WO2004094700A1 - Metal particles and method for producing same - Google Patents

Metal particles and method for producing same Download PDF

Info

Publication number
WO2004094700A1
WO2004094700A1 PCT/JP2004/001599 JP2004001599W WO2004094700A1 WO 2004094700 A1 WO2004094700 A1 WO 2004094700A1 JP 2004001599 W JP2004001599 W JP 2004001599W WO 2004094700 A1 WO2004094700 A1 WO 2004094700A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal particles
electrode
particles according
producing
carbon fibers
Prior art date
Application number
PCT/JP2004/001599
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Arai
Morinobu Endo
Kouichi Ichiki
Masashi Okubo
Original Assignee
Shinshu University
Shinano Kenshi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University, Shinano Kenshi Kabushiki Kaisha filed Critical Shinshu University
Priority to DE112004000296T priority Critical patent/DE112004000296T5/en
Priority to US10/545,708 priority patent/US20060065543A1/en
Priority to JP2005505685A priority patent/JP4421556B2/en
Publication of WO2004094700A1 publication Critical patent/WO2004094700A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions

Definitions

  • the present invention relates to a metal material that can be suitably used as a material for powder metallurgy, electric contacts, batteries, electromagnetic wave shields, conductive materials, friction material contacts, sliding materials, and the like, and a method for producing the same.
  • composite materials in which carbon nanotubes or carbon nanofibers (hereinafter referred to as fine carbon fibers) are dispersed in a metal are known.
  • the composite material disclosed in Japanese Patent Application Laid-Open No. 2000-224304 is obtained by mixing fine carbon fibers and metal powder and sintering them to form a block.
  • fine carbon fibers are extremely fine with a diameter of about 5 to 50 nm, while metal powders generally have a diameter in the range of 200 to 100 nm.
  • the diameter of the fine carbon fiber is an order of magnitude larger. If these two materials are simply mixed, uniform mixing is difficult.
  • the metal powder is first dissolved in an acid solution.
  • an acid solution For example, copper powder is dissolved in hydrochloric acid, sulfuric acid, or nitric acid. Then, fine carbon fibers are dispersed in this solution, and then dried and sintered to obtain a composite material.
  • the step of dissolving the metal powder and further drying and sintering the acid solution in which the fine carbon fibers are dispersed is extremely troublesome and requires a long time.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide metal particles in which fine carbon fibers are uniformly dispersed, and a method for producing the same. Disclosure of the invention
  • the method for producing metal particles according to the present invention comprises the steps of: electrolyzing an electrolytic solution in which fine carbon fibers are dispersed, and depositing metal particles mixed with fine carbon fibers on a force source electrode; Separating the power source electrode from the force source electrode.
  • the method includes a step of collecting, washing, and drying the separated metal particles.
  • the present invention is characterized in that the metal particles are precipitated in the range of several hundred nm to several tens of m in average particle diameter by adjusting the electrolysis conditions.
  • the metal particles can be copper metal particles.
  • the force source electrode on which the metal particles are deposited is immersed in acetone, and the metal particles are separated by irradiating ultrasonic waves.
  • compressed air may be blown to the cathode electrode on which the metal particles are deposited, or impact or vibration may be applied to the force electrode electrode during electrolysis to separate the metal particles from the cathode electrode.
  • a dispersant comprising an organic compound to disperse the fine carbon fibers in the electrolytic solution.
  • Polyacrylic acid having a molecular weight of 500 or more can be suitably used as the dispersant.
  • an electrode having a roughened surface can be used as the force sword electrode.
  • the metal particles according to the present invention are produced by any one of the production methods described above.
  • various composite materials can be obtained by melting the aggregate of the metal particles.
  • An aqueous solution, a molten salt, or an ionic liquid can be used as the electrolyte.
  • FIG. 1 is a scanning electron micrograph of metal particles deposited on a force source electrode in Example 1
  • FIG. 2 is an enlarged view of FIG. 1
  • FIG. 4 is an enlarged view of FIG. 3
  • FIG. 5 is a scanning electron microscope photograph of the metal particles deposited on the force source electrode in Example 3.
  • FIG. 6 is an electron micrograph
  • FIG. 6 is a scanning electron micrograph of metal particles deposited on the force source electrode in Example 4
  • FIG. 7 is a scanning electron micrograph of metal particles deposited on the force source electrode in Example 5.
  • FIG. 8 is a scanning electron micrograph of the metal particles deposited on the force sword electrode in Example 6
  • FIG. 9 is a scanning electron micrograph of the metal particles deposited on the force sword electrode in Example 7.
  • 5 is a scanning electron micrograph of metal particles.
  • the method for producing metal particles according to the present invention includes the steps of: electrolyzing an electrolytic solution in which fine carbon fibers are dispersed, thereby precipitating metal particles mixed with fine carbon fibers on a force source electrode. Separating the deposited metal particles from above the cathode electrode.
  • the required metal particles can be obtained by collecting, washing, and drying the separated metal particles.
  • metal particles having an average particle size of several hundred nm to several tens m can be precipitated.
  • the optimum value of the current density is selected in consideration of the particle size and productivity.
  • Electrolytic copper is used as the anode electrode in the electrolytic cell to supply copper ions during electrolysis.
  • a metal other than copper, for example, lead may be used as the anode electrode, and copper ions may be supplied from the outside.
  • the electrolytic solution during the electrolysis is stirred by a pump, and at the same time, the electrolytic solution concentration and the component amount are controlled so as to have a predetermined ratio.
  • the metal particles can be separated by immersing the cathode electrode in acetone and irradiating it with ultrasonic waves.
  • the metal particles may be separated from the cathode electrode by blowing compressed air to the force source electrode on which the metal particles are deposited, or by applying an impact or vibration to the force source electrode during electrolysis.
  • An organic or inorganic compound such as thiourea, gelatin, tungsten, or chloride may be added to the electrolytic solution in order to adjust the particle size and strength of the precipitated particles and the separability from the cathode electrode.
  • titanium for the force sword electrode, which has poor adhesion of the metal to be precipitated and easily separates the precipitated particles. Further, it is desirable that the surface of the force sword electrode be roughened in order to make the precipitated metal particles.
  • niobium, tantalum, or platinum fixed to the surface of titanium in the form of microprojections can be suitably used for the force source electrode.
  • a dispersant composed of an organic compound may be added.
  • polyacrylic acid having a molecular weight of 500 or more can be suitably used.
  • the particle size of the CNT or CNF-modified metal particles produced depends on the metal ion concentration in the electrolyte, the electrolysis current density, the diameter of the CNT or CNF fiber and its length in correlation.
  • the type of metal of the metal particles is not limited to copper.
  • Various composite materials can be obtained by melting the aggregate of the metal particles.
  • various additives may be added to the metal particles to form a composite material.
  • a composite material in which the blending amount of the fine carbon fibers is controlled can be realized by appropriately controlling and mixing the mixing ratio of the metal particles mixed with the fine carbon fibers and the metal particles not containing the fine carbon fibers.
  • it can be used as a material for various composite materials, such as being mixed with a resin.
  • means for producing these composite materials means such as resin molding, sintering, metal injection molding and the like can be used.
  • the metal particles obtained as described above are extremely fine particles of several hundred nm to several tens of m, and fine carbon fibers are mixed in each metal particle. Therefore, the composite material obtained by melting the aggregate of these metal particles contains fine carbon fibers uniformly mixed therein.
  • such composite materials can be used in a variety of applications, such as bearings that require mobility, electrodes and electrical contacts that require high electrical conductivity, and heat dissipation mechanisms that require high thermal conductivity.
  • PA5000 is polyacrylic acid with a molecular weight of 5000, and CNF is carbon nanofiber: fine carbon fiber.
  • PA5000 is polyacrylic acid with a molecular weight of 5000, and CNF is carbon fiber: fine carbon fiber.
  • Example 1 As is clear from Example 1 and Example 2, a granular composite can be obtained by increasing the current density and making it slightly burnish. It can also be seen that the size of the granular material can be controlled by changing the electrolysis conditions (electrolysis time).
  • Example 3 As is clear from Example 1 and Example 2, a granular composite can be obtained by increasing the current density and making it slightly burnish. It can also be seen that the size of the granular material can be controlled by changing the electrolysis conditions (electrolysis time).
  • PA5000 is polyacrylic acid with a molecular weight of 5000
  • the CNF content in the CU-CNF composite can be increased by increasing the CNF content in the electrolytic solution.
  • the particle size of metal particles can be adjusted from an extremely fine particle size of several hundred nm to several tens of meters / m, which is easy to handle, and the amount of fine carbon fibers mixed can be controlled. It is also possible.

Abstract

Metal particles in which microfine carbon fibers are uniformly dispersed and a method for producing such metal particles are disclosed. The method is characterized by comprising a step wherein metal particles including microfine carbon fibers mixed therein are deposited on a cathode by electrolyzing an electrolytic solution in which the microfine carbon fibers are dispersed, and a step wherein the deposited metal particles are separated from the cathode. The separated metal particles are collected, cleaned and dried.

Description

明 細 書  Specification
金属粒子およびその製造方法 技術分野 Metal particles and method for producing the same
本発明は、 粉末冶金、 電気接点、 電池、 電磁波シールド、 導電材、 摩擦 材接点、 摺動材等の材料として好適に用いることのできる金属材料および その製造方法に関する。 背景技術  The present invention relates to a metal material that can be suitably used as a material for powder metallurgy, electric contacts, batteries, electromagnetic wave shields, conductive materials, friction material contacts, sliding materials, and the like, and a method for producing the same. Background art
金属内にカーボンナノチューブまたは力一ボンナノファイバー (以下こ れらを微細炭素繊維という) を分散させた複合材料が知られている。 特開 2 0 0 0 _ 2 2 3 0 0 4号に示される複合材料は、 微細炭素繊維と 金属粉体とを混合し、 焼結してブロック状となしたものである。  Composite materials in which carbon nanotubes or carbon nanofibers (hereinafter referred to as fine carbon fibers) are dispersed in a metal are known. The composite material disclosed in Japanese Patent Application Laid-Open No. 2000-224304 is obtained by mixing fine carbon fibers and metal powder and sintering them to form a block.
ところで、 微細炭素繊維は、 直径が 5〜 5 0 n m程度と極めて微細であ り、 一方金属粉体は、 2 0 0ないし 1 0 0 0 n mの範囲の直径を有するも のが一般的であり、 微細炭素繊維の直径よりも 1桁大きい。 これら 2つの 材料を単純に混合すると、 均一な混合が困難である。  By the way, fine carbon fibers are extremely fine with a diameter of about 5 to 50 nm, while metal powders generally have a diameter in the range of 200 to 100 nm. However, the diameter of the fine carbon fiber is an order of magnitude larger. If these two materials are simply mixed, uniform mixing is difficult.
そこで、上記従来のものにあっては、まず、金属粉体を酸溶液に溶かす。 例えば銅粉末を塩酸、 硫酸、 または硝酸に溶かす。 そしてこの溶液に微細 炭素繊維を分散させ、 次いで乾燥、 焼結させるようにして複合材料を得て いる。  Then, in the above-mentioned conventional one, the metal powder is first dissolved in an acid solution. For example, copper powder is dissolved in hydrochloric acid, sulfuric acid, or nitric acid. Then, fine carbon fibers are dispersed in this solution, and then dried and sintered to obtain a composite material.
しかし、上記従来の複合材料の製造方法にあっては、金属粉体を溶解し、 さらに微細炭素繊維を分散させた酸溶液を乾燥、 焼結させる工程が極めて 厄介であり、長時間を要し、またコス卜がかかるという課題がある。また、 量が多い場合、 微細炭素繊維を均一に分散させにくいという課題がある。 そこで本発明は上記課題を解決すべくなされたものであり、 その目的と するところは、 微細炭素繊維を均一に分散させた金属粒子およびその製造 方法を提供するにある。 発明の開示 However, in the above-mentioned conventional method for producing a composite material, the step of dissolving the metal powder and further drying and sintering the acid solution in which the fine carbon fibers are dispersed is extremely troublesome and requires a long time. In addition, there is a problem that costs are high. In addition, when the amount is large, there is a problem that it is difficult to uniformly disperse the fine carbon fibers. Therefore, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide metal particles in which fine carbon fibers are uniformly dispersed, and a method for producing the same. Disclosure of the invention
本発明に係る金属粒子の製造方法は、 微細炭素繊維を分散した電解液を 電解して、 力ソード電極上に、 微細炭素繊維が混入した金属粒子を析出さ せる工程と、 該析出した金属粒子を力ソード電極上から分離する工程とを 含むことを特徴とする。  The method for producing metal particles according to the present invention comprises the steps of: electrolyzing an electrolytic solution in which fine carbon fibers are dispersed, and depositing metal particles mixed with fine carbon fibers on a force source electrode; Separating the power source electrode from the force source electrode.
また、 分離した金属粒子を回収、 洗浄、 乾燥する工程を含むことを特徴 とする。  In addition, the method includes a step of collecting, washing, and drying the separated metal particles.
また、 電解条件を調節して金属粒子を平均粒径数百 n m〜数十 mの範 囲に析出させることを特徴とする。  Further, the present invention is characterized in that the metal particles are precipitated in the range of several hundred nm to several tens of m in average particle diameter by adjusting the electrolysis conditions.
金属粒子は銅の金属粒子とすることができる。  The metal particles can be copper metal particles.
また、 前記金属粒子が析出した力ソード電極をアセトン中に浸潰し、 超 音波を照射することによって金属粒子を分離させることを特徴とする。 あるいは、前記金属粒子が析出したカソード電極に圧縮空気を吹き付け、 もしくは電解中の力ソード電極に衝撃または振動を加えて金属粒子をカソ 一ド電極上から分離するようにしてもよい。  Further, the force source electrode on which the metal particles are deposited is immersed in acetone, and the metal particles are separated by irradiating ultrasonic waves. Alternatively, compressed air may be blown to the cathode electrode on which the metal particles are deposited, or impact or vibration may be applied to the force electrode electrode during electrolysis to separate the metal particles from the cathode electrode.
また、 有機化合物からなる分散剤を添加して微細炭素繊維を電解液中に 分散させると好適である。  Further, it is preferable to add a dispersant comprising an organic compound to disperse the fine carbon fibers in the electrolytic solution.
前記分散剤に分子量が 5 0 0 0以上のポリアクリル酸を好適に用いるこ とができる。  Polyacrylic acid having a molecular weight of 500 or more can be suitably used as the dispersant.
また、 力ソード電極に表面を粗面化した電極を用いることができる。 また、 本発明に係る金属粒子は、 上記いずれかの製造方法によって製造 されることを特徴とする。  Further, an electrode having a roughened surface can be used as the force sword electrode. Further, the metal particles according to the present invention are produced by any one of the production methods described above.
また、 上記の金属粒子の集合体を溶融することによって種々の複合材料 を得ることができる。  In addition, various composite materials can be obtained by melting the aggregate of the metal particles.
また電解液として水溶液、 溶融塩、 イオン性液体が利用できる。 図面の簡単な説明  An aqueous solution, a molten salt, or an ionic liquid can be used as the electrolyte. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1で力ソード電極上に析出した金属粒子の走査型電子顕 微鏡写真であり、 図 2は、 図 1の拡大図であり、 図 3は、 実施例 2でカソ 一ド電極上に析出した金属粒子の走査型電子顕微鏡写真であり、 図 4は、 図 3の拡大図であり、 図 5は、 実施例 3で力ソード電極上に析出した金属 粒子の走査型電子顕微鏡写真であり、 図 6は、 実施例 4で力ソード電極上 に析出した金属粒子の走査型電子顕微鏡写真であり、 図 7は、 実施例 5で 力ソード電極上に析出した金属粒子の走査型電子顕微鏡写真であり、 図 8 は、 実施例 6で力ソード電極上に析出した金属粒子の走査型電子顕微鏡写 真であり、 図 9は、 実施例 7で力ソード電極上に析出した金属粒子の走査 型電子顕微鏡写真である。 発明を実施するための最良の形態 FIG. 1 is a scanning electron micrograph of metal particles deposited on a force source electrode in Example 1, FIG. 2 is an enlarged view of FIG. 1, and FIG. 4 is an enlarged view of FIG. 3, and FIG. 5 is a scanning electron microscope photograph of the metal particles deposited on the force source electrode in Example 3. FIG. 6 is an electron micrograph, FIG. 6 is a scanning electron micrograph of metal particles deposited on the force source electrode in Example 4, and FIG. 7 is a scanning electron micrograph of metal particles deposited on the force source electrode in Example 5. FIG. 8 is a scanning electron micrograph of the metal particles deposited on the force sword electrode in Example 6, and FIG. 9 is a scanning electron micrograph of the metal particles deposited on the force sword electrode in Example 7. 5 is a scanning electron micrograph of metal particles. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の好適な実施の形態を詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail.
本発明に係る金属粒子の製造方法は、 上記のように、 微細炭素繊維を分 散した電解液を電解して、 力ソード電極上に、 微細炭素繊維が混入した金 属粒子を析出させる工程と、 該析出した金属粒子をカソード電極上から分 離する工程とを含むことを特徴とする。  As described above, the method for producing metal particles according to the present invention includes the steps of: electrolyzing an electrolytic solution in which fine carbon fibers are dispersed, thereby precipitating metal particles mixed with fine carbon fibers on a force source electrode. Separating the deposited metal particles from above the cathode electrode.
分離した金属粒子を回収、 洗浄、 乾燥することによって所要の金属粒子 を得ることができる。  The required metal particles can be obtained by collecting, washing, and drying the separated metal particles.
電流密度や電解時間などの電解条件を調節することによって平均粒径数 百 n m〜数十 mの範囲の金属粒子を析出させることができる。  By adjusting electrolysis conditions such as current density and electrolysis time, metal particles having an average particle size of several hundred nm to several tens m can be precipitated.
電流密度は粒径や生産性を考慮して最適値を選択する。  The optimum value of the current density is selected in consideration of the particle size and productivity.
大量に生産する場合は、 例えば銅の電解液の場合、 電解槽に硫酸銅水溶 液と硫酸を主成分とする電解液を入れ、 C N Tまたは C N Fを、 有機化合 物を分散剤として電解液に分散させる。 電解槽中ではアノード電極として 電気銅を使用し、 電解中の銅イオンの補給を行う。 電解液への銅イオンの 補給は、 銅以外の金属、 例えば鉛をアノード電極として使用し、 外部から 銅ィォンを補給しても構わない。  In the case of mass production, for example, in the case of a copper electrolytic solution, put an aqueous solution of copper sulfate aqueous solution and sulfuric acid as a main component in an electrolytic cell and disperse CNT or CNF in the electrolytic solution using an organic compound as a dispersant. Let it. Electrolytic copper is used as the anode electrode in the electrolytic cell to supply copper ions during electrolysis. For the supply of copper ions to the electrolyte, a metal other than copper, for example, lead may be used as the anode electrode, and copper ions may be supplied from the outside.
なお、 電解中の電解液はポンプにより撹拌されると同時に、 電解液濃度 および成分量も所定の比率となるように制御する。  The electrolytic solution during the electrolysis is stirred by a pump, and at the same time, the electrolytic solution concentration and the component amount are controlled so as to have a predetermined ratio.
析出した金属粒子を力ソード電極上から分離するには、 金属粒子が析出 したカソード電極をアセトン中に浸漬し、 超音波を照射することによって 金属粒子を分離できる。 To separate the deposited metal particles from the force electrode, The metal particles can be separated by immersing the cathode electrode in acetone and irradiating it with ultrasonic waves.
あるいは、前記金属粒子が析出した力ソード電極に圧縮空気を吹き付け、 もしくは電解中の力ソード電極に衝撃または振動を加えて金属粒子をカソ 一ド電極上から分離するようにしてもよい。  Alternatively, the metal particles may be separated from the cathode electrode by blowing compressed air to the force source electrode on which the metal particles are deposited, or by applying an impact or vibration to the force source electrode during electrolysis.
析出粒子の粒径や強度、 およびカソ一ド電極からの分離性を調整するた め、 電解液にチォ尿素、 ゼラチン、 タングステン、 塩化物等の有機、 無機 化合物を添加するとよい。  An organic or inorganic compound such as thiourea, gelatin, tungsten, or chloride may be added to the electrolytic solution in order to adjust the particle size and strength of the precipitated particles and the separability from the cathode electrode.
力ソード電極には、 析出する金属の密着性が悪く、 析出粒子を分離しや すいチタンを使用すると好適である。 また力ソード電極の表面は析出する 金属を粒子化するため表面を粗面化しておくことが望ましい。 例えば、 力 ソード電極に、 ニオブ、 タンタル、 白金をチタンの表面に微小突起状に固 定したものを好適に使用することができる。  It is preferable to use titanium for the force sword electrode, which has poor adhesion of the metal to be precipitated and easily separates the precipitated particles. Further, it is desirable that the surface of the force sword electrode be roughened in order to make the precipitated metal particles. For example, niobium, tantalum, or platinum fixed to the surface of titanium in the form of microprojections can be suitably used for the force source electrode.
微細炭素繊維を電解液に分散させるには、 有機化合物からなる分散剤を 添加するようにするとよい。 この分散剤には分子量が 5 0 0 0以上のポリ ァクリル酸を好適に用いることができる。  In order to disperse the fine carbon fibers in the electrolytic solution, a dispersant composed of an organic compound may be added. For this dispersant, polyacrylic acid having a molecular weight of 500 or more can be suitably used.
生産される、 C N Tまたは C N Fで修飾された金属粒子の粒径は、 電解 液中の金属イオン濃度、 電解電流密度、 C N Tまたは C N Fの繊維直径及 びその長さが相互に関連して決まる。 なお、 金属粒子の金属の種類は銅 に限定されるものではない。  The particle size of the CNT or CNF-modified metal particles produced depends on the metal ion concentration in the electrolyte, the electrolysis current density, the diameter of the CNT or CNF fiber and its length in correlation. The type of metal of the metal particles is not limited to copper.
上記金属粒子の集合体を溶融することによって種々の複合材料が得られ る。 この場合金属粒子に各種添加材を添加して複合材料としてもよい。 例えば、 上記微細炭素繊維が混入した金属粒子と、 微細炭素繊維を含ま ない金属粒子の配合比を適宜に制御し、 混合することで、 微細炭素繊維の 配合量を制御した複合材料が実現できる。  Various composite materials can be obtained by melting the aggregate of the metal particles. In this case, various additives may be added to the metal particles to form a composite material. For example, a composite material in which the blending amount of the fine carbon fibers is controlled can be realized by appropriately controlling and mixing the mixing ratio of the metal particles mixed with the fine carbon fibers and the metal particles not containing the fine carbon fibers.
その他、 樹脂と混合するなど、 種々の複合材料の材料として用いること ができる。  In addition, it can be used as a material for various composite materials, such as being mixed with a resin.
これら複合材料の生産手段としては、 樹脂成形、 焼結、 メタル ·インジ ェクシヨン ·モールディングなどの手段が利用できる。 上記のようにして得られる金属粒子は数百 nm〜数十^ mの極めて微細 なものであり、 しかも各金属粒子に微細炭素繊維が混入している。 したが つて、 これら金属粒子の集合体を溶融して得られる複合材料中には、 微細 炭素繊維が均一に混入されたものとなる。 As means for producing these composite materials, means such as resin molding, sintering, metal injection molding and the like can be used. The metal particles obtained as described above are extremely fine particles of several hundred nm to several tens of m, and fine carbon fibers are mixed in each metal particle. Therefore, the composite material obtained by melting the aggregate of these metal particles contains fine carbon fibers uniformly mixed therein.
また、 電解液への微細炭素繊維の分散量、 電解条件などを変えることに よって、 種々の微細炭素繊維の混入量、 粒径の金属粒子が得られるから、 これら金属粒子の集合体を溶融することによって得られる複合材料中の微 細炭素繊維量も任意にコントロールすることが可能となる。  In addition, by changing the amount of fine carbon fibers dispersed in the electrolytic solution, the electrolysis conditions, and the like, various amounts of fine carbon fibers can be mixed and metal particles having a particle size can be obtained. Accordingly, the amount of fine carbon fibers in the obtained composite material can be arbitrarily controlled.
このような複合材料は、 CNTまたは CNFの特質を生かして、 搢動性 が必要な軸受、 高い電気伝導率が必要な電極や電気接点、 高い熱伝導率の 必要な放熱機構など、 多様な用途に利用可能である。  By utilizing the properties of CNT or CNF, such composite materials can be used in a variety of applications, such as bearings that require mobility, electrodes and electrical contacts that require high electrical conductivity, and heat dissipation mechanisms that require high thermal conductivity. Available to
00 1 6  00 1 6
実施例 1  Example 1
CuS04 · 5H20 0.85M CuS0 4 · 5H 2 0 0.85M
II 2 SO 4 ' 0.55M  II 2 SO 4 '0.55M
PA5000 2 X 10— 5 M PA5000 2 X 10— 5 M
CNF 2 g/L  CNF 2 g / L
(なお、 PA5000は分子量 5000のポリアクリル酸、 CNFはカーボン ナノファイバー:微細炭素繊維)  (Note that PA5000 is polyacrylic acid with a molecular weight of 5000, and CNF is carbon nanofiber: fine carbon fiber.)
上記電解液を用いて、 撹拌下、 2 5°C、 5 A/dm2の電流密度で 5分 間電解を行った場合に、 カソ一ド電極の表面に析出した皮膜の走査型電子 顕微鏡写真を図 1、 図 2に示す。 図 1、 図 2に見られるように、 粒径約 2 〜3 の極めて微細な球状の銅粒に CNFが多数取り込まれた、 ゥニ状 の外観を呈する C u-CNF複合物が形成されている。 これら複合物は、圧 縮空気の吹き付けゃァセトン中での超音波照射により容易にカソード電極 から分離し、 粒子化できた。 実施例 2 CuS04 · 5H20 0.85M Using the above electrolyte solution, stirring, 2 when 5 ° C, 5 was carried out for 5 minutes electrolysis at a current density of A / dm 2, scanning electron micrographs of a film deposited on the surface of the cathode one cathode electrode Figures 1 and 2 show the results. As can be seen in Fig. 1 and Fig. 2, a Cu-CNF composite with a ゥ -like appearance was formed, in which a large amount of CNF was incorporated into extremely fine spherical copper particles with a particle size of about 2-3. I have. These composites could be easily separated from the cathode electrode and formed into particles by ultrasonic irradiation in compressed air blown acetone. Example 2 CuS0 4 · 5H 2 0 0.85M
II 2 SO 4 0.55M II 2 SO 4 0.55M
PA5000 2X 10— 5M PA5000 2X 10— 5 M
CNF 2 gZL  CNF 2 gZL
(なお、 PA5000は分子量 5000のポリアクリル酸、 CNFはカーボン ファイバー:微細炭素繊維)  (Note that PA5000 is polyacrylic acid with a molecular weight of 5000, and CNF is carbon fiber: fine carbon fiber.)
上記電解液を用いて、 撹拌下、 2 5° (:、 5 A/dm2の電流密度で 2 0 分間電解を行った場合に、 カソード電極の表面に析出した皮膜の走査型電 子顕微鏡写真を図 3、 図 4に示す。 図 3、 図 4に見られるように、 粒径約 1 0〜 30 の微細な球状の銅粒に CNFが多数取り込まれた、 ゥニ状 の外観を呈する C u-CNF複合物が形成されている。 これら複合物は、圧 縮空気の吹き付けゃァセトン中での超音波照射により容易にカソード電極 から分離し、 粒子化できた。 Scanning electron micrograph of the film deposited on the surface of the cathode electrode when electrolysis was performed for 20 minutes at a current density of 25 ° (: 5 A / dm 2) with stirring using the above electrolyte. These are shown in Figures 3 and 4. As can be seen in Figures 3 and 4, a large number of CNFs are incorporated into fine spherical copper particles with a particle size of about 10 to 30. The u-CNF composites were formed, and these composites could be easily separated from the cathode electrode and formed into particles by ultrasonic irradiation in compressed air blown acetone.
実施例 1、 実施例 2から明らかなように、 電流密度を大きめにして、 ャ ケめっき気味にすることによって粒状の複合物とすることができる。 また 電解条件 (電解時間) を変えることによって粒状物の大きさを制御できる ことがわかる。 実施例 3  As is clear from Example 1 and Example 2, a granular composite can be obtained by increasing the current density and making it slightly burnish. It can also be seen that the size of the granular material can be controlled by changing the electrolysis conditions (electrolysis time). Example 3
CuS04 · 5H20 2 2 0 g/L CuS0 4 · 5H 2 0 2 2 0 g / L
II 2 SO 4 5 5 g/L II 2 SO 4 5 5 g / L
PA5000 0. 2 5 g/L  PA5000 0.2 5 g / L
C F 1 0 g/L  C F 10 g / L
(なお、 PA5000は分子量 5000のポリアクリル酸)  (Note that PA5000 is polyacrylic acid with a molecular weight of 5000)
上記電解液を用いて、 撹拌下、 2 5°C、 4 0 AZdm2の電流密度で 1 0分間電解を行った場合に、 力ソード電極の表面に析出した皮膜の走査型 電子顕微鏡写真を図 5に示す。 図 5に見られるように、 粒径約 1 0〜3 0 W A scanning electron micrograph of the film deposited on the surface of the force source electrode when electrolysis was performed for 10 minutes at 25 ° C and a current density of 40 AZdm 2 with stirring using the above electrolytic solution. See Figure 5. As can be seen in Fig. 5, the particle size is about 10 to 30 W
7  7
H mの微細な球状の銅粒に C N Fが多数取り込まれた、 ゥニ状の外観を呈 する C U- CNF複合物が形成されている。この複合物中における CN Fの 含量を計測したところ、 約 7 vol%であった。 実施例 4 A large number of CNFs are incorporated into fine spherical copper particles of Hm to form a CU-CNF composite having a pinion-like appearance. When the content of CNF in this composite was measured, it was about 7 vol%. Example 4
CuS04 · 5H20 2 2 0 g/L CuS0 4 · 5H 2 0 2 2 0 g / L
II 2 SO 4 5 5 g/L II 2 SO 4 5 5 g / L
PA5000 0. 2 5 g/L  PA5000 0.2 5 g / L
CNF 2 0 g/L  CNF 20 g / L
上記電解液を用いて、 撹拌下、 2 5° (:、 40 A/dm2の電流密度で 1 0分間電解を行った場合に、 力ソード電極の表面に析出した皮膜の走査型 電子顕微鏡写真を図 6に示す。 図 6に見られるように、 粒径約 1 0〜 3 0 mの微細な球状の銅粒に C N Fが多数取り込まれた、 ゥニ状の外観を呈 する C u- CNF複合物が形成されている。この複合物中における CN Fの 含有量を計測したところ、 約 1 5vol%であった。 Scanning electron micrograph of a film deposited on the surface of a force source electrode when electrolysis was performed for 10 minutes at a current density of 25 ° (:, 40 A / dm 2) with stirring using the above electrolytic solution. Fig. 6. As can be seen in Fig. 6, Cu-CNF has a ゥ -like appearance in which a large amount of CNF is incorporated into fine spherical copper particles having a particle size of about 10 to 30 m. A complex was formed, and the content of CNF in the complex was measured to be about 15 vol%.
実施例 3、 4から明らかなように、 電解液中の CNF含有量を増加させ ることによって、 C U- CNF複合物中の CNF含有量を増加させることが できる。 実施例 5  As is clear from Examples 3 and 4, the CNF content in the CU-CNF composite can be increased by increasing the CNF content in the electrolytic solution. Example 5
CuS04 · 5H20 1 g/L CuS0 4 · 5H 2 0 1 g / L
H2S04 1 5 0 g/L H 2 S0 4 1 5 0 g / L
ポリオキシエチレン ( 1 0) ォクチルフエ二ルエーテル (分散剤)  Polyoxyethylene (10) octyl phenyl ether (dispersant)
2 g  2 g
CNF 2 0 g/L  CNF 20 g / L
上記電解液を用いて、 撹拌下、 2 5°C、 1 0 A/dm2の電流密度で 1 0分間電解を行った場合に、 カソ一ド電極の表面に析出した皮膜の走査型 電子顕微鏡写真を図 7に示す。 本実施例では、 実施例 1〜4で用いた CN Fよりも外周表面の活性の高い CNFを用いた。 このような CNFを用い ることによって、 図 7に見られるように、 CNF表面に銅が数珠 (連玉) 状に付着した C u - C N F複合物が形成されている。 実施例 6 Using the above electrolyte solution, stirring, 2 when 5 ° C, 1 0 was for 10 minutes electrolysis at a current density of A / dm 2, scanning of the film deposited on the surface of the cathode one cathode electrode An electron micrograph is shown in FIG. In this example, CNF having higher activity on the outer peripheral surface than the CNF used in Examples 1 to 4 was used. By using such a CNF, as shown in Fig. 7, a Cu-CNF composite with copper beads attached to the surface of the CNF is formed. Example 6
CuS04 · 5H20 1 g CuS0 4 · 5H 2 0 1 g
H2S04 50 g/L H 2 S0 4 50 g / L
ポリオキシエチレン ( 1 0) ォクチルフエニルエーテル (分散剤)  Polyoxyethylene (10) octylphenyl ether (dispersant)
2 g  2 g
CNF 20 g/L  CNF 20 g / L
上記電解液を用いて、 撹拌下、 2 5°C、 40 A/dm2の電流密度で 1 0分間電解を行った場合に、 力ソード電極の表面に析出した皮膜の走査型 電子顕微鏡写真を図 8に示す。 本実施例では、 実施例 1〜4で用いた CN Fよりも外周表面の活性の高い CNFを用いた。 このような CNFを用い ることによって、 図 8に見られるように、 CNF表面に銅が樹枝状に付着 した C U- CNF複合物が形成されている。 実施例 7 Using the above electrolyte solution, under stirring, in the case of performing 1 0 minute electrolysis at 2 5 ° C, 40 current density A / dm 2, a scanning electron micrograph of a film deposited on the surface of the force cathode electrode See Figure 8. In this example, CNF having higher activity on the outer peripheral surface than the CNF used in Examples 1 to 4 was used. By using such a CNF, as shown in FIG. 8, a CU-CNF composite in which copper is attached in a dendritic manner to the CNF surface is formed. Example 7
Figure imgf000010_0001
Figure imgf000010_0001
CNF 10 g/L  CNF 10 g / L
PA5000 0. 5 g/L  PA5000 0.5 g / L
上記電解液を用いて、 撹拌下、 2 5°C、 40 A/ dm2の電流密度で 1 0分間電解を行った場合に、 力ソード電極の表面に析出した皮膜の走査型 電子顕微鏡写真を図 9に示す。 このように銅以外に金属でも電解析出可能 な金属であれば、 CNFとの複合電解粉が得られる。 発明の効果 Using the above electrolyte solution, under stirring, in the case of performing 1 0 minute electrolysis at 2 5 ° C, 40 current density A / dm 2, a scanning electron micrograph of a film deposited on the surface of the force cathode electrode Figure 9 shows. In this way, it is possible to electrolytically deposit metals other than copper If it is a suitable metal, a composite electrolytic powder with CNF can be obtained. The invention's effect
以上のように本発明によれば、 金属粒子の粒径を数百 nmの極めて微細 なものから、 取扱いが容易な数十/ mまで調整可能であり、 さらに微細炭 素繊維の混入量を制御することも可能である。  As described above, according to the present invention, the particle size of metal particles can be adjusted from an extremely fine particle size of several hundred nm to several tens of meters / m, which is easy to handle, and the amount of fine carbon fibers mixed can be controlled. It is also possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 微細炭素繊維を分散した電解液を電解して、 力ソード電極上に、 微 細炭素繊維が混入した金属粒子を析出させる工程と、 1. Electrolyzing the electrolytic solution in which the fine carbon fibers are dispersed to precipitate metal particles mixed with the fine carbon fibers on the force source electrode;
該析出した金属粒子をカゾード電極上から分離する工程とを含むことを 特徴とする金属粒子の製造方法。  Separating the precipitated metal particles from above the cathode electrode.
2 . 分離した金属粒子を回収、 洗浄、 乾燥する工程を含むことを特徴と する請求項 1記載の金属粒子の製造方法。  2. The method for producing metal particles according to claim 1, comprising a step of collecting, washing and drying the separated metal particles.
3 . 電解条件を調節して金属粒子を平均粒径数百 n m〜数十 /z mの範囲 に析出させることを特徴とする請求項 1または 2記載の金属粒子の製造方 法。  3. The method for producing metal particles according to claim 1 or 2, wherein the electrolysis conditions are adjusted to precipitate the metal particles in an average particle size of several hundred nm to several tens / zm.
4 . 金属粒子が銅の金属粒子であることを特徴とする請求項 1〜 3いず れか 1項記載の金属粒子の製造方法。  4. The method for producing metal particles according to any one of claims 1 to 3, wherein the metal particles are copper metal particles.
5 . 前記金属粒子が析出した力ソード電極をアセトン中に浸潰し、 超音 波を照射することによって金属粒子を分離させることを特徴とする請求項 1〜 4いずれか 1項記載の金属粒子の製造方法。  5. The metal particle according to any one of claims 1 to 4, wherein the force particle electrode on which the metal particle is deposited is immersed in acetone, and the metal particle is separated by irradiating an ultrasonic wave. Production method.
6 . 前記金属粒子が析出した力ソード電極に圧縮空気を吹き付け、 もし くは電解中のカソード電極に衝撃または振動を加えて金属粒子を力ソード 電極上から分離することを特徴とする請求項 1〜 4いずれか 1項記載の金 属粒子の製造方法。  6. The method according to claim 1, wherein compressed air is blown onto the force source electrode on which the metal particles are deposited, or impact or vibration is applied to the cathode electrode during electrolysis to separate the metal particles from the force source electrode. 5. The method for producing metal particles according to any one of claims 1 to 4.
7 . 有機化合物からなる分散剤を添加して微細炭素繊維を電解液中に分 散させることを特徴とする請求項 1〜 6いずれか 1項記載の金属粒子の製 造方法。  7. The method for producing metal particles according to any one of claims 1 to 6, wherein a fine carbon fiber is dispersed in the electrolytic solution by adding a dispersant comprising an organic compound.
8 . 前記分散剤に分子量が 5 0 0 0以上のポリアクリル酸を用いること を特徴とする請求項 7記載の金属粒子の製造方法。  8. The method for producing metal particles according to claim 7, wherein polyacrylic acid having a molecular weight of 500 or more is used as the dispersant.
9 . カソード電極に表面を粗面化した電極を用いることを特徴とする請 求項 1〜 8いずれか 1項記載の金属粒子の製造方法。  9. The method for producing metal particles according to any one of claims 1 to 8, wherein an electrode having a roughened surface is used as the cathode electrode.
1 0 . 請求項 1〜9いずれか 1項記載の金属粒子の製造方法によって製 造された金属粒子。 訂正された用紙 (規則 91) 10. Metal particles produced by the method for producing metal particles according to any one of claims 1 to 9. Corrected form (Rule 91)
1 1 . 請求項 1 0記載の金属粒子の集合体を溶融することによって得ら れる複合材料。 11. A composite material obtained by melting the aggregate of metal particles according to claim 10.
訂正された用紙 (規則 91)  Corrected form (Rule 91)
PCT/JP2004/001599 2003-02-18 2004-02-13 Metal particles and method for producing same WO2004094700A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112004000296T DE112004000296T5 (en) 2003-02-18 2004-02-13 Metal particles and method of making the same
US10/545,708 US20060065543A1 (en) 2003-02-18 2004-02-13 Metal particles and method for producing same
JP2005505685A JP4421556B2 (en) 2003-02-18 2004-02-13 Metal particle and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-040308 2003-02-18
JP2003040308 2003-02-18

Publications (1)

Publication Number Publication Date
WO2004094700A1 true WO2004094700A1 (en) 2004-11-04

Family

ID=33307866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001599 WO2004094700A1 (en) 2003-02-18 2004-02-13 Metal particles and method for producing same

Country Status (4)

Country Link
US (1) US20060065543A1 (en)
JP (1) JP4421556B2 (en)
DE (1) DE112004000296T5 (en)
WO (1) WO2004094700A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054066A (en) * 2004-08-10 2006-02-23 Toray Ind Inc Conductive particle and composition for anisotropic conductive material
WO2006043431A1 (en) * 2004-10-21 2006-04-27 Shinano Kenshi Kabushiki Kaisha Composite metal article and method for preparation thereof
JP2006249484A (en) * 2005-03-09 2006-09-21 Shinshu Univ Gold plating liquid and gold plating method
EP1626110A3 (en) * 2004-07-30 2008-02-06 Shinano Kenshi Kabushiki Kaisha Metallic particle and method of producing the same
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
JP2011058027A (en) * 2009-09-07 2011-03-24 Fukuda Metal Foil & Powder Co Ltd Aggregate of electrolytic copper powder and method of producing the electrolytic copper powder
JP2015057783A (en) * 2008-11-10 2015-03-26 クライロン・グローバル・エルエルシー Solid composition having improved physical and electrical properties
CN104674327A (en) * 2015-03-03 2015-06-03 北京汽车股份有限公司 Composite coating preparation method and composite coating
JP2015214734A (en) * 2014-05-13 2015-12-03 丸祥電器株式会社 Spherical composite copper fine particle containing extra-fine carbon fiber and manufacturing method therefor
US9285192B2 (en) 2009-11-06 2016-03-15 Bourque Industries Ballistic strike plate and assembly

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932974B1 (en) * 2003-04-08 2009-12-21 삼성에스디아이 주식회사 Method for producing carbon-based composite particles for electron emission
KR101448341B1 (en) * 2012-03-19 2014-10-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Manufacturing method for electrolytic lead
CN105556617B (en) * 2013-08-01 2018-08-24 积水化学工业株式会社 Conductive filler and its manufacturing method and conductibility paste and its manufacturing method
WO2015133474A1 (en) 2014-03-05 2015-09-11 積水化学工業株式会社 Conductive filler, method for manufacturing conductive filler, and conductive paste
GB201706783D0 (en) * 2017-04-28 2017-06-14 Cambridge Entpr Ltd Composite layers, methods for their manufacture and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214291A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Mining Co Ltd Method for manufacturing electrolytic copper powder
JP2002263496A (en) * 2001-03-13 2002-09-17 Honda Motor Co Ltd Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994785A (en) * 1975-01-09 1976-11-30 Rippere Ralph E Electrolytic methods for production of high density copper powder
US4246057A (en) * 1977-02-16 1981-01-20 Uop Inc. Heat transfer surface and method for producing such surface
US4465741A (en) * 1980-07-31 1984-08-14 Sumitomo Chemical Company, Limited Fiber-reinforced metal composite material
US4724051A (en) * 1985-03-25 1988-02-09 The Dow Chemical Company Impure zinc powder, preparation thereof, and use as a selective reductant for pentachloropyridine
US4746412A (en) * 1986-07-03 1988-05-24 C. Uyemura & Co., Ltd. Iron-phosphorus electroplating bath and electroplating method using same
EP0627502B1 (en) * 1993-05-28 1999-08-11 ENTHONE-OMI, Inc. Electroplating method and apparatus
US5785837A (en) * 1996-01-02 1998-07-28 Midwest Research Institute Preparation of transparent conductors ferroelectric memory materials and ferrites
US5733429A (en) * 1996-09-10 1998-03-31 Enthone-Omi, Inc. Polyacrylic acid additives for copper electrorefining and electrowinning
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US20040151886A1 (en) * 2000-03-06 2004-08-05 Bobsein Barrett Richard Binder composition
US6346136B1 (en) * 2000-03-31 2002-02-12 Ping Chen Process for forming metal nanoparticles and fibers
US6858173B2 (en) * 2003-01-30 2005-02-22 The Regents Of The University Of California Nanocrystalline ceramic materials reinforced with single-wall carbon nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214291A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Mining Co Ltd Method for manufacturing electrolytic copper powder
JP2002263496A (en) * 2001-03-13 2002-09-17 Honda Motor Co Ltd Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626110A3 (en) * 2004-07-30 2008-02-06 Shinano Kenshi Kabushiki Kaisha Metallic particle and method of producing the same
JP2006054066A (en) * 2004-08-10 2006-02-23 Toray Ind Inc Conductive particle and composition for anisotropic conductive material
WO2006043431A1 (en) * 2004-10-21 2006-04-27 Shinano Kenshi Kabushiki Kaisha Composite metal article and method for preparation thereof
JP2006249484A (en) * 2005-03-09 2006-09-21 Shinshu Univ Gold plating liquid and gold plating method
JP4716760B2 (en) * 2005-03-09 2011-07-06 国立大学法人信州大学 Gold plating solution and gold plating method
JP2015057783A (en) * 2008-11-10 2015-03-26 クライロン・グローバル・エルエルシー Solid composition having improved physical and electrical properties
JP2011014650A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Electromagnetic shielding molding material, electromagnetic shielding molding for electronic component, electromagnetic shielding molding for building material, and method of manufacturing the electromagnetic shielding molding material
JP2011058027A (en) * 2009-09-07 2011-03-24 Fukuda Metal Foil & Powder Co Ltd Aggregate of electrolytic copper powder and method of producing the electrolytic copper powder
US9285192B2 (en) 2009-11-06 2016-03-15 Bourque Industries Ballistic strike plate and assembly
JP2015214734A (en) * 2014-05-13 2015-12-03 丸祥電器株式会社 Spherical composite copper fine particle containing extra-fine carbon fiber and manufacturing method therefor
CN104674327A (en) * 2015-03-03 2015-06-03 北京汽车股份有限公司 Composite coating preparation method and composite coating

Also Published As

Publication number Publication date
JP4421556B2 (en) 2010-02-24
DE112004000296T5 (en) 2005-12-29
US20060065543A1 (en) 2006-03-30
JPWO2004094700A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
WO2004094700A1 (en) Metal particles and method for producing same
JP4390807B2 (en) Composite metal body and method for producing the same
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
JP5551161B2 (en) Conductive solid composite material and method for obtaining the same
CN107326401A (en) A kind of preparation method of CNTs/Cu composite granules and CNTs/Cu composites
JP4094480B2 (en) Chain metal powder, method for producing the same, and conductivity imparting material using the same
JP4351120B2 (en) Method for producing metal particles
Kumar et al. Investigation on the controlled degradation and invitro mineralization of carbon nanotube reinforced AZ31 nanocomposite in simulated body fluid
CN108565132B (en) A kind of fibrous material and preparation method thereof with metal oxide nanostructure
KR100767703B1 (en) Preparation method of silver nano-powder using electrolysis
CN108640165A (en) A kind of metal oxide nanostructure composite material and preparation method
Avramović et al. The particle size distribution (PSD) as criteria for comparison of silver powders obtained by different methods of synthesis and by conditions of electrolysis
Randhawa et al. Direct electrolytic refining of end-of-life industrial copper waste scraps for production of high purity copper powder
RU2355471C1 (en) Method of nanocomposite preparation
JPH11195413A (en) Battery electrode and battery having carbon particle containing inclusion of nano-size, and their manufacture and electrolysis
KR100861698B1 (en) Metal powder producing apparatus and method to produce metal powder
JP2006063445A (en) Metal particle and method for producing the same
US20060021877A1 (en) Metallic particle and method of producing the same
JP2013185228A (en) Electrolytic copper foil and negative electrode collector for secondary battery
JP7261946B2 (en) Silver powder, method for producing the same, and conductive resin composition
Song et al. Copper-graphene composite foils via electro-deposition: A mini review
JP6225711B2 (en) Copper sulfide-coated copper powder, conductive paste, and methods for producing them
Uysal et al. Electrochemical Performance of Pulse Electrodeposited Sn-Ni/MWCNT Composite Anode for Lithium-Ion Batteries
JPH05190240A (en) Manufacture of electric brush and copper powder material for manufacturing electric brush
KR102173611B1 (en) Method of manufacturing conductive fiber composite using electroplating and conductive fiber composite manufactured thereby

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006065543

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10545708

Country of ref document: US

Ref document number: 2005505685

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10545708

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607