WO2004089821A1 - Carbon particle and method for preparation thereof - Google Patents

Carbon particle and method for preparation thereof Download PDF

Info

Publication number
WO2004089821A1
WO2004089821A1 PCT/JP2004/004953 JP2004004953W WO2004089821A1 WO 2004089821 A1 WO2004089821 A1 WO 2004089821A1 JP 2004004953 W JP2004004953 W JP 2004004953W WO 2004089821 A1 WO2004089821 A1 WO 2004089821A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon particles
thin film
present
particle
Prior art date
Application number
PCT/JP2004/004953
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Takagi
Jun Enda
Original Assignee
Mitsubishi Chemical Corporation
Frontier Carbon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Frontier Carbon Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2004089821A1 publication Critical patent/WO2004089821A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment

Definitions

  • the present invention relates to a carbon particle and a method for producing the same, and more particularly, to a novel carbon particle having a nano-sized microstructure and a method for producing the same.
  • the carbon particles of the present invention are useful as novel functional materials used for field emission displays, capacitors of lithium secondary batteries, and the like. Background art
  • FIG. 1 is a SEM photograph (magnification: 100 times) of a drawing of an example of the carbon particles of the present invention.
  • Fig. 2 is an SEM photograph (magnified photograph of the A particle in Fig. 1 at a magnification of 10,000 times) of an example of the carbon particles of the present invention, instead of a drawing.
  • Fig. 3 is an SEM photograph as a substitute for a drawing of an example of the carbon particles of the present invention. Large photo: 30,000 times magnification).
  • FIG. 4 is a SEM photograph (magnification: 500 ⁇ ) of a cut surface of an example of the carbon particles of the present invention, which is used as a drawing substitute.
  • FIG. 5 is an SEM photograph (magnification: 50,000 times) of a cut surface of an example of the carbon particles of the present invention, which is used as a drawing.
  • FIG. 6 is a SEM photograph (magnification: 3,000 times) of a space existing in a cut surface of an example of the carbon particles of the present invention, which is a drawing substitute.
  • FIG. 7 is an SEM photograph (SEM in a non-deposited state: magnification of 100,000 times) of an example of the carbon particles of the present invention.
  • FIG. 8 is a TEM photograph (magnification: 60,000 times) of an example of the pulverized carbon particle product of the present invention, which is a drawing substitute.
  • FIG. 9 is a TEM photograph (magnification: 60,000 times) of another example of the pulverized carbon particle product of the present invention, which is used as a drawing substitute.
  • FIG. 10 is a TEM photograph (magnification: 300,000 times) of the pulverized carbon particle product of the present invention as a substitute for a drawing.
  • FIG. 11 is a TEM photograph (magnification: 1.2 million times) of a pulverized carbon particle product of the present invention as a substitute for a drawing.
  • FIG. 12 is a TEM photograph (magnification: 1) of another example of the pulverized carbon particle product of the present invention, which is used as a drawing substitute.
  • FIG. 13 is an X-ray powder measurement chart of the carbon particles of the present invention.
  • FIG. 14 is a SEM photograph (magnification: 500 ⁇ ) of a drawing of an example of the carbon particles of the present invention.
  • FIG. 15 is an SEM photograph (magnification: 50,000 times) of a drawing of an example of the carbon particles of the present invention. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and its purpose is to provide a functional material
  • the present invention provides a novel carbon particle having a nano-sized fine structure and a method for producing the same.
  • the first gist of the present invention resides in carbon particles having a graphite thin film on the particle surface, and the second gist of the present invention is to heat fullerenes in a hydrogen atmosphere.
  • the present invention resides in the above-mentioned method for producing carbon particles.
  • the carbon particles of the present invention are carbon particles having a graphite thin film on the particle surface.
  • Aforementioned carbon nano-wall is by treating the CH 4 and H 2 at a microwave plasma CVD (MPEC VD) method, but was allowed to adult long graphite film on one side of the substrate.
  • MPEC VD microwave plasma CVD
  • a graphite thin film is grown on the surface of carbon particles.
  • the carbon particles of the present invention usually have a G ′ peak observed around 270 cm- 1 in Raman spectrum, and a peak is not observed around 220 cm ⁇ 1.
  • the graphite thin film of the carbon particles according to the present invention has a difference in graphite structure as compared with carbon nanowalls described in “Advanced Materials 2002, 14, 64”.
  • the carbon particles of the present invention are more useful industrially because they can be used in various applications as particles in comparison with the carbon nanowalls formed on a substrate. In addition, mass production is possible without using special equipment.
  • the carbon particles of the present invention contain carbon as a main component.
  • a functional group such as a hydroxyl group or a carboxyl group may be present on the particle surface, or a low molecular compound such as water may be adsorbed on the surface or in the pores.
  • the proportion of carbon is usually at least 90% by weight, preferably 98% by weight.
  • the inside of the carbon particle of the present invention may have any structure, and the inside may be composed of a graphite thin film.
  • the size of the carbon particles of the present invention differs depending on the raw material and manufacturing method, and cannot be unconditionally specified.
  • the particle size of the spherical particles observed with a scanning electron microscope (hereinafter referred to as SEM) (for non-spherical particles, Length), usually in the range of 10 nm to 5 cm, preferably l O Onm to 0.5 cm.
  • the graphite thin film on the surface of the carbon particles of the present invention can be observed by SEM.
  • the graphite thin film preferably covers substantially the entire surface of the carbon particles.
  • the graphite thin film may be chemically bonded to the carbon structure inside the particles, or may be simply physically added to the carbon particles. However, from the viewpoint that peeling due to external force is unlikely to occur, it is preferable that they are chemically bonded.
  • the layer structure of the graphite thin film can be confirmed from the shape of the end face of the graphite thin film by observing a sample obtained by crushing the carbon particles of the present invention with a transmission electron microscope (hereinafter referred to as TEM).
  • TEM transmission electron microscope
  • the layer structure of a graphite thin film is a structure in which a single-layer (hereinafter referred to as a graph ensheet) graphite structure is formed by laminating two or more layers. About a layer.
  • a graph ensheet a single-layer graphite structure
  • the bent portion or the portion where the number of the graph encapsulation layer changes on the way and a defect is formed on the surface. are also often observed.
  • a peak near 2700 cm- 1 normally observed in Raman spectrum is considered to be a peak peculiar to a graphite structure having a defect (for example, Physical Review B) , vol. 61, p. 4542 (2000)), which is in good agreement with the TEM observation results described above.
  • the thickness of the above graphite thin film is mainly determined by the number of laminated graphite sheets. Usually, this thickness is confirmed by SEM or TEM observation without vapor deposition, and is usually 1 to 15 nm. Also, the size of the graphite thin film Confirmed by T EM observation sample, as a plane portion of one graphite film, mainly from 0.0005 to 5; is a thin film of m 2 is observed. Such a graphite thin film exists densely on the particle surface with a space. When the surface of carbon particles is observed by SEM, 50 to 500 sheets of graphite thin film are usually observed in a visual field of 1 m square. The thickness of the space occupied by the graphite thin film on the carbon particles is usually 10 to: L 000 nm.
  • the carbon particles of the present invention usually have a high specific surface area, as easily inferred from their structure. Specifically, the BET specific surface area, normally 50 ⁇ 3000m 2 Zg, preferably 100-2000 m 2 Zg.
  • the carbon particles of the present invention usually have high electrical conductivity, as easily inferred from their structure. Specifically, the value of the volume resistivity is usually 0.005 to 1. OQcm, preferably 0.01 to 0.1 Qcm. Further, the carbon particles of the present invention may have very sharp distribution of pores at 1 to 10 nm.
  • the carbon particles of the present invention can be produced by heating fullerenes in a hydrogen atmosphere.
  • the reaction conditions are usually as follows.
  • the lower limit of the hydrogen partial pressure (room temperature: initial pressure before heating) is usually lMPa, preferably 3MPa, more preferably 5MPa, particularly preferably 10MPa, and the upper limit is usually 200MPa, preferably Is 150 MPa, more preferably 100 MPa, particularly preferably 8 OMPa. If the hydrogen partial pressure is too low, the reaction will be slow and the reaction may not proceed. On the other hand, when the hydrogen partial pressure is too high, a thick reaction vessel having sufficient pressure resistance is required.
  • the hydrogen used here is not limited to pure hydrogen, but may be hydrogen diluted with an inert gas or the like as long as the formation of the carbon particles of the present invention is not hindered.
  • the lower limit of the reaction temperature is usually 520 ° C, preferably 550 ° C, and the upper limit is usually 1000 ° C, preferably 900 ° C, more preferably 800 ° C. If the reaction temperature is too low, the reaction will be slow and the reaction may not proceed. On the other hand, if the reaction temperature is too high, the reaction vessel will be severely deteriorated, so an expensive vessel is required. Reaction time is typically a few minutes From 10 hours to 10 hours, preferably from 10 minutes to 5 hours. If the reaction time is too short, carbonization of the fullerenes will be insufficient, and if it is too long, the production efficiency will decrease.
  • the Fe—Ni—Cr alloy is usually used for the material of the reactor. Since the reaction is generally performed at a high temperature, a heat-resistant steel having excellent high-temperature strength, particularly, SCH22 and SCH24 are suitable.
  • the raw material fullerenes have a closed-shell fullerene skeleton formed by arranging carbon atoms in a spherical or rugby pole shape.
  • carbon clusters represented by the general formula C n usually represents an integer of 6120
  • Examples of carbon classes include, for example, C 60 (so-called buckmins___________________________________________________0 and the like. these may be a single, those which may be.
  • the carbon cluster derivative examples include a hydrogenated compound, a hydroxylated compound, an epoxidized compound, an alkylated compound, and an arylated compound of the above-mentioned carbon cluster.
  • the number of the groups is not particularly limited, and the number of the groups may be one or more.
  • the procedure for introducing hydrogen gas during the reaction is as follows. Is not particularly limited as long as they coexist in the reactor. It may have been sealed by introducing hydrogen gas, the hydrogen gas may be passed through the reactor during the reaction. Among the former is preferable from ease of device.
  • fullerenes are hydrotreated in a solid state.
  • the particle size of the raw material fullerenes is not particularly limited, but the carbon particle size of the product is mainly controlled by the particle size of the fullerene raw material. Therefore, in the carbon particles having a graphite thin film of the present invention, fullerenes having a smaller particle size are used in order to obtain carbon particles having a large proportion (surface area per unit weight) of the graphite thin film. Is preferred.
  • Particle size of fullerenes is as follows: Fullerene is finely pulverized with agate mortar, ball mill, jet mill, etc. Or by crystallization.
  • the fullerenes may not be pure, and may contain other liquid or solid organic substances as long as they do not prevent the production of the carbon particles of the present invention.
  • the organic substance here include general organic compounds such as benzene, toluene, and n-hexane in addition to the carbon material.
  • Organic substances composed of carbon, hydrogen and oxygen are preferable because other elements do not remain in the carbon material after the reaction.
  • the thickness and size of the thin film, the density of the thin film on the particle surface, the thickness of the thin film portion in the particle, the specific surface area of the carbon particles, the particle size, and the like can be adjusted by the properties of the raw material and the presence or absence of additives.
  • the yield of carbon particles produced by the production method of the present invention is usually at least 80%, and is preferably at least 90% under preferable reaction conditions.
  • the absence of fullerenes as raw materials in the product can be attributed to, for example, (1) changes in color or UV absorption and liquid chromatography (UV) when the product is dispersed in toluene and irradiated with ultrasonic waves. (HPLC) analysis confirms that fullerenes do not elute in the liquid phase, and (2) the product is measured by IR and no absorption derived from fullerenes is observed.
  • UV UV absorption and liquid chromatography
  • the carbon material of the present invention usually has a high specific surface area, and has a unique structure in which a graphite thin film having a nano-level thickness occupies a space on the particle surface. Therefore, the carbon material of the present invention is a useful material which is easy to handle and can be widely applied to various uses requiring a graphite surface.
  • the porous nanowall described in the above-mentioned “Advanced Materials 2002, 14, 64” has a graphite thin film formed only on one surface of the substrate. Even if the particles are dropped, they can only be obtained by forming a graphite thin film on one surface.
  • the carbon material of the present invention include, for example, a gas absorbent utilizing a high specific surface area, a fuel cell utilizing a defect and a bent portion of a graphite thin film, and a general chemical industry. Supported catalysts, and capacitors for lithium ion batteries. Further, the carbon particles of the present invention are applied after pulverization. By doing so, patterning on the substrate is also possible. Furthermore, since the structure has a high-density Daraphite end face, it is useful, for example, as a material for a field emission display. Further, since the carbon material of the present invention does not require a special production apparatus, it can be produced in a large size (kg order).
  • FIGS. 4 to 6 show SEM photographs as substitutes for drawings on cut surfaces of an example of the carbon particles of the present invention.
  • Fig. 4 500x magnification
  • Figure 5 is a photograph (magnification: 50,000 times) of the cut surface enlarged. According to Fig. 5, the thickness of the part where the graphite thin film exists is 50-
  • Fig. 6 is an enlarged photograph (magnification: 3000x) of the concavo-convex portion seen on the surface of the cut surface in Fig. 4, where the state of being covered with the graphite thin film is also observed.
  • FIG. 7 is a SEM photograph (magnification 100,000) of the surface of the carbon particles of the present invention measured in a non-evaporated state. From Fig. 7, it can be seen that the thinnest thickness of the graphite thin film is about 5 nm.
  • FIG. 8 to 12 show TEM photographs instead of drawings of an example of the pulverized carbon particle product of the present invention. These are photographs obtained by pulverizing carbon particles and observing them with a TEM in order to confirm a finer structure of the carbon particles of the present invention.
  • a number of flakes are observed on the particle surface. Many flakes have a length of about 50-30 Onm.
  • Figure 11 is a photograph (magnification: 1.2 million times) of a portion where the thin sections are densely enlarged.
  • FIG. 11 confirms a laminated structure of thin films, which is considered to be the end face of the flake. This indicates that the flake has a graphite structure.
  • the reaction was carried out in the same manner as in Example 1 except that a fullerene mixture 100.Og manufactured by Frontier Carbon Co., Ltd. was used.
  • a fullerene mixture 100.Og manufactured by Frontier Carbon Co., Ltd. was used.
  • 9. O g of a black product was obtained.
  • This value corresponds to a yield of 90% when a carbon material having a purity of 100% was obtained from a fullerene mixture having a purity of 100%. Since this product was insoluble in toluene, it was confirmed that it was not a fullerene mixture as a raw material.
  • FIGS. 14 and 15 show SEM photographs of this product as substitutes for drawings.
  • the carbon particles obtained in Example 2 are smaller than the product of Example 1, and the surface thereof has the same structure as
  • Example 3 The 10. 0 g which a C 60 fullerene used was ground in an agate mortar for 10 minutes in Example 1 except that the raw material, the reaction was carried out in the same manner as in Example 1. As a result, 9.3 g of a black product was obtained. This value corresponds to 93% at a yield in the case of the 100% pure C 60 fullerene with 100% pure carbon material is obtained. Since this product was insoluble in toluene, it was confirmed that it was not the raw material fullerene.
  • the carbon particles obtained in Example 3 were smaller than the product of Example 1, and the surface was covered with flakes having the same structure and size as the product of Example 1.
  • Example 5 The reaction was carried out in the same manner as in Example 1 except that 10.0 g of the fullerene mixture manufactured by Frontier Carbon Co., Ltd. used in Example 2 was crushed in an agate mortar for 10 minutes as a raw material. As a result, 9.7 g of a black product was obtained. This value is equivalent to 97% of the yield when 100% pure carbon material is obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that it was not a fullerene mixture as a raw material.
  • the carbon particles obtained in Example 4 were smaller than the product of Example 2, and the surface thereof was covered with flakes having the same structure and size as the product of Example 2. The BET specific surface area was 229 m 2 Zg, which was larger than that of the carbon particles of Example 2. This suggests that the surface structure of the carbon particles affects the BET specific surface area.
  • Example 5 The BET specific surface area was 229 m 2 Zg, which was larger than that of the carbon particles of Example 2. This suggests that
  • Example 2 The reaction was carried out in the same manner as in Example 2 except that the partial pressure of hydrogen introduced was changed to 10.5 MPa. As a result, 9.4 g of a black product was obtained. This value corresponds to a yield of 94% when a 100% pure carbon material is obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that it was not a raw material fullerene mixture. In the carbon particles obtained in Example 5, flakes having the same structure and size as the product of Example 2 covered the particle surface.
  • a carbon particle having a unique nanostructure in which the particle surface is covered with flaky graphite. Also, a method for selectively producing the carbon particles from fullerenes by a simple method without using a special apparatus is provided.

Abstract

A carbon particle, characterized in that it has a graphite thin film formed on the surface thereof; and a method for preparing the carbon particle which comprises heating fullerene or its derivative in a hydrogen atmosphere. In a preferred embodiment, the graphite thin film is a thin film formed by the lamination of 5 to 50 layers of a graphene sheet structure, the graphite thin film occupies a space of a thickness of 10 to 1000 nm, and the carbon particle has a BET surface area of 50 to 3000 m2/g. The above carbon particle is a novel substance which has a fine structure of a nano-size and is useful as a functional material.

Description

明 細 書 炭素粒子およびその製造方法 技術分野  Description Carbon particles and production method
本発明は、 炭素粒子およびその製造方法に関し、 詳しくは、 ナノサイズの微 細構造を有する新規な炭素粒子およびその製造方法に関する。 本発明の炭素粒 子は、 電界放出ディスプレー、 リチウム 2次電池のキャパシター等に使用する 新規機能性材料として有用である。 背景技術  The present invention relates to a carbon particle and a method for producing the same, and more particularly, to a novel carbon particle having a nano-sized microstructure and a method for producing the same. The carbon particles of the present invention are useful as novel functional materials used for field emission displays, capacitors of lithium secondary batteries, and the like. Background art
近年、 ナノサイズの新規炭素材料として、 フラーレン、 単層または多層のカー ボンナノチューブ、 カーボンナノホーンが報告され、 更には、 カーボンナノウォー ル (Ca r bon N a n owa 1 I s) も作製され (例えば、 Nano Lette rs 2002, 2, 355-359、 Advanced Materials 2002, 14, 64) 、 注目を 集めている。 これらの新規炭素材料は、 ナノ構造物質として、 新規の電子材料、 触媒、 光材料などとしての応用が期待されている。  In recent years, fullerenes, single-walled or multi-walled carbon nanotubes, and carbon nanohorns have been reported as new nano-sized carbon materials, and carbon nanowalls (Carbon Nanowa 1 Is) have also been produced (for example, , Nano Lette rs 2002, 2, 355-359, Advanced Materials 2002, 14, 64). These new carbon materials are expected to be applied as new electronic materials, catalysts, optical materials, etc. as nanostructured materials.
しかしながら、 実際には、 上記の新規炭素材料で未だ必要な性能が満たされ ていない分野もあり、 更に、 新規なナノ構造を有する炭素材料が提供されれば、 その適用分野は大きく広がると考えられる。 図面の簡単な説明  However, in practice, there are fields where the above-mentioned new carbon materials do not yet meet the required performance, and if a carbon material with a new nanostructure is provided, the field of application will be greatly expanded . BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の炭素粒子の一例の図面代用 SEM写真 (倍率 100倍) であ る。  FIG. 1 is a SEM photograph (magnification: 100 times) of a drawing of an example of the carbon particles of the present invention.
図 2は本発明の炭素粒子の一例の図面代用 SEM写真 (図 1中の A粒子の拡 大写真:倍率 1万倍) である。  Fig. 2 is an SEM photograph (magnified photograph of the A particle in Fig. 1 at a magnification of 10,000 times) of an example of the carbon particles of the present invention, instead of a drawing.
図 3は本発明の炭素粒子の一例の図面代用 SEM写真 (図 1中の C粒子の拡 大写真:倍率 3万倍) である。 Fig. 3 is an SEM photograph as a substitute for a drawing of an example of the carbon particles of the present invention. Large photo: 30,000 times magnification).
図 4は本発明の炭素粒子の一例の切断面における図面代用 S EM写真 (倍率 500倍) である。  FIG. 4 is a SEM photograph (magnification: 500 ×) of a cut surface of an example of the carbon particles of the present invention, which is used as a drawing substitute.
図 5は本発明の炭素粒子の一例の切断面における図面代用 SEM写真 (倍率 5万倍) である。  FIG. 5 is an SEM photograph (magnification: 50,000 times) of a cut surface of an example of the carbon particles of the present invention, which is used as a drawing.
図 6は本発明の炭素粒子の一例の切断面内に存在する空間の図面代用 SEM 写真 (倍率 3000倍) である。  FIG. 6 is a SEM photograph (magnification: 3,000 times) of a space existing in a cut surface of an example of the carbon particles of the present invention, which is a drawing substitute.
図 7は本発明の炭素粒子の一例の図面代用 SEM写真 (無蒸着状態での SE M:倍率 10万倍) である。  FIG. 7 is an SEM photograph (SEM in a non-deposited state: magnification of 100,000 times) of an example of the carbon particles of the present invention.
図 8は本発明の炭素粒子粉砕品の一例の図面代用 TEM写真 (倍率 6万倍) である。  FIG. 8 is a TEM photograph (magnification: 60,000 times) of an example of the pulverized carbon particle product of the present invention, which is a drawing substitute.
図 9は本発明の炭素粒子粉砕品の他の一例の図面代用 TEM写真 (倍率 6万 倍) である。  FIG. 9 is a TEM photograph (magnification: 60,000 times) of another example of the pulverized carbon particle product of the present invention, which is used as a drawing substitute.
図 10は本発明の炭素粒子粉砕品の図面代用 TEM写真 (倍率 30万倍) で ある。  FIG. 10 is a TEM photograph (magnification: 300,000 times) of the pulverized carbon particle product of the present invention as a substitute for a drawing.
図 1 1は本発明の炭素粒子粉砕品の図面代用 TEM写真 (倍率 120万倍) である。  FIG. 11 is a TEM photograph (magnification: 1.2 million times) of a pulverized carbon particle product of the present invention as a substitute for a drawing.
図 12は本発明の炭素粒子粉砕品の他の一例の図面代用 TEM写真 (倍率 1 FIG. 12 is a TEM photograph (magnification: 1) of another example of the pulverized carbon particle product of the present invention, which is used as a drawing substitute.
20万倍) である。 200,000 times).
図 13は本発明の炭素粒子の粉末 X線測定チャートである。  FIG. 13 is an X-ray powder measurement chart of the carbon particles of the present invention.
図 14は本発明の炭素粒子の一例の図面代用 SEM写真 (倍率 500倍) で ある。  FIG. 14 is a SEM photograph (magnification: 500 ×) of a drawing of an example of the carbon particles of the present invention.
図 15は本発明の炭素粒子の一例の図面代用 SEM写真 (倍率 5万倍) であ る。 発明の開示  FIG. 15 is an SEM photograph (magnification: 50,000 times) of a drawing of an example of the carbon particles of the present invention. Disclosure of the invention
本発明は、 上記実情に鑑みなされたものであり、 その目的は、 機能性材料と して有用なナノサイズの微細構造を有する新規な炭素粒子およびその製造方法 を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a functional material The present invention provides a novel carbon particle having a nano-sized fine structure and a method for producing the same.
本発明者らは、 鋭意検討を重ねた結果、 特定の条件でフラーレン類を処理す ることにより、 これまで知られていないナノ構造を有する炭素材料が得られる との知見を得、 本発明を完成させた。  As a result of intensive studies, the present inventors have obtained the knowledge that by treating fullerenes under specific conditions, it is possible to obtain a carbon material having a nanostructure that has not been known until now. Completed.
すなわち、 本発明の第 1の要旨は、 粒子表面にグラフアイト薄膜を有するこ とを特徴とする炭素粒子に存し、 本発明の第 2の要旨は、 フラーレン類を水素 雰囲気で加熱することを特徴とする上記の炭素粒子の製造方法に存する。 発明を実施するための最良の形態  That is, the first gist of the present invention resides in carbon particles having a graphite thin film on the particle surface, and the second gist of the present invention is to heat fullerenes in a hydrogen atmosphere. The present invention resides in the above-mentioned method for producing carbon particles. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明するが、 本発明は、 以下の実施態様に限定される ものではなく、 その要旨の範囲内で種々変更して実施することが出来る。  Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist.
本発明の炭素粒子は、 粒子表面にグラフアイト薄膜を有する炭素粒子である。 前述のカーボンナノウォールは、 マイクロ波プラズマ C V D (M P E C VD) 法で C H 4と H 2を処理することにより、 基板の片面上にグラフアイト薄膜を成 長させたものである。 これに対し、 本発明の場合は炭素粒子の表面にグラファ イト薄膜を成長させたものである。 また、 本発明の炭素粒子は、 通常、 ラマン スぺクトルで 2 7 0 0 c m-1付近に G'のピークが観察されること、 2 2 0 c m -1付近にピークが観察されないことから、 本発明の炭素粒子におけるグラファ イト薄膜は、 前記の 「Advanced Materials 2002, 14, 64」 に記載の力一 ボンナノウォールと比較し、 グラフアイト構造に違いがある。 本発明の炭素粒 子は、 基板上に生成している前記のカーボンナノウォールと比し、 粒子状のま ま種々の用途に使用できるため、 工業的により有用である。 また、 特殊な装置 を使用せずに大量製造が可能である。 The carbon particles of the present invention are carbon particles having a graphite thin film on the particle surface. Aforementioned carbon nano-wall is by treating the CH 4 and H 2 at a microwave plasma CVD (MPEC VD) method, but was allowed to adult long graphite film on one side of the substrate. On the other hand, in the case of the present invention, a graphite thin film is grown on the surface of carbon particles. In addition, the carbon particles of the present invention usually have a G ′ peak observed around 270 cm- 1 in Raman spectrum, and a peak is not observed around 220 cm− 1. The graphite thin film of the carbon particles according to the present invention has a difference in graphite structure as compared with carbon nanowalls described in “Advanced Materials 2002, 14, 64”. The carbon particles of the present invention are more useful industrially because they can be used in various applications as particles in comparison with the carbon nanowalls formed on a substrate. In addition, mass production is possible without using special equipment.
本発明の炭素粒子は、 炭素を主成分とする。 炭素を主成分とする限り、 水酸 基、 カルボキシル基などの官能基を粒子表面に有していても、 水などの低分子 化合物を表面や細孔内に吸着していてもよい。 具体的には、 元素分析において、 炭素の割合は、 通常 90重量%以上、 好ましくは 98重量%である。 また、 本 発明の炭素粒子内部は、 どの様な構造でもよく、 内部までグラフアイト薄膜で 構成されていもよい。 The carbon particles of the present invention contain carbon as a main component. As long as carbon is the main component, a functional group such as a hydroxyl group or a carboxyl group may be present on the particle surface, or a low molecular compound such as water may be adsorbed on the surface or in the pores. Specifically, in elemental analysis, The proportion of carbon is usually at least 90% by weight, preferably 98% by weight. Further, the inside of the carbon particle of the present invention may have any structure, and the inside may be composed of a graphite thin film.
本発明の炭素粒子の大きさは、 その原料や製法によって異なるため一概に規 定できないが、 走査型電子顕微鏡 (以下 SEMと表記する) 観察での球状粒子 の粒子径 (球状でない粒子の場合は長径) で、 通常 10 nmから 5 cm、 好ま しくは l O Onmから 0. 5 cmの範囲である。  The size of the carbon particles of the present invention differs depending on the raw material and manufacturing method, and cannot be unconditionally specified. However, the particle size of the spherical particles observed with a scanning electron microscope (hereinafter referred to as SEM) (for non-spherical particles, Length), usually in the range of 10 nm to 5 cm, preferably l O Onm to 0.5 cm.
本発明の炭素粒子の表面のグラフアイト薄膜は、 SEMによって観察するこ とが出来る。 グラフアイト薄膜は、 好ましくは、 炭素粒子の略全面を被覆して いる。 このグラフアイト薄膜は、 粒子内部の炭素構造と化学的に結合していて もよく、 また、 単に炭素粒子上に物理的に付加していてもよい。 但し、 外力に よる剥離が起こり難いという観点からは、 化学的に結合している方が好ましい。 グラフアイト薄膜の層構造は、 本発明の炭素粒子を破砕したサンプルを透過 型電子顕微鏡 (以下 TEMと表記する) で観察することにより、 そのグラファ イト薄膜の端面の形状から確認できる。 それによると、 グラフアイト薄膜の層 構造は、 単一層 (以下グラフエンシートと呼ぶ) のグラフアイト構造が 2層以 上積層して形成された構造であり、 その積層枚数は、 通常 5〜50層程度であ る。 また、 このグラフアイト薄膜には、 グラフエンシートが奇麗に直線になつ ている部分の他に、 屈曲した部分やグラフエンシー卜層数が途中で変化して、 表面に欠陥が出来ている部分も多く観察される。 なお、 本発明の炭素粒子にお いて通常 Ramanスぺクトルで観察される 2700 cm-1付近のピークは、 欠陥を有するグラフアイト構造特有のピークであるとされており (例えば、 Ph ysical Review B, vol. 61, p. 4542 (2000) 参照) 、 上述の TEM観察 の結果とよく整合する。 The graphite thin film on the surface of the carbon particles of the present invention can be observed by SEM. The graphite thin film preferably covers substantially the entire surface of the carbon particles. The graphite thin film may be chemically bonded to the carbon structure inside the particles, or may be simply physically added to the carbon particles. However, from the viewpoint that peeling due to external force is unlikely to occur, it is preferable that they are chemically bonded. The layer structure of the graphite thin film can be confirmed from the shape of the end face of the graphite thin film by observing a sample obtained by crushing the carbon particles of the present invention with a transmission electron microscope (hereinafter referred to as TEM). According to this, the layer structure of a graphite thin film is a structure in which a single-layer (hereinafter referred to as a graph ensheet) graphite structure is formed by laminating two or more layers. About a layer. In addition, in the graphite thin film, in addition to the portion where the graph ensheet is beautifully linear, the bent portion or the portion where the number of the graph encapsulation layer changes on the way and a defect is formed on the surface. Are also often observed. In the carbon particles of the present invention, a peak near 2700 cm- 1 normally observed in Raman spectrum is considered to be a peak peculiar to a graphite structure having a defect (for example, Physical Review B) , vol. 61, p. 4542 (2000)), which is in good agreement with the TEM observation results described above.
上記のグラフアイト薄膜の厚さは、 主にグラフエンシー卜の積層枚数により 決定される。 通常、 この厚さは、 無蒸着での SEM又は TEM観察により確認 され、 通常 l〜15nmである。 また、 グラフアイト薄膜の大きさも、 破砕サ ンプルの T EM観察により確認でき、 グラフアイト薄膜 1枚の平面部分として、 主として 0. 0005〜5 ; m2の薄膜が観察される。 この様なグラフアイト 薄膜は、 空間を有した状態で粒子表面に密集して存在している。 炭素粒子表面 を S EM観察すると、 1; m四方の視野にグラフアイト薄膜が通常 50〜50 0枚観察される。 炭素粒子上のグラフアイト薄膜が占有する空間の厚さは、 通 常 10〜: L 000 nmである。 The thickness of the above graphite thin film is mainly determined by the number of laminated graphite sheets. Usually, this thickness is confirmed by SEM or TEM observation without vapor deposition, and is usually 1 to 15 nm. Also, the size of the graphite thin film Confirmed by T EM observation sample, as a plane portion of one graphite film, mainly from 0.0005 to 5; is a thin film of m 2 is observed. Such a graphite thin film exists densely on the particle surface with a space. When the surface of carbon particles is observed by SEM, 50 to 500 sheets of graphite thin film are usually observed in a visual field of 1 m square. The thickness of the space occupied by the graphite thin film on the carbon particles is usually 10 to: L 000 nm.
本発明の炭素粒子は、 その構造から容易に類推される様に、 通常、 高い比表 面積を有する。 具体的には、 BET比表面積で、 通常 50〜3000m2Zg、 好ましくは 100〜2000m2Zgである。 本発明の炭素粒子は、 その構造 から容易に類推される様に、 通常、 高い電気伝導性を示す。 具体的には、 体積 抵抗率の値として、 通常 0. 005〜1. OQcm、 好ましくは 0. 01〜0. l Qcmである。 更に、 本発明の炭素粒子は、 1〜10 nmに非常にシャープ な分布の細孔を有する場合がある。 The carbon particles of the present invention usually have a high specific surface area, as easily inferred from their structure. Specifically, the BET specific surface area, normally 50~3000m 2 Zg, preferably 100-2000 m 2 Zg. The carbon particles of the present invention usually have high electrical conductivity, as easily inferred from their structure. Specifically, the value of the volume resistivity is usually 0.005 to 1. OQcm, preferably 0.01 to 0.1 Qcm. Further, the carbon particles of the present invention may have very sharp distribution of pores at 1 to 10 nm.
本発明の炭素粒子は、 フラーレン類を水素雰囲気で加熱することにより製造 できる。 反応条件は、 通常、 以下の通りである。  The carbon particles of the present invention can be produced by heating fullerenes in a hydrogen atmosphere. The reaction conditions are usually as follows.
水素分圧 (室温:加熱前の初期圧) の下限は、 通常 lMP a、 好ましくは 3 MP a, 更に好ましくは 5 MP a、 特に好ましくは 10 MP aであり、 上限は、 通常 200MP a、 好ましくは 150MP a、 更に好ましくは 100 M P a、 特に好ましくは 8 OMP aである。 水素分圧が低すぎる場合は、 反応が遅くな り、 反応が進行しなくなることがある。 一方、 水素分圧が高すぎる場合は、 十 分な耐圧性を有する肉厚な反応容器が必要となる。 なお、 ここで使用する水素 は、 純粋な水素でなくても、 本発明の炭素粒子の生成を妨げなければ、 不活性 ガス等で希釈された水素であってもよい。 反応温度の下限は、 通常 520°C、 好ましくは 550°Cであり、 上限は、 通常 1000°C、 好ましくは 900°C、 更に好ましくは 800°Cである。 反応温度が低すぎる場合は反応が遅くなり、 反応が進行しなくなることがある。 一方、 反応温度が高すぎる場合は、 反応容 器の劣化が激しくなるため高価な容器が必要となる。 反応時間は、 通常、 数分 から 1 0時間、 好ましくは 1 0分から 5時間である。 反応時間が短すぎる場合 はフラーレン類の炭化が不十分となり、 長すぎる場合は製造効率が低下する。 反応器の材質には、 通常 F e— N i— C r合金が使用される。 一般に高温で反 応が行われるため、 高温強度に優れた耐熱綱、 特に S C H 2 2及び S C H 2 4 が好適である。 The lower limit of the hydrogen partial pressure (room temperature: initial pressure before heating) is usually lMPa, preferably 3MPa, more preferably 5MPa, particularly preferably 10MPa, and the upper limit is usually 200MPa, preferably Is 150 MPa, more preferably 100 MPa, particularly preferably 8 OMPa. If the hydrogen partial pressure is too low, the reaction will be slow and the reaction may not proceed. On the other hand, when the hydrogen partial pressure is too high, a thick reaction vessel having sufficient pressure resistance is required. The hydrogen used here is not limited to pure hydrogen, but may be hydrogen diluted with an inert gas or the like as long as the formation of the carbon particles of the present invention is not hindered. The lower limit of the reaction temperature is usually 520 ° C, preferably 550 ° C, and the upper limit is usually 1000 ° C, preferably 900 ° C, more preferably 800 ° C. If the reaction temperature is too low, the reaction will be slow and the reaction may not proceed. On the other hand, if the reaction temperature is too high, the reaction vessel will be severely deteriorated, so an expensive vessel is required. Reaction time is typically a few minutes From 10 hours to 10 hours, preferably from 10 minutes to 5 hours. If the reaction time is too short, carbonization of the fullerenes will be insufficient, and if it is too long, the production efficiency will decrease. The Fe—Ni—Cr alloy is usually used for the material of the reactor. Since the reaction is generally performed at a high temperature, a heat-resistant steel having excellent high-temperature strength, particularly, SCH22 and SCH24 are suitable.
原料のフラーレン類は、 炭素原子が球状またはラグビーポール状に配置して 形成される閉殻状のフラーレン骨格を有するものをいう。 具体的には、 一般式 C n ( nは通常 6 0 1 2 0の整数を表す) で表される炭素クラスター、 その 誘導体などである。 炭素クラス夕一としては、 例えば、 C 6 0 (所謂バックミン ス夕■ _ 'ノフ一レノノ 7 0 7 6 7 8、 し 8 2 8 4 9 0、 し 9 4 9 6 及びより高次の炭素クラスターが挙げられる。 これらは、 単一であっても、 2 種類以上の混合物であってもよい。 単一のものとしては、 C 6 o及び C 7 oが生産 の際に多く生成するので、 入手の容易さから好適である。 また、 炭素クラスタ一 の誘導体としては、 上記の炭素クラスターの水素化体、 水酸化体、 エポキシ化 体、 アルキル化体、 ァリール化体などが挙げられる。 それぞれ付加する基の数 は特に限定されず、 また、 基の種類は 1種類であっても複数種であってもよい。 反応の際の水素ガスの導入手順は、 原料のフラーレン類と水素ガスが反応時 に共存していれば、 特に限定されず、 反応前に予め反応器に水素ガスを導入し て密閉しておいてもよいし、 反応時に反応器に水素ガスを流通させてもよい。 このうち前者が装置の簡便性から好ましい。 The raw material fullerenes have a closed-shell fullerene skeleton formed by arranging carbon atoms in a spherical or rugby pole shape. Specifically, carbon clusters represented by the general formula C n (n usually represents an integer of 6120), derivatives thereof, and the like. Examples of carbon classes include, for example, C 60 (so-called buckmins_______________________________________________________________________0 and the like. these may be a single, those which may be. single mixture of two or more, since the C 6 o and C 7 o produces much during production, availability Examples of the carbon cluster derivative include a hydrogenated compound, a hydroxylated compound, an epoxidized compound, an alkylated compound, and an arylated compound of the above-mentioned carbon cluster. The number of the groups is not particularly limited, and the number of the groups may be one or more.The procedure for introducing hydrogen gas during the reaction is as follows. Is not particularly limited as long as they coexist in the reactor. It may have been sealed by introducing hydrogen gas, the hydrogen gas may be passed through the reactor during the reaction. Among the former is preferable from ease of device.
本発明の製造方法では、 通常、 フラーレン類は固体の状態で水素化処理され る。 原料のフラーレン類の粒子サイズは特に限定されないが、 生成物である炭 素粒子サイズは主としてフラーレン原料の粒子サイズによつて制御される。 従つ て、 本発明のグラフアイト薄膜を有する炭素粒子において、 グラフアイト薄膜 の割合 (単位重量あたりの表面積) が大きい炭素粒子を得るためには、 より粒 子サイズの小さいフラーレン類を使用するのが好ましい。 フラーレン類の粒子 サイズは、 フラーレンを、 メノウ乳鉢、 ボールミル、 ジェットミル等で微粉砕 したり、 晶析したりして制御してもよい。 In the production method of the present invention, usually, fullerenes are hydrotreated in a solid state. The particle size of the raw material fullerenes is not particularly limited, but the carbon particle size of the product is mainly controlled by the particle size of the fullerene raw material. Therefore, in the carbon particles having a graphite thin film of the present invention, fullerenes having a smaller particle size are used in order to obtain carbon particles having a large proportion (surface area per unit weight) of the graphite thin film. Is preferred. Particle size of fullerenes is as follows: Fullerene is finely pulverized with agate mortar, ball mill, jet mill, etc. Or by crystallization.
フラーレン類は、 純粋でなくても、 本発明の炭素粒子の生成を妨げなければ、 他に液体または固体の有機物を含んでいてもよい。 ここでの有機物の例として は、 炭素材の他、 ベンゼン、 トルエン、 n—へキサン等の一般の有機化合物が 挙げられる。 炭素、 水素、 酸素から成る有機物は、 反応後に他の元素が炭素材 に残らないので好ましい。  The fullerenes may not be pure, and may contain other liquid or solid organic substances as long as they do not prevent the production of the carbon particles of the present invention. Examples of the organic substance here include general organic compounds such as benzene, toluene, and n-hexane in addition to the carbon material. Organic substances composed of carbon, hydrogen and oxygen are preferable because other elements do not remain in the carbon material after the reaction.
薄膜の厚さ及びサイズ、 粒子表面における薄膜の密度、 粒子内の薄膜部分の 厚さ、 炭素粒子の比表面積、 粒子サイズ等は、 原料の性状や添加物の有無によつ て調節できる。 本発明の製造方法で生成する炭素粒子の収率は、 通常 8 0 %以 上であり、 好ましい反応条件では 9 0 %以上である。 生成物中に原料のフラー レン類が残存していないことは、 例えば、 (1 ) トルエン中に生成物を分散さ せて超音波照射した際に、 色や UV吸収の変化や液体クロマトグラフィー (H P L C) 分析から、 液相にフラーレン類が溶出しないこと、 (2 ) 生成物を I Rで測定し、 フラーレン類由来の吸収が観測されないこと等により、 確認でき る。  The thickness and size of the thin film, the density of the thin film on the particle surface, the thickness of the thin film portion in the particle, the specific surface area of the carbon particles, the particle size, and the like can be adjusted by the properties of the raw material and the presence or absence of additives. The yield of carbon particles produced by the production method of the present invention is usually at least 80%, and is preferably at least 90% under preferable reaction conditions. The absence of fullerenes as raw materials in the product can be attributed to, for example, (1) changes in color or UV absorption and liquid chromatography (UV) when the product is dispersed in toluene and irradiated with ultrasonic waves. (HPLC) analysis confirms that fullerenes do not elute in the liquid phase, and (2) the product is measured by IR and no absorption derived from fullerenes is observed.
本発明の炭素材料は、 通常、 高い比表面積を有し、 しかも、 ナノレベルの厚 さのグラフアイト薄膜が粒子表面上に空間を占めて配置している特異な構造を 有する。 従って、 本発明の炭素材料は、 取り扱いが容易でグラフアイト表面を 必要とする各種の用途に広く適用できる有用な材料である。 一方、 前述の 「Ad vanced Materials 2002, 14, 64」 に記載の力一ポンナノウォールは、 基 板上の一方の面にしかグラフアイト薄膜が形成されていないため、 たとえ、 こ の表面を削り落として粒子にしたとしても、 一方の面にしかグラフアイト薄膜 が形成された粒子にしかなり得ない。  The carbon material of the present invention usually has a high specific surface area, and has a unique structure in which a graphite thin film having a nano-level thickness occupies a space on the particle surface. Therefore, the carbon material of the present invention is a useful material which is easy to handle and can be widely applied to various uses requiring a graphite surface. On the other hand, the porous nanowall described in the above-mentioned “Advanced Materials 2002, 14, 64” has a graphite thin film formed only on one surface of the substrate. Even if the particles are dropped, they can only be obtained by forming a graphite thin film on one surface.
本発明の炭素材料の具体的な用途としては、 例えば、 高い比表面積を有する ことを活かしたガス吸収剤、 グラフアイト薄膜が有する欠陥や屈曲部位を活か した燃料電池、 一般の化学工業で使用される担持触媒の担体、 リチウムイオン 電池のキャパシター等が挙げられる。 また、 本発明の炭素粒子を粉砕後に塗布 することにより、 基板上へのパターニングも可能である。 更に、 高密度なダラ ファイト端面を有する構造であることから、 例えば、 電界放出ディスプレイの 材料としても有用である。 更に、 本発明の炭素材料は、 特殊な製造装置が不要 のため、 大量サイズ (kgオーダー) で製造することも可能である。 Specific uses of the carbon material of the present invention include, for example, a gas absorbent utilizing a high specific surface area, a fuel cell utilizing a defect and a bent portion of a graphite thin film, and a general chemical industry. Supported catalysts, and capacitors for lithium ion batteries. Further, the carbon particles of the present invention are applied after pulverization. By doing so, patterning on the substrate is also possible. Furthermore, since the structure has a high-density Daraphite end face, it is useful, for example, as a material for a field emission display. Further, since the carbon material of the present invention does not require a special production apparatus, it can be produced in a large size (kg order).
以下、 本発明を実施例により更に詳細に説明するが、 本発明は、 その要旨を 超えない限り、 以下の実施例に限定されるものではない。  EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
実施例 1 :  Example 1:
F e -N i -C r合金製の内容積 6 OmLの耐圧容器に、 フロンティァカ一 ボン社製 C60フラーレン (粒子径 20〜200 m) 10. 0 gを入れ、 水素 ガスで 3回置換した後、 密閉して室温にて水素ガスで 2 IMP aに加圧した。 この反応器を 600°Cまで加熱し、 そのまま 2時間保持した。 その後、 反応器 を冷却してから水素ガスをパージし、 内容物を取り出した。 黒色固体 9. 2 g が得られた。 この値は、 純度 100%の C60フラーレンから純度 100%の炭 素材料が得られたとした場合の収率で 92%に相当する。 The pressure vessel F e -N i -C r alloy having an inner volume of 6 OML, placed Furontaka one carbon manufactured by C 60 fullerene (particle size 20~200 m) 10. 0 g, was replaced three times with hydrogen gas Thereafter, the container was sealed and pressurized to 2 IMPa with hydrogen gas at room temperature. The reactor was heated to 600 ° C and held there for 2 hours. Thereafter, the reactor was cooled and then purged with hydrogen gas, and the contents were taken out. 9.2 g of a black solid were obtained. This value corresponds to 92% at a yield in the case of the 100% pure C 60 fullerene and 100% charcoal material fee purity was obtained.
上記の生成物はトルエンに不溶であったことから、 原料の C 60フラーレンで ないことが確認された。 元素分析の結果、 酸素は 0. 28重量%、 水素は 0. 3重量%未満、 炭素は 98. 1重量%であった。 I R測定の結果、 C60フラー レンに対応するピークも含め、 一切、 ピークが観測されなかったことから、 上 記の条件下で炭化が起こつたと推察した。 Since the above product was insoluble in toluene, not a C 60 fullerene material was confirmed. As a result of elemental analysis, oxygen was 0.28% by weight, hydrogen was less than 0.3% by weight, and carbon was 98.1% by weight. Result of IR measurement, including peaks corresponding to C 60 fullerenes, at all, since the peak was not observed was presumably carbide was One to put under the conditions of the above follow.
日本分光社製 「NR 1800 (Fシングル ZG4) 」 を使用し、 励起波長 A r + 514. 5nm、 ラマン照射直径 100 mにて、 Ramanスペクトル を測定した。 この結果、 それぞれのピークの大きさは測定位置により変化する が、 何れにしても、 1350 cm-i (D) 、 1583 cm-i (G) 、 2704 c m-1 (G') に大きな 3本のピークが観測され、 1617 cm-1, 2452 c m-i (D" +D) 、 2935 cm-i (D + G) 、 3243 c m-i (2D, ) に小さい ピークが観測された。 一方、 公知の炭素ナノ構造には、 220 cm-i、 135 0 cm- 1583 c m-i、 16 17 cm-1にピークが観測されると記載されて いる (Advanced Materials 2002,14, 64) 。 両者を比較すると、 本発明の炭素 粒子は、 220 cm- 1にピークがなく、 2704 cm-iに G'のピークがある。 本発明の炭素粒子の BET比表面積の測定結果は、 175m2/gであった。 図 1〜3に、 本発明の炭素粒子の一例の図面代用 SEM写真を示す。 図 1 (倍率 100倍) によると、 粒子の直径は略 50〜200 im程度である。 図 2は図 1の拡大写真 (倍率 1万倍) である。 図 2によると、 粒子表面の略全面 が薄片で覆われていることが判る。 図 3は図 1を更に拡大した写真 (倍率 3万 倍) である。 図 3によると、 密集している薄片の厚さは数 nm〜数十 nm程度 であることが判る。 Using "NR 1800 (F single ZG4)" manufactured by JASCO Corporation, Raman spectrum was measured at an excitation wavelength of Ar + 514.5 nm and a Raman irradiation diameter of 100 m. As a result, the size of each peak changes depending on the measurement position, but in any case, it is as large as 1350 cm-i (D), 1583 cm-i (G), and 2704 cm- 1 (G '). This peak was observed, and small peaks were observed at 1617 cm- 1 , 2452 cm (D "+ D), 2935 cm-i (D + G), and 3243 cm (2D,). In the carbon nanostructure, it is stated that peaks are observed at 220 cm-i, 1350 cm-1583 cm, and 1617 cm- 1. (Advanced Materials 2002, 14, 64). Comparing the two, the carbon particles of the present invention have no peak at 220 cm-1 and a G 'peak at 2704 cm-i. The measurement result of the BET specific surface area of the carbon particles of the present invention was 175 m 2 / g. 1 to 3 show SEM photographs instead of drawings of an example of the carbon particles of the present invention. According to Figure 1 (100x magnification), the diameter of the particles is about 50-200 im. Figure 2 is an enlarged photograph (magnification 10,000x) of Figure 1. According to FIG. 2, it can be seen that almost the entire surface of the particle is covered with flakes. Figure 3 is a further enlarged image of Figure 1 (magnification 30,000). According to FIG. 3, it can be seen that the thickness of the dense flakes is about several nm to several tens nm.
図 4〜6に、 本発明の炭素粒子の一例の切断面における図面代用 SEM写真 を示す。 図 4 (倍率 500倍) に示す様に、 粒子内部は基本的に凹凸が少なく、 粒子表面とは異なる構造である。 図 5は切断面を拡大した写真 (倍率 5万倍) である。 図 5によれば、 グラフアイト薄膜が存在している部分の厚さは 50〜 FIGS. 4 to 6 show SEM photographs as substitutes for drawings on cut surfaces of an example of the carbon particles of the present invention. As shown in Fig. 4 (500x magnification), the inside of the particle is basically less uneven and has a different structure from the particle surface. Figure 5 is a photograph (magnification: 50,000 times) of the cut surface enlarged. According to Fig. 5, the thickness of the part where the graphite thin film exists is 50-
200 nm程度と思われる。 図 6は、 図 4の切断面の表面に見られる凹凸部分 の凹部分を拡大した写真 (倍率 3000倍) であり、 ここでもグラフアイト薄 膜により覆われた状態が観察されている。 It seems to be around 200 nm. Fig. 6 is an enlarged photograph (magnification: 3000x) of the concavo-convex portion seen on the surface of the cut surface in Fig. 4, where the state of being covered with the graphite thin film is also observed.
図 7は、 本発明の炭素粒子の表面を無蒸着状態で測定した SEM写真 (倍率 10万倍) である。 図 7から、 グラフアイト薄膜の最も薄い厚さは 5nm程度 であることが判る。  FIG. 7 is a SEM photograph (magnification 100,000) of the surface of the carbon particles of the present invention measured in a non-evaporated state. From Fig. 7, it can be seen that the thinnest thickness of the graphite thin film is about 5 nm.
図 8〜12に本発明の炭素粒子粉砕品の一例の図面代用 TEM写真を示す。 これらは、 本発明の炭素粒子について更に微細な構造を確認するため、 炭素粒 子を粉砕して TEMにより観察した写真である。 図 8〜10では、 粒子表面に 多数の薄片が観察される。 薄片の長さが 50〜30 Onm程度のものが多い。 図 1 1は薄片が密集した部分を更に拡大した写真 (倍率 120万倍) である。 図 1 1により、 薄片の端面と思われる、 薄膜の積層した構造が確認され、 この ことから薄片がグラフアイト構造であることが判る。 グラフエンシー卜が 5〜 8 to 12 show TEM photographs instead of drawings of an example of the pulverized carbon particle product of the present invention. These are photographs obtained by pulverizing carbon particles and observing them with a TEM in order to confirm a finer structure of the carbon particles of the present invention. In Figs. 8 to 10, a number of flakes are observed on the particle surface. Many flakes have a length of about 50-30 Onm. Figure 11 is a photograph (magnification: 1.2 million times) of a portion where the thin sections are densely enlarged. FIG. 11 confirms a laminated structure of thin films, which is considered to be the end face of the flake. This indicates that the flake has a graphite structure. Graph Entries 5 ~
30層程度積層したグラフアイト薄膜 (厚さは 3〜15nm) が多く観察され る。 図 1 2に示す写真 (倍率 1 2 0万倍) は、 炭素粒子内部の構造と思われる が、 若干グラフアイト構造が生長しつつあるものの、 基本的にはアモルファス 状である。 Many graphite thin films (thickness: 3 to 15 nm) with about 30 layers laminated are observed. You. The photograph shown in Fig. 12 (magnification: 1.2 million times) is considered to be the structure inside the carbon particles, but it is basically amorphous although the graphite structure is growing slightly.
本発明の炭素粒子の体積抵抗率を測定したところ、 0. 0 3 9 Q cmという 非常に小さい値を示し、 この炭素粒子は高い導電性を示すことが判った。 本発 明の炭素粒子の粉末 X線測定の結果を図 1 3に示す。 グラフアイト薄片のサイ ズが小さいためと考えられるが、 グラフアイトに対応するピークは観測されな レ また、 本発明の炭素粒子の細孔分布を測定したところ、 4. O nm付近に シャ一プな分布を有していた。  When the volume resistivity of the carbon particles of the present invention was measured, it showed a very small value of 0.039 Qcm, indicating that the carbon particles exhibited high conductivity. Figure 13 shows the results of powder X-ray measurement of the carbon particles of the present invention. This is probably due to the small size of the graphite flakes, but no peak corresponding to the graphite was observed.The pore distribution of the carbon particles of the present invention was measured. Distribution.
実施例 2 :  Example 2:
実施例 1において、 C 60の代わりに、 C 60、 C 70及びその他高次フラーレ ンの混合物 (重量比で、 C 6 Q : C 7。 :その他高次フラーレン =6 2 : 2 3 : 1 5) であるフロンティアカーボン株式会社製のフラーレン混合物 1 0. O gを 使用した以外は、 実施例 1と同様に反応を行った。 その結果、 黒色生成物 9. O gを得た。 この値は、 純度 1 0 0%のフラーレン混合物から純度 1 0 0 %の 炭素材料が得られたとした場合の収率で 9 0%に相当する。 この生成物は、 ト ルェンに不溶であったことから、 原料のフラーレン混合物でないことが確認さ れた。 図 1 4及び図 1 5に、 この生成物の図面代用 S EM写真を示す。 実施例 2で得られた炭素粒子は、 実施例 1の生成物に比して小さく、 その表面は、 実 施例 1の生成物と同様の構造ではあるが、 実施例 1で観測された薄片よりは小 さい薄片が覆っていた。 In Example 1, in place of the C 60, with C 6 0, C 70 and other higher order fullerene mixture of emission (weight ratio, C 6 Q: C 7:. Other higher fullerenes = 6 2: 2 3: 1 5) The reaction was carried out in the same manner as in Example 1 except that a fullerene mixture 100.Og manufactured by Frontier Carbon Co., Ltd. was used. As a result, 9. O g of a black product was obtained. This value corresponds to a yield of 90% when a carbon material having a purity of 100% was obtained from a fullerene mixture having a purity of 100%. Since this product was insoluble in toluene, it was confirmed that it was not a fullerene mixture as a raw material. FIGS. 14 and 15 show SEM photographs of this product as substitutes for drawings. The carbon particles obtained in Example 2 are smaller than the product of Example 1, and the surface thereof has the same structure as that of the product of Example 1, but the flakes observed in Example 1 Smaller flakes were covered.
実施例 1と同様に R am a nスぺクトルを測定した結果、 1 3 5 2 c m - 1 (D) 、 1 5 83 cm-1 (G) 、 2 6 9 8 c m-i (G') に大きな 3本のピーク が観測され、 1 6 1 5 c m- 2 9 00 c m-i (D + G) 、 3 240 cm-1 (2 D' ) に小さいピークが観測された。 BET比表面積は 1 84 cm-i、 体積抵 抗率は 0. 0 38 Q cmであり、 何れも実施例 1の炭素粒子と同程度の値を示 した。 実施例 3 : As a result of measuring the Ram spectrum in the same manner as in Example 1, it was found to be as large as 1352 cm-1 (D), 1583 cm- 1 (G), and 2698 cmi (G '). Three peaks were observed, and small peaks were observed at 1615 cm-2900 cm (D + G) and 3240 cm- 1 (2D '). The BET specific surface area was 184 cm-i, and the volume resistivity was 0.038 Qcm, all of which showed the same value as the carbon particles of Example 1. Example 3:
実施例 1において使用した C60フラーレンをメノウ乳鉢で 10分間粉砕した もの 10. 0 gを原料とした以外は、 実施例 1と同様に反応を行った。 その結 果、 黒色の生成物 9. 3 gを得た。 この値は、 純度 100 %の C60フラーレン から純度 100 %の炭素材料が得られたとした場合の収率で 93 %に相当する。 この生成物は、 トルエンに不溶であったことから、 原料のフラーレンではない ことが確認された。 実施例 3で得られた炭素粒子は、 実施例 1の生成物に比し て小さく、 その表面は、 実施例 1の生成物と同様の構造およびサイズの薄片が 覆っていた。 The 10. 0 g which a C 60 fullerene used was ground in an agate mortar for 10 minutes in Example 1 except that the raw material, the reaction was carried out in the same manner as in Example 1. As a result, 9.3 g of a black product was obtained. This value corresponds to 93% at a yield in the case of the 100% pure C 60 fullerene with 100% pure carbon material is obtained. Since this product was insoluble in toluene, it was confirmed that it was not the raw material fullerene. The carbon particles obtained in Example 3 were smaller than the product of Example 1, and the surface was covered with flakes having the same structure and size as the product of Example 1.
実施例 1と同様に Ram anスぺクトルを測定した結果、 1 3 5 1 c m-i (D) 、 1583 cm-i (G) 、 2704 c m-1 (G') に大きな 3本のピーク が観測され、 1615 cm_i、 2460 cm-i (D" +D) , 2 940 c m - 1 (D + G) 、 3243 cm- 1 (2D' ) に小さいピークが観測された。 BET 比表面積は 316m2Zgであり、 実施例 1の炭素粒子と比べて大きかった。 このことは、 炭素粒子の表面構造が BET比表面積に影響していると考えられ る。 As a result of measuring the Ram spectrum in the same manner as in Example 1, three large peaks were found at 1351 cmi (D), 1583 cm-i (G), and 2704 cm- 1 (G '). observed, 1615 cm_i, 2460 cm-i (D "+ D), 2 940 cm -. 1 (D + G), 3243 cm- 1 small peak (2D ') was observed BET specific surface area 316m 2 Zg, which was larger than that of the carbon particles of Example 1. This indicates that the surface structure of the carbon particles affected the BET specific surface area.
実施例 4 :  Example 4:
実施例 2において使用したフロンティアカーボン株式会社製のフラーレン混 合物をメノウ乳鉢で 10分間粉砕したもの 10. 0 gを原料とした以外は、 実 施例 1と同様に反応を行った。 その結果、 黒色の生成物 9. 7 gを得た。 この 値は、 純度 100 %のフラーレン混合物から純度 100 %の炭素材料が得られ たとした場合の収率で 97%に相当する。 この生成物は、 トルエンに不溶であつ たことから、 原料のフラーレン混合物ではないことが確認された。 実施例 4で 得られた炭素粒子は、 実施例 2の生成物に比して小さく、 その表面は、 実施例 2の生成物と同様の構造及びサイズの薄片が覆っていた。 B E T比表面積は 2 29m2Zgであり、 実施例 2の炭素粒子と比べて大きかった。 このことは、 炭素粒子の表面構造が B E T比表面積に影響していると考えられる。 実施例 5 : The reaction was carried out in the same manner as in Example 1 except that 10.0 g of the fullerene mixture manufactured by Frontier Carbon Co., Ltd. used in Example 2 was crushed in an agate mortar for 10 minutes as a raw material. As a result, 9.7 g of a black product was obtained. This value is equivalent to 97% of the yield when 100% pure carbon material is obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that it was not a fullerene mixture as a raw material. The carbon particles obtained in Example 4 were smaller than the product of Example 2, and the surface thereof was covered with flakes having the same structure and size as the product of Example 2. The BET specific surface area was 229 m 2 Zg, which was larger than that of the carbon particles of Example 2. This suggests that the surface structure of the carbon particles affects the BET specific surface area. Example 5:
実施例 2において、 導入する水素分圧を 10. 5MP aとした以外は、 実施 例 2と同様に反応を行った。 その結果、 黒色の生成物 9. 4gを得た。 この値 は、 純度 100%のフラーレン混合物から純度 100%の炭素材料が得られた とした場合の収率で 94%に相当する。 この生成物は、 トルエンに不溶であつ たことから、 原料フラーレン混合物でないことが確認された。 実施例 5で得ら れた炭素粒子は、 実施例 2の生成物と同様の構造およびサイズの薄片が粒子表 面を覆っていた。  The reaction was carried out in the same manner as in Example 2 except that the partial pressure of hydrogen introduced was changed to 10.5 MPa. As a result, 9.4 g of a black product was obtained. This value corresponds to a yield of 94% when a 100% pure carbon material is obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that it was not a raw material fullerene mixture. In the carbon particles obtained in Example 5, flakes having the same structure and size as the product of Example 2 covered the particle surface.
実施例 6 :  Example 6:
実施例 2において、 導入する水素分圧を 3. 5 MP aとした以外は、 実施例 2と同様に反応を行った。 その結果、 黒色の生成物 9. 0 gを得た。 この値は、 純度 100%のフラーレン混合物から純度 100 %の炭素材料が得られたとし た場合の収率で 90%に相当する。 この生成物は、 トルエンに不溶であったこ とから、 原料のフラーレン混合物でないことが確認された。 実施例 6で得られ た炭素粒子は 1辺が 20〜40 nm程度の微細な薄片が粒子表面を覆っていた。 産業上の利用可能性  The reaction was carried out in the same manner as in Example 2 except that the partial pressure of hydrogen introduced was changed to 3.5 MPa. As a result, 9.0 g of a black product was obtained. This value corresponds to a yield of 90% when a 100% pure carbon material is obtained from a 100% pure fullerene mixture. Since this product was insoluble in toluene, it was confirmed that it was not a fullerene mixture as a raw material. In the carbon particles obtained in Example 6, fine flakes having a side of about 20 to 40 nm covered the particle surface. Industrial applicability
本発明によれば、 粒子表面を薄片状のグラフアイトが被覆した、 特異なナノ 構造を有する炭素粒子が提供される。 また、 フラーレン類から、 特別な装置を 使用せずに簡便な方法により、 当該炭素粒子を選択的に製造する方法が提供さ れる。  According to the present invention, there is provided a carbon particle having a unique nanostructure in which the particle surface is covered with flaky graphite. Also, a method for selectively producing the carbon particles from fullerenes by a simple method without using a special apparatus is provided.

Claims

請 求 の 範 囲 The scope of the claims
1. 粒子表面にグラフアイト薄膜を有することを特徴とする炭素粒子。 1. A carbon particle having a graphite thin film on the particle surface.
2. グラフアイト薄膜が、 グラフエンシート構造が 5〜50層積層して形成さ れた薄膜である請求項 1に記載の炭素粒子。  2. The carbon particles according to claim 1, wherein the graphite thin film is a thin film formed by laminating 5 to 50 layers of a graph ensheet structure.
3. 炭素粒子上のグラフアイト薄膜が占有する空間の厚さが 10〜100 On mである請求項 1又は 2に記載の炭素粒子。  3. The carbon particles according to claim 1, wherein the thickness of the space occupied by the graphite thin film on the carbon particles is 10 to 100 Onm.
4. BET表面積が 50〜3000 m 2 gである請求項 1〜 3の何れかに記 載の炭素粒子。  4. The carbon particles according to any one of claims 1 to 3, wherein the BET surface area is 50 to 3000 m2g.
5. フラ一レン類を水素雰囲気で加熱することを特徴とする請求項 1に記載の 炭素粒子の製造方法。  5. The method for producing carbon particles according to claim 1, wherein the fullerenes are heated in a hydrogen atmosphere.
6. 水素分圧が 1 M P a以上である請求項 5に記載の製造方法。  6. The production method according to claim 5, wherein the hydrogen partial pressure is 1 MPa or more.
7. 反応温度が 520〜1000°Cの範囲である請求項 5又は 6に記載の製造 方法。  7. The method according to claim 5, wherein the reaction temperature is in a range of 520 to 1000 ° C.
PCT/JP2004/004953 2003-04-07 2004-04-06 Carbon particle and method for preparation thereof WO2004089821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003102964 2003-04-07
JP2003-102964 2003-04-07

Publications (1)

Publication Number Publication Date
WO2004089821A1 true WO2004089821A1 (en) 2004-10-21

Family

ID=33156812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004953 WO2004089821A1 (en) 2003-04-07 2004-04-06 Carbon particle and method for preparation thereof

Country Status (1)

Country Link
WO (1) WO2004089821A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
CN102414124A (en) * 2009-04-24 2012-04-11 丰田自动车株式会社 Carbon material and method for producing same
CN102544459A (en) * 2012-01-09 2012-07-04 上海交通大学 Method for preparing graphene-coated carbon microsphere material by coating graphene oxide on carbon microsphere
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2021-09-20 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157816A (en) * 1997-11-21 1999-06-15 Unitika Ltd Spherical vitreous carbon covered with metal
JP2000357506A (en) * 1999-06-15 2000-12-26 Nippon Carbon Co Ltd Lithium battery negative electrode material obtained by depositing pyrolytic graphite on carbon material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157816A (en) * 1997-11-21 1999-06-15 Unitika Ltd Spherical vitreous carbon covered with metal
JP2000357506A (en) * 1999-06-15 2000-12-26 Nippon Carbon Co Ltd Lithium battery negative electrode material obtained by depositing pyrolytic graphite on carbon material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
CN102414124A (en) * 2009-04-24 2012-04-11 丰田自动车株式会社 Carbon material and method for producing same
US8865102B2 (en) 2009-04-24 2014-10-21 Toyota Jidosha Kabushiki Kaisha Carbon material and method for producing same
CN102414124B (en) * 2009-04-24 2016-06-01 丰田自动车株式会社 Material with carbon element and its manufacture method
CN102544459A (en) * 2012-01-09 2012-07-04 上海交通大学 Method for preparing graphene-coated carbon microsphere material by coating graphene oxide on carbon microsphere
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2021-09-20 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Similar Documents

Publication Publication Date Title
JP6209641B2 (en) Flaky graphite crystal aggregate
Terrones et al. Efficient route to large arrays of CN x nanofibers by pyrolysis of ferrocene/melamine mixtures
JP2004323345A (en) Carbon particle and manufacturing method therefor
Shen et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite
CN102906015B (en) Method for producing multilayer graphene coated substrate
US20100072430A1 (en) Compositions of carbon nanosheets and process to make the same
TW201938484A (en) Structured composite materials
TW202233520A (en) Seedless particles with carbon allotropes
KR101689337B1 (en) A method for producing graphene with rapid expansion and graphene made thereby
Nam et al. Green, fast, and scalable production of reduced graphene oxide via Taylor vortex flow
WO2004089821A1 (en) Carbon particle and method for preparation thereof
Dhand et al. Synthesis and comparison of different spinel ferrites and their catalytic activity during chemical vapor deposition of polymorphic nanocarbons
Ghalkhani et al. Carbon nano-onions: Synthesis, characterization, and application
Abd-Elrahim et al. Kinetically induced one-step heterostructure formation of Co3O4-Ni (OH) 2-graphene ternary nanocomposites to enhance oxygen evolution reactions
Tavakol et al. Gold-decorated sulfur-doped carbon nanotubes as electrocatalyst in hydrogen evolution reaction
Pantoja Suárez Carbon nanotubes grown on stainless steel for supercapacitor applications
Noroozi et al. Microstructure and hydrogen storage properties of LaNi 5-multi wall carbon nanotubes (MWCNTs) composite
Deng et al. Alignment and structural control of nitrogen-doped carbon nanotubes by utilizing precursor concentration effect
Na et al. Carbon nanotube surface modification with the attachment of Si nanoparticles in a thermal plasma jet
Dhahri et al. Magnetic properties of cellulose‐grafted reduced graphite oxide decorated with Ni nanoparticles
JP2018142519A (en) Composite body of platinum nanoparticle and carbonaceous carrier and manufacturing method of the same
Yang et al. Amorphous hollow carbon spheres synthesized using radio frequency plasma-enhanced chemical vapour deposition
Thamizhchelvan et al. Unique Nanostructures of Carbon Nano Onions
Ngo Engineered Graphene and Metal-Organic Framework Nanocomposites for Supercapacitor and Sensing Applications
Saraswathi et al. Carbon based nanostructures for energy storage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase