WO2004099317A1 - Preformed emi/rfi shielding compositions in shaped form - Google Patents

Preformed emi/rfi shielding compositions in shaped form Download PDF

Info

Publication number
WO2004099317A1
WO2004099317A1 PCT/US2004/011269 US2004011269W WO2004099317A1 WO 2004099317 A1 WO2004099317 A1 WO 2004099317A1 US 2004011269 W US2004011269 W US 2004011269W WO 2004099317 A1 WO2004099317 A1 WO 2004099317A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
preformed
weight
preformed composition
curing agent
Prior art date
Application number
PCT/US2004/011269
Other languages
French (fr)
Inventor
Michael A. Cosman
Adrian Balladares
Original Assignee
Prc-Desoto International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prc-Desoto International, Inc. filed Critical Prc-Desoto International, Inc.
Priority to CA2523700A priority Critical patent/CA2523700C/en
Priority to DE602004017446T priority patent/DE602004017446D1/en
Priority to DK04760535T priority patent/DK1618152T3/en
Priority to BRPI0409821A priority patent/BRPI0409821B1/en
Priority to CN2004800114064A priority patent/CN1826382B/en
Priority to JP2006501266A priority patent/JP4989963B2/en
Priority to MXPA05011558A priority patent/MXPA05011558A/en
Priority to EP04760535A priority patent/EP1618152B9/en
Priority to AU2004236652A priority patent/AU2004236652B2/en
Publication of WO2004099317A1 publication Critical patent/WO2004099317A1/en
Priority to IL171550A priority patent/IL171550A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties

Definitions

  • the present disclosure relates to preformed compositions in shaped form and the use of preformed compositions for sealing apertures.
  • the present disclosure further relates to preformed compositions in shaped form exhibiting EMI/RFI shielding effectiveness, and the use of such preformed compositions for sealing apertures.
  • Electromagnetic interference can be defined as undesired conducted or radiated electrical disturbance from an electrical or electronic source, including transients, which can interfere with the operation of other electrical or electronic apparatus. Such disturbance can occur at frequencies throughout the electromagnetic spectrum.
  • Radio frequency interference (“RFI”) is often used interchangeably with electromagnetic interference (“EMI”), although RFI more properly refers to the radio frequency portion of the electromagnetic spectrum usually defined as between 10 kilohertz (KHz) and 100 gigahertz (GHz).
  • the housing can serve not only as a physical barrier to protect the internal electronics from the external environment, but also can serve to shield EMI/RFI radiation. Enclosures having the ability to absorb and/or reflect EMI/RFI energy can be employed to confine the EMI/RFI energy within the source device, as well as to insulate the source device or other external devices from other EMI/RFI sources. To maintain accessibility to the internal components, enclosures can be provided with openable or removable accesses such as doors, hatches, panels, or covers. Gaps typically exist between the accesses and the corresponding mating surfaces associated with the accesses that reduce the efficiency of the electromagnetic shielding by presenting openings through which radiant energy may be emitted. Such gaps also present discontinuities in the surface and ground conductivity of the housing and in some cases, may generate a secondary source of EMI/RFI radiation by functioning as a slot antenna.
  • gaskets and other seals can be used to maintain electrical continuity across the structures, and to exclude environmental degradants such as particulates, moisture, and corrosive species.
  • Such seals can be bonded or mechanically attached to one or both of the mating surfaces and can function to establish a continuous conductive path by conforming to surface irregularities under an applied pressure.
  • EMI/RFI shielding gaskets include extrusion, molding, and die-cutting. Molding includes the compression or injection molding of an uncured sealant or thermoplastic material into a certain configuration which is then cured to a final shape. Die-cutting includes the forming of a gasket from a cured polymeric material which is cut or stamped using a die into a certain configuration.
  • Form-in-place (“FIP") processes are also used for forming EMI/RFI shielding gaskets wherein the FIP process includes the application of a bead of a viscous, curable, electrically-conductive composition in a fluent state to a surface that is subsequently cured-in-place by the application of heat, atmospheric moisture, or ultraviolet radiation to form an electrically-conductive, EMI/RFI shielding gasket.
  • FIP Form-in-place
  • the conductive elements can include, for example, metal or metal- plated particles, fabrics, meshes, fibers, and combinations thereof.
  • the metal can be in the form of, for example, filaments, particles, flakes, or spheres. Examples of metals include copper, nickel, silver, aluminum, tin, and steel.
  • Other conductive materials that can be used to impart EMI/RFI shielding effectiveness to polymer compositions include conductive particles or fibers comprising carbon or graphite.
  • Conductive polymers such as polythiophenes, polypyrroles, polyaniline, poly(p- phenylene) vinylene, polyphenylene sulfide, polyphenylene, and polyacetylene can also be used.
  • Polysulfide polymers are known in the art. The production of polysulfide polymers is characterized by Fettes and Jorzak, Industrial Engineering Chemistry, November 1950, on pages 2,217 - 2,223. The commercial use of polysulfide polymers in the manufacture of sealants for aerospace applications has long been known and commercially used. For example, polysulfide sealants have been used to seal an aircraft body because of the high tensile strength, high tear strength, thermal resistance, and resistance to high ultraviolet light. Polysulfide sealants have been used to seal aircraft fuel tanks because of the resistance to fuel and adhesion upon exposure to fuel.
  • Polysulfide sealants are generally applied to a surface by extrusion using a caulking gun. Such a process can be efficient for permanent panels installed on an airframe. However, extruding a sealant to seal apertures in and/or on an airframe such as those associated with access doors or panels can require a significant amount of additional effort.
  • extruding a sealant to seal apertures in and/or on an airframe such as those associated with access doors or panels can require a significant amount of additional effort.
  • the interior perimeter of the access door opening is masked and the exterior perimeter of the access door is coated with a release agent prior to extruding the sealant to the masked area of the access door opening to avoid sealing an access door shut. The access door is put in place and clamped down to force the excess uncured sealant around the access door.
  • sealant is then cured and the excess sealant is trimmed away.
  • This process is time intensive and can add significant labor to servicing aircraft with many access doors. Some aircraft can have as many as a hundred or more access doors that are used to cover sensitive electronic equipment or fittings that must be periodically accessed and resealed.
  • PR- 2200 Class B electrically conductive sealant is an electrically conductive polythioether sealant that meets the requirements of MMS 327 (Boeing St. Louis Military Material Specification) test methods.
  • MMS 327 Boeing St. Louis Military Material Specification
  • PERMAPOL P-3.1 polythioether polymer
  • commercially available sealants such as exemplified by the PR-2200 product are not provided as a preformed composition.
  • preformed compositions in shaped form comprising a base composition comprising at least one sulfur-containing polymer, and at least one electrically conductive filler; and a curing agent composition; wherein the preformed composition is capable of shielding EMI/RFI radiation, are provided.
  • methods of sealing an aperture to provide EMI/RFI shielding effectiveness comprising applying a preformed composition in shaped-form comprising at least one sulfur-containing polymer, and at least one electrically conductive filler to a surface associated with an aperture; and curing the preformed composition to seal the aperture and provide EMI/RFI shielding effectiveness, are disclosed.
  • Additional embodiments of the disclosure are set forth in the description which follows, or may be learned by practice of the embodiments of the present disclosure. Description of Various Embodiments
  • preformed compositions in shaped form suitable for sealing apertures comprises at least one sulfur-containing polymer, and at least one electrically conductive filler.
  • preformed refers to a composition that can be prepared into a particular shape for ease of packaging, storage, and/or application.
  • a composition that is preformed can be reshaped into any shape, either intentionally, or as a result of shipping and/or handling.
  • shaped form refers to a configuration such that the thickness of the preformed composition is substantially less than the lateral dimension and includes tapes, sheets, and cut-out or gasket forms.
  • the "shaped form” can be, for example, in the form of a tape meaning a narrow shape, strip, or band that can be stored as a roll, coil, or strip.
  • a "shaped form” can also be die-cut to the dimensions of an aperture to be sealed.
  • sealant refers to compositions that have the ability to resist atmospheric conditions such as moisture and temperature and at least partially block the transmission of materials such as water, fuel, and other liquids and gasses. Sealants often have adhesive properties, but are not simply adhesives that do not have the blocking properties of a sealant.
  • elongated aperture refers to an opening in which the length is at least three-times the width.
  • Preformed sealant compositions of the present disclosure can be prepared by blending an electrically conductive base composition, and a curing agent composition.
  • a base composition and a curing agent composition can be prepared separately, blended to form a sealant composition, and preformed to a particular shape.
  • a conductive base composition can comprise, for example, at least one sulfur- containing polymer, at least one plasticizer, at least one adhesion promoter, at least one corrosion inhibitor, at least one electrically non-conductive filler, at least one electrically conductive filler, and at least one adhesion promoter.
  • a curing agent composition can comprise, for example, at least one curing agent, at least one plasticizer, at least one electrically non-conductive filler, and at least one cure accelerator.
  • 5 to 20 parts by weight of a curing agent composition are blended with 100 parts by weight of a base composition, and in certain embodiments, 8 to 16 parts by weight of curing agent composition are blended with 100 parts by weight of a base composition to form an electrically conductive sealant composition.
  • two-component curable compositions are preferred to the one-component curable compositions because the two-component compositions provide the best rheology for application and exhibit desirable physical and chemical properties in the resultant cured composition.
  • the two components are referred to as the base composition, and the curing agent composition.
  • the base composition can comprise polysulfide polymers, polythioether polymers, oxidizing agents, additives, fillers, plasticizers, organic solvents, adhesion promoters, corrosion inhibitors, and combinations thereof.
  • the curing agent composition can comprise curing agents, cure accelerators, cure retardants, plasticizers, additives, fillers, and combinations thereof.
  • sulfur-containing polymers useful in the practice of the present disclosure include polysulfide polymers that contain multiple sulfide groups, i.e., -S- in the polymer backbone and/or in the terminal or pendent positions on the polymer chain.
  • polysulfide polymers that contain multiple sulfide groups, i.e., -S- in the polymer backbone and/or in the terminal or pendent positions on the polymer chain.
  • Such polymers are described in U.S. Patent No. 2,466,963 wherein the disclosed polymers have multiple -S-S- linkages in the polymer backbone.
  • Other useful polysulfide polymers are those in which the polysulfide linkage is replaced with a polythioether linkage, i.e.,
  • n can be an integer ranging from 8 to 200 as described in U.S. Patent No. 4,366,307.
  • the polysulfide polymers can be terminated with non-reactive groups such as alkyl, although in certain embodiments, the polysulfide polymers contain reactive groups in the terminal or pendent positions. Typical reactive groups are thiol, hydroxyl, amino, and vinyl.
  • Such polysulfide polymers are described in the aforementioned U.S. Patent No. 2,466,963, U.S. Patent No. 4,366,307, and U.S. Patent No. 6,372,849, each of which is incorporated herein by reference.
  • Such polysulfide polymers can be cured with curing agents that are reactive with the reactive groups of the polysulfide polymer.
  • Sulfur-containing polymers of the present disclosure can have number average molecular weights ranging from 500 to 8,000 grams per mole, and in certain embodiments, from 1,000 to 5,000 grams per mole, as determined by gel permeation chromatography using a polystyrene standard.
  • the sulfur-containing polymers can have average functionalities ranging from 2.05 to 3.0, and in certain embodiments ranging from 2.1 to 2.6.
  • a specific average functionality can be achieved by suitable selection of reactive components.
  • Examples of sulfur-containing polymers include those available from PRC-DeSoto International, Inc. under the trademark PERMAPOL, specifically, PERMAPOL P-3.1 or PERMAPOL P-3, and from Akros Chemicals, such as THIOPLAST G4.
  • a sulfur-containing polymer can be present in the conductive base composition in an amount ranging from 10% to 40% by weight of the total weight of the conductive base composition, and in certain embodiments can range from 20% to 30% by weight.
  • the amount of polysulfide polymer and polythioether polymer can be similar.
  • the amount of polysulfide polymer and the amount of polythioether polymer in abase composition can each range from 10% by weight to 15% by weight of the total weight of the conductive base composition.
  • compositions of the present disclosure comprise at least one curing agent for curing the at least one sulfur-containmg polymer.
  • curing agent refers to any material that can be added to a sulfur-containing polymer to accelerate the curing or gelling of the sulfur-containing polymer. Curing agents are also known as accelerators, catalysts or cure pastes.
  • the curing agent is reactive at a temperature ranging from 10 °C to 80 °C.
  • the term "reactive" means capable of chemical reaction and includes any level of reaction from partial to complete reaction of a reactant.
  • a curing agent is reactive when it provides for cross-linking or gelling of a sulfur-containing polymer.
  • preformed compositions comprise at least one curing agent that contains oxidizing agents capable of oxidizing terminal mercaptan groups of the sulfur-containing polymer to form disulfide bonds.
  • oxidizing agents include, for example, lead dioxide, manganese dioxide, calcium dioxide, sodium perborate monohydrate, calcium peroxide, zinc peroxide, and dichromate.
  • the amount of curing agent in a curing agent composition can range from 25% by weight to 75% by weight of the total weight of the curing agent composition.
  • Additives such as sodium stearate can also be included to improve the stability of the accelerator.
  • a curing agent composition can comprise an amount of cure accelerator ranging from 0.1% to 1.5% by weight based on the total weight of the curing agent composition.
  • preformed compositions of the present disclosure can comprise at least one curing agent containing at least one reactive functional group that is reactive with functional groups attached to the sulfur- containing polymer.
  • Useful curing agents containing at least one reactive functional group that is reactive with functional groups attached to the sulfur-containing polymer include polythiols, such as polythioethers, for curing vinyl-terminated polymers; polyisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, and mixtures and isocyanurate derivatives thereof for curing thiol-, hydroxyl- and amino- terminated polymers; and, polyepoxides for curing amine- and thiol-terminated polymers.
  • polyepoxides examples include hydantoin diepoxide, Bisphenol-A epoxides, Bisphenol-F epoxides, Novolac-type epoxides, aliphatic polyepoxides, and epoxidized unsaturated resins, and phenolic resins.
  • polyepoxide refers to a material having a 1,2-epoxy equivalent greater than one and includes monomers, oligomers, and polymers.
  • a preformed sealant composition can comprise at least one compound to modify the rate of cure.
  • cure accelerants such as dipentamethylene/thiuram/polysulfide mixture can be included in a sealant composition to accelerate the rate of cure, and/or at least one cure retardant such as stearic acid can be added to retard the rate of cure and thereby extend the work life of a sealant composition during application.
  • a curing agent composition can comprise an amount of accelerant ranging from 1% to 7% by weight, and or an amount of cure retardant ranging from 0.1% to 1% by weight, based on the total weight of the curing agent composition.
  • a curing agent composition can comprise an amount of material capable of at least partially removing moisture ranging from 0.1% to 1.5% by weight, based on the total weight of the curing agent composition.
  • preformed compositions of the present disclosure can comprise fillers.
  • fillers refers to a non-reactive component in the preformed composition that provides a desired property, such as, for example, electrical conductivity, density, viscosity, mechanical strength, EMI/RFI shielding effectiveness, and the like.
  • Examples of electrically non-conductive fillers include materials such as, but not limited to, calcium carbonate, mica, polyamide, fumed silica, molecular sieve powder, microspheres, titanium dioxide, chalks, alkaline blacks, cellulose, zinc sulfide, heavy spar, alkaline earth oxides, alkaline earth hydroxides, and the like. Fillers also include high band gap materials such as zinc sulfide and inorganic barium compounds.
  • an electrically conductive base composition can comprise an amount of electrically non-conductive filler ranging from 2% to 10% by weight, based on the total weight of the base composition, and in certain embodiments, can range from 3% to 7% by weight.
  • a curing agent composition can comprise an amount of electrically non-conductive filler ranging from less than 6 percent by weight, and in certain embodiments ranging from 0.5% to 4% by weight, based on the total weight of the curing agent composition.
  • electrically conductive fillers include electrically conductive noble metal-based fillers such as pure silver; noble metal-plated noble metals such as silver-plated gold; noble metal-plated non-noble metals such as silver plated cooper, nickel or aluminum, for example, silver-plated aluminum core particles or platinum-plated copper particles; noble-metal plated glass, plastic or ceramics such as silver-plated glass microspheres, noble-metal plated aluminum or noble-metal plated plastic microspheres; noble-metal plated mica; and other such noble-metal conductive fillers.
  • Non-noble metal-based materials can also be used and include, for example, non-noble metal-plated non- noble metals such as copper-coated iron particles or nickel plated copper; non-noble metals, e.g., copper, aluminum, nickel, cobalt; non-noble-metal-plated-non metals, e.g., nickel-plated graphite and non-metal materials such as carbon black and graphite.
  • Combinations of electrically conductive fillers can also be used to meet the desired conductivity, EMI RFI shielding effectiveness, hardness, and other properties suitable for a particular application.
  • the shape and size of the electrically conductive fillers used in the preformed compositions of the present disclosure can be any appropriate shape and size to impart EMI/RFI shielding effectiveness to the cured preformed composition.
  • fillers can be of any shape that is generally used in the manufacture of electrically conductive fillers, including spherical, flake, platelet, particle, powder, irregular, fiber, and the like.
  • a base composition can comprise Ni-coated graphite as a particle, powder or flake.
  • the amount of Ni-coated graphite in a base composition can range from 40% to 80% by weight, and in certain embodiments can range from 50% to 70% by weight, based on the total weight of the base composition, h certain embodiments, an electrically conductive filler can comprise Ni fiber.
  • Ni fiber can have a diameter ranging from 10 ⁇ m to 50 ⁇ m and have a length ranging from 250 ⁇ m to 750 ⁇ m.
  • a base composition can comprise, for example, an amount of Ni fiber ranging from 2% to 10% by weight, and in certain embodiments, from 4% to 8% by weight, based on the total weight of the base composition.
  • Carbon fibers can also be used to impart electrical conductivity to preformed compositions of the present disclosure.
  • carbon microfibers, nanotubes or carbon fibrils having an outer diameter of less than 0.1 micron to tens of nanometers can be used as electrically conductive fillers.
  • An example of graphitized carbon fiber suitable for conductive preformed compositions of the present disclosure include PANEX30MF (Zoltek Companies, Inc., St. Louis, Mo.), a 0.921 micron diameter round fiber having an electrical resistivity of 0.00055 ⁇ -cm.
  • the average particle size of an electrically conductive filler can be within a range useful for imparting electrical conductivity to a polymer-based composition.
  • the particle size of the one or more fillers can range from 0.25 microns to 250 microns, in certain embodiments can range from 0.25 microns to 75 microns, and in certain embodiments can range from 0.25 microns to 60 microns.
  • preformed composition of the present disclosure can comprise Ketjen Black EC-600 JD (Akzo Nobel, Inc., Chicago, IL), an electrically conductive carbon black characterized by an iodine absorption of 1000-11500 mg/g (JO/84-5 test method), and a pore volume of 480-510 cm 3 /100 gm (DBP absorption, KTM 81-3504).
  • an electrically conductive carbon black filler is Black Pearls 2000 (Cabot Corporation, Boston, MA).
  • electrically conductive polymers can be used to impart or modify the electrical conductivity of preformed compositions of the present disclosure.
  • Polymers having sulfur atoms incorporated into aromatic groups or adjacent to double bonds, such as in polyphenylene sulfide, and polythiophene, are known to be electrically conductive.
  • Other electrically conductive polymers include, for example, polypyrroles, polyaniline, poly(p-phenylene) vinylene, and polyacetylene.
  • the sulfur-containing polymers forming a base composition can be polysulfides and/or polythioethers.
  • the sulfur- containing polymers can comprise aromatic sulfur groups and sulfur atoms adjacent to conjugated double bonds such as vinylcyclohexene-dimercaptodioxaoctane groups, to enhance the electrical conductivity of the preformed compositions of the present disclosure.
  • Preformed sealant compositions of the present disclosure can comprise more than one electrically conductive filler, and the more than one electrically conductive filler can be of the same or different materials and or shapes.
  • a preformed sealant composition can comprise electrically conductive Ni fibers, and electrically conductive Ni-coated graphite in the form of powder, particles or flakes.
  • the amount and type of electrically conductive filler can be selected to produce a preformed sealant composition which, when cured, exhibits a sheet resistance (four-point resistance) of less than 0.50 ⁇ / , and in certain embodiments, a sheet resistance less than 0.15 ⁇ / .
  • the amount and type of filler can also be selected to provide effective EMI/RFI shielding over a frequency range of from 1 MHz to 18 GHz for an aperture sealed using a preformed sealant composition of the present disclosure.
  • Galvanic corrosion of dissimilar metal surfaces and the conductive compositions of the present disclosure can be minimized or prevented by adding corrosion inhibitors to the composition, and/or by selecting appropriate conductive fillers.
  • corrosion inhibitors include strontium chromate, calcium chromate, magnesium chromate, and combinations thereof.
  • U.S. Patent No. 5,284,888 and U.S. Patent No. 5,270,364 disclose the use of aromatic triazoles to inhibit corrosion of aluminum and steel surfaces.
  • a sacrificial oxygen scavenger such as Zn can be used as a corrosion inhibitor.
  • the corrosion inhibitor can comprise less than 10% by weight of the total weight of the electrically conductive preformed composition.
  • the corrosion inhibitor can comprise an amount ranging from 2% by weight to 8% by weight of the total weight of the electrically conductive preformed composition. Corrosion between dissimilar metal surfaces can also be minimized or prevented by the selection of the type, amount, and properties of the conductive fillers comprising the preformed composition.
  • preformed compositions of the present disclosure comprise plasticizers such as phthalate esters, chlorinated paraffins, hydrogenated terphenyls, partially hydrogenated terphenyls, and the like.
  • a preformed composition can comprise more than one plasticizer.
  • the amount of plasticizer in the base composition can range from 0.1% to 5% by weight based on the total weight of the base composition, and in certain embodiments, can range from 0.5% to 3% by weight.
  • the amount of plasticizer in the curing agent composition can range from 20% to 60% by weight of the total weight of the curing agent composition, and in certain embodiments, can range from 30% to 40% by weight.
  • preformed compositions further comprise an organic solvent, such as a ketone or an alcohol, for example methyl ethyl ketone, and isopropyl alcohol, or a combination thereof.
  • preformed compositions of the present disclosure comprise adhesion promoters such as, for example, phenolic resin, silane adhesion promoter, and combinations thereof. Adhesion promoters can facilitate adhesion of the polymeric components of the preformed sealant composition to a substrate, as well as to the electrically non-conductive and electrically conductive fillers in the sealant composition.
  • a conductive base composition can comprise form 0.15% to 1.5% by weight of a phenolic adhesion promoter, from 0.05% to 0.2% by weight of a mercapto-silane adhesion promoter and from 0.05% to 0.2% by weight of an epoxy-silane adhesion promoter.
  • the total amount of adhesion promoter in the base composition can range from 0.5% to 7% by weight, based on the total weight of the base composition.
  • a base composition can be prepared by batch mixing at least one sulfur-containing polymer, additives, and/or fillers in a double planetary mixer under vacuum.
  • suitable mixing equipment includes a kneader extruder, sigma mixer, or double "A" arm mixer.
  • a base composition can be prepared by mixing at least one sulfur-containing polymer, plasticizer, and phenolic adhesion promoter. After the mixture is thoroughly blended, additional constituents can be separately added and mixed using a high shear grinding blade, such as a Cowless blade, until cut it.
  • Examples of additional constituents that can be added to a base composition include corrosion inhibitors, non-conductive fillers, electrically conductive fiber, electrically conductive flake, and silane adhesion promoters.
  • the mixture can then be mixed for an additional 15 to 20 minutes under a vacuum of 27 inches of mercury or greater to reduce or remove entrapped air and/or gases.
  • the base composition can then extruded from the mixer using a high-pressure piston ram.
  • a curing agent composition can be prepared by batch mixing a curing agent, additives, and fillers.
  • 75% of the total plasticizer such as partially hydrogenated terphenyl and an accelerant such as a dipentamethylene/thiuram/polysulfide mixture are mixed in a single-shaft anchor mixer.
  • Molecular sieve powder is then added and mixed for 2 to 3 minutes.
  • Fifty percent of the total manganese dioxide is then mixed until cut in.
  • Stearic acid, sodium stearate, and the remaining plasticizer are then mixed until cut in followed by the remaining 50% of the manganese dioxide which is mixed until cut in. Fumed silica is then mixed until cut in. If the mixture is too thick a surfactant may be added to increase wetting.
  • the curing agent composition is then mixed for 2 to 3 minutes, passed over a three-roll paint mill to achieve a grind, and returned to the single-shaft anchor mixer and mixed for an additional 5 to 10 minutes.
  • the curing agent composition can then be removed from the mixer with a piston ram and placed into storage containers and aged for at least 5 days prior to combining with a base composition.
  • a base composition and a curing agent composition are mixed together to form a preformed sealant composition.
  • a base composition and a curing agent composition can be combined in the desired ratio using meter mix equipment fitted with a dynamic mix head. Pressure from the meter mix equipment forces the base and curing agent compositions through the dynamic mix head and an extrusion die.
  • a preformed composition is extruded into a laminar form such as a tape or sheet.
  • a preformed composition in sheet form can be cut to any desired shape such as defined by the dimensions of an aperture to be sealed.
  • the shaped form can be coiled, with release paper separating each ring for packaging purposes.
  • the shaped form can be refrigerated by placing the shaped form on a bed of dry ice and placing another layer of dry ice over the shaped form.
  • the shaped form can be refrigerated immediately after mixing the base composition and the curing agent composition.
  • the shaped form can remain exposed to the dry ice for 5 to 15 minutes and then placed at a storage temperature of -40°C or lower.
  • the term "refrigerated” refers to reducing the temperature of the preformed composition so as to retard and/or stop the curing of the preformed composition.
  • the preformed composition in shaped form is refrigerated below -40°C.
  • the temperature of the preformed composition is raised to a use temperature ranging from 4°C to 32°C (40°F to 90°F) prior to application to one or more surfaces associated with the aperture. This is done such that the preformed composition reaches use temperature for no more than 10 minutes prior to application.
  • the preformed composition in shaped form can be used to seal an aperture between a removable access panel and a surface adjacent to the perimeter of an opening in an aircraft fuselage.
  • Adhesion promoter is first brushed on the perimeter of the access panel opening after the surface has been cleaned with a cleaning solvent such as DESOCLEAN (PRC-DeSoto International, Inc.).
  • the surface of the access panel is then cleaned and coated with a release agent prior to applying the preformed composition.
  • the preformed composition in shaped form is manually applied to the surface adjacent to the perimeter of the access panel opening, to the surface adjacent to the perimeter of the access panel, or to both.
  • the access panel is then positioned against the surface adjacent to the opening and clamped down to force the excess preformed composition around the edges of the access panel.
  • Excess preformed composition is easily removed by using, for example, a flat surface.
  • Excess preformed composition can be removed either prior to curing or after the preformed composition has cured, and preferably after the preformed composition cures.
  • Example 1 provides an electrically conductive preformed composition in shaped form exhibiting EMI/RFI shielding effectiveness.
  • the following materials were mixed in the proportions according to Table I to provide an electrically conductive base composition: PERMAPOL P 3.1 polythioether polymer from PRC- DeSoto International, Inc., THIOPLAST G4 polysulfide polymer from Akcros Chemicals (New Brunswick, NJ), phenolic resin adhesion promoter from PRC- DeSoto International, Lie, and HB-40 modified polyphenyl plasticizer from Solutia, Inc. (St. Louis, Missouri).
  • a curing agent composition manganese dioxide from EaglePicher (Phoenix, AZ), partially hydrogenated terphenyl, stearic acid, fumed silica, sodium stearate from Witco Chemicals, molecular sieve powder to remove excess moisture from the curing agent, and dipentamethylene/thiuram/polysulfide mixture from Akrochem Corporation (Akron, OH) to accelerate the cure.
  • the curing agent composition was allowed to set or age for at least 5 days before combining with the base composition.
  • the surface adjacent to the perimeter of an aircraft access panel was first coated with low VOC epoxy primer according to specification MMS-423 and cured. The surface was cleaned and then coated with adhesion promoters PR- 148 or PR- 184 from PRC-DeSoto International, Inc.
  • the access panel was made from titanium alloy conforming to AMS-T-9046. After the refrigerated electrically conductive preformed composition equilibrated to use temperature, 4 °C to 32 °C (40 °F to 90 °F), the electrically conductive preformed composition in tape form was manually applied to the surface adjacent to the perimeter of the access panel.
  • the access panel was put in place to cover the access opening and clamped down, forcing the excess electrically conductive preformed composition around the edges of the access panel to fill the aperture. Excess electrically conductive preformed composition was easily removed. After 3 to 4 hours at a temperature of 4°C to 32°C (40°F to 90°F), a tight seal, resistant to moisture and aircraft fuel, resulted.
  • the cured sealant exhibited a sheet resistance (four-point probe) of less than 0.50 ⁇ / .
  • Seals to apertures between an aluminum test fixture and a carbon/epoxy lid exhibited shielding effectiveness from 1 MHz to 200 MHz when tested in an anechoic chamber.
  • sealed apertures also exhibited shielding effectiveness from 0.1 GHz to 18 GHz when tested in a stirred mode chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Electrically conductive preformed compositions comprising sulfur-containing polymers in shaped form and the use of preformed compositions in shaped form to seal apertures are disclosed. The preformed compositions can be used to seal an aperture having EMI/RFI shielding effectiveness.

Description

PREFORMED EMI/RFI SHIELDING COMPOSITIONS IN SHAPED FORM Field
[001] The present disclosure relates to preformed compositions in shaped form and the use of preformed compositions for sealing apertures. The present disclosure further relates to preformed compositions in shaped form exhibiting EMI/RFI shielding effectiveness, and the use of such preformed compositions for sealing apertures. Introduction
[002] Electromagnetic interference can be defined as undesired conducted or radiated electrical disturbance from an electrical or electronic source, including transients, which can interfere with the operation of other electrical or electronic apparatus. Such disturbance can occur at frequencies throughout the electromagnetic spectrum. Radio frequency interference ("RFI") is often used interchangeably with electromagnetic interference ("EMI"), although RFI more properly refers to the radio frequency portion of the electromagnetic spectrum usually defined as between 10 kilohertz (KHz) and 100 gigahertz (GHz).
[003] Electronic equipment is typically enclosed in a housing. The housing can serve not only as a physical barrier to protect the internal electronics from the external environment, but also can serve to shield EMI/RFI radiation. Enclosures having the ability to absorb and/or reflect EMI/RFI energy can be employed to confine the EMI/RFI energy within the source device, as well as to insulate the source device or other external devices from other EMI/RFI sources. To maintain accessibility to the internal components, enclosures can be provided with openable or removable accesses such as doors, hatches, panels, or covers. Gaps typically exist between the accesses and the corresponding mating surfaces associated with the accesses that reduce the efficiency of the electromagnetic shielding by presenting openings through which radiant energy may be emitted. Such gaps also present discontinuities in the surface and ground conductivity of the housing and in some cases, may generate a secondary source of EMI/RFI radiation by functioning as a slot antenna.
[004] For filing gaps between the mating surfaces of the housing and removable accesses, gaskets and other seals can be used to maintain electrical continuity across the structures, and to exclude environmental degradants such as particulates, moisture, and corrosive species. Such seals can be bonded or mechanically attached to one or both of the mating surfaces and can function to establish a continuous conductive path by conforming to surface irregularities under an applied pressure.
[005] Conventional processes for manufacturing EMI/RFI shielding gaskets include extrusion, molding, and die-cutting. Molding includes the compression or injection molding of an uncured sealant or thermoplastic material into a certain configuration which is then cured to a final shape. Die-cutting includes the forming of a gasket from a cured polymeric material which is cut or stamped using a die into a certain configuration. Form-in-place ("FIP") processes are also used for forming EMI/RFI shielding gaskets wherein the FIP process includes the application of a bead of a viscous, curable, electrically-conductive composition in a fluent state to a surface that is subsequently cured-in-place by the application of heat, atmospheric moisture, or ultraviolet radiation to form an electrically-conductive, EMI/RFI shielding gasket.
[006] Electrical conductivity and EMI/RFI shielding effectiveness can be imparted to polymeric gaskets by incorporating conductive materials within the polymer matrix. The conductive elements can include, for example, metal or metal- plated particles, fabrics, meshes, fibers, and combinations thereof. The metal can be in the form of, for example, filaments, particles, flakes, or spheres. Examples of metals include copper, nickel, silver, aluminum, tin, and steel. Other conductive materials that can be used to impart EMI/RFI shielding effectiveness to polymer compositions include conductive particles or fibers comprising carbon or graphite. Conductive polymers such as polythiophenes, polypyrroles, polyaniline, poly(p- phenylene) vinylene, polyphenylene sulfide, polyphenylene, and polyacetylene can also be used.
[007] In addition to providing continuous electrical conductivity and EMI/RFI shielding effectiveness, in certain applications it is desirable that gaskets or seals to surfaces exposed to the environment, such as in aviation and aerospace vehicles, not lead to corrosion of the metal surfaces. When dissimilar metals and/or conductive composite materials are joined in the presence of an electrolyte, a galvanic potential is established at the interface between the dissimilar conductors. When the interfacial seal is exposed to the environment, particularly under severe environmental conditions such as salt fog or salt fog containing a high concentration of SO2, corrosion of the least noble of the conductive surfaces can occur. Corrosion may lead to a degradation in the EMI/RFI shielding effectiveness of the seal. Mechanisms other than galvanic potentials, for example, crevice corrosion, may also compromise the electrical and mechanical integrity of the enclosure.
[008] Polysulfide polymers are known in the art. The production of polysulfide polymers is characterized by Fettes and Jorzak, Industrial Engineering Chemistry, November 1950, on pages 2,217 - 2,223. The commercial use of polysulfide polymers in the manufacture of sealants for aerospace applications has long been known and commercially used. For example, polysulfide sealants have been used to seal an aircraft body because of the high tensile strength, high tear strength, thermal resistance, and resistance to high ultraviolet light. Polysulfide sealants have been used to seal aircraft fuel tanks because of the resistance to fuel and adhesion upon exposure to fuel.
[009] Polysulfide sealants are generally applied to a surface by extrusion using a caulking gun. Such a process can be efficient for permanent panels installed on an airframe. However, extruding a sealant to seal apertures in and/or on an airframe such as those associated with access doors or panels can require a significant amount of additional effort. To extrude an uncured sealant, the interior perimeter of the access door opening is masked and the exterior perimeter of the access door is coated with a release agent prior to extruding the sealant to the masked area of the access door opening to avoid sealing an access door shut. The access door is put in place and clamped down to force the excess uncured sealant around the access door. The sealant is then cured and the excess sealant is trimmed away. This process is time intensive and can add significant labor to servicing aircraft with many access doors. Some aircraft can have as many as a hundred or more access doors that are used to cover sensitive electronic equipment or fittings that must be periodically accessed and resealed.
[010] Accordingly, it is desirable to provide a method for sealing access doors, for example those in an airframe of an aviation or aerospace vehicle, that does not require masking, reduces trimming and/or is not as labor and time intensive as the conventional extrusion method for sealing the access doors.
[Oil] Electrically conductive sealants that exhibit EMI/RFI shielding effectiveness are commercially available. For example, PRC-DeSoto International, Inc. (Glendale, CA) manufactures several class B electrically conductive sealants specifically developed for aviation and aerospace applications. For example, PR- 2200 Class B electrically conductive sealant is an electrically conductive polythioether sealant that meets the requirements of MMS 327 (Boeing St. Louis Military Material Specification) test methods. These two-part, nickel-filled sealants comprise a polythioether polymer, PERMAPOL P-3.1, and are not corrosive when used on aluminum alloys or between dissimilar metals. However, commercially available sealants such as exemplified by the PR-2200 product are not provided as a preformed composition.
[012] Therefore, it is further desirable to provide a method for sealing access doors to provide effective EMI RFI shielding and cause minimal corrosion to conductive surfaces in environments encountered in aviation and aerospace applications that does not require masking, reduces trimming and/or is not as labor and time intensive as is the conventional extrusion method for sealing the access doors. Summary
[013] In accordance with embodiments of the present disclosure, preformed compositions in shaped form comprising a base composition comprising at least one sulfur-containing polymer, and at least one electrically conductive filler; and a curing agent composition; wherein the preformed composition is capable of shielding EMI/RFI radiation, are provided.
[014] In accordance with embodiments of the present disclosure, methods of sealing an aperture to provide EMI/RFI shielding effectiveness comprising applying a preformed composition in shaped-form comprising at least one sulfur-containing polymer, and at least one electrically conductive filler to a surface associated with an aperture; and curing the preformed composition to seal the aperture and provide EMI/RFI shielding effectiveness, are disclosed. [015] Additional embodiments of the disclosure are set forth in the description which follows, or may be learned by practice of the embodiments of the present disclosure. Description of Various Embodiments
[016] In certain embodiments of the present disclosure, preformed compositions in shaped form suitable for sealing apertures, for example, elongated apertures in or on the body of an aircraft, comprises at least one sulfur-containing polymer, and at least one electrically conductive filler. The term "preformed" refers to a composition that can be prepared into a particular shape for ease of packaging, storage, and/or application. A composition that is preformed can be reshaped into any shape, either intentionally, or as a result of shipping and/or handling. The term "shaped form" refers to a configuration such that the thickness of the preformed composition is substantially less than the lateral dimension and includes tapes, sheets, and cut-out or gasket forms. The "shaped form" can be, for example, in the form of a tape meaning a narrow shape, strip, or band that can be stored as a roll, coil, or strip. A "shaped form" can also be die-cut to the dimensions of an aperture to be sealed.
[017] The term "sealant," "sealing," or "seal" as used herein refers to compositions that have the ability to resist atmospheric conditions such as moisture and temperature and at least partially block the transmission of materials such as water, fuel, and other liquids and gasses. Sealants often have adhesive properties, but are not simply adhesives that do not have the blocking properties of a sealant. The term "elongated aperture" as used herein refers to an opening in which the length is at least three-times the width.
[018] Preformed sealant compositions of the present disclosure can be prepared by blending an electrically conductive base composition, and a curing agent composition. A base composition and a curing agent composition can be prepared separately, blended to form a sealant composition, and preformed to a particular shape. A conductive base composition can comprise, for example, at least one sulfur- containing polymer, at least one plasticizer, at least one adhesion promoter, at least one corrosion inhibitor, at least one electrically non-conductive filler, at least one electrically conductive filler, and at least one adhesion promoter. A curing agent composition can comprise, for example, at least one curing agent, at least one plasticizer, at least one electrically non-conductive filler, and at least one cure accelerator. In certain embodiments, 5 to 20 parts by weight of a curing agent composition are blended with 100 parts by weight of a base composition, and in certain embodiments, 8 to 16 parts by weight of curing agent composition are blended with 100 parts by weight of a base composition to form an electrically conductive sealant composition.
[019] In certain embodiments, two-component curable compositions are preferred to the one-component curable compositions because the two-component compositions provide the best rheology for application and exhibit desirable physical and chemical properties in the resultant cured composition. As used herein, the two components are referred to as the base composition, and the curing agent composition. In certain embodiments, the base composition can comprise polysulfide polymers, polythioether polymers, oxidizing agents, additives, fillers, plasticizers, organic solvents, adhesion promoters, corrosion inhibitors, and combinations thereof. In certain embodiments, the curing agent composition can comprise curing agents, cure accelerators, cure retardants, plasticizers, additives, fillers, and combinations thereof.
[020] In certain embodiments, sulfur-containing polymers useful in the practice of the present disclosure include polysulfide polymers that contain multiple sulfide groups, i.e., -S- in the polymer backbone and/or in the terminal or pendent positions on the polymer chain. Such polymers are described in U.S. Patent No. 2,466,963 wherein the disclosed polymers have multiple -S-S- linkages in the polymer backbone. Other useful polysulfide polymers are those in which the polysulfide linkage is replaced with a polythioether linkage, i.e.,
- [ - CH2- CH2- S - CH2- CH2- ]n- where n can be an integer ranging from 8 to 200 as described in U.S. Patent No. 4,366,307. The polysulfide polymers can be terminated with non-reactive groups such as alkyl, although in certain embodiments, the polysulfide polymers contain reactive groups in the terminal or pendent positions. Typical reactive groups are thiol, hydroxyl, amino, and vinyl. Such polysulfide polymers are described in the aforementioned U.S. Patent No. 2,466,963, U.S. Patent No. 4,366,307, and U.S. Patent No. 6,372,849, each of which is incorporated herein by reference. Such polysulfide polymers can be cured with curing agents that are reactive with the reactive groups of the polysulfide polymer.
[021 ] Sulfur-containing polymers of the present disclosure can have number average molecular weights ranging from 500 to 8,000 grams per mole, and in certain embodiments, from 1,000 to 5,000 grams per mole, as determined by gel permeation chromatography using a polystyrene standard. For sulfur-containing polymers that contain reactive functional groups, the sulfur-containing polymers can have average functionalities ranging from 2.05 to 3.0, and in certain embodiments ranging from 2.1 to 2.6. A specific average functionality can be achieved by suitable selection of reactive components. Examples of sulfur-containing polymers include those available from PRC-DeSoto International, Inc. under the trademark PERMAPOL, specifically, PERMAPOL P-3.1 or PERMAPOL P-3, and from Akros Chemicals, such as THIOPLAST G4.
[022] A sulfur-containing polymer can be present in the conductive base composition in an amount ranging from 10% to 40% by weight of the total weight of the conductive base composition, and in certain embodiments can range from 20% to 30% by weight. In certain embodiments, wherein a sulfur-containing polymer comprises a combination of a polysulfide polymer and a polythioether polymer, the amount of polysulfide polymer and polythioether polymer can be similar. For example, the amount of polysulfide polymer and the amount of polythioether polymer in abase composition can each range from 10% by weight to 15% by weight of the total weight of the conductive base composition.
[023] Preformed compositions of the present disclosure comprise at least one curing agent for curing the at least one sulfur-containmg polymer. The term "curing agent" refers to any material that can be added to a sulfur-containing polymer to accelerate the curing or gelling of the sulfur-containing polymer. Curing agents are also known as accelerators, catalysts or cure pastes. In certain embodiments, the curing agent is reactive at a temperature ranging from 10 °C to 80 °C. The term "reactive" means capable of chemical reaction and includes any level of reaction from partial to complete reaction of a reactant. In certain embodiments, a curing agent is reactive when it provides for cross-linking or gelling of a sulfur-containing polymer. [024] In certain embodiments, preformed compositions comprise at least one curing agent that contains oxidizing agents capable of oxidizing terminal mercaptan groups of the sulfur-containing polymer to form disulfide bonds. Useful oxidizing agents include, for example, lead dioxide, manganese dioxide, calcium dioxide, sodium perborate monohydrate, calcium peroxide, zinc peroxide, and dichromate. The amount of curing agent in a curing agent composition can range from 25% by weight to 75% by weight of the total weight of the curing agent composition. Additives such as sodium stearate can also be included to improve the stability of the accelerator. For example, a curing agent composition can comprise an amount of cure accelerator ranging from 0.1% to 1.5% by weight based on the total weight of the curing agent composition.
[025] In certain embodiments, preformed compositions of the present disclosure can comprise at least one curing agent containing at least one reactive functional group that is reactive with functional groups attached to the sulfur- containing polymer. Useful curing agents containing at least one reactive functional group that is reactive with functional groups attached to the sulfur-containing polymer include polythiols, such as polythioethers, for curing vinyl-terminated polymers; polyisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, and mixtures and isocyanurate derivatives thereof for curing thiol-, hydroxyl- and amino- terminated polymers; and, polyepoxides for curing amine- and thiol-terminated polymers. Examples of polyepoxides include hydantoin diepoxide, Bisphenol-A epoxides, Bisphenol-F epoxides, Novolac-type epoxides, aliphatic polyepoxides, and epoxidized unsaturated resins, and phenolic resins. The term "polyepoxide" refers to a material having a 1,2-epoxy equivalent greater than one and includes monomers, oligomers, and polymers.
[026] A preformed sealant composition can comprise at least one compound to modify the rate of cure. For example, cure accelerants such as dipentamethylene/thiuram/polysulfide mixture can be included in a sealant composition to accelerate the rate of cure, and/or at least one cure retardant such as stearic acid can be added to retard the rate of cure and thereby extend the work life of a sealant composition during application. In certain embodiments, a curing agent composition can comprise an amount of accelerant ranging from 1% to 7% by weight, and or an amount of cure retardant ranging from 0.1% to 1% by weight, based on the total weight of the curing agent composition. To control the cure properties of the sealant composition, it can also be useful to include at least one material capable of at least partially removing moisture from the sealant composition such as molecular sieve powder. In certain embodiments, a curing agent composition can comprise an amount of material capable of at least partially removing moisture ranging from 0.1% to 1.5% by weight, based on the total weight of the curing agent composition.
[027] In certain embodiments, preformed compositions of the present disclosure can comprise fillers. As used herein, "filler" refers to a non-reactive component in the preformed composition that provides a desired property, such as, for example, electrical conductivity, density, viscosity, mechanical strength, EMI/RFI shielding effectiveness, and the like.
[028] Examples of electrically non-conductive fillers include materials such as, but not limited to, calcium carbonate, mica, polyamide, fumed silica, molecular sieve powder, microspheres, titanium dioxide, chalks, alkaline blacks, cellulose, zinc sulfide, heavy spar, alkaline earth oxides, alkaline earth hydroxides, and the like. Fillers also include high band gap materials such as zinc sulfide and inorganic barium compounds. In certain embodiments, an electrically conductive base composition can comprise an amount of electrically non-conductive filler ranging from 2% to 10% by weight, based on the total weight of the base composition, and in certain embodiments, can range from 3% to 7% by weight. In certain embodiments, a curing agent composition can comprise an amount of electrically non-conductive filler ranging from less than 6 percent by weight, and in certain embodiments ranging from 0.5% to 4% by weight, based on the total weight of the curing agent composition.
[029] Fillers used to impart electrical conductivity and EMI/RFI shielding effectiveness to polymer compositions are well known in the art. Examples of electrically conductive fillers include electrically conductive noble metal-based fillers such as pure silver; noble metal-plated noble metals such as silver-plated gold; noble metal-plated non-noble metals such as silver plated cooper, nickel or aluminum, for example, silver-plated aluminum core particles or platinum-plated copper particles; noble-metal plated glass, plastic or ceramics such as silver-plated glass microspheres, noble-metal plated aluminum or noble-metal plated plastic microspheres; noble-metal plated mica; and other such noble-metal conductive fillers. Non-noble metal-based materials can also be used and include, for example, non-noble metal-plated non- noble metals such as copper-coated iron particles or nickel plated copper; non-noble metals, e.g., copper, aluminum, nickel, cobalt; non-noble-metal-plated-non metals, e.g., nickel-plated graphite and non-metal materials such as carbon black and graphite. Combinations of electrically conductive fillers can also be used to meet the desired conductivity, EMI RFI shielding effectiveness, hardness, and other properties suitable for a particular application.
[030] The shape and size of the electrically conductive fillers used in the preformed compositions of the present disclosure can be any appropriate shape and size to impart EMI/RFI shielding effectiveness to the cured preformed composition. For example, fillers can be of any shape that is generally used in the manufacture of electrically conductive fillers, including spherical, flake, platelet, particle, powder, irregular, fiber, and the like. In certain preformed sealant compositions of the disclosure, a base composition can comprise Ni-coated graphite as a particle, powder or flake. In certain embodiments, the amount of Ni-coated graphite in a base composition can range from 40% to 80% by weight, and in certain embodiments can range from 50% to 70% by weight, based on the total weight of the base composition, h certain embodiments, an electrically conductive filler can comprise Ni fiber. Ni fiber can have a diameter ranging from 10 μm to 50 μm and have a length ranging from 250 μm to 750 μm. A base composition can comprise, for example, an amount of Ni fiber ranging from 2% to 10% by weight, and in certain embodiments, from 4% to 8% by weight, based on the total weight of the base composition.
[031] Carbon fibers, particularly graphitized carbon fibers, can also be used to impart electrical conductivity to preformed compositions of the present disclosure. Carbon fibers formed by vapor phase pyrolysis methods and graphitized by heat treatment and which are hollow or solid with a fiber diameter ranging from 0.1 micron to several microns, have high electrical conductivity. As disclosed in U.S. Patent No. 6,184,280, carbon microfibers, nanotubes or carbon fibrils having an outer diameter of less than 0.1 micron to tens of nanometers can be used as electrically conductive fillers. An example of graphitized carbon fiber suitable for conductive preformed compositions of the present disclosure include PANEX30MF (Zoltek Companies, Inc., St. Louis, Mo.), a 0.921 micron diameter round fiber having an electrical resistivity of 0.00055 Ω-cm.
[032] The average particle size of an electrically conductive filler can be within a range useful for imparting electrical conductivity to a polymer-based composition. For example, in certain embodiments, the particle size of the one or more fillers can range from 0.25 microns to 250 microns, in certain embodiments can range from 0.25 microns to 75 microns, and in certain embodiments can range from 0.25 microns to 60 microns. In certain embodiments, preformed composition of the present disclosure can comprise Ketjen Black EC-600 JD (Akzo Nobel, Inc., Chicago, IL), an electrically conductive carbon black characterized by an iodine absorption of 1000-11500 mg/g (JO/84-5 test method), and a pore volume of 480-510 cm3/100 gm (DBP absorption, KTM 81-3504). In certain embodiments, an electrically conductive carbon black filler is Black Pearls 2000 (Cabot Corporation, Boston, MA).
[033] In certain embodiments, electrically conductive polymers can be used to impart or modify the electrical conductivity of preformed compositions of the present disclosure. Polymers having sulfur atoms incorporated into aromatic groups or adjacent to double bonds, such as in polyphenylene sulfide, and polythiophene, are known to be electrically conductive. Other electrically conductive polymers include, for example, polypyrroles, polyaniline, poly(p-phenylene) vinylene, and polyacetylene. In certain embodiments, the sulfur-containing polymers forming a base composition can be polysulfides and/or polythioethers. As such, the sulfur- containing polymers can comprise aromatic sulfur groups and sulfur atoms adjacent to conjugated double bonds such as vinylcyclohexene-dimercaptodioxaoctane groups, to enhance the electrical conductivity of the preformed compositions of the present disclosure.
[034] Preformed sealant compositions of the present disclosure can comprise more than one electrically conductive filler, and the more than one electrically conductive filler can be of the same or different materials and or shapes. For example, a preformed sealant composition can comprise electrically conductive Ni fibers, and electrically conductive Ni-coated graphite in the form of powder, particles or flakes. The amount and type of electrically conductive filler can be selected to produce a preformed sealant composition which, when cured, exhibits a sheet resistance (four-point resistance) of less than 0.50 Ω/ , and in certain embodiments, a sheet resistance less than 0.15 Ω/ . The amount and type of filler can also be selected to provide effective EMI/RFI shielding over a frequency range of from 1 MHz to 18 GHz for an aperture sealed using a preformed sealant composition of the present disclosure.
[035] Galvanic corrosion of dissimilar metal surfaces and the conductive compositions of the present disclosure can be minimized or prevented by adding corrosion inhibitors to the composition, and/or by selecting appropriate conductive fillers. In certain embodiments, corrosion inhibitors include strontium chromate, calcium chromate, magnesium chromate, and combinations thereof. U.S. Patent No. 5,284,888 and U.S. Patent No. 5,270,364 disclose the use of aromatic triazoles to inhibit corrosion of aluminum and steel surfaces. In certain embodiments, a sacrificial oxygen scavenger such as Zn can be used as a corrosion inhibitor. In certain embodiments, the corrosion inhibitor can comprise less than 10% by weight of the total weight of the electrically conductive preformed composition. In certain embodiments, the corrosion inhibitor can comprise an amount ranging from 2% by weight to 8% by weight of the total weight of the electrically conductive preformed composition. Corrosion between dissimilar metal surfaces can also be minimized or prevented by the selection of the type, amount, and properties of the conductive fillers comprising the preformed composition.
[036] In certain embodiments, preformed compositions of the present disclosure comprise plasticizers such as phthalate esters, chlorinated paraffins, hydrogenated terphenyls, partially hydrogenated terphenyls, and the like. A preformed composition can comprise more than one plasticizer. The amount of plasticizer in the base composition can range from 0.1% to 5% by weight based on the total weight of the base composition, and in certain embodiments, can range from 0.5% to 3% by weight. The amount of plasticizer in the curing agent composition can range from 20% to 60% by weight of the total weight of the curing agent composition, and in certain embodiments, can range from 30% to 40% by weight.
[037] In certain embodiments, preformed compositions further comprise an organic solvent, such as a ketone or an alcohol, for example methyl ethyl ketone, and isopropyl alcohol, or a combination thereof. [038] In certain embodiments, preformed compositions of the present disclosure comprise adhesion promoters such as, for example, phenolic resin, silane adhesion promoter, and combinations thereof. Adhesion promoters can facilitate adhesion of the polymeric components of the preformed sealant composition to a substrate, as well as to the electrically non-conductive and electrically conductive fillers in the sealant composition. In certain embodiments, a conductive base composition can comprise form 0.15% to 1.5% by weight of a phenolic adhesion promoter, from 0.05% to 0.2% by weight of a mercapto-silane adhesion promoter and from 0.05% to 0.2% by weight of an epoxy-silane adhesion promoter. The total amount of adhesion promoter in the base composition can range from 0.5% to 7% by weight, based on the total weight of the base composition.
[039] In certain embodiments, a base composition can be prepared by batch mixing at least one sulfur-containing polymer, additives, and/or fillers in a double planetary mixer under vacuum. Other suitable mixing equipment includes a kneader extruder, sigma mixer, or double "A" arm mixer. For example, a base composition can be prepared by mixing at least one sulfur-containing polymer, plasticizer, and phenolic adhesion promoter. After the mixture is thoroughly blended, additional constituents can be separately added and mixed using a high shear grinding blade, such as a Cowless blade, until cut it. Examples of additional constituents that can be added to a base composition include corrosion inhibitors, non-conductive fillers, electrically conductive fiber, electrically conductive flake, and silane adhesion promoters. The mixture can then be mixed for an additional 15 to 20 minutes under a vacuum of 27 inches of mercury or greater to reduce or remove entrapped air and/or gases. The base composition can then extruded from the mixer using a high-pressure piston ram.
[040] A curing agent composition can be prepared by batch mixing a curing agent, additives, and fillers. In certain embodiments, 75% of the total plasticizer such as partially hydrogenated terphenyl and an accelerant such as a dipentamethylene/thiuram/polysulfide mixture are mixed in a single-shaft anchor mixer. Molecular sieve powder is then added and mixed for 2 to 3 minutes. Fifty percent of the total manganese dioxide is then mixed until cut in. Stearic acid, sodium stearate, and the remaining plasticizer are then mixed until cut in followed by the remaining 50% of the manganese dioxide which is mixed until cut in. Fumed silica is then mixed until cut in. If the mixture is too thick a surfactant may be added to increase wetting. The curing agent composition is then mixed for 2 to 3 minutes, passed over a three-roll paint mill to achieve a grind, and returned to the single-shaft anchor mixer and mixed for an additional 5 to 10 minutes. The curing agent composition can then be removed from the mixer with a piston ram and placed into storage containers and aged for at least 5 days prior to combining with a base composition.
[041] A base composition and a curing agent composition are mixed together to form a preformed sealant composition. A base composition and a curing agent composition can be combined in the desired ratio using meter mix equipment fitted with a dynamic mix head. Pressure from the meter mix equipment forces the base and curing agent compositions through the dynamic mix head and an extrusion die. In certain embodiments, a preformed composition is extruded into a laminar form such as a tape or sheet. A preformed composition in sheet form can be cut to any desired shape such as defined by the dimensions of an aperture to be sealed. In certain embodiments, the shaped form can be coiled, with release paper separating each ring for packaging purposes. The shaped form can be refrigerated by placing the shaped form on a bed of dry ice and placing another layer of dry ice over the shaped form. The shaped form can be refrigerated immediately after mixing the base composition and the curing agent composition. The shaped form can remain exposed to the dry ice for 5 to 15 minutes and then placed at a storage temperature of -40°C or lower. The term "refrigerated" refers to reducing the temperature of the preformed composition so as to retard and/or stop the curing of the preformed composition. In certain embodiments, the preformed composition in shaped form is refrigerated below -40°C.
[042] For sealing an aperture, the temperature of the preformed composition is raised to a use temperature ranging from 4°C to 32°C (40°F to 90°F) prior to application to one or more surfaces associated with the aperture. This is done such that the preformed composition reaches use temperature for no more than 10 minutes prior to application.
[043] In certain embodiments, the preformed composition in shaped form can be used to seal an aperture between a removable access panel and a surface adjacent to the perimeter of an opening in an aircraft fuselage. Adhesion promoter is first brushed on the perimeter of the access panel opening after the surface has been cleaned with a cleaning solvent such as DESOCLEAN (PRC-DeSoto International, Inc.). The surface of the access panel is then cleaned and coated with a release agent prior to applying the preformed composition. The preformed composition in shaped form is manually applied to the surface adjacent to the perimeter of the access panel opening, to the surface adjacent to the perimeter of the access panel, or to both. The access panel is then positioned against the surface adjacent to the opening and clamped down to force the excess preformed composition around the edges of the access panel. Excess preformed composition is easily removed by using, for example, a flat surface. Excess preformed composition can be removed either prior to curing or after the preformed composition has cured, and preferably after the preformed composition cures.
[044] The integrity, moisture resistance, and fuel resistance of the seal resulting from application of preformed compositions of the present disclosure can be evaluated by performing the tests identified in specification MMS 327. An acceptable seal will be tight and resistant to moisture and aircraft fuel.
[045] It is noted that, as used in this specification and the appended claims, the singular forms "a," "an," and, "the" include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to "a filler" includes one or more fillers. Also it is noted that, as used herein, the term "polymer" refers to polymers, oligomers, homopolymers, and copolymers.
[046] For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities of ingredients or percentages or proportions of other materials, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure.
[047] Embodiments of the present disclosure can be further defined by reference to the following examples, which describe in detail the preparation of compositions of the present disclosure and methods for using compositions of the present disclosure. It will be apparent to those skilled in the art that modifications, both to materials and methods, may be practiced without departing from the scope of the present disclosure. Example 1
[048] Example 1 provides an electrically conductive preformed composition in shaped form exhibiting EMI/RFI shielding effectiveness. The following materials were mixed in the proportions according to Table I to provide an electrically conductive base composition: PERMAPOL P 3.1 polythioether polymer from PRC- DeSoto International, Inc., THIOPLAST G4 polysulfide polymer from Akcros Chemicals (New Brunswick, NJ), phenolic resin adhesion promoter from PRC- DeSoto International, Lie, and HB-40 modified polyphenyl plasticizer from Solutia, Inc. (St. Louis, Missouri). Using a high shear grinding blade (Cowless blade), the following materials were individually added and blended until cut in: calcium chromate corrosion inhibitor (Wayne Pigment Corp., Milwaukee, WI), hydrophobic fumed silica (R202, from Aerosil/Degussa, Diamond Bar CA), Ni fiber (30 μm diameter, 500 μm length; from Intramicron, Birmingham, AL), Ni-coated graphite (I) ( 60% Ni-coated graphite; from Novamet, Wyckoff, NJ), Ni-coated graphite (11) (60% Ni-coated graphite; from Sulzer Metco/Ambeon, Switzerland), mercapto silane adhesion promoter (Silane A189; GE Specialty Materials, Wilton, CN), and epoxy silane adhesion promoter (Silane A187; GE Specialty Materials, Wilton, CN). [049] Table I. Electrically Conductive Base Composition
Figure imgf000017_0001
Figure imgf000018_0001
[050] Separately, the following materials were mixed in the amounts according to Table LI to form a curing agent composition: manganese dioxide from EaglePicher (Phoenix, AZ), partially hydrogenated terphenyl, stearic acid, fumed silica, sodium stearate from Witco Chemicals, molecular sieve powder to remove excess moisture from the curing agent, and dipentamethylene/thiuram/polysulfide mixture from Akrochem Corporation (Akron, OH) to accelerate the cure. The curing agent composition was allowed to set or age for at least 5 days before combining with the base composition.
[051] Table π. Curing Agent Composition
Figure imgf000018_0002
[052] One hundred parts by weight of the electrically conductive base composition according to Table I, and 10 parts by weight of the curing agent composition of Table II were combined to prepare the electrically conductive preformed composition. After thorough mixing and degassing, the electrically conductive preformed composition thus formed was extruded into a tape form and refrigerated at -40°C.
[053] The surface adjacent to the perimeter of an aircraft access panel was first coated with low VOC epoxy primer according to specification MMS-423 and cured. The surface was cleaned and then coated with adhesion promoters PR- 148 or PR- 184 from PRC-DeSoto International, Inc. The access panel was made from titanium alloy conforming to AMS-T-9046. After the refrigerated electrically conductive preformed composition equilibrated to use temperature, 4 °C to 32 °C (40 °F to 90 °F), the electrically conductive preformed composition in tape form was manually applied to the surface adjacent to the perimeter of the access panel. The access panel was put in place to cover the access opening and clamped down, forcing the excess electrically conductive preformed composition around the edges of the access panel to fill the aperture. Excess electrically conductive preformed composition was easily removed. After 3 to 4 hours at a temperature of 4°C to 32°C (40°F to 90°F), a tight seal, resistant to moisture and aircraft fuel, resulted.
[054] The cured sealant exhibited a sheet resistance (four-point probe) of less than 0.50 Ω/ . Seals to apertures between an aluminum test fixture and a carbon/epoxy lid exhibited shielding effectiveness from 1 MHz to 200 MHz when tested in an anechoic chamber. Similarly sealed apertures also exhibited shielding effectiveness from 0.1 GHz to 18 GHz when tested in a stirred mode chamber.
[055] Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the present disclosure being indicated by the following claims.

Claims

WHAT IS CLAIMED IS:
1. A preformed composition in shaped-form comprising: a base composition comprising at least one sulfur-containing polymer, and at least one electrically conductive filler; and a curing agent composition; wherein the preformed composition is capable of shielding EMI/RFI radiation.
2. The preformed composition of claim 1 , wherein the preformed composition comprises 5 parts to 20 parts by weight of the curing agent composition, and 100 parts by weight of the base composition.
3. The preformed composition of claim 1 , wherein the at least one sulfur- containing polymer is present in an amount ranging from 10% by weight to 50% by weight of the total weight of the base composition.
4. The preformed composition of claim 1 , wherein the at least one sulfur- containing polymer is chosen from a polysulfide polymer, a mercapto-terminated polymer, and a combination of a polysulfide polymer and a mercapto-terminated polymer.
5. The preformed composition of claim 1, wherein the at least one electrically conductive filler is present in an amount ranging from 40% to 80% by weight of the total weight of the base composition.
6. The preformed composition of claim 1, wherein the at least one electrically conductive filler comprises Ni fiber, and Ni-coated graphite.
7. The preformed composition of claim 6, wherein the Ni fiber is present in an amount ranging from 4% to 8% by weight of the total weight of the base composition, and the Ni-coated graphite is present in an amount ranging from 50% to 70% of the total weight of the base composition.
8. The preformed composition of claim 1, further comprising at least one corrosion inhibitor.
9. The preformed composition of claim 8, wherein the at least one corrosion inhibitor inhibits galvanic corrosion.
10. The preformed composition of claim 8, wherein the at least one corrosion inhibitor comprises calcium chromate.
11. The preformed composition of claim 8, wherein the at least one corrosion inhibitor is present in an amount ranging from 3% by weight to 7% by weight of the total weight of the base composition.
12. The preformed composition of claim 1 , further comprising at least one adhesion promoter.
13. The preformed composition of claim 12, wherein the at least one adhesion promoter comprises a phenolic adhesion promoter, a mercapto-silane adhesion promoter, and an epoxy-silane adhesion promoter.
14. The preformed composition of claim 12, wherein the at least one adhesion promoter is present in an amount ranging from 1% by weight to 6% by weight of the total weight of the base composition.
15. The preformed composition of claim 1 , wherein the preformed composition is curable at a temperature ranging from 10°C to 30°C.
16. The preformed composition of claim 1 , wherein the preformed composition is refrigerated prior to application.
17. The preformed composition of claim 1, wherein the cured preformed composition exhibits a surface resistivity of less than 0.50 Ω/ .
18. The preformed composition of claim 1 , wherein the curing agent composition comprises a manganese dioxide curing agent.
19. The preformed composition of claim 18, wherein the manganese dioxide is present in the curing agent composition in an amount ranging from 25% to 75%o by weight of the total weight of the curing agent composition.
20. A method of sealing an aperture to provide EMI/RFI shielding effectiveness comprising applying a preformed composition in shaped-form comprising at least one sulfur-containing polymer, and at least one electrically conductive filler to a surface associated with an aperture to seal the aperture and provide EMI/RFI shielding effectiveness.
21. The method of claim 20, wherein the performed composition comprises a preformed composition according to claim 1.
22. The method of claim 20, wherein the surface is a surface of a removable panel.
23. The method of claim 20, wherein the surface is a surface adjacent to an opening.
24. The method of claim 20, wherein the aperture is on an aviation or an aerospace vehicle.
25. The method of claim 20, further comprising applying an adhesion promoter to at least one surface associated with the aperture prior to application of the preformed composition.
26. The method of claim 20, further comprising applying a release agent to a least one surface associated with the aperture prior to application of the preformed composition.
27. The method of claim 20, wherein the sealed aperture exhibits shielding effectiveness from 1 MHz to 18 GHz.
PCT/US2004/011269 2003-04-30 2004-04-30 Preformed emi/rfi shielding compositions in shaped form WO2004099317A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2523700A CA2523700C (en) 2003-04-30 2004-04-30 Preformed emi/rfi shielding compositions in shaped form
DE602004017446T DE602004017446D1 (en) 2003-04-30 2004-04-30 EFORM FORM
DK04760535T DK1618152T3 (en) 2003-04-30 2004-04-30 Preformed EMI / RFI shielding formulations
BRPI0409821A BRPI0409821B1 (en) 2003-04-30 2004-04-30 preformed composition in a configured shape and method for sealing an aperture to provide emi / rfi shielding efficiency
CN2004800114064A CN1826382B (en) 2003-04-30 2004-04-30 Preformed EMI/RFI shielding compositions in shaped form
JP2006501266A JP4989963B2 (en) 2003-04-30 2004-04-30 Pre-formed EMI / RFI shielding composition in molded form form
MXPA05011558A MXPA05011558A (en) 2003-04-30 2004-04-30 Preformed emi/rfi shielding compositions in shaped form.
EP04760535A EP1618152B9 (en) 2003-04-30 2004-04-30 Preformed emi/rfi shielding compositions in shaped form
AU2004236652A AU2004236652B2 (en) 2003-04-30 2004-04-30 Preformed EMI/RFI shielding compositions in shaped form
IL171550A IL171550A (en) 2003-04-30 2005-10-26 Preformed emi/rfi shielding polymeric compositions in shaped form

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US46698103P 2003-04-30 2003-04-30
US60/466,981 2003-04-30

Publications (1)

Publication Number Publication Date
WO2004099317A1 true WO2004099317A1 (en) 2004-11-18

Family

ID=33435001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/011269 WO2004099317A1 (en) 2003-04-30 2004-04-30 Preformed emi/rfi shielding compositions in shaped form

Country Status (16)

Country Link
US (2) US20040220327A1 (en)
EP (1) EP1618152B9 (en)
JP (2) JP4989963B2 (en)
KR (1) KR100697920B1 (en)
CN (1) CN1826382B (en)
AT (1) ATE412704T1 (en)
AU (1) AU2004236652B2 (en)
BR (1) BRPI0409821B1 (en)
CA (1) CA2523700C (en)
DE (1) DE602004017446D1 (en)
DK (1) DK1618152T3 (en)
ES (1) ES2314423T3 (en)
IL (1) IL171550A (en)
MX (1) MXPA05011558A (en)
RU (1) RU2336288C2 (en)
WO (1) WO2004099317A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029145A2 (en) * 2004-09-08 2006-03-16 Prc-Desoto International, Inc. Preformed compositions in shaped form comprising polymer blends
WO2006029144A1 (en) * 2004-09-08 2006-03-16 Prc-Desoto International, Inc. Polymer blend and compositions and methods for using the same
WO2007050725A1 (en) * 2005-10-27 2007-05-03 Prc-Desoto International, Inc. Dimercaptan terminated polythioether polymers and methods for making and using the same
WO2009025902A1 (en) * 2007-08-17 2009-02-26 Ppg Industries Ohio, Inc. Multilayer coatings suitable for aerospace applications
US7553908B1 (en) 2003-01-30 2009-06-30 Prc Desoto International, Inc. Preformed compositions in shaped form comprising polymer blends
WO2010144770A1 (en) * 2009-06-12 2010-12-16 Lord Corporation Method for shielding a substrate from electromagnetic interference
US8796361B2 (en) 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
US8795792B2 (en) 2007-08-17 2014-08-05 Ppg Industries Ohio, Inc. Process for forming multilayer coating with radiation curable polyene/polythiol coating compositions
JP2014530264A (en) * 2011-09-14 2014-11-17 ピーアールシー−デソト インターナショナル,インコーポレイティド Coating / sealant systems, aqueous resinous dispersions, and methods of electrocoating
JP2014532092A (en) * 2011-09-16 2014-12-04 ピーアールシー−デソト インターナショナル,インコーポレイティド Conductive sealant composition
JP2014532093A (en) * 2011-09-16 2014-12-04 ピーアールシー−デソト インターナショナル,インコーポレイティド Conductive sealant composition
US10370562B2 (en) 2012-04-12 2019-08-06 Chemetall Gmbh Matrices and sealants which are based on sulfur-containing polymers and which comprise a photoinitiator, curing and coating methods, and use of said matrices and sealants

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138673B1 (en) 2002-05-21 2012-03-20 Imaging Systems Technology Radiation shielding
US7589284B2 (en) * 2005-09-12 2009-09-15 Parker Hannifin Corporation Composite polymeric material for EMI shielding
US20080078576A1 (en) * 2006-06-02 2008-04-03 Touchstone Research Laboratory, Ltd. Carbon Foam EMI Shield
DE102007049439A1 (en) * 2007-09-27 2009-04-02 Electrovac Ag Plastic composite material and method for its production
GB0720705D0 (en) * 2007-10-23 2007-12-05 Airbus Uk Ltd Fastener joint with sealing gasket
US9049777B2 (en) * 2010-11-01 2015-06-02 Plastics Research Corporation EMI shielded thermoset article
US20140150970A1 (en) 2010-11-19 2014-06-05 Ppg Industries Ohio, Inc. Structural adhesive compositions
US8729216B2 (en) 2011-03-18 2014-05-20 Prc Desoto International, Inc. Multifunctional sulfur-containing polymers, compositions thereof and methods of use
US8641817B2 (en) * 2011-04-07 2014-02-04 Micromag 2000, S.L. Paint with metallic microwires, process for integrating metallic microwires in paint and process for applying said paint on metallic surfaces
US20130295290A1 (en) * 2012-05-03 2013-11-07 Ppg Industries Ohio, Inc. Compositions with a sulfur-containing polymer and graphenic carbon particles
US9518197B2 (en) 2014-03-07 2016-12-13 Prc-Desoto International, Inc. Cure-on-demand moisture-curable urethane-containing fuel resistant prepolymers and compositions thereof
RU2685216C2 (en) 2014-11-24 2019-04-16 Ют-Баттелле, Ллк Methods of reactive three-dimensional printing by extrusion
US9856359B2 (en) * 2015-04-08 2018-01-02 The Boeing Company Core-shell particles, compositions incorporating the core-shell particles and methods of making the same
CN208791533U (en) 2015-06-12 2019-04-26 新格拉夫解决方案有限责任公司 Composite article, product and clothes
US9951252B2 (en) 2015-08-10 2018-04-24 Prc-Desoto International, Inc. Moisture-curable fuel-resistant sealant systems
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
US11189420B2 (en) 2016-03-31 2021-11-30 Neograf Solutions, Llc Noise suppressing assemblies
US10035926B2 (en) 2016-04-22 2018-07-31 PRC—DeSoto International, Inc. Ionic liquid catalysts in sulfur-containing polymer compositions
US10370561B2 (en) 2016-06-28 2019-08-06 Prc-Desoto International, Inc. Urethane/urea-containing bis(alkenyl) ethers, prepolymers prepared using urethane/urea-containing bis(alkenyl) ethers, and uses thereof
US10434704B2 (en) 2017-08-18 2019-10-08 Ppg Industries Ohio, Inc. Additive manufacturing using polyurea materials
US11098222B2 (en) 2018-07-03 2021-08-24 Prc-Desoto International, Inc. Sprayable polythioether coatings and sealants
US10669436B1 (en) * 2018-11-16 2020-06-02 Conductive Composites Company Ip, Llc Multifunctional paints and caulks with controllable electromagnetic properties
US11505702B2 (en) 2019-04-05 2022-11-22 Prc-Desoto International, Inc. Controlled cure rate using polyether-coated synergists
US11180683B1 (en) 2020-05-18 2021-11-23 The Boeing Company Ignition-suppressing tape and method of installation
CN112266754B (en) * 2020-11-03 2022-06-21 安徽牛元新材料有限公司 Seam beautifying agent not prone to foaming and preparation method thereof
IL314980A (en) 2022-02-23 2024-10-01 Ppg Ind Ohio Inc Conductive articles and methods for additive manufacturing thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482655A (en) * 1992-06-17 1996-01-09 Ciba-Geigy Corporation Electrically conductive thermoplastic polymer formulations and the use thereof
WO2000067339A1 (en) * 1999-05-04 2000-11-09 Moltech Corporation Electroactive sulfur containing, conductive, highly branched polymeric materials for use in electrochemical cells
US6201100B1 (en) * 1997-12-19 2001-03-13 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same
US20010052591A1 (en) * 2000-03-09 2001-12-20 Kovalev Igor P. Methods for preparing non-corrosive, electroactive, conductive organic polymers
US6358437B1 (en) * 1997-12-23 2002-03-19 Bayer Aktiengesellschaft Screen printing paste for producing electrically conductive coatings
US6426863B1 (en) * 1999-11-25 2002-07-30 Lithium Power Technologies, Inc. Electrochemical capacitor
EP1293530A2 (en) * 2001-09-14 2003-03-19 The Goodyear Tire & Rubber Company Reinforced elastomer/starch composite

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450940A (en) * 1944-04-20 1948-10-12 John C Cowan Polyamides from polymeric fat acids
US2466963A (en) * 1945-06-16 1949-04-12 Thiokol Corp Polysulfide polymer
US3659896A (en) * 1970-03-17 1972-05-02 Thiokol Chemical Corp Adhesive semi-cured sealing strip for automobile windshield
US4092459A (en) * 1975-01-13 1978-05-30 Graham Magnetics Incorporated Powder products
US4366307A (en) * 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
US4606848A (en) * 1984-08-14 1986-08-19 The United States Of America As Represented By The Secretary Of The Army Radar attenuating paint
US4977295A (en) * 1989-07-28 1990-12-11 Raytheon Company Gasket impervious to electromagnetic energy
US5061566A (en) * 1989-12-28 1991-10-29 Chomerics, Inc. Corrosion inhibiting emi/rfi shielding coating and method of its use
US5866273A (en) * 1990-03-20 1999-02-02 The Boeing Company Corrosion resistant RAM powder
US5270364A (en) * 1991-09-24 1993-12-14 Chomerics, Inc. Corrosion resistant metallic fillers and compositions containing same
US5661484A (en) * 1993-01-11 1997-08-26 Martin Marietta Corporation Multi-fiber species artificial dielectric radar absorbing material and method for producing same
US5439978A (en) * 1993-08-09 1995-08-08 Sri International Oxazine -and oxazoline-based copolymers useful as antielectrostatic agents and polymeric compositions prepared therewith
JPH09111135A (en) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp Conductive polymer composition
US6372849B2 (en) * 1997-02-19 2002-04-16 Prc-Desoto International, Inc. Sealants and potting formulations including polymers produced by the reaction of a polythiol and polyvinyl ether monomer
US6486822B1 (en) * 2000-06-07 2002-11-26 The Boeing Company Chemically modified radar absorbing materials and an associated fabrication method
WO2002093322A2 (en) * 2001-05-16 2002-11-21 Kenneth Yip Methods and systems for preference-based dynamic passive investing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482655A (en) * 1992-06-17 1996-01-09 Ciba-Geigy Corporation Electrically conductive thermoplastic polymer formulations and the use thereof
US6201100B1 (en) * 1997-12-19 2001-03-13 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same
US6358437B1 (en) * 1997-12-23 2002-03-19 Bayer Aktiengesellschaft Screen printing paste for producing electrically conductive coatings
WO2000067339A1 (en) * 1999-05-04 2000-11-09 Moltech Corporation Electroactive sulfur containing, conductive, highly branched polymeric materials for use in electrochemical cells
US6426863B1 (en) * 1999-11-25 2002-07-30 Lithium Power Technologies, Inc. Electrochemical capacitor
US20010052591A1 (en) * 2000-03-09 2001-12-20 Kovalev Igor P. Methods for preparing non-corrosive, electroactive, conductive organic polymers
EP1293530A2 (en) * 2001-09-14 2003-03-19 The Goodyear Tire & Rubber Company Reinforced elastomer/starch composite
US20030065062A1 (en) * 2001-09-14 2003-04-03 Corvasce Filomeno Gennaro Preparation of starch reinforced rubber and use thereof in tires

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553908B1 (en) 2003-01-30 2009-06-30 Prc Desoto International, Inc. Preformed compositions in shaped form comprising polymer blends
WO2006029145A2 (en) * 2004-09-08 2006-03-16 Prc-Desoto International, Inc. Preformed compositions in shaped form comprising polymer blends
WO2006029144A1 (en) * 2004-09-08 2006-03-16 Prc-Desoto International, Inc. Polymer blend and compositions and methods for using the same
WO2006029145A3 (en) * 2004-09-08 2006-04-27 Prc Desoto Int Inc Preformed compositions in shaped form comprising polymer blends
AU2005282552B2 (en) * 2004-09-08 2008-09-11 Prc-Desoto International, Inc. Polymer blend and compositions and methods for using the same
KR100887788B1 (en) * 2004-09-08 2009-03-09 피알시-데소토 인터내쇼날, 인코포레이티드 Preformed compositions in shaped form comprising polymer blends
KR100934051B1 (en) * 2004-09-08 2009-12-24 피알시-데소토 인터내쇼날, 인코포레이티드 Polymer Blends, Compositions, and Methods of Use thereof
WO2007050725A1 (en) * 2005-10-27 2007-05-03 Prc-Desoto International, Inc. Dimercaptan terminated polythioether polymers and methods for making and using the same
CN102585501A (en) * 2005-10-27 2012-07-18 Prc-迪索托国际公司 Dimercaptan terminated polythioether polymers and methods for making and using the same
JP2009513790A (en) * 2005-10-27 2009-04-02 ピーアールシー−デソト インターナショナル,インコーポレイティド Dimercaptan-terminated polythioether polymers and methods for their synthesis and use
KR100996757B1 (en) * 2005-10-27 2010-11-25 피알시-데소토 인터내쇼날, 인코포레이티드 Composition comprising dimercaptan terminated polythioether polymers and methods for making and using the same
JP4937267B2 (en) * 2005-10-27 2012-05-23 ピーアールシー−デソト インターナショナル,インコーポレイティド Dimercaptan-terminated polythioether polymers and methods for their synthesis and use
AU2008289413B2 (en) * 2007-08-17 2011-09-08 Ppg Industries Ohio, Inc. Multilayer coatings suitable for aerospace applications
WO2009025902A1 (en) * 2007-08-17 2009-02-26 Ppg Industries Ohio, Inc. Multilayer coatings suitable for aerospace applications
US8414981B2 (en) 2007-08-17 2013-04-09 Prc Desoto International, Inc. Multilayer coatings suitable for aerospace applications
KR101257149B1 (en) * 2007-08-17 2013-04-22 피피지 인더스트리즈 오하이오 인코포레이티드 Multilayer coatings suitable for aerospace applications
US8795792B2 (en) 2007-08-17 2014-08-05 Ppg Industries Ohio, Inc. Process for forming multilayer coating with radiation curable polyene/polythiol coating compositions
WO2010144770A1 (en) * 2009-06-12 2010-12-16 Lord Corporation Method for shielding a substrate from electromagnetic interference
US8796361B2 (en) 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
US9562175B2 (en) 2010-11-19 2017-02-07 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
JP2014530264A (en) * 2011-09-14 2014-11-17 ピーアールシー−デソト インターナショナル,インコーポレイティド Coating / sealant systems, aqueous resinous dispersions, and methods of electrocoating
JP2014532092A (en) * 2011-09-16 2014-12-04 ピーアールシー−デソト インターナショナル,インコーポレイティド Conductive sealant composition
JP2014532093A (en) * 2011-09-16 2014-12-04 ピーアールシー−デソト インターナショナル,インコーポレイティド Conductive sealant composition
US10370562B2 (en) 2012-04-12 2019-08-06 Chemetall Gmbh Matrices and sealants which are based on sulfur-containing polymers and which comprise a photoinitiator, curing and coating methods, and use of said matrices and sealants
US11124674B2 (en) 2012-04-12 2021-09-21 Chemetall Gmbh Matrices and sealants which are based on sulfur-containing polymers and which comprise a photoinitiator, curing and coating methods, and use of said matrices and sealants

Also Published As

Publication number Publication date
BRPI0409821B1 (en) 2017-03-21
BRPI0409821A (en) 2006-05-09
JP2009102665A (en) 2009-05-14
KR100697920B1 (en) 2007-03-20
EP1618152B9 (en) 2009-08-26
IL171550A (en) 2011-07-31
AU2004236652A1 (en) 2004-11-18
CA2523700C (en) 2010-06-29
MXPA05011558A (en) 2005-12-14
ES2314423T3 (en) 2009-03-16
EP1618152B1 (en) 2008-10-29
RU2336288C2 (en) 2008-10-20
JP2006524720A (en) 2006-11-02
US7425604B2 (en) 2008-09-16
KR20060004966A (en) 2006-01-16
CN1826382B (en) 2010-06-16
US20040220327A1 (en) 2004-11-04
EP1618152A1 (en) 2006-01-25
JP4989963B2 (en) 2012-08-01
RU2005137190A (en) 2006-04-27
DE602004017446D1 (en) 2008-12-11
US20070034839A1 (en) 2007-02-15
CN1826382A (en) 2006-08-30
ATE412704T1 (en) 2008-11-15
CA2523700A1 (en) 2004-11-18
AU2004236652B2 (en) 2007-04-26
DK1618152T3 (en) 2009-01-12

Similar Documents

Publication Publication Date Title
CA2523700C (en) Preformed emi/rfi shielding compositions in shaped form
CA2578715C (en) Preformed compositions in shaped form comprising polymer blends
US8106128B2 (en) Preformed compositions in shaped form comprising polymer blends
KR20140049066A (en) Conductive sealant compositions
CA2847840C (en) Conductive sealant compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004236652

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 4832/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 171550

Country of ref document: IL

Ref document number: 2523700

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006501266

Country of ref document: JP

Ref document number: 1020057020422

Country of ref document: KR

Ref document number: PA/a/2005/011558

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20048114064

Country of ref document: CN

Ref document number: 2004760535

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004236652

Country of ref document: AU

Date of ref document: 20040430

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004236652

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005137190

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020057020422

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004760535

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0409821

Country of ref document: BR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWG Wipo information: grant in national office

Ref document number: 1020057020422

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004236652

Country of ref document: AU

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)