WO2004077061A1 - Library of compounds labelled with radioisotope - Google Patents
Library of compounds labelled with radioisotope Download PDFInfo
- Publication number
- WO2004077061A1 WO2004077061A1 PCT/GB2004/000825 GB2004000825W WO2004077061A1 WO 2004077061 A1 WO2004077061 A1 WO 2004077061A1 GB 2004000825 W GB2004000825 W GB 2004000825W WO 2004077061 A1 WO2004077061 A1 WO 2004077061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compounds
- library
- radioisotope
- compound
- ams
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 336
- 238000000034 method Methods 0.000 claims abstract description 90
- 238000001514 detection method Methods 0.000 claims abstract description 49
- 238000012216 screening Methods 0.000 claims abstract description 38
- 239000000126 substance Substances 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 25
- 239000007787 solid Substances 0.000 claims abstract description 20
- 238000002372 labelling Methods 0.000 claims abstract description 19
- 230000002503 metabolic effect Effects 0.000 claims abstract description 17
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 9
- 230000007613 environmental effect Effects 0.000 claims abstract description 6
- 239000003905 agrochemical Substances 0.000 claims abstract description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 48
- 230000000694 effects Effects 0.000 claims description 47
- 238000003786 synthesis reaction Methods 0.000 claims description 45
- 238000010348 incorporation Methods 0.000 claims description 37
- 230000027455 binding Effects 0.000 claims description 32
- 238000009739 binding Methods 0.000 claims description 32
- 210000004027 cell Anatomy 0.000 claims description 25
- -1 36C1 Chemical compound 0.000 claims description 21
- 241000282414 Homo sapiens Species 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 19
- 230000004060 metabolic process Effects 0.000 claims description 18
- 239000002243 precursor Substances 0.000 claims description 18
- 239000000376 reactant Substances 0.000 claims description 15
- 238000003556 assay Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 241001465754 Metazoa Species 0.000 claims description 13
- 239000000543 intermediate Substances 0.000 claims description 13
- 241000196324 Embryophyta Species 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 241001147665 Foraminifera Species 0.000 claims description 10
- 230000009257 reactivity Effects 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 125000004429 atom Chemical group 0.000 claims description 8
- 230000002285 radioactive effect Effects 0.000 claims description 8
- 239000002689 soil Substances 0.000 claims description 8
- 230000015556 catabolic process Effects 0.000 claims description 7
- 238000006731 degradation reaction Methods 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 7
- 239000007790 solid phase Substances 0.000 claims description 7
- 239000004411 aluminium Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 6
- 210000002700 urine Anatomy 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 210000004369 blood Anatomy 0.000 claims description 4
- 239000008280 blood Substances 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000011669 selenium Substances 0.000 claims description 4
- 241000238631 Hexapoda Species 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052778 Plutonium Inorganic materials 0.000 claims description 3
- 230000001851 biosynthetic effect Effects 0.000 claims description 3
- 210000001124 body fluid Anatomy 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 210000003608 fece Anatomy 0.000 claims description 3
- 238000003306 harvesting Methods 0.000 claims description 3
- 238000013537 high throughput screening Methods 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims description 3
- 238000001525 receptor binding assay Methods 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052770 Uranium Inorganic materials 0.000 claims description 2
- 229910052768 actinide Inorganic materials 0.000 claims description 2
- 150000001255 actinides Chemical class 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 210000000170 cell membrane Anatomy 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 2
- 150000002602 lanthanoids Chemical class 0.000 claims description 2
- 238000002386 leaching Methods 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 239000011572 manganese Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 238000006303 photolysis reaction Methods 0.000 claims description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 claims description 2
- 238000000159 protein binding assay Methods 0.000 claims description 2
- 239000013049 sediment Substances 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 claims description 2
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 claims description 2
- 238000004760 accelerator mass spectrometry Methods 0.000 description 87
- 239000011324 bead Substances 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 36
- 239000000047 product Substances 0.000 description 35
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 22
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 108020003175 receptors Proteins 0.000 description 17
- 102000005962 receptors Human genes 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 14
- 239000003814 drug Substances 0.000 description 13
- 229940079593 drug Drugs 0.000 description 13
- 239000005711 Benzoic acid Substances 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 12
- 235000010233 benzoic acid Nutrition 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 150000002894 organic compounds Chemical class 0.000 description 9
- 239000000499 gel Substances 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 7
- 239000002207 metabolite Substances 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 229940000406 drug candidate Drugs 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 238000006058 Ugi-reaction Methods 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000000155 isotopic effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 240000006670 Chlorogalum pomeridianum Species 0.000 description 3
- 235000007836 Chlorogalum pomeridianum Nutrition 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical class [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 210000001589 microsome Anatomy 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000013341 scale-up Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 108010038807 Oligopeptides Proteins 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- KVFDZFBHBWTVID-UHFFFAOYSA-N cyclohexanecarbaldehyde Chemical compound O=CC1CCCCC1 KVFDZFBHBWTVID-UHFFFAOYSA-N 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- NTKDGJISXLMWRD-UHFFFAOYSA-N n-[1-(cyclohexylamino)-1-oxohexan-2-yl]benzamide Chemical compound C1CCCCC1NC(=O)C(CCCC)NC(=O)C1=CC=CC=C1 NTKDGJISXLMWRD-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 231100001271 preclinical toxicology Toxicity 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- NNRFRJQMBSBXGO-CIUDSAMLSA-N (3s)-3-[[2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-4-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-oxobutanoic acid Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O NNRFRJQMBSBXGO-CIUDSAMLSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- YQRRFIKLPFQWAO-UHFFFAOYSA-N 1-(2,3-dihydro-1h-inden-1-yloxy)-2,3-dihydro-1h-indene Chemical compound C1CC2=CC=CC=C2C1OC1C2=CC=CC=C2CC1 YQRRFIKLPFQWAO-UHFFFAOYSA-N 0.000 description 1
- OTFUHUOLKBPNPB-UHFFFAOYSA-N 1-nitro-2-[[(2-nitrophenyl)-phenylmethoxy]-phenylmethyl]benzene Chemical class [O-][N+](=O)C1=CC=CC=C1C(C=1C=CC=CC=1)OC(C=1C(=CC=CC=1)[N+]([O-])=O)C1=CC=CC=C1 OTFUHUOLKBPNPB-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 238000010953 Ames test Methods 0.000 description 1
- 231100000039 Ames test Toxicity 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 101000829980 Homo sapiens Ral guanine nucleotide dissociation stimulator Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910010082 LiAlH Inorganic materials 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 102100023320 Ral guanine nucleotide dissociation stimulator Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- PVQATPQSBYNMGE-UHFFFAOYSA-N [benzhydryloxy(phenyl)methyl]benzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)OC(C=1C=CC=CC=1)C1=CC=CC=C1 PVQATPQSBYNMGE-UHFFFAOYSA-N 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 239000009895 amole Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 238000007068 beta-elimination reaction Methods 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- VNWKTOKETHGBQD-NJFSPNSNSA-N carbane Chemical compound [14CH4] VNWKTOKETHGBQD-NJFSPNSNSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000006355 carbonyl methylene group Chemical group [H]C([H])([*:2])C([*:1])=O 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000004965 chloroalkyl group Chemical group 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- XYZMOVWWVXBHDP-UHFFFAOYSA-N cyclohexyl isocyanide Chemical compound [C-]#[N+]C1CCCCC1 XYZMOVWWVXBHDP-UHFFFAOYSA-N 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000012912 drug discovery process Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexamethylene diamine Natural products NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 125000001905 inorganic group Chemical group 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical class N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- BMMKGFHYBJRLBH-UHFFFAOYSA-N n-(2-aminoethyl)-n-prop-2-enoylprop-2-enamide Chemical compound NCCN(C(=O)C=C)C(=O)C=C BMMKGFHYBJRLBH-UHFFFAOYSA-N 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 125000005541 phosphonamide group Chemical group 0.000 description 1
- 150000008039 phosphoramides Chemical class 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000002577 pseudohalo group Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000008648 triflates Chemical class 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910000051 zinc hydride Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B20/00—Methods specially adapted for identifying library members
- C40B20/08—Direct analysis of the library members per se by physical methods, e.g. spectroscopy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
- C07C237/22—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/12—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
- C07D295/125—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/13—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B70/00—Tags or labels specially adapted for combinatorial chemistry or libraries, e.g. fluorescent tags or bar codes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/60—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention relates to a library of compounds labelled with radioisotope for detection of individual compounds, a process for the preparation thereof, a method for selecting from a library a candidate compound displaying desired characteristics and detection thereof in a simultaneous or subsequent study, and the use thereof in compound selection and detection; more particularly the invention relates to a library of compounds labelled with AMS (accelerator mass spectrometry) active radioisotope for detection of individual compounds, a process for the preparation thereof, a method for selecting from a library a candidate compound displaying desired characteristics and detection thereof by AMS; and the use thereof in compound selection, in particular in pharmaceutical drug screening, and AMS detection providing in vivo metabolism characteristics thereof.
- AMS integrated mass spectrometry
- a drug may now be made from a larger number of candidates using high throughput screening of candidates in trace amounts.
- the candidate drugs screened may be taken from a chemical library comprising hundreds or thousands of analogue chemicals obtained from a combinatorial chemistry approach.
- the combinatorial chemistry approach has a further advantage in that a large number of compounds may be screened, of which the structures need not be known, the library providing structure information either in the form of a compound tag or compound number. On selection of a number of candidates from the library they are then identified and forwarded for scale up of drug production for the next stage of trials.
- Accelerator Mass Spectrometry is increasingly replacing the former in vitro techniques used to indicate in vivo metabolism characteristics, giving massive improvements in accurate assessment of in vivo metabolism of compounds.
- AMS Accelerator Mass Spectrometry
- microdosing one or more drug candidates are taken into humans in trace doses in order to obtain early ADME and PK information. This information is then used as part of the process for selection of suitable drug candidates, to select which of the microdosed drugs has the appropriate PK parameters to take further.
- the low dose screening ADME studies ensure that drugs do not have to be dropped later down the development pathway because of inappropriate metabolism such as first pass, too short a half life, poor bio- availability etc. Human microdosing dramatically reduces attrition in drug candidate selection at Phase 1 trials.
- a library of compounds or their pharmaceutically acceptable salts each compound being associated with information on its chemical identity and structure, wherein at least two of the compounds is labelled with radioisotope characterised in that the radioisotope is an AMS active radioisotope.
- AMS is used for the efficient detection of long-lived isotopes at part-per- quadrillion sensitivities, and can analyse 14 C at attomole to zeptomole levels (10 "18 - 10 "21 Moles). AMS performs liquid scintillation counting of radioactive samples of body fluids obtained from a human who has received radioactive doses.
- One of the most significant advantages of AMS is that it can detect and quantify with relatively short analytical times, levels of radioactivity that are so low that the dose needed to be administered to a human subject falls below the stipulated levels of radioactivity which require regulatory review.
- AMS active radioisotopes include any isotopes which are susceptible to AMS analysis.
- AMS active radioisotopes preferably have low natural backgrounds, for example in the range from 1 x 10 "5 % or less for example to 1 x 10 "15 %.
- the sensitivity of AMS relies on the fact that AMS active radioisotopes have a very low natural background such as 0.00000000001% for 14 C.
- the background for 13 C is 1.1%, which by comparison is huge. This means that the incorporation rate for 13 C would have to be much higher than for 14 C.
- AMS also generates and analyses negative ions, preferably therefore an AMS active radioisotope is able to form negative ions.
- AMS active radioisotopes have long half lives in excess of weeks up to 1,000's of years for ease of handling.
- AMS active radioisotopes are non-toxic in AMS active levels, whereby they are suitable for human metabolism, and preferably are of biomedical interest.
- the library of the invention may be envisaged for purpose of detection in screening as hereinbefore defined, and comprise an AMS active radioisotope directly incorporated in the compound as defined or associated with the compound as a tag or the like.
- the AMS active radioisotope is incorporated directly in library compounds and is not detachable therefrom, except by degradation of the compound itself, for example by metabolic degradation.
- a radioisotope is therefore associated by means other than readily hydrolysed linkages or linkages which may be readily cleaved under acidic conditions or the like.
- the radioisotope is covalently incorporated in the compound. More preferably the AMS active radioisotope is present as an atom making up the chemical structure of a library compound, introduced or substituted as the desired radioactive isotope and is not incorporated in a bead or tag associated with the compounds. Most preferably an AMS active radioisotope is present as a cyclic ring atom or heteroatom, preferably an aromatic ring atom or heteroatom, or as an aliphatic carbon chain atom or heteroatom such as a saturated or unsaturated atom or heteroatom, which may be single, double or triple bonded, or the like. The radioisotope thereby forms an integral part of the compound.
- Radioisotope label applied to a tag such as a support on which a compound is supported, such as a bead, or applied to an identifier tag to provide information on the identity of, or a step in the synthesis of, a given compound.
- Radioisotope labelled compounds may nevertheless be envisaged for the library of the invention, in which the radioisotope is present on a tag or other component, which is resilient to metabolic cleavage, and thereby is AMS active.
- the library comprises a plurality of compounds or their pharmaceutically acceptable salts of formula I:
- each J is different and is a compound which comprises an
- AMS active radioisotope * AMS active radioisotope *
- m is a value for the percent incorporation of radioisotope and is fractional in the range from in excess of zero to 1%
- t is a tag associated with information on the compounds chemical identity and structure wherein n is 0, or a whole number integer.
- m is fractional and is in the range from in excess of zero to 0.1% whereby each compound of formula I is lightly labelled, a proportion thereof having no radioisotope.
- Different compounds of formula I may comprise same or different radioisotope, and any one compound of formula I may comprise same or different radioisotope present on the same or different molecules.
- a library is therefore suitably present as a plurality of lightly labelled compounds; or may be present as a plurality of labelled compounds and a corresponding plurality of fully labelled compounds in lesser amount which may be combined to give a lightly labelled compound with appropriate % incorporation, as desired.
- the proportion of radioisotope labelled compounds of any one compound of formula I is such as to provide, in sampling that compound, a sample which is within the limits of AMS detection.
- the radioisotope is present in an amount which is within the limits of AMS detection.
- the library of the invention relies on the ultrasensitivity of the AMS technology whereby a library of radioisotope labelled compounds may be provided for screening and AMS detection in ultralow quantities or lightly labelled suitable for analysing, compounds from the library only in those reactions which can be analysed using the AMS method.
- Reference herein to a compound being lightly labelled is to the compound comprising radioisotope present in AMS active amount, preferably corresponding to a value for percent incorporation in a range as hereinbefore defined. Percent incorporation is a measure of maximum specific activity, wherein 100% incorporation is defined as the incorporation of one radioisotope per molecule, taking a given amount of substance, in which every molecule has one specified atom replaced with its radioactive equivalent.
- percent incorporation is in the range 1 x 10 "12 to 0.1 %, more preferably 1 x 10 "10 to 0.1 %.
- the library of the invention therefore takes advantage of the analytical power of AMS and the fact that AMS can uniquely be applied to trace radioisotope labelled libraries.
- Percent incorporation cannot be derived directly but is calculated from the specific activity of the compound.
- the maximum specific activity is given in dpm/mmole and is the basic unit of radioactivity - disintegrations per minute - being the number of nuclear disintegrations occurring, on average, every minute.
- percent incorporation is a normalised function which can be compared for all radioisotopes, and is more instructive than the term of specific activity which is dependent on radioisotope.
- 14 C as an AMS active radioisotope may be present in a compound of the library of the invention in an amount giving dpm/mmol in the range 5 to 12, preferably 7 to 10, for example in the range 7.3438 to 9.8562 (ANU sucrose). The value for another isotope would be different.
- Equ 1 % incorporation for a given compound is determined by equation Equ 1 :
- Equ 2 ln2 -jT x N Equ 2
- N is the number of atoms of the radioisotope in 1 mmole (moles compound x 6.0225 x lO 20 ).
- Equation 2 takes no account of diminishing radioactivity (dpm value) due to the half-life of the radioisotope over time (ie it calculates the maximum specific activity at time zero).
- the following example calculates the maximum specific activity (based on one radioisotope per molecule) for 14 C.
- the half-life of 14 C is 5730 years and so any diminishment of radioactivity over short periods of time is negligible.
- illustration units are as follows:
- the maximum theoretical specific activity for 14 C is 2.3083 GBq/mmole, (based on one radioisotope per molecule). This equals 100% incorporation.
- a typical human radioactive dose if AMS is being used as the detection method, is 7.4 kBq.
- An AMS active radioisotope may be selected from any radioisotope which is amenable to detection by AMS detection techniques. Radioisotopes vary in half life and thereby in radioactivity and enable detection in smaller or greater amounts whereby certain radioisotopes are particularly suited for certain envisaged applications either by virtue of the chemical nature of the isotope or its radiation characteristics. Many atoms are capable of forming several different radioisotopes, of which certain may be suited for some radiodetection techniques and certain suited for other techniques. Preferably therefore the library specifies the nature of the radioatom and the particular isotope(s) present to indicate suitability of libraries for an intended use. For example a library labelled with I is useful for AMS detection whereas a library labelled with I although highly active is probably of limited use. Similarly a library labelled with 14 C is useful for AMS detection whereas a library labelled with
- Radioisotopes of nitrogen are of widespread use in many other radioactive techniques, such as NMR detection, for example as disclosed in WO 97/01098, but of no use in AMS analysis. Particularly unsuitable radioisotopes fails to form negative ions, notably radioisotopes of nitrogen.
- AMS active radioisotopes selected from AMS active radioisotopes of hydrogen, beryllium, carbon, aluminium, phosphorus, chlorine, calcium, manganese, iron, selenium, iodine, barium and lanthanides and actinides such as uranium or plutonium.
- a library of the invention comprises compounds radioisotope labelled with an isotope selected from any isotopes that are amenable to AMS analysis, preferably selected from any one or more of 2 H, 3 H, the isotopes of Ba, 10 Be, 14 C, 17 O, 18 O, 26 Mg, 26 A1, 32 Si, 36 C1, 41 Ca, 55 Fe, 57 Fe, 60 Fe, 53 Mn, 55 Mn, 79 Se and 129 I, 236 U, 239 Pu most preferably selected from any one or more of 3 H, 14 C and 36 Cl.
- an isotope selected from any isotopes that are amenable to AMS analysis, preferably selected from any one or more of 2 H, 3 H, the isotopes of Ba, 10 Be, 14 C, 17 O, 18 O, 26 Mg, 26 A1, 32 Si, 36 C1, 41 Ca, 55 Fe, 57 Fe, 60 Fe, 53 Mn, 55 Mn, 79 Se and 129 I, 236 U, 239 Pu most
- the invention comprises a library of compounds as hereinbefore defined characterised in that an AMS active radioisotope is a 14 C radioisotope; alternatively or additionally a 36 C1 or 3 H radioisotope.
- a library of compounds according to the invention preferably comprises a plurality of compounds present in solid phase or liquid phase, typically solution phase, or mixtures thereof, each compound supported on a solid support or contained within a sealed vial or the like, as known in the art.
- Compound supports or carriers such as beads or the like to which the library of compounds and tags have been added facilitate screening of the compounds bound to the bead.
- a library may comprise unsupported compounds, removed from the bead and grouped singly or in a set of 10 to 100 to 1000 or more compounds for screening.
- a solid phase library may comprise compounds supported on small definable solid supports, commercially available as particles or beads, capillaries, hollow fibers, needles, solid fibers, etc.
- the solid supports may be non-porous or porous, deformable or hard, and have any convenient structure and shape.
- magnetic or fluorescent beads may be useful.
- the beads will generally be at least 10-2000 micron, usually at least 20-500 micron, more usually at least 50-250 micron in diameter.
- solid supports which may be employed include cellulose beads, controlled-pore glass beads, silica gel, polystyrene beads, particularly polystyrene beads cross-linked with divinylbenzene, grafted co-polymer beads such as polyethyleneglycol/polystyrene, polyacrylamide beads, latex beads, dimethylacrylamide beads, particularly cross-linked with N,N'-bis-acryloyl ethylene diamine and comprising N-t-butoxycarbonyl-.beta.-alanyl-N'-acryloyl hexamethylene diamine, composites, such as glass particles coated with a hydrophobic polymer such as cross-linked polystyrene or a fluorinated ethylene polymer to which is grafted linear polystyrene; and the like.
- polystyrene beads particularly polystyrene beads cross-linked with divinylbenzene
- grafted co-polymer beads such as polyethyleneglycol/polysty
- each compound is associated with information on its chemical identity and structure as hereinbefore defined and as is commonly known in the art of libraries such as combinatorial libraries.
- Compounds may also be associated with information on the nature of the radioisotope(s) present and the amount, for example the % incorporation or specific activity, thereof. Association may be by means of physical association by means for example of a tag comprising synthesis information or a synthetic memory associated with a bead or solid support on which a compound is (releasably) supported or with which a compound is associated, or may be by numbering or indexing the container or well for, or location of, each compound and providing reference information on the chemical identity and structure of each numbered or indexed compound. Using well plates simplifies mapping of compound identity.
- radioisotope of the library of the invention is present as an integral part of each library compound and is not detachable therefrom, for example if not an integral part of a library compound structure is associated with a pharmaceutically compatible tag which is irreversibly associated with the compound to the degree that dissociation takes place only on degradation of the compound itself, for example by metabolic degradation.
- a radioisotope is therefore associated by means other than readily hydrolysed linkages or linkages which may be readily cleaved under acidic conditions or the like.
- the library of compounds is provided as an array of compounds suitable for use in high throughput screening and the like.
- An array may comprise a plate such as a microtiter plate, cell array, vial or bottle array, support matrix or plate, fibre optic array or the like as known in the art of combinatorial chemistry or may comprise a plurality of supports or containers such as vials, bottles or the like wherein support or container or compound is labelled with an identifier or tag which identifies the compound as a component of a library of compounds or which identifies the compound by chemical identity and structure.
- a library comprising compounds present on solid support(s) such as beads may in some cases provide an advantage in terms of ease of preparation and accuracy of detection in that unincorporated radioisotope from the synthesis remaining in the reaction mix may be simply washed away avoiding any contamination in use of the library or exceeding % incorporation levels as hereinbefore defined.
- the purpose of the compound tags is for decoding the reaction history of the compound.
- the product may then be produced in a large synthesis.
- the same or analogous reaction series may be used to produce the product in a large batch.
- the reaction history does not unambiguously define the structure, one would repeat the reaction history in a large batch and use the resulting product for structural analysis. In some instances it may be found that the reaction series of the combinatorial chemistry may not be the preferred way to produce the product in large amounts.
- a tag may be retained with or separated from the compound for AMS study; and may be decoded prior to AMS detection but is preferably not decoded until the AMS results indicate that it is selected as a candidate for further trials.
- the library of the invention comprises compounds in small quantities of nanomoles or millimoles, typically milligrams, by virtue of the sensitivity of AMS detection techniques, up to moles or grams.
- compounds are present in same or different amounts in the range of 0.1 microgram to lOg, preferably 1 microgram to lOOmg, for example 10 microgram to lOmg.
- This has a double cost advantage, since the conventional unlabelled library is typically not cheap, and isotopes are also not cheap, whereby radioisotope labelling of compounds in small amounts helps to limit the cost of the library.
- the AMS active library provides a means to reduce the quantities of compounds present in a compound library by the adoption of the
- the library of the invention may comprise any desired number of compounds. Commonly libraries are provided wherein from 20 to millions of compounds are present. Preferably the library of the invention comprises from 5 to 5 xlO 6 compounds, for example from 20 to 1,000,000 for example greater than 25,000 or greater than 50,000 compounds, such as greater than 200,000 compounds. Particular advantages are associated with larger libraries of in excess of 25,000 compounds, since the benefits of directly subjecting selected compounds from the library to radiodetection techniques increase with the number of compounds to be detected. On the other hand the cost of a library increases with the number of compounds in the library and therefore there are advantages associated with smaller libraries of from 20 to 25,000 compounds.
- all or substantially all compounds in the library comprise an amount of radioisotope as hereinbefore defined.
- Compounds may comprise the same or different radioisotope.
- the library comprises compounds as hereinbefore defined associated with information on the radioisotope identity or identities of each individual library member, for example to enable correct AMS sample preparation, in view of the different sample preparation techniques required for each type of radioisotope in AMS.
- a proportion of the compounds in the library comprise a radioisotope.
- the secondary selection would simply be to select those compounds which show best activity and which comprise a radioisotope.
- At least 40% of the compounds are lightly labelled, preferably at least 50% of the compounds are lightly labelled, more preferably at least 75% of the compounds are lightly labelled, more preferably at least 90% of the compounds are lightly labelled, most preferably all or substantially all of the compounds are lightly labelled.
- a compound of the library of the invention may comprise more than one radioisotope which may be the same or different, and are preferably different.
- the library of the invention comprises a plurality of compounds having a plurality of radioisotopes introduced randomly or specifically in different moieties of the compound, whereby the metabolic pathway for potentially active and potentially inert moieties may be monitored giving more comprehensive metabolic information on the target delivery sites of active and inert moieties.
- the library may be structurally diverse or similar and is suitably a chemical or a biochemical library.
- the library comprises organic compounds which are not amenable to biochemical synthesis, ie synthetically obtained non-biochemical compounds.
- the library may comprise biochemical compounds made up of individual units such as amino acids, peptides, nucleic acids, fatty acids, carbohydrates etc.
- biochemical compounds made up of individual units such as amino acids, peptides, nucleic acids, fatty acids, carbohydrates etc.
- the library may be a combinatorial library comprising compounds which are analogues of a common structure obtained from a combinatorial synthesis or biosynthesis; or dissimilar compounds having common reactive functionality suitable for targetting a particular reaction or mechanism, or may be structurally diverse compounds providing multiple structure types or reactive functionality suitable for targetting or probing an unknown reaction or mechanism type.
- the library of the invention comprises a plurality of small molecules, typically naturally occurring or synthetic chemical or biochemical bioactive molecules and their analogues for example of up to 1000MW.
- the library comprises a plurality of larger molecules, typically naturally occurring or synthetic biomolecules and their analogues, such as radioisotope labelled biopolymers including radioisotope labelled recombinant proteins such as insulin analogues, growth hormone analogues, antibodies and the like, peptides, plant or gene therapy products.
- a solid support having a compound or its pharmaceutically acceptable salt bound thereto, the compound being associated with information on its chemical identity and structure and comprising a radioisotope, characterised in that the radioisotope is an AMS active radioisotope as hereinbefore defined.
- a solid support is suitably any solid support as known in the art of chemical libraries as hereinbefore defined, and is preferably associated with information on its chemical identity and structure as hereinbefore defined.
- the solid support is characterised by further features as hereinbefore and hereinbelow defined in respect of a library of the invention.
- a process for the preparation of a library of compounds as hereinbefore defined comprising radioisotope labelling a plurality of compounds, each compound being associated with information on its chemical identity and structure characterised in that labelling is with an AMS active radioisotope.
- the process may be a process for preparation of a solution phase or solid phase library of compounds, unsupported or supported using techniques as known in the art. Preferably labelling is performed in manner to provide further features of a library as hereinbefore defined.
- Labelling may be conducted as part of any known single or multistep synthetic route or biosynthesis, or may be conducted as a dedicated chemical or biosynthetic labelling step on commercially available or previously synthesised compounds, or a mixture thereof.
- Radioisotope labelling is suitably performed by techniques as known in the art for labelling compounds.
- a biosynthesis is suitably performed by culturing a microrganism which produces biochemical products in a radioisotope enriched environment and harvesting labelled products.
- the enriched environment comprises an AMS active radioisotope as hereinbefore defined, preferably in AMS active amount as hereinbefore defined.
- Biochemical components or metabolites or microorganisms become labelled as a result of growing the microorganism in the enriched environment as known in the art.
- the process comprises lightly labelling a synthetic precursor or intermediate or a biochemical culture substrate and reacting with other precursors or intermediates, or culturing a microrganism therein whereby the radioisotope is incorporated in the synthesis or biosynthesis product. It is not always possible to control the percent incorporation of a radioisotope in a compound, or in this case in a precursor, intermediate or culture substrate, whereby.
- the process comprises labelling a synthetic precursor or intermediate or a biochemical culture substrate, determining the specific activity thereof, determining the desired specific activity to give a desired percent incorporation, and combining with a sufficient amount of corresponding unlabeled synthetic precursor or intermediate or a biochemical culture substrate and isolating as a homogeneous product having desired percent incorporation.
- isolating a homogeneous product is by recrystallisation of the combined labelled and unlabelled product.
- Methods for preparing combinatorial libraries include the techniques of parallel or series synthesis, split pool or split and mix synthesis whereby intermediates are split for diverse reactions and mixed for common reactions, and the like. Synthesis may be carried out in dedicated combinatorial reactors such as multi-reactor synthesisers, or in conventional manner.
- Radioisotope labelled combinatorial methods may therefore be envisaged in which a core molecule is radioisotope labelled, preferably lightly labelled as hereinbefore defined, and split into a plurality of samples, each of which is then subject to combinatorial variation, by reaction with a known or random, structured or diverse, collection of derivatisation reagents in one or more stages to provide a library of radioisotope labelled derivatives.
- a core molecule may be split into a plurality of samples, each of which is then subject to combinatorial variation, by reaction with a known or random collection of, preferably lightly, radioisotope labelled derivatisation reagents in one or more stages to provide a library of, preferably lightly, radioisotope labelled derivatives.
- Compounds of the library of the invention may be obtained from reactions involving modifications at a variety of random sites of a central core molecular structure or. modifications at a specific site, as known in the art. For example, one may brominate a polycyclic compound, where bromination may occur at a plurality of sites or use a brominating agent which will be specific for a particular site, e.g., N-bromosuccinimide. For the most part, reactions will involve single sites or equivalent sites, for example, one of two hydroxyl groups of a glycol.
- compounds of the library of the invention may be obtained from a synthesis having at least two stages where other than bifunctional compounds are attached using the same linking functionality, e.g. amino acids and amide bonds, nucleotides and phosphate ester bonds, or mimetic compounds thereof, e.g., aminoiso-cyanates and urea bonds.
- the process comprises serial synthesis involving the addition or removal of chemical units, reactions involving the modification or introduction of one or more functionalities, ring openings, ring closings, etc.
- Chemical units can take many forms, both naturally-occurring and synthetic, such as nucleophiles, electrophiles, dienes, alkylating or acylating agents, diamines, nucleotides, amino acids, sugars, lipids, or derivatives thereof, organic monomers, synthons, and combinations thereof.
- reactions may be involved which result in alkylation, acylation, nitration, halogenation, oxidation, reduction, hydrolysis, substitution, elimination, addition, and the like.
- Compounds may be non-oligomers, oligomers, or combinations thereof in extremely small amounts, where the reaction history, and composition in appropriate cases, can be defined by the tags as known in the art.
- Non- oligomers include a wide variety of organic molecules, e.g. heterocyclics, aromatics, alicyclics, aliphatics and combinations thereof, comprising steroids, antibiotics, enzyme inhibitors, ligands, hormones, drugs, alkaloids, opioids, terpenes, porphyrins, toxins, catalysts, as well as combinations thereof.
- Oligomers include oligopeptides, oligonucleotides, oligosaccharides, polylipids, polyesters, polyamides, polyurethanes, polyureas, polyethers, poly (phosphorus derivatives) e.g.
- Known combinatorial synthetic methods permit variation in reaction at each stage, depending on the choice of agents and conditions involved.
- amino acids one may have up to 20 amino acids involved using the common naturally-encoded amino acids and a much wider choice, if one wishes to use other amino acids, such as D-amino acids, amino acids having the amino group at other than the alpha-position, amino acids having different substituents on the side chain or substituents on the amino group, and the like.
- amino acids such as D-amino acids, amino acids having the amino group at other than the alpha-position, amino acids having different substituents on the side chain or substituents on the amino group, and the like.
- amino acids such as D-amino acids, amino acids having the amino group at other than the alpha-position, amino acids having different substituents on the side chain or substituents on the amino group, and the like.
- amino acids such as D-amino acids, amino acids having the amino group at other than the alpha-position, amino acids having different substituents on the side chain or substituents on the amino group, and the like.
- nucleic acids there will usually be up to
- ureas, urethanes, carbonylmethylene groups, and the like may substitute for the peptide linkage; various organic and inorganic groups may substitute for the phosphate linkage; and nitrogen or sulfur may substitute for oxygen in an ether linkage or vice versa.
- the library of the invention may be obtained by a synthetic strategy which varies with the nature of the group of products one wishes to produce.
- the strategy must take into consideration the ability to stage-wise change the nature of the product, while allowing for retention of the results of the previous stages and anticipating needs for the future stages.
- the various units are of the same family, such as nucleotides, amino acids and sugars, the synthetic strategies are relatively well-established and frequently conventional chemistry will be available.
- phosphoramidite or phosphite chemistries may be employed; for oligopeptides, Fmoc or Boc chemistries may be employed where conventional protective groups are used; for sugars, the strategies may be less conventional, but a large number of protective groups, reactive functionalities, and conditions have been established for the synthesis of polysaccharides. For other types of chemistries, one will look to the nature of the individual unit and either synthetic opportunities will be known or will be devised, as appropriate.
- a library of the invention may comprise compounds having the same or different blocks introduced at the same or different stages in the synthesis.
- a common peptide functional unit e.g. the fibronectin binding unit (RGDS)
- a polysaccharide e.g. Lex
- an organic group e.g. a lactam, lactone, benzene ring, olefin, glycol, thioether, etc.
- RGDS fibronectin binding unit
- an organic group e.g. a lactam, lactone, benzene ring, olefin, glycol, thioether, etc.
- these situations may involve only a few stages having the plurality of choices, where a large number of products are produced in relation to a particular functional entity. This could have particular application where one is interested in a large number of derivatives related to a core molecule or unit known to have a characteristic of interest.
- the library of the invention is preferably obtained by batch synthesis of a few compounds which would be prepared during the course of the combinatorial synthesis.
- syntheses which might involve steric hindrance, charge and/or dipole interactions, alternative reaction pathways, or the like, one can optimise conditions to provide for enhanced yields of compounds which might not otherwise be formed or be formed only in low yield. In this manner, one may allow for a variety of reaction conditions during the combinatorial synthesis, involving differences in solvent, temperatures, times, concentrations, and the like.
- one may use the batch syntheses, which will provide much higher concentrations of particular products than the combinatorial synthesis, to develop assays to characterise the activity of the compounds.
- the method comprises the synthesis of a single or mixed solution- phase/solid-phase lightly labelled library incorporating trace levels of ! C lightly radioisotope labelled precursor.
- precursors are core labelled not substituent labelled, for example lightly ring labelled benzoic acid.
- the method comprises a 2 to 6 component condensation, substitution or the like reaction as hereinbefore defined, for example a four- component condensation such as an Ugi reaction ((a) Cao, X; Moran, E.J.; Siev, D.; Lio, A.; Ohashi, C; Mjalli, A.M.M. Bioorg. & Med. Chem. Lett., . 1995, 5, 2953-2958 and (b) Nakamura, M.; Inoue, J.; Yamada, T. Bioorg. & Med. Chem. Lett., 2000, 10, 2807-2810).
- Ugi reaction ((a) Cao, X; Moran, E.J.; Siev, D.; Lio, A.; Ohashi, C; Mjalli, A.M.M. Bioorg. & Med. Chem. Lett., . 1995, 5, 2953-2958 and (b) Nakamura, M.; Inoue, J.; Yamada,
- any one or more of the four components may be lightly labelled, with the same or different AMS active radioisotope.
- a solid-supported precursor eg an amine (scheme 2).
- Test runs may be undertaken on representative library members using unlabelled ('cold') precursor, eg benzoic acid.
- unlabelled ('cold') precursor eg benzoic acid.
- the results indicate library members containing benzaldehyde as a building block that cannot be synthesised and as such these may be removed from the library.
- a biochemical library is conveniently prepared by growing microorganisms in an AMS active radioisotope enriched environment as hereinbefore defined.
- AMS active radioisotope enriched environment as hereinbefore defined.
- Known techniques include growth of bacteria or yeast in the presence of labelled carbohydrate and salts, or in labelled methanol, or in labelled algal lysates, phototrophic culture of algae in labelled CO 2 , growth of mammalian or insect cells in labelled media, and the like.
- Any components of the microorganism can be harvested as lightly labelled precursor or library compound, for example amino acids, fatty acids, carbohydrates, nucleic acids etc.
- microorganisms are grown in lightly radioisotope labelled culture such as 14 C glucose, and encouraged to mutagenise forming mutated bacteria, plated and cultured to form colonies generating secondary metabolites which are radioisotope labelled, and metabolites are harvested providing a library of the invention.
- Harvesting may be by disrupting the culture and lysing the bacteria, or by lifting off excreted metabolites.
- the library of the invention may be provided on any known support typical of libraries as known in the art as hereinbefore defined which can be readily mixed, separated, and serve as a solid substrate for the sequential synthesis.
- the beads may be functionalised in a variety of ways to allow for attachment of the initial reactant. These may be linked through a non-labile linkage such as an ester bond, amide bond, amine bond, ether bond, or through a sulfur, silicon, or carbon atom, depending upon whether one wishes to be able to remove the product from the bead.
- the bond to the bead may be permanent, but a linker between the bead and the product may be provided which is cleavable such as exemplified in Table 1. Two or more different linkages may be employed to allow for differential release of tags and/or products.
- linking group bound to the particle reactive functionalities on the bead may not be necessary where the manner of linking allows for insertion into single or double bonds, such as is available with carbenes and nitrenes or other highly-reactive species.
- the cleavable linkage will be provided in the linking group which joins the product or the tag to the bead.
- the link to the bead will be extended, so that the bead will not sterically interfere with the binding of the product during screening.
- Various links may be employed, particular hydrophilic links, such as polyethyleneoxy, saccharide, polyol, esters, amides, combinations thereof, and the like.
- Functionalities present on the bead may include hydroxy, carboxy, iminohalide, amino, thio, active halogen (Cl or Br) or pseudohalogen (e.g., ⁇ CF 3 , --CN, etc.), carbonyl, silyl, tosyl, mesylates, brosylates, triflates or the like.
- some consideration should be given to the fact that the identifiers will usually also become bound to the bead. Consideration will include whether the same or a different functionality should be associated with the product and the identifier, as well as whether the two functionalities will be compatible with the product or identifier attachment and tag detachment stages, as appropriate.
- the particle may have protected functionalities which may be partially or wholly deprotected prior to each stage, and in the latter case, reprotected.
- amino may be protected with a carbobenzoxy group as in polypeptide synthesis, hydroxy with a benzyl ether, etc.
- Tags may be released from the library compound, and then subjected to a detecting means for example reacting with a molecule which allows for detection.
- tags may be quite simple, having the same functionality for linking to the library compound as to the detecting means. For example, by being linked to a hydroxycarboxyl group, a hydroxyl group would be released, which could then be esterified or etherified with the molecule which allows for detection.
- the library of the invention comprises compounds having detachable tags, for which there are numerous functionalities and reactants known in the art.
- ethers may be used, where substituted benzyl ether or derivatives thereof, e.g. benzhydryl ether, indanyl ether, etc. may be cleaved by acidic or mild reductive conditions.
- substituted benzyl ether or derivatives thereof e.g. benzhydryl ether, indanyl ether, etc.
- beta-elimination where a mild base may serve to release the product.
- Acetals, including the thio analogues thereof may be employed, where mild acid, particularly in the presence of a capturing carbonyl compound, may serve.
- an .alpha.-chloroether is formed. This may then be coupled with an hydroxy functionality on the bead to form the acetal.
- Various photolabile linkages may be employed, such as o- nitrobenzyl, 7-nitroindanyl, 2-nitrobenzhydryl ethers or esters, etc.
- Esters and amides may serve as linkers, where half-acid esters or amides are formed, particularly with cyclic anhydrides, followed by reaction with hydroxyl or amino functionalities on the bead, using a coupling agent such as a carbodiimide.
- Peptides may be used as linkers, where the sequence is subject to enzymatic hydrolysis, particularly where the enzyme recognises a specific sequence.
- Carbonates and carbamates may be prepared using carbonic acid derivatives, e.g. phosgene, carbonyl diimidazole, etc. and a mild base.
- the link may be cleaved using acid, base or a strong reductant, e.g., LiAlH , particularly for the carbonate esters.
- kit for preparing a library of the invention as hereinbefore defined comprising one or more sets of a plurality of separated reactants, and optionally an amount of one or more common reactants to be reacted with each set, each of the reactants characterised by having a distinguishable composition, being associated with information on structure or identity, and sharing at least one common functionality, at least one set or one common reactant being labelled with an AMS active radioisotope as hereinbefore defined.
- a kit may provide various reagents for use as tags in carrying out the library syntheses.
- Reagents for use as tags may comprise at least 4, usually 5, different compounds in separate containers, more usually at least 10, and not more than about 100, more usually not more than about 36 different separated organic compounds.
- the mode of detection will usually be common to the compounds associated with the analysis, so that there may be a common chromophore, a common atom for detection, etc.
- each of the identifiers is pre-prepared, each will be characterised by having a distinguishable composition encoding choice and stage which can be determined by a physical measurement and including groups or all of the compounds sharing at least one common functionality.
- the kit may provide reactants which can be combined to provide the various identifiers or tags.
- Reactants may comprise a plurality of separated first functional, frequently bifunctional, organic compounds, usually four or more, generally one for each stage of the synthesis, where the functional organic compounds share the same functionality and are distinguishable as to at least one determinable characteristic.
- the kit may comprise at least one, usually at least two, second organic compounds capable of reacting with a functionality of the functional organic compounds and capable of forming mixtures which are distinguishable as to the amount of each of the second organic compounds.
- reagents may comprise a glycol, amino acid, or a glycolic acid, where the various bifunctional compounds are distinguished by the number of fluorine or chlorine atoms present, to define stage, and have an iodomethane, where one iodomethane has no radioisotope, another has 14 C and another has one or more 3 H.
- iodomethane By using two or more of the iodomethanes, one could provide a variety of mixtures which could be determined by their radioemissions.
- one could have a plurality of second organic compounds, which could be used in a binary code.
- a method for selecting one or more candidate compounds for medical applications comprising screening a library of the invention comprising AMS active radioisotope labelled compounds as hereinbefore and obtaining a sample from the screen or submitting a compound identified for metabolic studies and obtaining a sample therefrom, and performing AMS detection of the sample.
- Screening may be for a desired activity, reactivity, inhibition, functionality or the like, as known in the art, identifying one or more candidate radioisotope labelled compounds from the library.
- AMS detection is suitably conducted on a screening sample or by dosing, for example microdosing, the candidate radioisotope labelled compounds in human, animal or plant subjects and performing AMS detection of metabolic samples taken from the subjects.
- a sample is preferably prepared for AMS from any sample which is derived from a screen, such as a cell or cell membrane sample, or from human, animal or plant derived dosing samples, such as tissues or cells, bodily fluids such as blood or urine, faeces, plant tissues, soil or soil organisms such as worms and the like.
- a screen such as a cell or cell membrane sample, or from human, animal or plant derived dosing samples, such as tissues or cells, bodily fluids such as blood or urine, faeces, plant tissues, soil or soil organisms such as worms and the like.
- the method of the invention is therefor useful both in providing for in vitro activity, reactivity, inhibition or functionality screening and selection of compounds and in providing binding or in vivo metabolic data for the selected candidate compounds, in particular for providing ADME and PK data.
- Screening is performed in known manner by taking a sample of each compound present in the library and subjecting to a desired assay.
- Screening may be with any known or novel medical, biological, environmental or like screen and is typically a human or animal biomedical assay or the like, for example a protein binding assay, such as a receptor binding assay.
- Screening may be conducted on compounds associated directly with their identifiers, such as beads as hereinbefore defined, and may be conducted on single beads or groups of compounds to determine whether the compound or groups show activity. Groups may involve 10, 100, 1000 or more compounds. In this way, large groups of compounds may be rapidly screened and segregated into smaller groups of compounds.
- a common screen is to detect binding to a particular biomolecule such as a receptor.
- the receptor may be a single molecule, a molecule associated with a microsome or cell, or the like.
- agonist activity is of interest
- one may wish to use an intact organism or cell, where the response to the binding of the subject product may be measured.
- it may be desirable to detach the compound from the bead, particularly where physiological activity by transduction of a signal is of interest.
- binding is of interest, one may use a labeled receptor where the label is a fluorescer, enzyme, radioisotope, or the like, where one can detect the binding of the receptor to the compound on the bead.
- binding may also be determined by displacement of a ligand bound to the receptor, where the ligand. is labeled with a detectable label.
- a screen may comprise a two-stage screen, comprising binding as an initial screen, followed by biological activity with a viable cell in a second screen.
- Using recombinant techniques to prepare libraries allows great variation in the genetic capability of cells.
- a second screen may comprise introducing a leuco dye into the cell, where an enzyme which transforms the leuco dye to a colored product, particularly a fluorescent product, becomes expressed upon appropriate binding to a surface membrane, e.g. beta- galactosidase and digalactosidylfluorescein.
- the fluorescent nature of the cell may be determined using a FACS, so that active candidate compounds may be identified.
- the compound may comprise antibodies to a surface membrane protein, eg one may link avidin to the surface of the cell and have biotin linked to the candidate compound directly or via its carrier or bead, etc.
- Assays may be performed stagewise using individual compounds or groups of compounds or combinations thereof. For example, after carrying out the combinatorial syntheses, groups of about 50 to 10,000 compounds may be segregated in separate vessels. In each vessel a portion of the each compound is released, if bound to a carrier. The fractional release may be as a result of differential linking of the product to the particle or using a limited amount of a reagent, condition or the like, so that the average number of compound molecules released per carrier is less than the total number of compound molecules per carrier.
- the screen media then comprises a mixture of compounds in a small volume.
- the mixture could then be used in an assay for binding, where the binding event could be inhibition of a known binding ligand binding to a receptor, activation or inhibition of a metabolic process of a cell, or the like.
- Various assay conditions may be used for the detection of binding activity as known in the art.
- the individual compounds may then be screened, by the same or a different assay, giving a three- or four-stage procedure in total, where large groups are divided up into smaller groups, etc. and finally single compounds are screened. In each case, portions of the compounds on carriers would be released and the resulting mixture used in an appropriate assay.
- Assays may be the same or different, the more sophisticated and time consuming assays being used in the later or last stage.
- Screening may alternatively be performed on spatial arrays, whereby compounds may be distributed over a honeycomb plate, with each well in the honeycomb having 0 or 1 compound.
- Screening may be used to identify compounds with catalytic properties, such as hydrolytic activity, e.g. esterase activity.
- screen compounds may be embedded in a semisolid matrix surrounded by diffusible test substrates. If the catalytic activity can be detected locally by processes that do not disturb the matrix, for example, by changes in the absorption of light or by detection of fluorescence due to a cleaved substrate, compounds in the zone of catalytic activity can be isolated and their identifier tags decoded.
- Screening may be used to identify compounds with inhibitory or activating activity.
- Compounds may be sought that inhibit or activate an enzyme or block a binding reaction.
- To detect compounds that inhibit an enzyme compounds are suitably released from carriers enabling them to diffuse into a semisolid matrix or onto a filter where this inhibition, activation or blocking can be observed.
- Compounds that form a visualised or otherwise detectable zone of inhibition, activation or blocking can then be picked and the tags decoded.
- Tagging in this case is preferably by attached to the compounds by cleavable linkages, preferably a photolabile linkage, while a portion of the tags remain attached to the bead, releasable after picking by a different means than before.
- a dialysis membrane may be employed where a layer of supported compounds is separated from a layer of radioisotope labeled ligand/receptor pair.
- the compound layer may be irradiated with ultraviolet light releasing the compound which would diffuse to the pair layer, where the radioisotope labelled ligand would be released in proportion to the affinity of the compound for the receptor.
- the radioisotope labelled ligand would diffuse back to the layer of compounds. Since the radioisotope would be proximal to the compound, compounds associated with radioemission would be analysed.
- a screen may be used to identify compounds having biological activity.
- it is desirable to find a compound that has an effect on living cells such as inhibition of microbial growth, inhibition of viral growth, inhibition of gene expression or activation of gene expression.
- Screening of supported compounds may be achieved, for example, by embedding the supports in a semisolid medium and the library of compounds released from the embedded supports enabling the compounds to diffuse into the surrounding medium.
- the effects such as plaques within a bacterial lawn, can be observed. Zones of growth inhibition or growth activation or effects on gene expression can then be visualised and compounds at the centre of the zone picked and analysed.
- a screen may include gels where the molecule or system, e.g. cell, to be acted upon may be embedded substantially homogeneously in the gel.
- Various gelling agents may be used such as polyacrylamide, agarose, gelatin, etc.
- Compounds may then be spread over the gel so as to have sufficient separation between the compounds to allow for individual detection. If the desired compound is to have hydrolytic activity, a substrate may be present in the gel which would provide a fluorescent product, enabling screening the gel for fluorescence and mechanically selecting compounds associated with the fluorescent signal.
- Cells may be embedded in the gel, in effect creating a cellular lawn.
- Compounds may be spread out as described above. Techniques are known in the art for placing a grid over a gel defining areas of one or no compound. Cytotoxicity may be detected by releasing a library compound, incubating for a sufficient time, followed by spreading a vital dye over the gel. Those cells which absorbed the dye or did not absorb the dye could then be distinguished.
- cells can be genetically engineered so as to indicate when a signal has been transduced.
- receptors for which the genes are known whose expression is activated.
- an enzyme By inserting an exogenous gene into a site where the gene is under the transcriptional control of the promoter responsive to such receptor, an enzyme can be produced which provides a detectable signal, e.g. a fluorescent signal.
- a library compound associated with the fluorescent cell(s) may then be analysed for its reaction history.
- the method of the invention includes selecting one or more compounds, for example 5 to 100 compounds in a successful screen, providing a radioisotope labelled sample of the selected compounds from the library of the invention and forwarding for radiodetection in a subsequent study, for example for AMS detection in a metabolic, pharmacokinetic or like study.
- AMS microdosing is suitably by administering an amount of candidate compound alone or with a suitable carrier to a human or animal subject. Administration is typically by oral, dermal, buccal, vaginal, anal, subcutaneous, nasal route or by inhalation.
- a microdose suitably comprises sufficient compound to give a low dose of the order of nanocuries of radioactive label, for example is of the order of ng or mg.
- Preferably a microdose comprises 1 - 5 nanoCuries, more preferably is less than 1 microSievert, thereby being exempt from regulatory approval.
- a microdose may therefore comprise from 1 microgram to 1 milligram, preferably 1 microgram to 500 micrograms of radioisotope labelled compound of the library of the invention.
- samples are taken of tissue or cells, blood samples, urine or faeces. Samples are suitably taken at intervals in order to detect compound metabolism rate and indicate rapid and slowly metabolised compounds.
- the method is described in WO 01/59476, the contents of which are incorporated herein by reference.
- AMS results indicates number of isotope counts, eg of 14 C, ratio of modern (ie naturally occurring) isotopes and percent modern isotope as a combination of the number of counts and the ratio of modern isotope.
- a sample is prepared for AMS analysis in a range of micrograms or less of tissues or cells to a few microlitres of blood or urine. Samples may also comprise plant tissues, soil or soil organisms such as worms, as known in the art.
- the sample is prepared in a form that can yield negative ions within the instruments ion source, as known in the art.
- Sample preparation may be by traditional methods which prepare thermally and electrically conductive solids, are non fractionating, efficient and protected from contamination by isobars or unexpected concentrations of the rare isotope in or on laboratory equipment. Uniformity and comparability between samples and standards are ensured by reducing all samples to a homogeneous state from which the final target material is prepared. Reduced sample is then compressed into tablet form in a cylindrical aluminium cathode before elemental isotope ratio analysis in the AMS.
- samples obtained from microdosing isotopic carbon labelled library compounds may be converted to graphite
- samples obtained from microdosing isotopic halide labelled library compounds may be converted to silver halide salts
- samples obtained from microdosing isotopic aluminium labelled library compounds may be converted to aluminium oxide
- samples obtained from microdosing isotopic calcium labelled library compounds may be converted to a calcium dihalide or dianhydride.
- Conversion is for example performed for carbon samples (containing 14 C) by oxidising to CO 2 before reducing to graphite, commonly by the reduction of the CO 2 by hydrogen or zinc over an iron or cobalt catalyst or binder (Vogel J S (1992) Rapid production of graphite without contamination for biomedical AMS, Radiocarbon, 34, 344-350).
- Oxidation is in a sealed tube which is heated in a furnace at temperatures of up to 900C with an oxidant such as copper oxide for approx 8 hours.
- the resulting CO 2 is reduced to graphite in a second step after cryogenic transfer using a reducing agent such as zinc and titanium hydride and cobalt as a catalyst at temperatures up to about 500C for approx 18 hours with cooling.
- Cobalt/graphite is then compressed into tablet form in a cylindrical aluminium cathode before elemental isotope ratio analysis in the AMS.
- sample preparation may be for example by the improved technique of WO 01/59476, the contents of which are incorporated herein by reference.
- sample is homogeneously mixed with a binder which is preferably electrically conductive and may be any substance which allows the mixture of sample and binder to be compressed into tablet form.
- the binder is one or a mixture of any of graphite, cobalt or aluminium powder, for example where the isotope to be detected is 14 C, or is one or a mixture of any or aluminium oxide and iron or iron oxide, for example where the isotope to be detected is plutonium.
- the method of the invention comprises in a further stage analysing the results of AMS detection and identifying one or more candidate compounds characterised by a desired metabolic profile in a desired subject and forwarding the identified candidate compound(s) for further studies on medical acceptability or efficacy.
- a library a solid support comprising radioisotope labelled compound or a method as hereinbefore defined in (bio)medical, agrochemical, environmental and like screening for further study by AMS detection.
- (bio)medical screening is for compound activity, reactivity such as binding, inhibitory effect or other functionality, to assess for metabolism characteristics;
- agrochemical screening is for compound activity, reactivity such .
- binding, inhibitory effect or other functionality and assessing for plant, insect or like metabolism
- environmental screening is for compound activity, reactivity such as binding, inhibitory effect or other functionality, and assessing for soil, aqueous or sediment abso ⁇ tion or adsorption, diffusion, leaching, metabolism, degradation, dissipation or photolysis study.
- the library of the invention is useful in any applications in which compound libraries are currently used, wherein the analysis of radioisotopes facilitates detecting the presence of a compound in a sample, location of a compound for example by origin of sample, or the amount of a compound in any location or sample, using AMS radiodetection techniques. This may be of use during the initial screening of a library of compounds for example indicating successful binding to a desired substrate.
- the library of the invention may be of use after screening and selection of compounds having a desired activity, for example having a desired binding characteristic, in providing radioisotope labelled samples of selected library compounds, shown in an initial screen of the library to be active compounds, for directly performing further studies requiring the presence of radioisotopes, such as radiodetection of metabolic samples.
- the library of the invention is for use in a method of screening for selecting candidate compounds and providing radioisotope labelled samples of those compounds for determining binding to receptors in cells, animal studies, investigating mechanism of action of metabolites, metabolic studies and the like, in known manner.
- receptor binding may be screened for a number of radioisotopic metabolites and receptor-ligand complexes formed may be harvested and subject to AMS to determine whether radiosotope is present indicating receptor binding by the library metabolite in question; or a screen may be conducted for selecting candidate compounds for medical applications and dosing, preferably by microdosing, the candidate compounds in human or animal subjects followed by AMS detection of samples of fluids taken from the subjects to determine metabolism characteristics.
- the library of the invention is therefore useful in providing in vivo metabolic data relating to metabolism characteristics for the candidate compounds in a modular approach, without the need for intermediate determination of candidate and its synthesis, and synthesis of a radioisotope labelled analogue.
- Figures 1 to 5 show reaction schemes and structures of library compounds.
- reaction mixtures were used as described in Table 1.
- Reactions xl - xl9 were conducted in solution.
- Reactions x21 - x29 were conducted using TentaGel S-RAM resin. This solid support donates amine groups into the reaction.
- Table 1 Components used for the Ugi reaction.
- the resin was washed with DCM (10 x 5 ml) and dried under vacuum.
- the resin was cleaved with 30% TFA:DCM (1 ml) for 3h. Resin was removed by filtration and the filtrate was concentrated under reduced pressure to yield the crude condensation product.
- rink resin (1.1 mmol 0.055g) was deprotected with 20%> piperidine in dichloromethane (DCM) (3x 1 ml). The resin was swelled in 50%> DCM:MeOH (1 ml) for 30 min. Valeraldehyde (64 microlitre, 10 equiv. based on the initial resin loading) was added to the pre- swelled resin and the reaction mixture was agitated for 10 min at 28°C.
- DCM dichloromethane
- Example 2 A sample of the l C-benzoic acid precursor used in Example 1 and samples of x4, xl2, xl9 and x22 obtained in Example 1 were graphitised using the method of Vogel (Vogel J S (1992) Radiocarbon 34, 344 - 350) and analysed using a NEC 15SDH-2 Pelletron AMS system.
- the terminal voltage was 4.5 MV with a particle energy of approximately 22.5 MeV.
- At the central terminal electrons were stripped from the carbon atom to yield positively charged carbon ions ( 12>13>14 c +1 10 +6 ).
- C 4+ ions were selected for measurement as these are the most abundant at this energy.
- the specific activity of the benzoic acid starting material was 1.56 dpm/mg.
- the specific activities of the library compounds analysed were as shown in Table 2.
- a library of compounds having potential activity as antibacterials or bacteriophages are commercially available. lOmg of each compound are lightly radio labelled by substitution with 14 C to give a radioisotope labelled library according to the invention.
- the library is small and the compound in each case is present in an independent vial labelled by library serial number and reference and the identity in each case is known by crossing the library serial number and reference with a library catalogue.
- Compounds are screened to detect binding to a receptor molecule associated with the Salmonella microsome, using the Salmonella microsome assay (Ames test). From the results a selection of candidate positive compounds is made.
- Candidate library compounds are already radioisotope labelled and may therefore be forwarded directly for microdosing and AMS.
- the candidate compounds are first made up in a form for microdosing each to a different human subject, in an amount of 5 microgram per subject. After several months samples of blood and urine are taken from each subject and marked with the candidate library compound serial number. Samples are prepared for AMS as known in the art. AMS is performed and results are analysed to indicate the metabolic characteristics of each candidate library compound. From these a selection is made of candidates to forward for Stage I clinical trials, based on acceptable PK characteristics.
- a library of recombinant human antibodies is 14, C labelled biosynthetically using pooled essential 14 C-amino acids. Sufficient radioactivity is incorporated to permit high limit of detection (several thousand fold increase over ELISA l.o.d) using AMS.
- the library is screened for activity of individual radioisotope labelled library antibodies, by testing for receptor binding in a suitable receptor binding assay and a selection is made for PK analysis. Microdosing is carried out using prepared AMS samples of the selected candidate library antibodies using the method of Example l, .and studies are conducted in human serum spiked with the antibody and with rats administered the antibody.
- the method of the invention takes from 6 weeks to prepare the radioisotope labelled library (fairly independent on size of library in this case as compounds ,may be radioisotope labelled in parallel by the biosynthetic means described) and screen, identify candidate compounds and conduct the AMS.
- preclinical toxicology and clinical phase trials may be performed on a candidate radioisotope labelled library compound of the invention, identified by the method of the invention.
- the entire process to completing clinical phase trials can be carried out in 12 to 16 weeks.
- the advantages of the radio labelled library of the invention and its use in the modified screening method of the invention are that the candidate compound is synthesised only once in a microscale amount, there is no delay between screening and microdosing, shortening the time scale to identify an active drug candidate which offers the optimum PK characteristics for example, and therefore there is a greater certainty for start up and multinational drug discovery groups and investment companies alike in basing a business plan around a candidate compound as a prospective pharmaceutical.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002517349A CA2517349A1 (en) | 2003-02-27 | 2004-02-27 | Library of compounds labelled with radioisotope |
JP2006502335A JP2006519374A (en) | 2003-02-27 | 2004-02-27 | Compound library labeled with radioisotopes |
EP04715381A EP1597583A1 (en) | 2003-02-27 | 2004-02-27 | Library of compounds labelled with radioisotope |
US10/546,324 US20060194341A1 (en) | 2003-02-27 | 2004-02-27 | Library of compounds labelled with radiosotope |
GB0518710A GB2414989A (en) | 2003-02-27 | 2004-02-27 | Library of compounds labelled with radioisotope |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0304433.6A GB0304433D0 (en) | 2003-02-27 | 2003-02-27 | Improvements relating to chemical libraries |
GB0304433.6 | 2003-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004077061A1 true WO2004077061A1 (en) | 2004-09-10 |
Family
ID=9953724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/000825 WO2004077061A1 (en) | 2003-02-27 | 2004-02-27 | Library of compounds labelled with radioisotope |
Country Status (8)
Country | Link |
---|---|
US (1) | US20060194341A1 (en) |
EP (1) | EP1597583A1 (en) |
JP (1) | JP2006519374A (en) |
CN (1) | CN1754099A (en) |
CA (1) | CA2517349A1 (en) |
GB (3) | GB0304433D0 (en) |
HK (1) | HK1096711A1 (en) |
WO (1) | WO2004077061A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006092584A2 (en) * | 2005-03-02 | 2006-09-08 | Xceleron Limited | Radioisotope labelled biological compositions, and their use in accelerator mass spectrometry |
US7985589B2 (en) | 2007-07-19 | 2011-07-26 | Xceleron, Limited | Quantification of analytes using accelerator mass spectrometry |
US20110230479A1 (en) * | 2005-04-15 | 2011-09-22 | Longo Frank M | Neurotrophin mimetics and uses thereof |
CN102392014A (en) * | 2005-06-09 | 2012-03-28 | 葛兰素史克有限责任公司 | Methods for synthesis of encoded libraries |
US8916556B2 (en) | 2005-04-15 | 2014-12-23 | The University Of North Carolina At Chapel Hill | Pharmaceutical formulations comprising neurotrophin mimetics |
US10273219B2 (en) | 2009-11-12 | 2019-04-30 | Pharmatrophix, Inc. | Crystalline forms of neurotrophin mimetic compounds and their salts |
US10532988B2 (en) | 2009-11-12 | 2020-01-14 | Pharmatrophix, Inc. | Crystalline forms of neurotrophin mimetic compounds and their salts |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368710B2 (en) * | 2000-02-09 | 2008-05-06 | Xceleron Limited | Sample preparation method |
CA2669864A1 (en) * | 2006-11-17 | 2008-05-29 | Accium Biosciences | Personalized therapeutic treatment process |
US8373114B2 (en) * | 2008-09-15 | 2013-02-12 | Accium Biosciences | Total carbon mass determination by accelerator mass spectrometry (AMS) using 13C isotope dilution |
WO2018118897A1 (en) * | 2016-12-19 | 2018-06-28 | Dice Molecules Sv, Llc | Methods of estimating metabolic stability of tagged combinatorial library compounds |
CN108624516B (en) * | 2017-03-20 | 2022-08-26 | 华东理工大学 | Method for improving metabolite amount in fermentation cells and preparing IDMS standard substance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995028640A1 (en) * | 1994-04-13 | 1995-10-26 | The Trustees Of Columbia University In The City Of New York | Complex combinatorial chemical libraries encoded with tags |
WO2001059476A2 (en) * | 2000-02-09 | 2001-08-16 | Cbams Limited | Sample preparation method |
WO2003102579A2 (en) * | 2002-05-31 | 2003-12-11 | Commissariat A L'energie Atomique | Method of screening groups of radioactive molecules and applications thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5209919A (en) * | 1990-07-13 | 1993-05-11 | Regents Of The University Of California | Method of measurement in biological systems |
CA2027714C (en) * | 1990-07-13 | 2003-01-28 | Kenneth W. Turtletaub | Method of measurement in biological systems |
-
2003
- 2003-02-27 GB GBGB0304433.6A patent/GB0304433D0/en not_active Ceased
-
2004
- 2004-02-27 EP EP04715381A patent/EP1597583A1/en not_active Withdrawn
- 2004-02-27 US US10/546,324 patent/US20060194341A1/en not_active Abandoned
- 2004-02-27 CA CA002517349A patent/CA2517349A1/en not_active Abandoned
- 2004-02-27 GB GB0518710A patent/GB2414989A/en not_active Withdrawn
- 2004-02-27 CN CNA2004800054218A patent/CN1754099A/en active Pending
- 2004-02-27 WO PCT/GB2004/000825 patent/WO2004077061A1/en active Application Filing
- 2004-02-27 JP JP2006502335A patent/JP2006519374A/en not_active Withdrawn
- 2004-02-27 GB GB0622381A patent/GB2428676B/en not_active Expired - Fee Related
-
2007
- 2007-02-28 HK HK07102260A patent/HK1096711A1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995028640A1 (en) * | 1994-04-13 | 1995-10-26 | The Trustees Of Columbia University In The City Of New York | Complex combinatorial chemical libraries encoded with tags |
WO2001059476A2 (en) * | 2000-02-09 | 2001-08-16 | Cbams Limited | Sample preparation method |
WO2003102579A2 (en) * | 2002-05-31 | 2003-12-11 | Commissariat A L'energie Atomique | Method of screening groups of radioactive molecules and applications thereof |
Non-Patent Citations (2)
Title |
---|
TURTELTAUB K W ET AL: "ACCELERATOR MASS SPECTROMETRY IN BIOMEDICAL DOSIMETRY: RELATIONSHIP BETWEEN LOW-LEVEL EXPOSURE AND COVALENT BINDING OF HETEROCYCLIC AMINE CARCINOGENS TO DNA", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 87, 1 July 1990 (1990-07-01), pages 5288 - 5292, XP000616566, ISSN: 0027-8424 * |
TURTELTAUB K W ET AL: "Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research.", CURRENT PHARMACEUTICAL DESIGN. JUL 2000, vol. 6, no. 10, July 2000 (2000-07-01), pages 991 - 1007, XP009032292, ISSN: 1381-6128 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006092584A2 (en) * | 2005-03-02 | 2006-09-08 | Xceleron Limited | Radioisotope labelled biological compositions, and their use in accelerator mass spectrometry |
WO2006092584A3 (en) * | 2005-03-02 | 2007-02-15 | Xceleron Ltd | Radioisotope labelled biological compositions, and their use in accelerator mass spectrometry |
US20110230479A1 (en) * | 2005-04-15 | 2011-09-22 | Longo Frank M | Neurotrophin mimetics and uses thereof |
US8916556B2 (en) | 2005-04-15 | 2014-12-23 | The University Of North Carolina At Chapel Hill | Pharmaceutical formulations comprising neurotrophin mimetics |
CN102392014A (en) * | 2005-06-09 | 2012-03-28 | 葛兰素史克有限责任公司 | Methods for synthesis of encoded libraries |
CN101233235B (en) * | 2005-06-09 | 2012-10-03 | 葛兰素史克有限责任公司 | Methods for synthesis of encoded libraries |
US7985589B2 (en) | 2007-07-19 | 2011-07-26 | Xceleron, Limited | Quantification of analytes using accelerator mass spectrometry |
US10273219B2 (en) | 2009-11-12 | 2019-04-30 | Pharmatrophix, Inc. | Crystalline forms of neurotrophin mimetic compounds and their salts |
US10532988B2 (en) | 2009-11-12 | 2020-01-14 | Pharmatrophix, Inc. | Crystalline forms of neurotrophin mimetic compounds and their salts |
US11225467B2 (en) | 2009-11-12 | 2022-01-18 | Pharmatrophix, Inc. | Crystalline forms of neurotrophin mimetic compounds and their salts |
Also Published As
Publication number | Publication date |
---|---|
CN1754099A (en) | 2006-03-29 |
HK1096711A1 (en) | 2007-06-08 |
GB0518710D0 (en) | 2005-10-19 |
US20060194341A1 (en) | 2006-08-31 |
GB0304433D0 (en) | 2003-04-02 |
JP2006519374A (en) | 2006-08-24 |
GB2414989A (en) | 2005-12-14 |
CA2517349A1 (en) | 2004-09-10 |
GB2428676B (en) | 2007-06-06 |
GB2428676A (en) | 2007-02-07 |
GB0622381D0 (en) | 2006-12-20 |
EP1597583A1 (en) | 2005-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0665897B1 (en) | Complex combinatorial chemical libraries encoded with tags | |
US6001579A (en) | Supports and combinatorial chemical libraries thereof encoded by non-sequencable tags | |
US6936477B2 (en) | Complex combinatorial chemical libraries encoded with tags | |
US5968736A (en) | Methods for recording the reaction history of a solid support | |
US20060194341A1 (en) | Library of compounds labelled with radiosotope | |
EP1483578B1 (en) | Artificial receptors, building blocks, and methods | |
US20100152051A1 (en) | Novel method for the identification of clones conferring a desired biological property from an expression library | |
US20070054308A1 (en) | Fluorescence polarization assay | |
US6503759B1 (en) | Complex combinatorial chemical libraries encoded with tags | |
US20060099626A1 (en) | DNA-templated combinatorial library device and method for use | |
US6541203B2 (en) | Detecting structural or synthetic information about chemical compounds | |
US20040131544A1 (en) | In vivo imaging | |
JP2015508638A (en) | Method for quantifying peptide derivative libraries using phage display | |
JP2003527605A (en) | Methods for making and using biological material microarrays | |
EP3180465B1 (en) | Libraries of non-natural, dihydroisoquinolinone-based polymers for high-throughput drug screening through fiber-optic array scanning technology | |
WO2001081924A2 (en) | Reusable microarrays for quantifying low abundance proteins | |
Dormán et al. | Chemical Genomics: Bridging the Gap Between Novel Targets and Small Molecule Drug Candidates. Contribution to Immunology | |
Pal | Design, synthesis, and screening of a library of peptidyl bis-boroxoles as low molecular weight receptors for complex oligosaccharides in neutral water: identification of a selective receptor for the tumour marker TF-antigen | |
AU4109499A (en) | Complex combinatorial chemical libraries encoded with tags |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1615/KOLNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2517349 Country of ref document: CA Ref document number: 2006502335 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048054218 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004715381 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 0518710 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20040227 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0518710.9 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006194341 Country of ref document: US Ref document number: 10546324 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2004715381 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10546324 Country of ref document: US |