WO2004094106A1 - Diamond conditioning of soft chemical mechanical planarization/polishing (cmp) polishing pads - Google Patents

Diamond conditioning of soft chemical mechanical planarization/polishing (cmp) polishing pads Download PDF

Info

Publication number
WO2004094106A1
WO2004094106A1 PCT/US2003/039969 US0339969W WO2004094106A1 WO 2004094106 A1 WO2004094106 A1 WO 2004094106A1 US 0339969 W US0339969 W US 0339969W WO 2004094106 A1 WO2004094106 A1 WO 2004094106A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing pad
soft polishing
soft
cmp
diamond
Prior art date
Application number
PCT/US2003/039969
Other languages
French (fr)
Inventor
Barak Yardeni
Boaz Eldad
Philip Slutsky
Dan Doron
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Priority to EP03816708A priority Critical patent/EP1641596A1/en
Priority to AU2003297156A priority patent/AU2003297156A1/en
Publication of WO2004094106A1 publication Critical patent/WO2004094106A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/007Cleaning of grinding wheels

Definitions

  • Embodiments of the present invention relate to chemical mechanical planarization/polishing (CMP) and, in particular, to conditioning of CMP polishing pads.
  • CMP chemical mechanical planarization/polishing
  • CMP Chemical mechanical planarization/polishing
  • a typical CMP system includes a wafer carrier and a platen mounted in a housing.
  • a polishing pad is secured to the platen and the wafer to be polished is secured in the wafer carrier.
  • a typical CMP process operates as follows.
  • the wafer carrier rotates the wafer and/or the platen rotates the polishing pad.
  • Chemical slurry is applied to the surface of the polishing pad and the wafer is brought into contact with the polishing pad and is polished (or planarized).
  • the combination of applying the chemical slurry and the mechanical rotation leads to the term "chemical-mechanical planarization.”
  • polishing pad surface be clean and free of surface irregularities.
  • the process of cleaning the polishing pad is sometimes referred to a "conditioning” or "refreshing.”
  • One method of conditioning polishing pads is to abrade them with a conventional diamond-embedded abrasive disk or strip.
  • conventional diamond-embedded abrasive strips are well suited to condition "hard” polishing pads used for rough polishing, they are not well suited to condition "soft” polishing pads used for fine polishing.
  • the diamonds When a soft polishing pad is conditioned with a diamond-embedded abrasive disk, the diamonds not only remove waste material, but they also damage the polishing surface of the pad.
  • FIG. 1 is schematic diagram of a chemical mechanical planarization/polishing (CMP) polishing system according to an embodiment of the present invention
  • Figure 2 is a flowchart illustrating a process performed by a CMP polishing system in according to embodiments of the present invention
  • Figure 3 illustrates an example soft polishing pad according to an embodiment of the present invention
  • Figure 4 illustrates operation of a conditioning arm according to an embodiment of the present invention.
  • Figure 5 illustrates a diamond conditioner according to an embodiment of the present invention.
  • FIG. 1 is schematic diagram of a chemical mechanical planarization (CMP) polishing system 100 according to an embodiment of the present invention.
  • the CMP polishing system 100 includes a housing 101, a polishing head 102, a control panel 103, a platen 104, a spindle 105, a wafer 106, a base 107, a soft polishing pad 108, a conditioning arm 110, a diamond (or artificial diamond) conditioner 112, a slurry tank 114, a spindle
  • the slurry tank 114 and/or the water tank 116 may be located in or separate from the housing 101.
  • the electromechanical equipment 118 may include vertical drivers, rotational drivers, controllers, or other equipment generally used to operate arms, motors, and other devices in CMP polishing systems.
  • the platen 104 is mounted in the housing 101 and may be rotated by a motor (not shown) in the electromechanical equipment 118.
  • the polishing head 102 is mounted on the spindle 105 and may be rotated by a motor (not shown) in the electromechanical equipment 118.
  • the wafer 106 is mounted with the surface to be polished face down and away from the polishing head 102.
  • the soft polishing pad 108 mounted to the platen using an adhesive.
  • the polishing head 102 may be rotated in a direction opposite to the rotation of the polishing pad 108 may be, as shown by arrows 120 and 122.
  • the polishing head 102 may rotate while the platen 104 remains stationary.
  • the polishing head 102 may be stationary while the platen 104 rotates.
  • the slurry tank 114 delivers slurry to the surface of the soft polishing pad 108 during wafer 106 polishing.
  • the conditioning arm 110 pivots in its base 107 when conditioning the soft polishing pad 108.
  • a motor (not shown) in the electromechanical equipment 118 may move the conditioning arm 110.
  • the water tank 116 may dispense a rinsing solution, such as potable water or de-ionized (DI) water, to the surface of the soft polishing pad 108 during conditioning of the soft polishing pad 108.
  • DI de-ionized
  • FIG. 2 is a flowchart illustrating a process 200 performed by the CMP polishing system 100 according to embodiments of the present invention.
  • a machine- readable medium with machine-readable instructions thereon may be used to cause a processor to perform the process 200.
  • the process 200 is only an example process and other processes may be used.
  • the example process 200 may be used to remove metal, oxides, glass, silicon, etc.
  • the example process 200 is described with reference to wafers, the example process 200 may be used for semiconductors, memory disks, or other suitable objects requiring smoothness, planarity, fine polishing, etc., such as lenses and mirrors.
  • the head 102 holds the wafer 106 and rotates the wafer 106 against the soft polishing pad 108 as slurry from the slurry tank 114 is applied to the surface of the soft polishing pad 108 and the platen 104 applies a force to the wafer 106.
  • the head 102 disengages the wafer 106 from contact with the soft polishing pad 108 and the slurry stops flowing to the surface of the soft polishing pad 108.
  • the soft polishing pad 108 is conditioned using the diamond conditioner 112.
  • the platen 104 rotates the soft polishing pad 108, rising solution from the water tank 116 rinses the soft polishing pad 108, e.g., by supplying DI water to the surface of the soft polishing pad 108, and the conditioning arm 110 with the diamond conditioner 112 sweeps across (e.g., back and forth) the soft polishing pad 108.
  • polishing of the soft polishing pad 108 may be described in some embodiments as being performed ex situ (between wafer 106 polishings), polishing of the soft pat 108 in other embodiments may be performed in situ (while wafers 106 are being polished), or some combination of both.
  • the soft polishing pad 108 may be conditioned according to embodiments of the present invention prior to polishing any wafers 106.
  • One or a combination of the following process parameters may be modified to improve the process for soft pad 108 conditioning using the diamond conditioner 112 to ensure that the conditioning arm 110 with the diamond conditioner 112 do not destroy or significantly reduce the lifetime of the soft polishing pad 108.
  • the lifetime of the soft polishing pad 108 is significantly increased. Increased soft polishing pad 108 lifetime results in reduced labor costs and costs of parts, as well as improved processes, (e.g., soft polishing pads 108 do not have to be changed as often).
  • the conditioning arm 110 applies approximately 0.25 psi to the soft polishing pad 108 through the diamond conditioner 112 as opposed to approximately three psi applied using conventional hard polishing pad techniques.
  • the platen and thus the soft polishing pad does not rotate.
  • the rotational speed of the platen 104 and thus the soft polishing pad 108 may be approximately one hundred revolutions per minute 100 (rpm)
  • the volumetric flow rate of DI water from the DI water tank 116 may be one gallon per minute (gpm).
  • the volumetric flow rate may be anywhere from zero to approximately seven gallons per minute.
  • the down force applied to the soft polishing pad by the diamond conditioner 112 may be 0.25 psi.
  • the diamond conditioner makes at least ten sweeps. In one embodiment, the diamond conditioner 112 makes one sweep across the soft polishing pad.
  • Figure 3 illustrates the example soft polishing pad 108 according to an embodiment of the present invention.
  • the example soft polishing pad 108 includes several pores 302 and may be made from napped poromerics-porous urethane layers on a mylar or compressible urethane substrate.
  • the example soft polishing pad 108 may be a soft pad made with tangled polyester fibers coated with polyurethane.
  • the example soft polishing pad 108 may be a felt sheet of fibers impregnated with micro porous elastomer.
  • the example soft polishing pad 108 may be a porous thermoplastic resin matrix, typically polyurethane, reinforced with a fibrous network such as a felted mat of polyester fibers.
  • An example of a suitable soft pad includes any of the Politex® Series polishing pads available from Rodel Holdings in Wilmington, Delaware.
  • the soft polishing pads 108 are to be distinguished from known hard polishing pads, which include micro porous polyurethane polishing pads that are relatively hard and not as compressible when compared to other types of polishing pads and polyurethane impregnated felt polishing pads.
  • hard pads include the SUB A 1000 Series polishing pads and the SUBA® Pads available from Rodel in Phoenix, Arizona.
  • Figure 4 illustrates operation of the conditioning arm 110 according to an embodiment of the present invention.
  • the conditioning arm 110 (and the diamond conditioner 112) remain in the position 402 situated adjacent to the perimeter of the soft polishing pad 108.
  • the conditioning arm 110 is pivoted at one end by the base 107, lowered onto the soft polishing pad 108, and swept along an arc indicated by the arrows 408 from the position 402 across the surface of the soft polishing pad 108 (as shown by phantom lines) to a second position 406 adjacent to the other side of the perimeter of the soft polishing pad 108 (also shown by phantom lines).
  • FIG. 5 illustrates the diamond conditioner 112 according to an embodiment of the present invention.
  • the diamond conditioner 112 includes a base 502 having diamonds 504.
  • the base 502 may be any suitable rigid substrate.
  • the diamonds 504 may be synthetic diamonds, natural diamonds, etc.
  • the diamonds 504 may be placed on the base 502 using chemical vapor deposition (CVD).
  • the diamonds 404 may be embedded in the base 502.
  • the diamond conditioner 112 may be formed by embedding diamond particles in nickel coated on the surface of a rigid substrate according to well-known or proprietary techniques.
  • Embodiments of the invention can be implemented using hardware, software, firmware, or a combination of hardware and software.
  • the software may be stored on a computer program product (such as an optical disk, a magnetic disk, a floppy disk, etc.) or a program storage device (such as an optical disk drive, a magnetic disk drive, a floppy disk drive, etc.).

Abstract

Conditioning of chemical mechanical planarization (CMP) using conventional diamond-embedded abrasive strips are well suited to condition conventional 'hard' polishing but not soft polishing pads because the diamonds not only remove waste material, but they also damage the polishing surface of the pad. Embodiments of the present invention condition soft polishing pads using diamond strips without damaging the soft polishing pad (108).

Description

DIAMOND CONDITIONING OF SOFT CHEMICAL MECHANICAL PLANARIZATION/POLISHING (CMP) POLISHING PADS
BACKGROUND 1. Field
[0001] Embodiments of the present invention relate to chemical mechanical planarization/polishing (CMP) and, in particular, to conditioning of CMP polishing pads.
2. Discussion of Related Art [0002] Chemical mechanical planarization/polishing (CMP) is a process technology first developed in the mid-1980s to enable production of integrated circuits on substrates or wafers. CMP processes are used prepare wafers and to fabricate semiconductor devices or structures on the wafers. A CMP process may be used to planarize (i.e., make flat) a semiconductor layer on a wafer, an insulating layer on the semiconductor layer, and a conductive layer on the insulating layer in predetermined patterns.
[0003] A typical CMP system includes a wafer carrier and a platen mounted in a housing. A polishing pad is secured to the platen and the wafer to be polished is secured in the wafer carrier. A typical CMP process operates as follows. The wafer carrier rotates the wafer and/or the platen rotates the polishing pad. Chemical slurry is applied to the surface of the polishing pad and the wafer is brought into contact with the polishing pad and is polished (or planarized). The combination of applying the chemical slurry and the mechanical rotation leads to the term "chemical-mechanical planarization."
[0004] As the wafer is polished, the chemical slurry and materials removed from the wafer tend to glaze the surface of the polishing pad, making the polishing pad slick and reducing the polishing rate and efficiency. It is thus important that the polishing pad surface be clean and free of surface irregularities. The process of cleaning the polishing pad is sometimes referred to a "conditioning" or "refreshing."
[0005] One method of conditioning polishing pads is to abrade them with a conventional diamond-embedded abrasive disk or strip. Although conventional diamond-embedded abrasive strips are well suited to condition "hard" polishing pads used for rough polishing, they are not well suited to condition "soft" polishing pads used for fine polishing. When a soft polishing pad is conditioned with a diamond-embedded abrasive disk, the diamonds not only remove waste material, but they also damage the polishing surface of the pad.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally equivalent elements. The drawing in which an element first appears is indicated by the leftmost digit(s) in the reference number, in which:
[0007] Figure 1 is schematic diagram of a chemical mechanical planarization/polishing (CMP) polishing system according to an embodiment of the present invention;
[0008] Figure 2 is a flowchart illustrating a process performed by a CMP polishing system in according to embodiments of the present invention;
[0009] Figure 3 illustrates an example soft polishing pad according to an embodiment of the present invention;
[0010] Figure 4 illustrates operation of a conditioning arm according to an embodiment of the present invention; and
[0011] Figure 5 illustrates a diamond conditioner according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
[0012] Figure 1 is schematic diagram of a chemical mechanical planarization (CMP) polishing system 100 according to an embodiment of the present invention. The CMP polishing system 100 includes a housing 101, a polishing head 102, a control panel 103, a platen 104, a spindle 105, a wafer 106, a base 107, a soft polishing pad 108, a conditioning arm 110, a diamond (or artificial diamond) conditioner 112, a slurry tank 114, a spindle
115, a water tank 116, and electromechanical equipment 118. The slurry tank 114 and/or the water tank 116 may be located in or separate from the housing 101. The electromechanical equipment 118 may include vertical drivers, rotational drivers, controllers, or other equipment generally used to operate arms, motors, and other devices in CMP polishing systems.
[0013] The platen 104 is mounted in the housing 101 and may be rotated by a motor (not shown) in the electromechanical equipment 118. The polishing head 102 is mounted on the spindle 105 and may be rotated by a motor (not shown) in the electromechanical equipment 118. The wafer 106 is mounted with the surface to be polished face down and away from the polishing head 102. The soft polishing pad 108 mounted to the platen using an adhesive. During polishing of the wafer 106, the polishing head 102 may be rotated in a direction opposite to the rotation of the polishing pad 108 may be, as shown by arrows 120 and 122. Alternatively, the polishing head 102 may rotate while the platen 104 remains stationary. Alternatively still, the polishing head 102 may be stationary while the platen 104 rotates. The slurry tank 114 delivers slurry to the surface of the soft polishing pad 108 during wafer 106 polishing.
[0014] The conditioning arm 110 pivots in its base 107 when conditioning the soft polishing pad 108. A motor (not shown) in the electromechanical equipment 118 may move the conditioning arm 110. The water tank 116 may dispense a rinsing solution, such as potable water or de-ionized (DI) water, to the surface of the soft polishing pad 108 during conditioning of the soft polishing pad 108.
[0015] Figure 2 is a flowchart illustrating a process 200 performed by the CMP polishing system 100 according to embodiments of the present invention. A machine- readable medium with machine-readable instructions thereon may be used to cause a processor to perform the process 200. Of course, the process 200 is only an example process and other processes may be used. The example process 200 may be used to remove metal, oxides, glass, silicon, etc. Although the example process 200 is described with reference to wafers, the example process 200 may be used for semiconductors, memory disks, or other suitable objects requiring smoothness, planarity, fine polishing, etc., such as lenses and mirrors.
[0016] In a block 202 the head 102 holds the wafer 106 and rotates the wafer 106 against the soft polishing pad 108 as slurry from the slurry tank 114 is applied to the surface of the soft polishing pad 108 and the platen 104 applies a force to the wafer 106. In a block 204, the head 102 disengages the wafer 106 from contact with the soft polishing pad 108 and the slurry stops flowing to the surface of the soft polishing pad 108.
[0017] In a block 206, the soft polishing pad 108 is conditioned using the diamond conditioner 112. In one embodiment of the present invention, the platen 104 rotates the soft polishing pad 108, rising solution from the water tank 116 rinses the soft polishing pad 108, e.g., by supplying DI water to the surface of the soft polishing pad 108, and the conditioning arm 110 with the diamond conditioner 112 sweeps across (e.g., back and forth) the soft polishing pad 108. Although polishing of the soft polishing pad 108 may be described in some embodiments as being performed ex situ (between wafer 106 polishings), polishing of the soft pat 108 in other embodiments may be performed in situ (while wafers 106 are being polished), or some combination of both. Of course, the soft polishing pad 108 may be conditioned according to embodiments of the present invention prior to polishing any wafers 106.
[0018] One or a combination of the following process parameters may be modified to improve the process for soft pad 108 conditioning using the diamond conditioner 112 to ensure that the conditioning arm 110 with the diamond conditioner 112 do not destroy or significantly reduce the lifetime of the soft polishing pad 108. In fact, according to embodiments of the present invention, the lifetime of the soft polishing pad 108 is significantly increased. Increased soft polishing pad 108 lifetime results in reduced labor costs and costs of parts, as well as improved processes, (e.g., soft polishing pads 108 do not have to be changed as often).
[0019] In one embodiment, the conditioning arm 110 applies approximately 0.25 psi to the soft polishing pad 108 through the diamond conditioner 112 as opposed to approximately three psi applied using conventional hard polishing pad techniques..
[0020] In lαiown soft polishing pad conditioning methods, the platen and thus the soft polishing pad does not rotate. In embodiments of the present invention, the rotational speed of the platen 104 and thus the soft polishing pad 108 may be approximately one hundred revolutions per minute 100 (rpm) [0021] In known soft polishing pad conditioning methods, there may be no DI water flowing to the soft conditioning pad. In one embodiment of the present invention, the volumetric flow rate of DI water from the DI water tank 116 may may be one gallon per minute (gpm). Alternatively, the volumetric flow rate may be anywhere from zero to approximately seven gallons per minute.
[0022] In known soft polishing pad conditioning methods, there is no diamond conditioner used, thus no down force applied to a soft polishing pad In one embodiment, the down force applied to the soft polishing pad by the diamond conditioner 112 may be 0.25 psi.
[0023] In known soft polishing pad conditioning methods, no diamond conditioner is used, n known hard polishing pad conditioning methods, the diamond conditioner makes at least ten sweeps. In one embodiment, the diamond conditioner 112 makes one sweep across the soft polishing pad.
[0024] Figure 3 illustrates the example soft polishing pad 108 according to an embodiment of the present invention. The example soft polishing pad 108 includes several pores 302 and may be made from napped poromerics-porous urethane layers on a mylar or compressible urethane substrate. In an alternative embodiment, the example soft polishing pad 108 may be a soft pad made with tangled polyester fibers coated with polyurethane. In another embodiment, the example soft polishing pad 108 may be a felt sheet of fibers impregnated with micro porous elastomer. Alternatively still, the example soft polishing pad 108 may be a porous thermoplastic resin matrix, typically polyurethane, reinforced with a fibrous network such as a felted mat of polyester fibers. An example of a suitable soft pad includes any of the Politex® Series polishing pads available from Rodel Holdings in Wilmington, Delaware.
[0025] The soft polishing pads 108 according to embodiments of the present invention are to be distinguished from known hard polishing pads, which include micro porous polyurethane polishing pads that are relatively hard and not as compressible when compared to other types of polishing pads and polyurethane impregnated felt polishing pads. Examples of hard pads include the SUB A 1000 Series polishing pads and the SUBA® Pads available from Rodel in Phoenix, Arizona.
[0026] Figure 4 illustrates operation of the conditioning arm 110 according to an embodiment of the present invention. When the soft polishing pad 108 is moving and a wafer 106 is being polished, the conditioning arm 110 (and the diamond conditioner 112) remain in the position 402 situated adjacent to the perimeter of the soft polishing pad 108. After a predetermined number of wafers have been polished by the soft polishing pad 108, or when the polishing rate has been decreased due to build up of slurry and other debris, the conditioning arm 110 is pivoted at one end by the base 107, lowered onto the soft polishing pad 108, and swept along an arc indicated by the arrows 408 from the position 402 across the surface of the soft polishing pad 108 (as shown by phantom lines) to a second position 406 adjacent to the other side of the perimeter of the soft polishing pad 108 (also shown by phantom lines).
[0027] Figure 5 illustrates the diamond conditioner 112 according to an embodiment of the present invention. The diamond conditioner 112 includes a base 502 having diamonds 504. The base 502 may be any suitable rigid substrate. The diamonds 504 may be synthetic diamonds, natural diamonds, etc.
[0028] The diamonds 504 may be placed on the base 502 using chemical vapor deposition (CVD). Alternatively, the diamonds 404 may be embedded in the base 502. For example, the diamond conditioner 112 may be formed by embedding diamond particles in nickel coated on the surface of a rigid substrate according to well-known or proprietary techniques.
[0029] Embodiments of the invention can be implemented using hardware, software, firmware, or a combination of hardware and software. In implementations using software, the software may be stored on a computer program product (such as an optical disk, a magnetic disk, a floppy disk, etc.) or a program storage device (such as an optical disk drive, a magnetic disk drive, a floppy disk drive, etc.).
[0030] The above description of illustrated embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. These modifications can be made to the invention in light of the above detailed description.
[0031] In the above description, numerous specific details, such as particular processes, materials, devices, and so forth, are presented to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the embodiments of the present invention can be practiced without one or more of the specific details, or with other methods, components, etc. In other instances, well-known structures or operations are not shown or described in detail to avoid obscuring the understanding of this description.
[0032] Various operations have been described as multiple discrete operations performed in turn in a manner that is most helpful in understanding embodiments of the invention. However, the order in which they are described should not be construed to imply that these operations are necessarily order dependent or that the operations be performed in the order in which the operations are presented.
[0033] Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, process, block, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
[0034] The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Rather, the scope of embodiments of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.

Claims

CLAIMS What is claimed is:
1. A method of conditioning a chemical mechanical planarization (CMP) polishing pad, comprising: conditioning a soft polishing pad using diamond conditioner.
2. The method of claim 1 , further comprising: rotating a soft polishing pad on a platen; rinsing the soft polishing pad; and passing a diamond conditioner over the soft polishing pad.
3. The method of claim 2, further comprising: applying zero pounds per square inch (psi) to the soft polishing pad from the platen.
4. The method of claim 1, wherein passing the conditioning arm having the diamond conditioner thereon over the soft polishing pad comprises passing the diamond conditioner over the soft polishing pad during wafer polishing.
5. The method of claim 1, wherein passing the conditioning arm having the diamond conditioner thereon over the soft polishing pad comprises passing the diamond conditioner over the soft polishing pad between wafer polishings.
6. The method of claim 1, further comprising rotating a wafer against the soft polishing pad.
7. The method of claim 6, further comprising applying a slurry to the surface of the soft polishing pad.
8. A chemical mechanical planarization (CMP) system, comprising: a head mounted in a housing; a wafer mounted to the head; a platen mounted in the housing; a soft polishing pad mounted to the platen; a pad conditioning arm mounted in the housing; and a diamond conditioner mounted to the pad conditioning arm.
9. The system of claim 8, further comprising a slurry tank mounted in the housing.
10. The system of claim 9, further comprising a water tank mounted in the housing.
11. The system of claim 8, further comprising electromechanical equipment mounted in the housing.
12. A chemical mechanical planarization (CMP) apparatus, comprising: a soft polishing pad adhered to a platen in a housing; and a pad conditioning arm mounted in the housing, the pad conditioning arm having a diamond conditioner attached thereto.
13. The CMP apparatus of claim 12, wherein the soft polishing pad comprises napped poromerics-porous urethane layers on a substantially compressible substrate.
14. The CMP apparatus of claim 13, wherein the soft polishing pad comprises napped poromerics-porous urethane layers on a mylar substrate.
15. The CMP apparatus of claim 12, wherein the soft polishing pad comprises napped poromerics-porous urethane layers on a substantially compressible urethane substrate.
16. The CMP apparatus of claim 12, wherein the diamond conditioner comprises a diamond strip.
17. The CMP apparatus of claim 12, wherein the diamond strip comprises synthetic diamonds embedded in a base.
PCT/US2003/039969 2003-03-28 2003-12-15 Diamond conditioning of soft chemical mechanical planarization/polishing (cmp) polishing pads WO2004094106A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03816708A EP1641596A1 (en) 2003-03-28 2003-12-15 Diamond conditioning of soft chemical mechanical planarization/polishing (cmp) polishing pads
AU2003297156A AU2003297156A1 (en) 2003-03-28 2003-12-15 Diamond conditioning of soft chemical mechanical planarization/polishing (cmp) polishing pads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/402,578 2003-03-28
US10/402,578 US20040192178A1 (en) 2003-03-28 2003-03-28 Diamond conditioning of soft chemical mechanical planarization/polishing (CMP) polishing pads

Publications (1)

Publication Number Publication Date
WO2004094106A1 true WO2004094106A1 (en) 2004-11-04

Family

ID=32989732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/039969 WO2004094106A1 (en) 2003-03-28 2003-12-15 Diamond conditioning of soft chemical mechanical planarization/polishing (cmp) polishing pads

Country Status (7)

Country Link
US (2) US20040192178A1 (en)
EP (1) EP1641596A1 (en)
KR (1) KR100818591B1 (en)
CN (1) CN1694783A (en)
AU (1) AU2003297156A1 (en)
TW (2) TWI286502B (en)
WO (1) WO2004094106A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651386B2 (en) 2005-09-09 2010-01-26 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7658666B2 (en) 2004-08-24 2010-02-09 Chien-Min Sung Superhard cutters and associated methods
US7762872B2 (en) 2004-08-24 2010-07-27 Chien-Min Sung Superhard cutters and associated methods
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US8777699B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Superabrasive tools having substantially leveled particle tips and associated methods
US8974270B2 (en) 2011-05-23 2015-03-10 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US9011563B2 (en) 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US9138862B2 (en) 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US9199357B2 (en) 1997-04-04 2015-12-01 Chien-Min Sung Brazed diamond tools and methods for making the same
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9475169B2 (en) 2009-09-29 2016-10-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144298A (en) * 2003-11-13 2005-06-09 Seiko Epson Corp Surface washing and modification method and surface washing and modification apparatus
US20090061743A1 (en) * 2007-08-29 2009-03-05 Stephen Jew Method of soft pad preparation to reduce removal rate ramp-up effect and to stabilize defect rate
TW200929348A (en) * 2007-11-21 2009-07-01 Jian-Min Sung Examination method for trimming chemical mechanical polishing pad and related system thereof
US8758091B2 (en) 2010-04-06 2014-06-24 Massachusetts Institute Of Technology Chemical-mechanical polishing pad conditioning system
US9233451B2 (en) 2013-05-31 2016-01-12 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical polishing pad stack
US9238296B2 (en) 2013-05-31 2016-01-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Multilayer chemical mechanical polishing pad stack with soft and conditionable polishing layer
US9238295B2 (en) 2013-05-31 2016-01-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical window polishing pad
CN113183031A (en) * 2021-05-20 2021-07-30 杭州众硅电子科技有限公司 Dressing head rotating part, polishing pad dressing head and dresser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010029155A1 (en) * 2000-01-31 2001-10-11 Applied Materials, Inc. Multi-step conditioning process
US20020137436A1 (en) * 2000-01-28 2002-09-26 Lam Research Corporation System and method for controlled polishing and planarization of semiconductor wafers

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863395A (en) * 1974-02-19 1975-02-04 Shugart Associates Inc Apparatus for polishing a spherical surface on a magnetic recording transducer
US4739759A (en) * 1985-02-26 1988-04-26 Concept, Inc. Microprocessor controlled electrosurgical generator
US4927432A (en) * 1986-03-25 1990-05-22 Rodel, Inc. Pad material for grinding, lapping and polishing
US5585147A (en) * 1994-06-28 1996-12-17 Matsushita Electric Works, Ltd. Process for a surface treatment of a glass fabric
US5611943A (en) * 1995-09-29 1997-03-18 Intel Corporation Method and apparatus for conditioning of chemical-mechanical polishing pads
EP0779655A3 (en) * 1995-12-14 1997-07-16 International Business Machines Corporation A method of chemically-mechanically polishing an electronic component
US5990010A (en) * 1997-04-08 1999-11-23 Lsi Logic Corporation Pre-conditioning polishing pads for chemical-mechanical polishing
JP3676030B2 (en) * 1997-04-10 2005-07-27 株式会社東芝 Polishing pad dressing method and semiconductor device manufacturing method
JP3231659B2 (en) * 1997-04-28 2001-11-26 日本電気株式会社 Automatic polishing equipment
US5885147A (en) * 1997-05-12 1999-03-23 Integrated Process Equipment Corp. Apparatus for conditioning polishing pads
US6045435A (en) * 1997-08-04 2000-04-04 Motorola, Inc. Low selectivity chemical mechanical polishing (CMP) process for use on integrated circuit metal interconnects
KR19990074921A (en) * 1998-03-16 1999-10-05 윤종용 Polishing Pad Conditioner in Wafer Polishing Equipment
US6354915B1 (en) * 1999-01-21 2002-03-12 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6273797B1 (en) * 1999-11-19 2001-08-14 International Business Machines Corporation In-situ automated CMP wedge conditioner
US6419553B2 (en) * 2000-01-04 2002-07-16 Rodel Holdings, Inc. Methods for break-in and conditioning a fixed abrasive polishing pad
US6800020B1 (en) * 2000-10-02 2004-10-05 Lam Research Corporation Web-style pad conditioning system and methods for implementing the same
US6514127B2 (en) * 2000-11-30 2003-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. Conditioner set for chemical-mechanical polishing station
US20020100743A1 (en) * 2000-12-05 2002-08-01 Bonner Benjamin A. Multi-step polish process to control uniformity when using a selective slurry on patterned wafers
US6409580B1 (en) * 2001-03-26 2002-06-25 Speedfam-Ipec Corporation Rigid polishing pad conditioner for chemical mechanical polishing tool
TW492065B (en) * 2001-07-20 2002-06-21 United Microelectronics Corp Structure of polishing pad conditioner and method of use
US7037184B2 (en) * 2003-01-22 2006-05-02 Raytech Innovation Solutions, Llc Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US6852020B2 (en) * 2003-01-22 2005-02-08 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical—mechanical planarization of semiconductor wafers and method of making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137436A1 (en) * 2000-01-28 2002-09-26 Lam Research Corporation System and method for controlled polishing and planarization of semiconductor wafers
US20010029155A1 (en) * 2000-01-31 2001-10-11 Applied Materials, Inc. Multi-step conditioning process

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US9199357B2 (en) 1997-04-04 2015-12-01 Chien-Min Sung Brazed diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US7658666B2 (en) 2004-08-24 2010-02-09 Chien-Min Sung Superhard cutters and associated methods
US7762872B2 (en) 2004-08-24 2010-07-27 Chien-Min Sung Superhard cutters and associated methods
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US9067301B2 (en) 2005-05-16 2015-06-30 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8414362B2 (en) 2005-09-09 2013-04-09 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US9902040B2 (en) 2005-09-09 2018-02-27 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7651386B2 (en) 2005-09-09 2010-01-26 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7901272B2 (en) 2005-09-09 2011-03-08 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7690971B2 (en) 2005-09-09 2010-04-06 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US9011563B2 (en) 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US9475169B2 (en) 2009-09-29 2016-10-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US8777699B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Superabrasive tools having substantially leveled particle tips and associated methods
US9138862B2 (en) 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US8974270B2 (en) 2011-05-23 2015-03-10 Chien-Min Sung CMP pad dresser having leveled tips and associated methods

Also Published As

Publication number Publication date
US20040192178A1 (en) 2004-09-30
KR20050112113A (en) 2005-11-29
TW200705376A (en) 2007-02-01
TWI303406B (en) 2008-11-21
CN1694783A (en) 2005-11-09
TWI286502B (en) 2007-09-11
EP1641596A1 (en) 2006-04-05
TW200418612A (en) 2004-10-01
KR100818591B1 (en) 2008-04-02
AU2003297156A1 (en) 2004-11-19
US20060183410A1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
US20060183410A1 (en) Diamond conditioning of soft chemical mechanical planarization/polishing (CMP) polishing pads
US5782675A (en) Apparatus and method for refurbishing fixed-abrasive polishing pads used in chemical-mechanical planarization of semiconductor wafers
US5725417A (en) Method and apparatus for conditioning polishing pads used in mechanical and chemical-mechanical planarization of substrates
US8485863B2 (en) Polishing liquids for activating and/or conditioning fixed abrasive polishing pads, and associated systems and methods
KR100882045B1 (en) Polishing apparatus with grooved subpad
US5595527A (en) Application of semiconductor IC fabrication techniques to the manufacturing of a conditioning head for pad conditioning during chemical-mechanical polish
US6783436B1 (en) Polishing pad with optimized grooves and method of forming same
US5245796A (en) Slurry polisher using ultrasonic agitation
TW471994B (en) System and method for controlled polishing and planarization of semiconductor wafers
US5941762A (en) Method and apparatus for improved conditioning of polishing pads
US9375825B2 (en) Polishing pad conditioning system including suction
US6179693B1 (en) In-situ/self-propelled polishing pad conditioner and cleaner
JP2001062701A (en) Preconditioning of fixed abrasive member
JP2002512894A (en) Chemical mechanical polishing using multiple polishing pads
KR19980086907A (en) Polishing pad conditioner
JPH10286756A (en) Dressing method of polishing pad, polishing device, and manufacture of semiconductor device
WO2002076674A2 (en) Rigid polishing pad conditioner for chemical mechanical polishing tool
US6394886B1 (en) Conformal disk holder for CMP pad conditioner
US7105446B2 (en) Apparatus for pre-conditioning CMP polishing pad
US20140113533A1 (en) Damper for polishing pad conditioner
US7033253B2 (en) Polishing pad conditioners having abrasives and brush elements, and associated systems and methods
US6390902B1 (en) Multi-conditioner arrangement of a CMP system
US6234883B1 (en) Method and apparatus for concurrent pad conditioning and wafer buff in chemical mechanical polishing
US6752698B1 (en) Method and apparatus for conditioning fixed-abrasive polishing pads
JP3528501B2 (en) Semiconductor manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A07898

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003816708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057018192

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057018192

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003816708

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP