil passages (not shown).
  • a charge oil passage 2f formed in the case housing 2b as shown in FIG. 14 is communicated with a charge pump (not shown).
  • the charge oil passage 2f communicates with a communication oil passage 40x • 40w formed inside the rotary shaft 40a via a swivel joint 23 formed on the inner peripheral surface of the shaft hole 2u in the case housing 2b. Have been.
  • annular communication oil passage 40u is formed between the inner peripheral surface of the motor-side plunger block 41 and the communication oil passage 40u is connected to the connection oil passage 40v via the communication oil passage 40v. Communicate with 40w.
  • the outer peripheral surface of the motor-side plunger block 41 is supported by a bearing 160.
  • a first annular member is provided between the outer peripheral surface of the motor-side plunger block 41 and the inner peripheral surface of the inner ring 160 a of the bearing 160.
  • An oil passage 41r is formed.
  • the first annular oil passage 41r communicates with an oil passage 56 formed by the small diameter portion 50d of the spool valve 50 via a communication oil passage 41h.
  • a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed.
  • An oil passage 41s is formed between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b.
  • An oil passage 41s is formed between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed between the inner peripheral surface of the motor-side plunger block 41 and
  • the motor side plunger block 41 is provided with two connecting oil passages 41e and 41f for connecting the first and second annular oil passages 41r '41s and the communication oil passage 40u, each of which has two paths, and is connected to the rotating shaft 40a.
  • Two sets of connecting oil passages 41e 'and 41f are formed by shifting the phase around the axis. Of these, one set of connecting oil passages 41e'41f is provided with check valves 48c'48c, while the other set of connecting oil passages 41e'41f (not shown) is provided with a relief valve. is there.
  • the cylinders 51a and 51a of the spool valve 50 of the motor-side plunger block 41 and the charge oil passage 2f are communicated with each other via the check valve and the relief valve.
  • a charge oil supply circuit and a relief circuit of a hydraulic closed circuit (the oil passages 6a and 6b) formed with the motor 40 are configured.
  • the charge oil supply mechanism, the check valves 48c and 48c as the check relief mechanism, and the relief valve (not shown) are provided inside the motor-side plunger block 41 of the hydraulic motor 40.
  • the HST1 requires a space to provide a charge oil supply mechanism and a check and relief mechanism, and the HST1 as a whole can be made more compact, and both mechanisms have high pressure resistance and oil tightness. It becomes.
  • the configuration shown in FIG. 15 shows a third configuration example related to the charge oil supply mechanism and the check relief mechanism.
  • This configuration includes a motor-side plunger block 41, a first annular oil passage 71r communicating with an oil passage 56 formed by the small diameter portion 5Od of the spool valve 50, and a cylinder 51a of the spool valve 50, 50.
  • a first annular oil passage 71s communicating with the oil pump 51a and forming an oil chamber 51b is provided, and a connecting oil passage 70w '70x communicating with a charge pump (not shown) is provided on the rotating shaft 40a.
  • the second annular oil passage 71r * 71s and the communication oil passage 70w 70x communicate with each other through two sets of communication oil passages 71e '71f formed inside the rotary shaft 40a, and a pair of communication oil passages.
  • Check valves 78c and 78c are provided in 71e and 71f, and a relief valve is arranged in another set of connecting oil passages (not shown).
  • a charge oil passage 2f formed in the case housing 2b is communicated with a charge pump (not shown).
  • the charge oil passage 2f communicates with a communication oil passage 70x • 70w formed inside the rotary shaft 40a via a swivel joint 23 formed on the inner peripheral surface of the shaft hole 2u in the case housing 2b. Have been.
  • the communication oil passage 70w is formed in the axial direction, and the communication oil passage 70w is formed radially toward the inner peripheral surface of the motor-side plunger block 41. Is formed.
  • the connecting oil passages 71e and 71f are configured in two sets, that is, A total of four connecting oil passages 71e'71f are formed, two of which are provided with check valves 78c'78c, and two connecting oil passages (not shown) are provided with relief valves. Configuration.
  • the outer peripheral surface of the motor-side plunger block 41 is supported by a bearing 160.
  • a first annular member is provided between the outer peripheral surface of the motor-side plunger block 41 and the inner peripheral surface of the inner ring 160 a of the bearing 160.
  • An oil passage 71r is formed.
  • the first annular oil passage 71r communicates with the oil passage 56 formed by the small diameter portion 50d of the spool valve 50 via a communication oil passage 71h.
  • a second oil chamber 51b is formed between the inner peripheral surface of the motor side plunger block 41 and the outer peripheral surface of the rotary shaft 40a by communicating the cylinders 51a '51a of the spool valves 50, 50.
  • An annular oil passage 71s is formed.
  • the motor-side plunger block 41 has a communication oil passage 71m connecting the first annular oil passage 71r and the communication oil passage 71e of the rotating shaft 40a. As described above, two communication oil passages 71e are formed so as to be out of phase about the axis of the rotary shaft 40a, and two communication oil passages 71m are also formed.
  • the second annular oil passage 71s is communicated with a communication oil passage 71f of the rotating shaft 40a.
  • a check valve 78c '78c is provided in one set of communication oil passages 71e' 71f, while a relief valve (not shown) is provided in another set of communication oil passages 71e '71f (not shown). It has a configuration.
  • the cylinders 51a and 51a of the spool valve 50 of the motor-side plunger block 41 and the charge oil passage 2f are communicated with each other via the check valve and the relief valve.
  • a charge oil supply circuit and a relief circuit of a hydraulic closed circuit (the oil passages 6a and 6b) formed with the motor 40 are configured.
  • the charge oil supply mechanism, the check valves 78c to 78c as the chuck relief mechanism, and the relief valve (not shown) are provided inside the rotary shaft 40a.
  • the space required for providing the oil supply mechanism and the check-relief mechanism is required, and the HST1 as a whole can be compacted, and both mechanisms have excellent high-pressure resistance and oil-tightness.
  • the hydraulic motor 40 as shown in FIG. Can be configured. It goes without saying that the same applies to adopting a fixed displacement type by employing a fixed swash plate for the hydraulic motor 40.
  • the configuration of the case housing in the HST1 having the above configuration will be described.
  • a configuration of the case housing as shown in FIG. 16 three configuration examples are proposed.
  • the HST1 is divided at the front side of the spool valve 50 as the separation element. Configuration.
  • the second configuration example is a configuration in which the HST1 case housing is divided near the spool valve 50 as a high / low pressure separating element for hydraulic oil, and is divided on the rear side of the spool valve 50 as the separating element. Configuration.
  • the case housing of the HST1 is configured to be divided, and the hydraulic motor 40 and the hydraulic pump 30 are housed in the first housing, and the first housing is housed in another housing. Are closed.
  • the first configuration example has a configuration in which the spool valve 50 is divided in the vicinity of a spool valve 50 as a high / low pressure separation element for hydraulic oil as shown in FIG. 1 and FIG. Is divided at the front side of
  • the case housing is of a front-rear split type, and a bearing hole 20a in which the bearing 60 eccentrically arranged on the rotating shaft 40a is fitted in a case housing 2b in which the hydraulic motor 40 is arranged, and A bearing hole 20b into which the bearing 160 of the motor-side plunger block 41 is fitted is formed.
  • the processing of the bearing hole 20a can be performed while the case housing 2b is fixed. It is possible to realize the design value of 160 relative relationships. As for the ball, the machining accuracy of the eccentricity of the bearing 60 relative to the axis of the rotating shaft 30a'40a can be improved.
  • the case housing is of a front-rear split type, and the case housing 2a on the hydraulic pump 30 side has a half bearing guide 21 of a movable swash plate 33M and a rotating shaft 30a as an input shaft.
  • the bearing hole 22 of the bearing 30b is integrally formed, while the case housing 2b on the hydraulic motor 40 side is provided with a swivel joint 23 (only in the case of the configuration shown in FIG. 14: the charge oil supply mechanism, check
  • the relief mechanism is the second configuration example), the half bearing guide 27 of the movable swash plate 43M (only when the configuration is the same as in Fig. 14), the bearing hole 20a of the bearing 60 for the spool valves 50 and 50,
  • the bearing hole 24 of the rotating shaft 40a as the output shaft is integrally formed.
  • the hydraulic pump 30 is of a variable displacement type
  • the hydraulic motor 40 is of a fixed displacement or variable displacement type. Is also applicable.
  • the force S is a configuration in which the spool valves 50, 50 are slidably disposed on the motor-side plunger block 41, and the reverse configuration, that is, the pump-side plunger
  • the present invention is also applicable to a configuration in which the spool valves 50 and 50 are slidably disposed in the block 31.
  • the charge oil supply mechanism and the check relief mechanism are provided on the hydraulic pump 30 side. is there.
  • the hydraulic motor 40 is of a fixed displacement type or a variable displacement type, and a spool vano-lev 50, a charge oil supply mechanism, and a check relief mechanism are provided on the hydraulic pump 30 side.
  • the case housing is divided into front and rear, and the case housing 2a on the hydraulic pump 30 side has a swivel joint 23, a bearing hole 20a for a bearing 60 for a spool valve 50, and an input shaft.
  • the case housing 2b on the hydraulic motor 40 side has a half bearing guide 21 of a movable swash plate 43M and a bearing of a bearing 30b of the rotating shaft 40a as an output shaft.
  • the hole 24 is integrally formed.
  • the second configuration example is a configuration in which the hydraulic oil is divided in the vicinity of a spool valve 50 as a high / low pressure separating element for the hydraulic oil. It is configured to be divided.
  • shaft holes of bearings 60 and 160 are formed in each case housing 2a '2b.
  • the case housing of the HST1 is configured to be divided, and the hydraulic motor 40 and the hydraulic pump 30 are provided in the first housing 222b.
  • the first housing 222b is closed by another housing (second housing 222a).
  • the tubular portion of the first housing 222b is configured to be long, and both the hydraulic motor 40 and the hydraulic pump 30 are configured in the tubular portion.
  • the bearings 60 and 160 are fitted to a stepped portion 89 formed in the first housing 222b.
  • the bearing 60 A snap ring 88 is fitted to prevent slippage.
  • the second housing 222a is configured to close the opening of the first housing 222b when the hydraulic motor 40 and the hydraulic pump 30 are assembled into the first housing 222b.
  • the half housing guide 21 of the movable swash plate 33M of the hydraulic pump 30 is formed in the second housing 222a.
  • the rigidity of the housing is superior to that in the case where the motor pumps are individually housed in separate housings. It will be.
  • first housing 222b and the second housing 222a are divided into two parts, and for example, both sides in the longitudinal direction of the first housing 222b are opened.
  • the openings may be closed (three divisions).
  • the hydraulic / mechanical continuously variable transmission 300 (hereinafter, referred to as “HMT300”) shown in FIG. 18 is configured as a split input type.
  • an HMT 300 configured to perform a speed change of an output rotation by combining a hydrostatic continuously variable transmission device 301 (hereinafter, referred to as “HST301”) and a planetary gear mechanism 10, as shown in FIGS. 18, 19 and As shown in Fig. 2, the motor-side plunger block 41 (Fig. 19) of the HST301 is supported on the rotating shaft 130a so as not to rotate relatively, and the pump-side plunger block 31 is supported on the rotating shaft 140a so as not to rotate relatively.
  • the shaft 140a is hollow and arranged coaxially with the rotary shaft 130a, the pump-side plunger block 31 and the motor-side plunger block 41 are arranged to face each other, and the motor-side plunger block 41 is arranged.
  • the spool valves 50, 50 are radially arranged slidably about the rotation shaft 130a, and the outer ends of the spool valves 50, 50 are eccentrically arranged with respect to the rotation shaft 130a.
  • Bearing The inner ring 60 abuts against the inner peripheral surface 61 of the inner ring 60a and slides in the radial direction according to the rotation of the motor-side plunger block 41.
  • the spool valves 50, 50 cause the cylinders 31a 'of the plunger blocks 31, 41 to rotate.
  • the oil passage 6a '6b (FIG. 2) for communicating the 41a is opened or divided, and the input shaft is constituted by the rotary shaft 130a' 140a and the planetary gear mechanism 10.
  • the hydraulic motor 340 is arranged in the t! ST 301 of FIG. 300 with the hydraulic pump 330 disposed on the front side in the axial direction of the rotary driving mechanisms 130a and 140a.
  • Side is the rear side, and these are housed in the case housings 2a and 2b which are divided into front and rear.
  • bearings 30b and 40b are fitted on the front side of the case housing 2a and the rear side of the case housing 2b, respectively, and the rotating shaft 140a is mounted on the bearing 30b, and the rotating shaft is mounted on the bearing 40b. 130a is mounted.
  • a hydraulic pump 330 is provided on the rotating shaft 130a.
  • the outer side is annularly formed by the hollow rotary shaft 140a.
  • a motor-side plunger block 41 is supported on the rotating shaft 130a, and a pump-side plunger block 31 is supported on the rotating shaft 140a such that the respective rotating sliding surfaces 34 and 44 face each other so as not to rotate relatively.
  • a movable swash plate 33M is disposed between the bearing 30b and the pump-side plunger block 31, and is formed at equal intervals in the pump-side plunger block 31 and in the axial direction of the rotary shaft 140a.
  • the variable displacement hydraulic pump 330 is configured such that the plungers 32 and 32 in the provided 31a '31a are slid forward and backward.
  • a movable swash plate 43M is disposed between the bearing 40b and the motor-side plunger block 41, and is formed at equal intervals in the motor-side plunger block 41 and in the axial direction of the rotating shaft 130a.
  • a variable displacement hydraulic motor 340 is constructed, in which plungers 42 and 42 in 41a '41a provided are slid forward and backward.
  • the swash plate tilting shaft 33a of the movable swash plate 33 ° of the hydraulic pump 330 and the swash plate tilting shaft 43a of the movable swash plate 43M of the hydraulic motor 340 are parallel to each other.
  • the swash plate tilt shafts 33a 'and 43a have a relationship perpendicular to the paper surface in FIG.
  • the sum of the bottom area 32t 'and 32t of the rotation sliding surface 34 of the cylinder 31a' 31a of the pump-side plunger block 31 and the rotation of the cylinder 41a'41a of the motor-side plunger block 41 is designed to be substantially the same, and the total pressure receiving area of each cylinder 31a and 41a of the pump side plunger block 31 and the motor side plunger block 41 They are almost the same.
  • a bearing 7 is fitted in the middle of the rotation shaft 130a in the front and rear direction so as to be relatively non-rotatable, and a rear end of the rotation shaft 140a is rotatable relative to the bearing 7. Has been inserted.
  • the rotary shaft 130a is configured to be longer in the front and rear direction than the case housing 2, and the front end extends forward of the case housing 2a and is connected to the sun gear 13 of the planetary gear mechanism 10. At the same time, the rear end extends to the rear of the case housing 2b and functions as an output shaft for driving wheels, a working machine, and the like (not shown).
  • the front end of the rotary shaft 140a It extends forward and is connected to the internal gear 14 of the planetary gear mechanism 10, and inputs power from a planet carrier 15 driven by a drive source (not shown) to function as an input shaft for driving the hydraulic pump 330.
  • the motor-side plunger block 41 has its outer peripheral surface supported by a bearing 160 fitted to the case housing 2b.
  • a pump-side port 34a '34a for individually communicating with the inside of each cylinder 31a' 31a is opened on the rotary sliding surface 34 of the pump-side plunger block 31.
  • the sliding of the plungers 32 allows the oil to pass through the pump-side ports 34a 'and 34a.
  • the motor-side port 44a '44 4a force for individually communicating with the inside of each cylinder 41a' 41a has one force.
  • Two openings are provided for the cylinders 41a'41a, and the sliding of the plungers 42, 42 allows oil to pass through the motor-side ports 44a'44a.
  • one of the plungers is provided between the rotary sliding surface 34 of the pump-side plunger block 31 and the rotary sliding surface 44 of the motor-side plunger block 41.
  • the rotation is restricted by the blocks 31 and 41, and the rotation sliding surfaces 34 and 44 of the plunger blocks 31 and 41 on the side that is restricted by rotation
  • the ports 34a of the 44 and 44 are the same as the ports 44a and 44a.
  • the communication ports 5a and 5a of the same arrangement are opened.
  • Road board 5 is sandwiched.
  • the motor-side plunger block 41 is configured to be rotationally constrained, and the arrangement of the communication ports 5a '5a is changed to the motor-side ports 44a'44a' of the motor-side plunger block 41 shown in FIG. ⁇ It is almost the same as ⁇ ⁇ . Then, as shown in FIGS.
  • the rotary sliding surface 34 of the pump-side plunger block 31 comes into contact with the rotary sliding surface 55 of the oil passage plate 5 so as to be oil-tight.
  • a series of oil passages 6 is formed.
  • This oil passage plate 5 is intended particularly to reduce sliding resistance generated between the two rotating sliding surfaces 34 and 44 and to prevent seizure.
  • the surfaces of these sliding surfaces are, for example, seizure-resistant. It is covered with a conductive material. If there is no problem of seizure between the plunger blocks 31 and 41, if the oil passage plate 5 is not provided, the rotary sliding surfaces 34 and 44 should be directly contacted. It may be configured to contact.
  • a cylinder 51a'51a is formed radially around the rotation shaft 130a'140a.
  • the column-shaped spool valves 50 and 50 are slidably arranged in the radial direction.
  • a series of annular oil passages 54 are formed in the circumferential direction of the rotary shafts 130a '140a between the bottom of the cylinders 51a' 51a 'and the outer peripheral surface of the bearing 7 as shown in FIG.
  • a series of oil chambers 51b are formed by communicating with each other in the cylinders 51a '51a.
  • the same number of the spool valves 50 as the number of the cylinders 41a '41a are arranged radially around the rotation shafts 130a' 140a, and are formed in a hemispherical shape.
  • the direction in which the bearing 60 is eccentric with respect to the rotating shaft 130a is assumed to be the axial direction of the swash plate tilting shafts 33a'43a (FIG. 19) which are in parallel with each other.
  • a straight line 4h connecting the axis 130d of the rotary shaft 130a to the axis 130d is parallel to the swash plate tilting vehicle ground 33a'43a.
  • the inner diameter of the inner peripheral surface 61 of the bearing 60 (the inner ring 60a) is gradually reduced from the axial front side to the rear side of the rotary shaft 130a, so that the inner peripheral surface 61 is The rotating shaft 130a is inclined with respect to the axial direction.
  • the spool valve 50 is a columnar body having a small-diameter portion 50d disposed between two large-diameter portions 50b '50c.
  • the outer peripheral surface of the cylinder 51a is brought into sliding contact with the inner peripheral surface of the cylinder 51a, and an oil passage 56 is formed between the small-diameter portion 50d and the inner peripheral surface of the cylinder 51a as shown in FIG.
  • the oil passage 56 constitutes a part of the series of oil passages 6 that communicate the cylinder 41 a of the motor-side plunger block 41 with the cylinder 31 a of the pump-side plunger block 31.
  • the oil passage 56 is closed by the large diameter portion 50c of the spool valve 50 at a position where the motor-side plunger block 41 has a predetermined rotation angle. That is, at the position of the rotation angle 4v'4w, which is 90 degrees out of phase with respect to the straight line 4h parallel to the swash plate tilting shaft 33a '43a as shown in Figs. 2 and 3, respectively.
  • Large diameter part 50c of valve 50 Is configured to reach the position of the port 44a of the rotary sliding surface 44, and the opening height of the port 44a in the radial direction around the rotary shaft 130a and the axial length of the large-diameter portion 50c are substantially equal to each other.
  • the oil passages 56 are closed by the spool valve 50 at the rotation angle 4v'4w.
  • the bearing 60 is eccentric in the horizontal direction with respect to the rotary shaft 130a on the paper surface, and the spool valve 50 as shown in FIG.
  • the oil passage 56 is configured to be closed as shown in FIG. 4 when the lower position (rotation angle 4w) is reached.
  • the high pressure oil path (or the low pressure oil path) is formed by the oil paths 6a '6a' ⁇ , and in the second section 12, the oil paths 6b '6b'
  • pressure oil is supplied from the hydraulic pump 330 to the hydraulic motor 340 using the rotating shaft 140a as an input shaft as shown in FIG.
  • An HST 301 driven using 130a as an output shaft is configured.
  • the input split type HMT 300 shown in FIG. 18 is configured by combining the HST 301 configured as described above and the planetary gear mechanism 10.
  • the rotating shaft 130a is configured to be longer in the front-rear direction than the case housing 2, and the front end extends forward of the case housing 2a and is connected to the sun gear 13 of the planetary gear mechanism 10, and has a rear end.
  • the portion extends to the rear of the case housing 2b and functions as an output shaft for driving wheels (not shown) and a working machine, etc.
  • the rotating shaft 140a has a front end extending forward of the case housing 2a and a planetary gear.
  • Connected to internal gear 14 of mechanism 10 A power is input from the planet carrier 15 driven by a drive source (not shown) to function as an input shaft for driving the hydraulic pump 330.
  • the rotary shaft 140a is hollow and coaxial with the rotary shaft 130a. Is arranged.
  • the swash plate tilting shaft 33a of the movable swash plate 33M of the hydraulic pump 330 and the swash plate tilting shaft 43a of the movable swash plate 43M of the hydraulic motor 340 are different from each other. Since they are parallel, the inclination direction of both swash plates 33 ⁇ and 43 ⁇ in the main drive direction (for example, the direction in which the vehicle equipped with HMT300 moves forward) is set to the same direction, so that the plunger 32 of hydraulic pump 330 The load in the thrust direction and the radial direction based on the rotating shaft 130a '140a generated by the sliding of the plunger 42 of the hydraulic motor 340 and the plunger 42 of the hydraulic motor 340 can cancel each other out. It can be used to support the motor-side plunger block 41, which can reduce power loss and cost.
  • the total pressure receiving area of each of the cylinders 31a and 41a of the pump-side plunger block 31 and the motor-side plunger block 41 is substantially the same.
  • Directional and radial loads can more reliably cancel each other out.
  • the number of cylinders 31a and 41a is not particularly limited, and the degree of freedom in designing the plunger block is wide.
  • the relative sliding surfaces 34 and 44 (55) face each other to form one relative rotating sliding surface (the mating surface 5c).
  • the amount of leakage from the relatively rotating sliding surfaces can be relatively reduced. This makes it possible to reduce the required amount of chilled oil, thereby reducing power loss and cost.
  • the rotating shaft 140a of the motor-side plunger block 41 and the rotating shaft 130a of the pump-side plunger block 31 are coaxially arranged, and the sun gear 13 of the planetary gear mechanism 310 is connected to the rotating shaft 130a. It is assumed that the rotary shafts 130a '140a and the planetary gear mechanism 310 are combined to constitute a hydraulic-type mechanical continuously variable transmission 300 configured in a split-input type. This enables a configuration in which the two rotation shafts 130a to 140a of t!
  • the power transmission shaft and gear can be omitted, and a low-cost, compact hydraulic and mechanical continuously variable transmission can be configured. Can be.
  • the sliding resistance generated between the two rotating sliding surfaces 34 and 44 can be reduced with a simple configuration. .
  • power loss can be reduced.
  • the inner peripheral surface 61 of the inner ring 60a of the bearing 60 is inclined with respect to the axial direction of the rotating shaft 130a, so that it comes into contact with the inner peripheral surface 61.
  • the hemispherical tips 50a '50a' ⁇ ⁇ of the spool valves 50 ⁇ 50 rotate about the sliding direction of the spool valves 50 ⁇ 50 as the motor-side plunger block 41 rotates.
  • the contact portion of the distal end portion 50a '50a against the inner peripheral surface 61 can be slidably rotated, and the durability of the distal end portion of the spool valve 50 can be improved.
  • the cylinders 51a and 51a on which the spool valve 50 slides are connected to the rotary shaft 130a.
  • the inner surface of the inner ring 60a of the bearing 60 must be flat, while the sliding direction of the spool vane levule is inclined with respect to the radial direction of the rotating shaft 130a. You can also.
  • a general-purpose bearing with a flat surface 61 can be used.
  • the input split type HMT300 having the above configuration as compared with the above-described first conventional configuration, a power transmission shaft is not required, and the number of bearings and gears can be reduced. As a result, it is possible to achieve a configuration with less power loss, and to reduce the production cost due to the reduction in the number of these components.
  • the rotating shaft 140a is arranged coaxially with the rotating shaft 130a. A compact dangling can be achieved.
  • the hydraulic pump 330 since the hydraulic pump 330 is configured as a variable displacement type, it is possible to perform a continuously variable shift operation from zero. As compared with the second conventional configuration, a wider shift range can be configured. In particular, when it is not necessary to secure a wide shift range, a configuration using a fixed displacement hydraulic pump 330 and a variable displacement hydraulic motor 340 may be adopted in addition to the above configuration example.
  • the hydraulic pump 330 is configured as a variable displacement type, and therefore, compared to the above-described second conventional configuration, a mechanism for switching between forward and backward movement is provided. It is not required, and the manufacturing cost of the mechanism can be reduced. ⁇ Charge oil supply mechanism, check 'relief mechanism>
  • the motor-side plunger block 41 has a first annular oil passage 41r communicating with an oil passage 56 formed by the small-diameter portion 50d of the spool valve 50, and a cylinder of the spool valve 50, 50.
  • a second annular oil passage 41s communicating with 51a '51a to form an oil chamber 51b is provided, and a connecting oil passage 40u'40v 40w 40x communicating with a charge pump (not shown) is provided on the rotating shaft 130a.
  • the first and second annular oil passages 41r'41s and the communication oil passages 40u-40v '40w' 40x are formed via two communication oil passages 41e '41f formed inside the motor-side plunger block 41.
  • check valves 48c and 48c are provided in one set of connecting oil passages 41e and 41f, and a relief valve is provided in another set of connecting oil passages (not shown). Things.
  • a charge oil passage 2f formed in the case housing 2b as shown in FIG. 21 is connected to a charge pump (not shown).
  • charge oil passage 2f is connected to a communication oil passage 40x'40w formed inside the rotary shaft 130a via a swivel joint 23 formed on the inner peripheral surface of the shaft hole 2u in the case housing 2b. Are in communication.
  • annular communication oil passage 40u is formed between the rotation shaft 130a and the inner peripheral surface of the motor-side plunger block 41, and the communication oil passage 40u is connected via the communication oil passage 40v. Contact Let it communicate with the oil passage 40w.
  • the outer peripheral surface of the motor-side plunger block 41 is supported by a bearing 160.
  • a first annular member is provided between the outer peripheral surface of the motor-side plunger block 41 and the inner peripheral surface of the inner ring 160 a of the bearing 160.
  • An oil passage 41r is formed.
  • the first annular oil passage 41r communicates with an oil passage 56 formed by the small diameter portion 50d of the spool valve 50 via a communication oil passage 41h.
  • a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed.
  • An oil passage 41s is formed between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b.
  • An oil passage 41s is formed between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed between the inner peripheral surface of the motor-side plunger block 41 and
  • the motor side plunger block 41 is provided with two connecting oil passages 41e and 41f for connecting the first and second annular oil passages 41r '41s and the communication oil passage 40u to the rotating shaft 130a.
  • Two sets of connecting oil passages 41e 'and 41f are formed by shifting the phases around the axis.
  • one set of communication oil passages 41e'41f is provided with a check valve 48c'48c, while the other set of communication oil passages 41e'41f (not shown) is provided with a relief valve. is there.
  • the cylinders 51a and 51a of the spool valve 50 of the motor-side plunger block 41 and the charge oil passage 2f are communicated with each other via the check valve and the relief valve.
  • a charge oil supply circuit and a relief circuit of a hydraulic closed circuit (the oil passages 6a and 6b) formed between the motor and the motor 340 are configured.
  • the motor-side plunger block 41 of the hydraulic motor 340 The inside is equipped with a charge oil supply mechanism, a check valve 48c as a check 'relief mechanism' 48c, and a relief valve (not shown).
  • the HST301 as a whole requires more space and can be made more compact, and both mechanisms are more resistant to high pressure and oil.
  • the spool valves 50, 50 are slidably disposed on the motor-side plunger block 41.
  • the force is the reverse of the configuration, that is, the pump-side plunger. It is also applicable to a configuration in which the spool valves 50 and 50 are slidably disposed in the block 31. In this case, a configuration in which a charge oil supply mechanism and a check relief mechanism are provided on the hydraulic pump 330 side is adopted. It is.
  • the case housing according to the present invention is of a front-rear split type, and the bearing 60, which is eccentrically arranged on the rotating shaft 130a, is fitted to the case housing 2b on which the hydraulic motor 340 is arranged.
  • a bearing hole 20a into which the bearing 160 of the motor-side plunger block 41 is fitted is formed.
  • the processing of the bearing 60 can be performed while the case housing 2b remains fixed.
  • the design value of the relationship can be embodied, that is, the machining accuracy of the eccentricity of the bearing 60 with respect to the axis of the rotating shaft 130a'140a can be improved.
  • the case housing is of a front-rear split type, and the case housing 2a on the hydraulic pump 330 side has a half bearing guide 21 of a movable swash plate 33M, a rotating shaft 130a as an input shaft. While the bearing hole 22 of the bearing 30b is integrally formed, the case housing 2b on the hydraulic motor 340 side has a swivel joint 23, a movable bearing swash plate 43M half bearing guide 27, and a bearing 60 for the spool valves 50 and 50.
  • the bearing hole 20a of the bearing shaft 20a and the bearing hole 24 of the rotating shaft 140a as the output shaft are integrally formed.
  • the hydraulic / mechanical continuously variable transmission 320 (hereinafter, referred to as “HMT320”) shown in FIGS. 22 and 23 is configured as a split output type.
  • the HMT 320 is configured to perform the output rotation shift by combining the HST 311 and the planetary gear mechanism 310, and the pump-side plunger block 31 of the HST 311 is supported on the rotation shaft 130a so as to be relatively non-rotatable.
  • the side plunger block 41 is supported so as not to rotate relative to the rotation shaft 140a, the rotation shaft 140a is hollow, and is disposed coaxially with the rotation shaft 13 Oa.
  • the motor-side plunger block 41 is disposed so as to face the plunger block 41, and the motor-side plunger block 41 (or 31) has spool valves 50, 50 radially disposed slidably about the rotary shaft 130a.
  • the outer ends of the spool valves 50, 50 abut against the inner peripheral surface 61 of the inner ring 60a of the bearing 60 eccentrically arranged with respect to the rotary shaft 130a, and the outer ends of the spool valves 50, 50 are rotated in half according to the rotation of the motor-side plunger block 41. It is configured to slide in the radial direction to open or separate the oil passages 6a '6b communicating with the cylinders 31a' 41a of the plunger blocks 31 and 41 by the spool valves 50 and 50. , And a planetary gear mechanism 310 to form an output split type.
  • the rotating shaft 130a is configured to be longer in the front-rear direction than the case housing 2, and the front end is extended forward of the case housing 2a and illustrated.
  • the rear end extends to the rear of the case housing 2b and is connected to the sun gear 13 of the planetary gear mechanism 310, while the rotating shaft 140a
  • the rear end portion extends rearward of the case housing 2b and is connected to the internal gear 14 of the planetary gear mechanism 310, and is arranged coaxially with the rotating shaft 130a with the rotating shaft 140a being hollow.
  • the rotating shaft 140a of the motor-side plunger block 41 and the rotating shaft 130a of the pump-side plunger block 31 are coaxially arranged, and the sun gear 13 of the planetary gear mechanism 310 is connected to the rotating shaft 130a.
  • a hydraulic' mechanical continuously variable transmission 320 configured as a split-output type is constructed. With the coaxial arrangement, a compact hydraulic / mechanical continuously variable transmission can be configured.
  • the output split type HMT320 configured as described above has the same effects as the above-described HMT300.
  • the hydrostatic continuously variable transmission 401 (hereinafter, referred to as “HST401”) as shown in FIGS. 24 and 25 has the following configuration.
  • an HST 401 provided with an axial piston pump 430 (hereinafter referred to as “hydraulic pump 430”) and an axial piston motor 440 (hereinafter referred to as “hydraulic motor 440”).
  • the pump-side plunger block 431 and the motor-side plunger block 441, which are respectively supported by the 480a, are opposed to each other.
  • the rotating sliding surfaces 434 and 444 of the plunger blocks 431 and 441 have respective plunger blocks.
  • the pump-side ports 434a and 434a and the motor-side ports 444a and 444a that are individually connected to the plurality of cylinders 431a and 441a that are formed on the 431 and 441 are formed.
  • the motor side cylinder 441a reaches the maximum eccentric position of the motor side plunger block 441 with respect to the pump side plunger block 431.
  • the motor-side cylinder 441a is at any other position, it is opened when the motor-side cylinder 441a is in the other position.
  • a hydraulic pump 430 is arranged on the rear side, and a hydraulic motor 440 is arranged on the rear side.
  • the separation element supports the pump-side plunger block 431 and the motor-side plunger block 441 on the eccentrically arranged rotating shafts 470a and 480a, respectively, and faces the relative rotational sliding surface between the two plunger blocks 431.
  • the rotary sliding surfaces 434 and 444 of the plunger blocks 431 and 441 have pump-side ports 434a'434a and motor-side ports 444a that individually communicate with a plurality of cylinders formed on each plunger block. '444a, and the ports 434a'434a of the plunger blocks 431 and 441, which are displaced by the eccentric arrangement of the rotating shafts 470a and 480a, overlap with each other.
  • Oil passages 408 and 408 are formed to communicate with each other, and there is no overlap between the ports of both plunger blocks on the extension of the line connecting the axes of the rotary shafts 470a and 480a, and the oil passages 408 and 408 are separated.
  • the oil passages of each plunger block are divided into a suction region and a discharge region by the divided oil passages among the oil passages 408 and 408. .
  • bearings 430b′40b are fitted on the front side of the case housing 402a and the rear side of the case housing 402b, respectively. These bearings 430b′40b allow the rear end face of the rotating shaft 470a and the The configuration is such that both rotating shafts 470a'480a are eccentrically arranged with the front end faces of the rotating shafts 480a facing each other.
  • the pump-side plunger block 431 is provided on the rotating shaft 470a
  • the motor-side plunger block 441 is provided on the rotating shaft 480a.
  • the respective rotary sliding surfaces 434 and 444 are supported so as not to rotate relative to each other.
  • a movable swash plate 433M is disposed between the bearing 430b and the pump-side plunger block 431, and is arranged at equal intervals on the pump-side plunger block 431 and in the axial direction of the rotating shaft 470a.
  • 431a A variable displacement hydraulic pump 430 configured to slide the plungers 432 in the '431a back and forth is configured.
  • the bearing 440b and the motor-side plunger blower are provided in the case housing 402b.
  • a fixed swash plate 43F is disposed between the swash plate 441 and the swash plate 43F.
  • the swash plate 43F is formed at regular intervals on the motor-side plunger block 441 and in the axial direction of the rotating shaft 480a.
  • a fixed displacement hydraulic motor 440 having a configuration in which is moved back and forth.
  • the swash plate tilt axis 433a of the movable swash plate 433M of the hydraulic pump 430 and the swash plate tilt axis 443a of the fixed swash plate 43F of the hydraulic motor 440 are parallel to each other.
  • the swash plate tilting shafts 433a and 443a are perpendicular to the plane of FIG.
  • the motor-side plunger block 441 has its outer peripheral surface supported by a bearing 496 fitted to the case housing 402b.
  • the bearing 407 is sandwiched between the motor-side plunger block 441 and the rotating shaft 480a, so that the front end of the rotating shaft 480a passes through the bearing 407 and the motor-side plunger block 441. It is configured to be supported by 96.
  • the rear end face of the rotating shaft 470a and the front end face of the rotating shaft 480a are arranged close to and opposed to each other.
  • the pump-side port for individually communicating with the inside of each cylinder 431a '431a is provided on the rotary sliding surface 434 of the pump-side plunger block 431, the pump-side port for individually communicating with the inside of each cylinder 431a '431a is provided. G is opened so that the oil passes through the pump side port 434a'434a by sliding of the plungers 432a.
  • the motor sliding ports 444a and 444a have an S opening on the rotary sliding surface 444 of the motor-side plunger block 441 for individually communicating with the respective cylinders 441a and 441a.
  • the sliding of the plungers 442 allows the oil to pass through the motor-side ports 444a and 444a.
  • an oil passage plate 490 is interposed between the rotary sliding surfaces 433 and 444 of the plunger blocks 431 and 441.
  • the oil passages 490a and 490a are formed to penetrate in the axial direction, and the arrangement of these oil passages 490a and 490a is formed on the rotating sliding surfaces 433 and 444 of one of the plunger blocks 431 and 441.
  • Port 434a Same as port 444a.
  • the oil passage plate 490 is provided with oil passages 490a and 490a having the same cross-sectional shape and arrangement as the pump-side ports 434a and 434a formed on the rotary sliding surface 433 of the pump-side plunger block 431.
  • the oil passage plate 490 and the other plunger block are brought into contact with each other so as to be slidable relative to each other so that the plunger block 433 It defines a relative rotating sliding surface (mating surface 5c).
  • the oil passage plate 490 has a disk shape and has a rotary shaft that supports a plunger block (in this embodiment, a pump-side plunger block 431) in which ports having the same arrangement as the oil passages 490a and 490a are formed. It is arranged concentrically with 470a.
  • the oil passage plate 490 is fitted in a bearing 497 concentrically arranged on the rotating shaft 470a, and rotates relative to the pump-side plunger block 431, the motor-side plunger block 441, and the rotating shaft 470a '480a. It is freely configured.
  • the oil passage plate 490 may be configured so as to be unable to rotate relative to the rotating shaft 470a at an angle at which the position of the oil passage 490a and the position of the pump-side port 434a coincide. Further, the oil passage plate 490 may not be rotatable relative to the pump-side plunger block 431 by a locking member such as a pin, and may be configured to rotate integrally with the pump-side plunger block 431.
  • an oil passage plate 490 that rotates integrally with one of the plunger blocks is interposed between the rotating sliding surfaces of both plunger blocks, and the oil passage plate 490 has a plurality of oil passages 490a.
  • the arrangement of the oil passage 490a is substantially the same as the port formed on the rotary sliding surface of the plunger block on the side where the oil passage plate 490 is rotated by the body.
  • the oil passage plate 490 supports the rotating shaft 470a of the plunger block 431 on the side where the oil passage plate 490 is rotated by the body, that is, by the bearing 497 via the oil passage plate 490. According to the configuration supporting the rotating shaft 470a, it is possible to prevent the rotating shaft 470a from being shaken.
  • the oil passage plate 490 has the purpose of not only indicating the shaft 470a but also reducing the sliding resistance generated between the two rotating sliding surfaces 434 and 444 and preventing seizure.
  • the surface of the moving surface is, for example, coated with a seizure-resistant material. If there is no problem of seizure between the two sliding surfaces 434 and 444 and the oil passage plate 490, the oil passage plate 490 may be configured to omit the coating with a seizure-resistant material. .
  • the swash plate tilt shaft 433a of the movable swash plate 433 ° of the hydraulic pump 430 and the swash plate tilt shaft 443a of the fixed swash plate 43F of the hydraulic motor 440 are parallel to each other.
  • the centers of the rotating shafts 470a and 480a are eccentrically arranged in a direction orthogonal to the swash plate tilting shafts 433a and 443a.
  • the amount of eccentricity 499 of these rotary shafts 470a '480a is the rotational angle at which the maximum amount of eccentricity is reached, that is, the rotational angle 404t which is 90 degrees out of phase with respect to the axial direction of the swash plate tilting shafts 433a' 443a. ⁇ ⁇ Position at 404u, and then rotate the sliding surfaces of both plunger blocks 431 and 441 4 Port 434a of 434-444 (490a) By maximizing the amount of displacement of -444a, both ports 434a (490a) The oil passages 408-408 formed by overlapping the '444a are divided, and the eccentric amount 499 through which the oil passages 408-408 communicate with each other at other rotation angles.
  • the oil paths 408 and 408 form a high-pressure oil path (or a low-pressure oil path), and in the second section 412, the oil path 40 8 ⁇ 408 forms a low-pressure oil passage (or high-pressure oil passage), whereby hydraulic oil is supplied from hydraulic pump 430 to hydraulic motor 440 using rotary shaft 470a as an input shaft, and rotary shaft 480a is used as an output shaft.
  • the HST 401 is configured to be driven.
  • a discharge area (or suction area) is formed in the hydraulic pump 430
  • a suction area (or discharge area) is formed in the hydraulic pump 430.
  • Suction area (or discharge area) ⁇ Hydraulic motor 440 has a discharge area (suction area) formed separately.
  • the pump-side plunger block 431, the motor-side plunger block 441, and the force S face each other through the surfaces that slide and rotate (rotary sliding surfaces 433 and 444).
  • a communication passage (oil passage 408) for fluid communication between the cylinders formed in the jar block is formed, and a separation element is interposed in the communication passage. The separation element allows the pump-side motor-side plunger.
  • the plurality of communication passages are of the suction area (first section 411 (second section 412)) and the discharge area (second section 412 (second section 411)).
  • the oil passage group in each of the plunger blocks 431 and 441 is divided into a suction area and a discharge area (one of them is a first section 411 and the other is a second section 412) by the separation element. It is.
  • the swash plate tilt shaft 433a of the movable swash plate 433433 of the hydraulic pump 430 and the swash plate tilt shaft 443a of the fixed swash plate 43F of the hydraulic motor 440 are different from each other.
  • both swash plates 433M'43F in the main drive direction (for example, the direction in which the vehicle equipped with HST401 is advanced) is set to be parallel, so that the plunger 432.432 of the hydraulic pump 430 and the plunger 432.432
  • the load in the thrust direction and the radial direction based on the rotating shaft 470a'480a generated by the sliding of the plunger 442.442 of the hydraulic motor 440 can cancel each other, and the motor-side plan can be reduced by using a smaller bearing 496.
  • the jar block 441 can be supported, and power loss and cost can be reduced.
  • the total pressure receiving area of each of the cylinders 431a and 441a of the pump-side plunger block 431 and the motor-side plunger block 441 is substantially the same.
  • Directional and radial loads can more reliably cancel each other out.
  • the number of cylinders 431a and 441a is not particularly limited, and the design flexibility of the plunger block is wide.
  • the pump-side plunger block 431 and the motor-side plunger block 441 rotate in the same direction. As a result, it is possible to reduce power loss generated between the rotary sliding surfaces 434 ′ and 444 (494a and 494b).
  • the rotary sliding surfaces 494b and 444 face each other, Since two relative rotation sliding surfaces (mating surface 405c) are formed, the relative rotation sliding surface is compared with the conventional configuration in which two relative rotation sliding surfaces are formed on the high-pressure oil passage plate. The amount of leakage from the surface can be relatively reduced. In this way, the required amount of charge oil can be reduced, and power loss and cost can be reduced. Further, according to the above configuration, as shown in FIG. 24, since the high pressure oil passage plate required for the conventional configuration is not provided, the mass of the entire HST 401 can be reduced and the cost can be reduced.
  • the rear end face of the rotating shaft 470a and the front end face of the rotating shaft 480a are arranged close to and opposed to each other.
  • the overall length of the HST401 can be made more compact as compared with a configuration in which a rotary shaft is supported.
  • the oil passage plate 490 is fitted inside the bearing 497 so as to be rotatably supported, and the pump side plunger block 431 and the motor side Because it is configured to be rotatable relative to the lancer block 441 and the rotating shafts 470a and 480a, even if there is a large difference between the rotation speeds of the two rotating shafts 470a and 480a, the oil plate 490 can rotate freely. Is allowed, and the oil passage plate 490 does not restrain the rotation of the plunger blocks 431 and 441, so that the rotational sliding generated between the oil passage plate 490 and the plunger blocks 431 and 441 is performed. Resistance can be minimized.
  • the separation element can be configured by a simple configuration such as the eccentric arrangement of the two rotating shafts 470a and 480a, and the force S can be reduced to a hydrostatic continuously variable transmission with a small number of parts. .
  • the charge oil supply mechanism and the check relief mechanism in the HST 401 having the above configuration have the same configuration as the first configuration example described above, as understood from the configurations shown in FIGS. 11 to 13 and 24. I have. Note that the above-described second and third configuration examples can also be applied.
  • the case housing is of a front and rear split type, and the case housing 402a on the hydraulic pump 430 side has a movable swash plate 433M.
  • the half bearing guide 421, the rotary shaft 470a as the input shaft, the bearing hole 422 of the bearing 430a 430b, and the bearing hole 420a of the bearing 497 for the oil passage plate 490 are integrally formed, while the case housing 402b on the hydraulic motor 440 side is formed.
  • a bearing hole 424 of a rotating shaft 480a as an output shaft is integrally formed.
  • the hydraulic pump 430 is of a variable displacement type
  • the hydraulic motor 440 is of a fixed displacement type.
  • the present invention is also applicable to a configuration in which the motor 440 is of a variable displacement type.
  • the force is such that the oil passage plate 490 is arranged on the pump-side plunger block 431.
  • the present invention is also applicable to a configuration in which 490 is provided.
  • a charge oil supply mechanism and a hydraulic oil supply mechanism are provided on the hydraulic motor 440 side.
  • Force with Provision of Check and Relief Mechanism The reverse configuration may be adopted, that is, a configuration in which a charge oil supply mechanism and a check and relief mechanism are provided on the hydraulic pump 430 side.
  • the hydraulic pump 430 is a fixed displacement type
  • the hydraulic motor 440 is a variable displacement type
  • the charge oil supply mechanism and the check relief mechanism are provided on the hydraulic pump 430 side
  • the hydraulic motor 440 is provided on the hydraulic motor 440 side.
  • the case housing is of a front-rear split type
  • the case housing 402a on the hydraulic pump 430 side has a bearing hole 422 of a rotary shaft 470a as an input shaft.
  • the half housing guide 421 of the movable swash plate 433M and the bearing hole 424 of the bearing 440b of the rotary shaft 480a as the output shaft are integrally formed in the case housing 402b on the hydraulic motor 440 side. Things.
  • the present invention can be used as a substitute for a conventional hydrostatic continuously variable transmission, and is particularly suitable for a place where a space-saving design is required. In addition, since power loss is small, this configuration is suitable for places where high transmission efficiency is required.

Abstract

A hydrostatic stepless speed change device (1) constructed in combination of an axial piston hydraulic pump (30) and a hydraulic motor (40). A pump-side plunger block (31) and a motor-side plunger block (41) are opposed to each other with surfaces sliding and rotating against each other (rotary slide surfaces (33, 44)) in between. Communication passages hydraulically communicating between cylinders (31a, 41a) that are formed in both plunger blocks are formed. A separation element is provided in the communication passages. In each of the pump-side and motor-side plunger blocks, the communication passages are partitioned by the element into passages in a suction area and passages in discharge area.

Description

明 細 書  Specification
静油圧式無段変速装置  Hydrostatic continuously variable transmission
技術分野  Technical field
[0001] 本発明は、静油圧式無段変速装置の構成、及び該静油圧式無段変速装置と遊星 歯車機構とを組み合わせてなる油圧 ·機械式無段変速装置に関する。  The present invention relates to a configuration of a hydrostatic continuously variable transmission, and a hydraulic / mechanical continuously variable transmission formed by combining the hydrostatic continuously variable transmission with a planetary gear mechanism.
背景技術  Background art
[0002] 従来のアキシャルピストン式ポンプとモータを備える静油圧式無段変速装置(Hydr o Static Transmission ;以下、「HST」とする)では、ポンプ回転軸、モータ回転 軸は、ハウジング及び高圧油路板に設けられる軸受により両側を軸承されて平行配 置され、各回転軸に回転拘束されて取付けられるプランジャーブロックは、それぞれ の回転摺動面を前記高圧油路板に対向配置させている。  [0002] In a conventional hydrostatic continuously variable transmission (HST) including an axial piston pump and a motor, a pump rotation shaft and a motor rotation shaft are formed by a housing and a high-pressure oil passage. The plunger blocks, which are mounted in parallel with bearings provided on both sides of the plate and are rotationally constrained to be mounted on the respective rotating shafts, have their respective rotating sliding surfaces opposed to the high-pressure oil passage plate.
前記プランジャーブロックと、高圧油路板との間には、吸込みポートと吐出ポートに 分離するためのバルブプレートが介装され、該バルブプレートは、高圧油路板に固 定配置されている。  A valve plate for separating into a suction port and a discharge port is interposed between the plunger block and the high-pressure oil passage plate, and the valve plate is fixed to the high-pressure oil passage plate.
そして、前記プランジャーブロックを挟んで高圧油路板の反対側に配される斜板に より、プランジャーブロック内のプランジャーを前記回転軸方向に摺動させることにより 、前記ポンプとモータとの間で油の給排が行なわれる構成としている(例えば、 日本 特開 2003— 035276号公報参照。)。  Then, the plunger in the plunger block is slid in the direction of the rotation axis by a swash plate arranged on the opposite side of the high-pressure oil passage plate with the plunger block interposed therebetween. The oil supply and discharge are performed between the units (for example, see Japanese Patent Application Laid-Open No. 2003-035276).
し力、し、以上の従来構成の HSTでは、バルブプレートとプランジャーブロックとの相 対回転摺動面 (合わせ面)における油漏れといった問題があり、また、この相対回転 摺動面は、ポンプ側とモータ側とで二箇所存在するため、油漏れによる容積効率の 低下、チャージポンプの動力ロスが多いといった問題がある。  In the above-mentioned conventional HST, there is a problem such as oil leakage on the relative rotation sliding surface (joint surface) between the valve plate and the plunger block. Since there are two locations, one on the motor side and the other on the motor side, there are problems such as a decrease in volumetric efficiency due to oil leakage and a large power loss in the charge pump.
また、上述した従来構成の HSTでは、高圧油路板に固定されて回転不能なバルブ プレートに対し、プランジャーブロックの回転摺動面が摺接されて相対回転摺動面を 形成する構成としているため、両者の相対回転数は、プランジャーブロックの回転数 そのものとなり、これにより、バルブプレートとプランジャーブロックの間に生じる摩擦 による動力ロスが多いといった問題がある。また、油漏れにおけるものと同様、相対回 転摺動面がポンプ側とモータ側とで二箇所存在するため、この摩擦抵抗は、動力口 スに大きく影響するといえる。 In the above-described conventional HST, the rotary sliding surface of the plunger block is slidably contacted with the non-rotatable valve plate fixed to the high-pressure oil passage plate to form a relative rotary sliding surface. Therefore, the relative rotation speed between the two becomes the rotation speed of the plunger block itself, which causes a problem that a large power loss occurs due to friction generated between the valve plate and the plunger block. Also, as with oil leaks, relative rotation Since there are two rolling sliding surfaces on the pump side and the motor side, it can be said that this frictional resistance greatly affects the power port.
さらに、上述した従来構成の HSTでは、斜板の傾斜により、プランジャーブロックに はラジアル方向の荷重が生じる。このラジアル方向の荷重は、前記回転軸に回転モ 一メントを与え、該回転軸を軸承する前記軸受の回転負荷となって、動力ロスを発生 させるといった問題がある。  Furthermore, in the above-mentioned conventional HST, a radial load is generated on the plunger block due to the inclination of the swash plate. The load in the radial direction gives a rotational moment to the rotary shaft and causes a rotational load on the bearing that supports the rotary shaft, causing a problem of power loss.
他方、上記 HSTと遊星歯車機構とを組み合わせた、油圧 ·機械式無段変速装置( Hydro Mechanical Transmission;以下、「HMT」とする)も知られている。 前記遊星歯車機構においては、サンギア、インターナルギア、遊星キャリアの三要 素のうちいずれか一の要素(第一の要素)に回転動力を入力し、残りの二要素のうち 一の要素(第二の要素)から出力回転を取り出すとともに、他の要素(第三の要素)か ら HSTに対する出力又は入力を連動するよう構成されている。  On the other hand, a hydraulic / mechanical continuously variable transmission (hereinafter referred to as “HMT”) combining the above HST and a planetary gear mechanism is also known. In the planetary gear mechanism, the rotational power is input to one of the three elements of sun gear, internal gear, and planet carrier (first element), and one of the remaining two elements (second element) ), And output or input to HST from another element (third element).
そして、前記 HMTにおいては、前記第三の要素に HSTの出力を連動させるか、 若しくは、 HSTに対する入力を連動させるかによつて、二つの形式に分けられるもの であり、前者は入力分割型とされ、後者は出力分割型とされている。  The HMT is divided into two types depending on whether the output of the HST is linked to the third element or the input to the HST is linked. The latter is of the output split type.
また、前記第三の要素と HSTとの連動を動力伝達軸により行なう構成としており、 該動力伝達軸と、 HSTの入力軸又は出力軸とを歯車を介して連動させる構成として いる。  Further, the third element and the HST are interlocked by a power transmission shaft, and the power transmission shaft and the input shaft or the output shaft of the HST are interlocked via gears.
また、前記 HSTにおいては、平行配置される回転軸にそれぞれ相対回転不能に 取付けられるプランジャーブロックの回転摺動面を高圧油路板に摺接させることで油 圧ポンプ、油圧モータが平行配置される構成とするものがある(この構成を HMTに おける第二の従来構成とする;日本特許特開 2000 - 127785号公報参照。)。 また、油圧ポンプと油圧モータとを同軸上に配する構成とする HMTも知られており 、入力分割型とするものは、油圧ポンプを固定容積型とし、油圧モータを可変容積型 に構成される一方、出力分割型とするものは、油圧ポンプを可変容積型とし、油圧モ ータを固定容積型に構成されるものである(この構成を HMTにおける第三の従来構 成とする;特許文献 1参照。)。この特許文献で示されるところの技術では、入力分割 型とするものであって、油圧ポンプの固定斜板を中空の入力軸に内嵌する構成とし ている。 Also, in the HST, the hydraulic pump and the hydraulic motor are arranged in parallel by sliding the rotating sliding surface of the plunger block, which is mounted on the parallel rotating shaft so that they cannot rotate relative to each other, to the high-pressure oil passage plate. (This configuration is referred to as a second conventional configuration in the HMT; see Japanese Patent Application Laid-Open No. 2000-127785). Also known is an HMT in which the hydraulic pump and the hydraulic motor are arranged coaxially. In the case of the split input type, the hydraulic pump is configured as a fixed displacement type and the hydraulic motor is configured as a variable displacement type. On the other hand, the split-output type is one in which the hydraulic pump is configured as a variable displacement type and the hydraulic motor is configured as a fixed displacement type (this configuration is referred to as the third conventional configuration in HMT; 1). In the technique disclosed in this patent document, a split input type is adopted, in which a fixed swash plate of a hydraulic pump is fitted inside a hollow input shaft. ing.
しかし、上述した HMTにおける第二の従来構成では、 HST部からの油漏れ、摩擦 ロスにより伝達効率が低いといえる。二つのプランジャーブロックと高圧油路板との間 には二つの相対回転摺動面 (合わせ面)が形成されるため、該相対回転摺動面での 油漏れや、回転摺動面における摩擦抵抗が、動力ロスに大きく影響するためである。 また、第二の従来構成では、動力伝達軸、軸受、歯車などの部品が多く存在するた め、動力ロスの発生が大きぐまた、製造コストが高くつくともいえる。さらに、複数の軸 が平行に配置されることや、軸受、歯車の存在が、装置のコンパクト化に対して障害 となる。  However, in the above-described second conventional configuration of the HMT, it can be said that the transmission efficiency is low due to oil leakage from the HST section and friction loss. Since two relative rotating sliding surfaces (mating surfaces) are formed between the two plunger blocks and the high-pressure oil passage plate, oil leakage at the relative rotating sliding surfaces and friction on the rotating sliding surfaces are caused. This is because resistance greatly affects power loss. Further, in the second conventional configuration, since there are many components such as the power transmission shaft, bearings, and gears, it can be said that power loss is large and the manufacturing cost is high. Furthermore, the fact that a plurality of shafts are arranged in parallel and the presence of bearings and gears are obstacles to the compactness of the device.
一方、上述した HMTにおける第三の従来構成では、油圧ポンプの斜板を中空の 入力軸に内嵌する構成としており、斜板が回転することになるため、油圧ポンプを可 変容積型に構成できない。このため、固定された斜板の角度によって一義的に決ま る一定の変速比よりも低い変速比を実現することができなレ、、つまり、ゼロからの無段 変速運転ができない構成となっている。また、斜板操作のみでは正逆回転をさせるこ とができないため、前後進切換え用の機構が必要とされる。同様に、出力分割式とす る場合にも、油圧モータ側の斜板が回転する構成となるため、油圧モータを可変容 量式にすることができないといえ、変速範囲を広くとることができないとともに、仮に、 斜板操作で正逆回転をさせる構成とするためには、油圧ポンプ側の容量を油圧モー タ側の 2倍程度大きくすることが必要となる。このように、第三の従来構成においては 、変速範囲が狭いといった問題や、前後進切換え用の機構の存在による製造コスト 高といった問題が存在する。  On the other hand, in the above-mentioned third conventional configuration of the HMT, the swash plate of the hydraulic pump is fitted inside the hollow input shaft, and the swash plate rotates, so that the hydraulic pump is configured as a variable displacement type. Can not. For this reason, a gear ratio lower than a fixed gear ratio uniquely determined by the angle of the fixed swash plate cannot be realized, that is, a continuously variable speed operation from zero cannot be performed. I have. In addition, since forward and reverse rotation cannot be performed only by operating the swash plate, a mechanism for switching between forward and backward is required. Similarly, even in the case of the output split type, the swash plate on the hydraulic motor side is configured to rotate, so it cannot be said that the hydraulic motor cannot be a variable capacity type, and the shift range cannot be widened. At the same time, if the swash plate is operated to rotate forward and reverse, the capacity of the hydraulic pump must be about twice as large as that of the hydraulic motor. As described above, the third conventional configuration has a problem that the shift range is narrow, and a problem that the manufacturing cost is high due to the presence of the mechanism for switching between forward and backward.
本発明は、以上の従来構成における問題点に鑑み、新規な構成の HSTの構成、 及び該 HSTと遊星歯車機構とを組み合わせてなる HMTを提案するものである。 特許文献 1:特開 2000—127785  The present invention has been made in view of the problems of the conventional configuration described above, and proposes a new configuration of the HST and an HMT that combines the HST with a planetary gear mechanism. Patent Document 1: JP-A-2000-127785
発明の開示 Disclosure of the invention
本発明は、アキシャルピストン式の油圧ポンプと油圧モータとを組み合わせてなる 静油圧式無段変速装置であって、ポンプ側プランジャーブロックと、モータ側プラン ジャーブロックとが、互いに摺動回転する面を介して向かい合わせられ、両プランジ ヤーブロックに形成されるシリンダ間を流体連通する複数の連通路が形成されるとと もに、該複数の連通路に分離要素が介設され、該分離要素により、各プランジャーブ ロック内の該複数の連通路力 S、吐出域のものと吸入域のものとに区分される構成、と する静油圧式無段変速装置とするものである。 The present invention relates to a hydrostatic continuously variable transmission that combines an axial piston type hydraulic pump and a hydraulic motor, wherein a pump-side plunger block and a motor-side plunger block slide and rotate with each other. Faced through both plunges A plurality of communication passages for fluid communication between the cylinders formed in the first block are formed, and a separation element is provided in the plurality of communication passages. The plurality of communication path forces S are divided into a discharge region and a suction region.
これにより、一つの相対回転摺動面 (合わせ面)が形成され、従来の高圧油路板に 対して二つの相対回転摺動面が形成される構成のものと比較して、該相対回転摺動 面からの漏れ量を相対的に低減することができる。そして、必要なチャージ油量を抑 えることができ、動力ロスの低減、コスト低減を図ることができる。また、前記両プラン ジャーブロックは同じ方向に回転するため、互いの回転数の差から求まる回転数にて 相対回転することになり、前記回転摺動面との間で生じる動力ロスの低減を図ること ができる。  As a result, one relative rotation sliding surface (mating surface) is formed, and the relative rotation sliding surface is compared with the conventional configuration in which two relative rotation sliding surfaces are formed on the high-pressure oil passage plate. The amount of leakage from the running surface can be relatively reduced. Then, the required amount of charge oil can be reduced, and power loss and cost can be reduced. Further, since the plunger blocks rotate in the same direction, they rotate relative to each other at a rotational speed determined from a difference between the rotational speeds of the plunger blocks, thereby reducing a power loss generated between the plunger block and the rotational sliding surface. be able to.
また、前記分離要素は、前記いずれか一方のプランジャーブロックに、該プランジャ 一ブロックのシリンダの数と同数設けられるスプールバルブにて構成されるものであり Further, the separation element is constituted by a spool valve provided in one of the plunger blocks in the same number as the number of cylinders in one plunger block.
、該スプールバルブは、前記プランジャーブロックの回転軸を中心に摺動自在に放 射状に配置され、その外側先端が、前記回転軸に対して偏心配置される軸受の内輪 の内周面に当接され、前記プランジャーブロックの回転に従って前記回転軸の半径 方向に摺動され、前記両プランジャーブロックのシリンダを連通させる油路を開通又 は分断させるものであり、該スプールバノレブにて前記油路を分断し、各プランジャー ブロックの油路を吸入域 ·吐出域に区分するものとする。 The spool valve is radially disposed so as to be slidable about the rotation axis of the plunger block, and its outer end is provided on the inner peripheral surface of an inner ring of a bearing eccentrically disposed with respect to the rotation axis. The plunger block is slid in the radial direction of the rotating shaft in accordance with the rotation of the plunger block to open or divide an oil passage connecting the cylinders of the plunger blocks. It is assumed that the oil passage is divided and the oil passage of each plunger block is divided into a suction region and a discharge region.
これにより、前記モータ側プランジャーブロックの回転軸と、前記ポンプ側プランジャ 一ブロックの回転軸を同軸上に配することが可能となり、コンパクトな静油圧式無段変 速装置を構成することができる。  Thus, the rotation axis of the motor-side plunger block and the rotation axis of the pump-side plunger block can be coaxially arranged, and a compact hydrostatic continuously variable transmission can be configured. .
また、前記モータ側プランジャーブロックの回転軸と、前記ポンプ側プランジャーブ ロックの回転軸を同軸上に配し、これら回転軸と遊星歯車機構とを組み合わせて、入 力分割式に構成される油圧 ·機械式無段変速装置を構成することを可能とした静油 圧式無段変速装置とするものである。  Further, the rotation axis of the motor-side plunger block and the rotation axis of the pump-side plunger block are arranged coaxially, and the rotation axis and the planetary gear mechanism are combined to form an input split type. This is a hydrostatic type continuously variable transmission that can constitute a hydraulic / mechanical continuously variable transmission.
これにより、 HSTの二つの回転軸と、遊星歯車機構のサンギアとを同軸上に配する 構成が可能となるものであり、遊星歯車機構の第三の要素と HSTとを、動力伝達軸' ギアを介して連動させる従来構成と比較すると、当該動力伝達軸'ギアを省略するこ とができ、低コスト、かつコンパクトな油圧 ·機械式無段変速装置を構成することがで きる。 This enables a configuration in which the two rotation shafts of the HST and the sun gear of the planetary gear mechanism are coaxially arranged, and the third element of the planetary gear mechanism and the HST are connected to the power transmission shaft ′. Compared with the conventional configuration in which the gears are interlocked via gears, the gears for the power transmission shaft can be omitted, and a low-cost and compact hydraulic / mechanical continuously variable transmission can be configured.
また、前記モータ側プランジャーブロックの回転軸と、前記ポンプ側プランジャーブ ロックの回転軸を同軸上に配し、これら回転軸と遊星歯車機構とを組み合わせて、出 力分割式に構成される油圧 ·機械式無段変速装置を構成することを可能とした静油 圧式無段変速装置とするものである。  In addition, the rotation axis of the motor-side plunger block and the rotation axis of the pump-side plunger block are arranged coaxially, and the rotation axis and the planetary gear mechanism are combined to form an output split type. This is a hydrostatic type continuously variable transmission that can constitute a hydraulic / mechanical continuously variable transmission.
これにより、 HSTの二つの回転軸と、遊星歯車機構のサンギアとを同軸上に配する 構成が可能となるものであり、遊星歯車機構の第三の要素と HSTとを、動力伝達軸' ギアを介して連動させる従来構成と比較すると、当該動力伝達軸'ギアを省略するこ とができ、低コスト、かつコンパクトな油圧 ·機械式無段変速装置を構成することがで きる。  This enables a configuration in which the two rotation shafts of the HST and the sun gear of the planetary gear mechanism are coaxially arranged, and the third element of the planetary gear mechanism and the HST are connected to the power transmission shaft gear. As compared with the conventional configuration in which the gears are interlocked via the power transmission shaft, the gear of the power transmission shaft can be omitted, and a low-cost and compact hydraulic / mechanical continuously variable transmission can be configured.
また、前記軸受の内輪の内周面を、前記回転軸の軸方向に対し傾斜させることとす る。  Further, an inner peripheral surface of an inner race of the bearing is inclined with respect to an axial direction of the rotating shaft.
これにより、該内周面に当接するスプールバルブの先端部の内周面に対する当接 部を回転摺動させることができ、スプールバルブ先端部の耐久性を向上できる。 また、前記スプールバルブの摺動方向を、前記回転軸の軸方向に対し傾斜させる こととする。  Thus, the contact portion of the distal end portion of the spool valve contacting the inner peripheral surface with respect to the inner peripheral surface can be rotated and slid, and the durability of the distal end portion of the spool valve can be improved. Further, the sliding direction of the spool valve is inclined with respect to the axial direction of the rotating shaft.
これにより、前記軸受の内周面に当接するスプールバルブの先端部の内周面に対 する当接部を回転摺動させることができ、スプールバルブ先端部の耐久性を向上で きる。  Thus, the contact portion of the tip of the spool valve that contacts the inner peripheral surface of the bearing with respect to the inner peripheral surface can be rotated and slid, and the durability of the distal end portion of the spool valve can be improved.
また、前記分離要素は、偏心配置した回転軸にそれぞれポンプ側プランジャープロ ック及びモータ側プランジャーブロックを支持し、両プランジャーブロック間の相対回 転摺動面に臨ませるように、各プランジャーブロックに形設される複数のシリンダと個 別に連通するポンプ側ポート、モータ側ポートを形設し、前記の回転軸の偏心配置 によりずれ合う両プランジャーブロックのポートが互いに重なることで、両プランジャー ブロックのシリンダを連通させる油路を形成し、前記両回転軸の軸心を結ぶ線の延長 線上にて両プランジャーブロックのポート間の重なりがなくなって前記油路を分断す る、ことで構成されるものであり、前記油路のうち、分断された油路によって、各プラン ジャーブロックの油路を吸入域 ·吐出域に区分することとする、ことにより構成されるも のとする。 In addition, the separation element supports the pump-side plunger block and the motor-side plunger block on the eccentrically arranged rotating shafts, respectively, so as to face the relative rotation sliding surface between the two plunger blocks. By forming a pump-side port and a motor-side port that individually communicate with a plurality of cylinders formed on the plunger block, the ports of both plunger blocks that are displaced due to the eccentric arrangement of the rotating shaft overlap each other, An oil path is formed to connect the cylinders of both plunger blocks, and there is no overlap between the ports of both plunger blocks on an extension of a line connecting the axes of the two rotating shafts, thereby dividing the oil path. The oil passages of each plunger block are divided into a suction region and a discharge region by the divided oil passages among the oil passages. And
これにより、両回転軸の偏心配置といった簡易な構成により分離要素を構成するこ とができ、部品点数の少ない静油圧式無段変速装置に構成することができる。  As a result, the separation element can be configured with a simple configuration such as the eccentric arrangement of both rotating shafts, and a hydrostatic continuously variable transmission with a small number of parts can be configured.
また、前記いずれか一方のプランジャーブロックと一体に回転する油路板を設け、 該油路板と他方のプランジャーブロックとを相対回転摺動自在に当接させることで、 前記両プランジャーブロック間の相対回転摺動面を画し、該油路板には、複数の油 路を軸方向に貫通して形成し、これら油路の配置は、前記油路板が一体に回転され る側のプランジャーブロックの回転摺動面に形設するポートと略同一とするとともに、 前記油路板が一体に回転される側のプランジャーブロックの回転軸は、該油路板に て支持されることとする。  Further, an oil passage plate that rotates integrally with one of the plunger blocks is provided, and the oil passage plate and the other plunger block are brought into contact with each other so as to be relatively rotatable and slidable. A plurality of oil passages are formed in the oil passage plate so as to penetrate in the axial direction, and these oil passages are arranged on the side on which the oil passage plate is integrally rotated. And the rotation shaft of the plunger block on the side where the oil passage plate is integrally rotated is supported by the oil passage plate. It shall be.
これにより、簡易な構成で両プランジャーブロックの回転摺動面の間に生じる摺動 抵抗を削減することができ、動力ロスの低減を図ることができる。また、油路板により 回転軸が支持されるため、回転軸のぶれを防止することができる。  Thus, the sliding resistance generated between the rotating sliding surfaces of both plunger blocks can be reduced with a simple configuration, and power loss can be reduced. Further, since the rotation shaft is supported by the oil passage plate, it is possible to prevent the rotation shaft from moving.
また、前記静油圧式無段変速装置のケースハウジングに設けたチャージポンプとの 接続点と、モータ側又はポンプ側プランジャーブロック内の油圧回路との間に、チヤ ージ油供給機構が設けられることとする。  In addition, a charge oil supply mechanism is provided between a connection point of the hydrostatic type continuously variable transmission with a charge pump provided in a case housing and a hydraulic circuit in a motor-side or pump-side plunger block. It shall be.
例えば、固定斜板、プランジャーブロック、回転軸に油路を形成して、これらに内装 する構成とするものであり、これにより、静油圧式無段変速装置のコンパクト化を図る こと力 Sできる。  For example, an oil passage is formed in a fixed swash plate, a plunger block, and a rotating shaft, and the oil passage is provided inside the fixed swash plate, the plunger block, and the rotating shaft. This makes it possible to reduce the size of the hydrostatic continuously variable transmission. .
また、前記静油圧式無段変速装置のケースハウジングに設けたチャージポンプとの 接続点と、モータ側又はポンプ側プランジャーブロック内の油圧回路との間に、チヱ ックバルブ機構が設けられることとする。  A check valve mechanism is provided between a connection point of a charge pump provided in a case housing of the hydrostatic stepless transmission and a hydraulic circuit in a motor-side or pump-side plunger block. .
例えば、固定斜板、プランジャーブロック、回転軸にチェック機構を内装する構成と するものであり、これにより、静油圧式無段変速装置のコンパクトィヒを図ることができる また、前記静油圧式無段変速装置のケースハウジングは、前記分離要素の近傍で 分害 1Jされることとする。 For example, a check mechanism is provided inside a fixed swash plate, a plunger block, and a rotating shaft, whereby the compactness of the hydrostatic continuously variable transmission can be achieved. The case housing of the continuously variable transmission is located near the separation element. Harm 1J.
これにより、各ケースハウジングに、それぞれ別個に油圧ポンプ、油圧モータを仕組 むことができ、仕組みやすい構成とすることができる。  Thus, a hydraulic pump and a hydraulic motor can be separately arranged in each case housing, and a configuration that is easy to operate can be achieved.
また、前記静油圧式無段変速装置のケースハウジングは、分割される構成とするも のであり、第一のハウジング内に油圧モータ及び油圧ポンプが収容され、その他の ハウジングにて、第一のハウジングの開口部が閉じられる構成とする。  Further, the case housing of the hydrostatic continuously variable transmission is configured to be divided, and a hydraulic motor and a hydraulic pump are housed in a first housing, and a first housing is formed by other housings. Is closed.
これにより、モータ'ポンプを別個のハウジングに個別に収容する形態と比較して、 ハウジングの剛性が優れたものとすることができる。  Thereby, the rigidity of the housing can be improved as compared with a mode in which the motor'pumps are individually housed in separate housings.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
園 1]HSTの第一構成例を示す側面断面図である。 FIG. 1 is a side sectional view showing a first configuration example of an HST.
園 2]図 1における Π-Π線一部断面図である。 Garden 2] FIG. 1 is a partial sectional view taken along the line Π-Π in FIG.
園 3]同じく図 1における ΠΙ-ΠΙ線一部断面図である。 Garden 3] FIG. 2 is a partial cross-sectional view taken along the line ΠΙ-ΠΙ in FIG. 1.
園 4]両プランジャーブロック間で形成される油路が分断される状態を示す図である。 園 5] (a)は第一の区間におレ、て形成される油路を示す図であり、 (b)は第二の区間 におレ、て形成される油路を示す図である。 [Garden 4] is a diagram showing a state where an oil passage formed between both plunger blocks is divided. Garden 5] (a) is a diagram showing an oil passage formed in a first section, and (b) is a diagram showing an oil passage formed in a second section. .
[図 6]ポンプ側プランジャーブロックの回転摺動面を示す図である。  FIG. 6 is a view showing a rotary sliding surface of a pump-side plunger block.
[図 7]モータ側プランジャーブロックの回転摺動面を示す図である。 FIG. 7 is a view showing a rotary sliding surface of a motor-side plunger block.
[図 8]油路板の回転摺動面を示す図である。 FIG. 8 is a view showing a rotary sliding surface of an oil passage plate.
園 9]路板等により形成される一連の油路を示す側面一部断面図である。 [Garden 9] is a partial cross-sectional side view showing a series of oil passages formed by a road board and the like.
園 10]上記第一構成例においてスプールバルブを傾斜させた構成例示す側面断面 図である。 Garden 10] is a side sectional view showing a configuration example in which the spool valve is inclined in the first configuration example.
園 11]定斜板の傾斜面の構成を示す図である。 [Garden 11] is a view showing the configuration of the inclined surface of the constant swash plate.
園 12]チャージ油供給機構及びチェック 'リリーフ機構の構成を示す平面断面図であ る。 Garden 12] is a plan sectional view showing the configuration of a charge oil supply mechanism and a check relief mechanism.
[図 13]バルブプレートの構成を示す図である。  FIG. 13 is a view showing a configuration of a valve plate.
園 14]チャージ油供給機構及びチェック 'リリーフ機構の第二構成例を適用した HST の側面断面図である。 Garden 14] is a side sectional view of the HST to which the second configuration example of the charge oil supply mechanism and the check 'relief mechanism is applied.
園 15]チャージ油供給機構及びチェック 'リリーフ機構の第三構成例を適用した HST の側面断面図である。 Garden 15] HST applying the third configuration example of charge oil supply mechanism and check 'relief mechanism' FIG.
[図 16] (a)は分離要素の前側で分割される構成のケースハウジングについて示す図 であり、(b)は、分離要素の後側で分割される構成のケースハウジングについて示す 図であり、(c)は、第一のハウジング内に油圧モータ及び油圧ポンプが収容される構 成のケースハウジングについて示す図である。  [FIG. 16] (a) is a diagram showing a case housing configured to be split at the front side of the separation element, (b) is a diagram illustrating a case housing configured to be split at the rear side of the separation element, (C) is a diagram showing a case housing configured to house a hydraulic motor and a hydraulic pump in a first housing.
[図 17]第一のハウジング内に油圧モータ及び油圧ポンプを収容した HSTの構成に ついて示す図である。  FIG. 17 is a diagram showing a configuration of an HST in which a hydraulic motor and a hydraulic pump are housed in a first housing.
[図 18]入力分割型の HMTの全体構成図である。  FIG. 18 is an overall configuration diagram of an input split type HMT.
園 19]同構成における HST部の構成を示す側面断面図である。 Garden 19] is a side sectional view showing the configuration of the HST section in the same configuration.
園 20]スプールバノレブを傾斜させた構成例示す側面断面図である。 Garden 20] is a side sectional view showing a configuration example in which a spool vanoleb is inclined.
園 21]チャージ油供給機構及びチェック 'リリーフ機構の構成を示す側面断面図であ る。 Garden 21] is a side sectional view showing the configuration of the charge oil supply mechanism and the check relief mechanism.
[図 22]出力分割型の HMTの全体構成図である。  FIG. 22 is an overall configuration diagram of an output split type HMT.
園 23]同構成における HST部の構成を示す側面断面図である。 Garden 23] is a side sectional view showing the configuration of the HST section in the same configuration.
園 24]回転軸が偏心配置される HSTの構成例を示す側面断面図である。 Garden 24] is a side sectional view showing a configuration example of the HST in which the rotation shaft is eccentrically arranged.
[図 25]図 24に示される XXV— XXV線の一部断面図である。  FIG. 25 is a partial cross-sectional view taken along the line XXV-XXV shown in FIG. 24.
園 26]ポンプ側プランジャーブロックの回転摺動面の構成を示す図である。 FIG. 26 is a diagram showing a configuration of a rotary sliding surface of a pump-side plunger block.
[図 27]モータ側プランジャーブロックの回転摺動面の構成を示す図である。  FIG. 27 is a diagram showing a configuration of a rotary sliding surface of a motor-side plunger block.
園 28]油路板の構成を示す図である。 FIG. 28 is a view showing a configuration of an oil passage plate.
[図 29]プランジャーブロックのシリンダを連通する油路の構成を示す図である。  FIG. 29 is a diagram showing a configuration of an oil passage communicating the cylinders of the plunger block.
園 30]同構成において油路板をプランジャーブロックに一体とする場合に形成される 相対回転摺動面を示す図である。 FIG. 30 is a view showing a relative rotation sliding surface formed when the oil passage plate is integrated with the plunger block in the same configuration.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面を用いて実施の形態について説明する。  Hereinafter, embodiments will be described with reference to the drawings.
<静油圧式無段変速装置の構成 > <Configuration of hydrostatic continuously variable transmission>
図 1及び図 2に示すごとぐ静油圧式無段変速装置 1 (以下、「HST1」とする)は、 次の構成とするものである。  The hydrostatic continuously variable transmission 1 (hereinafter referred to as “HST1”) as shown in FIGS. 1 and 2 has the following configuration.
即ち、アキシャルピストン式ポンプ 30 (以下、「油圧ポンプ 30」とする)、及びアキシ ャルピストン式モータ 40 (以下、「油圧モータ 40」とする)を備える HST1であって、同 心配置した二つの回転軸 30a'40aにそれぞれ支持される、ポンプ側プランジャーブ ロック 31及びモータ側プランジャーブロック 41を対向配置しており、前記モータ側プ ランジャーブロック 41 (又は 31)には、プランジャーブロックのシリンダ 41a'41aの数( 又は 31a' 31a)と同数のスプールバルブ 50· 50を前記回転軸 40a (又は 31a)を中 心に摺動自在に放射状に配置している。前記スプールバルブ 50· 50の外側先端は 、前記回転軸 30a'40aに対して偏心配置される軸受 60の内輪 60aの内周面 61に 当接されてモータ側プランジャーブロック 41の回転に従って半径方向に摺動し、該ス プールバルブ 50· 50により、前記両プランジャーブロック 31·41のシリンダ 31a'41a 同士を連通させる油路 6a'6bを開通又は分断させる構成としている。 That is, the axial piston pump 30 (hereinafter referred to as “hydraulic pump 30”) and the axial pump 30 An HST1 equipped with a hydraulic piston motor 40 (hereinafter referred to as a “hydraulic motor 40”), and the pump-side plunger block 31 and the motor-side plan supported respectively by two concentrically arranged rotating shafts 30a'40a. The jar blocks 41 are disposed to face each other, and the same number of spool valves 50, 50 as the number of cylinders 41a '41a (or 31a' 31a) of the plunger blocks are provided in the motor-side plunger block 41 (or 31). The rotation shaft 40a (or 31a) is slidably arranged radially around the center. The outer ends of the spool valves 50, 50 are in contact with the inner peripheral surface 61 of the inner ring 60a of the bearing 60 eccentrically arranged with respect to the rotating shaft 30a'40a, and are radially moved according to the rotation of the motor-side plunger block 41. The oil passages 6a'6b for connecting the cylinders 31a'41a of the plunger blocks 31 and 41 to each other are opened or divided by the spool valves 50 and 50.
以上の構成とする HST1は、前記回転軸 30a'40aの軸方向における回転軸 30aを 配する側を前側として、前側に油圧ポンプ 30を、後側に油圧モータ 40を配する構成 とし、これらを前後分割式とするケースハウジング 2a' 2bに内装している。  The HST 1 having the above configuration has a configuration in which the side on which the rotary shaft 30a is disposed in the axial direction of the rotary shaft 30a'40a is the front side, the hydraulic pump 30 is disposed on the front side, and the hydraulic motor 40 is disposed on the rear side. It is housed in the case housing 2a '2b which is a front and rear split type.
以下詳述すると、ケースハウジング 2aの前側、ケースハウジング 2bの後側には、そ れぞれ軸受 30b'40bが嵌設されており、これら軸受 30b'40bによって、前記回転軸 30aの後端面と、前記回転軸 40aの前端面を対向させつつ、両回転軸 30a'40aを 同心配置させる構成としている。そして、回転軸 30aにはポンプ側プランジャーブロッ ク 31力 回転軸 40aにはモータ側プランジャーブロック 41がそれぞれ相対回転不能 に支持され、それぞれの回転摺動面 34·44を互いに対向させている。これにより、一 つの相対回転摺動面(合わせ面 5c;図 1参照)が構成されている。  More specifically, bearings 30b'40b are fitted on the front side of the case housing 2a and the rear side of the case housing 2b, respectively. The two rotation shafts 30a'40a are arranged concentrically with the front end surfaces of the rotation shafts 40a facing each other. The rotating shaft 30a supports a pump-side plunger block 31 force and the rotating shaft 40a supports a motor-side plunger block 41 so that they cannot rotate relative to each other, and the rotating sliding surfaces 34 and 44 face each other. . Thus, one relative rotational sliding surface (the mating surface 5c; see FIG. 1) is formed.
また、ケースハウジング 2aにおいて、前記軸受 30bとポンプ側プランジャーブロック 31との間には可動斜板 33Mが配置され、ポンプ側プランジャーブロック 31に等間隔 で、かつ回転軸 30aの軸方向に形設される 31a' 31a内のプランジャー 32·32を前後 摺動させる構成の可変容積型の油圧ポンプ 30が構成されている。  In the case housing 2a, a movable swash plate 33M is arranged between the bearing 30b and the pump-side plunger block 31, and is formed at equal intervals on the pump-side plunger block 31 and in the axial direction of the rotary shaft 30a. The variable displacement hydraulic pump 30 is configured so that plungers 32 and 32 in the provided 31a '31a are slid back and forth.
また、ケースハウジング 2bにおいて、前記軸受 40bとモータ側プランジャーブロック 41との間には固定斜板 43Fが配置され、モータ側プランジャーブロック 41に等間隔 で、かつ回転軸 40aの軸方向に形設される 41a'41a内のプランジャー 42·42を前後 摺動させる構成の固定容積型の油圧モータ 40が構成されている。 また、油圧ポンプ 30の可動斜板 33Mの斜板傾転軸 33aと、油圧モータ 40の固定 斜板 43Fの斜板傾転軸 43aとは平行としている。この斜板傾転軸 33a '43aは、図 1 において、紙面に対し垂直の関係となるものである。 In the case housing 2b, a fixed swash plate 43F is disposed between the bearing 40b and the motor-side plunger block 41, and is formed at equal intervals on the motor-side plunger block 41 and in the axial direction of the rotary shaft 40a. The fixed displacement hydraulic motor 40 has a configuration in which plungers 42 and 42 in the provided 41a'41a are slid back and forth. Further, the swash plate tilt shaft 33a of the movable swash plate 33M of the hydraulic pump 30 and the swash plate tilt shaft 43a of the fixed swash plate 43F of the hydraulic motor 40 are parallel to each other. The swash plate tilting shafts 33a and 43a have a relationship perpendicular to the paper surface in FIG.
また、図 1に示すごとく、前記ポンプ側プランジャーブロック 31のシリンダ 31a' 31a の回転摺動面 34側の底面積 32t' 32tの総和と、モータ側プランジャーブロック 41の シリンダ 41a'41aの回転摺動面 44側の底面積 42t'42tの総和は、略同一となるよう に設計され、ポンプ側プランジャーブロック 31と、モータ側プランジャーブロック 41の それぞれのシリンダ 31a'41aの合計受圧面積を略同一としている。  Further, as shown in FIG. 1, the sum of the bottom area 32t 'and 32t of the rotation sliding surface 34 of the cylinder 31a' 31a of the pump-side plunger block 31 and the rotation of the cylinder 41a'41a of the motor-side plunger block 41 are shown. The sum of the bottom areas 42t'42t on the sliding surface 44 side is designed to be almost the same, and the total pressure receiving area of each cylinder 31a'41a of the pump side plunger block 31 and the motor side plunger block 41 is calculated. They are almost the same.
また、図 1に示すごとぐ前記回転軸 30a '40aの端面が対向する位置において、回 転軸 40aの前端部には軸受 7が相対回転不能に嵌設されるとともに、該軸受 7に回 転軸 30aの後端部が相対回転可能に揷入されることで、両回転軸 30a '40aの端面 が近づけて対向配置されている。  As shown in FIG. 1, at a position where the end surfaces of the rotating shafts 30a and 40a face each other, a bearing 7 is fitted to the front end of the rotating shaft 40a so as to be relatively non-rotatable, and is rotated by the bearing 7. The rear ends of the shafts 30a are inserted so as to be relatively rotatable, so that the end surfaces of the two rotating shafts 30a and 40a are arranged close to and opposed to each other.
また、図 1に示すごとく、モータ側プランジャーブロック 41は、その外周面がケース ハウジング 2bに嵌設される軸受 160に支承されている。  As shown in FIG. 1, the motor-side plunger block 41 has its outer peripheral surface supported by a bearing 160 fitted to the case housing 2b.
また、図 1及び図 6に示すごとぐポンプ側プランジャーブロック 31の回転摺動面 34 においては、各シリンダ 31a'31a内と個別に連通するためのポンプ側ポート 34a'34 aが開口されており、前記プランジャー 32·32の摺動により、該ポンプ側ポート 34a'3 4aを油が通過するようになってレ、る。  As shown in FIGS. 1 and 6, a pump-side port 34a'34a for individually communicating with the inside of each cylinder 31a'31a is opened on the rotary sliding surface 34 of the pump-side plunger block 31. The sliding of the plungers 32 allows oil to pass through the pump-side port 34a'34a.
また、図 1及び図 7に示すごとぐモータ側プランジャーブロック 41の回転摺動面 44 においては、各シリンダ 41a'41a内と個別に連通するためのモータ側ポート 44a'44 aが、一つのシリンダ 41a'41aに対して二つずつ開口されており、前記プランジャー 4 2·42の摺動により、該モータ側ポート 44a'44aを油が通過するようになっている。 また、図 1、図 8及び図 9に示すごとぐポンプ側プランジャーブロック 31の回転摺動 面 34と、モータ側プランジャーブロック 41の回転摺動面 44との間には、いずれか一 方のプランジャーブロック 31 ·41に回転拘束され、回転拘束される側のプランジャー ブロック 31 ·41の回転摺動面 34·44のポート 34a'44aと同形.同配列の連通ポート 5 a'5aが開口される油路板 5が挟装されている。本実施例では、モータ側プランジャー ブロック 41に対して回転拘束される構成としており、連通ポート 5a' 5aの配列を、図 7 に示されるモータ側プランジャーブロック 41のモータ側ポート 44a '44a ' · ·と略同一 としている。そして、図 1及び図 9に示すごとぐ該油路板 5の回転摺動面 55に対して 、ポンプ側プランジャーブロック 31の回転摺動面 34がスプリング 31cによって当着す るようにして油密に形成され、一連の油路 6が形成されている。 In addition, as shown in FIGS. 1 and 7, on the rotary sliding surface 44 of the motor-side plunger block 41, a motor-side port 44a'44a for individually communicating with each cylinder 41a'41a has one motor-side port 44a'44a. Two openings are provided for the cylinders 41a'41a, and the sliding of the plungers 42 and 42 allows oil to pass through the motor-side ports 44a'44a. In addition, as shown in FIGS. 1, 8, and 9, one of the rotational sliding surfaces 34 of the pump-side plunger block 31 and the rotational sliding surface 44 of the motor-side plunger block 41 is provided. The plunger blocks 31 and 41 have the same shape as the ports 34a'44a of the rotation sliding surfaces 34 and 44 of the plunger blocks 31 and 41 on the side where the rotation is restricted. An oil passage plate 5 to be opened is sandwiched. In this embodiment, the arrangement is such that the rotation is restricted with respect to the motor-side plunger block 41, and the arrangement of the communication ports 5a 'and 5a is shown in FIG. The motor side port 44a of the motor side plunger block 41 shown in FIG. Then, as shown in FIG. 1 and FIG. 9, the rotation sliding surface 34 of the pump side plunger block 31 is brought into contact with the rotation sliding surface 55 of the A series of oil passages 6 are formed densely.
即ち、この実施例では、ポンプ'モータの両プランジャーブロック 31 · 41間の相対回 転摺動面(合わせ面 5c)を、油路板 5の回転摺動面 55とポンプ側プランジャーブロッ ク 31の回転摺動面 34との当接面としている。  That is, in this embodiment, the relative rotation sliding surface (the mating surface 5c) between the two plunger blocks 31 and 41 of the pump motor is changed to the rotation sliding surface 55 of the oil passage plate 5 and the pump-side plunger block. 31 is a contact surface with the rotary sliding surface 34.
この油路板 5は、特に、両回転摺動面 34 ·44の間に生じる摺動抵抗の削減や、焼 付きの防止を目的としており、これら摺動面の表面は、例えば、耐焼付き性材料で被 覆等されるものである。尚、両プランジャーブロック 31 ·41の間に焼付きの問題が生 じない場合には、油路板 5を設けない構成として、両回転摺動面 34 · 44を直接当接 させる構成としてもよい。  This oil passage plate 5 is intended, in particular, to reduce sliding resistance generated between the two rotating sliding surfaces 34 and 44 and to prevent seizure. It is covered with a material. If there is no problem of seizure between the plunger blocks 31 and 41, the configuration may be such that the oil passage plate 5 is not provided and the rotary sliding surfaces 34 and 44 are directly contacted. Good.
また、図 1、図 2及び図 9に示すごとぐモータ側プランジャーブロック 41において、 それぞれのシリンダ 41aと、回転摺動面 44のポート 44aとの間には、回転軸 40aを中 心としてシリンダ 51 a ' 51aが放射状に形設されており、該シリンダ 51a ' 51aには、柱 状のスプールバルブ 50 · 50が半径方向に摺動自在に配されてレ、る。  In the motor-side plunger block 41 as shown in FIGS. 1, 2 and 9, between the respective cylinders 41a and the ports 44a of the rotary sliding surface 44, the cylinders are arranged with the rotary shaft 40a as a center. 51a'51a is formed radially, and column-shaped spool valves 50 are slidably disposed in the cylinder 51a'51a in the radial direction.
また、図 2に示すごとぐシリンダ 51a ' 51a ' · ·の底部と、前記軸受 7の外周面との間 には、一連の環状油路 54を回転軸 40aの周方向に形設し、各シリンダ 51a ' 51a ' ' ' 内を連通させて、一連の油室 51bを形設している。  As shown in FIG. 2, a series of annular oil passages 54 are formed in the circumferential direction of the rotary shaft 40a between the bottom of the cylinders 51a '51a' and the outer peripheral surface of the bearing 7 as shown in FIG. A series of oil chambers 51b are formed so as to communicate with each other in the cylinders 51a '51a' ''.
また、図 2に示すごとく、このスプールバルブ 50は、前記シリンダ 41a ' 41aと同数配 置されることにより、回転軸 40aを中心に放射状に配置されるものであり、半球状に形 成される先端部 50a ' 50a ' · ·は、モータ側プランジャーブロック 41より半径方向外側 に突出されるとともに、前記回転軸 40aに偏心配置されてモータ側プランジャープロ ック 41を外環する軸受 60の内輪 60aの内周面 61に接するように構成されている。こ の軸受 60を回転軸 40aに対して偏心させる方向は、互いに平行関係にある前記斜 板傾転軸 33a '43a (図 1)の軸方向とするものとし、図 2に示すごとぐ軸受 60の軸心 60dと、回転軸 40aの軸心 40dとを結ぶ直線 4h力 S、前記斜板傾転軸 33a '43aと平行 となるようにしている。 また、図 1に示すごとく、軸受 60 (内輪 60a)の内周面 61の内径は、前記回転軸 40 aの軸方向前側から後側にかけて徐々に小さく構成することにより、内周面 61は、前 記回転軸 40aの軸方向に対し傾斜させるようにしてレ、る。 As shown in FIG. 2, the same number of the spool valves 50 as the number of the cylinders 41a and 41a are arranged radially around the rotation shaft 40a, and are formed in a hemispherical shape. The distal end portion 50a'50a 'projects radially outward from the motor-side plunger block 41, and is eccentrically arranged on the rotation shaft 40a to form a bearing 60 for the outer ring of the motor-side plunger block 41. The inner ring 60a is configured to be in contact with the inner peripheral surface 61 of the inner ring 60a. The direction of eccentricity of the bearing 60 with respect to the rotating shaft 40a is the axial direction of the swash plate tilting shafts 33a'43a (FIG. 1) which are in parallel with each other. A straight line 4h connecting the axis 60d of the rotating shaft 40a and the axis 40d of the rotating shaft 40a is parallel to the swash plate tilting axis 33a'43a. Also, as shown in FIG. 1, the inner diameter of the inner peripheral surface 61 of the bearing 60 (the inner ring 60a) is gradually reduced from the axial front side to the rear side of the rotary shaft 40a, so that the inner peripheral surface 61 is The rotary shaft 40a is tilted with respect to the axial direction.
また、図 2に示すごとぐスプールバルブ 50は、二つの大径部 50b ' 50cの間に小 径部 50dを配して構成される柱状体とするものであり、前記大径部 50b ' 50cの外周 面をシリンダ 51aの内周面に摺接させるとともに、前記小径部 50dにおいては、図 9に 示すごとぐシリンダ 51aの内周面との間に油路 56を形成する。該油路 56は、モータ 側プランジャーブロック 41のシリンダ 41aと、ポンプ側プランジャーブロック 31のシリン ダ 31aを連通させる前記一連の油路 6の一部を構成する。そして、該油路 56は、モ ータ側プランジャーブロック 41が規定の回転角となる位置において、前記スプール バルブ 50の大径部 50cにより閉じられるようにしている。即ち、図 2及び図 3に示すご とぐ前記斜板傾転軸 33a ' 43aと平行な直線 4hに対し、相反する方向にそれぞれ 9 0度位相がずれる回転角 4v'4wの位置において、スプールバルブ 50の大径部 50c が回転摺動面 44のポート 44aの位置に到達するように構成されるものであり、回転軸 40aを中心とする半径方向の前記ポート 44aの開口高さと、大径部 50cの軸長を略 同一として、前記回転角 4v'4wにて、油路 56 · 56がスプールバルブ 50により閉じら れるものである。図 2に示される構成では、軸受 60が回転軸 40aに対し上下方向に 偏心されるものであり、図 1に示すごとぐスプールバルブ 50は、最上位置(回転角 4 V)及び最下位置(回転角 4w)となる際に、図 4に示すごとぐ前記油路 56が閉じられ るように構成されている。  Further, as shown in FIG. 2, the spool valve 50 is a columnar body having a small-diameter portion 50d disposed between two large-diameter portions 50b '50c. The outer peripheral surface of the cylinder 51a is slid on the inner peripheral surface of the cylinder 51a, and an oil passage 56 is formed between the small-diameter portion 50d and the inner peripheral surface of the cylinder 51a as shown in FIG. The oil passage 56 constitutes a part of the series of oil passages 6 that communicate the cylinder 41a of the motor-side plunger block 41 with the cylinder 31a of the pump-side plunger block 31. The oil passage 56 is closed by the large diameter portion 50c of the spool valve 50 at a position where the motor-side plunger block 41 has a predetermined rotation angle. That is, at the position of the rotation angle 4v'4w, which is 90 degrees out of phase with respect to the straight line 4h parallel to the swash plate tilting shaft 33a '43a as shown in FIGS. The large diameter portion 50c of the valve 50 is configured to reach the position of the port 44a of the rotary sliding surface 44, and the opening height of the port 44a in the radial direction about the rotation axis 40a and the large diameter The oil passages 56 are closed by the spool valve 50 at the rotation angle 4v'4w with the shaft length of the portion 50c being substantially the same. In the configuration shown in FIG. 2, the bearing 60 is eccentric in the vertical direction with respect to the rotating shaft 40a, and as shown in FIG. 1, the spool valve 50 is at the uppermost position (rotation angle 4 V) and the lowermost position (rotation angle 4 V). When the rotation angle becomes 4w), the oil passage 56 is closed as shown in FIG.
そして、図 3に示すごとぐ前記回転角 4v' 4wの位置を基準として分断される二つ の区間 11 · 12を形成し、第一の区間 11においては、図 5 (a)に示すごとぐスプール バルブ 50の小径部 50dがポート 44aの位置と重なるように配されることにより、前記油 路 56を含む一連の油路 6aが開通される一方、第二の区間 12においては、図 5 (b) に示すごとぐスプールバルブ 50が外側に突出し、大径部 50cがポート 44aの位置よ りも半径方向外側に配されることにより、前記油室 51b (シリンダ 51a)を介して形成さ れる一連の油路 6bが開通される。このように、該スプールバルブ 50により、前記両プ ランジャーブロック 31 ·41のシリンダ 31a ' 41aを連通させる油路 6a ' 6bを開通又は分 断させる構成としている。 Then, as shown in FIG. 3, two sections 11 and 12 which are separated based on the position of the rotation angle 4v ′ 4w are formed, and in the first section 11, as shown in FIG. By arranging the small diameter portion 50d of the spool valve 50 so as to overlap the position of the port 44a, a series of oil passages 6a including the oil passage 56 is opened, while in the second section 12, FIG. As shown in b), the spool valve 50 protrudes outward, and the large diameter portion 50c is arranged radially outward from the position of the port 44a, so that the spool valve 50 is formed via the oil chamber 51b (cylinder 51a). A series of oil passages 6b are opened. In this way, the oil passages 6a 'and 6b that connect the cylinders 31a' and 41a of the plunger blocks 31 and 41 are opened or divided by the spool valve 50. It is configured to be disconnected.
以上のようにして、第一の区間 11においては、油圧ポンプ 30にっき吐出域(又は 吸入域)が、油圧モータ 40にっき吸入域 (又は吐出域)が形成され、第二の区間 12 においては、油圧ポンプ 30にっき吸入域(又は吐出域)力 油圧モータ 40にっき吐 出域(吸入域)が、それぞれ形成されるものであり、該油圧ポンプ 30 ·モータ 40の各 々において、吸入域と吐出域は、前記の油路 56を閉じ込んだスプールバルブ 50に より分離されることとしているものである。  As described above, in the first section 11, the discharge area (or suction area) of the hydraulic pump 30 is formed as the suction area (or discharge area) of the hydraulic motor 40, and in the second section 12, The hydraulic pump 30 has a suction area (or discharge area), and a hydraulic motor 40 has a discharge area (suction area) formed therein. In each of the hydraulic pump 30 and the motor 40, a suction area and a discharge area Is separated by a spool valve 50 that closes the oil passage 56.
また、以上のように、ポンプ側プランジャーブロックと、モータ側プランジャーブロック とが、互いに摺動回転する面(回転摺動面 33 ·44)を介して向かい合わせられ、両プ ランジャーブロックに形成されるシリンダ間を流体連通する連通路(油路 6a ' 6b)が形 成されるとともに、該連通路に分離要素 (スプールバルブ 50 ·軸受 60等)が介設され 、該分離要素により、前記連通路が、一方のプランジャーブロックの吸入域と他方の プランジャーブロックの吐出域を連通する通路(油路 6a)と、該一方のプランジャーブ ロックの吐出域と該他方のプランジャーブロックの吸入域を連通する通路(油路 6b)と に分割されるものとしている。即ち、該分離要素により、各プランジャーブロック 31 ·4 1内の油路群は、吸入域と吐出域 (いずれか一方を油路 6a '他方を 6bとする)とに区 分されるのである。  Further, as described above, the pump-side plunger block and the motor-side plunger block face each other via the surfaces that slide and rotate with each other (rotary sliding surfaces 33 and 44). A communication passage (oil passages 6a and 6b) for fluid communication between the formed cylinders is formed, and a separation element (a spool valve 50, a bearing 60, and the like) is provided in the communication passage. A passage (oil passage 6a) communicating the suction area of one plunger block and the discharge area of the other plunger block; a discharge area of the one plunger block; and the other plunger block. And a passage (oil passage 6b) that communicates with the suction area. That is, the oil passage group in each plunger block 31 · 41 is divided into a suction area and a discharge area (one of them is oil path 6a and the other is 6b) by the separation element. .
また、以上のように、前記分離要素は、前記いずれか一方のプランジャーブロックに 、該プランジャーブロックのシリンダの数と同数設けられるスプールバルブ 50にて構 成されるものであり、該スプールバルブ 50は、前記プランジャーブロックの回転軸を 中心に摺動自在に放射状に配置され、その外側先端が、前記回転軸に対して偏心 配置される軸受 60の内輪 60aの内周面に当接され、前記プランジャーブロックの回 転に従って前記回転軸の半径方向に摺動され、前記両プランジャーブロックのシリン ダを連通させる油路を開通又は分断させるものであり、該スプールバルブ 50にて前 記油路を分断し、各プランジャーブロックの油路を吸入域 ·吐出域に区分することとし ている。  Further, as described above, the separation element is configured by the spool valve 50 provided in the one of the plunger blocks in the same number as the number of cylinders of the plunger block. Numeral 50 is radially disposed so as to be slidable about the rotation axis of the plunger block, and its outer end is in contact with the inner peripheral surface of an inner ring 60a of a bearing 60 eccentrically arranged with respect to the rotation axis. The plunger block is slid in the radial direction of the rotating shaft in accordance with the rotation of the plunger block, and opens or separates an oil passage communicating the cylinders of the plunger blocks. The oil passage is divided, and the oil passage of each plunger block is divided into a suction area and a discharge area.
そして、以上の構成により、第一の区間 11においては、油路 6a ' 6a ' ' 'により高圧 油路(又は低圧油路)が形成され、第二の区間 12においては、油路 6b ' 6b—により 低圧油路(又は高圧油路)が形成されることで、回転軸 30aを入力軸として油圧ボン プ 30より油圧モータ 40に圧油を供給し、回転軸 40aを出力軸として駆動する HST1 が構成される。 With the above configuration, in the first section 11, the high pressure oil path (or the low pressure oil path) is formed by the oil paths 6 a ′ 6 a ′ ′ ′, and in the second section 12, the oil paths 6 b ′ 6 b By By forming the low-pressure oil passage (or high-pressure oil passage), the HST1 is configured to supply pressure oil to the hydraulic motor 40 from the hydraulic pump 30 using the rotating shaft 30a as an input shaft and drive the rotating shaft 40a as an output shaft. Is done.
また、以上の構成によれば、図 1に示すごとぐ油圧ポンプ 30の可動斜板 33Mの斜 板傾転軸 33aと、油圧モータ 40の固定斜板 43Fの斜板傾転軸 43aとは平行としてい るため、メインとする駆動方向(例えば、 HST1を備える車体を前進させる方向)にお ける両斜板 33M '43Fの傾き方向を同じ向きに設定することで、油圧ポンプ 30のプ ランジャー 32 · 32と、油圧モータ 40のプランジャー 42 ·42の摺動によって生じる回転 軸 30a '40aを基準とするスラスト方向、及びラジアル方向の荷重を互いに打ち消し 合うことができ、より小型の軸受 160を使用してモータ側プランジャーブロック 41を支 承することが可能となり、動力ロスの低減、コスト低減を図ることができる。  Further, according to the above configuration, as shown in FIG. 1, the swash plate tilt shaft 33a of the movable swash plate 33M of the hydraulic pump 30 and the swash plate tilt shaft 43a of the fixed swash plate 43F of the hydraulic motor 40 are parallel. Therefore, by setting the inclination directions of the two swash plates 33M and 43F in the main drive direction (for example, the direction in which the vehicle body equipped with the HST1 is moved forward) to the same direction, the plunger 32 of the hydraulic pump 30 can be set. Uses a smaller bearing 160 that can cancel out the thrust and radial loads with respect to the rotating shaft 30a '40a generated by the sliding of the plunger 32 of the hydraulic motor 40 and the plunger 42 of the hydraulic motor 40. As a result, the motor-side plunger block 41 can be supported, and power loss and cost can be reduced.
また、以上の構成によれば、図 1に示すごとぐポンプ側プランジャーブロック 31と、 モータ側プランジャーブロック 41のそれぞれのシリンダ 31 a · 41 aの合計受圧面積を 略同一としているので、上述したスラスト方向、及びラジアル方向の荷重を、より確実 に、互いに打ち消し合うことができる。また、前記合計受圧面積を略同一とする限りは 、シリンダ 31a ' 41aの数は特に限定されるものでなぐプランジャーブロックの設計上 の自由度は広いものとなっている。  Further, according to the above configuration, as shown in FIG. 1, the total pressure receiving areas of the cylinders 31a and 41a of the pump-side plunger block 31 and the motor-side plunger block 41 are substantially the same. The thrust direction and the radial load can cancel each other more reliably. In addition, as long as the total pressure receiving area is substantially the same, the number of cylinders 31a and 41a is not particularly limited, and the degree of freedom in designing the plunger block is wide.
また、以上の構成によれば、前記モータ側プランジャーブロック 41の回転軸 40aと、 前記ポンプ側プランジャーブロック 31の回転軸 30aを同軸上に配することが可能とな り、コンパクトな静油圧式無段変速装置 1を構成することができる。  Further, according to the above configuration, the rotating shaft 40a of the motor-side plunger block 41 and the rotating shaft 30a of the pump-side plunger block 31 can be arranged coaxially, so that a compact hydrostatic A continuously variable transmission 1 can be configured.
また、以上の構成によれば、図 1に示すごとぐポンプ側プランジャーブロック 31とモ ータ側プランジャーブロック 41は、同じ方向に回転するため、互いの回転数の差から 求まる回転数にて相対回転することになり、前記回転摺動面 34 ·44 (55)との間で生 じる動力ロスの低減を図ることができる。  In addition, according to the above configuration, the pump-side plunger block 31 and the motor-side plunger block 41 rotate in the same direction as shown in FIG. As a result, it is possible to reduce the power loss generated between the rotary sliding surfaces 34 and 44 (55).
また、以上の構成によれば、図 1に示すごとぐ前記回転摺動面 34 · 44 (55)を対向 させて一つの相対回転摺動面 (合わせ面 5c)を形成しているため、従来の高圧油路 板に対して二つの相対回転摺動面が形成される構成のものと比較して、該相対回転 摺動面 (合わせ面 5c)からの漏れ量を相対的に低減することができる。このことから、 必要なチャージ油量を抑えることができ、動力ロスの低減、コスト低減を図ることがで きる。 Further, according to the above configuration, as shown in FIG. 1, the rotary sliding surfaces 34 and 44 (55) face each other to form one relative rotary sliding surface (the mating surface 5c). It is possible to relatively reduce the amount of leakage from the relative rotation sliding surface (the mating surface 5c) as compared with the configuration in which two relative rotation sliding surfaces are formed with respect to the high pressure oil passage plate. it can. From this, The required amount of charge oil can be reduced, and power loss and cost can be reduced.
また、以上の構成によれば、図 1に示すごとぐ従来構成に必要とされた高圧油路 板を備えないため、 HST1全体としての質量低減を図れるとともに、コスト低減を図る こと力 Sできる。  Further, according to the above configuration, as shown in FIG. 1, since the high pressure oil passage plate required for the conventional configuration is not provided, the mass of the HST 1 as a whole can be reduced and the cost can be reduced.
また、以上の構成によれば、図 1に示すごとぐ回転軸 30a '40aは、軸受 30b '40b により軸承される構成とし、回転軸 30aの後端面と、回転軸 40aの前端面は、近づけ て対向配置されるため、従来の高圧油路板に軸受を配して回転軸を軸承する構成と 比較して、 HST1の全長をコンパクトに構成することができる。  Further, according to the above configuration, as shown in FIG. 1, the rotating shaft 30a'40a is configured to be supported by the bearings 30b'40b, and the rear end surface of the rotating shaft 30a and the front end surface of the rotating shaft 40a are close to each other. As a result, the entire length of the HST1 can be made more compact than in a conventional configuration in which bearings are arranged on a high-pressure oil passage plate to support a rotary shaft.
また、以上の構成によれば、図 1に示すごとぐ油路板 5を備えることで、簡易な構 成で両回転摺動面 34 · 44の間に生じる摺動抵抗を削減することができる。そして、こ れにより、動力ロスの低減を図ることができる。  Further, according to the above configuration, by providing the oil passage plate 5 as shown in FIG. 1, the sliding resistance generated between the two rotating sliding surfaces 34 and 44 can be reduced with a simple configuration. . Thus, power loss can be reduced.
また、以上の構成によれば、図 1に示すごとぐ軸受 60の内輪 60aの内周面 61は、 前記回転軸 40aの軸方向に対し傾斜させているため、該内周面 61に当接するスプ ールバルブ 50 · 50の半球状に形成される先端部 50a ' 50a ' · ·は、モータ側プランジ ヤーブロック 41が回転するに従ってスプールバルブ 50 · 50の摺動方向を軸心として 回転する。これにより、先端部 50a ' 50a—の内周面 61に対する当接部を回転摺動 させることができ、スプールバルブ 50先端部の耐久性を向上できる。 Further, according to the above configuration, since the inner peripheral surface 61 of the inner ring 60a of the bearing 60 as shown in FIG. 1 is inclined with respect to the axial direction of the rotating shaft 40a, the inner peripheral surface 61 contacts the inner peripheral surface 61. The hemispherical tip portions 50a '50a' · · of the spool valves 50 · 50 rotate about the sliding direction of the spool valves 50 · 50 as the motor-side plunger block 41 rotates. Thus, the distal end portion 50a '50 a - an abutment against the inner peripheral surface 61 can be rotated sliding, it is possible to improve the durability of the spool valve 50 tip.
また、このスプールバルブ 50の耐久性の向上に関する他の構成として、図 10に示 すごとく、モータ側プランジャーブロック 41において、スプールバルブ 50が摺動する シリンダ 51a ' 51aを、前記回転軸 40aの軸方向に対し傾斜して形設し、スプールバ ルブの摺動方向を、回転軸 40aの半径方向に対して傾斜させるとともに、軸受 60の 内輪 60aの内周面 61は平坦に構成することもできる。この構成によれば、内周面 61 を傾斜させる構成と同様、スプールバルブ 50を摺動方向に対して回転させることによ るスプールバルブ 50の耐久性の向上といった効果を得ることができるとともに、内周 面 61を平坦とする汎用的な軸受を使用することができる。  As another configuration for improving the durability of the spool valve 50, as shown in FIG. 10, in the motor-side plunger block 41, a cylinder 51a ′ 51a on which the spool valve 50 slides is attached to the rotation shaft 40a. It can be formed so as to be inclined with respect to the axial direction, the sliding direction of the spool valve is inclined with respect to the radial direction of the rotating shaft 40a, and the inner peripheral surface 61 of the inner ring 60a of the bearing 60 can be configured to be flat. . According to this configuration, similarly to the configuration in which the inner peripheral surface 61 is inclined, the effect of improving the durability of the spool valve 50 by rotating the spool valve 50 in the sliding direction can be obtained. A general-purpose bearing that makes the inner peripheral surface 61 flat can be used.
<チャージ 'リリーフ機構 > <Charge 'Relief mechanism>
次に、以上の構成の HST1におけるチャージ油供給機構、及びチェック 'リリーフ機 構について説明する。 Next, the charge oil supply mechanism and the check リ The structure will be described.
以下で説明する構成は、 HST1のケースハウジング 2bに設けたチャージポンプと の接続点(チャージ油路 2f)と、モータ側又はポンプ側プランジャーブロック内の油圧 回路との間に、チャージ油供給機構、及びチェック 'リリーフ機構を備えてなる構成の 具体例を示すものであり、それぞれ、固定斜板、プランジャーブロック、回転軸に内装 する構成とすることで、 HST1のコンパクトィ匕を図ろうとするものである。  The configuration described below is based on the configuration of the charge oil supply mechanism between the connection point (charge oil passage 2f) with the charge pump provided in the case housing 2b of the HST1 and the hydraulic circuit in the motor or pump side plunger block. This is a specific example of a configuration including a relief mechanism, which is installed inside a fixed swash plate, a plunger block, and a rotating shaft, respectively, to achieve the compactness of the HST1. Things.
第一の構成例は、油圧モータ 40の固定斜板 43f内にチャージ油供給機構、チヱッ ク 'リリーフ機構を設けるものである。  In the first configuration example, a charge oil supply mechanism and a chuck relief mechanism are provided in the fixed swash plate 43f of the hydraulic motor 40.
第二の構成例は、油圧モータ 40のモータ側プランジャーブロック 41内にチャージ 油供給機構、チェック 'リリーフ機構を設けるものである。  In the second configuration example, a charge oil supply mechanism and a check relief mechanism are provided in the motor-side plunger block 41 of the hydraulic motor 40.
第三の構成例は、油圧モータ 40の回転軸 40a内にチャージ油供給機構、チェック' リリーフ機構を設けるものである。  In the third configuration example, a charge oil supply mechanism and a check relief mechanism are provided in the rotating shaft 40a of the hydraulic motor 40.
以下、各構成例について詳述する。  Hereinafter, each configuration example will be described in detail.
<チャージ油供給機構、チェック 'リリーフ機構の第一の構成例 > <First configuration example of charge oil supply mechanism and check 'relief mechanism>
図 1、図 11乃至図 13に示される構成は、チャージ油供給機構、及びチェック 'リリー フ機構に係る第一の構成例を示すものである。  The configurations shown in FIGS. 1, 11 to 13 show a first configuration example relating to the charge oil supply mechanism and the check-relief mechanism.
本構成は、図 1、及び図 12に示すごとぐプランジャー 42 ·42にシユー 46 ·46を備 えるタイプの油圧モータ 40において、油圧モータ 40の固定斜板 43Fに形設されるチ ヤージ油路 47と、モータ側プランジャーブロック 41のシリンダ 41a'41aとを、前記シュ 一 46 ·46に形設される連絡油路 46a'46a、前記プランジャー 42 ·42に形設される連 絡油路 42a'42aを介して連通させるとともに、前記固定斜板 43F内のチャージ油路 47に、チェックバルブとリリーフバルブの機能を有したチェック 'リリーフバルブ 48レ4 8R (図 12)を備える構成とするものである。  As shown in FIG. 1 and FIG. 12, in this configuration, in a hydraulic motor 40 of a type in which plungers 42 and 42 are provided with showers 46 and 46, a charge oil is formed on a fixed swash plate 43F of the hydraulic motor 40. The passage 47 and the cylinder 41a'41a of the motor-side plunger block 41 are connected to the connecting oil passage 46a'46a formed in the bush 46,46 and the connecting oil formed in the plunger 42,42. A structure in which a check oil relief valve 48 having a function of a check valve and a relief valve is provided in the charge oil passage 47 in the fixed swash plate 43F (FIG. 12). Is what you do.
より詳しくは、図 11及び図 12に示すごとぐ固定斜板 43Fには、前記チャージ油路 47を形設する一連の貫通孔 43cが左右方向に穿設され、該貫通孔 43cの左右の開 口は前記チェック 'リリーフバルブ 48L.48Rにて閉口されている。前記貫通孔 43cの 略中央部より後方に向けては、チャージ油路 43dが形設されており、図 1に示すごと ぐ前記ケースハウジング 2bに形設されたチャージ油路 2fを介して図示せぬチヤ一 ジポンプに連通されている。 More specifically, as shown in FIGS. 11 and 12, a series of through holes 43c forming the charge oil passage 47 are formed in the fixed swash plate 43F as shown in FIGS. 11 and 12, and the left and right openings of the through holes 43c are formed. The mouth is closed by the check 'relief valve 48L.48R'. A charge oil passage 43d is formed rearward from a substantially central portion of the through hole 43c, and is illustrated via a charge oil passage 2f formed in the case housing 2b as shown in FIG. Nuyaichi It is connected to the dipump.
また、図 11及び図 12に示すごとぐ固定斜板 43Fの傾斜面 43fには、一対のキドニ 一ポート 43L'43Rが形設され、該キドニ一ポート 43L'43Rと、前記チェック 'リリーフ ノ ノレブ 48L-48Rのリリーフノ ネ室 48a'48aとを連絡'油路 43b'43bにて連通してレヽ る。  As shown in FIGS. 11 and 12, a pair of kidney ports 43L'43R is formed on the inclined surface 43f of the fixed swash plate 43F as shown in FIGS. 11 and 12, and the kidney one port 43L'43R and the check relief relief are provided. Connect the relief drain chambers 48a-48a of 48L-48R with the oil passages 43b-43b.
また、図 1及び図 13に示すごとぐ固定斜板 43Fの傾斜面 43fには、バルブプレー ト 49が固設されており、該バルブプレート 49に周方向に四分割して形設されるキドニ 一ポート 49a'49a''は、前記傾斜面 43fのキドニ一ポート 43L-43Rと一連の油路を 形設する。尚、キドニーポート 49a'49a''の間に形設されるブリッジ 49b'49c''は、 上下に位置するブリッジ 49b'49bについては、キドニーポート 43L.43Rの連通を分 断するために設けられるものであり、左右に位置するブリッジ 49c'49cについては、 バルブプレート 49の強度を保っために設けられるものである。該バルブプレート 49 は、特に、固定斜板 43Fと、後述の中間板 146· 146との間に生じる摺動抵抗の削減 や、焼付きの防止を目的としており、これら摺動面の表面は、例えば、耐焼付き性材 料で被覆等されるものである。尚、固定斜板 43Fと、中間板 146との間に焼付きの問 題が生じない場合には、バルブプレート 49を設けない構成としてもよい。  A valve plate 49 is fixed to the inclined surface 43f of the fixed swash plate 43F as shown in FIG. 1 and FIG. 13, and the kidney plate is formed on the valve plate 49 by being divided into four parts in the circumferential direction. The one port 49a'49a '' forms a series of oil passages with the kidney one port 43L-43R of the inclined surface 43f. Bridges 49b'49c '' formed between the kidney ports 49a'49a '' are provided to disconnect the kidney ports 43L.43R from the bridges 49b'49b located above and below. The left and right bridges 49c'49c are provided to maintain the strength of the valve plate 49. The valve plate 49 is intended to reduce sliding resistance generated between the fixed swash plate 43F and the intermediate plates 146 and 146 described below, and to prevent image sticking. For example, it is coated with a seizure-resistant material. If no seizure problem occurs between the fixed swash plate 43F and the intermediate plate 146, the valve plate 49 may not be provided.
また、図 1に示すごとぐ該バルブプレート 49と前記シユー 46 ·46との間には、前記 シユー 46·46の固定斜板側円筒部 46b'46bが挿入されることで、回転軸 40aを中心 に各シユー 46·46と一体的に回転する中間板 146· 146が挟装されている。中間板 1 46· 146における反バルブプレート 49側には、平底の挿入孔 146b' 146bが穿設さ れており、該揷入孔 146 146)にシュー46'46の固定斜板側円筒部46ぃ46)を 揷入するとともに、該固定斜板側円筒部 46b '46bの端面を平底に当着させている。 該中間板 146· 146には、連絡油路 146a' 146aを側面視において斜状に形設し、 前記バルブプレート 49のキドニ一ポート 49a '49a' ·と、シユー 46 · 46の連絡油路 46 a'46aとを連通させている。  As shown in FIG. 1, a fixed swash plate-side cylindrical portion 46b'46b of the shoe 46 is inserted between the valve plate 49 and the shoe 46, thereby connecting the rotating shaft 40a. Intermediate plates 146, 146 that rotate integrally with each shoe 46, 46 are sandwiched at the center. A flat bottom insertion hole 146b '146b is formed in the intermediate plate 1 46, 146 on the side opposite to the valve plate 49, and the fixed swash plate side cylindrical portion 46 of the shoe 46' 46 is formed in the insertion hole 146 146). No. 46) is inserted, and the end surface of the fixed swash plate side cylindrical portion 46b '46b is abutted on a flat bottom. In the intermediate plates 146, 146, connecting oil passages 146a '146a are formed obliquely in a side view, and the kidney ports 49a' 49a 'of the valve plate 49 and the connecting oil passages 46 of the showers 46, 46 are formed. a'46a.
また、図 1に示すごとぐリテーナ板 246は、シユー 46を中間板 146から離れるのを 防止する目的で、プランジャーブロック 41の後端に設けられた球状部 41bに摺接保 持されている。 また、図 1に示すごとく、シリンダ 41a*41aと、シユー 46 ·46の連絡油路 46a*46aと を連通するための連絡油路 42a'42aが、プランジャー 42·42の摺動方向に形設さ れている。 Further, as shown in FIG. 1, a retainer plate 246 is slidably held by a spherical portion 41b provided at the rear end of the plunger block 41 in order to prevent the shoe 46 from separating from the intermediate plate 146. . As shown in FIG. 1, a communication oil passage 42a'42a for communicating the cylinder 41a * 41a with the communication oil passage 46a * 46a of the shoe 46 is formed in the sliding direction of the plungers 42. It is set up.
そして、以上に述べた連絡油路 42a、連絡油路 46a、連絡油路 146a、キドニーポ ート 49a、キドニーポート 43L'43Rにより、モータ側プランジャーブロック 41のシリン ダ 41a'41aと、固定斜板 43Fのチャージ油路 47を連通する一連の連絡油路が形設 されるものである。  The cylinder 41a'41a of the motor-side plunger block 41 and the fixed swash plate are provided by the above-described communication oil passage 42a, communication oil passage 46a, communication oil passage 146a, kidney port 49a, and kidney port 43L'43R. A series of connecting oil passages communicating with the charge oil passage 47 on the 43F is formed.
以上の構成により、モータ側プランジャーブロック 41のシリンダ 41a'41aと、チヤ一 ジ油路 47とがチェック 'リリーフバルブ 48L · 48Rを介して連通されることになり、油圧 ポンプ 30と油圧モータ 40との間で形成される油圧閉回路(前記油路 6a'6b)のチヤ ージ油供給回路、及びリリーフ回路が構成される。  With the above configuration, the cylinders 41a and 41a of the motor-side plunger block 41 and the check oil passage 47 are communicated via the check relief valves 48L and 48R, and the hydraulic pump 30 and the hydraulic motor 40 And a relief oil supply circuit for a closed hydraulic circuit (the oil passages 6a'6b) formed between them.
そして、以上の構成によれば、油圧モータ 40の固定斜板 43F内に、チャージ油供 給機構、及びリリーフ機構としてのチェック 'リリーフバルブ 48L'48Rが内装される構 成となるため、チャージ油供給機構、及びリリーフ機構を設けるためのスペースが必 要なぐ HST1全体としてのコンパクト化が図れるとともに、両機構は、耐高圧性、油 密性に優れたものとなる。  According to the above configuration, the charge oil supply mechanism and the check 'relief valve 48L' 48R as a relief mechanism are provided inside the fixed swash plate 43F of the hydraulic motor 40, so that the charge oil is supplied. The space required for installing the supply mechanism and relief mechanism is not required. The HST1 can be made more compact as a whole, and both mechanisms have high pressure resistance and excellent oil-tightness.
尚、以上の構成の他、前記貫通孔 43cを二つ設け、それぞれに、チェックバルブ、 リリーフバルブを独立して配する構成としてもよい。  In addition, in addition to the above configuration, a configuration may be adopted in which two through holes 43c are provided, and a check valve and a relief valve are independently disposed in each of the through holes 43c.
<チャージ油供給機構、チェック 'リリーフ機構の第二の構成例 > <Second configuration example of charge oil supply mechanism and check 'relief mechanism>
また、図 14に示される構成は、チャージ油供給機構、及びチェック 'リリーフ機構に 係る第二の構成例を示すものである。  The configuration shown in FIG. 14 shows a second configuration example related to the charge oil supply mechanism and the check relief mechanism.
本構成は、モータ側プランジャーブロック 41に、前記スプールバルブ 50の小径部 5 Odで形設される油路 56と連通する第一の環状油路 41rと、前記スプールバルブ SO- SOのシリンダ 51a'51aを連通して油室 51bを形成する第二の環状油路 41sを設ける とともに、回転軸 40aに、図示せぬチャージポンプと連通される連絡油路 40ιι·40ν· 40w40xを設け、前記第一 ·第二の環状油路 41r*41sと、連絡油路 40ιι·40ν·40 w'40xとをモータ側プランジャーブロック 41内部に二組形設される連絡油路 41e'4 Ifを介して連通するとともに、一組の連絡油路 41e'41fにチェックバルブ 48c'48c を設け、もう一組の図示せぬ連絡油路にリリーフバルブを配する構成とするものであ る。 This configuration includes a motor-side plunger block 41, a first annular oil passage 41r communicating with an oil passage 56 formed by the small diameter portion 5Od of the spool valve 50, and a cylinder 51a of the spool valve SO-SO. In addition to providing a second annular oil passage 41s communicating with the '51a to form an oil chamber 51b, a connecting oil passage 40ιι40ν40w40x communicating with a charge pump (not shown) is provided on the rotating shaft 40a. The first and second annular oil passages 41r * 41s and the communication oil passages 40ιι ・ 40ν ・ 40 w'40x are connected via two communication oil passages 41e'4 If installed inside the motor side plunger block 41. While communicating, check valve 48c'48c to one set of connecting oil passages 41e'41f And a relief valve is arranged in another set of connecting oil passages (not shown).
より詳しくは、図 14に示すごとぐ前記ケースハウジング 2bに形設されたチャージ油 路 2fは、図示せぬチャージポンプに連通されている。  More specifically, a charge oil passage 2f formed in the case housing 2b as shown in FIG. 14 is communicated with a charge pump (not shown).
また、該チャージ油路 2fは、ケースハウジング 2bにおける軸穴 2uの内周面に形設 されたスィベルジョイント 23を介して、回転軸 40aの内部に形設された連絡油路 40x •40wと連通されている。  The charge oil passage 2f communicates with a communication oil passage 40x • 40w formed inside the rotary shaft 40a via a swivel joint 23 formed on the inner peripheral surface of the shaft hole 2u in the case housing 2b. Have been.
また、回転軸 40aにおいては、モータ側プランジャーブロック 41の内周面との間で 環状の連絡油路 40uを形設し、該連絡油路 40uを連絡油路 40vを介して前記連絡 油路 40wと連通させてレ、る。  In the rotating shaft 40a, an annular communication oil passage 40u is formed between the inner peripheral surface of the motor-side plunger block 41 and the communication oil passage 40u is connected to the connection oil passage 40v via the communication oil passage 40v. Communicate with 40w.
また、モータ側プランジャーブロック 41の外周面は軸受 160により軸承されており、 該モータ側プランジャーブロック 41の外周面と、軸受 160の内輪 160aの内周面との 間で、第一の環状油路 41rを形設している。この第一の環状油路 41rは、上述したス プールバルブ 50の小径部 50dで形設される油路 56に連絡油路 41hを介して連通し ている。  The outer peripheral surface of the motor-side plunger block 41 is supported by a bearing 160. A first annular member is provided between the outer peripheral surface of the motor-side plunger block 41 and the inner peripheral surface of the inner ring 160 a of the bearing 160. An oil passage 41r is formed. The first annular oil passage 41r communicates with an oil passage 56 formed by the small diameter portion 50d of the spool valve 50 via a communication oil passage 41h.
また、モータ側プランジャーブロック 41の内周面と、前記軸受 7の外周面の間には、 前記スプールバルブ 50 · 50のシリンダ 51a ' 51aを連通して油室 51bを形成する第二 の環状油路 41sが形設されている。  Further, between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed. An oil passage 41s is formed.
また、モータ側プランジャーブロック 41に、これら第一'第二の環状油路 41r' 41sと 前記連絡油路 40uとを連通する連絡油路 41e '41fを、それぞれ二経路ずつ、回転 軸 40aの軸心を中心に位相をずらして形設し、二組の連絡油路 41e ' 41fを形設する 。このうち、一組の連絡油路 41e ' 41fには、チェックバルブ 48c '48cを設ける一方、 もう一組の連絡油路 41e ' 41f (不図示)には、リリーフバルブを設ける構成とするもの である。  In addition, the motor side plunger block 41 is provided with two connecting oil passages 41e and 41f for connecting the first and second annular oil passages 41r '41s and the communication oil passage 40u, each of which has two paths, and is connected to the rotating shaft 40a. Two sets of connecting oil passages 41e 'and 41f are formed by shifting the phase around the axis. Of these, one set of connecting oil passages 41e'41f is provided with check valves 48c'48c, while the other set of connecting oil passages 41e'41f (not shown) is provided with a relief valve. is there.
以上の構成により、モータ側プランジャーブロック 41のスプールバルブ 50のシリン ダ 51a . 51aと、チャージ油路 2fとがチェックバルブ、リリーフバルブを介してそれぞれ 連通されることになり、油圧ポンプ 30と油圧モータ 40との間で形成される油圧閉回路 (前記油路 6a ' 6b)のチャージ油供給回路、及びリリーフ回路が構成される。 そして、以上の構成によれば、油圧モータ 40のモータ側プランジャーブロック 41内 に、チャージ油供給機構、及びチェック 'リリーフ機構としてのチェックバルブ 48c ·48 c、リリーフバルブ (不図示)が内装される構成となるため、チャージ油供給機構、及び チェック 'リリーフ機構を設けるためのスペースが必要なぐ HST1全体としてのコンパ タト化が図れるとともに、両機構は、耐高圧性、油密性に優れたものとなる。 With the above-described configuration, the cylinders 51a and 51a of the spool valve 50 of the motor-side plunger block 41 and the charge oil passage 2f are communicated with each other via the check valve and the relief valve. A charge oil supply circuit and a relief circuit of a hydraulic closed circuit (the oil passages 6a and 6b) formed with the motor 40 are configured. According to the above configuration, the charge oil supply mechanism, the check valves 48c and 48c as the check relief mechanism, and the relief valve (not shown) are provided inside the motor-side plunger block 41 of the hydraulic motor 40. The HST1 requires a space to provide a charge oil supply mechanism and a check and relief mechanism, and the HST1 as a whole can be made more compact, and both mechanisms have high pressure resistance and oil tightness. It becomes.
さらに、以上の構成によれば、油圧モータ 40内の斜板に油路を設ける必要がない こと力 、図 14に示すごとぐ油圧モータ 40は、可動斜板 43Mを採用することで可変 容積型に構成することができる。尚、油圧モータ 40に固定斜板を採用して固定容積 型とすることについても同様であることは、レ、うまでもない。  Further, according to the above configuration, it is not necessary to provide an oil passage in the swash plate in the hydraulic motor 40. The hydraulic motor 40 as shown in FIG. Can be configured. It goes without saying that the same applies to adopting a fixed displacement type by employing a fixed swash plate for the hydraulic motor 40.
くチャージ油供給機構、チヱック 'リリーフ機構の第三の構成例〉 Third configuration example of charge oil supply mechanism and pick-up relief mechanism>
また、図 15に示される構成は、チャージ油供給機構、及びチェック 'リリーフ機構に 係る第三の構成例を示すものである。  The configuration shown in FIG. 15 shows a third configuration example related to the charge oil supply mechanism and the check relief mechanism.
本構成は、モータ側プランジャーブロック 41に、前記スプールバルブ 50の小径部 5 Odで形設される油路 56と連通する第一の環状油路 71rと、前記スプールバルブ 50 · 50のシリンダ 51a ' 51aを連通して油室 51bを形成する第二の環状油路 71sを設ける とともに、回転軸 40aに、図示せぬチャージポンプと連通される連絡油路 70w' 70x を設け、前記第一 ·第二の環状油路 71r* 71sと、連絡油路 70w 70xとを、回転軸 40 a内部に二組形設される連絡油路 71e ' 71fを介して連通するとともに、一組の連絡 油路 71e ' 71fにチェックバルブ 78c ' 78cを設け、もう一組の図示せぬ連絡油路にリ リーフバルブを配する構成とするものである。  This configuration includes a motor-side plunger block 41, a first annular oil passage 71r communicating with an oil passage 56 formed by the small diameter portion 5Od of the spool valve 50, and a cylinder 51a of the spool valve 50, 50. A first annular oil passage 71s communicating with the oil pump 51a and forming an oil chamber 51b is provided, and a connecting oil passage 70w '70x communicating with a charge pump (not shown) is provided on the rotating shaft 40a. The second annular oil passage 71r * 71s and the communication oil passage 70w 70x communicate with each other through two sets of communication oil passages 71e '71f formed inside the rotary shaft 40a, and a pair of communication oil passages. Check valves 78c and 78c are provided in 71e and 71f, and a relief valve is arranged in another set of connecting oil passages (not shown).
より詳しくは、図 15に示すごとぐ前記ケースハウジング 2bに形設されたチャージ油 路 2fは、図示せぬチャージポンプに連通されている。  More specifically, as shown in FIG. 15, a charge oil passage 2f formed in the case housing 2b is communicated with a charge pump (not shown).
また、該チャージ油路 2fは、ケースハウジング 2bにおける軸穴 2uの内周面に形設 されたスィベルジョイント 23を介して、回転軸 40aの内部に形設された連絡油路 70x •70wと連通されている。  The charge oil passage 2f communicates with a communication oil passage 70x • 70w formed inside the rotary shaft 40a via a swivel joint 23 formed on the inner peripheral surface of the shaft hole 2u in the case housing 2b. Have been.
また、回転軸 40aにおいて、前記連絡油路 70wは軸方向に形設され、該連絡油路 70w力、ら、モータ側プランジャーブロック 41の内周面に向かって放射状に連絡油路 71e ' 71fが形設されている。尚、該連絡油路 71e ' 71fは、二組構成される、つまりは 、合計四つの連絡油路 71e ' 71fが形成され、そのうちの二つの連絡油路 71e ' 71f に、チェックバルブ 78c ' 78cが設けられ、図示せぬもう二つの連絡油路に、リリーフ バルブが設けられる構成としている。 In the rotating shaft 40a, the communication oil passage 70w is formed in the axial direction, and the communication oil passage 70w is formed radially toward the inner peripheral surface of the motor-side plunger block 41. Is formed. The connecting oil passages 71e and 71f are configured in two sets, that is, A total of four connecting oil passages 71e'71f are formed, two of which are provided with check valves 78c'78c, and two connecting oil passages (not shown) are provided with relief valves. Configuration.
また、モータ側プランジャーブロック 41の外周面は軸受 160により軸承されており、 該モータ側プランジャーブロック 41の外周面と、軸受 160の内輪 160aの内周面との 間で、第一の環状油路 71rを形設している。この第一の環状油路 71rは、上述したス プールバルブ 50の小径部 50dで形設される油路 56に連絡油路 71hを介して連通し ている。  The outer peripheral surface of the motor-side plunger block 41 is supported by a bearing 160. A first annular member is provided between the outer peripheral surface of the motor-side plunger block 41 and the inner peripheral surface of the inner ring 160 a of the bearing 160. An oil passage 71r is formed. The first annular oil passage 71r communicates with the oil passage 56 formed by the small diameter portion 50d of the spool valve 50 via a communication oil passage 71h.
また、モータ側プランジャーブロック 41の内周面と、回転軸 40aの外周面の間には 、前記スプールバルブ 50 · 50のシリンダ 51 a ' 51aを連通して油室 51bを形成する第 二の環状油路 71sが形設されている。  Further, a second oil chamber 51b is formed between the inner peripheral surface of the motor side plunger block 41 and the outer peripheral surface of the rotary shaft 40a by communicating the cylinders 51a '51a of the spool valves 50, 50. An annular oil passage 71s is formed.
また、モータ側プランジャーブロック 41には、前記第一の環状油路 71rと、回転軸 4 0aの連絡油路 71eを結ぶ連絡油路 71mが形設される。上述したごとぐ連絡油路 71 eは、回転軸 40aの軸心を中心に位相をずらして二つ形設されるものであり、連絡油 路 71mも二つ形成されるものである。  The motor-side plunger block 41 has a communication oil passage 71m connecting the first annular oil passage 71r and the communication oil passage 71e of the rotating shaft 40a. As described above, two communication oil passages 71e are formed so as to be out of phase about the axis of the rotary shaft 40a, and two communication oil passages 71m are also formed.
また、前記第二の環状油路 71sは、回転軸 40aの連絡油路 71fと連通されている。 そして、一組の連絡油路 71e ' 71fには、チェックバルブ 78c ' 78cを設ける一方、も う一組の連絡油路 71 e ' 71f (不図示)には、リリーフバルブ(不図示)を設ける構成と するものである。  Further, the second annular oil passage 71s is communicated with a communication oil passage 71f of the rotating shaft 40a. A check valve 78c '78c is provided in one set of communication oil passages 71e' 71f, while a relief valve (not shown) is provided in another set of communication oil passages 71e '71f (not shown). It has a configuration.
以上の構成により、モータ側プランジャーブロック 41のスプールバルブ 50のシリン ダ 51a . 51aと、チャージ油路 2fとがチェックバルブ、リリーフバルブを介してそれぞれ 連通されることになり、油圧ポンプ 30と油圧モータ 40との間で形成される油圧閉回路 (前記油路 6a ' 6b)のチャージ油供給回路、及びリリーフ回路が構成される。  With the above-described configuration, the cylinders 51a and 51a of the spool valve 50 of the motor-side plunger block 41 and the charge oil passage 2f are communicated with each other via the check valve and the relief valve. A charge oil supply circuit and a relief circuit of a hydraulic closed circuit (the oil passages 6a and 6b) formed with the motor 40 are configured.
そして、以上の構成によれば、回転軸 40a内に、チャージ油供給機構、及びチヱッ ク 'リリーフ機構としてのチェックバルブ 78c ' 78c、リリーフバルブ(不図示)が内装さ れる構成となるため、チャージ油供給機構、及びチェック 'リリーフ機構を設けるため のスペースが必要なぐ HST1全体としてのコンパクトィ匕が図れるとともに、両機構は 、耐高圧性、油密性に優れたものとなる。 さらに、以上の構成によれば、油圧モータ 40内の斜板に油路を設ける必要がない こと力 、図 15に示すごとぐ油圧モータ 40は、可動斜板 43Mを採用することで可変 容積型に構成することができる。尚、油圧モータ 40に固定斜板を採用して固定容積 型とすることについても同様であることは、レ、うまでもない。 According to the above configuration, the charge oil supply mechanism, the check valves 78c to 78c as the chuck relief mechanism, and the relief valve (not shown) are provided inside the rotary shaft 40a. The space required for providing the oil supply mechanism and the check-relief mechanism is required, and the HST1 as a whole can be compacted, and both mechanisms have excellent high-pressure resistance and oil-tightness. Further, according to the above configuration, it is not necessary to provide an oil passage in the swash plate in the hydraulic motor 40. The hydraulic motor 40 as shown in FIG. Can be configured. It goes without saying that the same applies to adopting a fixed displacement type by employing a fixed swash plate for the hydraulic motor 40.
<ケースハウジングの構成 > <Case housing configuration>
次に、以上の構成の HST1におけるケースハウジングの構成について説明する。 図 16に示すごとぐケースハウジングの構成として、三つの構成例を提案する。 第一の構成例は、 HST1のケースハウジングにおいて、作動油の高低圧の分離要 素としてのスプールバルブ 50の近傍で分割される構成につき、前記分離要素として のスプールバルブ 50の前側で分割される構成とするものである。  Next, the configuration of the case housing in the HST1 having the above configuration will be described. As a configuration of the case housing as shown in FIG. 16, three configuration examples are proposed. In the first configuration example, in the case where the HST1 case housing is divided near the spool valve 50 as a high / low pressure separation element for hydraulic oil, the HST1 is divided at the front side of the spool valve 50 as the separation element. Configuration.
第二の構成例は、 HST1のケースハウジングにおいて、作動油の高低圧の分離要 素としてのスプールバルブ 50の近傍で分割される構成につき、前記分離要素として のスプールバルブ 50の後側で分割される構成とするものである。  The second configuration example is a configuration in which the HST1 case housing is divided near the spool valve 50 as a high / low pressure separating element for hydraulic oil, and is divided on the rear side of the spool valve 50 as the separating element. Configuration.
第三の構成例は、 HST1のケースハウジングは分割される構成とするものであり、 第一のハウジング内に油圧モータ 40及び油圧ポンプ 30が収容され、その他のハウ ジングにて、第一のハウジングの開口部が閉じられる構成とするものである。  In a third configuration example, the case housing of the HST1 is configured to be divided, and the hydraulic motor 40 and the hydraulic pump 30 are housed in the first housing, and the first housing is housed in another housing. Are closed.
以下、各構成例について詳述する。  Hereinafter, each configuration example will be described in detail.
<ケースハウジングの第一の構成例 > <First configuration example of case housing>
第一の構成例は、図 1及び図 16 (a)に示すごとぐ作動油の高低圧の分離要素とし てのスプールバルブ 50の近傍で分割される構成につき、前記分離要素としてのスプ ールバルブ 50の前側で分割される構成とするものである。  The first configuration example has a configuration in which the spool valve 50 is divided in the vicinity of a spool valve 50 as a high / low pressure separation element for hydraulic oil as shown in FIG. 1 and FIG. Is divided at the front side of
また、図 1に示すごとぐケースハウジングは前後分割式とするとともに、油圧モータ 40を配するケースハウジング 2bに、回転軸 40aに偏心配置される前記軸受 60が嵌 設される軸受穴 20a、及び、前記モータ側プランジャーブロック 41の軸受 160が嵌設 される軸受穴 20bが形設される。  As shown in FIG. 1, the case housing is of a front-rear split type, and a bearing hole 20a in which the bearing 60 eccentrically arranged on the rotating shaft 40a is fitted in a case housing 2b in which the hydraulic motor 40 is arranged, and A bearing hole 20b into which the bearing 160 of the motor-side plunger block 41 is fitted is formed.
この構成によれば、例えば、ケースハウジング 2bの加工において、軸受穴 20bの加 ェ後、ケースハウジング 2bを固定したままにして軸受穴 20aの加工をすることが可能 となり、前記軸受 60と、軸受 160の相対関係の設計値を具現化することができる、つ まりは、軸受 60の回転軸 30a ' 40aの軸心に対する偏心の加工精度を向上させること ができる。 According to this configuration, for example, in processing the case housing 2b, after the bearing hole 20b is added, the processing of the bearing hole 20a can be performed while the case housing 2b is fixed. It is possible to realize the design value of 160 relative relationships. As for the ball, the machining accuracy of the eccentricity of the bearing 60 relative to the axis of the rotating shaft 30a'40a can be improved.
また、図 1及び図 14に示すごとぐケースハウジングは前後分割式とするとともに、 油圧ポンプ 30側のケースハウジング 2aには、可動斜板 33Mの半割軸受ガイド 21、 入力軸としての回転軸 30aの軸受 30bの軸受穴 22を一体成形する一方、油圧モー タ 40側のケースハウジング 2bには、スィべノレジョイント 23 (図 14の構成とする場合の み:上記、チャージ油供給機構、チェック 'リリーフ機構を第二の構成例とする場合)、 可動斜板 43Mの半割軸受ガイド 27 (同じぐ図 14の構成とする場合のみ)、スプー ルバルブ 50 · 50用の軸受 60の軸受穴 20a、出力軸としての回転軸 40aの軸受穴 24 を一体成形している。  As shown in FIGS. 1 and 14, the case housing is of a front-rear split type, and the case housing 2a on the hydraulic pump 30 side has a half bearing guide 21 of a movable swash plate 33M and a rotating shaft 30a as an input shaft. The bearing hole 22 of the bearing 30b is integrally formed, while the case housing 2b on the hydraulic motor 40 side is provided with a swivel joint 23 (only in the case of the configuration shown in FIG. 14: the charge oil supply mechanism, check The relief mechanism is the second configuration example), the half bearing guide 27 of the movable swash plate 43M (only when the configuration is the same as in Fig. 14), the bearing hole 20a of the bearing 60 for the spool valves 50 and 50, The bearing hole 24 of the rotating shaft 40a as the output shaft is integrally formed.
この構成によれば、ケースハウジングをダイキャストで作成することにより、機械加工 を減らすことができ、コスト低減を図ることができる。  According to this configuration, since the case housing is formed by die casting, machining can be reduced and cost can be reduced.
また、上述した構成例においては、油圧ポンプ 30を可変容積型とし、油圧モータ 4 0を固定容積型又は可変容積型とするものである力 この他、油圧ポンプ 30を固定 容積型とする構成にも適用可能である。  Further, in the above configuration example, the hydraulic pump 30 is of a variable displacement type, and the hydraulic motor 40 is of a fixed displacement or variable displacement type. Is also applicable.
また、上述した構成例においては、モータ側プランジャーブロック 41にスプールバ ルブ 50 · 50を摺動自在に配する構成とするものである力 S、これとは逆の構成、即ち、 ポンプ側プランジャーブロック 31にスプールバルブ 50 · 50を摺動自在に配する構成 にも適用可能であり、この場合は、油圧ポンプ 30側にチャージ油供給機構、及びチ エック'リリーフ機構を設ける構成とするものである。  In the above-described configuration example, the force S is a configuration in which the spool valves 50, 50 are slidably disposed on the motor-side plunger block 41, and the reverse configuration, that is, the pump-side plunger The present invention is also applicable to a configuration in which the spool valves 50 and 50 are slidably disposed in the block 31. In this case, the charge oil supply mechanism and the check relief mechanism are provided on the hydraulic pump 30 side. is there.
そして、油圧ポンプ 30を固定容積型、油圧モータ 40を固定容積型又は可変容積 型とし、油圧ポンプ 30側にスプールバノレブ 50、チャージ油供給機構、及びチェック' リリーフ機構を設ける構成とする場合においては、敢えて図示はしないが、前記ケー スハウジングは前後分割式とするとともに、油圧ポンプ 30側のケースハウジング 2aに は、スィベルジョイント 23、スプールバルブ 50用の軸受 60の軸受穴 20a、入力軸とし ての回転軸 30aの軸受穴 22を一体成形する一方、油圧モータ 40側のケースハウジ ング 2bには、可動斜板 43Mの半割軸受ガイド 21、出力軸としての回転軸 40aの軸 受 30bの軸受穴 24を一体成形するものである。 このように、上述した構成例の他、油圧ポンプ 30を固定容積型、油圧モータ 40を 可変容積型とする構成の場合にぉレ、ても、ケースハウジングをダイキャストで作成す ることにより、機械加工を減らすことができ、コスト低減を図ることができる。 In the case where the hydraulic pump 30 is of a fixed displacement type, the hydraulic motor 40 is of a fixed displacement type or a variable displacement type, and a spool vano-lev 50, a charge oil supply mechanism, and a check relief mechanism are provided on the hydraulic pump 30 side. Although not shown, the case housing is divided into front and rear, and the case housing 2a on the hydraulic pump 30 side has a swivel joint 23, a bearing hole 20a for a bearing 60 for a spool valve 50, and an input shaft. While the bearing holes 22 of all the rotating shafts 30a are integrally formed, the case housing 2b on the hydraulic motor 40 side has a half bearing guide 21 of a movable swash plate 43M and a bearing of a bearing 30b of the rotating shaft 40a as an output shaft. The hole 24 is integrally formed. As described above, in addition to the above-described configuration example, in the case of a configuration in which the hydraulic pump 30 is a fixed displacement type and the hydraulic motor 40 is a variable displacement type, even if the case housing is formed by die casting, Machining can be reduced, and costs can be reduced.
<ケースハウジングの第二の構成例 > <Second configuration example of case housing>
第二の構成例は、図 16 (b)に示すごとぐ作動油の高低圧の分離要素としてのスプ ールバルブ 50の近傍で分割される構成につき、前記分離要素としてのスプールバ ルブ 50の後側で分割される構成とするものである。  As shown in FIG. 16 (b), the second configuration example is a configuration in which the hydraulic oil is divided in the vicinity of a spool valve 50 as a high / low pressure separating element for the hydraulic oil. It is configured to be divided.
この場合、各ケースハウジング 2a ' 2bに、それぞれ軸受 60 · 160の軸穴を加工する ことになる。  In this case, shaft holes of bearings 60 and 160 are formed in each case housing 2a '2b.
<ケースハウジングの第三の構成例 >  <Third configuration example of case housing>
第三の構成例は、図 16 (c)及び図 16に示すごとぐ HST1のケースハウジングは 分割される構成とするものであり、第一のハウジング 222b内に油圧モータ 40及び油 圧ポンプ 30が収容され、その他のハウジング(第二のハウジング 222a)にて、第一の ハウジング 222bの開口部を閉じる構成とするものである。  In the third configuration example, as shown in FIGS. 16C and 16, the case housing of the HST1 is configured to be divided, and the hydraulic motor 40 and the hydraulic pump 30 are provided in the first housing 222b. The first housing 222b is closed by another housing (second housing 222a).
この構成では、第一のハウジング 222bの筒部を長く構成し、筒部に油圧モータ 40 及び油圧ポンプ 30の両方が仕組まれる構成とするものである。  In this configuration, the tubular portion of the first housing 222b is configured to be long, and both the hydraulic motor 40 and the hydraulic pump 30 are configured in the tubular portion.
前記軸受 60 · 160は、第一のハウジング 222bに形設した段部 89に嵌設されるもの であり、図において、左側より油圧モータ 40及び油圧ポンプ 30が仕組まれる本構成 例では、軸受 60の抜けを防止すベぐ止め輪 88が嵌設される。  The bearings 60 and 160 are fitted to a stepped portion 89 formed in the first housing 222b. In the present embodiment in which the hydraulic motor 40 and the hydraulic pump 30 are arranged from the left side in the drawing, the bearing 60 A snap ring 88 is fitted to prevent slippage.
また、第二のハウジング 222aは、油圧モータ 40及び油圧ポンプ 30を第一のハウジ ング 222bに仕組んだ状態において、該第一のハウジング 222bの開口部を閉じるベ く構成されるものであり、該第二のハウジング 222aには、油圧ポンプ 30の可動斜板 3 3Mの半割軸受ガイド 21が構成されることとしている。  The second housing 222a is configured to close the opening of the first housing 222b when the hydraulic motor 40 and the hydraulic pump 30 are assembled into the first housing 222b. The half housing guide 21 of the movable swash plate 33M of the hydraulic pump 30 is formed in the second housing 222a.
以上の本構成例では、第一のハウジング 222b内に、油圧モータ 40及び油圧ポン プ 30が仕組まれるため、モータ'ポンプを別個のハウジングで個別に収容する形態と 比較すると、ハウジングの剛性に優れたものとなる。  In the above configuration example, since the hydraulic motor 40 and the hydraulic pump 30 are arranged in the first housing 222b, the rigidity of the housing is superior to that in the case where the motor pumps are individually housed in separate housings. It will be.
尚、以上のように第一のハウジング 222bと、第二のハウジング 222aの二つにより二 分割に構成するものの他、例えば、第一のハウジング 222bの長手方向両側を開口 し、開口部をそれぞれ塞ぐこととする(三分割)構成としてもよレ、。 In addition, as described above, the first housing 222b and the second housing 222a are divided into two parts, and for example, both sides in the longitudinal direction of the first housing 222b are opened. Alternatively, the openings may be closed (three divisions).
<油圧 ·機械式無段変速装置 > <Hydraulic and mechanical continuously variable transmission>
次に、上記の HSTを用いて HMT (油圧 ·機械式無段変速装置)を構成する例につ いて説明する。  Next, an example in which an HMT (hydraulic / mechanical continuously variable transmission) is configured using the above HST will be described.
ぐ入力分割型 > Input split type>
図 18に示される油圧 ·機械式無段変速装置 300 (以下、「HMT300」とする)は、 入力分割型に構成されるものである。  The hydraulic / mechanical continuously variable transmission 300 (hereinafter, referred to as “HMT300”) shown in FIG. 18 is configured as a split input type.
即ち、静油圧式無段変速装置 301 (以下、「HST301」とする)と遊星歯車機構 10 とを組み合わせて出力回転の変速を行うように構成された HMT300であって、図 18 、図 19及び図 2に示すごとぐ HST301のモータ側プランジャーブロック 41 (図 19) を回転軸 130aに相対回転不能に支持し、ポンプ側プランジャーブロック 31を回転軸 140aに相対回転不能に支持し、前記回転軸 140aは中空とするとともに、前記回転 軸 130aに対して同軸上に配置し、前記ポンプ側プランジャーブロック 31とモータ側 プランジャーブロック 41とは対向して配置し、前記モータ側プランジャーブロック 41 ( 又は 31)には、スプールバルブ 50 · 50を前記回転軸 130aを中心に摺動自在に放射 状に配置し、前記スプールバルブ 50 · 50の外側先端は、前記回転軸 130aに対して 偏心配置される軸受 60の内輪 60aの内周面 61に当接してモータ側プランジャーブ ロック 41の回転に従って半径方向に摺動し、該スプールバルブ 50 · 50により、前記 両プランジャーブロック 31 ·41のシリンダ 31a'41aを連通させる油路 6a' 6b (図 2)を 開通又は分断する構成とし、前記回転軸 130a' 140a、及び遊星歯車機構 10により 入力分割式に構成されてレ、る。  That is, an HMT 300 configured to perform a speed change of an output rotation by combining a hydrostatic continuously variable transmission device 301 (hereinafter, referred to as “HST301”) and a planetary gear mechanism 10, as shown in FIGS. 18, 19 and As shown in Fig. 2, the motor-side plunger block 41 (Fig. 19) of the HST301 is supported on the rotating shaft 130a so as not to rotate relatively, and the pump-side plunger block 31 is supported on the rotating shaft 140a so as not to rotate relatively. The shaft 140a is hollow and arranged coaxially with the rotary shaft 130a, the pump-side plunger block 31 and the motor-side plunger block 41 are arranged to face each other, and the motor-side plunger block 41 is arranged. (Or 31), the spool valves 50, 50 are radially arranged slidably about the rotation shaft 130a, and the outer ends of the spool valves 50, 50 are eccentrically arranged with respect to the rotation shaft 130a. Bearing The inner ring 60 abuts against the inner peripheral surface 61 of the inner ring 60a and slides in the radial direction according to the rotation of the motor-side plunger block 41. The spool valves 50, 50 cause the cylinders 31a 'of the plunger blocks 31, 41 to rotate. The oil passage 6a '6b (FIG. 2) for communicating the 41a is opened or divided, and the input shaft is constituted by the rotary shaft 130a' 140a and the planetary gear mechanism 10.
以上の構成とする ΙΙΜΤ300の t!ST301は、図 19に示すごとく、前記回転車由 130a •140aの軸方向において、油圧ポンプ 330が配される側を前側として、油圧モータ 3 40が配される側を後側とし、これらを前後分割式とするケースハウジング 2a · 2bに内 装している。  As shown in FIG. 19, the hydraulic motor 340 is arranged in the t! ST 301 of FIG. 300 with the hydraulic pump 330 disposed on the front side in the axial direction of the rotary driving mechanisms 130a and 140a. Side is the rear side, and these are housed in the case housings 2a and 2b which are divided into front and rear.
以下詳述すると、ケースハウジング 2aの前側、ケースハウジング 2bの後側には、そ れぞれ軸受 30b'40bが嵌設されており、軸受 30bには回転軸 140aが、軸受 40bに は回転軸 130aが軸承されている。該回転軸 130aにおいて、油圧ポンプ 330が配さ れる側は、中空に構成される前記回転軸 140aにより外環されている。そして、回転 軸 130aにはモータ側プランジャーブロック 41が、回転軸 140aにはポンプ側プランジ ヤーブロック 31が、それぞれの回転摺動面 34 ·44を対向させつつ相対回転不能に 支持されている。 More specifically, bearings 30b and 40b are fitted on the front side of the case housing 2a and the rear side of the case housing 2b, respectively, and the rotating shaft 140a is mounted on the bearing 30b, and the rotating shaft is mounted on the bearing 40b. 130a is mounted. A hydraulic pump 330 is provided on the rotating shaft 130a. The outer side is annularly formed by the hollow rotary shaft 140a. A motor-side plunger block 41 is supported on the rotating shaft 130a, and a pump-side plunger block 31 is supported on the rotating shaft 140a such that the respective rotating sliding surfaces 34 and 44 face each other so as not to rotate relatively.
また、ケースハウジング 2aにおいて、前記軸受 30bとポンプ側プランジャーブロック 31との間には可動斜板 33Mが配置され、ポンプ側プランジャーブロック 31に等間隔 で、かつ回転軸 140aの軸方向に形設される 31a ' 31a内のプランジャー 32 · 32を前 後摺動させる構成の可変容積型の油圧ポンプ 330が構成されている。  In the case housing 2a, a movable swash plate 33M is disposed between the bearing 30b and the pump-side plunger block 31, and is formed at equal intervals in the pump-side plunger block 31 and in the axial direction of the rotary shaft 140a. The variable displacement hydraulic pump 330 is configured such that the plungers 32 and 32 in the provided 31a '31a are slid forward and backward.
また、ケースハウジング 2bにおいて、前記軸受 40bとモータ側プランジャーブロック 41との間には可動斜板 43Mが配置され、モータ側プランジャーブロック 41に等間隔 で、かつ回転軸 130aの軸方向に形設される 41a ' 41a内のプランジャー 42 ·42を前 後摺動させる構成の可変容積型の油圧モータ 340が構成されている。  In the case housing 2b, a movable swash plate 43M is disposed between the bearing 40b and the motor-side plunger block 41, and is formed at equal intervals in the motor-side plunger block 41 and in the axial direction of the rotating shaft 130a. A variable displacement hydraulic motor 340 is constructed, in which plungers 42 and 42 in 41a '41a provided are slid forward and backward.
また、油圧ポンプ 330の可動斜板 33Μの斜板傾転軸 33aと、油圧モータ 340の可 動斜板 43Mの斜板傾転軸 43aとは平行としている。この斜板傾転軸 33a ' 43aは、図 19において、紙面に対し垂直の関係となるものである。  The swash plate tilting shaft 33a of the movable swash plate 33 ° of the hydraulic pump 330 and the swash plate tilting shaft 43a of the movable swash plate 43M of the hydraulic motor 340 are parallel to each other. The swash plate tilt shafts 33a 'and 43a have a relationship perpendicular to the paper surface in FIG.
また、図 19に示すごとく、前記ポンプ側プランジャーブロック 31のシリンダ 31a ' 31a の回転摺動面 34側の底面積 32t ' 32tの総和と、モータ側プランジャーブロック 41の シリンダ 41a '41aの回転摺動面 44側の底面積 42t '42tの総和は、略同一となるよう に設計され、ポンプ側プランジャーブロック 31と、モータ側プランジャーブロック 41の それぞれのシリンダ 31a '41aの合計受圧面積を略同一としている。  Further, as shown in FIG. 19, the sum of the bottom area 32t 'and 32t of the rotation sliding surface 34 of the cylinder 31a' 31a of the pump-side plunger block 31 and the rotation of the cylinder 41a'41a of the motor-side plunger block 41. The sum of the bottom areas 42t and 42t on the sliding surface 44 side is designed to be substantially the same, and the total pressure receiving area of each cylinder 31a and 41a of the pump side plunger block 31 and the motor side plunger block 41 They are almost the same.
また、図 19に示すごとぐ前記回転軸 130aにおける前後中途部には、軸受 7が相 対回転不能に嵌設されるとともに、該軸受 7に回転軸 140aの後端部が相対回転可 能に挿入されている。  As shown in FIG. 19, a bearing 7 is fitted in the middle of the rotation shaft 130a in the front and rear direction so as to be relatively non-rotatable, and a rear end of the rotation shaft 140a is rotatable relative to the bearing 7. Has been inserted.
また、図 18に示すごとぐ回転軸 130aにおいては、ケースハウジング 2よりも前後方 向に長く構成され、前端部はケースハウジング 2aの前方に延出されて遊星歯車機構 10のサンギア 13に接続されるとともに、後端部はケースハウジング 2bの後方に延出 されて図示せぬ車輪、作業機等を駆動する出力軸として機能する。  Also, as shown in FIG. 18, the rotary shaft 130a is configured to be longer in the front and rear direction than the case housing 2, and the front end extends forward of the case housing 2a and is connected to the sun gear 13 of the planetary gear mechanism 10. At the same time, the rear end extends to the rear of the case housing 2b and functions as an output shaft for driving wheels, a working machine, and the like (not shown).
また、図 18に示すごとぐ回転軸 140aにおいては、前端部がケースハウジング 2の 前方に延出されて遊星歯車機構 10のインターナルギア 14に接続され、図示せぬ駆 動源により駆動される遊星キャリア 15より動力を入力し、油圧ポンプ 330を駆動する 入力軸として機能する。 Further, as shown in FIG. 18, the front end of the rotary shaft 140a It extends forward and is connected to the internal gear 14 of the planetary gear mechanism 10, and inputs power from a planet carrier 15 driven by a drive source (not shown) to function as an input shaft for driving the hydraulic pump 330.
また、図 19に示すごとく、モータ側プランジャーブロック 41は、その外周面がケース ハウジング 2bに嵌設される軸受 160に支承されている。  As shown in FIG. 19, the motor-side plunger block 41 has its outer peripheral surface supported by a bearing 160 fitted to the case housing 2b.
また、図 19及び図 6に示すごとぐポンプ側プランジャーブロック 31の回転摺動面 3 4においては、各シリンダ 31a ' 31a内と個別に連通するためのポンプ側ポート 34a ' 3 4aが開口されており、前記プランジャー 32 · 32の摺動により、該ポンプ側ポート 34a ' 34aを油が通過するようになってレ、る。  Also, as shown in FIGS. 19 and 6, a pump-side port 34a '34a for individually communicating with the inside of each cylinder 31a' 31a is opened on the rotary sliding surface 34 of the pump-side plunger block 31. The sliding of the plungers 32 allows the oil to pass through the pump-side ports 34a 'and 34a.
また、図 19及び図 7に示すごとぐモータ側プランジャーブロック 41の回転摺動面 4 4においては、各シリンダ 41a '41a内と個別に連通するためのモータ側ポート 44a ' 4 4a力 一つのシリンダ 41a '41aに対して二つずつ開口されており、前記プランジャー 42 · 42の摺動により、該モータ側ポート 44a ' 44aを油が通過するようになっている。 また、図 19、図 8に示すごとぐポンプ側プランジャーブロック 31の回転摺動面 34と 、モータ側プランジャーブロック 41の回転摺動面 44との間には、いずれか一方のプ ランジャーブロック 31 ·41に回転拘束され、回転拘束される側のプランジャーブロック 31 · 41の回転摺動面 34 ·44のポート 34a '44aと同形 ·同配列の連通ポート 5a ' 5aが 開口される油路板 5が挟装されている。本実施例では、モータ側プランジャーブロック 41に対して回転拘束される構成としており、連通ポート 5a ' 5aの配列を、図 7に示さ れるモータ側プランジャーブロック 41のモータ側ポート 44a '44a ' · ·と略同一として いる。そして、図 19及び図 20に示すごとぐ該油路板 5の回転摺動面 55に対して、 ポンプ側プランジャーブロック 31の回転摺動面 34が当着するようにして油密に形成 され、一連の油路 6が形成されている。この油路板 5は、特に、両回転摺動面 34 ·44 との間に生じる摺動抵抗の削減や、焼付きの防止を目的としており、これら摺動面の 表面は、例えば、耐焼付き性材料で被覆等されるものである。尚、両プランジャーブ ロック 31 · 41の間に焼付きの問題が生じなレ、場合には、油路板 5を設けなレ、構成とし て、両回転摺動面 34 ·44を直接当接させる構成としてもよい。  In addition, as shown in FIGS. 19 and 7, on the rotating sliding surface 44 of the motor-side plunger block 41, the motor-side port 44a '44 4a force for individually communicating with the inside of each cylinder 41a' 41a has one force. Two openings are provided for the cylinders 41a'41a, and the sliding of the plungers 42, 42 allows oil to pass through the motor-side ports 44a'44a. As shown in FIGS. 19 and 8, one of the plungers is provided between the rotary sliding surface 34 of the pump-side plunger block 31 and the rotary sliding surface 44 of the motor-side plunger block 41. The rotation is restricted by the blocks 31 and 41, and the rotation sliding surfaces 34 and 44 of the plunger blocks 31 and 41 on the side that is restricted by rotation The ports 34a of the 44 and 44 are the same as the ports 44a and 44a.The communication ports 5a and 5a of the same arrangement are opened. Road board 5 is sandwiched. In this embodiment, the motor-side plunger block 41 is configured to be rotationally constrained, and the arrangement of the communication ports 5a '5a is changed to the motor-side ports 44a'44a' of the motor-side plunger block 41 shown in FIG. · It is almost the same as · ·. Then, as shown in FIGS. 19 and 20, the rotary sliding surface 34 of the pump-side plunger block 31 comes into contact with the rotary sliding surface 55 of the oil passage plate 5 so as to be oil-tight. , A series of oil passages 6 is formed. This oil passage plate 5 is intended particularly to reduce sliding resistance generated between the two rotating sliding surfaces 34 and 44 and to prevent seizure. The surfaces of these sliding surfaces are, for example, seizure-resistant. It is covered with a conductive material. If there is no problem of seizure between the plunger blocks 31 and 41, if the oil passage plate 5 is not provided, the rotary sliding surfaces 34 and 44 should be directly contacted. It may be configured to contact.
また、図 19、図 20及び図 2に示すごとぐモータ側プランジャーブロック 41において 、それぞれのシリンダ 41 aと、回転摺動面 44のポート 44aとの間には、回転軸 130a ' 140aを中心としてシリンダ 51a ' 51aが放射状に形設されており、該シリンダ 51a ' 51 aには、柱状のスプールバルブ 50 · 50が半径方向に摺動自在に配されてレ、る。 In addition, in the motor-side plunger block 41 as shown in FIGS. Between each cylinder 41a and the port 44a of the rotary sliding surface 44, a cylinder 51a'51a is formed radially around the rotation shaft 130a'140a. The column-shaped spool valves 50 and 50 are slidably arranged in the radial direction.
また、図 2に示すごとぐシリンダ 51a ' 51a ' · ·の底部と、前記軸受 7の外周面との間 には、一連の環状油路 54を回転軸 130a ' 140aの周方向に形設し、各シリンダ 51a ' 51a - · ·内を連通させて、一連の油室 51bを形設している。  As shown in FIG. 2, a series of annular oil passages 54 are formed in the circumferential direction of the rotary shafts 130a '140a between the bottom of the cylinders 51a' 51a 'and the outer peripheral surface of the bearing 7 as shown in FIG. A series of oil chambers 51b are formed by communicating with each other in the cylinders 51a '51a.
また、図 2に示すごとく、このスプールバルブ 50は、前記シリンダ 41a ' 41aと同数配 置されることにより、回転軸 130a ' 140aを中心に放射状に配置されるものであり、半 球状に形成される先端部 50a ' 50a ' · ·は、モータ側プランジャーブロック 41より半径 方向外側に突出されるとともに、前記回転軸 130aに偏心配置されてモータ側プラン ジャーブロック 41を外環する軸受 60の内輪 60aの内周面 61に接するように構成され ている。この軸受 60を回転軸 130aに対して偏心させる方向は、互いに平行関係に ある前記斜板傾転軸 33a ' 43a (図 19)の軸方向とするものとし、軸受 60の軸心 60d と、図 2に示すごとぐ回転軸 130aの軸心 130dとを結ぶ直線 4hが、前記斜板傾転 車由 33a '43aと平行となるようにしている。  Further, as shown in FIG. 2, the same number of the spool valves 50 as the number of the cylinders 41a '41a are arranged radially around the rotation shafts 130a' 140a, and are formed in a hemispherical shape. The inner end of a bearing 60 that projects radially outward from the motor-side plunger block 41 and is eccentrically arranged on the rotation shaft 130a and that externally surrounds the motor-side plunger block 41. It is configured to be in contact with the inner peripheral surface 61 of 60a. The direction in which the bearing 60 is eccentric with respect to the rotating shaft 130a is assumed to be the axial direction of the swash plate tilting shafts 33a'43a (FIG. 19) which are in parallel with each other. As shown in FIG. 2, a straight line 4h connecting the axis 130d of the rotary shaft 130a to the axis 130d is parallel to the swash plate tilting vehicle ground 33a'43a.
また、図 19に示すごとく、軸受 60 (内輪 60a)の内周面 61の内径は、前記回転軸 1 30aの軸方向前側から後側にかけて徐々に小さく構成することにより、内周面 61は、 前記回転軸 130aの軸方向に対し傾斜させるようにしてレ、る。  As shown in FIG. 19, the inner diameter of the inner peripheral surface 61 of the bearing 60 (the inner ring 60a) is gradually reduced from the axial front side to the rear side of the rotary shaft 130a, so that the inner peripheral surface 61 is The rotating shaft 130a is inclined with respect to the axial direction.
また、図 2に示すごとぐスプールバルブ 50は、二つの大径部 50b ' 50cの間に小 径部 50dを配して構成される柱状体とするものであり、前記大径部 50b ' 50cの外周 面をシリンダ 51aの内周面に摺接させるとともに、前記小径部 50dにおいては、図 20 に示すごとぐシリンダ 51aの内周面との間に油路 56を形成する。該油路 56は、モー タ側プランジャーブロック 41のシリンダ 41 aと、ポンプ側プランジャーブロック 31のシリ ンダ 31aを連通させる前記一連の油路 6の一部を構成する。そして、該油路 56は、モ ータ側プランジャーブロック 41が規定の回転角となる位置において、前記スプール バルブ 50の大径部 50cにより閉じられるようにしている。即ち、図 2及び図 3に示すご とぐ前記斜板傾転軸 33a ' 43aと平行な直線 4hに対し、それぞれ相反する方向に 9 0度位相がずれる回転角 4v'4wの位置において、スプールバルブ 50の大径部 50c が回転摺動面 44のポート 44aの位置に到達するように構成されるものであり、回転軸 130aを中心とする半径方向の前記ポート 44aの開口高さと、大径部 50cの軸長を略 同一として、前記回転角 4v'4wにて、油路 56 · 56がスプールバルブ 50により閉じら れるものである。図 2に示される構成では、軸受 60が回転軸 130aに対し紙面上で水 平方向に偏心されるものであり、図 19に示すごとぐスプールバルブ 50は、最上位置 (回転角 4v)及び最下位置(回転角 4w)となる際に、図 4に示すごとぐ前記油路 56 が閉じられるように構成されている。 Further, as shown in FIG. 2, the spool valve 50 is a columnar body having a small-diameter portion 50d disposed between two large-diameter portions 50b '50c. The outer peripheral surface of the cylinder 51a is brought into sliding contact with the inner peripheral surface of the cylinder 51a, and an oil passage 56 is formed between the small-diameter portion 50d and the inner peripheral surface of the cylinder 51a as shown in FIG. The oil passage 56 constitutes a part of the series of oil passages 6 that communicate the cylinder 41 a of the motor-side plunger block 41 with the cylinder 31 a of the pump-side plunger block 31. The oil passage 56 is closed by the large diameter portion 50c of the spool valve 50 at a position where the motor-side plunger block 41 has a predetermined rotation angle. That is, at the position of the rotation angle 4v'4w, which is 90 degrees out of phase with respect to the straight line 4h parallel to the swash plate tilting shaft 33a '43a as shown in Figs. 2 and 3, respectively. Large diameter part 50c of valve 50 Is configured to reach the position of the port 44a of the rotary sliding surface 44, and the opening height of the port 44a in the radial direction around the rotary shaft 130a and the axial length of the large-diameter portion 50c are substantially equal to each other. In the same manner, the oil passages 56 are closed by the spool valve 50 at the rotation angle 4v'4w. In the configuration shown in FIG. 2, the bearing 60 is eccentric in the horizontal direction with respect to the rotary shaft 130a on the paper surface, and the spool valve 50 as shown in FIG. The oil passage 56 is configured to be closed as shown in FIG. 4 when the lower position (rotation angle 4w) is reached.
そして、図 3に示すごとぐ前記回転角 4v' 4wの位置を基準として分断される二つ の区間 11 · 12を形成し、第一の区間 11においては、図 5 (a)に示すごとぐスプール バルブ 50の小径部 50dがポート 44aの位置と重なるように配されることにより、前記油 路 56を含む一連の油路 6aが開通される一方、第二の区間 12においては、図 5 (b) に示すごとぐスプールバルブ 50が外側に突出し、大径部 50cがポート 44aの位置よ りも半径方向外側に配されることにより、前記油室 51b (シリンダ 51a)を介して形成さ れる一連の油路 6bが開通される。このように、該スプールバルブ 50により、前記両プ ランジャーブロック 31 ·41のシリンダ 31a ' 41aを連通させる油路 6a ' 6bを開通又は分 断させる構成としている。  Then, as shown in FIG. 3, two sections 11 and 12 which are separated based on the position of the rotation angle 4v ′ 4w are formed, and in the first section 11, as shown in FIG. By arranging the small diameter portion 50d of the spool valve 50 so as to overlap the position of the port 44a, a series of oil passages 6a including the oil passage 56 is opened, while in the second section 12, FIG. As shown in b), the spool valve 50 protrudes outward, and the large diameter portion 50c is arranged radially outward from the position of the port 44a, so that the spool valve 50 is formed via the oil chamber 51b (cylinder 51a). A series of oil passages 6b are opened. As described above, the oil passages 6a 'and 6b for connecting the cylinders 31a' and 41a of the plunger blocks 31 and 41 are opened or disconnected by the spool valve 50.
以上の構成により、第一の区間 11においては、油路 6a ' 6a ' · ·により高圧油路 (又 は低圧油路)が形成され、第二の区間 12においては、油路 6b ' 6b ' ' 'により低圧油 路 (又は高圧油路)が形成されることで、図 19に示すごとぐ回転軸 140aを入力軸と して油圧ポンプ 330より油圧モータ 340に圧油を供給し、回転軸 130aを出力軸とし て駆動する HST301が構成される。  With the above configuration, in the first section 11, the high pressure oil path (or the low pressure oil path) is formed by the oil paths 6a '6a' ···, and in the second section 12, the oil paths 6b '6b' By forming a low-pressure oil passage (or high-pressure oil passage) by '', pressure oil is supplied from the hydraulic pump 330 to the hydraulic motor 340 using the rotating shaft 140a as an input shaft as shown in FIG. An HST 301 driven using 130a as an output shaft is configured.
そして、以上のように構成される HST301と、遊星歯車機構 10とを組み合わせて図 18に示される入力分割型の HMT300が構成されるものである。  Then, the input split type HMT 300 shown in FIG. 18 is configured by combining the HST 301 configured as described above and the planetary gear mechanism 10.
即ち、前記回転軸 130aは、ケースハウジング 2よりも前後方向に長く構成され、前 端部はケースハウジング 2aの前方に延出されて遊星歯車機構 10のサンギア 13に接 続されるとともに、後端部はケースハウジング 2bの後方に延出されて図示せぬ車輪、 作業機等を駆動する出力軸として機能する一方、回転軸 140aは、前端部がケース ハウジング 2aの前方に延出されて遊星歯車機構 10のインターナルギア 14に接続さ れ、図示せぬ駆動源により駆動される遊星キャリア 15より動力を入力し、油圧ポンプ 330を駆動する入力軸として機能する構成し、さらに、前記回転軸 140aを中空として 回転軸 130aに対し同軸上に配置される構成とするものである。 That is, the rotating shaft 130a is configured to be longer in the front-rear direction than the case housing 2, and the front end extends forward of the case housing 2a and is connected to the sun gear 13 of the planetary gear mechanism 10, and has a rear end. The portion extends to the rear of the case housing 2b and functions as an output shaft for driving wheels (not shown) and a working machine, etc., while the rotating shaft 140a has a front end extending forward of the case housing 2a and a planetary gear. Connected to internal gear 14 of mechanism 10 A power is input from the planet carrier 15 driven by a drive source (not shown) to function as an input shaft for driving the hydraulic pump 330. Further, the rotary shaft 140a is hollow and coaxial with the rotary shaft 130a. Is arranged.
そして、以上の構成によれば、図 19に示すごとぐ油圧ポンプ 330の可動斜板 33 Mの斜板傾転軸 33aと、油圧モータ 340の可動斜板 43Mの斜板傾転軸 43aとは平 行としているため、メインとする駆動方向(例えば、 HMT300を備える車体を前進さ せる方向)における両斜板 33Μ ·43Μの傾き方向を同じ向きに設定することで、油圧 ポンプ 330のプランジャー 32 · 32と、油圧モータ 340のプランジャー 42 · 42の摺動に よって生じる回転軸 130a ' 140aを基準とするスラスト方向、及びラジアル方向の荷重 を互いに打ち消し合うことができ、より小型の軸受 160を使用してモータ側プランジャ 一ブロック 41を支承することが可能となり、動力ロスの低減、コスト低減を図ることがで きる。  According to the above configuration, as shown in FIG. 19, the swash plate tilting shaft 33a of the movable swash plate 33M of the hydraulic pump 330 and the swash plate tilting shaft 43a of the movable swash plate 43M of the hydraulic motor 340 are different from each other. Since they are parallel, the inclination direction of both swash plates 33Μ and 43Μ in the main drive direction (for example, the direction in which the vehicle equipped with HMT300 moves forward) is set to the same direction, so that the plunger 32 of hydraulic pump 330 The load in the thrust direction and the radial direction based on the rotating shaft 130a '140a generated by the sliding of the plunger 42 of the hydraulic motor 340 and the plunger 42 of the hydraulic motor 340 can cancel each other out. It can be used to support the motor-side plunger block 41, which can reduce power loss and cost.
また、以上の構成によれば、図 19に示すごとぐポンプ側プランジャーブロック 31と 、モータ側プランジャーブロック 41のそれぞれのシリンダ 31a '41aの合計受圧面積 を略同一としているので、上述したスラスト方向、及びラジアル方向の荷重を、より確 実に、互いに打ち消し合うことができる。また、前記合計受圧面積を略同一とする限り は、シリンダ 31a '41aの数は特に限定されるものでなぐプランジャーブロックの設計 上の自由度は広いものとなっている。  Further, according to the above configuration, as shown in FIG. 19, the total pressure receiving area of each of the cylinders 31a and 41a of the pump-side plunger block 31 and the motor-side plunger block 41 is substantially the same. Directional and radial loads can more reliably cancel each other out. In addition, as long as the total pressure receiving area is substantially the same, the number of cylinders 31a and 41a is not particularly limited, and the degree of freedom in designing the plunger block is wide.
また、以上の構成によれば、図 19に示すごとぐポンプ側プランジャーブロック 31と モータ側プランジャーブロック 41は、同じ方向に回転するため、互いの回転数の差か ら求まる回転数にて相対回転することになり、前記回転摺動面 34 ·44 (55)との間で 生じる動力ロスの低減を図ることができる。  Further, according to the above configuration, since the pump-side plunger block 31 and the motor-side plunger block 41 rotate in the same direction as shown in FIG. As a result of the relative rotation, it is possible to reduce the power loss generated between the rotary sliding surfaces 34 and 44 (55).
また、以上の構成によれば、図 19に示すごとぐ前記回転摺動面 34 · 44 (55)を対 向させて一つの相対回転摺動面 (合わせ面 5c)を形成しているため、従来の高圧油 路板に対して二つの相対回転摺動面が形成される構成のものと比較して、該相対回 転摺動面からの漏れ量を相対的に低減することができる。このことから、必要なチヤ 一ジ油量を抑えることができ、動力ロスの低減、コスト低減を図ることができる。  In addition, according to the above configuration, as shown in FIG. 19, the relative sliding surfaces 34 and 44 (55) face each other to form one relative rotating sliding surface (the mating surface 5c). As compared with a conventional configuration in which two relatively rotating sliding surfaces are formed on a high-pressure oil passage plate, the amount of leakage from the relatively rotating sliding surfaces can be relatively reduced. This makes it possible to reduce the required amount of chilled oil, thereby reducing power loss and cost.
また、以上の構成によれば、図 19に示すごとぐ従来構成に必要とされた高圧油路 板を備えないため、 HST301全体としての質量低減を図れるとともに、コスト低減を 図ること力 Sできる。 Also, according to the above configuration, as shown in FIG. Since no plate is provided, the mass of the HST301 as a whole can be reduced and the cost can be reduced.
また、前記モータ側プランジャーブロック 41の回転軸 140aと、前記ポンプ側プラン ジャーブロック 31の回転軸 130aを同軸上に配するとともに、当該回転軸 130aに遊 星歯車機構 310のサンギア 13が接続されるものとし、これら回転軸 130a ' 140aと遊 星歯車機構 310とを組み合わせて、入力分割式に構成される油圧'機械式無段変速 装置 300を構成することとしてレヽる。これにより、 t!STの二つの回転軸 130a - 140aと 、遊星歯車機構 310のサンギア 13とを同軸上に配する構成が可能となるものであり、 遊星歯車機構の第三の要素と HSTとを、動力伝達軸'ギアを介して連動させる従来 構成と比較すると、当該動力伝達軸 ·ギアを省略することができ、低コスト、かつコン パクトな油圧 ·機械式無段変速装置を構成することができる。  The rotating shaft 140a of the motor-side plunger block 41 and the rotating shaft 130a of the pump-side plunger block 31 are coaxially arranged, and the sun gear 13 of the planetary gear mechanism 310 is connected to the rotating shaft 130a. It is assumed that the rotary shafts 130a '140a and the planetary gear mechanism 310 are combined to constitute a hydraulic-type mechanical continuously variable transmission 300 configured in a split-input type. This enables a configuration in which the two rotation shafts 130a to 140a of t! ST and the sun gear 13 of the planetary gear mechanism 310 are coaxially arranged, and the third element of the planetary gear mechanism and the HST When compared with the conventional configuration in which the power transmission shaft and the gear are interlocked, the power transmission shaft and gear can be omitted, and a low-cost, compact hydraulic and mechanical continuously variable transmission can be configured. Can be.
また、以上の構成によれば、図 19に示すごとぐ油路板 5を備えることで、簡易な構 成で両回転摺動面 34 · 44の間に生じる摺動抵抗を削減することができる。そして、こ れにより、動力ロスの低減を図ることができる。  Further, according to the above configuration, by providing the oil passage plate 5 as shown in FIG. 19, the sliding resistance generated between the two rotating sliding surfaces 34 and 44 can be reduced with a simple configuration. . Thus, power loss can be reduced.
また、以上の構成によれば、図 19に示すごとぐ軸受 60の内輪 60aの内周面 61は 、前記回転軸 130aの軸方向に対し傾斜させているため、該内周面 61に当接するス プールバルブ 50 · 50の半球状に形成される先端部 50a ' 50a ' · ·は、モータ側プラン ジャーブロック 41が回転するに従ってスプールバルブ 50 · 50の摺動方向を軸心とし て回転する。これにより、先端部 50a ' 50a の内周面 61に対する当接部を回転摺 動させることができ、スプールバルブ 50先端部の耐久性を向上できる。  Further, according to the above configuration, as shown in FIG. 19, the inner peripheral surface 61 of the inner ring 60a of the bearing 60 is inclined with respect to the axial direction of the rotating shaft 130a, so that it comes into contact with the inner peripheral surface 61. The hemispherical tips 50a '50a' · · of the spool valves 50 · 50 rotate about the sliding direction of the spool valves 50 · 50 as the motor-side plunger block 41 rotates. Thus, the contact portion of the distal end portion 50a '50a against the inner peripheral surface 61 can be slidably rotated, and the durability of the distal end portion of the spool valve 50 can be improved.
尚、このスプールバルブ 50の耐久性の向上に関する他の構成として、図 20に示す ごとぐモータ側プランジャーブロック 41において、スプールバルブ 50が摺動するシリ ンダ 51a . 51 aを、前記回転軸 130aの軸方向に対し傾斜して形設し、スプールバノレ ブの摺動方向を、回転軸 130aの半径方向に対して傾斜させるとともに、軸受 60の内 輪 60aの内周面 61は平坦に構成することもできる。この構成によれば、内周面 61を 傾斜させる構成と同様、スプールバルブ 50を摺動方向に対して回転させることによる スプールバルブ 50の耐久性の向上といった効果を得ることができるとともに、内周面 61を平坦とする汎用的な軸受を使用することができる。 また、以上の構成による入力分割型の HMT300によれば、上述した第一の従来構 成と比較した場合に、動力伝達軸が必要とされず、また、軸受、歯車を少なく構成す ることが可能となるため、動力ロスの発生の少ない構成とすることができるとともに、こ れらの部品点数の削減にともなう製造コストの削減を図ることができる。 As another configuration for improving the durability of the spool valve 50, in the motor side plunger block 41 as shown in FIG. 20, the cylinders 51a and 51a on which the spool valve 50 slides are connected to the rotary shaft 130a. The inner surface of the inner ring 60a of the bearing 60 must be flat, while the sliding direction of the spool vane levule is inclined with respect to the radial direction of the rotating shaft 130a. You can also. According to this configuration, similarly to the configuration in which the inner peripheral surface 61 is inclined, the effect of improving the durability of the spool valve 50 by rotating the spool valve 50 in the sliding direction can be obtained, and the inner peripheral surface 61 can be obtained. A general-purpose bearing with a flat surface 61 can be used. Further, according to the input split type HMT300 having the above configuration, as compared with the above-described first conventional configuration, a power transmission shaft is not required, and the number of bearings and gears can be reduced. As a result, it is possible to achieve a configuration with less power loss, and to reduce the production cost due to the reduction in the number of these components.
また、以上の構成による入力分割型の HMT300によれば、前記回転軸 140aが回 転軸 130aに対し同軸上に配置されるため、上述した第一の従来構成と比較した場 合に、装置のコンパクトィ匕を図ることができる。  In addition, according to the input split type HMT 300 having the above configuration, the rotating shaft 140a is arranged coaxially with the rotating shaft 130a. A compact dangling can be achieved.
また、以上の構成による入力分割型の HMT300によれば、油圧ポンプ 330を可変 容積型に構成しているため、ゼロからの無段変速運転を可能とする構成とすることが でき、上述した第二の従来構成と比較した場合に、変速範囲を広く構成することがで きる。尚、特に、変速範囲を広く確保する必要が無い場合には、上記構成例の他、固 定容積型の油圧ポンプ 330と可変容積型の油圧モータ 340による構成としてもよい。 また、以上の構成による入力分割型の HMT300によれば、油圧ポンプ 330を可変 容積型に構成しているため、上述した第二の従来構成と比較した場合に、前後進切 換え用の機構が必要とされず、該機構に係る製造コストの削減を図ることができる。 <チャージ油供給機構、チェック 'リリーフ機構 >  Further, according to the input split type HMT 300 having the above configuration, since the hydraulic pump 330 is configured as a variable displacement type, it is possible to perform a continuously variable shift operation from zero. As compared with the second conventional configuration, a wider shift range can be configured. In particular, when it is not necessary to secure a wide shift range, a configuration using a fixed displacement hydraulic pump 330 and a variable displacement hydraulic motor 340 may be adopted in addition to the above configuration example. In addition, according to the input split type HMT 300 having the above configuration, the hydraulic pump 330 is configured as a variable displacement type, and therefore, compared to the above-described second conventional configuration, a mechanism for switching between forward and backward movement is provided. It is not required, and the manufacturing cost of the mechanism can be reduced. <Charge oil supply mechanism, check 'relief mechanism>
次に、以上の構成の HST301におけるチャージ油供給機構、及びチェック 'リリー フ機構について説明する。  Next, the charge oil supply mechanism and the check-relief mechanism in the HST301 having the above configuration will be described.
尚、本構成では、上述のチャージ油供給機構、チェック 'リリーフ機構の第二の構成 例が採用されるものであるが、第一 ·第三の構成例の適用も可能である。  In this configuration, the above-described second configuration example of the charge oil supply mechanism and the check and relief mechanism is adopted, but the first and third configuration examples are also applicable.
図 21に示すごとく、モータ側プランジャーブロック 41に、前記スプールバルブ 50の 小径部 50dで形設される油路 56と連通する第一の環状油路 41rと、前記スプールバ ルブ 50 · 50のシリンダ 51a ' 51aを連通して油室 51bを形成する第二の環状油路 41s を設けるとともに、回転軸 130aに、図示せぬチャージポンプと連通される連絡油路 4 0u'40v 40w 40xを設け、前記第一 ·第二の環状油路 41r'41sと、連絡油路 40u- 40v' 40w' 40xとをモータ側プランジャーブロック 41内部に二組形設される連絡油 路 41e ' 41fを介して連通するとともに、一組の連絡油路 41e ' 41fにチェックバルブ 4 8c '48cを設け、もう一組の図示せぬ連絡油路にリリーフバルブを配する構成とする ものである。 As shown in FIG. 21, the motor-side plunger block 41 has a first annular oil passage 41r communicating with an oil passage 56 formed by the small-diameter portion 50d of the spool valve 50, and a cylinder of the spool valve 50, 50. A second annular oil passage 41s communicating with 51a '51a to form an oil chamber 51b is provided, and a connecting oil passage 40u'40v 40w 40x communicating with a charge pump (not shown) is provided on the rotating shaft 130a. The first and second annular oil passages 41r'41s and the communication oil passages 40u-40v '40w' 40x are formed via two communication oil passages 41e '41f formed inside the motor-side plunger block 41. In addition to the communication, check valves 48c and 48c are provided in one set of connecting oil passages 41e and 41f, and a relief valve is provided in another set of connecting oil passages (not shown). Things.
より詳しくは、図 21に示すごとぐ前記ケースハウジング 2bに形設されたチャージ油 路 2fは、図示せぬチャージポンプに連通されている。  More specifically, a charge oil passage 2f formed in the case housing 2b as shown in FIG. 21 is connected to a charge pump (not shown).
また、該チャージ油路 2fは、ケースハウジング 2bにおける軸穴 2uの内周面に形設 されたスィベルジョイント 23を介して、回転軸 130aの内部に形設された連絡油路 40 x'40wと連通されている。  Further, the charge oil passage 2f is connected to a communication oil passage 40x'40w formed inside the rotary shaft 130a via a swivel joint 23 formed on the inner peripheral surface of the shaft hole 2u in the case housing 2b. Are in communication.
また、回転軸 130aにおレヽては、モータ側プランジャーブロック 41の内周面との間で 環状の連絡油路 40uを形設し、該連絡油路 40uを連絡油路 40vを介して前記連絡 油路 40wと連通させてレ、る。  In addition, on the rotating shaft 130a, an annular communication oil passage 40u is formed between the rotation shaft 130a and the inner peripheral surface of the motor-side plunger block 41, and the communication oil passage 40u is connected via the communication oil passage 40v. Contact Let it communicate with the oil passage 40w.
また、モータ側プランジャーブロック 41の外周面は軸受 160により軸承されており、 該モータ側プランジャーブロック 41の外周面と、軸受 160の内輪 160aの内周面との 間で、第一の環状油路 41rを形設している。この第一の環状油路 41rは、上述したス プールバルブ 50の小径部 50dで形設される油路 56に連絡油路 41hを介して連通し ている。  The outer peripheral surface of the motor-side plunger block 41 is supported by a bearing 160. A first annular member is provided between the outer peripheral surface of the motor-side plunger block 41 and the inner peripheral surface of the inner ring 160 a of the bearing 160. An oil passage 41r is formed. The first annular oil passage 41r communicates with an oil passage 56 formed by the small diameter portion 50d of the spool valve 50 via a communication oil passage 41h.
また、モータ側プランジャーブロック 41の内周面と、前記軸受 7の外周面の間には、 前記スプールバルブ 50 · 50のシリンダ 51a ' 51aを連通して油室 51bを形成する第二 の環状油路 41sが形設されている。  Further, between the inner peripheral surface of the motor-side plunger block 41 and the outer peripheral surface of the bearing 7, a second annular member that communicates the cylinders 51a '51a of the spool valves 50 and 50 to form an oil chamber 51b is formed. An oil passage 41s is formed.
また、モータ側プランジャーブロック 41に、これら第一'第二の環状油路 41r' 41sと 前記連絡油路 40uとを連通する連絡油路 41e '41fを、それぞれ二経路ずつ、回転 軸 130aの軸心を中心に位相をずらして形設し、二組の連絡油路 41e ' 41fを形設す る。このうち、一組の連絡油路 41e '41fには、チェックバルブ 48c ' 48cを設ける一方 、もう一組の連絡油路 41e '41f (不図示)には、リリーフバルブを設ける構成とするも のである。  In addition, the motor side plunger block 41 is provided with two connecting oil passages 41e and 41f for connecting the first and second annular oil passages 41r '41s and the communication oil passage 40u to the rotating shaft 130a. Two sets of connecting oil passages 41e 'and 41f are formed by shifting the phases around the axis. Of these, one set of communication oil passages 41e'41f is provided with a check valve 48c'48c, while the other set of communication oil passages 41e'41f (not shown) is provided with a relief valve. is there.
以上の構成により、モータ側プランジャーブロック 41のスプールバルブ 50のシリン ダ 51a . 51aと、チャージ油路 2fとがチェックバルブ、リリーフバルブを介してそれぞれ 連通されることになり、油圧ポンプ 330と油圧モータ 340との間で形成される油圧閉 回路 (前記油路 6a ' 6b)のチャージ油供給回路、及びリリーフ回路が構成される。 そして、以上の構成によれば、油圧モータ 340のモータ側プランジャーブロック 41 内に、チャージ油供給機構、及びチェック 'リリーフ機構としてのチェックバルブ 48c ' 48c、リリーフバルブ (不図示)が内装される構成となるため、チャージ油供給機構、 及びチェック 'リリーフ機構を設けるためのスペースが必要なぐ HST301全体として のコンパクト化が図れるとともに、両機構は、耐高圧性、油密性に優れたものとなる。 尚、上述した構成例においては、モータ側プランジャーブロック 41にスプールバル ブ 50 · 50を摺動自在に配する構成とするものである力 これとは逆の構成、即ち、ポ ンプ側プランジャーブロック 31にスプールバルブ 50 · 50を摺動自在に配する構成に も適用可能であり、この場合は、油圧ポンプ 330側にチャージ油供給機構、及びチェ ック 'リリーフ機構を設ける構成とするものである。 With the above configuration, the cylinders 51a and 51a of the spool valve 50 of the motor-side plunger block 41 and the charge oil passage 2f are communicated with each other via the check valve and the relief valve. A charge oil supply circuit and a relief circuit of a hydraulic closed circuit (the oil passages 6a and 6b) formed between the motor and the motor 340 are configured. Then, according to the above configuration, the motor-side plunger block 41 of the hydraulic motor 340 The inside is equipped with a charge oil supply mechanism, a check valve 48c as a check 'relief mechanism' 48c, and a relief valve (not shown). The HST301 as a whole requires more space and can be made more compact, and both mechanisms are more resistant to high pressure and oil. In the configuration example described above, the spool valves 50, 50 are slidably disposed on the motor-side plunger block 41. The force is the reverse of the configuration, that is, the pump-side plunger. It is also applicable to a configuration in which the spool valves 50 and 50 are slidably disposed in the block 31. In this case, a configuration in which a charge oil supply mechanism and a check relief mechanism are provided on the hydraulic pump 330 side is adopted. It is.
次に、以上の構成の HST301におけるケースハウジング 2a ' 2bの構成について説 明する。  Next, the configuration of the case housing 2a′2b in the HST301 having the above configuration will be described.
即ち、図 19に示すごとぐ本発明に係るケースハウジングは前後分割式とするととも に、油圧モータ 340を配するケースハウジング 2bに、回転軸 130aに偏心配置される 前記軸受 60が嵌設される軸受穴 20a、及び、前記モータ側プランジャーブロック 41 の軸受 160が嵌設される軸受穴 20bが形設される。  That is, as shown in FIG. 19, the case housing according to the present invention is of a front-rear split type, and the bearing 60, which is eccentrically arranged on the rotating shaft 130a, is fitted to the case housing 2b on which the hydraulic motor 340 is arranged. A bearing hole 20a into which the bearing 160 of the motor-side plunger block 41 is fitted is formed.
この構成によれば、例えば、ケースハウジング 2bの加工において、軸受 160の加工 後、ケースハウジング 2bを固定したままにして軸受 60の加工をすることが可能となり、 前記軸受 60と、軸受 160の相対関係の設計値を具現化することができる、つまりは、 軸受 60の回転軸 130a ' 140aの軸心に対する偏心の加工精度を向上させることがで きる。  According to this configuration, for example, in the processing of the case housing 2b, after the processing of the bearing 160, the processing of the bearing 60 can be performed while the case housing 2b remains fixed. The design value of the relationship can be embodied, that is, the machining accuracy of the eccentricity of the bearing 60 with respect to the axis of the rotating shaft 130a'140a can be improved.
また、図 19に示すごとぐケースハウジングは前後分割式とするとともに、油圧ボン プ 330側のケースハウジング 2aには、可動斜板 33Mの半割軸受ガイド 21、入力軸と しての回転軸 130aの軸受 30bの軸受穴 22を一体成形する一方、油圧モータ 340側 のケースハウジング 2bには、スィべノレジョイント 23、可動斜板 43Mの半割軸受ガイド 27、スプールバルブ 50 · 50用の軸受 60の軸受穴 20a、出力軸としての回転軸 140a の軸受穴 24を一体成形している。  As shown in Fig. 19, the case housing is of a front-rear split type, and the case housing 2a on the hydraulic pump 330 side has a half bearing guide 21 of a movable swash plate 33M, a rotating shaft 130a as an input shaft. While the bearing hole 22 of the bearing 30b is integrally formed, the case housing 2b on the hydraulic motor 340 side has a swivel joint 23, a movable bearing swash plate 43M half bearing guide 27, and a bearing 60 for the spool valves 50 and 50. The bearing hole 20a of the bearing shaft 20a and the bearing hole 24 of the rotating shaft 140a as the output shaft are integrally formed.
この構成によれば、ケースハウジング 2をダイキャストで作成することにより、機械加 ェを減らすことができ、コスト低減を図ること力 Sできる。 尚、ケースハウジングの構成については、図 16に示される(a)—(c)の構成が適用 可能である。 According to this configuration, by making the case housing 2 by die casting, it is possible to reduce the mechanical load and to reduce the cost. In addition, as the configuration of the case housing, the configurations (a) to (c) shown in FIG. 16 are applicable.
<出力分割型 > <Output split type>
図 22及び図 23に示される油圧 ·機械式無段変速装置 320 (以下、「HMT320」と する)は、出力分割型に構成されるものである。  The hydraulic / mechanical continuously variable transmission 320 (hereinafter, referred to as “HMT320”) shown in FIGS. 22 and 23 is configured as a split output type.
即ち、 HST311と遊星歯車機構 310とを組み合わせて出力回転の変速を行うよう に構成された HMT320であって、 HST311のポンプ側プランジャーブロック 31を回 転軸 130aに相対回転不能に支持し、モータ側プランジャーブロック 41を回転軸 140 aに相対回転不能に支持し、前記回転軸 140aは中空とするとともに、前記回転軸 13 Oaに対して同軸上に配置し、前記ポンプ側プランジャーブロック 31とモータ側プラン ジャーブロック 41とは対向して配置し、前記モータ側プランジャーブロック 41 (又は 3 1)には、スプールバルブ 50 · 50が前記回転軸 130aを中心に摺動自在に放射状に 配置し、前記スプールバルブ 50 · 50の外側先端は、前記回転軸 130aに対して偏心 配置される軸受 60の内輪 60aの内周面 61に当接してモータ側プランジャーブロック 41の回転に従って半径方向に摺動し、該スプールバルブ 50 · 50により、前記両プラ ンジャーブロック 31 ·41のシリンダ 31a'41aを連通する油路 6a' 6bを開通又は分断 させる構成とし、前記回転軸 130a' 140a、及び遊星歯車機構 310により出力分割式 に構成されている。  That is, the HMT 320 is configured to perform the output rotation shift by combining the HST 311 and the planetary gear mechanism 310, and the pump-side plunger block 31 of the HST 311 is supported on the rotation shaft 130a so as to be relatively non-rotatable. The side plunger block 41 is supported so as not to rotate relative to the rotation shaft 140a, the rotation shaft 140a is hollow, and is disposed coaxially with the rotation shaft 13 Oa. The motor-side plunger block 41 is disposed so as to face the plunger block 41, and the motor-side plunger block 41 (or 31) has spool valves 50, 50 radially disposed slidably about the rotary shaft 130a. The outer ends of the spool valves 50, 50 abut against the inner peripheral surface 61 of the inner ring 60a of the bearing 60 eccentrically arranged with respect to the rotary shaft 130a, and the outer ends of the spool valves 50, 50 are rotated in half according to the rotation of the motor-side plunger block 41. It is configured to slide in the radial direction to open or separate the oil passages 6a '6b communicating with the cylinders 31a' 41a of the plunger blocks 31 and 41 by the spool valves 50 and 50. , And a planetary gear mechanism 310 to form an output split type.
尚、図 22及び図 23において付される符号については、上述した入力分割型の構 成の HMT300と同様の構成 ·機能を果たすものであり、説明は省略するものとする。 そして、以上のように構成される出力分割型の HMT320においては、前記回転軸 130aは、ケースハウジング 2よりも前後方向に長く構成され、前端部はケースハウジ ング 2aの前方に延出されて図示せぬ駆動源により駆動され、油圧ポンプ 330を駆動 する入力軸として機能するとともに、後端部はケースハウジング 2bの後方に延出され て遊星歯車機構 310のサンギア 13に接続される一方、回転軸 140aは、後端部がケ ースハウジング 2bの後方に延出されて遊星歯車機構 310のインターナルギア 14に 接続される構成とし、さらに、前記回転軸 140aを中空として回転軸 130aに対し同軸 上に配置される構成とするものである。 また、前記モータ側プランジャーブロック 41の回転軸 140aと、前記ポンプ側プラン ジャーブロック 31の回転軸 130aを同軸上に配するとともに、当該回転軸 130aに遊 星歯車機構 310のサンギア 13が接続されるものとし、これら回転軸 130a ' 140aと遊 星歯車機構 310とを組み合わせて、出力分割式に構成される油圧'機械式無段変速 装置 320を構成することとしており、回転軸 130a ' 140aの同軸上の配置により、コン パクトな油圧 ·機械式無段変速装置を構成することができる。 Note that the reference numerals given in FIGS. 22 and 23 perform the same configuration and function as the HMT 300 having the input division type described above, and a description thereof will be omitted. In the power split type HMT320 configured as described above, the rotating shaft 130a is configured to be longer in the front-rear direction than the case housing 2, and the front end is extended forward of the case housing 2a and illustrated. The rear end extends to the rear of the case housing 2b and is connected to the sun gear 13 of the planetary gear mechanism 310, while the rotating shaft 140a The rear end portion extends rearward of the case housing 2b and is connected to the internal gear 14 of the planetary gear mechanism 310, and is arranged coaxially with the rotating shaft 130a with the rotating shaft 140a being hollow. Configuration. The rotating shaft 140a of the motor-side plunger block 41 and the rotating shaft 130a of the pump-side plunger block 31 are coaxially arranged, and the sun gear 13 of the planetary gear mechanism 310 is connected to the rotating shaft 130a. By combining these rotary shafts 130a '140a and the planetary gear mechanism 310, a hydraulic' mechanical continuously variable transmission 320 configured as a split-output type is constructed. With the coaxial arrangement, a compact hydraulic / mechanical continuously variable transmission can be configured.
以上のように構成される出力分割型の HMT320においては、上述した HMT300 と同様の効果が奏されるものである。  The output split type HMT320 configured as described above has the same effects as the above-described HMT300.
尚、特に、変速範囲を広く確保する必要が無い場合には、上記構成例の他、固定 容積型の油圧ポンプ 330と可変容積型の油圧モータ 340による構成、又は、可変容 積型の油圧ポンプ 330と固定容積型の油圧モータ 340による構成としてもよい。 <静油圧式無段変速装置 >  In particular, when it is not necessary to secure a wide shift range, in addition to the above configuration examples, a configuration using a fixed displacement hydraulic pump 330 and a variable displacement hydraulic motor 340, or a variable displacement hydraulic pump A configuration using a 330 and a fixed displacement hydraulic motor 340 may be used. <Hydrostatic type continuously variable transmission>
次に、対向する油圧ポンプ 30と油圧モータ 40それぞれの吸入域 ·吐出域の分離要 素を、ポンプ 30 ·40の両回転軸の偏心により構成することとする静油圧式無段変速 装置について説明する。  Next, a description will be given of a hydrostatic stepless transmission in which the separation elements of the suction area and the discharge area of the opposing hydraulic pump 30 and hydraulic motor 40 are constituted by eccentricity of both rotating shafts of the pumps 30 and 40. I do.
図 24及び図 25に示すごとぐ静油圧式無段変速装置 401 (以下、「HST401」とす る)は、次の構成とするものである。  The hydrostatic continuously variable transmission 401 (hereinafter, referred to as “HST401”) as shown in FIGS. 24 and 25 has the following configuration.
即ち、アキシャルピストン式ポンプ 430 (以下、「油圧ポンプ 430」とする)、及びアキ シャルピストン式モータ 440 (以下、「油圧モータ 440」とする)を備える HST401であ つて、偏心配置した回転軸 470a ' 480aにそれぞれ支持される、ポンプ側プランジャ 一ブロック 431及びモータ側プランジャーブロック 441を対向配置しており、両プラン ジャーブロック 431 · 441の回転摺動面 434 · 444には、各プランジャーブロック 431 · 441に形設される複数のシリンダ 431a ' 441aと個別に連通するポンプ側ポート 434a •434a,モータ側ポート 444a '444aを形設している。回転軸 470aの軸心を中心に 径方向に見ると、該回転軸 470a ' 480aの軸心同士を結ぶ直線上に位置する相反二 位置のポンプ側ポート 434a ' 434aに対し、同一直線上に位置してそれぞれに対応 するモータ側ポート 444a ' 444aは最も遠くなつて (最大偏心位置)分離されている。 この直線上以外に位置するモータ側ポート 444aは、該直進上にある場合に比べ、そ れぞれに対応するポンプ側ポート 434aに対する径方向のずれ (偏心量)が小さくなり 、これにより、対応するポンプ側ポート 434aに対し重なり部分が生じ、即ち、ポート 43 4a'444a同士が連通する。即ち、両プランジャーブロック 431 ·441のシリンダ 431a' 441a同士を連通させる各油路 408は、そのモータ側シリンダ 441aがモータ側プラン ジャーブロック 441のポンプ側プランジャーブロック 431に対する最大偏心位置に到 達した時に分断され、該モータ側シリンダ 441aがそれ以外の位置になれば開通する 以上の構成とする HST401は、前記回転軸 470a'480aの軸方向における回転軸 470aを配する側を前側として、前側に油圧ポンプ 430を、後側に油圧モータ 440を 配する構成とし、これらを前後分割式とするケースハウジング 402a'402bに内装して いる。 That is, an HST 401 provided with an axial piston pump 430 (hereinafter referred to as “hydraulic pump 430”) and an axial piston motor 440 (hereinafter referred to as “hydraulic motor 440”). '' The pump-side plunger block 431 and the motor-side plunger block 441, which are respectively supported by the 480a, are opposed to each other. The rotating sliding surfaces 434 and 444 of the plunger blocks 431 and 441 have respective plunger blocks. The pump-side ports 434a and 434a and the motor-side ports 444a and 444a that are individually connected to the plurality of cylinders 431a and 441a that are formed on the 431 and 441 are formed. When viewed in the radial direction around the axis of the rotating shaft 470a, it is located on the same straight line with respect to the pump port 434a '434a at the two opposite positions located on a straight line connecting the axes of the rotating shafts 470a' 480a. The corresponding motor-side ports 444a and 444a are farthest apart (maximum eccentric position) and separated. The motor-side port 444a located other than on this straight line is The radial displacement (amount of eccentricity) with respect to the corresponding pump-side port 434a is reduced, thereby causing an overlap with the corresponding pump-side port 434a, that is, the ports 434a and 444a communicate with each other. . That is, in each oil passage 408 that connects the cylinders 431a '441a of both plunger blocks 431 and 441, the motor side cylinder 441a reaches the maximum eccentric position of the motor side plunger block 441 with respect to the pump side plunger block 431. When the motor-side cylinder 441a is at any other position, it is opened when the motor-side cylinder 441a is in the other position. A hydraulic pump 430 is arranged on the rear side, and a hydraulic motor 440 is arranged on the rear side.
また、前記分離要素は、偏心配置した回転軸 470a '480aにそれぞれポンプ側ブラ ンジャーブロック 431及びモータ側プランジャーブロック 441を支持し、両プランジャ 一ブロック 431 ·441間の相対回転摺動面に臨ませるように、両プランジャーブロック 431·441の回転摺動面 434·444には、各プランジャーブロックに形設される複数の シリンダと個別に連通するポンプ側ポート 434a'434a、モータ側ポート 444a'444a を形設し、前記の回転軸 470a'480aの偏心配置によりずれ合う両プランジャープロ ック 431·441のポート 434a'434a力 S互レヽに重なることで、両プランジャーブロックの シリンダを連通させる油路 408· 408を形成し、前記両回転軸 470a '480aの軸心を 結ぶ線の延長線上にて両プランジャーブロックのポート間の重なりがなくなって前記 油路 408·408を分断する、ことで構成されるものであり、前記油路 408·408のうち、 分断された油路によって、各プランジャーブロックの油路を吸入域 ·吐出域に区分す ることとするものである。  In addition, the separation element supports the pump-side plunger block 431 and the motor-side plunger block 441 on the eccentrically arranged rotating shafts 470a and 480a, respectively, and faces the relative rotational sliding surface between the two plunger blocks 431. As shown in the figure, the rotary sliding surfaces 434 and 444 of the plunger blocks 431 and 441 have pump-side ports 434a'434a and motor-side ports 444a that individually communicate with a plurality of cylinders formed on each plunger block. '444a, and the ports 434a'434a of the plunger blocks 431 and 441, which are displaced by the eccentric arrangement of the rotating shafts 470a and 480a, overlap with each other. Oil passages 408 and 408 are formed to communicate with each other, and there is no overlap between the ports of both plunger blocks on the extension of the line connecting the axes of the rotary shafts 470a and 480a, and the oil passages 408 and 408 are separated. The oil passages of each plunger block are divided into a suction region and a discharge region by the divided oil passages among the oil passages 408 and 408. .
以下詳述すると、ケースハウジング 402aの前側、ケースハウジング 402bの後側に は、それぞれ軸受 430b'40bが嵌設されており、これら軸受 430b'40bによって、前 記回転軸 470aの後端面と、前記回転軸 480aの前端面を対向させつつ、両回転軸 4 70a'480aを偏心配置させる構成としている。そして、回転軸 470aにはポンプ側プラ ンジャーブロック 431が、回転軸 480aにはモータ側プランジャーブロック 441が、そ れぞれの回転摺動面 434 · 444を対向させつつ相対回転不能に支持されている。 また、ケースハウジング 402aにおいて、前記軸受 430bとポンプ側プランジャーブロ ック 431との間には可動斜板 433Mが配置され、ポンプ側プランジャーブロック 431 に等間隔で、かつ回転軸 470aの軸方向に形設される 431a '431a内のプランジャー 432 · 432を前後摺動させる構成の可変容積型の油圧ポンプ 430が構成されている また、ケースハウジング 402bにおいて、前記軸受 440bとモータ側プランジャーブロ ック 441との間には固定斜板 43Fが配置され、モータ側プランジャーブロック 441に 等間隔で、かつ回転軸 480aの軸方向に形設される 441a ' 441a内のプランジャー 4 42 · 442を前後摺動させる構成の固定容積型の油圧モータ 440が構成されている。 また、油圧ポンプ 430の可動斜板 433Mの斜板傾転軸 433aと、油圧モータ 440の 固定斜板 43Fの斜板傾転軸 443aとは平行としている。この斜板傾転軸 433a '443a は、図 24において、紙面に対し垂直の関係となるものである。 More specifically, bearings 430b′40b are fitted on the front side of the case housing 402a and the rear side of the case housing 402b, respectively.These bearings 430b′40b allow the rear end face of the rotating shaft 470a and the The configuration is such that both rotating shafts 470a'480a are eccentrically arranged with the front end faces of the rotating shafts 480a facing each other. The pump-side plunger block 431 is provided on the rotating shaft 470a, and the motor-side plunger block 441 is provided on the rotating shaft 480a. The respective rotary sliding surfaces 434 and 444 are supported so as not to rotate relative to each other. Further, in the case housing 402a, a movable swash plate 433M is disposed between the bearing 430b and the pump-side plunger block 431, and is arranged at equal intervals on the pump-side plunger block 431 and in the axial direction of the rotating shaft 470a. 431a A variable displacement hydraulic pump 430 configured to slide the plungers 432 in the '431a back and forth is configured. Also, in the case housing 402b, the bearing 440b and the motor-side plunger blower are provided. A fixed swash plate 43F is disposed between the swash plate 441 and the swash plate 43F. The swash plate 43F is formed at regular intervals on the motor-side plunger block 441 and in the axial direction of the rotating shaft 480a. , A fixed displacement hydraulic motor 440 having a configuration in which is moved back and forth. The swash plate tilt axis 433a of the movable swash plate 433M of the hydraulic pump 430 and the swash plate tilt axis 443a of the fixed swash plate 43F of the hydraulic motor 440 are parallel to each other. The swash plate tilting shafts 433a and 443a are perpendicular to the plane of FIG.
また、図 24に示すごとぐ前記ポンプ側プランジャーブロック 431のシリンダ 431a ' 4 31aの回転摺動面 434側の底面積 432t '432tの総和と、モータ側プランジャーブロ ック 441のシリンダ 441 a · 441 aの回転摺動面 444側の底面積 442t · 442tの総和は 、略同一となるように設計され、ポンプ側プランジャーブロック 431と、モータ側プラン ジャーブロック 441のそれぞれのシリンダ 431a '441aの合計受圧面積を略同一とし ている。  Further, as shown in FIG. 24, the sum of the bottom areas 432t and 432t of the rotary sliding surface 434 side of the cylinder 431a'431a of the pump side plunger block 431 and the cylinder 441a of the motor side plunger block 441 · 441a Rotating sliding surface 444t Bottom area on 444t · Total of 442t is designed to be almost the same, and each cylinder 431a '441a of pump side plunger block 431 and motor side plunger block 441 Are almost the same.
また、図 24に示すごとぐモータ側プランジャーブロック 441は、その外周面がケー スハウジング 402bに嵌設される軸受 496に支承されている。そして、前記モータ側プ ランジャーブロック 441と回転軸 480aの間に軸受 407が挟装されることで、回転軸 4 80aの前端部が軸受 407及びモータ側プランジャーブロック 441を介して前記軸受 4 96に支承される構成としている。  Further, as shown in FIG. 24, the motor-side plunger block 441 has its outer peripheral surface supported by a bearing 496 fitted to the case housing 402b. The bearing 407 is sandwiched between the motor-side plunger block 441 and the rotating shaft 480a, so that the front end of the rotating shaft 480a passes through the bearing 407 and the motor-side plunger block 441. It is configured to be supported by 96.
また、図 24に示すごとぐ前記回転軸 470aの後端面と、回転軸 480aの前端面は、 近づけて対向配置されてレ、る。  Further, as shown in FIG. 24, the rear end face of the rotating shaft 470a and the front end face of the rotating shaft 480a are arranged close to and opposed to each other.
また、図 25及び図 26に示すごとぐポンプ側プランジャーブロック 431の回転摺動 面 434においては、各シリンダ 431a '431a内と個別に連通するためのポンプ側ポー ト 434a ' 434aが開口されており、前記プランジャー 432 ·432の摺動により、該ポン プ側ポート 434a '434aを油が通過するようになっている。 In addition, as shown in FIGS. 25 and 26, on the rotary sliding surface 434 of the pump-side plunger block 431, the pump-side port for individually communicating with the inside of each cylinder 431a '431a is provided. G is opened so that the oil passes through the pump side port 434a'434a by sliding of the plungers 432a.
また、図 26及び図 27に示すごとぐモータ側プランジャーブロック 441の回転摺動 面 444においては、各シリンダ 441a '441a内と個別に連通するためのモータ側ポー ト 444a ' 444a力 S開口されており、前記プランジャー 442 -442の摺動により、該モー タ側ポート 444a '444aを油が通過するようになっている。  In addition, as shown in FIGS. 26 and 27, the motor sliding ports 444a and 444a have an S opening on the rotary sliding surface 444 of the motor-side plunger block 441 for individually communicating with the respective cylinders 441a and 441a. The sliding of the plungers 442 allows the oil to pass through the motor-side ports 444a and 444a.
また、図 24、図 27に示すごとく、前記両プランジャーブロック 431 -441の回転摺動 面 433 · 444の間には、油路板 490が介装され、該油路板 490には、複数の油路 49 0a '490aが軸方向に貫通して形成され、これら油路 490a ' 490aの配置は、いずれ か一方のプランジャーブロック 431 ·441の回転摺動面 433 · 444に形設されるポート 434a '444aと略同一としてレ、る。本実施例では、ポンプ側プランジャーブロック 431 の回転摺動面 433に形設されるポンプ側ポート 434a ' 434aと断面形状及び配置を 同一とする油路 490a '490aを油路板 490に設ける構成としている。  As shown in FIGS. 24 and 27, an oil passage plate 490 is interposed between the rotary sliding surfaces 433 and 444 of the plunger blocks 431 and 441. The oil passages 490a and 490a are formed to penetrate in the axial direction, and the arrangement of these oil passages 490a and 490a is formed on the rotating sliding surfaces 433 and 444 of one of the plunger blocks 431 and 441. Port 434a Same as port 444a. In this embodiment, the oil passage plate 490 is provided with oil passages 490a and 490a having the same cross-sectional shape and arrangement as the pump-side ports 434a and 434a formed on the rotary sliding surface 433 of the pump-side plunger block 431. And
また、前記油路板 490と他方のプランジャーブロック (本実施例では、モータ側ブラ ンジャーブロック 441)とを相対回転摺動自在に当接させることで、前記両プランジャ 一ブロック 433 ·444間の相対回転摺動面(合わせ面 5c)を画することとしている。 また、該油路板 490は、円盤状として、前記油路 490a '490aと同一配置のポート が形成されるプランジャーブロック(本実施例では、ポンプ側プランジャーブロック 43 1)を支持する回転軸 470aに同心配置されるものである。  Further, the oil passage plate 490 and the other plunger block (in this embodiment, the motor-side plunger block 441) are brought into contact with each other so as to be slidable relative to each other so that the plunger block 433 It defines a relative rotating sliding surface (mating surface 5c). The oil passage plate 490 has a disk shape and has a rotary shaft that supports a plunger block (in this embodiment, a pump-side plunger block 431) in which ports having the same arrangement as the oil passages 490a and 490a are formed. It is arranged concentrically with 470a.
また、該油路板 490は、回転軸 470aに同心配置される軸受 497に内嵌されており 、ポンプ側プランジャーブロック 431、モータ側プランジャーブロック 441、及び回転 軸 470a '480aに対し相対回転自在に構成されている。尚、油路板 490は、前記油 路 490aとポンプ側ポート 434aの位置が一致する角度において、回転軸 470aに対 して相対回転不能に構成してもよい。また、油路板 490は、ピン等の係止部材により ポンプ側プランジャーブロック 431に対して相対回転不能とし、ポンプ側プランジャー ブロック 431と一体に回転する構成としてもよレ、。つまり、いずれか一方のプランジャ 一ブロックと一体に回転する油路板 490を、両プランジャーブロックの回転摺動面の 間に介装し、該油路板 490には、複数の油路 490aを軸方向に貫通して形成し、これ ら油路 490aの配置は、前記油路板 490がー体に回転される側のプランジャーブロッ クの回転摺動面に形設するポートと略同一とするものである。 The oil passage plate 490 is fitted in a bearing 497 concentrically arranged on the rotating shaft 470a, and rotates relative to the pump-side plunger block 431, the motor-side plunger block 441, and the rotating shaft 470a '480a. It is freely configured. The oil passage plate 490 may be configured so as to be unable to rotate relative to the rotating shaft 470a at an angle at which the position of the oil passage 490a and the position of the pump-side port 434a coincide. Further, the oil passage plate 490 may not be rotatable relative to the pump-side plunger block 431 by a locking member such as a pin, and may be configured to rotate integrally with the pump-side plunger block 431. That is, an oil passage plate 490 that rotates integrally with one of the plunger blocks is interposed between the rotating sliding surfaces of both plunger blocks, and the oil passage plate 490 has a plurality of oil passages 490a. Formed in the axial direction, The arrangement of the oil passage 490a is substantially the same as the port formed on the rotary sliding surface of the plunger block on the side where the oil passage plate 490 is rotated by the body.
また、前記油路板 490により、該油路板 490がー体に回転される側のプランジャー ブロック 431の回転軸 470aを支持する、つまりは、油路板 490を介して軸受 497によ り回転軸 470aを支持する構成とすることによれば、回転軸 470aのぶれを防止するこ とができる。  Further, the oil passage plate 490 supports the rotating shaft 470a of the plunger block 431 on the side where the oil passage plate 490 is rotated by the body, that is, by the bearing 497 via the oil passage plate 490. According to the configuration supporting the rotating shaft 470a, it is possible to prevent the rotating shaft 470a from being shaken.
そして、図 24及び図 29に示すごとぐ該油路板 490の回転摺動面 494a ' 494bに 対して、ポンプ側プランジャーブロック 431の回転摺動面 434、及びモータ側プラン ジャーブロック 441の回転摺動面 444が当着することで一連の油路 408が形成され る。この油路板 490は、軸 470aを指示する目的の他に、特に、両回転摺動面 434 ·4 44の間に生じる摺動抵抗の削減や、焼付きの防止を目的としており、これら摺動面 の表面は、例えば、耐焼付き性材料で被覆等されるものである。尚、両回転摺動面 4 34 · 444と油路板 490の間に焼付きの問題が生じない場合には、油路板 490にっき 、耐焼付き性材料による被覆を省略する構成としてもょレヽ。  Then, as shown in FIGS. 24 and 29, the rotation sliding surface 434 of the pump side plunger block 431 and the rotation of the motor side plunger block 441 with respect to the rotation sliding surface 494a'494b of the oil passage plate 490. A series of oil passages 408 are formed by the contact of the sliding surface 444. The oil passage plate 490 has the purpose of not only indicating the shaft 470a but also reducing the sliding resistance generated between the two rotating sliding surfaces 434 and 444 and preventing seizure. The surface of the moving surface is, for example, coated with a seizure-resistant material. If there is no problem of seizure between the two sliding surfaces 434 and 444 and the oil passage plate 490, the oil passage plate 490 may be configured to omit the coating with a seizure-resistant material. .
また、図 24、図 25に示すごとく、油圧ポンプ 430の可動斜板 433Μの斜板傾転軸 433aと、油圧モータ 440の固定斜板 43Fの斜板傾転軸 443aとは平行とするとともに 、これら斜板傾転軸 433a ' 443aと直交する方向に、前記回転軸 470a '480aの中心 が偏心配置されている。  As shown in FIGS. 24 and 25, the swash plate tilt shaft 433a of the movable swash plate 433 ° of the hydraulic pump 430 and the swash plate tilt shaft 443a of the fixed swash plate 43F of the hydraulic motor 440 are parallel to each other. The centers of the rotating shafts 470a and 480a are eccentrically arranged in a direction orthogonal to the swash plate tilting shafts 433a and 443a.
そして、これら回転軸 470a ' 480aの偏心量 499は、最大偏心量となる回転角、即 ち、前記斜板傾転軸 433a ' 443aの軸方向に対し、それぞれ 90度位相がずれる回 転角 404t ' 404uの位置にぉレ、て、両プランジャーブロック 431 ·441の回転摺動面 4 34 - 444のポー卜 434a (490a) -444aのズレ量を最大とすることにより、両ポー卜 434 a (490a) ' 444aが重なることにより形成される油路 408 - 408を分断する構成とすると ともに、その他の回転角では前記油路 408 - 408が連通される偏心量 499とするもの である。  The amount of eccentricity 499 of these rotary shafts 470a '480a is the rotational angle at which the maximum amount of eccentricity is reached, that is, the rotational angle 404t which is 90 degrees out of phase with respect to the axial direction of the swash plate tilting shafts 433a' 443a.回 転 Position at 404u, and then rotate the sliding surfaces of both plunger blocks 431 and 441 4 Port 434a of 434-444 (490a) By maximizing the amount of displacement of -444a, both ports 434a (490a) The oil passages 408-408 formed by overlapping the '444a are divided, and the eccentric amount 499 through which the oil passages 408-408 communicate with each other at other rotation angles.
これにより、図 25に示すごとぐ前記回転角 404t '404uの位置を基準として分断さ れる二つの区間 411 ·412を形成し、それぞれの区間 411 · 412において、図 29に示 すごとく、ポー卜 434a (490a) -444a力 S重なることにより、油路 408力 S形成される。 以上の構成により、図 25に示すごとぐ第一の区間 411においては、油路 408 ·40 8により高圧油路 (又は低圧油路)が形成され、第二の区間 412においては、油路 40 8 ·408により低圧油路(又は高圧油路)が形成されることで、回転軸 470aを入力軸と して油圧ポンプ 430より油圧モータ 440に圧油を供給し、回転軸 480aを出力軸とし て駆動する HST401が構成される。 As a result, two sections 411 and 412, which are separated from each other with reference to the position of the rotation angle 404t'404u as shown in FIG. 25, are formed. In each section 411 and 412, as shown in FIG. 434a (490a) -444a Force S overlaps to form 408 force S in oil path. With the above configuration, in the first section 411 as shown in FIG. 25, the oil paths 408 and 408 form a high-pressure oil path (or a low-pressure oil path), and in the second section 412, the oil path 40 8 · 408 forms a low-pressure oil passage (or high-pressure oil passage), whereby hydraulic oil is supplied from hydraulic pump 430 to hydraulic motor 440 using rotary shaft 470a as an input shaft, and rotary shaft 480a is used as an output shaft. The HST 401 is configured to be driven.
また、第一の区間 411においては、油圧ポンプ 430にっき吐出域 (又は吸入域)が 、油圧モータ 440にっき吸入域 (又は吐出域)が形成され、第二の区間 412において は、油圧ポンプ 430にっき吸入域(又は吐出域) ヽ油圧モータ 440にっき吐出域( 吸入域)が、それぞれ形成されるものであり、これら吸入域と吐出域は、回転軸 470a •480aの偏心配置にて構成されることとしているものである。  Also, in the first section 411, a discharge area (or suction area) is formed in the hydraulic pump 430, and in the second section 412, a suction area (or discharge area) is formed in the hydraulic pump 430. Suction area (or discharge area) ヽ Hydraulic motor 440 has a discharge area (suction area) formed separately. These suction area and discharge area shall be configured with eccentric arrangement of rotating shafts 470a and 480a. It is what it is.
また、以上のように、ポンプ側プランジャーブロック 431と、モータ側プランジャーブ ロック 441と力 S、互いに摺動回転する面(回転摺動面 433 ·444)を介して向かい合わ せられ、両プランジャーブロックに形成されるシリンダ間を流体連通する連通路(油路 408)が形成されるとともに、該連通路に分離要素が介設され、該分離要素により、前 記ポンプ側'モータ側プランジャーブロックの各々において、該複数の連通路が、吸 入域 (第一の区間 411 (第二の区間 412) )のものと吐出域 (第二の区間 412 (第二の 区間 411) )のものとに区分されるものとしている。即ち、該分離要素により、各プラン ジャーブロック 431 ·441内の油路群は、吸入域と吐出域(いずれか一方を第一区間 411 ·他方を第二区間 412にする)とに区分されるのである。  Further, as described above, the pump-side plunger block 431, the motor-side plunger block 441, and the force S face each other through the surfaces that slide and rotate (rotary sliding surfaces 433 and 444). A communication passage (oil passage 408) for fluid communication between the cylinders formed in the jar block is formed, and a separation element is interposed in the communication passage. The separation element allows the pump-side motor-side plunger. In each of the blocks, the plurality of communication passages are of the suction area (first section 411 (second section 412)) and the discharge area (second section 412 (second section 411)). It is categorized as That is, the oil passage group in each of the plunger blocks 431 and 441 is divided into a suction area and a discharge area (one of them is a first section 411 and the other is a second section 412) by the separation element. It is.
そして、以上の構成によれば、図 24に示すごとぐ油圧ポンプ 430の可動斜板 433 Μの斜板傾転軸 433aと、油圧モータ 440の固定斜板 43Fの斜板傾転軸 443aとは 平行としているため、メインとする駆動方向(例えば、 HST401を備える車体を前進さ せる方向)における両斜板 433M'43Fの傾き方向を平行に設定することで、油圧ポ ンプ 430のプランジャー 432.432と、油圧モータ 440のプランジャー 442.442の摺 動によって生じる回転軸 470a'480aを基準とするスラスト方向、及びラジアル方向の 荷重を互いに打ち消し合うことができ、より小型の軸受 496を使用してモータ側プラン ジャーブロック 441を支承することが可能となり、動力ロスの低減、コスト低減を図るこ とができる。 また、以上の構成によれば、図 24に示すごとぐポンプ側プランジャーブロック 431 と、モータ側プランジャーブロック 441のそれぞれのシリンダ 431a '441aの合計受圧 面積を略同一としているので、上述したスラスト方向、及びラジアル方向の荷重を、よ り確実に、互いに打ち消し合うことができる。また、前記合計受圧面積を略同一とする 限りは、シリンダ 431a '441aの数は特に限定されるものでなぐプランジャーブロック の設計上の自由度は広いものとなっている。 According to the above configuration, as shown in FIG. 24, the swash plate tilt shaft 433a of the movable swash plate 433433 of the hydraulic pump 430 and the swash plate tilt shaft 443a of the fixed swash plate 43F of the hydraulic motor 440 are different from each other. Because they are parallel, the inclination direction of both swash plates 433M'43F in the main drive direction (for example, the direction in which the vehicle equipped with HST401 is advanced) is set to be parallel, so that the plunger 432.432 of the hydraulic pump 430 and the plunger 432.432 The load in the thrust direction and the radial direction based on the rotating shaft 470a'480a generated by the sliding of the plunger 442.442 of the hydraulic motor 440 can cancel each other, and the motor-side plan can be reduced by using a smaller bearing 496. The jar block 441 can be supported, and power loss and cost can be reduced. In addition, according to the above configuration, as shown in FIG. 24, the total pressure receiving area of each of the cylinders 431a and 441a of the pump-side plunger block 431 and the motor-side plunger block 441 is substantially the same. Directional and radial loads can more reliably cancel each other out. In addition, as long as the total pressure receiving area is substantially the same, the number of cylinders 431a and 441a is not particularly limited, and the design flexibility of the plunger block is wide.
また、以上の構成によれば、図 24に示すごとぐポンプ側プランジャーブロック 431 とモータ側プランジャーブロック 441は、同じ方向に回転するため、互いの回転数の 差から求まる回転数にて相対回転することになり、前記回転摺動面 434 ' 444 (494a •494b)との間で生じる動力ロスの低減を図ることができる。  In addition, according to the above configuration, as shown in FIG. 24, the pump-side plunger block 431 and the motor-side plunger block 441 rotate in the same direction. As a result, it is possible to reduce power loss generated between the rotary sliding surfaces 434 ′ and 444 (494a and 494b).
また、以上の構成において、図 30に示すごとぐポンプ側プランジャーブロック 431 に対し油路板 490を一体的に構成することによれば、前記回転摺動面 494b · 444が 対向して、一つの相対回転摺動面(合わせ面 405c)が形成されるため、従来の高圧 油路板に対して二つの相対回転摺動面が形成される構成のものと比較して、該相対 回転摺動面からの漏れ量を相対的に低減することができる。このようにして、必要な チャージ油量を抑えることができ、動力ロスの低減、コスト低減を図ることができる。 また、以上の構成によれば、図 24に示すごとぐ従来構成に必要とされた高圧油路 板を備えないため、 HST401全体の質量低減を図れるとともに、コスト低減を図ること ができる。  Further, in the above configuration, by forming the oil passage plate 490 integrally with the pump-side plunger block 431 as shown in FIG. 30, the rotary sliding surfaces 494b and 444 face each other, Since two relative rotation sliding surfaces (mating surface 405c) are formed, the relative rotation sliding surface is compared with the conventional configuration in which two relative rotation sliding surfaces are formed on the high-pressure oil passage plate. The amount of leakage from the surface can be relatively reduced. In this way, the required amount of charge oil can be reduced, and power loss and cost can be reduced. Further, according to the above configuration, as shown in FIG. 24, since the high pressure oil passage plate required for the conventional configuration is not provided, the mass of the entire HST 401 can be reduced and the cost can be reduced.
また、以上の構成によれば、図 24に示すごとぐ回転軸 470aの後端面と、回転軸 4 80aの前端面は、近づけて対向配置されるため、従来の高圧油路板に軸受を配して 回転軸を軸承する構成と比較して、 HST401の全長をコンパクトに構成することがで きる。  Further, according to the above configuration, as shown in FIG. 24, the rear end face of the rotating shaft 470a and the front end face of the rotating shaft 480a are arranged close to and opposed to each other. As a result, the overall length of the HST401 can be made more compact as compared with a configuration in which a rotary shaft is supported.
また、以上の構成によれば、図 24に示すごとぐ油路板 490を備えることで、簡易な 構成で両回転摺動面 434 · 444の間に生じる摺動抵抗を削減することができる。これ により、動力ロスの低減を図ることができる。  Further, according to the above configuration, by providing the oil passage plate 490 as shown in FIG. 24, it is possible to reduce the sliding resistance generated between the two rotating sliding surfaces 434 with a simple configuration. As a result, power loss can be reduced.
また、以上の構成によれば、図 24に示すごとぐ油路板 490は、軸受 497に内嵌さ れて回転自在に支承されるとともに、ポンプ側プランジャーブロック 431、モータ側プ ランジャーブロック 441、及び回転軸 470a '480aに対し相対回転自在に構成されて いるので、両回転軸 470a '480aの回転数に大きな差が生じた場合においても、油 路板 490の自由な回転が許容され、該油路板 490が両プランジャーブロック 431 ·44 1の回転を拘束することがないため、該油路板 490と両プランジャーブロック 431 - 44 1との間で生じる回転摺動抵抗を最小限に抑えることができる。 Further, according to the above configuration, as shown in FIG. 24, the oil passage plate 490 is fitted inside the bearing 497 so as to be rotatably supported, and the pump side plunger block 431 and the motor side Because it is configured to be rotatable relative to the lancer block 441 and the rotating shafts 470a and 480a, even if there is a large difference between the rotation speeds of the two rotating shafts 470a and 480a, the oil plate 490 can rotate freely. Is allowed, and the oil passage plate 490 does not restrain the rotation of the plunger blocks 431 and 441, so that the rotational sliding generated between the oil passage plate 490 and the plunger blocks 431 and 441 is performed. Resistance can be minimized.
また、以上の構成によれば、両回転軸 470a ' 480aの偏心配置といった簡易な構成 により分離要素を構成することができ、部品点数の少ない静油圧式無段変速装置に 構成すること力 Sできる。  Further, according to the above configuration, the separation element can be configured by a simple configuration such as the eccentric arrangement of the two rotating shafts 470a and 480a, and the force S can be reduced to a hydrostatic continuously variable transmission with a small number of parts. .
また、以上の構成の HST401におけるチャージ油供給機構、及びチェック 'リリーフ 機構については、図 11乃至図 13、図 24に示される構成で解るように、上述した第一 の構成例と同様の構成としている。尚、上述の第二'第三の構成例の適用も可能で ある。  Further, the charge oil supply mechanism and the check relief mechanism in the HST 401 having the above configuration have the same configuration as the first configuration example described above, as understood from the configurations shown in FIGS. 11 to 13 and 24. I have. Note that the above-described second and third configuration examples can also be applied.
次に、以上の構成の HST401におけるケースハウジングの構成について説明する 即ち、図 24に示すごとぐケースハウジングは前後分割式とするとともに、油圧ボン プ 430側のケースハウジング 402aには、可動斜板 433Mの半割軸受ガイド 421、入 力軸としての回転軸 470aの軸受 430bの軸受穴 422、油路板 490用の軸受 497の 軸受穴 420aを一体成形する一方、油圧モータ 440側のケースハウジング 402bには 、出力軸としての回転軸 480aの軸受穴 424を一体成形している。  Next, the configuration of the case housing in the HST 401 having the above configuration will be described. That is, as shown in FIG. 24, the case housing is of a front and rear split type, and the case housing 402a on the hydraulic pump 430 side has a movable swash plate 433M. The half bearing guide 421, the rotary shaft 470a as the input shaft, the bearing hole 422 of the bearing 430a 430b, and the bearing hole 420a of the bearing 497 for the oil passage plate 490 are integrally formed, while the case housing 402b on the hydraulic motor 440 side is formed. In the figure, a bearing hole 424 of a rotating shaft 480a as an output shaft is integrally formed.
この構成によれば、ケースハウジングをダイキャストで作成することにより、機械加工 を減らすことができ、コスト低減を図ること力 Sできる。  According to this configuration, by forming the case housing by die-casting, machining can be reduced and the cost can be reduced.
また、上述した構成例においては、油圧ポンプ 430を可変容積型とし、油圧モータ 440を固定容積型とするものである力 これとは逆の構成、即ち、油圧ポンプ 430を 固定容積型とし、油圧モータ 440を可変容積型とする構成にも適用可能である。 また、上述した構成例においては、ポンプ側プランジャーブロック 431に油路板 49 0を配する構成とするものである力 これとは逆の構成、即ち、モータ側プランジャー ブロック 441に油路板 490を配する構成にも適用可能である。  In the above-described configuration example, the hydraulic pump 430 is of a variable displacement type, and the hydraulic motor 440 is of a fixed displacement type. The present invention is also applicable to a configuration in which the motor 440 is of a variable displacement type. Further, in the above-described configuration example, the force is such that the oil passage plate 490 is arranged on the pump-side plunger block 431. The present invention is also applicable to a configuration in which 490 is provided.
また、上述した構成例においては、油圧モータ 440側にチャージ油供給機構、及 びチェック 'リリーフ機構を設けた力 これとは逆の構成、即ち、油圧ポンプ 430側に チャージ油供給機構、及びチェック 'リリーフ機構を設ける構成としてもよい。 In the configuration example described above, a charge oil supply mechanism and a hydraulic oil supply mechanism are provided on the hydraulic motor 440 side. Force with Provision of Check and Relief Mechanism The reverse configuration may be adopted, that is, a configuration in which a charge oil supply mechanism and a check and relief mechanism are provided on the hydraulic pump 430 side.
そして、このように、油圧ポンプ 430を固定容積型、油圧モータ 440を可変容積型と し、油圧ポンプ 430側にチャージ油供給機構、及びチェック 'リリーフ機構を、油圧モ ータ 440側に油圧モータ 440を設ける構成とする場合においては、敢えて図示はし ないが、前記ケースハウジングは前後分割式とするとともに、油圧ポンプ 430側のケ ースハウジング 402aには、入力軸としての回転軸 470aの軸受穴 422を一体成形す る一方、油圧モータ 440側のケースハウグング 402bには、可動斜板 433Mの半割軸 受ガイド 421、出力軸としての回転軸 480aの軸受 440bの軸受穴 424を一体成形す るものである。  As described above, the hydraulic pump 430 is a fixed displacement type, the hydraulic motor 440 is a variable displacement type, the charge oil supply mechanism and the check relief mechanism are provided on the hydraulic pump 430 side, and the hydraulic motor 440 is provided on the hydraulic motor 440 side. In the case where the 440 is provided, although not shown, the case housing is of a front-rear split type, and the case housing 402a on the hydraulic pump 430 side has a bearing hole 422 of a rotary shaft 470a as an input shaft. On the other hand, the half housing guide 421 of the movable swash plate 433M and the bearing hole 424 of the bearing 440b of the rotary shaft 480a as the output shaft are integrally formed in the case housing 402b on the hydraulic motor 440 side. Things.
このように、上述した構成例の他、油圧ポンプ 430を固定容積型、油圧モータ 440 を可変容積型とする構成においても、ケースハウジングをダイキャストで作成すること により、機械加工を減らすことができ、コスト低減を図ることができる。  As described above, in addition to the above-described configuration example, even in a configuration in which the hydraulic pump 430 is a fixed displacement type and the hydraulic motor 440 is a variable displacement type, machining can be reduced by forming the case housing by die casting. Therefore, cost can be reduced.
尚、ケースハウジングの構成については、図 16に示される(a)—(c)の構成が適用 可能である。  In addition, as the configuration of the case housing, the configurations (a) to (c) shown in FIG. 16 are applicable.
産業上の利用可能性 Industrial applicability
本発明は、従来の静油圧式無段変速装置の代替として利用可能であり、特に、省 スペース設計が要求される個所に好適な構成である。また、動力ロスが少ないため、 高い伝達効率が要求される個所に好適な構成である  INDUSTRIAL APPLICABILITY The present invention can be used as a substitute for a conventional hydrostatic continuously variable transmission, and is particularly suitable for a place where a space-saving design is required. In addition, since power loss is small, this configuration is suitable for places where high transmission efficiency is required.

Claims

請求の範囲 The scope of the claims
[1] アキシャルピストン式の油圧ポンプと油圧モータとを組み合わせてなる静油圧式無段 変速装置であって、  [1] A hydrostatic continuously variable transmission that combines an axial piston type hydraulic pump and a hydraulic motor,
ポンプ側プランジャーブロックと、モータ側プランジャーブロックとが、互いに摺動回 転する面を介して向かレ、合わせられ、  The plunger block on the pump side and the plunger block on the motor side are opposed to each other via surfaces that slide and rotate with each other.
両プランジャーブロックに形成されるシリンダ間を流体連通する複数の連通路が形 成されるとともに、  A plurality of communication passages for fluid communication between the cylinders formed in both plunger blocks are formed,
該複数の連通路に分離要素が介設され、  A separation element is interposed in the plurality of communication paths,
該分離要素により、前記ポンプ側'モータ側プランジャーブロックの各々において、 該複数の連通路が、吸入域のものと吐出域のものとに区分される、  In each of the pump-side and motor-side plunger blocks, the plurality of communication paths are divided into a suction area and a discharge area by the separation element.
構成とする静油圧式無段変速装置。  A hydrostatic continuously variable transmission having a configuration.
[2] 前記分離要素は、  [2] The separation element includes:
前記いずれか一方のプランジャーブロックに、  In either one of the plunger blocks,
該プランジャーブロックのシリンダの数と同数設けられるスプールバルブにて構成さ れるものであり、  The plunger block is constituted by the same number of spool valves as the number of cylinders,
該スプールバルブは、  The spool valve is
前記プランジャーブロックの回転軸を中心に摺動自在に放射状に配置され、 その外側先端が、前記回転軸に対して偏心配置される軸受の内輪の内周面に当 接され、  The plunger block is radially arranged slidably about a rotation axis of the plunger block, and an outer end thereof is in contact with an inner peripheral surface of an inner ring of a bearing eccentrically arranged with respect to the rotation axis,
前記プランジャーブロックの回転に従って前記回転軸の半径方向に摺動され、 前記両プランジャーブロックのシリンダを連通させる油路を開通又は分断させるもの であり、  According to the rotation of the plunger block, the plunger block is slid in the radial direction of the rotating shaft, and opens or divides an oil passage communicating the cylinders of the plunger blocks.
該スプールバノレブにて前記油路を分断し、各プランジャーブロックにおける油路を 吸入域 ·吐出域に区分する、  The oil passages are divided by the spool vanoleb, and the oil passages in each plunger block are divided into a suction region and a discharge region.
ことを特徴とする請求の範囲第 1項記載の静油圧式無段変速装置。  The hydrostatic continuously variable transmission according to claim 1, wherein:
[3] 前記モータ側プランジャーブロックの回転軸と、前記ポンプ側プランジャーブロックの 回転軸を同軸上に配し、これら回転軸と遊星歯車機構とを組み合わせて、入力分割 式に構成される油圧'機械式無段変速装置を構成することを可能とした請求の範囲 第 1項又は第 2項記載の静油圧式無段変速装置。 [3] The rotary shaft of the motor-side plunger block and the rotary shaft of the pump-side plunger block are arranged coaxially, and the rotary shaft and the planetary gear mechanism are combined to form a hydraulic system configured in an input split type. '' Claims that made it possible to construct a mechanical continuously variable transmission 3. The hydrostatic stepless transmission according to item 1 or 2.
[4] 前記モータ側プランジャーブロックの回転軸と、前記ポンプ側プランジャーブロックの 回転軸を同軸上に配し、これら回転軸と遊星歯車機構とを組み合わせて、出力分割 式に構成される油圧 ·機械式無段変速装置を構成することを可能とした請求の範囲 第 1項又は第 2項記載の静油圧式無段変速装置。 [4] The rotary shaft of the motor-side plunger block and the rotary shaft of the pump-side plunger block are arranged coaxially, and these rotary shafts and a planetary gear mechanism are combined to form a hydraulic output-split hydraulic system. · The hydrostatic continuously variable transmission according to claim 1 or 2, wherein the mechanically continuously variable transmission can be configured.
[5] 前記軸受の内輪の内周面を、前記回転軸の軸方向に対し傾斜させる、 [5] The inner peripheral surface of the inner race of the bearing is inclined with respect to the axial direction of the rotating shaft,
ことを特徴とする請求の範囲第 2項記載の静油圧式無段変速装置。  3. The hydrostatic continuously variable transmission according to claim 2, wherein:
[6] 前記スプールバルブの摺動方向を、前記回転軸の軸方向に対し傾斜させる、 [6] inclining the sliding direction of the spool valve with respect to the axial direction of the rotating shaft;
ことを特徴とする請求の範囲第 2項記載の静油圧式無段変速装置。  3. The hydrostatic continuously variable transmission according to claim 2, wherein:
[7] 前記分離要素は、 [7] The separation element includes:
偏心配置した回転軸にそれぞれポンプ側プランジャーブロック及びモータ側プラン ジャーブロックを支持し、  The pump-side plunger block and the motor-side plunger block are supported on the eccentrically arranged rotating shafts, respectively.
両プランジャーブロック間の相対回転摺動面に臨ませるように、  So that it faces the relative rotation sliding surface between both plunger blocks,
各プランジャーブロックに形設される複数のシリンダと個別に連通するポンプ側ポー ト、モータ側ポートを形設し、  Pump-side ports and motor-side ports that individually communicate with multiple cylinders formed in each plunger block are formed.
前記の回転軸の偏心配置によりずれ合う両プランジャーブロックのポートが互いに 重なることで、両プランジャーブロックのシリンダを連通させる油路を形成し、 前記両回転軸の軸心を結ぶ線の延長線上にて両プランジャーブロックのポート間 の重なりがなくなって前記油路を分断する、ことで構成されるものであり、  The ports of both plunger blocks that are displaced due to the eccentric arrangement of the rotating shaft overlap each other to form an oil passage that connects the cylinders of both plunger blocks. The overlap between the ports of both plunger blocks is eliminated, and the oil passage is divided.
前記油路のうち、分断された油路によって、各プランジャーブロックの油路を吸入域 •吐出域に区分することとする、  Of the oil passages, the oil passages of each plunger block are divided into a suction region and a discharge region by a divided oil passage.
ことを特徴とする請求の範囲第 1項記載の静油圧式無段変速装置。  The hydrostatic continuously variable transmission according to claim 1, wherein:
[8] 前記いずれか一方のプランジャーブロックと一体に回転する油路板を設け、該油路 板と他方のプランジャーブロックとを相対回転摺動自在に当接させることで、前記両 プランジャーブロック間の相対回転摺動面を画し、 [8] An oil passage plate that rotates integrally with one of the plunger blocks is provided, and the oil passage plate and the other plunger block are brought into contact with each other so as to be slidable relative to each other. Draw a relative rotation sliding surface between the blocks,
該油路板には、複数の油路を軸方向に貫通して形成し、  The oil passage plate is formed by penetrating a plurality of oil passages in the axial direction,
これら油路の配置は、前記油路板が一体に回転される側のプランジャーブロックに 形設するポートと略同一とするとともに、 前記油路板が一体に回転される側のプランジャーブロックの回転軸は、 該油路板にて支持される、 The arrangement of these oil passages is substantially the same as the port formed on the plunger block on the side where the oil passage plate is integrally rotated, and The rotation shaft of the plunger block on the side on which the oil passage plate is integrally rotated is supported by the oil passage plate.
ことを特徴とする請求の範囲第 7項記載の静油圧式無段変速装置。  8. The hydrostatic continuously variable transmission according to claim 7, wherein:
[9] 前記静油圧式無段変速装置のケースハウジングに設けたチャージポンプとの接続点 と、 [9] a connection point with a charge pump provided in a case housing of the hydrostatic continuously variable transmission,
モータ側又はポンプ側プランジャーブロック内の油圧回路との間に、チャージ油供 給機構が設けられる、  A charge oil supply mechanism is provided between the motor and the hydraulic circuit in the pump side plunger block.
ことを特徴とする請求の範囲第 1項記載の静油圧式無段変速装置。  The hydrostatic continuously variable transmission according to claim 1, wherein:
[10] 前記静油圧式無段変速装置のケースハウジングに設けたチャージポンプとの接続点 と、 [10] A connection point with a charge pump provided in a case housing of the hydrostatic continuously variable transmission,
モータ側又はポンプ側プランジャーブロック内の油圧回路との間に、チェック機構 が設けられる、  A check mechanism is provided between the motor and the hydraulic circuit in the plunger block on the pump side.
ことを特徴とする請求の範囲第 1項記載の静油圧式無段変速装置。  The hydrostatic continuously variable transmission according to claim 1, wherein:
[11] 前記静油圧式無段変速装置のケースハウジングは、 [11] The case housing of the hydrostatic continuously variable transmission is
前記分離要素の近傍で分割される、  Divided near the separation element,
ことを特徴とする請求の範囲第 1項記載の静油圧式無段変速装置。  The hydrostatic continuously variable transmission according to claim 1, wherein:
[12] 前記静油圧式無段変速装置のケースハウジングは、 [12] The case housing of the hydrostatic continuously variable transmission includes:
分割される構成とするものであり、  It is a configuration that is divided,
第一のハウジング内に油圧モータ及び油圧ポンプが収容され、  A hydraulic motor and a hydraulic pump are housed in the first housing,
その他のハウジングにて、第一のハウジングの開口部が閉じられる構成とする、 ことを特徴とする請求の範囲第 1項記載の静油圧式無段変速装置。  2. The hydrostatic continuously variable transmission according to claim 1, wherein an opening of the first housing is closed by another housing.
PCT/JP2004/005833 2003-05-22 2004-04-30 Hydrostatic stepless speed change device WO2004104448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005506316A JP4324165B2 (en) 2003-05-22 2004-04-30 Hydrostatic continuously variable transmission
US11/283,946 US20060120884A1 (en) 2003-05-22 2005-11-22 Hydrostatic stepless transmission

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-145299 2003-05-22
JP2003145299 2003-05-22
JP2003145297 2003-05-22
JP2003-145297 2003-05-22
JP2003145298 2003-05-22
JP2003-145298 2003-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/283,946 Continuation US20060120884A1 (en) 2003-05-22 2005-11-22 Hydrostatic stepless transmission

Publications (1)

Publication Number Publication Date
WO2004104448A1 true WO2004104448A1 (en) 2004-12-02

Family

ID=33479644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005833 WO2004104448A1 (en) 2003-05-22 2004-04-30 Hydrostatic stepless speed change device

Country Status (3)

Country Link
US (1) US20060120884A1 (en)
JP (1) JP4324165B2 (en)
WO (1) WO2004104448A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052722A (en) * 2007-08-29 2009-03-12 Yushi Hayashi Stepless reduction gear based on hydraulic pressure
JP2013241984A (en) * 2012-05-18 2013-12-05 Kanzaki Kokyukoki Manufacturing Co Ltd Hydromechanical continuously variable transmission
JP2016217529A (en) * 2015-05-26 2016-12-22 株式会社クボタ Stepless transmission
WO2020250790A1 (en) * 2019-06-11 2020-12-17 株式会社神崎高級工機製作所 Hst and transmission device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834133B2 (en) * 2010-08-05 2014-09-16 Bp Corporation North America Inc. Pumping device for fluids located at the bottom of a drilled well
JP5870388B2 (en) * 2011-05-26 2016-03-01 株式会社 神崎高級工機製作所 Hydraulic continuously variable transmission
JP6074605B2 (en) * 2013-04-02 2017-02-08 株式会社 神崎高級工機製作所 Hydraulic continuously variable transmission
EP2653749B1 (en) * 2012-04-17 2015-06-10 Kanzaki Kokyukoki Mfg. Co., Ltd. Hydrostatic stepless transmission
US10550935B2 (en) * 2016-08-19 2020-02-04 Eaton Intelligent Power Limited Hydraulic mechanical transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784554A (en) * 1951-11-22 1957-03-12 Cambi Idraulici Badalini Spa Variable speed rotary pump and motor hydraulic transmission
DE1038862B (en) * 1955-05-28 1958-09-11 Ingrid Moser Und Wilhelm Wemho Arrangement of the control surfaces in oil-hydraulic gears or oil-hydraulic pumps
JPS61153053A (en) * 1985-04-01 1986-07-11 Honda Motor Co Ltd Speed-change controller for static hydraulic type continuously variable transmission
JPH03244857A (en) * 1989-05-01 1991-10-31 Nagatomo Riyuutai Kikai Kenkyusho:Kk Hydraulic speed change gear
JP2002168320A (en) * 2000-11-30 2002-06-14 Kanzaki Kokyukoki Mfg Co Ltd Power transmission mechanism of vehicle
JP2003014111A (en) * 2001-06-28 2003-01-15 Yanmar Co Ltd Hydraulic continuously variable transmission and transmission system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620130A (en) * 1969-06-30 1971-11-16 Borg Warner Hydrostatic transmission mechanism
US3996841A (en) * 1971-02-23 1976-12-14 Sundstrand Corporation Hydraulic pump or motor
JPS61153057A (en) * 1984-12-26 1986-07-11 Honda Motor Co Ltd Static hydraulic type continuously variable transmission
DE19757027B4 (en) * 1997-12-20 2004-11-04 Fag Kugelfischer Ag Ball bearings for high speeds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784554A (en) * 1951-11-22 1957-03-12 Cambi Idraulici Badalini Spa Variable speed rotary pump and motor hydraulic transmission
DE1038862B (en) * 1955-05-28 1958-09-11 Ingrid Moser Und Wilhelm Wemho Arrangement of the control surfaces in oil-hydraulic gears or oil-hydraulic pumps
JPS61153053A (en) * 1985-04-01 1986-07-11 Honda Motor Co Ltd Speed-change controller for static hydraulic type continuously variable transmission
JPH03244857A (en) * 1989-05-01 1991-10-31 Nagatomo Riyuutai Kikai Kenkyusho:Kk Hydraulic speed change gear
JP2002168320A (en) * 2000-11-30 2002-06-14 Kanzaki Kokyukoki Mfg Co Ltd Power transmission mechanism of vehicle
JP2003014111A (en) * 2001-06-28 2003-01-15 Yanmar Co Ltd Hydraulic continuously variable transmission and transmission system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052722A (en) * 2007-08-29 2009-03-12 Yushi Hayashi Stepless reduction gear based on hydraulic pressure
JP2013241984A (en) * 2012-05-18 2013-12-05 Kanzaki Kokyukoki Manufacturing Co Ltd Hydromechanical continuously variable transmission
JP2016217529A (en) * 2015-05-26 2016-12-22 株式会社クボタ Stepless transmission
WO2020250790A1 (en) * 2019-06-11 2020-12-17 株式会社神崎高級工機製作所 Hst and transmission device
JP7307937B2 (en) 2019-06-11 2023-07-13 株式会社 神崎高級工機製作所 HST and transmission
US11933391B2 (en) 2019-06-11 2024-03-19 Kanzaki Kokyukoki Mfg. Co., Ltd. HST and transmission device

Also Published As

Publication number Publication date
US20060120884A1 (en) 2006-06-08
JPWO2004104448A1 (en) 2006-07-20
JP4324165B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US20060120884A1 (en) Hydrostatic stepless transmission
JP5343037B2 (en) Swash plate type hydraulic machine and hydrostatic transmission
EP1519006B1 (en) Swash plate type hydraulic pump or motor
US6698199B2 (en) Swash plate type hydraulic drive transmission and hydrostatic type continuously variable transmission
EP2735737B1 (en) Variable displacement axial piston device
US6783340B2 (en) Rotor with a hydraulic overbalancing recess
US6743003B2 (en) Hydraulic device with balanced rotor
JP2696520B2 (en) Power transmission device
JPH03163252A (en) Static hydraulic type continuously variable transmission
JP4443795B2 (en) Hydraulic continuously variable transmission and power transmission device
JP2004019835A (en) Hydraulic continuously variable transmission and power transmission apparatus
US6793472B2 (en) Multi-plate hydraulic manifold
JPS61153053A (en) Speed-change controller for static hydraulic type continuously variable transmission
JP2004019836A (en) Hydraulic continuously variable transmission and power transmission apparatus
JP2000310182A (en) Axial piston pump or motor and driving circuit thereof
JP2893553B2 (en) Hydrostatic continuously variable transmission
JPH0212307B2 (en)
JP3441093B2 (en) Hydrostatic continuously variable transmission
JPH10141212A (en) Variable displacement piston pump
JPS63203959A (en) Working oil distributing device for swash type hydraulic device
JPH02102958A (en) Hydraulic device with swash plate plunger
JPWO2019215850A1 (en) Radial piston type hydraulic actuator
JPH02211386A (en) Swash plate type hydraulic device
JPH0333481A (en) Swash plate type piston motor
JPS63140172A (en) Static oil pressure type continuously variable transmission

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506316

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11283946

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 11283946

Country of ref document: US

122 Ep: pct application non-entry in european phase